This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\stackMath

Traces on General Sets in n\mathbb{R}^{n} for Functions with no Differentiability Requirementsthanks: The author’s research is supported by the NSF award DMS-1716790

Mikil Foss 203 Avery Hall, Lincoln, NE 68588-0130 USA, University of Nebraska-Lincoln ([email protected])
Abstract

This paper is concerned with developing a theory of traces for functions that are integrable but need not possess any differentiability within their domain. Moreover, the domain can have an irregular boundary with cusp-like features and codimension not necessarily equal to one, or even an integer. Given Ωn\Omega\subseteq\mathbb{R}^{n} and ΓΩ\Gamma\subseteq\partial\Omega, we introduce a function space 𝒩s(),p(Ω)Llocp(Ω)\mathscr{N}^{s(\cdot),p}(\Omega)\subseteq L^{p}_{\operatorname{loc}}(\Omega) for which a well-defined trace operator can be identified. Membership in 𝒩s(),p(Ω)\mathscr{N}^{s(\cdot),p}(\Omega) constrains the oscillations in the function values as Γ\Gamma is approached, but does not imply any regularity away from Γ\Gamma. Under connectivity assumptions between Ω\Omega and Γ\Gamma, we produce a linear trace operator from 𝒩s(),p(Ω)\mathscr{N}^{s(\cdot),p}(\Omega) to the space of measurable functions on Γ\Gamma. The connectivity assumptions are satisfied, for example, by all 11-sided nontangentially accessible domains. If Γ\Gamma is upper Ahlfors-regular, then the trace is a continuous operator into a Sobolev-Slobodeckij space. If Γ=Ω\Gamma=\partial\Omega and is further assumed to be lower Ahlfors-regular, then the trace exhibits the standard Lebesgue point property. To demonstrate the generality of the results, we construct Ω2\Omega\subseteq\mathbb{R}^{2} with a t>1t>1-dimensional Ahlfors-regular ΓΩ\Gamma\subseteq\partial\Omega satisfying the main domain hypotheses, yet Γ\Gamma is nowhere rectifiable and for every neighborhood of every \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma, there exists a boundary point within that neighborhood that is only tangentially accessible.
Keywords: Nonlocal function spaces, Trace operator, Higher codimensional boundaries, Ahlfors-regular boundaries
AMS2010: 35A23, 46E35, 47G10

1 Introduction

1.1 Overview

Suppose that Ωn\Omega\subseteq\mathbb{R}^{n} is an open, not necessarily bounded, set and that u𝒞(Ω)u\in\mathscr{C}(\Omega) is uniformly continuous. Though the boundary Ω\partial\Omega is not in the domain of uu, there is a natural choice for a trace function Tu𝒞(Ω)Tu\in\mathscr{C}(\partial\Omega) that can be identified as the values of uu on Ω\partial\Omega, since uu has a continuous extension to Ω¯\overline{\Omega}. In the context of Sobolev spaces, where uu is not necessarily continuous in Ω\Omega, the well-known Gagliardo’s theorem [19] states that, with a sufficiently regular boundary, this trace operator can be extended from the space of functions with uniformly continuous derivatives to a continuous linear operator T:W1,p(Ω)W11p,p(Ω)T:W^{1,p}(\Omega)\to W^{1-\frac{1}{p},p}(\partial\Omega), for each 1<p<1<p<\infty. Here 0<β<10<\beta<1 and Wβ,p(Ω)W^{\beta,p}(\partial\Omega) is the standard Sobolev–Slobodeckij space (Definition 1.3). Generalizations to Sobolev-Slobodeckij and Besov spaces, traces on general closed subsets of n\mathbb{R}^{n}, Sobolev and Besov spaces on metric spaces, Sobolev spaces with variable exponent, etc. have since been produced (see [14, 31, 33, 34, 39]). This paper is concerned with establishing analogous trace results compatible with a nonlocal framework, where only pp-integrability is assumed away from the boundary.

There has been a surge of interest in developing and analyzing models that employ a nonlocal operator. Such models can incorporate long-range interactions and multiple scales and can expand the space of admissible solutions to permit singular and discontinuous attributes. Nonlocal models have been successfully employed in a wide variety of contexts, including image processing [24, 32], population and flocking models [8, 40], diffusion [3], phase transitions [5, 23], and material deformation with failure in peridynamics models [41, 42]. For a comprehensive introduction to nonlocal modeling and their analysis, we refer to the monograph [15].

A common class of nonlocal operators have a convolution, or cross-correlation, like structure. At each point \vectorsymxΩ\vectorsym{x}\in\Omega, the operator uses an integral and an integrable kernel to accumulate weighted data for a function over a neighborhood of \vectorsymx\vectorsym{x}. This makes them generally insensitive to function values on sets of zero measure and, in particular, to function irregularities across sets of dimension less than nn. With an appropriate kernel, however, the operator can approximate a differential operator and provide information about the rate of change of a function.

The current work contributes to the rigorous development of a framework in which convolution-like operators, with integrable kernels, can incorporate data on sets with positive codimension. In addition to mathematical interest, there are two primary motivations for these efforts. Both are related to the fact that at points where the support of the kernel extends outside of Ω\Omega, the evaluation of the operator requires function values outside of Ω\Omega. Thus, for associated nonlocal problems, the analogue of a Dirichlet-type boundary condition is a volume-constraint, where the value of a solution is prescribed on a region of positive measure in nΩ\mathbb{R}^{n}\setminus\Omega [16, 38]. It can be a nontrivial issue to identify appropriate volume-constraints when data on only a lower-dimensional set ΓΩ\Gamma\subseteq\partial\Omega is readily available. If the integral operator is responsive to function behavior on Γ\Gamma, then one can instead formulate nonlocal problems subject to classical Dirichlet-type boundary conditions. This also facilitates seamless transitions between nonlocal and local system descriptions. There is substantially more computational expense to numerically solve nonlocal equations when compared to their local counterpart. With a nonlocal operator that “localizes” as Γ\Gamma is approached, one can couple a computationally efficient local model to a nonlocal model that confined to a region where it is essential to employ nonlocal operators [12, 43]. The set Γ\Gamma is a lower-dimensional interface between these two regions. In both contexts, it is essential to have a trace theory to ensure well-posedness and mathematical consistency.

In [44], Du and Tian produced some of the first trace results for functions in the nonlocal setting, with operators that have an integrable kernel that concentrates near the boundary. They considered the space 𝒮(Ω)L2(Ω)\mathscr{S}(\Omega)\subseteq L^{2}(\Omega) consisting of functions satisfying u𝒮(Ω)2:=uL2(Ω)2+|u|𝒮(Ω)2<\|u\|^{2}_{\mathscr{S}(\Omega)}:=\|u\|^{2}_{L^{2}(\Omega)}+|u|^{2}_{\mathscr{S}(\Omega)}<\infty, where Ωn\Omega\subseteq\mathbb{R}^{n} is an open Lipschitz domain and

|u|𝒮(Ω)2:=ΩΨ(\vectorsymx)(|u(\vectorsymy)u(\vectorsymx)|dΩ(\vectorsymx))2d\vectorsymyd\vectorsymx.|u|^{2}_{\mathscr{S}(\Omega)}:=\int_{\Omega}\fint_{\Psi(\vectorsym{x})}\left(\frac{|u(\vectorsym{y})-u(\vectorsym{x})|}{d_{\partial\Omega(\vectorsym{x})}}\right)^{2}\mathrm{d}\vectorsym{y}\mathrm{d}\vectorsym{x}.

Here

Ev(\vectorsymx)d\vectorsymx:=1|E|Ev(\vectorsymx)d\vectorsymx, for all E(n), with |E|>0 and vL1(E),\fint_{E}v(\vectorsym{x})\mathrm{d}\vectorsym{x}:=\frac{1}{|E|}\int_{E}v(\vectorsym{x})\mathrm{d}\vectorsym{x},\quad\text{ for all }E\in\mathscr{B}(\mathbb{R}^{n}),\text{ with }|E|>0\text{ and }v\in L^{1}(E),
dΩ(\vectorsymx):=inf\vectorsymx¯Ω\vectorsymx¯\vectorsymxn, and Ψ(\vectorsymx):=12dΩ(\vectorsymx)(\vectorsymx), for all \vectorsymxn,d_{\partial\Omega}(\vectorsym{x}):=\inf_{\overline{\vectorsym{x}}\in\partial\Omega}\|\overline{\vectorsym{x}}-\vectorsym{x}\|_{\mathbb{R}^{n}},\quad\text{ and }\quad\Psi(\vectorsym{x}):=\mathcal{B}_{\frac{1}{2}d_{\partial\Omega}(\vectorsym{x})}(\vectorsym{x}),\quad\text{ for all }\vectorsym{x}\in\mathbb{R}^{n},

where (n)\mathscr{B}(\mathbb{R}^{n}) denotes the family of Borel subsets of n\mathbb{R}^{n}, |E||E| is the Lebesgue measure of EE, and ρ(\vectorsymx)\mathcal{B}_{\rho}(\vectorsym{x}) is the open ball centered at \vectorsymx\vectorsym{x} with radius ρ>0\rho>0. The kernel, in the semi-norm ||𝒮(Ω)|\cdot|_{\mathscr{S}(\Omega)}, can be identified as \vectorsymxdΩ(\vectorsymx)n2|12|1χΨ(\vectorsymx)\vectorsym{x}\mapsto d_{\partial\Omega}(\vectorsym{x})^{-n-2}|\mathcal{B}_{\frac{1}{2}}|^{-1}\chi_{\Psi(\vectorsym{x})}. Since dΩd_{\partial\Omega} is uniformly positive on any open Ω\Omega^{\prime} compactly contained in Ω\Omega, one can only expect uL2(Ω)u\in L^{2}(\Omega^{\prime}). Thus, the space 𝒮(Ω)\mathscr{S}(\Omega) includes functions that have no regularity, beyond square-integrability, away from the Ω\partial\Omega. As the Ω\partial\Omega is approached, however, the kernel concentrates sufficiently strongly that the behavior of uu at Ω\partial\Omega contributes to ||𝒮(Ω)|\cdot|_{\mathscr{S}(\Omega)}. In fact, the singularity is strong enough that ||𝒮(Ω)|\cdot|_{\mathscr{S}(\Omega)} is sensitive to oscillations in uu at the boundary and u𝒮(Ω)<\|u\|_{\mathscr{S}(\Omega)}<\infty implies that there is a well-defined trace TuL2(Ω)Tu\in L^{2}(\partial\Omega) and, moreover, that TuW12,2(Ω)Tu\in W^{\frac{1}{2},2}(\partial\Omega). These results have recently been generalized to exponents 1p<1\leq p<\infty in [17].

In this paper we vastly expand the class of functions and domains, for which a well-defined trace can be identified for a given Γ(Ω)\Gamma\in\mathscr{B}(\partial\Omega). Let 1p<1\leq p<\infty and sL(Ω)s\in L^{\infty}(\Omega) be given. For each uL1(Ω)u\in L^{1}(\Omega), define

νs(),p(E;u):=ΩE(Ψ(\vectorsymx)|u(\vectorsymy)u(\vectorsymx)|dΩ(\vectorsymx)s(\vectorsymx)d\vectorsymy)pd\vectorsymx, for all E(n).\nu^{s(\cdot),p}(E;u):=\int_{\Omega\cap E}\left(\fint_{\Psi(\vectorsym{x})}\frac{|u(\vectorsym{y})-u(\vectorsym{x})|}{d_{\partial\Omega}(\vectorsym{x})^{s(\vectorsym{x})}}\mathrm{d}\vectorsym{y}\right)^{p}\mathrm{d}\vectorsym{x},\quad\text{ for all }E\in\mathscr{B}(\mathbb{R}^{n}). (1)

The focus of this paper is on developing a trace theory for functions belonging to the space

𝒩s(),p(Ω):={uL1(Ω):νs(),p(Ω;u)<}.\mathscr{N}^{s(\cdot),p}(\Omega):=\left\{u\in L^{1}(\Omega):\nu^{s(\cdot),p}(\Omega;u)<\infty\right\}.

A straightforward argument shows that ||𝒩s(),p(Ω):𝒩s(),p(Ω)[0,)|\cdot|_{\mathscr{N}^{s(\cdot),p}(\Omega)}:\mathscr{N}^{s(\cdot),p}(\Omega)\to[0,\infty), given by |u|𝒩s(),p(Ω)p:=νs(),p(Ω;u)|u|^{p}_{\mathscr{N}^{s(\cdot),p}(\Omega)}:=\nu^{s(\cdot),p}(\Omega;u), provides a semi-norm. We easily see that if for some 0<β<10<\beta^{\prime}<1, we have sβs\geq\beta^{\prime} throughout Ω\Omega, then Wβ,p(Ω)Bβ1,p(Ω)𝒩s(),p(Ω)W^{\beta^{\prime},p}(\Omega)\subseteq B^{1,p}_{\beta^{\prime}}(\Omega)\subseteq\mathscr{N}^{s(\cdot),p}(\Omega), with Bβ1,p(Ω)B^{1,p}_{\beta^{\prime}}(\Omega) is a Besov space, as defined in [31]. Moreover, the spaces introduced in [17, 44] are subspaces of the corresponding space 𝒩s(),p\mathscr{N}^{s(\cdot),p}, with ss constant. (For example, 𝒮𝒩1,2\mathscr{S}\subseteq\mathscr{N}^{1,2}.) In fact, Example 1.2 shows that, in general, the containment is strict. Thus, many results currently available in the literature can be viewed as corollaries of the trace theorems established in this paper.

With Γ(Ω)\Gamma\in\mathscr{B}(\partial\Omega), the main results of the paper provide assumptions on Ω\Omega, Γ\Gamma, and ss (collected in Section 1.3) that ensure the existence of a continuous linear trace operator T:𝒩s(),p(Ω)Wβ,p(Γ)T:\mathscr{N}^{s(\cdot),p}(\Omega)\to W^{\beta,p}(\Gamma), for some 0<β<10<\beta<1. The primary assumptions on Ω\Omega and Γ\Gamma are (H1) a corkscrew-type condition, (H2) a uniform-connectedness condition, (H3) a constraint on the oscillations of uu near Γ\Gamma, and (H4) Ahlfors-regularity of Γ\Gamma. Loosely speaking, the oscillation constraint is satisfied if s(\vectorsymx)a(\vectorsymx¯)+β+ndim(Γ)ps(\vectorsym{x})\geq a(\overline{\vectorsym{x}})+\beta+\frac{n-\dim(\Gamma)}{p}, for \vectorsymxΩ\vectorsym{x}\in\Omega near \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma. The values of a(\vectorsymx¯)>0a(\overline{\vectorsym{x}})>0 depend, in an explicit way, on the approachability of \vectorsymx¯\overline{\vectorsym{x}} from Ω\Omega. Following some definitions recorded in Section 1.2, precise statements of the main assumptions and theorems are given in Sections 1.3 and 1.4.

The distinguishing features of this work are the following:

  • We provide trace results allowing “very rough” boundaries. In [17] and [44], the set Γ\Gamma is required to be Lipschitz, so that an atlas of Lipschitz transforms are available to “flatten out” Γ\Gamma. They connect the rate of change of a function in directions parallel to the flattened boundary to the rate of change in the normal direction. In this paper, a different approach is presented, based on a continuous extension of a function (3) related to the mean values of uu. The corkscrew and connectedness properties ensure there is a region of approach to points in Γ\Gamma that allows us to work directly with Γ\Gamma, without any transformations, and allow Γ\Gamma to have minimal regularity.

    In fact, identifying a natural candidate for a measurable trace does not require any assumptions on Ω\Omega and Γ\Gamma beyond (H1) and (H2). Assuming upper Ahlfors-regularity, we prove TuWβ,p(Γ)Tu\in W^{\beta,p}(\Gamma). If, additionally, there is a lower Ahlfors-regular neighborhood in Γ\Gamma, then we can establish the Lesbesgue point property for TuTu within that neighborhood; i.e., as ρ0+\rho\to 0^{+}, the mean values of uu over Ωρ(\vectorsymx¯)\Omega\cap\mathcal{B}_{\rho}(\overline{\vectorsym{x}}) converge in the pp-norm to Tu(\vectorsymx¯)Tu(\overline{\vectorsym{x}}), for a.e. \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma. Thus, with respect to the surface measure, TuTu agrees a.e. on Γ\Gamma with the strictly defined function associated with uu.

  • Within Ω\Omega, the functions need only be pp-integrable. Given a function u𝒩s(),p(Ω)u\in\mathscr{N}^{s(\cdot),p}(\Omega) and an open set Ω\Omega^{\prime} compactly contained in Ω\Omega, Jensen’s inequality implies

    Ω|u(\vectorsymx)|pd\vectorsymxcΩ(Ψ(\vectorsymx)|u(\vectorsymy)u(\vectorsymx)|d\vectorsymy)pd\vectorsymx+cΩ(Ψ(\vectorsymx)|u(\vectorsymy)|d\vectorsymy)pd\vectorsymx<,\int_{\Omega^{\prime}}\!|u(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}\leq c\int_{\Omega^{\prime}}\!\left(\fint_{\Psi(\vectorsym{x})}\!\!|u(\vectorsym{y})-u(\vectorsym{x})|\mathrm{d}\vectorsym{y}\right)^{p}\mathrm{d}\vectorsym{x}\\ +c\int_{\Omega^{\prime}}\!\left(\fint_{\Psi(\vectorsym{x})}\!\!|u(\vectorsym{y})|\mathrm{d}\vectorsym{y}\right)^{p}\mathrm{d}\vectorsym{x}<\infty,

    since uL1(Ω)u\in L^{1}(\Omega) and dΩ(\vectorsymx)d_{\partial\Omega}(\vectorsym{x}) is uniformly positive in Ω\Omega^{\prime}. Hence, 𝒩s(),p(Ω)Llocp(Ω)\mathscr{N}^{s(\cdot),p}(\Omega)\subseteq L^{p}_{\operatorname{loc}}(\Omega). As with the space 𝒮(Ω)\mathscr{S}(\Omega), however, no additional regularity can be expected for uu in Ω\Omega^{\prime}, regardless of the behavior of ss in Ω\Omega^{\prime}. This makes 𝒩s(),p\mathscr{N}^{s(\cdot),p} a viable solution space for nonlocal systems where even discontinuous functions are admissible. For models of phenomena exhibiting sharp transitions or jumps, it is critical to include irregular functions as solution candidates. Moreover, functions in this space possess well-defined fine properties as we approach Γ\Gamma.

  • The traces are captured on possibly “very thin or porous” sets. The set Γ\Gamma can have non-integer Hausdorff dimension, any positive codimension, and may also possess cusp-like features. To demonstrate how irregular the domain can be, we produce an Ω2\Omega\subseteq\mathbb{R}^{2}, with a nonrectifiable Ahlfors-regular self-similar set Γ(Ω)\Gamma\in\mathscr{B}(\partial\Omega) that has Hausdorff dimension 1<t<21<t<2 and has the following property: for every \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma and ρ>0\rho>0, there exists a \vectorsymy¯Γρ(\vectorsymx¯)\overline{\vectorsym{y}}\in\Gamma\cap\mathcal{B}_{\rho}(\overline{\vectorsym{x}}) that is only tangentially accessible. In other words, the cone of directions in the approach region for \vectorsymy¯\overline{\vectorsym{y}} degenerates as it is approached. Nevertheless, provided the oscillation constraint is satisfied, there is a trace TuWβ,p(Γ)Tu\in W^{\beta,p}(\Gamma) possessing the Lebesgue point property (see Example 1.1(b), Remark 4(b), and Section 5). We mention the recent interest in developing a theory for elliptic problems with higher-codimensional boundaries [9, 10, 21, 37] and trace theorems and boundary value problems on fractal sets [1, 2, 7].

1.2 Definitions

A more detailed presentation of the main theorems requires some additional definitions. For each ρ>0\rho>0, EnE\subseteq\mathbb{R}^{n}, and \vectorsymxn\vectorsym{x}\in\mathbb{R}^{n}, define Eρ(\vectorsymx):=Eρ(\vectorsymx)E_{\rho}(\vectorsym{x}):=E\cap\mathcal{B}_{\rho}(\vectorsym{x}). Given τ0\tau\geq 0 and E(n)E\in\mathscr{B}(\mathbb{R}^{n}), we use τ(E)\mathscr{H}^{\tau}(E) to denote the τ\tau-dimensional Hausdorff measure of EE. We use L(E)L(E) for the space of Borel-measurable functions. In general, by measurable, we mean Borel-measurable. We now introduce the two main geometric properties needed throughout the paper. A discussion of these definitions with accompanying figures is provided in the next section, following the main assumptions.

Definition 1.1.

With 0<η<1θ<0<\eta<1\leq\theta<\infty, we will say that QΩQ\subseteq\Omega is an (η,θ)(\eta,\theta)-corkscrew region for \vectorsymx¯Ω\overline{\vectorsym{x}}\in\partial\Omega if there exists a δ0>0\delta_{0}>0 such that, for each 0<δδ00<\delta\leq\delta_{0}, there exists \vectorsymxQ\vectorsym{x}\in Q satisfying

ηδ<\vectorsymx¯\vectorsymxn<δ and dΩ(\vectorsymx)>(ηδ)θ.\eta\delta<\|\overline{\vectorsym{x}}-\vectorsym{x}\|_{\mathbb{R}^{n}}<\delta\quad\text{ and }\quad d_{\partial\Omega}(\vectorsym{x})>(\eta\delta)^{\theta}.

We refer to δ0\delta_{0} as the radius of QQ.

Definition 1.2.

With C,θ1C,\theta\geq 1, we will say that EΩE\subseteq\Omega is (C,θ)(C,\theta)-connected to \vectorsymx¯Ω\overline{\vectorsym{x}}\in\partial\Omega if there exists ρ0>0\rho_{0}>0 with the following property: for each 0<λ<10<\lambda<1, there exists 0<ελλ0<\varepsilon_{\lambda}\leq\lambda such that for any 0<ρρ00<\rho\leq\rho_{0}, if

\vectorsymx,\vectorsymxEρ(\vectorsymx¯) and dΩ(\vectorsymx),dΩ(\vectorsymx)(λρ)θ,\vectorsym{x},\vectorsym{x}^{\prime}\in E_{\rho}(\overline{\vectorsym{x}})\quad\text{ and }\quad d_{\partial\Omega}(\vectorsym{x}),d_{\partial\Omega}(\vectorsym{x}^{\prime})\geq(\lambda\rho)^{\theta},

then there exists a rectifiable path \vectorsymγ:[0,1]E\vectorsym{\gamma}:[0,1]\to E between \vectorsymx\vectorsym{x} and \vectorsymx\vectorsym{x}^{\prime} such that

1(\vectorsymγ([0,1]))Cρ and dΩ(\vectorsymγ(τ))ελρθ, for all τ[0,1].\mathscr{H}^{1}(\vectorsym{\gamma}([0,1]))\leq C\rho\quad\text{ and }\quad d_{\partial\Omega}(\vectorsym{\gamma}(\tau))\geq\varepsilon_{\lambda}\rho^{\theta},\quad\text{ for all }\tau\in[0,1]. (2)

In the definition above, without loss of generality, we assume ελελ\varepsilon_{\lambda}\leq\varepsilon_{\lambda^{\prime}}, if λλ\lambda\leq\lambda^{\prime}. Next we recall the definition of the Sobolev-Slobodeckij spaces.

Definition 1.3.

Let E(n)E\in\mathscr{B}(\mathbb{R}^{n}) be a τ\mathscr{H}^{\tau}-dimensional set. For each 1p<1\leq p<\infty and β>0\beta>0, define ||Wβ,p(E):L(E)[0,]|\cdot|_{W^{\beta,p}(E)}:L(E)\to[0,\infty] by

|u|Wβ,p(E)p:=EE|u(\vectorsymy)u(\vectorsymx)|p\vectorsymy\vectorsymxnτ+βpdτ(\vectorsymy)dτ(\vectorsymx)|u|^{p}_{W^{\beta,p}(E)}:=\int_{E}\int_{E}\frac{|u(\vectorsym{y})-u(\vectorsym{x})|^{p}}{\|\vectorsym{y}-\vectorsym{x}\|^{\tau+\beta p}_{\mathbb{R}^{n}}}\mathrm{d}\mathscr{H}^{\tau}(\vectorsym{y})\mathrm{d}\mathscr{H}^{\tau}(\vectorsym{x})

and the Sobolev-Slobodeckij space

Wβ,p(E):={uLp(E):|u|Wβ,p(E)<}.W^{\beta,p}(E):=\left\{u\in L^{p}(E):|u|_{W^{\beta,p}(E)}<\infty\right\}.

If EnE\subseteq\mathbb{R}^{n} is a closed set and 0<β<10<\beta<1, then our definition of Wβ,p(E)W^{\beta,p}(E) corresponds to the definition of the Besov space Bβp,p(E)B^{p,p}_{\beta}(E) given in [30] (see also [31]). We note that, in general, Definition 1.3 does not provide the standard Sobolev or Sobolev-Slobodeckij spaces when β1\beta\geq 1. In fact, if EE is an open connected set, β1\beta\geq 1, and uWβ,p(E)u\in W^{\beta,p}(E), as defined above, then uu is a constant function [6, 11]. It appears to be unknown whether this is also true for EE not open.

Finally, we need a bit more notation. For each 0<λ<1θ0<\lambda<1\leq\theta and \vectorsymx¯Ω\overline{\vectorsym{x}}\in\partial\Omega, set

Qλθ(\vectorsymx¯):={\vectorsymxΩ:dΩ(\vectorsymx)>(λ\vectorsymx¯\vectorsymxn)θ}.Q^{\theta}_{\lambda}(\overline{\vectorsym{x}}):=\left\{\vectorsym{x}\in\Omega:d_{\partial\Omega}(\vectorsym{x})>\left(\lambda\|\overline{\vectorsym{x}}-\vectorsym{x}\|_{\mathbb{R}^{n}}\right)^{\theta}\right\}.

(See Fig. 2 below.) Given δ>0\delta>0, we also define Qλ,δθ(\vectorsymx¯):=Qλθδ(\vectorsymx¯)Q^{\theta}_{\lambda,\delta}(\overline{\vectorsym{x}}):=Q^{\theta}_{\lambda}\cap\mathcal{B}_{\delta}(\overline{\vectorsym{x}}). For convenience, we define α𝒞(2)\alpha\in\mathscr{C}(\mathbb{R}^{2}) by

α(s,θ):={p(1θ)+(psn)θ,psnp1,(1θ)+(psn),psn>p1.\alpha(s,\theta):=\left\{\begin{array}[]{ll}p(1-\theta)+(ps-n)\theta,&ps-n\leq p-1,\\ (1-\theta)+(ps-n),&ps-n>p-1.\end{array}\right.

We note that α\alpha is piecewise bilinear and that α(,θ)\alpha(\cdot,\theta) is increasing, for each θ1\theta\geq 1. For the remainder of the paper, we fix the parameters 0t<n0\leq t<n and 0<δΓ<10<\delta_{\Gamma}<1 and the uniformly bounded measurable functions s:Ω[0,)s:\Omega\to[0,\infty) and θΓ:Γ[1,)\theta_{\Gamma}:\Gamma\to[1,\infty). Put θ¯Γ:=sup\vectorsymx¯ΓθΓ(\vectorsymx¯)\overline{\theta}_{\Gamma}:=\sup_{\overline{\vectorsym{x}}\in\Gamma}\theta_{\Gamma}(\overline{\vectorsym{x}}). For each 0<δδΓ0<\delta\leq\delta_{\Gamma}, define s¯δ,α¯δ,α¯0:Γ\underline{s}_{\delta},\underline{\alpha}_{\delta},\underline{\alpha}_{0}:\Gamma\to\mathbb{R} by

s¯δ(\vectorsymx¯):=inf\vectorsymxΩδ(\vectorsymx¯)s(\vectorsymx),α¯δ(\vectorsymx¯):=α(s¯δ(\vectorsymx¯),θΓ(\vectorsymx¯)), and α¯0(\vectorsymx¯):=limδ0+α¯δ(\vectorsymx¯).\underline{s}_{\delta}(\overline{\vectorsym{x}}):=\inf_{\vectorsym{x}\in\Omega_{\delta}(\overline{\vectorsym{x}})}s(\vectorsym{x}),\quad\underline{\alpha}_{\delta}(\overline{\vectorsym{x}}):=\alpha(\underline{s}_{\delta}(\overline{\vectorsym{x}}),\theta_{\Gamma}(\overline{\vectorsym{x}})),\quad\text{ and }\quad\underline{\alpha}_{0}(\overline{\vectorsym{x}}):=\lim_{\delta\to 0^{+}}\underline{\alpha}_{\delta}(\overline{\vectorsym{x}}).

We observe that the above functions are each measurable and uniformly bounded.

1.3 Assumptions

We now list our primary assumptions for Ω\Omega, Γ\Gamma and the space 𝒩s(),p(Ω)\mathscr{N}^{s(\cdot),p}(\Omega). We assume that Γ(Ω)\Gamma\in\mathscr{B}(\partial\Omega) has t\mathscr{H}^{t}-dimension. When convenient, we will just write Qλ(\vectorsymx¯)Q_{\lambda}(\overline{\vectorsym{x}}) and Qλ,δ(\vectorsymx¯)Q_{\lambda,\delta}(\overline{\vectorsym{x}}) for QλθΓ(\vectorsymx¯)(\vectorsymx¯)Q^{\theta_{\Gamma}(\overline{\vectorsym{x}})}_{\lambda}(\overline{\vectorsym{x}}) and Qλ,δθΓ(\vectorsymx¯)(\vectorsymx¯)Q^{\theta_{\Gamma}(\overline{\vectorsym{x}})}_{\lambda,\delta}(\overline{\vectorsym{x}}), respectively.

  • (H1)

    Uniform θΓ\theta_{\Gamma}-Corkscrew Condition: There exists 0<λ0,η0<10<\lambda_{0},\eta_{0}<1 such that, for each \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma, the set Qλ0(\vectorsymx¯)Q_{\lambda_{0}}(\overline{\vectorsym{x}}) is an (η0,θΓ(\vectorsymx¯))(\eta_{0},\theta_{\Gamma}(\overline{\vectorsym{x}}))-corkscrew region for \vectorsymx¯\overline{\vectorsym{x}} with radius δΓ\delta_{\Gamma}.

  • (H2)

    Uniform θΓ\theta_{\Gamma}-Connectedness Condition: There exists CΓ1C_{\Gamma}\geq 1 such that, for each \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma, the set ΩδΓ(\vectorsymx¯)\Omega_{\delta_{\Gamma}}(\overline{\vectorsym{x}}) is (CΓ,θΓ(\vectorsymx¯))(C_{\Gamma},\theta_{\Gamma}(\overline{\vectorsym{x}}))-connected to \vectorsymx¯\overline{\vectorsym{x}}.

  • (H3)

    Oscillation Constraints:

    • (H3)

      Pointwise Oscillation Constraint at Γ\Gamma:

      α¯0(\vectorsymx¯)>t, for t-a.e. \vectorsymx¯Γ.\underline{\alpha}_{0}(\overline{\vectorsym{x}})>-t,\quad\text{ for $\mathscr{H}^{t}$-a.e. }\overline{\vectorsym{x}}\in\Gamma.
    • (H3′′)

      Uniform Oscillation Constraint near Γ\Gamma:

      α¯Γ:=inf\vectorsymx¯Γα¯δΓ(\vectorsymx¯)>t.\underline{\alpha}_{\Gamma}:=\inf_{\overline{\vectorsym{x}}\in\Gamma}\underline{\alpha}_{\delta_{\Gamma}}(\overline{\vectorsym{x}})>-t.
  • (H4)

    Ahlfors-Regularity: There exists AΓ1A_{\Gamma}\geq 1 such that, for each \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma,

    • (H4)

      Upper Ahlfors-Regularity:

      t(Γρ(\vectorsymx¯))AΓρt, for all ρ>0.\mathscr{H}^{t}(\Gamma\cap\mathcal{B}_{\rho}(\overline{\vectorsym{x}}))\leq A_{\Gamma}\rho^{t},\quad\text{ for all }\rho>0.
    • (H4′′)

      Lower Ahlfors-Regularity:

      AΓ1ρtt(Γρ(\vectorsymx¯)), for all 0<ρdiam(Γ).A^{-1}_{\Gamma}\rho^{t}\leq\mathscr{H}^{t}(\Gamma\cap\mathcal{B}_{\rho}(\overline{\vectorsym{x}})),\quad\text{ for all }0<\rho\leq\operatorname{diam}(\Gamma).
Refer to caption
Figure 1: Approach region Qλω(\vectorsym0)Q^{\omega}_{\lambda}(\vectorsym{0}) for \vectorsym0\vectorsym{0}
Refer to caption
Figure 2: Snowflake with cusps
Example 1.1.
  1. (a)

    The prototypical example for QλθΓ(\vectorsymx¯)(\vectorsymx¯)Q^{\theta_{\Gamma}(\overline{\vectorsym{x}})}_{\lambda}(\overline{\vectorsym{x}}) is a wedge-like region where \vectorsymx¯\overline{\vectorsym{x}} is at a cusp. Let θ01\theta_{0}\geq 1 and 12<H32\frac{1}{2}<H\leq\frac{\sqrt{3}}{2} be given. Define

    Ωθ0={\vectorsymx=(x1,x2)2:0<x1<H and 0<|x2|<12(x1/H)θ0}.\Omega^{\theta_{0}}=\left\{\vectorsym{x}=(x_{1},x_{2})\in\mathbb{R}^{2}:0<x_{1}<H\text{ and }0<|x_{2}|<{\textstyle{\frac{1}{2}}}\left(x_{1}/H\right)^{\theta_{0}}\right\}.

    Then, for any 0<λ0,η0<10<\lambda_{0},\eta_{0}<1, the hypotheses (H1) and (H2) are satisfied with Γ=Ωθ0\Gamma=\partial\Omega^{\theta_{0}} and θΓ:=θ0χ{\vectorsym0}+χΓ{\vectorsym0}\theta_{\Gamma}:=\theta_{0}\chi_{\{\vectorsym{0}\}}+\chi_{\Gamma\setminus\{\vectorsym{0}\}}. Figure 1 depicts the approach region Qλ0θΓ(\vectorsym0)(\vectorsym0)=Qλ0θ0(\vectorsym0)Q^{\theta_{\Gamma}(\vectorsym{0})}_{\lambda_{0}}(\vectorsym{0})=Q^{\theta_{0}}_{\lambda_{0}}(\vectorsym{0}) when θ0>1\theta_{0}>1.

  2. (b)

    As mentioned in the introduction, assumptions (H1) and (H2), themselves, do not imply any regularity of the boundary. The Koch snowflake is a well-known example of an nontangentially accessible (NTA) domain (see Remark 1(a) and [13]) that has a nonrectifiable boundary but satisfies (H1) and (H2), with θΓ1\theta_{\Gamma}\equiv 1 and ελ\varepsilon_{\lambda} independent of λ\lambda. The Koch snowflake can be generated as the union of an iteratively produced sequence of polygonal domains. The initial domain is an equilateral triangle, for example Ω1\Omega^{1} with H=3/2H=\sqrt{3}/2 defined in Example 1.1(a) above. Subsequent domains are obtained by replacing the middle third of the boundary line segments with an appropriately scaled outward-pointing equilateral triangle. With a similar procedure, using Ωθ0\Omega^{\theta_{0}} with θ0>1\theta_{0}>1, we can produce a “prickly” version of the snowflake domain (see Fig. 2). Taking Γ\Gamma to be the fractal portion of the resulting domain boundary, we find that its Hausdorff dimension is (ln4/ln3)t<2(\ln 4/\ln 3)\leq t<2 and 0<t(Γ)<0<\mathscr{H}^{t}(\Gamma)<\infty. Moreover, Ω\Omega and Γ\Gamma satisfy hypotheses (H1) and (H2), with θΓθ0\theta_{\Gamma}\equiv\theta_{0}, and both (H4) and (H4′′). The set Ω\Omega, however, fails to be a 11-sided NTA domain. More specifically, for every ρ>0\rho>0 and \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma, there exists \vectorsymy¯Γρ(\vectorsymx¯)\overline{\vectorsym{y}}\in\Gamma\cap\mathcal{B}_{\rho}(\overline{\vectorsym{x}}) such that there is no (C,θ)(C,\theta)-connected (η,θ)(\eta,\theta)-corkscrew region with positive radius for \vectorsymy¯\overline{\vectorsym{y}}, for any 0<η<1θ<θ00<\eta<1\leq\theta<\theta_{0} and C1C\geq 1. Thus, in particular, Ωρ(\vectorsymx¯)\Omega_{\rho}(\overline{\vectorsym{x}}) is not a 11-sided NTA domain, for any ρ>0\rho>0. Additional details are provided in the appendix (Section 5).

We next put the corkscrew and connectedness assumptions into a broader context.

Remark 1.

Together, (H1) and (H2) ensure each point \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma can be approached along a path \vectorsymγΩ\vectorsym{\gamma}\subseteq\Omega with a quantitative control on the distance between points \vectorsymx\vectorsymγ\vectorsym{x}\in\vectorsym{\gamma} and Ω\partial\Omega. For the rest of this remark, suppose that Γ=Ω\Gamma=\partial\Omega is bounded and that θΓ1\theta_{\Gamma}\equiv 1 on Ω\partial\Omega.

  1. (a)

    In this setting, hypotheses (H1) is the standard (interior) corkscrew condition. If Ω\Omega also possesses the (interior) Harnack chain property, then Ω\Omega is said to be a 11-sided NTA domain. An NTA domain is a 11-sided NTA domain such that nΩ\mathbb{R}^{n}\setminus\Omega also satisfies the corkscrew condition. These domains were introduced in [27] in connection to the absolute continuity of the harmonic measure with respect to the surface measure on Ω\partial\Omega. As indicated in Example 1.1(b), NTA domains need not even have rectifiable boundaries. Recently, it has been shown that if Ω\Omega is 11-sided NTA and Ω\partial\Omega is both (n1)(n-1)-dimensional and upper and lower Ahlfors-regular, then rectifiability of Ω\partial\Omega is actually equivalent to the absolute continuity of the harmonic measure [4].

  2. (b)

    The motivation for (H2) is Lemma 2.1 in [10]. As part of their investigation of elliptic problems in domains with higher codimensional boundaries, they show that Ahlfors-regular sets in n\mathbb{R}^{n}, with dimension 0t<n10\leq t<n-1, satisfy (H2), again with θΓ1\theta_{\Gamma}\equiv 1. There is a close relation between assumptions (H1) and (H2) and local uniformity. The domain Ω\Omega is locally uniform if there exists C1C\geq 1 and ρ0>0\rho_{0}>0 such that, for every \vectorsymx,\vectorsymxΩ\vectorsym{x},\vectorsym{x}^{\prime}\in\Omega satisfying \vectorsymx\vectorsymxnρ0\|\vectorsym{x}-\vectorsym{x}^{\prime}\|_{\mathbb{R}^{n}}\leq\rho_{0}, there exists a rectifiable path \vectorsymγ:[0,1]Ω\vectorsym{\gamma}:[0,1]\to\Omega between \vectorsymx\vectorsym{x} and \vectorsymx\vectorsym{x}^{\prime} such that

    1(\vectorsymγ([0,1]))C\vectorsymx\vectorsymxn\mathscr{H}^{1}(\vectorsym{\gamma}([0,1]))\leq C\|\vectorsym{x}-\vectorsym{x}^{\prime}\|_{\mathbb{R}^{n}}

    and

    dΩ(\vectorsymγ(τ))C1min{1(\vectorsymγ([0,τ])),1(\vectorsymγ([τ,1]))}.d_{\partial\Omega}(\vectorsym{\gamma}(\tau))\geq C^{-1}\min\{\mathscr{H}^{1}(\vectorsym{\gamma}([0,\tau])),\mathscr{H}^{1}(\vectorsym{\gamma}([\tau,1]))\}.

    We see that local uniformity implies (H2) with ελ\varepsilon_{\lambda} independent of λ\lambda. Assumptions (H1) and (H2) together, however, imply Ω\Omega is locally uniform (see Lemma A.1 and the proof for Theorem 2.15 in [4]). A condition equivalent to local uniformity is the (ε,δ)(\varepsilon,\delta)-condition. It has been shown that, on (ε,δ)(\varepsilon,\delta)-domains, there exists a linear continuous extension operator for the BMO and Sobolev mappings [28, 29]. If Ω\Omega is locally uniform with ρ0diam(Ω)\rho_{0}\geq\operatorname{diam}(\Omega), then it is a uniform domain. These domains were introduced in [35], for which injectivity and approximation results for locally bi-Lipschitz mappings were established. The class of uniform domains is actually equivalent to the class 11-sided NTA. In view of part (a) above, we see that assumptions (H1) and (H2) are both satisfied, with θΓ1\theta_{\Gamma}\equiv 1, by 11-sided NTA domains. We point out that, in Example 1.1(b), there are no locally uniform neighborhoods of any point in Γ\Gamma.

Assumptions (H3) can, in some sense, be interpreted as a requirement that the oscillations in u𝒩s(),p(Ω)u\in\mathscr{N}^{s(\cdot),p}(\Omega) decay as Γ\Gamma is approached. If νs(,p(Ω;u)<\nu^{s(\cdot,p}(\Omega;u)<\infty, then there exists fLp(Ω)f\in L^{p}(\Omega) such that

Ψ(\vectorsymx)|u(\vectorsymy)u(\vectorsymx)|d\vectorsymydΩ(\vectorsymx)ps(\vectorsymx)f(\vectorsymx), for a.e.-\vectorsymxΩ.\fint_{\Psi(\vectorsym{x})}|u(\vectorsym{y})-u(\vectorsym{x})|\mathrm{d}\vectorsym{y}\leq d_{\partial\Omega}(\vectorsym{x})^{ps(\vectorsym{x})}f(\vectorsym{x}),\quad\text{ for a.e.-}\vectorsym{x}\in\Omega.

The left-hand side “measures” the deviation of the values of uu from u(\vectorsymx)u(\vectorsym{x}) over the ball Ψ(\vectorsymx)\Psi(\vectorsym{x}). Since t<nt<n, (H3) implies that, for each \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma, there exists a δ0>0\delta_{0}>0 such that ss is uniformly positive within the corkscrew region Qλ0,δ0(\vectorsymx¯)Q_{\lambda_{0},\delta_{0}}(\overline{\vectorsym{x}}). Thus, (H3) ensures the oscillations of uu dampen in Qλ0,δ(\vectorsymx¯)Q_{\lambda_{0},\delta}(\overline{\vectorsym{x}}), as δ0+\delta\to 0^{+}, which allows a well-defined value for u(\vectorsymx¯)u(\overline{\vectorsym{x}}) to be identified.

While Jensen’s inequality implies, for all 1q<1\leq q<\infty, we have

νs(),p(Ω;u)νs(),(p,q)(Ω;u):=ΩU(Ψ(\vectorsymx)|u(\vectorsymy)u(\vectorsymx)|qdΩ(\vectorsymx)qs(\vectorsymx)d\vectorsymy)pqd\vectorsymx.\nu^{s(\cdot),p}(\Omega;u)\leq\nu^{s(\cdot),(p,q)}(\Omega;u):=\int_{\Omega\cap U}\left(\fint_{\Psi(\vectorsym{x})}\frac{|u(\vectorsym{y})-u(\vectorsym{x})|^{q}}{d_{\partial\Omega}(\vectorsym{x})^{qs(\vectorsym{x})}}\mathrm{d}\vectorsym{y}\right)^{\frac{p}{q}}\mathrm{d}\vectorsym{x}.

As just discussed, assumption (H3) is a type of decay requirement for the oscillations of u𝒩s(),p(Ω)u\in\mathscr{N}^{s(\cdot),p}(\Omega) but only in the sense of averages. This still allows the oscillations with uniformly positive amplitude to concentrate on sets of decreasing measure, and its possible for νs(),(p,q)(Ω;u)=+\nu^{s(\cdot),(p,q)}(\Omega;u)=+\infty, for every q>1q>1.

Example 1.2.

For this example, we use Ω=(0,2)\Omega=(0,2) and Γ={0,2}\Gamma=\{0,2\}, so assumptions (H1) and (H2) are obviously satisfied. Fix p1p\geq 1 and s01/ps_{0}\geq 1/p. We will construct uL𝒩s0,p(Ω)u\in L^{\infty}\cap\mathscr{N}^{s_{0},p}(\Omega) such that νs0,(p,q)(Ω;u)=+\nu^{s_{0},(p,q)}(\Omega;u)=+\infty, for all q>1q>1. Here, we are putting s()s0s(\cdot)\equiv s_{0} on Ω\Omega. For each jj\in\mathbb{N}, define

aj:=4j(s01p)5j1p(ln(j+2))2p,Ej:=(4j,aj4j), and Fj:=[aj4j,4j+1],a_{j}:=\frac{4^{-j\left(s_{0}-\frac{1}{p}\right)}}{5j^{\frac{1}{p}}\left(\ln(j+2)\right)^{\frac{2}{p}}},\quad E_{j}:=(4^{-j},a_{j}4^{-j}),\quad\text{ and }\quad F_{j}:=[a_{j}4^{-j},4^{-j+1}],

so aj65a_{j}\leq\frac{6}{5} and (0,1]=j=1EjFj(0,1]=\bigcup_{j=1}^{\infty}E_{j}\cup F_{j}. On the interval (0,1](0,1], we define u:=j=1χEju:=\sum_{j=1}^{\infty}\chi_{E_{j}} and extend uu to (1,2)(1,2) by putting u(x):=u(2x)u(x):=u(2-x), for each x(1,2)x\in(1,2). Since uu is symmetric, it is sufficient to show νs0,p((0,1])<\nu^{s_{0},p}((0,1])<\infty and νs0,(p,q)((0,1])=+\nu^{s_{0},(p,q)}((0,1])=+\infty, for q>1q>1. We observe that, for each jj\in\mathbb{N}, if xE^j:=(4j,24j)x\in\widehat{E}_{j}:=(4^{-j},2\cdot 4^{-j}), then

x<24j12x<4j and x>4j32x>324jaj4jx<2\cdot 4^{-j}\Longrightarrow{\textstyle{\frac{1}{2}}}x<4^{-j}\quad\text{ and }\quad x>4^{-j}\Longrightarrow{\textstyle{\frac{3}{2}}}x>{\textstyle{\frac{3}{2}}}4^{-j}\geq a_{j}4^{-j}

Consequently, EjΨ(x)E_{j}\subseteq\Psi(x). Furthermore, if Ψ(x)Ej\Psi(x)\cap E_{j}\neq\emptyset, then either

12x<aj4j32x<3aj4j4j+1 or 32x>4j12x>134jaj+14j1.{\textstyle{\frac{1}{2}}}x<a_{j}4^{-j}\Longrightarrow{\textstyle{\frac{3}{2}}}x<3a_{j}4^{-j}\leq 4^{-j+1}\>\text{ or }\>{\textstyle{\frac{3}{2}}}x>4^{-j}\Longrightarrow{\textstyle{\frac{1}{2}}}x>{\textstyle{\frac{1}{3}}}4^{-j}\geq a_{j+1}4^{-j-1}.

In either case, Ψ(\vectorsymx)Ej1Ej+1=\Psi(\vectorsym{x})\cap E_{j-1}\cup E_{j+1}=\emptyset. Set F^j:=[24j,4j+1]\widehat{F}_{j}:=[2\cdot 4^{-j},4^{-j+1}]. Now, if xEjE^jx\in E_{j}\subseteq\widehat{E}_{j}, then u(x)=1u(x)=1 and

Ψ(x)|u(y)u(x)|qdx=|Ψ(x)Ej|(4j12x)+(32x654j)354j12|Ej|.\int_{\Psi(x)}|u(y)-u(x)|^{q}\mathrm{d}x=|\Psi(x)\setminus E_{j}|\geq\left(4^{-j}-{\textstyle{\frac{1}{2}}}x\right)+\left({\textstyle{\frac{3}{2}}}x-{\textstyle{\frac{6}{5}}}4^{-j}\right)\geq{\textstyle{\frac{3}{5}}}4^{-j}\geq{\textstyle{\frac{1}{2}}}|E_{j}|.

On the other hand, if xE^jEjx\in\widehat{E}_{j}\setminus E_{j}, then u(x)=1u(x)=1 and Ψ(x)|u(y)u(x)|qdx=|Ej|\int_{\Psi(x)}|u(y)-u(x)|^{q}\mathrm{d}x=|E_{j}|. We conclude that

{12|Ej|,xE^j,0,xF^jΨ(x)|u(y)u(x)|qdy|Ej|, for all x(4j,4j+1].\left\{\begin{array}[]{ll}{\textstyle{\frac{1}{2}}}|E_{j}|,&x\in\widehat{E}_{j},\\ 0,&x\in\widehat{F}_{j}\end{array}\right.\leq\int_{\Psi(x)}|u(y)-u(x)|^{q}\mathrm{d}y\leq|E_{j}|,\quad\text{ for all }x\in(4^{-j},4^{-j+1}].

Thus,

{(14)s0p+pq|Ej|pq4j(s0p+pq),xE^j0,xF^j\displaystyle\left\{\begin{array}[]{ll}\left({\textstyle{\frac{1}{4}}}\right)^{s_{0}p+\frac{p}{q}}|E_{j}|^{\frac{p}{q}}4^{j\left(s_{0}p+\frac{p}{q}\right)},&x\in\widehat{E}_{j}\\ 0,&x\in\widehat{F}_{j}\end{array}\right.\leq {(12|Ej|)pqdΩ(x)s0pxpq,xE^j0,xF^j\displaystyle\left\{\begin{array}[]{ll}\left({\textstyle{\frac{1}{2}}}|E_{j}|\right)^{\frac{p}{q}}d_{\partial\Omega}(x)^{-s_{0}p}x^{-\frac{p}{q}},&x\in\widehat{E}_{j}\\ 0,&x\in\widehat{F}_{j}\end{array}\right.
\displaystyle\leq (Ψ(x)|u(y)u(x)|qdΩ(x)qs0dy)pq\displaystyle\left(\fint_{\Psi(x)}\frac{|u(y)-u(x)|^{q}}{d_{\partial\Omega}(x)^{qs_{0}}}\mathrm{d}y\right)^{\frac{p}{q}}
\displaystyle\leq |Ej|pqdΩ(x)s0pxpq\displaystyle|E_{j}|^{\frac{p}{q}}d_{\partial\Omega}(x)^{-s_{0}p}x^{-\frac{p}{q}}
\displaystyle\leq |Ej|pq4j(s0p+pq), for all x(4j,4j+1].\displaystyle|E_{j}|^{\frac{p}{q}}4^{j\left(s_{0}p+\frac{p}{q}\right)},\quad\text{ for all }x\in(4^{-j},4^{-j+1}].

Since |Ej|=aj4j|E_{j}|=a_{j}4^{-j} and |E^j|=24j|\widehat{E}_{j}|=2\cdot 4^{-j}, we conclude that

(18)s0p+pqj=1ajpq4j(s0p1)01(Ψ(x)|u(y)u(x)|qdΩ(x)s0dy)pqdxj=1ajpq4j(s0p1).\left(\frac{1}{8}\right)^{s_{0}p+\frac{p}{q}}\sum_{j=1}^{\infty}a_{j}^{\frac{p}{q}}4^{j(s_{0}p-1)}\leq\int_{0}^{1}\left(\fint_{\Psi(x)}\frac{|u(y)-u(x)|^{q}}{d_{\partial\Omega}(x)^{s_{0}}}\mathrm{d}y\right)^{\frac{p}{q}}\mathrm{d}x\leq\sum_{j=1}^{\infty}a_{j}^{\frac{p}{q}}4^{j(s_{0}p-1)}.

Plugging in the definition for aja_{j}, we see that

q=1\displaystyle q=1\Longrightarrow νs0,(p,q)(Ω;u)=νs0,p(Ω;u)(15)pj=11jln(j+2)2<\displaystyle\nu^{s_{0},(p,q)}(\Omega;u)=\nu^{s_{0},p}(\Omega;u)\leq\left(\frac{1}{5}\right)^{p}\sum_{j=1}^{\infty}\frac{1}{j\ln(j+2)^{2}}<\infty
q>1\displaystyle q>1\Longrightarrow νs0,(p,q)(Ω;u)(18)s0p+pq(15)pqj=14j(q1q)(s0p1)j1q(ln(j+2))2q=+\displaystyle\nu^{s_{0},(p,q)}(\Omega;u)\geq\left(\frac{1}{8}\right)^{s_{0}p+\frac{p}{q}}\left(\frac{1}{5}\right)^{\frac{p}{q}}\sum_{j=1}^{\infty}\frac{4^{j\left(\frac{q-1}{q}\right)(s_{0}p-1)}}{j^{\frac{1}{q}}(\ln(j+2))^{\frac{2}{q}}}=+\infty
Remark 2.

If we modify the definition of uu, on (0,1](0,1], to u:=j=11ln(j+1)χEju:=\sum_{j=1}^{\infty}\frac{1}{\ln(j+1)}\chi_{E_{j}}, then we find limx0+u(x)=limx2u(x)=0\lim_{x\to 0^{+}}u(x)=\lim_{x\to 2^{-}}u(x)=0 yet still νs0,(p,q)=+\nu^{s_{0},(p,q)}=+\infty, for all q>1q>1.

1.4 Main Results

Given u𝒩s(),p(Ω)u\in\mathscr{N}^{s(\cdot),p}(\Omega), we define g:Ωg:\Omega\to\mathbb{R} by

g(\vectorsymx;u):=Φ(\vectorsymx)u(\vectorsymy)d\vectorsymy,g(\vectorsym{x};u):=\fint_{\Phi(\vectorsym{x})}u(\vectorsym{y})\mathrm{d}\vectorsym{y}, (3)

where Φ(\vectorsymx):=16dΩ(\vectorsymx)(\vectorsymx)\Phi(\vectorsym{x}):=\mathcal{B}_{\frac{1}{6}d_{\partial\Omega}(\vectorsym{x})}(\vectorsym{x}). The function g(;u)g(\cdot;u) is continuous in Ω\Omega. Our first result identifies the trace of uu on Γ\Gamma through a continuous extension of gg to Γ\Gamma at t\mathscr{H}^{t}-a.e. point in Γ\Gamma.

Theorem 1.1.

Assume (H1) and (H2), and (H3\,{}^{\prime}). Then there exists a linear operator T:𝒩s(),p(Ω)L(Γ)T:\mathscr{N}^{s(\cdot),p}(\Omega)\to L(\Gamma) such that, for each u𝒩s(),p(Ω)u\in\mathscr{N}^{s(\cdot),p}(\Omega) there exists a t\mathscr{H}^{t}-measurable set ΓΓ\Gamma^{\prime}\subseteq\Gamma such that

t(ΓΓ)=0 and lim\vectorsymx\vectorsymx¯;\vectorsymxQλ(\vectorsymx¯)g(\vectorsymx;u)=Tu(\vectorsymx¯), for all 0<λ<1.\mathscr{H}^{t}(\Gamma\setminus\Gamma^{\prime})=0\quad\text{ and }\quad\lim_{\vectorsym{x}\to\overline{\vectorsym{x}};\;\vectorsym{x}\in Q_{\lambda}(\overline{\vectorsym{x}})}g(\vectorsym{x};u)=Tu(\overline{\vectorsym{x}}),\quad\text{ for all }0<\lambda<1. (4)

Moreover, for every \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma^{\prime} and 0<β<(α¯0(\vectorsymx¯)+t)/p0<\beta<\left(\underline{\alpha}_{0}(\overline{\vectorsym{x}})+t\right)/p, there exists a δβ=δβ(\vectorsymx¯)>0\delta_{\beta}=\delta_{\beta}(\overline{\vectorsym{x}})>0 with the following property: for each 0<λ<10<\lambda<1 there exists Cβ,λ(\vectorsymx¯)<C_{\beta,\lambda}(\overline{\vectorsym{x}})<\infty such that

|Tu(\vectorsymx¯)g(\vectorsymx;u)|Cβ,λ(\vectorsymx¯)\vectorsymx¯\vectorsymxβ, for all \vectorsymxQλ,δβ(\vectorsymx¯).|Tu(\overline{\vectorsym{x}})-g(\vectorsym{x};u)|\leq C_{\beta,\lambda}(\overline{\vectorsym{x}})\|\overline{\vectorsym{x}}-\vectorsym{x}\|^{\beta},\quad\text{ for all }\vectorsym{x}\in Q_{\lambda,\delta_{\beta}}(\overline{\vectorsym{x}}). (5)
Remark 3.

If u𝒞(ΩΓ)u\in\mathscr{C}(\Omega\cup\Gamma), then Tu(\vectorsymx)=u(\vectorsymx)Tu(\vectorsym{x})=u(\vectorsym{x}), for all \vectorsymxΓ\vectorsym{x}\in\Gamma.

Assuming a stronger oscillation constraint in a neighborhood of Γ\Gamma and some regularity for Γ\Gamma, we may establish some differentiability and the Lebesgue point property for the trace operator provided by the previous theorem.

Theorem 1.2.

Assume (H1), (H2), and (H3′′\,{}^{\prime\prime}). Put β0:=(α¯Γ+t)/p>0\beta_{0}:=(\underline{\alpha}_{\Gamma}+t)/p>0.

  1. (a)

    If Γ\Gamma satisfies (H4\,{}^{\prime}), then T:𝒩s(),p(Ω)Wβ,p(Γ)T:\mathscr{N}^{s(\cdot),p}(\Omega)\to W^{\beta,p}(\Gamma) is a continuous linear operator, for each 0<β<β00<\beta<\beta_{0}.

  2. (b)

    If Γ=Ω\Gamma=\partial\Omega satisfies both (H4\,{}^{\prime}) and (H4′′\,{}^{\prime\prime}) and α¯Γ>n(θΓ(\vectorsymx¯)1)t\underline{\alpha}_{\Gamma}>n(\theta_{\Gamma}(\overline{\vectorsym{x}})-1)-t, for all \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma, then

    limρ0+Ωρ(\vectorsymx¯)|Tu(\vectorsymx¯)u(\vectorsymx)|pd\vectorsymx=0,for t-a.e. \vectorsymx¯Γ.\lim_{\rho\to 0^{+}}\fint_{\Omega_{\rho}(\overline{\vectorsym{x}})}|Tu(\overline{\vectorsym{x}})-u(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}=0,\quad\text{for }\mathscr{H}^{t}\text{-a.e. }\overline{\vectorsym{x}}\in\Gamma.
Remark 4.
  1. (a)

    As mentioned in Remark 1, if Ω\Omega is a 11-sided NTA domain, then it satisfies (H1) and (H2), with Γ=Ω\Gamma=\partial\Omega and θΓ1\theta_{\Gamma}\equiv 1. Assuming Ω\partial\Omega is Ahlfors-regular, the hypotheses of Theorem 1.1 and both parts of Theorem 1.2 are satisfied if there exists an s0>(nt)/ps_{0}>(n-t)/p such that s(\vectorsymx)s0s(\vectorsym{x})\geq s_{0} in Ω\Omega.

  2. (b)

    For a concrete example, consider Ω\Omega and Γ\Gamma as described in Example 1.1(b), with θ0=2\theta_{0}=2, so 1<t<21<t<2 and assumptions (H1), (H2), and (H4) are satisfied. Suppose that, for some δΓ>0\delta_{\Gamma}>0 and constants s0<s_{0}<\infty,

    α(s(\vectorsymx),2)α(s0,2)={2ps0p4,s0(p+1)/p,ps03,s0>(p+1)/p, for all \vectorsymxUΓ,\alpha(s(\vectorsym{x}),2)\geq\alpha(s_{0},2)=\left\{\begin{array}[]{ll}2ps_{0}-p-4,&s_{0}\leq(p+1)/p,\\ ps_{0}-3,&s_{0}>(p+1)/p,\end{array}\right.\quad\text{ for all }\vectorsym{x}\in U_{\Gamma},

    where UΓ:=\vectorsymx¯ΓΩδΓ(\vectorsymx¯)U_{\Gamma}:=\bigcup_{\overline{\vectorsym{x}}\in\Gamma}\Omega_{\delta_{\Gamma}}(\overline{\vectorsym{x}}). Theorem 1.1 and Theorem 1.2(a) require (p,s0)(p,s_{0}) to be in a region where α(s0,2)>t\alpha(s_{0},2)>-t (shaded region in Fig. 4). For Theorem 1.2(b), we need α(s0,2)>2t\alpha(s_{0},2)>2-t (shaded region in Fig. 4).

    Refer to caption
    Figure 3: Region where α(s,2)>t\alpha(s,2)>-t
    Refer to caption
    Figure 4: Region where α(s,2)>2t\alpha(s,2)>2-t

    (Note: Generally, the curves do not have a common point of intersection.)

  3. (c)

    In Section 1.1, it was mentioned that Llocp(Ω)𝒩s(),p(Ω)L^{p}_{\operatorname{loc}}(\Omega)\subseteq\mathscr{N}^{s(\cdot),p}(\Omega). Theorem 1.2(b) implies that, for sufficiently small ρ>0\rho>0, we find uLp(Ωρ(\vectorsymx¯))u\in L^{p}(\Omega_{\rho}(\overline{\vectorsym{x}})), for t\mathscr{H}^{t}-a.e. \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma (see Remark 8(b)). It is unclear, however, whether Lp(Ω)𝒩s(),p(Ω)L^{p}(\Omega)\subseteq\mathscr{N}^{s(\cdot),p}(\Omega), even under the assumptions of Theorem 1.2(b).

1.5 Organization of Paper

In the next section, we establish some results needed for the main theorems. Lemma 2.6, in particular, provides the key bounds for the rate of change for gg within an approach region Qλ(\vectorsymx¯)Q_{\lambda}(\overline{\vectorsym{x}}). The main result in Section 3 is Theorem 3.1, which is a slight refinement of Theorem 1.1. As a corollary, we also show that the Lebesgue point property holds for the trace when the means are taking over Qλ,ρ(\vectorsymx¯)Q_{\lambda,\rho}(\overline{\vectorsym{x}}). Both parts of Theorem 1.2 follow from the main results in Section 4. Part (a) is a consequence of Theorem 4.5, where a more precise connection between the fractional differentiability of TuTu and certain subsets of Γ\Gamma is provided. The Lebesgue point property at points contained in a relative neighborhood of Γ\Gamma is proved in Theorem 4.6. The paper concludes with an Appendix, in Section 5, where the claims made in Example 1.1(b) are justified.

2 Supporting Results

For the remainder of the paper, fix u𝒩s(),p(Ω)u\in\mathscr{N}^{s(\cdot),p}(\Omega) and put ρΓ:=(13CΓ)δΓ\rho_{\Gamma}:=\left(\frac{1}{3C_{\Gamma}}\right)\delta_{\Gamma}. We use cc to denote a constant that may change from line to line but, unless otherwise indicated, is independent of the functions ss and θΓ\theta_{\Gamma} and the parameters 0<ηη00<\eta\leq\eta_{0}, 0<λλ00<\lambda\leq\lambda_{0}, and ρ>0\rho>0. In particular, it may depend on nn, tt, pp, AΓA_{\Gamma}, CΓC_{\Gamma}, and δΓ\delta_{\Gamma}.

Lemma 2.1 (Modified Giusti’s Lemma).

Suppose that ν\nu is an \mathbb{R}-valued function satisfying the following:

  1. (i)

    The domain for ν\nu includes all open sets in n\mathbb{R}^{n};

  2. (ii)

    ν\nu is finite, nonnegative, and nondecreasing;

  3. (iii)

    ν\nu is countably superadditive; i.e. if {Uj}j=1\{U_{j}\}_{j=1}^{\infty} are disjoint open subsets of n\mathbb{R}^{n}, then

    ν(j=1Uj)j=1ν(Uj);\nu\left(\bigcup_{j=1}^{\infty}U_{j}\right)\geq\sum_{j=1}^{\infty}\nu(U_{j});

Let τ0\tau\geq 0 be given, and set

S:={\vectorsymxn:lim supρ0+ρτν(ρ(\vectorsymx))=}.S:=\left\{\vectorsym{x}\in\mathbb{R}^{n}:\limsup_{\rho\to 0^{+}}\rho^{-\tau}\nu(\mathcal{B}_{\rho}(\vectorsym{x}))=\infty\right\}.

Then dim(S)τ\dim_{\mathscr{H}}(S)\leq\tau and τ(S)=0\mathscr{H}^{\tau}(S)=0.

Proof.

Recall that the τ\mathscr{H}^{\tau}-outer measure SnS\subset\mathbb{R}^{n} is defined by

τ(S):=limρ0+ρτ(S),\mathscr{H}^{\tau}(S):=\lim_{\rho\to 0^{+}}\mathscr{H}^{\tau}_{\rho}(S),

where

ρτ(S):=inf{j=1diam(Uj)τ:diam(Uj)<ρ and Sj=1Uj}.\mathscr{H}^{\tau}_{\rho}(S):=\inf\left\{\sum_{j=1}^{\infty}\operatorname{diam}(U_{j})^{\tau}:\operatorname{diam}(U_{j})<\rho\quad\text{ and }\quad S\subseteq\bigcup_{j=1}^{\infty}U_{j}\right\}. (6)

We will use Vitali’s Covering Lemma. Let 0<K<0<K<\infty and ρ>0\rho>0 be given. For each \vectorsymxSτ\vectorsym{x}\in S_{\tau}, we may select 0<r(\vectorsymx)<ρ0<r(\vectorsym{x})<\rho such that

ν(r(\vectorsymx)(\vectorsymx))>Kρτ.\nu(\mathcal{B}_{r(\vectorsym{x})}(\vectorsym{x}))>K\rho^{\tau}.

Thus S\vectorsymxSτr(\vectorsymx)(\vectorsymx)S\subseteq\bigcup_{\vectorsym{x}\in S_{\tau}}\mathcal{B}_{r(\vectorsym{x})}(\vectorsym{x}). By Vitali’s Covering Lemma, we may extract a countable sets JJ and {\vectorsymxj}jJSτ\left\{\vectorsym{x}_{j}\right\}_{j\in J}\subseteq S_{\tau} such that the sets {rj(\vectorsymxj)}jJ\left\{\mathcal{B}_{r_{j}}(\vectorsym{x}_{j})\right\}_{j\in J}, with rj:=r(\vectorsymxj)r_{j}:=r(\vectorsym{x}_{j}), are mutually disjoint and

\vectorsymxSr(\vectorsymx)(\vectorsymx)jJ5rj(\vectorsymxj).\bigcup_{\vectorsym{x}\in S}\mathcal{B}_{r(\vectorsym{x})}(\vectorsym{x})\subseteq\bigcup_{j\in J}\mathcal{B}_{5r_{j}}(\vectorsym{x}_{j}).

It follows that

ρτ(S)jJ(5rj)τ=5τjJrjτ<5τKjJν(rj(\vectorsymxj))5τKν(jJrj(\vectorsymxj))5τKν(n).\mathscr{H}_{\rho}^{\tau}(S)\leq\sum_{j\in J}\left(5r_{j}\right)^{\tau}=5^{\tau}\sum_{j\in J}r_{j}^{\tau}<\frac{5^{\tau}}{K}\sum_{j\in J}\nu\left(\mathcal{B}_{r_{j}}(\vectorsym{x}_{j})\right)\leq\frac{5^{\tau}}{K}\nu\left(\bigcup_{j\in J}\mathcal{B}_{r_{j}}(\vectorsym{x}_{j})\right)\leq\frac{5^{\tau}}{K}\nu(\mathbb{R}^{n}).

Since 0<K<0<K<\infty was arbitrary and ν(n)<\nu(\mathbb{R}^{n})<\infty, we conclude that ρτ(S)=0\mathscr{H}_{\rho}^{\tau}(S)=0. Taking the limit, as ρ0+\rho\to 0^{+}, yields the result. ∎

Remark 5.

Our proof for Lemma 2.1 is a modification of one found, for example, in [18] (see also [25] for the original version). In [18], it is shown that the set

{\vectorsymxΩ:lim supρ0+ρτν(r(\vectorsymx))>0}S\left\{\vectorsym{x}\in\Omega:\limsup_{\rho\to 0^{+}}\rho^{-\tau}\nu(\mathcal{B}_{r}(\vectorsym{x}))>0\right\}\subseteq S

is a τ\mathscr{H}^{\tau}-null set under the additional assumption that limε0ν(Uε)=0\lim_{\varepsilon\to 0}\nu(U_{\varepsilon})=0 whenever {Uε}ε>0\{U_{\varepsilon}\}_{\varepsilon>0} is a family of open sets satisfying limε0|Uε|=0\lim_{\varepsilon\to 0}|U_{\varepsilon}|=0. (Note: A generalization of the spherical Hausdorff measure is actually considered in [18] and τ\mathscr{H}^{\tau} is a special case.)

We will also need the following fact, which follows from Besicovitch’s covering theorem and the fact that there is a constant c=c(n)c=c(n) such that packing number of the unit ball with balls of radius r>0r>0 is bounded by crncr^{-n}.

Lemma 2.2.

There exists a constant c=c(n)c=c(n) with the following property: for any EnE\subseteq\mathbb{R}^{n} and r>0r>0 and Λ1\Lambda\geq 1, there exists a countable set II and set of points {\vectorsymxi}iIE\{\vectorsym{x}_{i}\}_{i\in I}\subseteq E such that EiIr(\vectorsymxi)E\subseteq\bigcup_{i\in I}\mathcal{B}_{r}(\vectorsym{x}_{i}) and sup\vectorsymxniIχΛr(\vectorsymxi)(\vectorsymx)cΛn\sup_{\vectorsym{x}\in\mathbb{R}^{n}}\sum_{i\in I}\chi_{\mathcal{B}_{\Lambda r}(\vectorsym{x}_{i})}(\vectorsym{x})\leq c\Lambda^{n}.

Recall that Γρ(\vectorsymx¯)=Γρ(\vectorsymx¯)\Gamma_{\rho}(\overline{\vectorsym{x}})=\Gamma\cap\mathcal{B}_{\rho}(\overline{\vectorsym{x}}), for each ρ>0\rho>0 and \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma. The following result follows from the argument for statement (2) of Theorem 1.1 in [26]. A proof is included for the sake of completeness.

Theorem 2.3.

Suppose that Γ\Gamma satisfies (H4′′); i.e. is lower Ahlfors-regular; and that vWβ,p(Γ)v\in W^{\beta,p}(\Gamma), for some β>0\beta>0. Define vβ:Γ¯v_{\beta}:\Gamma\to\overline{\mathbb{R}} by

vβ(\vectorsymx¯):=(Γ1(\vectorsymx¯)|v(\vectorsymz¯)v(\vectorsymx¯)|p\vectorsymz¯\vectorsymx¯nt+βpdt(\vectorsymz¯))1p.v_{\beta}(\overline{\vectorsym{x}}):=\left(\int_{\Gamma_{1}(\overline{\vectorsym{x}})}\frac{|v(\overline{\vectorsym{z}})-v(\overline{\vectorsym{x}})|^{p}}{\|\overline{\vectorsym{z}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{z}})\right)^{\frac{1}{p}}.

Then vβLp(Γ)v_{\beta}\in L^{p}(\Gamma) and

|v(\vectorsymy¯)v(\vectorsymx¯)|c\vectorsymy¯\vectorsymx¯nβ(vβ(\vectorsymy¯)+vβ(\vectorsymx¯)), for all \vectorsymx¯,\vectorsymy¯Γ.|v(\overline{\vectorsym{y}})-v(\overline{\vectorsym{x}})|\leq c\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{\beta}\left(v_{\beta}(\overline{\vectorsym{y}})+v_{\beta}(\overline{\vectorsym{x}})\right),\quad\text{ for all }\overline{\vectorsym{x}},\overline{\vectorsym{y}}\in\Gamma. (7)
Proof.

From the definition of Wp,β(Γ)W^{p,\beta}(\Gamma), it is immediate that vβLp(Γ)v_{\beta}\in L^{p}(\Gamma). To verify (7), it is sufficient to consider \vectorsymx¯,\vectorsymy¯Γ\overline{\vectorsym{x}},\overline{\vectorsym{y}}\in\Gamma such that ρ:=\vectorsymx¯\vectorsymy¯n12\rho:=\|\overline{\vectorsym{x}}-\overline{\vectorsym{y}}\|_{\mathbb{R}^{n}}\leq\frac{1}{2}. Since ρ(\vectorsymy¯)2ρ(\vectorsymx¯)\mathcal{B}_{\rho}(\overline{\vectorsym{y}})\subseteq\mathcal{B}_{2\rho}(\overline{\vectorsym{x}}), by assumption (H4′′), we have

|v(\vectorsymy¯)v(\vectorsymx¯)|p\displaystyle|v(\overline{\vectorsym{y}})-v(\overline{\vectorsym{x}})|^{p}\leq cΓρ(\vectorsymy¯)|v(\vectorsymz¯)v(\vectorsymy¯)|pdt(\vectorsymz¯)+cΓ2ρ(\vectorsymx¯)|v(\vectorsymz¯)v(\vectorsymx¯)|pdt(\vectorsymz¯)\displaystyle c\fint_{\Gamma_{\rho}(\overline{\vectorsym{y}})}|v(\overline{\vectorsym{z}})-v(\overline{\vectorsym{y}})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{z}})+c\fint_{\Gamma_{2\rho}(\overline{\vectorsym{x}})}|v(\overline{\vectorsym{z}})-v(\overline{\vectorsym{x}})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{z}})
\displaystyle\leq cρβpΓρ(\vectorsymy¯)|v(\vectorsymz¯)v(\vectorsymy¯)|p\vectorsymz¯\vectorsymy¯nt+βpdt(\vectorsymz¯)+cρβpΓ2ρ(\vectorsymx¯)|v(\vectorsymz¯)v(\vectorsymx¯)|p\vectorsymz¯\vectorsymx¯nt+βpdt(\vectorsymz¯)\displaystyle c\rho^{\beta p}\!\!\int_{\Gamma_{\rho}(\overline{\vectorsym{y}})}\!\!\frac{|v(\overline{\vectorsym{z}})-v(\overline{\vectorsym{y}})|^{p}}{\|\overline{\vectorsym{z}}-\overline{\vectorsym{y}}\|_{\mathbb{R}^{n}}^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{z}})+c\rho^{\beta p}\!\!\int_{\Gamma_{2\rho}(\overline{\vectorsym{x}})}\!\!\frac{|v(\overline{\vectorsym{z}})-v(\overline{\vectorsym{x}})|^{p}}{\|\overline{\vectorsym{z}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{z}})
\displaystyle\leq c\vectorsymy¯\vectorsymx¯np(vβ(\vectorsymy¯)+vβ(\vectorsymx¯))p.\displaystyle c\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{p}\left(v_{\beta}(\overline{\vectorsym{y}})+v_{\beta}(\overline{\vectorsym{x}})\right)^{p}.

Our proof of Theorem 1.2(b) requires the following

Corollary 2.4.

If Γ\Gamma satisfies (H4′′) and vWβ,p(Γ)v\in W^{\beta,p}(\Gamma), then for any 0<β<β0<\beta^{\prime}<\beta

limρ0+ρpβΓρ(\vectorsymx¯0)|v(\vectorsymx¯)v(\vectorsymx¯0)|pdt(\vectorsymx¯)=0,for t-a.e. \vectorsymx¯0Γ.\lim_{\rho\to 0^{+}}\rho^{-p\beta^{\prime}}\fint_{\Gamma\cap\mathcal{B}_{\rho}(\overline{\vectorsym{x}}_{0})}|v(\overline{\vectorsym{x}})-v(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})=0,\quad\text{for $\mathscr{H}^{t}$-a.e. }\overline{\vectorsym{x}}_{0}\in\Gamma.
Proof.

The previous theorem implies vβLp(Γ)v_{\beta}\in L^{p}(\Gamma), so |vβ(\vectorsymx¯0)|<|v_{\beta}(\overline{\vectorsym{x}}_{0})|<\infty, for t\mathscr{H}^{t}-a.e. \vectorsymx¯0Γ\overline{\vectorsym{x}}_{0}\in\Gamma. Given an open set UnU\subseteq\mathbb{R}^{n}, define

ν(U):=ΓUvβ(\vectorsymx¯)pdt(\vectorsymx¯).\nu(U):=\int_{\Gamma\cap U}v_{\beta}(\overline{\vectorsym{x}})^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}}).

Then ν\nu satisfies the hypotheses of Lemma 2.1. Under assumption (H4′′), we deduce that

limρ0+Γρ(\vectorsymx¯0)vβ(\vectorsymx¯)pdt(\vectorsymx¯)cρtν(ρ(\vectorsymx¯0))<, for t-a.e. \vectorsymx¯0Γ.\lim_{\rho\to 0^{+}}\fint_{\Gamma_{\rho}(\overline{\vectorsym{x}}_{0})}v_{\beta}(\overline{\vectorsym{x}})^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\leq c\rho^{-t}\nu(\mathcal{B}_{\rho}(\overline{\vectorsym{x}}_{0}))<\infty,\quad\text{ for $\mathscr{H}^{t}$-a.e. }\overline{\vectorsym{x}}_{0}\in\Gamma.

The result now follows from (7). ∎

The next lemma collects some statements that are straightforward consequences of the definitions and assumptions.

Lemma 2.5.

Let \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma and 0<η,λ<1θ0<\eta,\lambda<1\leq\theta be given.

  1. (a)

    For each δ>0\delta>0, the set Qλ,δθ(\vectorsymx¯)Q^{\theta}_{\lambda,\delta}(\overline{\vectorsym{x}}) is open.

  2. (b)

    Clearly Qλθ(\vectorsymx¯)Qλθ(\vectorsymx¯)Q^{\theta}_{\lambda}(\overline{\vectorsym{x}})\subseteq Q^{\theta^{\prime}}_{\lambda^{\prime}}(\overline{\vectorsym{x}}), for any 0<λλ<1θθ<0<\lambda^{\prime}\leq\lambda<1\leq\theta\leq\theta^{\prime}<\infty. Thus, if Qλ,δθ(\vectorsymx¯)Q^{\theta}_{\lambda,\delta}(\overline{\vectorsym{x}}) is an (η,θ)(\eta,\theta)-corkscrew region, then Qλ,δθ(\vectorsymx¯)Q^{\theta^{\prime}}_{\lambda^{\prime},\delta}(\overline{\vectorsym{x}}) is an (η,θ)(\eta^{\prime},\theta^{\prime})-corkscrew region, for each 0<ηη0<\eta^{\prime}\leq\eta.

  3. (c)

    Let 0<ρ,ρ<10<\rho,\rho^{\prime}<1 be given. If \vectorsymx¯Γ\overline{\vectorsym{x}}^{\prime}\in\Gamma satisfies \vectorsymx¯\vectorsymx¯n<ρ\|\overline{\vectorsym{x}}-\overline{\vectorsym{x}}^{\prime}\|_{\mathbb{R}^{n}}<\rho^{\prime} and θθ\theta^{\prime}\geq\theta, then Qλ,ρθηρ(\vectorsymx¯)Qλθ(\vectorsymx¯)Q^{\theta}_{\lambda,\rho}\setminus\mathcal{B}_{\eta\rho}(\overline{\vectorsym{x}})\subseteq Q^{\theta^{\prime}}_{\lambda^{\prime}}(\overline{\vectorsym{x}}^{\prime}), with λ:=ληρ/(ρ+ρ)\lambda^{\prime}:=\lambda\eta\rho/(\rho+\rho^{\prime}).

  4. (d)

    Let δ0>0\delta_{0}>0 and C1C\geq 1 be given. Suppose that Qλθ(\vectorsymx¯)Q^{\theta}_{\lambda}(\overline{\vectorsym{x}}) is both (C,θ)(C,\theta)-connected to \vectorsymx¯\overline{\vectorsym{x}} and an (η,θ)(\eta,\theta)-corkscrew region radius δ0\delta_{0}. Then Qλθ(\vectorsymx¯)Q^{\theta}_{\lambda}(\overline{\vectorsym{x}}) is an (η,θ)(\eta^{\prime},\theta)-corkscrew region with radius ηδ0\eta\delta_{0}, for every 0<η<10<\eta^{\prime}<1.

  5. (e)

    Assume (H1), and put R0:=sup\vectorsymxQλ0,δθΓ(\vectorsymx¯)(\vectorsymx¯)dΩ(\vectorsymx)R_{0}:=\sup_{\vectorsym{x}\in Q^{\theta_{\Gamma}(\overline{\vectorsym{x}})}_{\lambda_{0},\delta}(\overline{\vectorsym{x}})}d_{\partial\Omega}(\vectorsym{x}). Then, R0(η0λ0δ)θΓ(\vectorsymx¯)R_{0}\geq(\eta_{0}\lambda_{0}\delta)^{\theta_{\Gamma}(\overline{\vectorsym{x}})}, and there exists a dimensional constant c>0c>0 such that, for each 0<λ<λ00<\lambda<\lambda_{0},

    |Qλ,δθΓ(\vectorsymx¯)(\vectorsymx¯)|c(1λ/λ0)nθΓ(\vectorsymx¯)R0n and |Ωρ(\vectorsymx¯)|cR0n.|Q^{\theta_{\Gamma}(\overline{\vectorsym{x}})}_{\lambda,\delta}(\overline{\vectorsym{x}})|\geq c(1-\lambda/\lambda_{0})^{n\theta_{\Gamma}(\overline{\vectorsym{x}})}R_{0}^{n}\quad\text{ and }\quad|\Omega_{\rho}(\overline{\vectorsym{x}})|\geq cR_{0}^{n}.
Proof.

Parts (a)–(c) are direct consequences of the definitions.

For part (d), by the definition of an (η,θ)(\eta,\theta)-corkscrew region, for each j𝕎j\in\mathbb{W}, there exists \vectorsymxjQλ,ηjδ0θηj+1δ0(\vectorsymx¯)\vectorsym{x}_{j}\in Q^{\theta}_{\lambda,\eta^{j}\delta_{0}}\setminus\mathcal{B}_{\eta^{j+1}\delta_{0}}(\overline{\vectorsym{x}}). The connectedness assumption implies there is a path of points in Qλθ(\vectorsymx¯)Q^{\theta}_{\lambda}(\overline{\vectorsym{x}}) joining \vectorsymxj\vectorsym{x}_{j} and \vectorsymxj+1\vectorsym{x}_{j+1}, and this yields the claim.

For part (e), assumption (H1) implies there exists an \vectorsymxQλ0,δθΓ(\vectorsymx¯)(\vectorsymx¯)\vectorsym{x}\in Q^{\theta_{\Gamma}(\overline{\vectorsym{x}})}_{\lambda_{0},\delta}(\overline{\vectorsym{x}}) and the lower bound for R0R_{0}. Put ρ:=\vectorsymx¯\vectorsymxn\rho:=\|\overline{\vectorsym{x}}-\vectorsym{x}\|_{\mathbb{R}^{n}} and r:=dΩ(\vectorsymx¯)r:=d_{\partial\Omega}(\overline{\vectorsym{x}}), so r(λ0ρ)θΓ(\vectorsymx¯)r\geq(\lambda_{0}\rho)^{\theta_{\Gamma}(\overline{\vectorsym{x}})}. Since r(\vectorsymx)Ω\mathcal{B}_{r}(\vectorsym{x})\subseteq\Omega and δρr\delta\geq\rho\geq r, we find that r(\vectorsymx)Ωδ(\vectorsymx¯)\mathcal{B}_{r}(\vectorsym{x})\cap\Omega_{\delta}(\overline{\vectorsym{x}}) contains a set congruent to ρ(\vectorsym0)r(\vectorsymeρ)\mathcal{B}_{\rho}(\vectorsym{0})\cap\mathcal{B}_{r}(\vectorsym{e}\rho), with \vectorsymen\vectorsym{e}\in\mathbb{R}^{n} a unit vector. Thus, there is dimensional constant c>0c>0 such that

|σr(\vectorsymx)Ωδ(\vectorsymx¯)|cσnrn, for all 0<σ1.|\mathcal{B}_{\sigma r}(\vectorsym{x})\cap\Omega_{\delta}(\overline{\vectorsym{x}})|\geq c\sigma^{n}r^{n},\quad\text{ for all }0<\sigma\leq 1.

For each 0<σ<10<\sigma<1 and \vectorsymyσr(\vectorsymx)Ωδ(\vectorsymx¯)\vectorsym{y}\in\mathcal{B}_{\sigma r}(\vectorsym{x})\cap\Omega_{\delta}(\overline{\vectorsym{x}}), we have

dΩ(\vectorsymy)dΩ(\vectorsymx)σr=(1σ)r and \vectorsymx¯\vectorsymynδ.d_{\partial\Omega}(\vectorsym{y})\geq d_{\partial\Omega}(\vectorsym{x})-\sigma r=(1-\sigma)r\quad\text{ and }\quad\|\overline{\vectorsym{x}}-\vectorsym{y}\|_{\mathbb{R}^{n}}\leq\delta.

We may select 0<σ<10<\sigma<1 so that λ=(1σ)1/θΓ(\vectorsymx¯)λ0\lambda=(1-\sigma)^{1/\theta_{\Gamma}(\overline{\vectorsym{x}})}\lambda_{0}. It follows that σr(\vectorsymx)Ωδ(\vectorsymx¯)Qλ,δθΓ(\vectorsymx¯)(\vectorsymx¯)\mathcal{B}_{\sigma r}(\vectorsym{x})\cap\Omega_{\delta}(\overline{\vectorsym{x}})\subseteq Q^{\theta_{\Gamma}(\overline{\vectorsym{x}})}_{\lambda,\delta}(\overline{\vectorsym{x}}). Hence

|Qλ,δθΓ(\vectorsymx¯)(\vectorsymx¯)|cσnrnc((λ0λ)ρ)nθΓ(\vectorsymx¯).|Q^{\theta_{\Gamma}(\overline{\vectorsym{x}})}_{\lambda,\delta}(\overline{\vectorsym{x}})|\geq c\sigma^{n}r^{n}\geq c\left((\lambda_{0}-\lambda)\rho\right)^{n\theta_{\Gamma}(\overline{\vectorsym{x}})}.

Since \vectorsymxQλ0,δθΓ(\vectorsymx¯)(\vectorsymx¯)\vectorsym{x}\in Q^{\theta_{\Gamma}(\overline{\vectorsym{x}})}_{\lambda_{0},\delta}(\overline{\vectorsym{x}}) was arbitrary, we deduce that

|Qλ,δθΓ(\vectorsymx¯)(\vectorsymx¯)|cσnR0n=c(1λ/λ0)nθΓ(\vectorsymx¯)R0n.|Q^{\theta_{\Gamma}(\overline{\vectorsym{x}})}_{\lambda,\delta}(\overline{\vectorsym{x}})|\geq c\sigma^{n}R_{0}^{n}=c\left(1-\lambda/\lambda_{0}\right)^{n\theta_{\Gamma}(\overline{\vectorsym{x}})}R_{0}^{n}.

This also yields |Ωρ(\vectorsymx¯)|=limλ0+|Qλ,δθΓ(\vectorsymx¯)|cR0n|\Omega_{\rho}(\overline{\vectorsym{x}})|=\lim_{\lambda\to 0^{+}}|Q^{\theta_{\Gamma}(\overline{\vectorsym{x}})}_{\lambda,\delta}|\geq cR_{0}^{n}. ∎

Lemma 2.6.

Assume (H2). Let \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma be given. Then for each 0<ρρΓ0<\rho\leq\rho_{\Gamma}, 0<ηη00<\eta\leq\eta_{0}, 0<λλ00<\lambda\leq\lambda_{0} and \vectorsymx,\vectorsymxQλ,ρηρ(\vectorsymx¯)\vectorsym{x},\vectorsym{x}^{\prime}\in Q_{\lambda,\rho}\setminus\mathcal{B}_{\eta\rho}(\overline{\vectorsym{x}}), we have

|g(\vectorsymx;u)g(\vectorsymx;u)|pcελnpδαδ(\vectorsymx¯)νs(),p(δ(\vectorsymx¯))|g(\vectorsym{x};u)-g(\vectorsym{x}^{\prime};u)|^{p}\leq c\varepsilon_{\lambda^{\prime}}^{-n-p}\delta^{\alpha_{\delta}(\overline{\vectorsym{x}})}\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta}(\overline{\vectorsym{x}})\right)

Here λ:=ηλ\lambda^{\prime}:=\eta\lambda and δ:=3CΓρ\delta:=3C_{\Gamma}\rho.

Proof.

Put θ:=θΓ(\vectorsymx¯)\theta:=\theta_{\Gamma}(\overline{\vectorsym{x}}) and r:=ρθr:=\rho^{\theta}, so rρr\leq\rho. We may assume \vectorsymx\vectorsymx\vectorsym{x}\neq\vectorsym{x}^{\prime}. From the definition of Qλ,ρ(\vectorsymx¯)Q_{\lambda,\rho}(\overline{\vectorsym{x}}), we have

ρ>\vectorsymx¯\vectorsymxn,\vectorsymx¯\vectorsymxnηρ,ρ>dΩ(\vectorsymx),dΩ(\vectorsymx)>(ηλ)θr.\rho>\|\overline{\vectorsym{x}}-\vectorsym{x}\|_{\mathbb{R}^{n}},\|\overline{\vectorsym{x}}-\vectorsym{x}^{\prime}\|_{\mathbb{R}^{n}}\geq\eta\rho,\qquad\qquad\rho>d_{\partial\Omega}(\vectorsym{x}),d_{\partial\Omega}(\vectorsym{x}^{\prime})>(\eta\lambda)^{\theta}r.

By hypothesis (H2), there exists a path \vectorsymγ:[0,1]ΩδΓ(\vectorsymx¯)\vectorsym{\gamma}:[0,1]\to\Omega_{\delta_{\Gamma}}(\overline{\vectorsym{x}}), between \vectorsymx\vectorsym{x} and \vectorsymx\vectorsym{x}^{\prime}, satisfying (2). We assume that γ\gamma is injective. Put τ0:=0\tau_{0}:=0 and \vectorsymx0:=\vectorsymx\vectorsym{x}_{0}:=\vectorsym{x}. If 1(\vectorsymγ([0,1]))>112dΩ(\vectorsymx0)\mathscr{H}^{1}(\vectorsym{\gamma}([0,1]))>\frac{1}{12}d_{\partial\Omega}(\vectorsym{x}_{0}), then we select τ1(0,1)\tau_{1}\in(0,1) so that 1(\vectorsymγ([τ0,τ1]))=112dΩ(\vectorsymx0)\mathscr{H}^{1}(\vectorsym{\gamma}([\tau_{0},\tau_{1}]))=\frac{1}{12}d_{\partial\Omega}(\vectorsym{x}_{0}) and define \vectorsymx1:=\vectorsymγ(τ1)\vectorsym{x}_{1}:=\vectorsym{\gamma}(\tau_{1}). We continue iteratively: if 1(\vectorsymγ([τj,1]))>112dΩ(\vectorsymxj)\mathscr{H}^{1}(\vectorsym{\gamma}([\tau_{j},1]))>\frac{1}{12}d_{\partial\Omega}(\vectorsym{x}_{j}), then we we select τj+1(τj,1)\tau_{j+1}\in(\tau_{j},1) so that 1(\vectorsymγ([τj,τj+1]))=112dΩ(\vectorsymxj)\mathscr{H}^{1}(\vectorsym{\gamma}([\tau_{j},\tau_{j+1}]))=\frac{1}{12}d_{\partial\Omega}(\vectorsym{x}_{j}) and define \vectorsymxj+1:=\vectorsymγ(τj+1)\vectorsym{x}_{j+1}:=\vectorsym{\gamma}(\tau_{j+1}). Since dΩ(\vectorsymγ(τ))ελrd_{\partial\Omega}(\vectorsym{\gamma}(\tau))\geq\varepsilon_{\lambda^{\prime}}r, for all τ[0,1]\tau\in[0,1], there exists an NN\in\mathbb{N} such that 1(\vectorsymγ([τN1,1]))<112dΩ(\vectorsymxN1)\mathscr{H}^{1}(\vectorsym{\gamma}([\tau_{N-1},1]))<\frac{1}{12}d_{\partial\Omega}(\vectorsym{x}_{N-1}). Indeed, since 1(\vectorsymγ([0,1]))CΓρ\mathscr{H}^{1}(\vectorsym{\gamma}([0,1]))\leq C_{\Gamma}\rho, we have the bound

N1+CΓρ112ελrc(CΓελ)ρ1θ.N\leq 1+\frac{C_{\Gamma}\rho}{\frac{1}{12}\varepsilon_{\lambda^{\prime}}r}\leq c\left(\frac{C_{\Gamma}}{\varepsilon_{\lambda^{\prime}}}\right)\rho^{1-\theta}. (8)

Put \vectorsymxN:=\vectorsymx\vectorsym{x}_{N}:=\vectorsym{x}^{\prime}. To summarize, the finite sequence {\vectorsymxj}j=0N\vectorsymγ([0,1])\{\vectorsym{x}_{j}\}_{j=0}^{N}\subset\vectorsym{\gamma}([0,1]) has the following properties:

  • \vectorsymx0=\vectorsymx\vectorsym{x}_{0}=\vectorsym{x} and \vectorsymxN=\vectorsymx\vectorsym{x}_{N}=\vectorsym{x}^{\prime};

  • \vectorsymxj\vectorsymxj1n112dΩ(\vectorsymxj1)\|\vectorsym{x}_{j}-\vectorsym{x}_{j-1}\|_{\mathbb{R}^{n}}\leq\frac{1}{12}d_{\partial\Omega}(\vectorsym{x}_{j-1}), for each j=1,,Nj=1,\dots,N;

  • ελrdΩ(\vectorsymxj)\vectorsymx¯\vectorsymxjn<δΓ\varepsilon_{\lambda^{\prime}}r\leq d_{\partial\Omega}(\vectorsym{x}_{j})\leq\|\overline{\vectorsym{x}}-\vectorsym{x}_{j}\|_{\mathbb{R}^{n}}<\delta_{\Gamma}, for each j=0,1,,Nj=0,1,\dots,N.

Before continuing, we note that

dΩ(\vectorsymxj)min{dΩ(\vectorsymx0)+\vectorsymx0\vectorsymxjn,dΩ(\vectorsymxN)+\vectorsymxN\vectorsymxjn}(1+12CΓ)ρ12δ.d_{\partial\Omega}(\vectorsym{x}_{j})\leq\min\left\{d_{\partial\Omega}(\vectorsym{x}_{0})+\|\vectorsym{x}_{0}-\vectorsym{x}_{j}\|_{\mathbb{R}^{n}},d_{\partial\Omega}(\vectorsym{x}_{N})+\|\vectorsym{x}_{N}-\vectorsym{x}_{j}\|_{\mathbb{R}^{n}}\right\}\leq(1+{\textstyle{\frac{1}{2}}}C_{\Gamma})\rho\leq{\textstyle{\frac{1}{2}}}\delta.

Put L:=112j=0N1dΩ(\vectorsymxj)L:=\frac{1}{12}\sum_{j=0}^{N-1}d_{\partial\Omega}(\vectorsym{x}_{j}). Then

\vectorsymx\vectorsymxn1(\vectorsymγ([0,1]))L1(\vectorsymγ([0,1]))+112dΩ(\vectorsymxN1)(112+2524CΓ)ρ98CΓρ.\|\vectorsym{x}-\vectorsym{x}^{\prime}\|_{\mathbb{R}^{n}}\leq\mathscr{H}^{1}(\vectorsym{\gamma}([0,1]))\\ \leq L\leq\mathscr{H}^{1}(\vectorsym{\gamma}([0,1]))+{\textstyle{\frac{1}{12}}}d_{\partial\Omega}(\vectorsym{x}_{N-1})\leq\left({\textstyle{\frac{1}{12}}}+{\textstyle{\frac{25}{24}}}C_{\Gamma}\right)\rho\leq{\textstyle{\frac{9}{8}}}C_{\Gamma}\rho. (9)

For each j=1,,Nj=1,\dots,N, define ζj:=(112L)dΩ(\vectorsymxj1)\zeta_{j}:=\left(\frac{1}{12L}\right)d_{\partial\Omega}(\vectorsym{x}_{j-1}), so j=1Nζj=1\sum_{j=1}^{N}\zeta_{j}=1.

We proceed now to the main part of the proof. The convexity of x|x|px\to|x|^{p} allows us to write

|g(\vectorsymx)g(\vectorsymx)|pj=1Nζj1p|Φ(\vectorsymxj)u(\vectorsymyj)d\vectorsymyjΦ(\vectorsymxj1)u(\vectorsymyj1)d\vectorsymyj1|p=:Ij.|g(\vectorsym{x})-g(\vectorsym{x}^{\prime})|^{p}\leq\sum_{j=1}^{N}\zeta_{j}^{1-p}\underbrace{\left|\fint_{\Phi^{\prime}(\vectorsym{x}_{j})}u(\vectorsym{y}_{j})\mathrm{d}\vectorsym{y}_{j}-\fint_{\Phi^{\prime}(\vectorsym{x}_{j-1})}u(\vectorsym{y}_{j-1})\mathrm{d}\vectorsym{y}_{j-1}\right|^{p}}_{=:I_{j}}. (10)

We observe that, for each j=0,1,,Nj=0,1,\dots,N and \vectorsymyjΦ(\vectorsymxj)\vectorsym{y}_{j}\in\Phi(\vectorsym{x}_{j}),

dΩ(\vectorsymyj)<(1+16)dΩ(\vectorsymxj)712δ<δΓ.d_{\partial\Omega}(\vectorsym{y}_{j})<\left(1+{\textstyle{\frac{1}{6}}}\right)d_{\partial\Omega}(\vectorsym{x}_{j})\leq{\textstyle{\frac{7}{12}}}\delta<\delta_{\Gamma}. (11)

With j=1,2,,Nj=1,2,\dots,N, let \vectorsymyj1Φ(\vectorsymxj1)\vectorsym{y}_{j-1}\in\Phi(\vectorsym{x}_{j-1}) be given. Then

\vectorsymyj1\vectorsymxj1n<16dΩ(\vectorsymxj1)\displaystyle\|\vectorsym{y}_{j-1}-\vectorsym{x}_{j-1}\|_{\mathbb{R}^{n}}<{\textstyle{\frac{1}{6}}}d_{\partial\Omega}(\vectorsym{x}_{j-1})
\displaystyle\Longrightarrow dΩ(\vectorsymyj1)dΩ(\vectorsymxj1)\vectorsymyj1\vectorsymxj1n>(1112)dΩ(\vectorsymxj1)\displaystyle d_{\partial\Omega}(\vectorsym{y}_{j-1})\geq d_{\partial\Omega}(\vectorsym{x}_{j-1})-\|\vectorsym{y}_{j-1}-\vectorsym{x}_{j-1}\|_{\mathbb{R}^{n}}>\left(1-{\textstyle{\frac{1}{12}}}\right)d_{\partial\Omega}(\vectorsym{x}_{j-1})
\displaystyle\Longrightarrow dΩ(\vectorsymxj1)<1211dΩ(\vectorsymyj1).\displaystyle d_{\partial\Omega}(\vectorsym{x}_{j-1})<{\textstyle{\frac{12}{11}}}d_{\partial\Omega}(\vectorsym{y}_{j-1}).

Thus, for each \vectorsymyj1Φ(\vectorsymxj1)\vectorsym{y}_{j-1}\in\Phi(\vectorsym{x}_{j-1}), we have

\vectorsymyj\vectorsymyj1n\displaystyle\|\vectorsym{y}_{j}-\vectorsym{y}_{j-1}\|_{\mathbb{R}^{n}} \vectorsymyj\vectorsymxjn+\vectorsymxj\vectorsymxj1n+\vectorsymxj1\vectorsymyj1n\displaystyle\leq\|\vectorsym{y}_{j}-\vectorsym{x}_{j}\|_{\mathbb{R}^{n}}+\|\vectorsym{x}_{j}-\vectorsym{x}_{j-1}\|_{\mathbb{R}^{n}}+\|\vectorsym{x}_{j-1}-\vectorsym{y}_{j-1}\|_{\mathbb{R}^{n}}
<16dΩ(\vectorsymxj)+112dΩ(\vectorsymxj1)+112dΩ(\vectorsymxj1)\displaystyle<{\textstyle{\frac{1}{6}}}d_{\partial\Omega}(\vectorsym{x}_{j})+{\textstyle{\frac{1}{12}}}d_{\partial\Omega}(\vectorsym{x}_{j-1})+{\textstyle{\frac{1}{12}}}d_{\partial\Omega}(\vectorsym{x}_{j-1})
16(dΩ(\vectorsymxj1)+\vectorsymxj\vectorsymxj1n)+16dΩ(\vectorsymxj1)\displaystyle\leq{\textstyle{\frac{1}{6}}}\left(d_{\partial\Omega}(\vectorsym{x}_{j-1})+\|\vectorsym{x}_{j}-\vectorsym{x}_{j-1}\|_{\mathbb{R}^{n}}\right)+{\textstyle{\frac{1}{6}}}d_{\partial\Omega}(\vectorsym{x}_{j-1})
(16+172+16)dΩ(\vectorsymxj1)=2572dΩ(\vectorsymxj1)\displaystyle\leq\left({\textstyle{\frac{1}{6}}}+{\textstyle{\frac{1}{72}}}+{\textstyle{\frac{1}{6}}}\right)d_{\partial\Omega}(\vectorsym{x}_{j-1})={\textstyle{\frac{25}{72}}}d_{\partial\Omega}(\vectorsym{x}_{j-1})
<12dΩ(\vectorsymyj1).\displaystyle<{\textstyle{\frac{1}{2}}}d_{\partial\Omega}(\vectorsym{y}_{j-1}). (12)

Consequently, Φ(\vectorsymxj)Ψ(\vectorsymyj1)Ω\Phi(\vectorsym{x}_{j})\subseteq\Psi(\vectorsym{y}_{j-1})\subseteq\Omega, for all \vectorsymyj1Φ(\vectorsymxj1)\vectorsym{y}_{j-1}\in\Phi(\vectorsym{x}_{j-1}). Additionally,

dΩ(\vectorsymxj1)dΩ(\vectorsymxj)+\vectorsymxj\vectorsymxj1ndΩ(\vectorsymxj)+112dΩ(\vectorsymxj1)\displaystyle d_{\partial\Omega}(\vectorsym{x}_{j-1})\leq d_{\partial\Omega}(\vectorsym{x}_{j})+\|\vectorsym{x}_{j}-\vectorsym{x}_{j-1}\|_{\mathbb{R}^{n}}\leq d_{\partial\Omega}(\vectorsym{x}_{j})+{\textstyle{\frac{1}{12}}}d_{\partial\Omega}(\vectorsym{x}_{j-1})
\displaystyle\Longrightarrow dΩ(\vectorsymxj1)1211dΩ(\vectorsymxj).\displaystyle d_{\partial\Omega}(\vectorsym{x}_{j-1})\leq{\textstyle{\frac{12}{11}}}d_{\partial\Omega}(\vectorsym{x}_{j}).

It follows that

dΩ(\vectorsymyj1)<(1+16)dΩ(\vectorsymxj1)1411dΩ(\vectorsymxj)|Ψ(\vectorsymyj1)||Φ(\vectorsymxj)|4n.d_{\partial\Omega}(\vectorsym{y}_{j-1})<\left(1+{\textstyle{\frac{1}{6}}}\right)d_{\partial\Omega}(\vectorsym{x}_{j-1})\leq{\textstyle{\frac{14}{11}}}d_{\partial\Omega}(\vectorsym{x}_{j})\Longrightarrow\frac{|\Psi(\vectorsym{y}_{j-1})|}{|\Phi(\vectorsym{x}_{j})|}\leq 4^{n}.

Using this, (12) and Jensen’s inequality yields

Ij=\displaystyle I_{j}= |Φ(\vectorsymxj1)Φ(\vectorsymxj)[u(\vectorsymyj)u(\vectorsymyj1)]d\vectorsymyjd\vectorsymyj1|p\displaystyle\left|\fint_{\Phi(\vectorsym{x}_{j-1})}\fint\limits_{\Phi^{\prime}(\vectorsym{x}_{j})}[u(\vectorsym{y}_{j})-u(\vectorsym{y}_{j-1})]\mathrm{d}\vectorsym{y}_{j}\mathrm{d}\vectorsym{y}_{j-1}\right|^{p}
\displaystyle\leq Φ(\vectorsymxj1)(|Ψ(\vectorsymyj1)||Φ(\vectorsymxj)|)p(Ψ(\vectorsymyj1)|u(\vectorsymyj)u(\vectorsymyj1)|d\vectorsymyj)pd\vectorsymyj1\displaystyle\fint_{\Phi(\vectorsym{x}_{j-1})}\left(\frac{|\Psi(\vectorsym{y}_{j-1})|}{|\Phi^{\prime}(\vectorsym{x}_{j})|}\right)^{p}\left(\fint_{\Psi(\vectorsym{y}_{j-1})}|u(\vectorsym{y}_{j})-u(\vectorsym{y}_{j-1})|\mathrm{d}\vectorsym{y}_{j}\right)^{p}\mathrm{d}\vectorsym{y}_{j-1}
\displaystyle\leq cΦ(\vectorsymxj1)(Ψ(\vectorsymyj1)|u(\vectorsymyj)u(\vectorsymyj1)|d\vectorsymyj)pd\vectorsymyj1.\displaystyle c\fint_{\Phi(\vectorsym{x}_{j-1})}\left(\fint_{\Psi(\vectorsym{y}_{j-1})}|u(\vectorsym{y}_{j})-u(\vectorsym{y}_{j-1})|\mathrm{d}\vectorsym{y}_{j}\right)^{p}\mathrm{d}\vectorsym{y}_{j-1}.

Returning to (10), after reindexing, we have established

|g(\vectorsymx)g(\vectorsymx)|p\displaystyle|g(\vectorsym{x})-g(\vectorsym{x}^{\prime})|^{p}\leq cj=0N1ζj+11p(1dΩ(\vectorsymxj))nΦ(\vectorsymxj)(Ψ(\vectorsymy)|u(\vectorsymy)u(\vectorsymy)|d\vectorsymy)pd\vectorsymy\displaystyle c\sum_{j=0}^{N-1}\zeta_{j+1}^{1-p}\left(\frac{1}{d_{\partial\Omega}(\vectorsym{x}_{j})}\right)^{n}\int\limits_{\Phi(\vectorsym{x}_{j})}\left(\fint\limits_{\Psi(\vectorsym{y})}|u(\vectorsym{y}^{\prime})-u(\vectorsym{y})|\mathrm{d}\vectorsym{y}^{\prime}\right)^{\!p}\!\!\mathrm{d}\vectorsym{y}
\displaystyle\leq cLp1j=0N1Φ(\vectorsymxj)(dΩ(\vectorsymy))ps(\vectorsymy)dΩ(\vectorsymxj)n+p1(Ψ(\vectorsymy)|u(\vectorsymy)u(\vectorsymy)|dΩ(\vectorsymy)s(\vectorsymy)d\vectorsymy)pd\vectorsymy\displaystyle cL^{p-1}\sum_{j=0}^{N-1}\int_{\Phi(\vectorsym{x}_{j})}\frac{\left(d_{\partial\Omega}(\vectorsym{y})\right)^{ps(\vectorsym{y})}}{d_{\partial\Omega}(\vectorsym{x}_{j})^{n+p-1}}\left(\fint_{\Psi(\vectorsym{y})}\frac{|u(\vectorsym{y}^{\prime})-u(\vectorsym{y})|}{d_{\partial\Omega}(\vectorsym{y})^{s(\vectorsym{y})}}\mathrm{d}\vectorsym{y}^{\prime}\right)^{\!p}\!\!\mathrm{d}\vectorsym{y}
\displaystyle\leq cρp1j=0N1Φ(\vectorsymxj)(dΩ(\vectorsymxj))ps(\vectorsymy)np+1(Ψ(\vectorsymy)|u(\vectorsymy)u(\vectorsymy)|dΩ(\vectorsymy)s(\vectorsymy)d\vectorsymy)pd\vectorsymy.\displaystyle c\rho^{p-1}\sum_{j=0}^{N-1}\int_{\Phi(\vectorsym{x}_{j})}\!\!\left(d_{\partial\Omega}(\vectorsym{x}_{j})\right)^{ps(\vectorsym{y})-n-p+1}\!\left(\fint_{\Psi(\vectorsym{y})}\!\!\frac{|u(\vectorsym{y}^{\prime})-u(\vectorsym{y})|}{d_{\partial\Omega}(\vectorsym{y})^{s(\vectorsym{y})}}\mathrm{d}\vectorsym{y}^{\prime}\!\right)^{\!p}\!\!\mathrm{d}\vectorsym{y}. (13)

The last line is a consequence of dΩ(\vectorsymy)<76dΩ(\vectorsymxj)712δ<1d_{\partial\Omega}(\vectorsym{y})<\frac{7}{6}d_{\partial\Omega}(\vectorsym{x}_{j})\leq\frac{7}{12}\delta<1 and the bounds in (9). Next, we recall (2) to see that, for any \vectorsymyΦ(\vectorsymxj)\vectorsym{y}\in\Phi(\vectorsym{x}_{j}),

\vectorsymx¯\vectorsymyn\displaystyle\|\overline{\vectorsym{x}}-\vectorsym{y}\|_{\mathbb{R}^{n}}\leq min{\vectorsymx¯\vectorsymxn+\vectorsymx\vectorsymxjn,\vectorsymx¯\vectorsymxn+\vectorsymx\vectorsymxjn}+\vectorsymxj\vectorsymyn\displaystyle\min\left\{\|\overline{\vectorsym{x}}-\vectorsym{x}\|_{\mathbb{R}^{n}}\!+\!\|\vectorsym{x}-\vectorsym{x}_{j}\|_{\mathbb{R}^{n}},\|\overline{\vectorsym{x}}-\vectorsym{x}^{\prime}\|_{\mathbb{R}^{n}}\!+\!\|\vectorsym{x}^{\prime}-\vectorsym{x}_{j}\|_{\mathbb{R}^{n}}\right\}+\|\vectorsym{x}_{j}-\vectorsym{y}\|_{\mathbb{R}^{n}}
<\displaystyle< ρ+12CΓρ+16dΩ(\vectorsymxj)<3CΓρ=δ.\displaystyle\rho+{\textstyle{\frac{1}{2}}}C_{\Gamma}\rho+{\textstyle{\frac{1}{6}}}d_{\partial\Omega}(\vectorsym{x}_{j})<3C_{\Gamma}\rho=\delta.

Thus Φ(\vectorsymxj)δ(\vectorsymx¯)\Phi(\vectorsym{x}_{j})\subseteq\mathcal{B}_{\delta}(\overline{\vectorsym{x}}) and s(\vectorsymy)s¯δ(\vectorsymx¯)s(\vectorsym{y})\geq\underline{s}_{\delta}(\overline{\vectorsym{x}}), for all \vectorsymyΦ(\vectorsymxj)\vectorsym{y}\in\Phi(\vectorsym{x}_{j}). If ps¯δ(\vectorsymx¯)n+p1p\underline{s}_{\delta}(\overline{\vectorsym{x}})\leq n+p-1, then we may incorporate the bounds dΩ(\vectorsymxj)ελρθd_{\partial\Omega}(\vectorsym{x}_{j})\geq\varepsilon_{\lambda^{\prime}}\rho^{\theta} and (8) into (13) to write

|g(\vectorsymx)g(\vectorsymx)|p\displaystyle|g(\vectorsym{x})-g(\vectorsym{x}^{\prime})|^{p}\leq cελps¯δ(\vectorsymx¯)np+1ρp1δ(ps¯δ(\vectorsymx¯)np+1)θj=0N1νs(),p(Φ(\vectorsymxj))\displaystyle c\varepsilon_{\lambda^{\prime}}^{p\underline{s}_{\delta}(\overline{\vectorsym{x}})-n-p+1}\rho^{p-1}\delta^{\left(p\underline{s}_{\delta}(\overline{\vectorsym{x}})-n-p+1\right)\theta}\sum_{j=0}^{N-1}\nu^{s(\cdot),p}\left(\Phi^{\prime}(\vectorsym{x}_{j})\right)
\displaystyle\leq cελnp+1Nδ(p1)(1θ)δ(ps¯δ(\vectorsymx¯)n)θνs(),p(δ(\vectorsymx¯))\displaystyle c\varepsilon_{\lambda^{\prime}}^{-n-p+1}N\delta^{(p-1)(1-\theta)}\delta^{\left(p\underline{s}_{\delta}(\overline{\vectorsym{x}})-n\right)\theta}\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta}(\overline{\vectorsym{x}})\right)
\displaystyle\leq cελnpδp(1θ)δ(ps¯δ(\vectorsymx¯)n)θνs(),p(δ(\vectorsymx¯)).\displaystyle c\varepsilon_{\lambda^{\prime}}^{-n-p}\delta^{p(1-\theta)}\delta^{\left(p\underline{s}_{\delta}(\overline{\vectorsym{x}})-n\right)\theta}\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta}(\overline{\vectorsym{x}})\right).

On the other hand, if ps¯δ(\vectorsymx¯)>n+p1p\underline{s}_{\delta}(\overline{\vectorsym{x}})>n+p-1, then we may use (2) to similarly obtain

|g(\vectorsymx)g(\vectorsymx)|pcNδps¯(\vectorsymx¯)nνs(),p(δ(\vectorsymx¯))cελ1δ1θδps¯(\vectorsymx¯)nνs(),p(δ(\vectorsymx¯)).|g(\vectorsym{x})-g(\vectorsym{x}^{\prime})|^{p}\leq cN\delta^{p\underline{s}(\overline{\vectorsym{x}})-n}\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta}(\overline{\vectorsym{x}})\right)\leq c\varepsilon_{\lambda^{\prime}}^{-1}\delta^{1-\theta}\delta^{p\underline{s}(\overline{\vectorsym{x}})-n}\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta}(\overline{\vectorsym{x}})\right).

Lemma 2.7.

Assume (H1) and (H2). Let \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma, 0<ηη00<\eta\leq\eta_{0}, and 0<λλ00<\lambda\leq\lambda_{0} be given. For each j𝕎j\in\mathbb{W}, define ρj:=ηjρΓ\rho_{j}:=\eta^{j}\rho_{\Gamma}, δj:=ηjδΓ\delta_{j}:=\eta^{j}\delta_{\Gamma}, and Qj:=Qλ,ρjρj+1(\vectorsymx¯)Q^{\prime}_{j}:=Q_{\lambda,\rho_{j}}\setminus\mathcal{B}_{\rho_{j+1}}(\overline{\vectorsym{x}}). Then for any 0k<k<0\leq k<k^{\prime}<\infty, we have

|g(\vectorsymx)g(\vectorsymx)|cελn+ppj=kk1(δjα¯δj(\vectorsymx¯)νs(),p(δj(\vectorsymx¯)))1p, for all \vectorsymxQk and \vectorsymxQk.|g(\vectorsym{x}^{\prime})-g(\vectorsym{x})|\leq c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\sum_{j=k}^{k^{\prime}-1}\left(\delta_{j}^{\underline{\alpha}_{\delta_{j}}(\overline{\vectorsym{x}})}\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta_{j}}(\overline{\vectorsym{x}})\right)\right)^{\frac{1}{p}},\text{ for all }\vectorsym{x}\in Q^{\prime}_{k}\text{ and }\vectorsym{x}^{\prime}\in Q^{\prime}_{k^{\prime}}.

Here λ=η2λ\lambda^{\prime}=\eta^{2}\lambda.

Proof.

By Lemma 2.5(b), hypothesis (H1) implies QjQ^{\prime}_{j}\neq\emptyset, for each j𝕎j\in\mathbb{W}. We may therefore select a sequence {\vectorsymxj}j=0Qλ(\vectorsymx¯)\{\vectorsym{x}_{j}\}_{j=0}^{\infty}\subseteq Q_{\lambda}(\overline{\vectorsym{x}}) with the following properties:

\vectorsymxjQj,\vectorsymxk=\vectorsymx and \vectorsymxk=\vectorsymx.\vectorsym{x}_{j}\in Q^{\prime}_{j},\quad\vectorsym{x}_{k}=\vectorsym{x}\quad\text{ and }\quad\vectorsym{x}_{k^{\prime}}=\vectorsym{x}^{\prime}.

We notice that \vectorsymxj,\vectorsymxj+1QjQj+1=Qλ,ρjη2ρj(\vectorsymx¯)\vectorsym{x}_{j},\vectorsym{x}_{j+1}\in Q^{\prime}_{j}\cup Q^{\prime}_{j+1}=Q_{\lambda,\rho_{j}}\setminus\mathcal{B}_{\eta^{2}\rho_{j}}(\overline{\vectorsym{x}}). Lemma 2.6 implies

|g(\vectorsymxj+1)g(\vectorsymxj)|pcελnpδjα¯δj(\vectorsymx¯)νs(),p(δj(\vectorsymx¯).|g(\vectorsym{x}_{j+1})-g(\vectorsym{x}_{j})|^{p}\leq c\varepsilon_{\lambda^{\prime}}^{-n-p}\delta_{j}^{\underline{\alpha}_{\delta_{j}}(\overline{\vectorsym{x}})}\nu^{s(\cdot),p}(\mathcal{B}_{\delta_{j}}(\overline{\vectorsym{x}}).

Taking the pthp^{\text{th}}-root and summing for j=k,,k1j=k,\dots,k^{\prime}-1 yields the result. ∎

3 Existence of a Trace

It is clear that gg is continuous in Ω\Omega. We next show that gg can be continuously extended to those points \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma where α¯0(\vectorsymx¯)>t\underline{\alpha}_{0}(\overline{\vectorsym{x}})>t. Where they exist, the values of this extension on Γ\Gamma can be used to define the trace of uu. To this end, we observe that

\vectorsymx(Ψ(\vectorsymx)|u(\vectorsymy)u(\vectorsymx)|dΩ(\vectorsymx)s(\vectorsymx))pL1(Ω),\vectorsym{x}\mapsto\left(\fint_{\Psi(\vectorsym{x})}\frac{|u(\vectorsym{y})-u(\vectorsym{x})|}{d_{\partial\Omega}(\vectorsym{x})^{s(\vectorsym{x})}}\right)^{p}\in L^{1}(\Omega),

so νs(),p(;u)\nu^{s(\cdot),p}(\cdot;u) is a measure that is absolutely continuous with respect to the Lebesgue measure. It therefore satisfies the hypotheses of Lemma 2.1. Consequently, for each τ0\tau\geq 0, the set

Sτ:={\vectorsymxn:lim supρ0+ρτνs(),p(ρ(\vectorsymx);u)=}S_{\tau}:=\left\{\vectorsym{x}\in\mathbb{R}^{n}:\limsup_{\rho\to 0^{+}}\rho^{-\tau}\nu^{s(\cdot),p}(\mathcal{B}_{\rho}(\vectorsym{x});u)=\infty\right\}

has Hausdorff dimension of at most τ\tau and τ(Sτ)=0\mathscr{H}^{\tau}(S_{\tau})=0. Recall that we are working under the assumption that Γ\Gamma has Hausdorff dimension tt. Thus, if 0τ<t0\leq\tau<t, then

lim supρ0+ρτνs(),p(ρ(\vectorsymx¯))<,for t-a.e. \vectorsymx¯Γ.\limsup_{\rho\to 0^{+}}\rho^{-\tau}\nu^{s(\cdot),p}(\mathcal{B}_{\rho}(\overline{\vectorsym{x}}))<\infty,\quad\text{for $\mathscr{H}^{t}$-a.e. }\overline{\vectorsym{x}}\in\Gamma. (14)

For each ω\omega\in\mathbb{R} and τ0\tau\geq 0, set

Aω,0:={\vectorsymx¯Γ:α¯0(\vectorsymx¯)+ω0}(Ω) and Γτ:=ΓSτ(Ω),A_{\omega,0}:=\left\{\overline{\vectorsym{x}}\in\Gamma:\underline{\alpha}_{0}(\overline{\vectorsym{x}})+\omega\geq 0\right\}\in\mathscr{B}(\partial\Omega)\quad\text{ and }\quad\Gamma_{\tau}:=\Gamma\setminus S_{\tau}\in\mathscr{B}(\partial\Omega),

and define Mτ:Γ[0,]M_{\tau}:\Gamma\to[0,\infty] by

Mτ(\vectorsymx¯):=sup0<δδΓρτνs(),p(ρ(\vectorsymx¯))<.M_{\tau}(\overline{\vectorsym{x}}):=\sup_{0<\delta\leq\delta_{\Gamma}}\rho^{-\tau}\nu^{s(\cdot),p}\left(\mathcal{B}_{\rho}(\overline{\vectorsym{x}})\right)<\infty.

Clearly MτM_{\tau} is Borel-measurable and ΓτΓτ\Gamma_{\tau}\supseteq\Gamma_{\tau^{\prime}} and Mτ(\vectorsymx¯)Mτ(\vectorsymx¯)M_{\tau}(\overline{\vectorsym{x}})\leq M_{\tau^{\prime}}(\overline{\vectorsym{x}}), whenever 0ττ0\leq\tau\leq\tau^{\prime}. Moreover, from the discussion above t(ΓΓτ)=0\mathscr{H}^{t}(\Gamma\setminus\Gamma_{\tau})=0, for all 0τt0\leq\tau\leq t.

The following theorem identifies points \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma where we can use Lemma 2.7 to establish that there is an \mathbb{R}-valued continuous extension of gg to \vectorsymx¯\overline{\vectorsym{x}}.

Theorem 3.1.

Assume (H1) and (H2). Let τ00\tau_{0}\geq 0 be given. With ω0<τ0\omega_{0}<\tau_{0}, suppose that \vectorsymx¯Aω0,0Γτ0\overline{\vectorsym{x}}\in A_{\omega_{0},0}\cap\Gamma_{\tau_{0}}. Then, there exists a g(\vectorsymx¯)g(\overline{\vectorsym{x}})\in\mathbb{R} such that, for each 0<λ<10<\lambda<1,

lim\vectorsymx\vectorsymx¯;\vectorsymxQλ(\vectorsymx¯)g(\vectorsymx)=g(\vectorsymx¯).\lim_{\vectorsym{x}\to\overline{\vectorsym{x}};\;\vectorsym{x}\in Q_{\lambda}(\overline{\vectorsym{x}})}g(\vectorsym{x})=g(\overline{\vectorsym{x}}). (15)

Moreover, for each 0<β<(τ0ω0)/p0<\beta<(\tau_{0}-\omega_{0})/p, there exists δβ=δβ(\vectorsymx¯)\delta_{\beta}=\delta_{\beta}(\overline{\vectorsym{x}}) such that

|g(\vectorsymx¯)g(\vectorsymx)|CMτ0(\vectorsymx¯)1p\vectorsymx¯\vectorsymxβ, for all \vectorsymxQλ,δβ(\vectorsymx¯).|g(\overline{\vectorsym{x}})-g(\vectorsym{x})|\leq CM_{\tau_{0}}(\overline{\vectorsym{x}})^{\frac{1}{p}}\|\overline{\vectorsym{x}}-\vectorsym{x}\|^{\beta},\quad\text{ for all }\vectorsym{x}\in Q_{\lambda,\delta_{\beta}}(\overline{\vectorsym{x}}). (16)

Here

C=C(η0,λ,β):=cελn+ppη0β(1η0β)1 and λ:=min{η02λ0,η02λ}.C=C(\eta_{0},\lambda,\beta):=c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\eta_{0}^{-\beta}\left(1-\eta_{0}^{\beta}\right)^{-1}\quad\text{ and }\quad\lambda^{\prime}:=\min\{\eta_{0}^{2}\lambda_{0},\eta_{0}^{2}\lambda\}.
Proof.

First we identify a candidate for g(\vectorsymx¯)g(\overline{\vectorsym{x}}). We then establish (16), and (15) immediately follows.

Put λ0:=λ0η02\lambda_{0}^{\prime}:=\lambda_{0}\eta_{0}^{2}. For each j𝕎j\in\mathbb{W}, also define ρj:=η0jρΓ\rho_{j}:=\eta_{0}^{j}\rho_{\Gamma}, δj:=η0jδΓ=3CΓρj\delta_{j}:=\eta_{0}^{j}\delta_{\Gamma}=3C_{\Gamma}\rho_{j}, and Qj:=Qλ0,ρjρj+1(\vectorsymx¯)Q^{\prime}_{j}:=Q_{\lambda_{0},\rho_{j}}\setminus\mathcal{B}_{\rho_{j+1}}(\overline{\vectorsym{x}}). As in Lemma 2.7, by hypotheses (H1), we may select \vectorsymxjQj\vectorsym{x}_{j}\in Q^{\prime}_{j}. Put β0:=(τ0ω0)/p\beta_{0}:=(\tau_{0}-\omega_{0})/p. Since \vectorsymx¯Aω0,0\overline{\vectorsym{x}}\in A_{\omega_{0},0}, we have 0<β0(α¯0(\vectorsymx¯)+τ0)/p0<\beta_{0}\leq(\underline{\alpha}_{0}(\overline{\vectorsym{x}})+\tau_{0})/p. Since \vectorsymx¯Γτ0\overline{\vectorsym{x}}\in\Gamma_{\tau_{0}}, we also have Mτ0(\vectorsymx¯)<M_{\tau_{0}}(\overline{\vectorsym{x}})<\infty. It was noted before that α¯δ(\vectorsymx¯)\underline{\alpha}_{\delta}(\overline{\vectorsym{x}}) increases as δ0+\delta\searrow 0^{+}. We deduce that there exists k0𝕎k_{0}\in\mathbb{W} such that α¯δj(\vectorsymx¯)+12(τ0+ω0)0\underline{\alpha}_{\delta_{j}}(\overline{\vectorsym{x}})+\frac{1}{2}(\tau_{0}+\omega_{0})\geq 0, for every jk0j\geq k_{0}. Thus, given kk0k^{\prime}\geq k_{0}, Lemma 2.7 yields

j=k0k|g(\vectorsymxj+1)g(\vectorsymxj)|\displaystyle\sum_{j=k_{0}}^{k^{\prime}}|g(\vectorsym{x}_{j+1})-g(\vectorsym{x}_{j})| cελ0n+ppj=k0(δjαδj(\vectorsymx¯)νs(),p(δj(\vectorsymx¯)))1p\displaystyle\leq c\varepsilon_{\lambda^{\prime}_{0}}^{-\frac{n+p}{p}}\sum_{j=k_{0}}^{\infty}\left(\delta_{j}^{\alpha_{\delta_{j}(\overline{\vectorsym{x}})}}\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta_{j}}(\overline{\vectorsym{x}})\right)\right)^{\frac{1}{p}}
=cελ0n+ppj=k0(δj(αδj(\vectorsymx¯)+τ0+ω02)+(τ0τ0+ω02)δjτ0νs(),p(δj(\vectorsymx¯)))1p\displaystyle=c\varepsilon_{\lambda^{\prime}_{0}}^{-\frac{n+p}{p}}\sum_{j=k_{0}}^{\infty}\left(\delta_{j}^{\left(\alpha_{\delta_{j}}(\overline{\vectorsym{x}})+\frac{\tau_{0}+\omega_{0}}{2}\right)+\left(\tau_{0}-{\textstyle{\frac{\tau_{0}+\omega_{0}}{2}}}\right)}\delta_{j}^{-\tau_{0}}\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta_{j}}(\overline{\vectorsym{x}})\right)\right)^{\frac{1}{p}}
c(ελ0npMτ0(\vectorsymx¯))1pδΓ12β0j=k0η0jβ02\displaystyle\leq c\left(\varepsilon_{\lambda^{\prime}_{0}}^{-n-p}M_{\tau_{0}}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}}\delta_{\Gamma}^{\frac{1}{2}\beta_{0}}\sum_{j=k_{0}}^{\infty}\eta_{0}^{j\frac{\beta_{0}}{2}}
=c(ελ0npMτ0(\vectorsymx¯))1p(δΓη0k0)12β0(1η012β0)1.\displaystyle=c\left(\varepsilon_{\lambda^{\prime}_{0}}^{-n-p}M_{\tau_{0}}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}}\left(\delta_{\Gamma}\eta_{0}^{k_{0}}\right)^{\frac{1}{2}\beta_{0}}\left(1-\eta_{0}^{\frac{1}{2}\beta_{0}}\right)^{-1}.

As the upper bound is independent of kk^{\prime}, we conclude that {g(\vectorsymxj)}j=0\{g(\vectorsym{x}_{j})\}_{j=0}^{\infty} is a Cauchy sequence and must converge to some value in \mathbb{R}, which we identify as g(\vectorsymx¯)g(\overline{\vectorsym{x}})\in\mathbb{R}.

We now prove (16) for 0<λ<10<\lambda<1. First, suppose that 0<λλ00<\lambda\leq\lambda_{0}, and let 0<β<β00<\beta<\beta_{0} be given. Then τ0βp>ω0\tau_{0}-\beta p>\omega_{0}, so we may select kβ𝕎k_{\beta}\in\mathbb{W} such that αδj(\vectorsymx¯)+(τ0pβ)0\alpha_{\delta_{j}}(\overline{\vectorsym{x}})+(\tau_{0}-p\beta)\geq 0, for all jkβj\geq k_{\beta}. Let \vectorsymxQλ,ρkβ(\vectorsymx¯)\vectorsym{x}\in Q_{\lambda^{\prime},\rho_{k_{\beta}}}(\overline{\vectorsym{x}}) be given. There exists a unique kkβk\geq k_{\beta} such that ρk+1\vectorsymx¯\vectorsymxn<ρk\rho_{k+1}\leq\|\overline{\vectorsym{x}}-\vectorsym{x}\|_{\mathbb{R}^{n}}<\rho_{k}. Since Qλ0(\vectorsymx¯)Qλ(\vectorsymx¯)Q_{\lambda_{0}}(\overline{\vectorsym{x}})\subseteq Q_{\lambda}(\overline{\vectorsym{x}}), we may define {\vectorsymxj}j=kQλ(\vectorsymx¯)\{\vectorsym{x}^{\prime}_{j}\}_{j=k}^{\infty}\subseteq Q_{\lambda}(\overline{\vectorsym{x}}) by \vectorsymxk=\vectorsymx\vectorsym{x}^{\prime}_{k}=\vectorsym{x} and \vectorsymxj:=\vectorsymxj\vectorsym{x}^{\prime}_{j}:=\vectorsym{x}_{j}, for j>kj>k. Put λ:=η02λ\lambda^{\prime}:=\eta_{0}^{2}\lambda. As argued above, Lemma 2.7 implies

|g(\vectorsymx¯)g(\vectorsymx)|\displaystyle|g(\overline{\vectorsym{x}})-g(\vectorsym{x})| =limk|g(\vectorsymxk)g(\vectorsymxk)|cελn+ppj=k(δjαδj(\vectorsymx¯)νs(),p(δj(\vectorsymx¯)))1p\displaystyle=\lim_{k^{\prime}\to\infty}|g(\vectorsym{x}_{k^{\prime}})-g(\vectorsym{x}_{k})|\leq c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\sum_{j=k}^{\infty}\left(\delta_{j}^{\alpha_{\delta_{j}}(\overline{\vectorsym{x}})}\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta_{j}}(\overline{\vectorsym{x}})\right)\right)^{\frac{1}{p}}
c(ελnpMτ0(\vectorsymx¯))1pj=k(δj(αδj(\vectorsymx¯)βp)+βp)1p\displaystyle\leq c\left(\varepsilon_{\lambda^{\prime}}^{-n-p}M_{\tau_{0}}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}}\sum_{j=k}^{\infty}\left(\delta_{j}^{(\alpha_{\delta_{j}}(\overline{\vectorsym{x}})-\beta p)+\beta p}\right)^{\frac{1}{p}}
c(ελnpMτ0(\vectorsymx¯))1pδΓβj=kη0jβ\displaystyle\leq c\left(\varepsilon_{\lambda^{\prime}}^{-n-p}M_{\tau_{0}}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}}\delta_{\Gamma}^{\beta}\sum_{j=k}^{\infty}\eta_{0}^{j\beta}
c(3CΓ)β(ελnpMτ0(\vectorsymx¯))1p(1η0β)1(η0kρΓ)β\displaystyle\leq c(3C_{\Gamma})^{\beta}\left(\varepsilon_{\lambda^{\prime}}^{-n-p}M_{\tau_{0}}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}}\left(1-\eta_{0}^{\beta}\right)^{-1}\left(\eta_{0}^{k}\rho_{\Gamma}\right)^{\beta}
cη0β(ελnpMτ0(\vectorsymx¯))1p(1η0β)1\vectorsymx¯\vectorsymxnβ.\displaystyle\leq c\eta_{0}^{-\beta}\left(\varepsilon_{\lambda^{\prime}}^{-n-p}M_{\tau_{0}}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}}\left(1-\eta_{0}^{\beta}\right)^{-1}\|\overline{\vectorsym{x}}-\vectorsym{x}\|_{\mathbb{R}^{n}}^{\beta}.

This proves (16), with δβ:=η0kβρΓ\delta_{\beta}:=\eta_{0}^{k_{\beta}}\rho_{\Gamma}. If on the other hand λ0<λ<1\lambda_{0}<\lambda<1, then \vectorsymxQλ0(\vectorsymx¯)\vectorsym{x}\in Q_{\lambda_{0}}(\overline{\vectorsym{x}}). The same argument, with the sequence {\vectorsymxj}j=kQλ0(\vectorsymx¯)\{\vectorsym{x}_{j}\}_{j=k}^{\infty}\subseteq Q_{\lambda_{0}}(\overline{\vectorsym{x}}) identified above, may be used. ∎

Corollary 3.2.

Assume (H1) and (H2). Let τ00\tau_{0}\geq 0 and ω0<τ0\omega_{0}<\tau_{0} be given. If \vectorsymx¯0Aω0,0Γτ0\overline{\vectorsym{x}}_{0}\in A_{\omega_{0},0}\cap\Gamma_{\tau_{0}}, then

limρ0+Qλ,ρ(\vectorsymx¯0)|u(\vectorsymx)g(\vectorsymx¯0)|pd\vectorsymx=0, for all 0<λ<λ0.\lim_{\rho\to 0^{+}}\fint_{Q_{\lambda,\rho}(\overline{\vectorsym{x}}_{0})}|u(\vectorsym{x})-g(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\vectorsym{x}=0,\quad\text{ for all }0<\lambda<\lambda_{0}.
Proof.

We use the notation from Theorem 3.1, and put θ0:=θΓ(\vectorsymx¯0)\theta_{0}:=\theta_{\Gamma}(\overline{\vectorsym{x}}_{0}). Let 0<β<(τ0ω0)/p0<\beta<(\tau_{0}-\omega_{0})/p and 0<ρ<δβ(\vectorsymx¯0)0<\rho<\delta_{\beta}(\overline{\vectorsym{x}}_{0}) be given. Put

R0:=sup\vectorsymxQλ0,ρ(\vectorsymx¯0)dΩ(\vectorsymx) and R:=sup\vectorsymxQλ,ρ(\vectorsymx¯0)dΩ(\vectorsymx).R_{0}:=\sup_{\vectorsym{x}\in Q_{\lambda_{0},\rho}(\overline{\vectorsym{x}}_{0})}d_{\partial\Omega}(\vectorsym{x})\quad\text{ and }\quad R:=\sup_{\vectorsym{x}\in Q_{\lambda,\rho}(\overline{\vectorsym{x}}_{0})}d_{\partial\Omega}(\vectorsym{x}).

In the argument that follows, the constant c<c<\infty is independent of ρ\rho. Lemma 2.5(e) implies |Qλ,ρ|c(1λ/λ0)nθ0R0n|Q_{\lambda,\rho}|\geq c(1-\lambda/\lambda_{0})^{n\theta_{0}}R_{0}^{n} and R0(η0λ0ρ)θ0R_{0}\geq(\eta_{0}\lambda_{0}\rho)^{\theta_{0}}. For each \vectorsymxQλ,ρQλ0,ρ(\vectorsymx¯0)\vectorsym{x}\in Q_{\lambda,\rho}\setminus Q_{\lambda_{0},\rho}(\overline{\vectorsym{x}}_{0}), we have

(λ\vectorsymx¯0\vectorsymxn)θ0<dΩ(\vectorsymx)(λ0\vectorsymx¯0\vectorsymxn)θ0(λ0ρ)θ0η0θ0R0.(\lambda\|\overline{\vectorsym{x}}_{0}-\vectorsym{x}\|_{\mathbb{R}^{n}})^{\theta_{0}}<d_{\partial\Omega}(\vectorsym{x})\leq(\lambda_{0}\|\overline{\vectorsym{x}}_{0}-\vectorsym{x}\|_{\mathbb{R}^{n}})^{\theta_{0}}\leq(\lambda_{0}\rho)^{\theta_{0}}\leq\eta_{0}^{-\theta_{0}}R_{0}.

We deduce that R0Rη0θ0R0R_{0}\leq R\leq\eta_{0}^{-\theta_{0}}R_{0}. Thus,

Qλ,ρ(\vectorsymx¯0)|u(\vectorsymx)g(\vectorsymx¯0)|pd\vectorsymx\displaystyle\fint_{Q_{\lambda,\rho}(\overline{\vectorsym{x}}_{0})}|u(\vectorsym{x})-g(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\vectorsym{x}
c(Qλ,ρ(\vectorsymx¯0)|u(\vectorsymx)g(\vectorsymx¯)|pd\vectorsymx+Qλ,ρ(\vectorsymx¯0)|g(\vectorsymx)g(\vectorsymx¯0)|pd\vectorsymx)\displaystyle\qquad\leq c\left(\fint_{Q_{\lambda,\rho}(\overline{\vectorsym{x}}_{0})}|u(\vectorsym{x})-g(\overline{\vectorsym{x}})|^{p}\mathrm{d}\vectorsym{x}+\fint_{Q_{\lambda,\rho}(\overline{\vectorsym{x}}_{0})}|g(\vectorsym{x})-g(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\vectorsym{x}\right)
c(1λ/λ0)nθ0(Rps¯ρ(\vectorsymx¯0)R0n)νs(),p(Qλ,ρ(\vectorsymx¯0))\displaystyle\qquad\leq c(1-\lambda/\lambda_{0})^{-n\theta_{0}}\left(\frac{R^{p\underline{s}_{\rho}(\overline{\vectorsym{x}}_{0})}}{R_{0}^{n}}\right)\nu^{s(\cdot),p}(Q_{\lambda,\rho}(\overline{\vectorsym{x}}_{0}))
+cCMτ0(\vectorsymx¯0)Qλ,ρ(\vectorsymx¯0)\vectorsymx¯0\vectorsymxpβd\vectorsymx\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad+cCM_{\tau_{0}}(\overline{\vectorsym{x}}_{0})\fint_{Q_{\lambda,\rho}(\overline{\vectorsym{x}}_{0})}\|\overline{\vectorsym{x}}_{0}-\vectorsym{x}\|^{p\beta}\mathrm{d}\vectorsym{x}
c(Rps¯ρ(\vectorsymx¯0)nν(ρ(\vectorsymx¯0))+CMτ0(\vectorsymx¯0)ρpβ).\displaystyle\qquad\leq c\left(R^{p\underline{s}_{\rho}(\overline{\vectorsym{x}}_{0})-n}\nu(\mathcal{B}_{\rho}(\overline{\vectorsym{x}}_{0}))+CM_{\tau_{0}}(\overline{\vectorsym{x}}_{0})\rho^{p\beta}\right).

If ps¯0(\vectorsymx¯0)>np\underline{s}_{0}(\overline{\vectorsym{x}}_{0})>n, then for ρ>0\rho>0 sufficiently small, we find ps¯ρ(\vectorsymx¯0)n(ps¯0(\vectorsymx¯0)n)/2>0p\underline{s}_{\rho}(\overline{\vectorsym{x}}_{0})-n\geq(p\underline{s}_{0}(\overline{\vectorsym{x}}_{0})-n)/2>0 and

Qλ,ρ(\vectorsymx¯0)|u(\vectorsymx)g(\vectorsymx¯0)|pd\vectorsymxc(ρps¯0(\vectorsymx¯0)n2+Cρpβ)Mτ0(\vectorsymx¯0).\fint_{Q_{\lambda,\rho}(\overline{\vectorsym{x}}_{0})}|u(\vectorsym{x})-g(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\vectorsym{x}\leq c\left(\rho^{\frac{p\underline{s}_{0}(\overline{\vectorsym{x}}_{0})-n}{2}}+C\rho^{p\beta}\right)M_{\tau_{0}}(\overline{\vectorsym{x}}_{0}).

If, on the other hand, we have ps¯0(\vectorsymx¯0)nn+p1p\underline{s}_{0}(\overline{\vectorsym{x}}_{0})\leq n\leq n+p-1, then for any 0<ρ<δβ0<\rho<\delta_{\beta}, we must have ps¯ρ(\vectorsymx¯0)n0p\underline{s}_{\rho}(\overline{\vectorsym{x}}_{0})-n\leq 0 and Rps¯ρ(\vectorsymx¯0)ncρps¯ρ(\vectorsymx¯0)ncρ(ps¯ρ(\vectorsymx¯0)n)θ0R^{p\underline{s}_{\rho}(\overline{\vectorsym{x}}_{0})-n}\leq c\rho^{p\underline{s}_{\rho}(\overline{\vectorsym{x}}_{0})-n}\leq c\rho^{(p\underline{s}_{\rho}(\overline{\vectorsym{x}}_{0})-n)\theta_{0}}. Hence,

Qλ,ρ(\vectorsymx¯0)|u(\vectorsymx)g(\vectorsymx¯0)|pd\vectorsymx\displaystyle\fint_{Q_{\lambda,\rho}(\overline{\vectorsym{x}}_{0})}|u(\vectorsym{x})-g(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\vectorsym{x}\leq c(ρ(ps¯ρ(\vectorsymx¯0)n)θ0ν(ρ(\vectorsymx¯0))+CMτ0(\vectorsymx¯0)ρpβ)\displaystyle c\left(\rho^{(p\underline{s}_{\rho}(\overline{\vectorsym{x}}_{0})-n)\theta_{0}}\nu(\mathcal{B}_{\rho}(\overline{\vectorsym{x}}_{0}))+CM_{\tau_{0}}(\overline{\vectorsym{x}}_{0})\rho^{p\beta}\right)
\displaystyle\leq c(ρα¯ρ(\vectorsymx¯0)ρp(θ01)ν(ρ(\vectorsymx¯0))+CMτ0(\vectorsymx¯0)ρpβ)\displaystyle c\left(\rho^{\underline{\alpha}_{\rho}(\overline{\vectorsym{x}}_{0})}\rho^{p(\theta_{0}-1)}\nu(\mathcal{B}_{\rho}(\overline{\vectorsym{x}}_{0}))+CM_{\tau_{0}}(\overline{\vectorsym{x}}_{0})\rho^{p\beta}\right)
\displaystyle\leq c(ρ(τ0ω0)+p(θ01)+CρpβMτ0(\vectorsymx¯0)).\displaystyle c\left(\rho^{(\tau_{0}-\omega_{0})+p(\theta_{0}-1)}+C\rho^{p\beta}M_{\tau_{0}}(\overline{\vectorsym{x}}_{0})\right).

In either case, the result follows. ∎

A straightforward application of Theorem 3.1 provides a proof for the existence of a trace of uu on Γ\Gamma.

Proof for Theorem 1.1.

In addition to (H1) and (H2), we assume α¯0(\vectorsymx¯)+t>0\underline{\alpha}_{0}(\overline{\vectorsym{x}})+t>0, for t\mathscr{H}^{t}-a.e. \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma. For each ω\omega\in\mathbb{R}, define Aω,0:=ω<ωAω,0A_{\omega^{-},0}:=\bigcup_{\omega^{\prime}<\omega}A_{\omega^{\prime},0}. Set

Γ:=τ0Aτ,0Γτ.\Gamma^{\prime}:=\bigcup_{\tau\geq 0}A_{\tau^{-},0}\cap\Gamma_{\tau}.

As the sets {Aω}ω\{A_{\omega^{\prime}}\}_{\omega^{\prime}\in\mathbb{R}} are nested and Borel-measurable, we deduce that Γ\Gamma^{\prime} is also measurable. Moreover, we find At,0ΓtΓA_{t^{-},0}\cap\Gamma_{t}\subseteq\Gamma^{\prime}. Thus, assumption (H3) and (14) implies t(Γ/(At,0Γt))=0\mathscr{H}^{t}(\Gamma/(A_{t^{-},0}\cap\Gamma_{t}))=0. Therefore t(ΓΓ)=0\mathscr{H}^{t}(\Gamma\setminus\Gamma^{\prime})=0. Define TuL(Γ)Tu\in L(\Gamma) by

Tu(\vectorsymx¯):={g(\vectorsymx¯),\vectorsymx¯Γ,0,\vectorsymxΓΓ.Tu(\overline{\vectorsym{x}}):=\left\{\begin{array}[]{ll}g(\overline{\vectorsym{x}}),&\overline{\vectorsym{x}}\in\Gamma^{\prime},\\ 0,&\vectorsym{x}\in\Gamma\setminus\Gamma^{\prime}.\end{array}\right. (17)

The measurability of TuTu is a consequence of the measurability of Γ\Gamma^{\prime} and gg, in Ω\Omega. Since \vectorsymx¯Aτ,0Γτ\overline{\vectorsym{x}}\in A_{\tau^{-},0}\cap\Gamma_{\tau} implies there must be ω<τ\omega<\tau such that \vectorsymx¯Aω,0Γτ\overline{\vectorsym{x}}\in A_{\omega,0}\cap\Gamma_{\tau}, Theorem 1.1 follows from Theorem 3.1. ∎

Definition 3.1.

Under assumptions (H1), (H2), and (H3\,{}^{\prime}), we identify the function TuL(Γ)Tu\in L(\Gamma) defined in (17) as the trace of uu on Γ\Gamma.

4 Properties of the Trace

We next focus on Theorem 1.2. Throughout this section, we use TuTu as provided by (17). Put η1:=min{12,η0}\eta_{1}:=\min\{\frac{1}{2},\eta_{0}\}. For each ω\omega\in\mathbb{R}, 0<λλ00<\lambda\leq\lambda_{0}, 0<ρρΓ0<\rho\leq\rho_{\Gamma} and 0<δδΓ0<\delta\leq\delta_{\Gamma}, set

Aω,δ:={\vectorsymx¯Γ:α¯δ(\vectorsymx¯)+ω0}(Ω),A_{\omega,\delta}:=\left\{\overline{\vectorsym{x}}\in\Gamma:\underline{\alpha}_{\delta}(\overline{\vectorsym{x}})+\omega\geq 0\right\}\in\mathscr{B}(\partial\Omega),

and define Fλ,ρ:ΓΩF_{\lambda,\rho}:\Gamma\twoheadrightarrow\Omega and gρ,Gδ:Γg_{\rho},G_{\delta}:\Gamma\to\mathbb{R} by

Fλ,ρ(\vectorsymx¯):=Qλ,ρη1ρ(\vectorsymx¯),gρ(\vectorsymx¯):=Fλ0,ρ(\vectorsymx¯)g(\vectorsymx)d\vectorsymx, and Gδ(\vectorsymx¯):=νs(),p(δ(\vectorsymx¯)).F_{\lambda,\rho}(\overline{\vectorsym{x}}):=Q_{\lambda,\rho}\setminus\mathcal{B}_{\eta_{1}\rho}(\overline{\vectorsym{x}}),\>\;g_{\rho}(\overline{\vectorsym{x}}):=\fint_{F_{\lambda_{0},\rho}(\overline{\vectorsym{x}})}g(\vectorsym{x})\mathrm{d}\vectorsym{x},\text{ and }G_{\delta}(\overline{\vectorsym{x}}):=\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta}(\overline{\vectorsym{x}})\right).

We note that, since \vectorsymx\vectorsymxn,dΩ(\vectorsymx)\vectorsym{x}\mapsto\|\vectorsym{x}\|_{\mathbb{R}^{n}},d_{\partial\Omega}(\vectorsym{x}) is a continuous function, assumption (H1) implies Fλ,ρ(\vectorsymx¯)F_{\lambda,\rho}(\overline{\vectorsym{x}}) has nonempty interior and |Fλ,ρ(\vectorsymx¯)|>0|F_{\lambda,\rho}(\overline{\vectorsym{x}})|>0, for all \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma. We also see that \vectorsymx¯Aω,δAω,δ\overline{\vectorsym{x}}\in A_{\omega,\delta}\subseteq A_{\omega^{\prime},\delta^{\prime}}, for all ωω\omega^{\prime}\geq\omega and 0<δδ0<\delta^{\prime}\leq\delta.

To establish the regularity and Lebesgue property of the trace, we need a refinement of (16).

Lemma 4.1.

Assume (H1) and (H2). Let τ0\tau\geq 0, ω<τ\omega<\tau, and 0<λλ00<\lambda\leq\lambda_{0} be given. With k𝕎k\in\mathbb{W} and 0<δη1kδΓ0<\delta\leq\eta_{1}^{k}\delta_{\Gamma}, put ρ:=δ3CΓ\rho:=\frac{\delta}{3C_{\Gamma}}, and suppose that \vectorsymx¯Aω,δΓτ\overline{\vectorsym{x}}\in A_{\omega,\delta}\cap\Gamma_{\tau}. Then

|Tu(\vectorsymx¯)g(\vectorsymx)|cελn+ppj=k(η1jωGη1jδΓ(\vectorsymx¯))1p, for all \vectorsymxQλ,ρ(\vectorsymx¯).|Tu(\overline{\vectorsym{x}})-g(\vectorsym{x})|\leq c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\sum_{j=k}^{\infty}\left(\eta_{1}^{-j\omega}G_{\eta_{1}^{j}\delta_{\Gamma}}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}},\quad\text{ for all }\vectorsym{x}\in Q_{\lambda,\rho}(\overline{\vectorsym{x}}). (18)

Here λ:=η12λ\lambda^{\prime}:=\eta_{1}^{2}\lambda.

Proof.

For j𝕎j\in\mathbb{W}, put ρj:=η1jρΓ\rho_{j}:=\eta_{1}^{j}\rho_{\Gamma} and δj:=η1jδΓ=3CΓρj\delta_{j}:=\eta_{1}^{j}\delta_{\Gamma}=3C_{\Gamma}\rho_{j}. There exists unique k1k0kk_{1}\geq k_{0}\geq k such that \vectorsymxQλ,ρk1ρk1+1(\vectorsymx¯)\vectorsym{x}\in Q_{\lambda,\rho_{k_{1}}}\setminus\mathcal{B}_{\rho_{k_{1}+1}}(\overline{\vectorsym{x}}) and δk0+1<δδk0\delta_{k_{0}+1}<\delta\leq\delta_{k_{0}}. We may select {\vectorsymxj}j=k0Qλ,ρk(\vectorsymx¯)\{\vectorsym{x}_{j}\}_{j=k_{0}}^{\infty}\subseteq Q_{\lambda,\rho_{k}}(\overline{\vectorsym{x}}) such that \vectorsymxjQλ,ρjρj+1(\vectorsymx¯)\vectorsym{x}_{j}\in Q_{\lambda,\rho_{j}}\setminus\mathcal{B}_{\rho_{j+1}}(\overline{\vectorsym{x}}), for each jk0j\geq k_{0}, and \vectorsymxk1=\vectorsymx\vectorsym{x}_{k_{1}}=\vectorsym{x}. We see that Aω,δjAω,δAω,0A_{\omega,\delta_{j}}\subseteq A_{\omega,\delta}\subseteq A_{\omega,0}, for all jk0+1j\geq k_{0}+1. Since ω<τ\omega<\tau, Theorem 3.1 implies g(\vectorsymxj)Tu(\vectorsymx¯)g(\vectorsym{x}_{j})\to Tu(\overline{\vectorsym{x}}) in Qλ(\vectorsymx¯)Q_{\lambda}(\overline{\vectorsym{x}}), as jj\to\infty. If k1=k0k_{1}=k_{0}, we might have δk1=δk0δ\delta_{k_{1}}=\delta_{k_{0}}\geq\delta and α¯δ(\vectorsymx¯)ω>α¯δk0(\vectorsymx¯)=α¯δk1(\vectorsymx¯)\underline{\alpha}_{\delta}(\overline{\vectorsym{x}})\geq-\omega>\underline{\alpha}_{\delta_{k_{0}}}(\overline{\vectorsym{x}})=\underline{\alpha}_{\delta_{k_{1}}}(\overline{\vectorsym{x}}). In which case, we find

\vectorsymxk1+1,\vectorsymxk1Qλ,ρη1ρk1+1(\vectorsymx¯)Qλ,ρη12ρ(\vectorsymx¯)\vectorsym{x}_{k_{1}+1},\vectorsym{x}_{k_{1}}\in Q_{\lambda,\rho}\setminus\mathcal{B}_{\eta_{1}\rho_{k_{1}+1}}(\overline{\vectorsym{x}})\subseteq Q_{\lambda,\rho}\setminus\mathcal{B}_{\eta_{1}^{2}\rho}(\overline{\vectorsym{x}})

and may use Lemma 2.6 to get

|g(\vectorsymxk1+1)g(\vectorsymx)|=\displaystyle|g(\vectorsym{x}_{k_{1}+1})-g(\vectorsym{x})|= |g(\vectorsymxk1+1)g(\vectorsymxk1)|cελn+pp(δα¯δ(\vectorsymx¯)νs(),p(δ(\vectorsymx¯)))1p\displaystyle|g(\vectorsym{x}_{k_{1}+1})-g(\vectorsym{x}_{k_{1}})|\leq c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\left(\delta^{\underline{\alpha}_{\delta}(\overline{\vectorsym{x}})}\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta}(\overline{\vectorsym{x}})\right)\right)^{\frac{1}{p}}
\displaystyle\leq cελn+pp(δk1ωνs(),p(δk1(\vectorsymx¯)))1p\displaystyle c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\left(\delta_{k_{1}}^{-\omega}\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta_{k_{1}}}(\overline{\vectorsym{x}})\right)\right)^{\frac{1}{p}}

In any case, we have α¯δjω\underline{\alpha}_{\delta_{j}}\geq-\omega, for jk0+1j\geq k_{0}+1. Using Lemma 2.7 and passing to the limit as k+k^{\prime}\to+\infty, we obtain

|Tu(\vectorsymx¯)g(\vectorsymx)|\displaystyle|Tu(\overline{\vectorsym{x}})-g(\vectorsym{x})|\leq limk|g(\vectorsymxk)g(\vectorsymxk1)|\displaystyle\lim_{k^{\prime}\to\infty}|g(\vectorsym{x}_{k^{\prime}})-g(\vectorsym{x}_{k_{1})}|
\displaystyle\leq cελn+ppj=k1+1(δjα¯δj(\vectorsymx¯)νs(),p(δj(\vectorsymx¯)))1p+cελn+pp(δk1α¯δ(\vectorsymx¯)νs(),p(δ(\vectorsymx¯)))1p\displaystyle c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\sum_{j=k_{1}+1}^{\infty}\left(\delta_{j}^{\underline{\alpha}_{\delta_{j}}(\overline{\vectorsym{x}})}\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta_{j}}(\overline{\vectorsym{x}})\right)\right)^{\frac{1}{p}}+c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\left(\delta_{k_{1}}^{\underline{\alpha}_{\delta}(\overline{\vectorsym{x}})}\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta}(\overline{\vectorsym{x}})\right)\right)^{\frac{1}{p}}
\displaystyle\leq cελn+ppj=k1(δjωνs(),p(δj(\vectorsymx¯)))1p.\displaystyle c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\sum_{j=k_{1}}^{\infty}\left(\delta_{j}^{-\omega}\nu^{s(\cdot),p}\left(\mathcal{B}_{\delta_{j}}(\overline{\vectorsym{x}})\right)\right)^{\frac{1}{p}}.

The result follows from k1k0kk_{1}\geq k_{0}\geq k and the definition of GδjG_{\delta_{j}}. ∎

We will also need

Lemma 4.2.

Assume (H1) and (H2). Let τ0\tau\geq 0, ω<τ\omega<\tau, and 0<λλ00<\lambda\leq\lambda_{0} be given. With k𝕎k\in\mathbb{W} and 0<δη1kδΓ0<\delta\leq\eta_{1}^{k}\delta_{\Gamma}, put ρ:=δ3CΓ\rho:=\frac{\delta}{3C_{\Gamma}}, and suppose that Γ′′Aω,δΓτ\Gamma^{\prime\prime}\subseteq A_{\omega,\delta}\cap\Gamma_{\tau} is t\mathscr{H}^{t}-measurable and that F:Γ′′ΩF:\Gamma^{\prime\prime}\twoheadrightarrow\Omega satisfies F(\vectorsymx¯)Qλ,ρ(\vectorsymx¯)F(\overline{\vectorsym{x}})\subseteq Q_{\lambda,\rho}(\overline{\vectorsym{x}}) and |F(\vectorsymx¯)|>0|F(\overline{\vectorsym{x}})|>0, for each \vectorsymx¯Γ′′\overline{\vectorsym{x}}\in\Gamma^{\prime\prime}. Then, with λ:=η12λ\lambda^{\prime}:=\eta_{1}^{2}\lambda, we have

Γ′′F(\vectorsymx¯)|Tu(\vectorsymx¯)g(\vectorsymx)|pd\vectorsymxdt(\vectorsymx¯)cελnp(j=k(η1jωΓ′′Gη1jδΓ(\vectorsymx¯)dt(\vectorsymx¯))1p)p.\int_{\Gamma^{\prime\prime}}\fint_{F(\overline{\vectorsym{x}})}\!\!|Tu(\overline{\vectorsym{x}})-g(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\leq c\varepsilon_{\lambda^{\prime}}^{-n-p}\!\!\left(\sum_{j=k}^{\infty}\left(\eta_{1}^{-j\omega}\!\!\int_{\Gamma^{\prime\prime}}\!\!G_{\eta_{1}^{j}\delta_{\Gamma}}(\overline{\vectorsym{x}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}}\right)^{p}\!\!.
Proof.

We may assume that the integral on in the lower bound is positive. Define {δj}j=1(0,δΓ]\{\delta_{j}\}_{j=1}^{\infty}\subset(0,\delta_{\Gamma}] and {ρj}j=1(0,ρΓ]\{\rho_{j}\}_{j=1}^{\infty}\subset(0,\rho_{\Gamma}] as in Lemma 4.1. For each \vectorsymx¯Γτ\overline{\vectorsym{x}}\in\Gamma_{\tau} and \vectorsymxQλ,ρ(\vectorsymx¯)\vectorsym{x}\in Q_{\lambda,\rho}(\overline{\vectorsym{x}}), Lemma 4.1 provides

|Tu(\vectorsymx¯)g(\vectorsymx)|cελn+ppj=kδjωp(Gδj(\vectorsymx¯))1p.|Tu(\overline{\vectorsym{x}})-g(\vectorsym{x})|\leq c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\sum_{j=k}^{\infty}\delta_{j}^{-\frac{\omega}{p}}\left(G_{\delta_{j}}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}}.

If p=1p=1, we are done after taking the mean of both sides over F(\vectorsymx¯)F(\overline{\vectorsym{x}}) and integrating over Γ′′\Gamma^{\prime\prime}. Otherwise, the monotone convergence theorem and Hólder’s inequality yields

Γ′′F(\vectorsymx¯)|Tu(\vectorsymx¯)g(\vectorsymx)|pd\vectorsymxdt(\vectorsymx¯)\displaystyle\int_{\Gamma^{\prime\prime}}\fint_{F(\overline{\vectorsym{x}})}|Tu(\overline{\vectorsym{x}})-g(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
cελn+ppj=kδjωpΓ′′(F(\vectorsymx¯)|Tu(\vectorsymx¯)g(\vectorsymx)|p1d\vectorsymx)(Gδj(\vectorsymx¯))1pdt(\vectorsymx¯)\displaystyle\qquad\leq c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\sum_{j=k}^{\infty}\delta_{j}^{-\frac{\omega}{p}}\int_{\Gamma^{\prime\prime}}\left(\fint_{F(\overline{\vectorsym{x}})}|Tu(\overline{\vectorsym{x}})-g(\vectorsym{x})|^{p-1}\mathrm{d}\vectorsym{x}\right)\left(G_{\delta_{j}}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
cελn+ppj=kδjωp(Γ′′(F(\vectorsymx¯)|Tu(\vectorsymx¯)g(\vectorsymx)|p1d\vectorsymx)pp1dt(\vectorsymx¯))p1p\displaystyle\qquad\leq c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\sum_{j=k}^{\infty}\delta_{j}^{-\frac{\omega}{p}}\left(\int_{\Gamma^{\prime\prime}}\left(\fint_{F(\overline{\vectorsym{x}})}|Tu(\overline{\vectorsym{x}})-g(\vectorsym{x})|^{p-1}\mathrm{d}\vectorsym{x}\right)^{\frac{p}{p-1}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\right)^{\frac{p-1}{p}}
×(Γ′′Gδj(\vectorsymx¯)dt(\vectorsymx¯))1p.\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\times\left(\int_{\Gamma^{\prime\prime}}G_{\delta_{j}}(\overline{\vectorsym{x}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}}.

We may apply Jensen’s inequality to the first integral and obtain

Γ′′F(\vectorsymx¯)|Tu(\vectorsymx¯)g(\vectorsymx)|pd\vectorsymxdt(\vectorsymx¯)cελn+pp(Γ′′F(\vectorsymx¯)|Tu(\vectorsymx¯)g(\vectorsymx)|pd\vectorsymxdt(\vectorsymx¯))p1pj=kδjωp(Γ′′Gδj(\vectorsymx¯)dt(\vectorsymx¯))1p,\int_{\Gamma^{\prime\prime}}\fint\limits_{F(\overline{\vectorsym{x}})}\!\!|Tu(\overline{\vectorsym{x}})-g(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\\ \leq c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\!\!\left(\int_{\Gamma^{\prime\prime}}\fint_{F(\overline{\vectorsym{x}})}\!\!\!|Tu(\overline{\vectorsym{x}})-g(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\!\right)^{\!\frac{p-1}{p}}\!\!\sum_{j=k}^{\infty}\delta_{j}^{-\frac{\omega}{p}}\!\!\left(\int_{\Gamma^{\prime\prime}}\!\!\!G_{\delta_{j}}(\overline{\vectorsym{x}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\!\right)^{\!\frac{1}{p}}\!\!\!\!,

which implies the result after dividing both sides by the term in parentheses.

Finally, we need the followinng lemma whose proof is the same as an analogous result in [10].

Lemma 4.3.

Assume (H4). For each 0<δδΓ0<\delta\leq\delta_{\Gamma} and t\mathscr{H}^{t}-measurable Γ′′Γ\Gamma^{\prime\prime}\subseteq\Gamma, we have

Γ′′Gδ(\vectorsymx¯)dt(\vectorsymx¯)cδtνs(),p(2δ(Γ′′)).\int_{\Gamma^{\prime\prime}}G_{\delta}(\overline{\vectorsym{x}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\leq c\delta^{t}\nu^{s(\cdot),p}\left(\mathcal{B}_{2\delta}(\Gamma^{\prime\prime})\right).

Here cc is independent of δ0.\delta_{0}.

Proof.

Lemma 2.2 delivers a countable index set II and {\vectorsymy¯i}iIΓ′′\{\overline{\vectorsym{y}}_{i}\}_{i\in I}\subseteq\Gamma^{\prime\prime} such that Γ′′iIδ(\vectorsymy¯i)\Gamma^{\prime\prime}\subseteq\bigcup_{i\in I}\mathcal{B}_{\delta}(\overline{\vectorsym{y}}_{i}) and sup\vectorsymxniIχ2δ(\vectorsymy¯i)(\vectorsymx)c\sup_{\vectorsym{x}\in\mathbb{R}^{n}}\sum_{i\in I}\chi_{\mathcal{B}_{2\delta}(\overline{\vectorsym{y}}_{i})}(\vectorsym{x})\leq c. Now, for each iIi\in I and \vectorsymx¯Γδ(\vectorsymy¯i)\overline{\vectorsym{x}}\in\Gamma^{\prime}\cap\mathcal{B}_{\delta}(\overline{\vectorsym{y}}_{i}), we find Ωδ(\vectorsymx¯)Ω2δ(\vectorsymy¯i)\Omega\cap\mathcal{B}_{\delta}(\overline{\vectorsym{x}})\subseteq\Omega\cap\mathcal{B}_{2\delta}(\overline{\vectorsym{y}}_{i}). Hence,

sup\vectorsymx¯Γδ(\vectorsymy¯i)Gδ(\vectorsymx¯)=sup\vectorsymx¯Γδ(\vectorsymy¯i)νs(),p(δ(\vectorsymx¯))νs(),p(2δ(\vectorsymy¯i)).\sup_{\overline{\vectorsym{x}}\in\Gamma^{\prime}\cap\mathcal{B}_{\delta}(\overline{\vectorsym{y}}_{i})}G_{\delta}(\overline{\vectorsym{x}})=\sup_{\overline{\vectorsym{x}}\in\Gamma^{\prime}\cap\mathcal{B}_{\delta}(\overline{\vectorsym{y}}_{i})}\nu^{s(\cdot),p}(\mathcal{B}_{\delta}(\overline{\vectorsym{x}}))\leq\nu^{s(\cdot),p}\left(\mathcal{B}_{2\delta}(\overline{\vectorsym{y}}_{i})\right).

Using the upper Ahlfor’s regularity assumption for Γ\Gamma, and thus for Γ′′\Gamma^{\prime\prime}, and the bounded overlap property of the family {2δ(\vectorsymy¯i)}iI\left\{\mathcal{B}_{2\delta}(\overline{\vectorsym{y}}_{i})\right\}_{i\in I}, we obtain

Γ′′Gδ(\vectorsymx¯)dt(\vectorsymx¯)\displaystyle\int_{\Gamma^{\prime\prime}}G_{\delta}(\overline{\vectorsym{x}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}}) iIΓ′′δ(\vectorsymy¯i)Gδ(\vectorsymx¯)dt(\vectorsymx¯)iIt(Γ′′δ(\vectorsymy¯i))νs(),p(2δ(\vectorsymy¯i))\displaystyle\leq\sum_{i\in I}\int_{\Gamma^{\prime\prime}\cap\mathcal{B}_{\delta}(\overline{\vectorsym{y}}_{i})}G_{\delta}(\overline{\vectorsym{x}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\leq\sum_{i\in I}\mathscr{H}^{t}\left(\Gamma^{\prime\prime}\cap\mathcal{B}_{\delta}(\overline{\vectorsym{y}}_{i})\right)\nu^{s(\cdot),p}\left(\mathcal{B}_{2\delta}(\overline{\vectorsym{y}}_{i})\right)
AΓδtiIνs(),p(2δ(\vectorsymy¯i))cδtνs(),p(2δ(Γ′′)).\displaystyle\leq A_{\Gamma}\delta^{t}\sum_{i\in I}\nu^{s(\cdot),p}\left(\mathcal{B}_{2\delta}(\overline{\vectorsym{y}}_{i})\right)\leq c\delta^{t}\nu^{s(\cdot),p}\left(\mathcal{B}_{2\delta}(\Gamma^{\prime\prime})\right).

Remark 6.

In the last line of the proof, we see that, in the upper bound, the term νs(),p(2δ(Γ′′))\nu^{s(\cdot),p}\left(\mathcal{B}_{2\delta}(\Gamma^{\prime\prime})\right) can be made more precise with νs(),p(U)\nu^{s(\cdot),p}\left(U\right), with U:=iI2δ(\vectorsymy¯i)U:=\bigcup_{i\in I}\mathcal{B}_{2\delta}(\overline{\vectorsym{y}}_{i}).

Lemma 4.4.

Assume (H1), (H2), and (H4). Let ω<t\omega<t, and 0<λλ00<\lambda\leq\lambda_{0} be given. With k𝕎k\in\mathbb{W} and 0<δη1kδΓ0<\delta\leq\eta_{1}^{k}\delta_{\Gamma}, suppose that Γ′′Aω,δΓt\Gamma^{\prime\prime}\subseteq A_{\omega,\delta}\cap\Gamma_{t} is t\mathscr{H}^{t}-measurable. Then, for each 0<ρδ3CΓ0<\rho\leq\frac{\delta}{3C_{\Gamma}}, we have

TugρLp(Γ′′)C1η1k(tωp)|u|𝒩s(),p(2η1kδ0(Γ′′)),\|Tu-g_{\rho}\|_{L^{p}(\Gamma^{\prime\prime})}\leq C_{1}\eta_{1}^{k\left(\frac{t-\omega}{p}\right)}|u|_{\mathscr{N}^{s(\cdot),p}\left(\mathcal{B}_{2\eta_{1}^{k}\delta_{0}}(\Gamma^{\prime\prime})\right)},

with

C1=C1(λ,η1,ω)=cελn+pp(1η1tωp)1 and λ:=η12λ.C_{1}=C_{1}(\lambda,\eta_{1},\omega)=c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\left(1-\eta_{1}^{\frac{t-\omega}{p}}\right)^{-1}\quad\text{ and }\quad\lambda^{\prime}:=\eta_{1}^{2}\lambda.
Proof.

Again, for each jj\in\mathbb{N}, put ρ^j:=η1jδΓ\widehat{\rho}_{j}:=\eta_{1}^{j}\delta_{\Gamma} and ρj:=η1jρΓ\rho_{j}:=\eta_{1}^{j}\rho_{\Gamma}. If 1<p<1<p<\infty, then we apply Jensen’s inequality and then Hölder’s inequality to obtain

TugρLp(Γ′′)p\displaystyle\|Tu-g_{\rho}\|^{p}_{L^{p}(\Gamma^{\prime\prime})} Γ′′(|Tu(\vectorsymx¯)gρ(\vectorsymx¯)|p1Fλ,ρ(\vectorsymx¯)|Tu(\vectorsymx¯)g(\vectorsymx)|d\vectorsymx)dt(\vectorsymx¯)\displaystyle\leq\int_{\Gamma^{\prime\prime}}\left(|Tu(\overline{\vectorsym{x}})-g_{\rho}(\overline{\vectorsym{x}})|^{p-1}\fint_{F_{\lambda,\rho}(\overline{\vectorsym{x}})}|Tu(\overline{\vectorsym{x}})-g(\vectorsym{x})|\mathrm{d}\vectorsym{x}\right)\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
TugρLp(Γ′′)p1(Γ′′(Fλ,ρ(\vectorsymx¯)|Tu(\vectorsymx¯)g(\vectorsymx)|d\vectorsymx)pdt(\vectorsymx¯))1p\displaystyle\leq\|Tu-g_{\rho}\|^{p-1}_{L^{p}(\Gamma^{\prime\prime})}\left(\int_{\Gamma^{\prime\prime}}\left(\fint_{F_{\lambda,\rho}(\overline{\vectorsym{x}})}|Tu(\overline{\vectorsym{x}})-g(\vectorsym{x})|\mathrm{d}\vectorsym{x}\right)^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}}
TugρLp(Γ′′)p1(Γ′′Fλ,ρ(\vectorsymx¯)|Tu(\vectorsymx¯)g(\vectorsymx)|pd\vectorsymxdt(\vectorsymx¯))1p.\displaystyle\leq\|Tu-g_{\rho}\|^{p-1}_{L^{p}(\Gamma^{\prime\prime})}\left(\int_{\Gamma^{\prime\prime}}\fint_{F_{\lambda,\rho}(\overline{\vectorsym{x}})}|Tu(\overline{\vectorsym{x}})-g(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}}.

If p=1p=1, then the above inequality follows from Jensen’s inequality alone. Lemma 4.2, with F=Fλ,ρF=F_{\lambda,\rho}, allows us to continue with

TugρLp(Γ′′)\displaystyle\|Tu-g_{\rho}\|_{L^{p}(\Gamma^{\prime\prime})} Γ′′Fλ,ρ(\vectorsymx¯)|Tu(\vectorsymx¯)g(\vectorsymx)|pd\vectorsymxdt(\vectorsymx¯)\displaystyle\leq\int_{\Gamma^{\prime\prime}}\fint_{F_{\lambda,\rho}(\overline{\vectorsym{x}})}|Tu(\overline{\vectorsym{x}})-g(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
cελn+ppj=k(δjωΓ′′Gδj(\vectorsymx¯)dt(\vectorsymx¯))1p.\displaystyle\leq c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\sum_{j=k}^{\infty}\left(\delta_{j}^{-\omega}\int_{\Gamma^{\prime\prime}}G_{\delta_{j}}(\overline{\vectorsym{x}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}}. (19)

Next, Lemma 4.3 provides

TugρLp(Γ′′)\displaystyle\|Tu-g_{\rho}\|_{L^{p}(\Gamma^{\prime\prime})} cελn+ppj=kδjtωp(νs(),p(2δj(Γ′′)))1p\displaystyle\leq c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\sum_{j=k}^{\infty}\delta_{j}^{\frac{t-\omega}{p}}\left(\nu^{s(\cdot),p}\left(\mathcal{B}_{2\delta_{j}}(\Gamma^{\prime\prime})\right)\right)^{\frac{1}{p}}
cελn+ppδktωp(νs(),p(2δk(Γ′′)))1pj=0η1j(tωp).\displaystyle\leq c\varepsilon_{\lambda^{\prime}}^{-\frac{n+p}{p}}\delta_{k}^{\frac{t-\omega}{p}}\left(\nu^{s(\cdot),p}\left(\mathcal{B}_{2\delta_{k}}(\Gamma^{\prime\prime})\right)\right)^{\frac{1}{p}}\sum_{j=0}^{\infty}\eta_{1}^{j\left(\frac{t-\omega}{p}\right)}.

Since ω<t\omega<t, the series above is convergent and the result follows. ∎

Theorem 1.2(a) is a consequence of our first main result for this section.

Theorem 4.5.

Assume (H1), (H2), and (H4). Let ω<t\omega<t, and 0<δδΓ0<\delta\leq\delta_{\Gamma} be given. Suppose that Γ′′Aω,δΓt\Gamma^{\prime\prime}\subseteq A_{\omega,\delta}\cap\Gamma_{t} is t\mathscr{H}^{t}-measurable. Then uWβ,p(Γ′′)u\in W^{\beta,p}(\Gamma^{\prime\prime}), for each 0<β<(tω)/p0<\beta<(t-\omega)/p.

Remark 7.

The bound for TuLp(Γ′′)\|Tu\|_{L^{p}(\Gamma^{\prime\prime})} is provided in (21), and the bound for |Tu|Wβ,p(Γ′′)|Tu|_{W^{\beta,p}(\Gamma^{\prime\prime})} is the sum of the two bounds in (25) and (26).

Proof.

We need to verify

Γ′′|Tu(\vectorsymx¯)|pdt(\vectorsymx¯)< and Γ′′Γ′′|Tu(\vectorsymy¯)Tu(\vectorsymx¯)|p\vectorsymy¯\vectorsymx¯t+pβdt(\vectorsymy¯)dt(\vectorsymx¯)<.\int_{\Gamma^{\prime\prime}}\!\!|Tu(\overline{\vectorsym{x}})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})<\infty\quad\text{ and }\quad\int_{\Gamma^{\prime\prime}}\int_{\Gamma^{\prime\prime}}\!\!\frac{|Tu(\overline{\vectorsym{y}})-Tu(\overline{\vectorsym{x}})|^{p}}{\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|^{t+p\beta}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})<\infty. (20)

Our arguments are similar to those used in [10]. Recall that η1:=min{12,η0}\eta_{1}:=\min\{\frac{1}{2},\eta_{0}\}. Put λj:=η12jλ0\lambda_{j}:=\eta_{1}^{2j}\lambda_{0}, for j𝕎j\in\mathbb{W}, and ρ:=δ3CΓ\rho:=\frac{\delta}{3C_{\Gamma}}. Define {δj}j=1(0,δΓ]\{\delta_{j}\}_{j=1}^{\infty}\subset(0,\delta_{\Gamma}] and {ρj}j=1(0,ρΓ]\{\rho_{j}\}_{j=1}^{\infty}\subset(0,\rho_{\Gamma}] as in the proofs for above lemmas.

First, we argue that TuLp(Γ′′)Tu\in L^{p}(\Gamma^{\prime\prime}). Let k𝕎k\in\mathbb{W} be given. By Lemma 4.4, with η=η1\eta=\eta_{1} and λ=λ0\lambda=\lambda_{0}, we have

TuLp(Γ′′)gρkLp(Γ′′)+TugρkLp(Γ′′)gρkLp(Γ′′)+C1δktωp|u|𝒩s(),p(2δk(Γ′′)).\|Tu\|_{L^{p}(\Gamma^{\prime\prime})}\leq\|g_{\rho_{k}}\|_{L^{p}(\Gamma^{\prime\prime})}+\|Tu-g_{\rho_{k}}\|_{L^{p}(\Gamma^{\prime\prime})}\leq\|g_{\rho_{k}}\|_{L^{p}(\Gamma^{\prime\prime})}+C_{1}\delta_{k}^{\frac{t-\omega}{p}}|u|_{\mathscr{N}^{s(\cdot),p}\left(\mathcal{B}_{2\delta_{k}}(\Gamma^{\prime\prime})\right)}.

We need to produce a bound for gρkLp(Γ)\|g_{\rho_{k}}\|_{L^{p}(\Gamma)}.

For each k𝕎k\in\mathbb{W}, we see that

\vectorsymxFλ0,ρk(\vectorsymx¯)dΩ(\vectorsymx)(λ0\vectorsymx\vectorsymx¯n)θΓ(\vectorsymx¯)>(λ0η0ρk)θΓ(\vectorsymx¯).\vectorsym{x}\in F_{\lambda_{0},\rho_{k}}(\overline{\vectorsym{x}})\Longrightarrow d_{\partial\Omega}(\vectorsym{x})\geq\left(\lambda_{0}\|\vectorsym{x}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}\right)^{\theta_{\Gamma}(\overline{\vectorsym{x}})}>(\lambda_{0}\eta_{0}\rho_{k})^{\theta_{\Gamma}(\overline{\vectorsym{x}})}.

Hence |Ψ(\vectorsymx)|(λ1ρk)nθΓ(\vectorsymx¯)|\Psi(\vectorsym{x})|\geq(\lambda_{1}\rho_{k})^{n\theta_{\Gamma}(\overline{\vectorsym{x}})}. We also observe that

\vectorsymx¯Γ′′Γ,\vectorsymxFλ0,ρk(\vectorsymx¯), and \vectorsymyΦ(\vectorsymx¯)\displaystyle\overline{\vectorsym{x}}\in\Gamma^{\prime\prime}\subseteq\Gamma,\>\;\vectorsym{x}\in F_{\lambda_{0},\rho_{k}}(\overline{\vectorsym{x}}),\text{ and }\vectorsym{y}\in\Phi(\overline{\vectorsym{x}}) \vectorsymxρk(Γ′′) and \vectorsymy16dΩ(\vectorsymx)(\vectorsymx)\displaystyle\Longrightarrow\vectorsym{x}\in\mathcal{B}_{\rho_{k}}(\Gamma^{\prime\prime})\text{ and }\vectorsym{y}\in\mathcal{B}_{\frac{1}{6}d_{\partial\Omega}(\vectorsym{x})}(\vectorsym{x})
\vectorsymy2ρk(Γ′′)2δk(Γ′′).\displaystyle\Longrightarrow\vectorsym{y}\in\mathcal{B}_{2\rho_{k}}(\Gamma^{\prime\prime})\subseteq\mathcal{B}_{2\delta_{k}}(\Gamma^{\prime\prime}).

Put θ¯Γ′′:=sup\vectorsymx¯Γ′′|θΓ(\vectorsymx¯)|<\overline{\theta}_{\Gamma^{\prime\prime}}:=\sup_{\overline{\vectorsym{x}}\in\Gamma^{\prime\prime}}|\theta_{\Gamma}(\overline{\vectorsym{x}})|<\infty. Using Jensen’s inequality, we conclude that

Γ′′|gρk(\vectorsymx¯)|pdt(\vectorsymx¯)\displaystyle\int_{\Gamma^{\prime\prime}}|g_{\rho_{k}}(\overline{\vectorsym{x}})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}}) Γ′′Fλ0,ρk(\vectorsymx¯)(Φ(\vectorsymx)|u(\vectorsymy)|d\vectorsymy)pd\vectorsymxdt(\vectorsymx¯)\displaystyle\leq\int_{\Gamma^{\prime\prime}}\fint_{F_{\lambda_{0},\rho_{k}}(\overline{\vectorsym{x}})}\left(\fint_{\Phi(\vectorsym{x})}|u(\vectorsym{y})|\mathrm{d}\vectorsym{y}\right)^{p}\mathrm{d}\vectorsym{x}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
(λ1ρk)npθ¯Γ′′t(Γ′′)uL1(2δk(Γ′′))p<.\displaystyle\leq(\lambda_{1}\rho_{k})^{-np\overline{\theta}_{\Gamma^{\prime\prime}}}\mathscr{H}^{t}(\Gamma^{\prime\prime})\|u\|^{p}_{L^{1}\left(\mathcal{B}_{2\delta_{k}}(\Gamma^{\prime\prime})\right)}<\infty.

Thus

TuLp(Γ′′)(λ1ρk)nθ¯Γ′′t(Γ′′)1puL1(2δk(Γ′′))+C1δktωp|u|𝒩s(),p(2δk(Γ′′))<.\|Tu\|_{L^{p}(\Gamma^{\prime\prime})}\leq(\lambda_{1}\rho_{k})^{-n\overline{\theta}_{\Gamma^{\prime\prime}}}\mathscr{H}^{t}(\Gamma^{\prime\prime})^{\frac{1}{p}}\|u\|_{L^{1}\left(\mathcal{B}_{2\delta_{k}}(\Gamma^{\prime\prime})\right)}+C_{1}\delta_{k}^{\frac{t-\omega}{p}}|u|_{\mathscr{N}^{s(\cdot),p}\left(\mathcal{B}_{2\delta_{k}}(\Gamma^{\prime\prime})\right)}<\infty. (21)

We turn to establishing the second part of (20). For each ρ>0\rho>0, define Γρ′′:Γ′′Γ\Gamma^{\prime\prime}_{\rho}:\Gamma^{\prime\prime}\twoheadrightarrow\Gamma by

Γρ′′(\vectorsymx¯):=Γ′′ρ(\vectorsymx¯)η0ρ(\vectorsymx¯).\Gamma^{\prime\prime}_{\rho}(\overline{\vectorsym{x}}):=\Gamma^{\prime\prime}\cap\mathcal{B}_{\rho}(\overline{\vectorsym{x}})\setminus\mathcal{B}_{\eta_{0}\rho}(\overline{\vectorsym{x}}).

We also introduce Γ1,ρ′′,Γ2,ρ′′:ΓΓ\Gamma^{\prime\prime}_{1,\rho},\Gamma^{\prime\prime}_{2,\rho}:\Gamma\twoheadrightarrow\Gamma given by

Γ1,ρ′′(\vectorsymx¯):={\vectorsymy¯Γρ′′(\vectorsymx¯):θΓ(\vectorsymx¯)θΓ(\vectorsymy¯)} and Γ2,ρ′′(\vectorsymx¯):=Γρ′′Γ1,ρ′′(\vectorsymx¯).\Gamma^{\prime\prime}_{1,\rho}(\overline{\vectorsym{x}}):=\left\{\overline{\vectorsym{y}}\in\Gamma^{\prime\prime}_{\rho}(\overline{\vectorsym{x}}):\theta_{\Gamma}(\overline{\vectorsym{x}})\leq\theta_{\Gamma}(\overline{\vectorsym{y}})\right\}\quad\text{ and }\quad\Gamma^{\prime\prime}_{2,\rho}(\overline{\vectorsym{x}}):=\Gamma^{\prime\prime}_{\rho}\setminus\Gamma^{\prime\prime}_{1,\rho}(\overline{\vectorsym{x}}).

With kk\in\mathbb{N}, let \vectorsymx¯Γ′′\overline{\vectorsym{x}}\in\Gamma^{\prime\prime}, \vectorsymy¯Γ1,ρk′′(\vectorsymx¯)\overline{\vectorsym{y}}\in\Gamma^{\prime\prime}_{1,\rho_{k}}(\overline{\vectorsym{x}}), and \vectorsymxFλ0,ρk+2(\vectorsymx¯)\vectorsym{x}\in F_{\lambda_{0},\rho_{k+2}}(\overline{\vectorsym{x}}) be given. Clearly, η1(1+η12)<1\eta_{1}\left(1+\eta_{1}^{2}\right)<1, so

\vectorsymy¯\vectorsymxn\vectorsymy¯\vectorsymx¯n+\vectorsymx¯\vectorsymxn<ρk+ρk+2η1k(1+η12)ρ<ρk1.\|\overline{\vectorsym{y}}-\vectorsym{x}\|_{\mathbb{R}^{n}}\leq\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}+\|\overline{\vectorsym{x}}-\vectorsym{x}\|_{\mathbb{R}^{n}}<\rho_{k}+\rho_{k+2}\leq\eta_{1}^{k}\left(1+\eta_{1}^{2}\right)\rho<\rho_{k-1}.

Also,

\vectorsymy¯\vectorsymxn\vectorsymy¯\vectorsymx¯n\vectorsymx¯\vectorsymxn>ρk+1ρk+2=(1η1)ρk+1ρk+2.\|\overline{\vectorsym{y}}-\vectorsym{x}\|_{\mathbb{R}^{n}}\geq\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}-\|\overline{\vectorsym{x}}-\vectorsym{x}\|_{\mathbb{R}^{n}}>\rho_{k+1}-\rho_{k+2}=\left(1-\eta_{1}\right)\rho_{k+1}\geq\rho_{k+2}.

Furthermore, since \vectorsymy¯Γ1,ρk′′(\vectorsymx¯)\overline{\vectorsym{y}}\in\Gamma^{\prime\prime}_{1,\rho_{k}}(\overline{\vectorsym{x}}), we have θΓ(\vectorsymy¯)θΓ(\vectorsymx¯)\theta_{\Gamma}(\overline{\vectorsym{y}})\geq\theta_{\Gamma}(\overline{\vectorsym{x}}), and thus

dΩ(\vectorsymx)(λ0\vectorsymx¯\vectorsymxn)θΓ(\vectorsymx¯)(λ0ρk+3)θΓ(\vectorsymy¯)>(λ0η14\vectorsymy¯\vectorsymxn)θΓ(\vectorsymy¯)=(λ2\vectorsymy¯\vectorsymxn)θΓ(\vectorsymy¯).d_{\partial\Omega}(\vectorsym{x})\geq\left(\lambda_{0}\|\overline{\vectorsym{x}}-\vectorsym{x}\|_{\mathbb{R}^{n}}\right)^{\theta_{\Gamma}(\overline{\vectorsym{x}})}\geq\left(\lambda_{0}\rho_{k+3}\right)^{\theta_{\Gamma}(\overline{\vectorsym{y}})}>\left(\lambda_{0}\eta_{1}^{4}\|\overline{\vectorsym{y}}-\vectorsym{x}\|_{\mathbb{R}^{n}}\right)^{\theta_{\Gamma}(\overline{\vectorsym{y}})}=\left(\lambda_{2}\|\overline{\vectorsym{y}}-\vectorsym{x}\|_{\mathbb{R}^{n}}\right)^{\theta_{\Gamma}(\overline{\vectorsym{y}})}.

Thus \vectorsymxQλ2,ρk1θΓ(\vectorsymy¯)ρk+2(\vectorsymy¯)\vectorsym{x}\in Q^{\theta_{\Gamma}(\overline{\vectorsym{y}})}_{\lambda_{2},\rho_{k-1}}\setminus\mathcal{B}_{\rho_{k+2}}(\overline{\vectorsym{y}}). As kk\in\mathbb{N} and \vectorsymx¯Fλ0,ρk+2(\vectorsymx¯)\overline{\vectorsym{x}}\in F_{\lambda_{0},\rho_{k+2}}(\overline{\vectorsym{x}}) were arbitrary, we conclude that

Fλ0,ρk+2(\vectorsymx¯)Qλ2,ρk1θΓ(\vectorsymy¯)ρk+2(\vectorsymy¯), for all k and \vectorsymy¯Γ1,ρk′′(\vectorsymx¯).F_{\lambda_{0},\rho_{k+2}}(\overline{\vectorsym{x}})\subseteq Q^{\theta_{\Gamma}(\overline{\vectorsym{y}})}_{\lambda_{2},\rho_{k-1}}\setminus\mathcal{B}_{\rho_{k+2}}(\overline{\vectorsym{y}}),\quad\text{ for all }k\in\mathbb{N}\text{ and }\overline{\vectorsym{y}}\in\Gamma^{\prime\prime}_{1,\rho_{k}}(\overline{\vectorsym{x}}). (22)

We may write

Γ′′Γ′′|Tu(\vectorsymy¯)Tu(\vectorsymx¯)|p\vectorsymy¯\vectorsymx¯nt+βpdt(\vectorsymy¯)dt(\vectorsymx¯)==12k=Γ′′Γ,ρk′′(\vectorsymx¯)|Tu(\vectorsymy¯)Tu(\vectorsymx¯)|p\vectorsymy¯\vectorsymx¯nt+βpdt(\vectorsymy¯)dt(\vectorsymx¯).\int_{\Gamma^{\prime\prime}}\int_{\Gamma^{\prime\prime}}\frac{|Tu(\overline{\vectorsym{y}})-Tu(\overline{\vectorsym{x}})|^{p}}{\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\\ =\sum_{\ell=1}^{2}\sum_{k=-\infty}^{\infty}\int_{\Gamma^{\prime\prime}}\int_{\Gamma^{\prime\prime}_{\ell,\rho_{k}}(\overline{\vectorsym{x}})}\frac{|Tu(\overline{\vectorsym{y}})-Tu(\overline{\vectorsym{x}})|^{p}}{\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}}).

We focus on the integrals with kk\in\mathbb{N} first. We notice that if \vectorsymy¯Γ2,ρ′′(\vectorsymx¯)\overline{\vectorsym{y}}\in\Gamma^{\prime\prime}_{2,\rho}(\overline{\vectorsym{x}}), then θΓ(\vectorsymy¯)<θΓ(\vectorsymx¯)\theta_{\Gamma}(\overline{\vectorsym{y}})<\theta_{\Gamma}(\overline{\vectorsym{x}}) and η1ρ\vectorsymy¯\vectorsymx¯n<ρ\eta_{1}\rho\leq\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}<\rho, so \vectorsymx¯Γ1,ρ′′(\vectorsymy¯)\overline{\vectorsym{x}}\in\Gamma^{\prime\prime}_{1,\rho}(\overline{\vectorsym{y}}). This and the Fubini-Tonelli theorem implies

Γ′′Γ2,ρk′′(\vectorsymx¯)|Tu(\vectorsymy¯)Tu(\vectorsymx¯)|p\vectorsymy¯\vectorsymx¯nt+βpdt(\vectorsymy¯)dt(\vectorsymx¯)Γ′′Γ1,ρk′′(\vectorsymx¯)|Tu(\vectorsymy¯)Tu(\vectorsymx¯)|p\vectorsymy¯\vectorsymx¯nt+βpdt(\vectorsymy¯)dt(\vectorsymx¯),\int_{\Gamma^{\prime\prime}}\int_{\Gamma^{\prime\prime}_{2,\rho_{k}}(\overline{\vectorsym{x}})}\frac{|Tu(\overline{\vectorsym{y}})-Tu(\overline{\vectorsym{x}})|^{p}}{\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\\ \leq\int_{\Gamma^{\prime\prime}}\int_{\Gamma^{\prime\prime}_{1,\rho_{k}}(\overline{\vectorsym{x}})}\frac{|Tu(\overline{\vectorsym{y}})-Tu(\overline{\vectorsym{x}})|^{p}}{\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}}),

where we have relabeled \vectorsymx¯\vectorsymy¯\overline{\vectorsym{x}}\leftrightarrow\overline{\vectorsym{y}} in the last integral. Thus

k=1Γ′′Γρk′′(\vectorsymx¯)|Tu(\vectorsymy¯)Tu(\vectorsymx¯)|p\vectorsymy¯\vectorsymx¯nt+βpdt(\vectorsymy¯)dt(\vectorsymx¯)\displaystyle\sum_{k=1}^{\infty}\int_{\Gamma^{\prime\prime}}\int_{\Gamma^{\prime\prime}_{\rho_{k}}(\overline{\vectorsym{x}})}\!\!\!\!\frac{|Tu(\overline{\vectorsym{y}})-Tu(\overline{\vectorsym{x}})|^{p}}{\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
=2k=1Γ′′Γ1,ρk′′(\vectorsymx¯)|Tu(\vectorsymy¯)Tu(\vectorsymx¯)|p\vectorsymy¯\vectorsymx¯nt+βpdt(\vectorsymy¯)dt(\vectorsymx¯)\displaystyle\qquad\qquad=2\sum_{k=1}^{\infty}\int_{\Gamma^{\prime\prime}}\int_{\Gamma^{\prime\prime}_{1,\rho_{k}}(\overline{\vectorsym{x}})}\!\!\!\!\frac{|Tu(\overline{\vectorsym{y}})-Tu(\overline{\vectorsym{x}})|^{p}}{\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
ck=1Γ′′Γ1,ρk′′(\vectorsymx¯)|Tu(\vectorsymy¯)gρk(\vectorsymy¯)|p\vectorsymy¯\vectorsymx¯nt+βpdt(\vectorsymy¯)dt(\vectorsymx¯)=:I1,k\displaystyle\qquad\qquad\leq c\sum_{k=1}^{\infty}\underbrace{\int_{\Gamma^{\prime\prime}}\int_{\Gamma^{\prime\prime}_{1,\rho_{k}}(\overline{\vectorsym{x}})}\!\!\!\!\frac{|Tu(\overline{\vectorsym{y}})-g_{\rho_{k}}(\overline{\vectorsym{y}})|^{p}}{\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})}_{=:I_{1,k}} (23)
+ck=1Γ′′Γ1,ρk′′(\vectorsymx¯)|gρk+1(\vectorsymx¯)gρk(\vectorsymy¯)|p\vectorsymy¯\vectorsymx¯nt+βpdt(\vectorsymy¯)dt(\vectorsymx¯)=:I2,k\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad+c\sum_{k=1}^{\infty}\underbrace{\int_{\Gamma^{\prime\prime}}\int_{\Gamma^{\prime\prime}_{1,\rho_{k}}(\overline{\vectorsym{x}})}\!\!\!\!\frac{|g_{\rho_{k+1}}(\overline{\vectorsym{x}})-g_{\rho_{k}}(\overline{\vectorsym{y}})|^{p}}{\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})}_{=:I_{2,k}}
+ck=1Γ′′Γ1,ρk′′(\vectorsymx¯)|Tu(\vectorsymx¯)gρk+1(\vectorsymx¯)|p\vectorsymy¯\vectorsymx¯nt+βpdt(\vectorsymy¯)dt(\vectorsymx¯)=:I3,k.\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad+c\sum_{k=1}^{\infty}\underbrace{\int_{\Gamma^{\prime\prime}}\int_{\Gamma^{\prime\prime}_{1,\rho_{k}}(\overline{\vectorsym{x}})}\!\!\!\!\frac{|Tu(\overline{\vectorsym{x}})-g_{\rho_{k+1}}(\overline{\vectorsym{x}})|^{p}}{\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})}_{=:I_{3,k}}.

We first establish bounds for the integrals I1,kI_{1,k} and I3,kI_{3,k}, which can be handled in similar manners. For I1,kI_{1,k}, we have \vectorsymy¯\vectorsymx¯nρk+1\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}\geq\rho_{k+1}. With the Fubini-Tonelli theorem and the upper Ahlfors-regularity, we obtain

I1,k\displaystyle I_{1,k}\leq ρk+1tβpΓ′′Γ2,k(\vectorsymy¯)|Tu(\vectorsymy¯)gρk(\vectorsymy¯)|pdt(\vectorsymx¯)dt(\vectorsymy¯)\displaystyle\rho_{k+1}^{-t-\beta p}\int_{\Gamma^{\prime\prime}}\int_{\Gamma_{2,k}(\overline{\vectorsym{y}})}|Tu(\overline{\vectorsym{y}})-g_{\rho_{k}}(\overline{\vectorsym{y}})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})
\displaystyle\leq AΓη1tβpρkβpTugρkLp(Γ′′)p\displaystyle A_{\Gamma}\eta_{1}^{-t-\beta p}\rho_{k}^{-\beta p}\|Tu-g_{\rho_{k}}\|_{L^{p}(\Gamma^{\prime\prime})}^{p}
\displaystyle\leq cC1(λ0,η1,ω)η1tβpρk(tω)βp|u|𝒩s(),p(2δk(Γ′′))p.\displaystyle cC_{1}(\lambda_{0},\eta_{1},\omega)\eta_{1}^{-t-\beta p}\rho_{k}^{(t-\omega)-\beta p}|u|^{p}_{\mathscr{N}^{s(\cdot),p}(\mathcal{B}_{2\delta_{k}}(\Gamma^{\prime\prime}))}.

For the last line, we applied Lemma 4.4, with λ=λ0\lambda=\lambda_{0} and δ=δk\delta=\delta_{k}. For I3,kI_{3,k}, the same argument produces

I3,kcC1(λ0,η1,ω)η1ωβpρk(tω)βp|u|𝒩s(),p(2δk+1(Γ′′))p.I_{3,k}\leq cC_{1}(\lambda_{0},\eta_{1},\omega)\eta_{1}^{-\omega-\beta p}\rho_{k}^{(t-\omega)-\beta p}|u|^{p}_{\mathscr{N}^{s(\cdot),p}(\mathcal{B}_{2\delta_{k+1}}(\Gamma^{\prime\prime}))}.

Turning to I2,kI_{2,k}, we again have \vectorsymy¯\vectorsymx¯nρk+1\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}\geq\rho_{k+1}. This and Jensen’s inequality produces the bound

I2,kρk+1tβpΓ′′Γ1,ρk(\vectorsymx¯)Fλ0,ρk(\vectorsymy¯)Fλ0,ρk+2(\vectorsymx¯)|g(\vectorsymy)g(\vectorsymx)|pd\vectorsymxd\vectorsymydt(\vectorsymy¯)dt(\vectorsymx¯).I_{2,k}\leq\rho_{k+1}^{-t-\beta p}\int_{\Gamma^{\prime\prime}}\int_{\Gamma_{1,\rho_{k}}(\overline{\vectorsym{x}})}\fint_{F_{\lambda_{0},\rho_{k}}(\overline{\vectorsym{y}})}\fint_{F_{\lambda_{0},\rho_{k+2}}(\overline{\vectorsym{x}})}\!\!|g(\vectorsym{y})-g(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}\mathrm{d}\vectorsym{y}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}}). (24)

For each \vectorsymx¯Γ′′\overline{\vectorsym{x}}\in\Gamma^{\prime\prime}, we find \vectorsymy¯Γ1,ρk(\vectorsymx¯)\overline{\vectorsym{y}}\in\Gamma_{1,\rho_{k}}(\overline{\vectorsym{x}}). Thus

Fλ0,ρk+2(\vectorsymx¯)Qλ2,ρk1η13ρk1(\vectorsymy¯).F_{\lambda_{0},\rho_{k+2}}(\overline{\vectorsym{x}})\subseteq Q_{\lambda_{2},\rho_{k-1}}\setminus\mathcal{B}_{\eta_{1}^{3}\rho_{k-1}}(\overline{\vectorsym{y}}).

Since λ2λ0\lambda_{2}\leq\lambda_{0}, from its definition, we also have

Fλ0,ρk+1(\vectorsymy¯)=Qλ2,η12ρk1η13ρk1(\vectorsymy¯)Qλ2,ρk1η13ρk1(\vectorsymy¯).F_{\lambda_{0},\rho_{k+1}}(\overline{\vectorsym{y}})=Q_{\lambda_{2},\eta_{1}^{2}\rho_{k-1}}\setminus\mathcal{B}_{\eta_{1}^{3}\rho_{k-1}}(\overline{\vectorsym{y}})\subseteq Q_{\lambda_{2},\rho_{k-1}}\setminus\mathcal{B}_{\eta_{1}^{3}\rho_{k-1}}(\overline{\vectorsym{y}}).

Lemma 2.6, with λ=λ2\lambda=\lambda_{2}, η=η13\eta=\eta_{1}^{3}, and ρ=ρk1\rho=\rho_{k-1}, implies

]|g(\vectorsymy)g(\vectorsymx)|εnpλ3δk1α¯δk1νs(),p(δk1(\vectorsymy¯))cελ3npη1ωρkωGδk1(\vectorsymy¯).]|g(\vectorsym{y})-g(\vectorsym{x})|\leq\varepsilon^{-n-p}_{\lambda_{3}}\delta_{k-1}^{\underline{\alpha}_{\delta_{k-1}}}\nu^{s(\cdot),p}(\mathcal{B}_{\delta_{k-1}}(\overline{\vectorsym{y}}))\leq c\varepsilon_{\lambda_{3}}^{-n-p}\eta_{1}^{\omega}\rho_{k}^{-\omega}G_{\delta_{k-1}}(\overline{\vectorsym{y}}).

Returning to (24), we apply the Fubini-Tonelli theorem and Lemma 4.3 and use the upper Ahlfors-regularity to produce

I2,k\displaystyle I_{2,k}\leq cελ3npη1t+ωβpρkωβpΓ′′Gδk1(\vectorsymy¯)dt(\vectorsymy¯)\displaystyle c\varepsilon_{\lambda_{3}}^{-n-p}\eta_{1}^{-t+\omega-\beta p}\rho_{k}^{-\omega-\beta p}\int_{\Gamma^{\prime\prime}}G_{\delta_{k-1}}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})
\displaystyle\leq cελ3npη12t+ωβpρk(tω)βp|u|𝒩s(),p(2δk1(Γ′′))p.\displaystyle c\varepsilon_{\lambda_{3}}^{-n-p}\eta_{1}^{-2t+\omega-\beta p}\rho_{k}^{(t-\omega)-\beta p}|u|^{p}_{\mathscr{N}^{s(\cdot),p}(\mathcal{B}_{2\delta_{k-1}}(\Gamma^{\prime\prime}))}.

Using the bounds for I1,kI_{1,k}, I2,kI_{2,k}, and I3,kI_{3,k} in (23), we conclude that

k=1Γ′′Γρk′′(\vectorsymx¯)|Tu(\vectorsymy¯)Tu(\vectorsymx¯)|p\vectorsymy¯\vectorsymx¯t+βpdt(\vectorsymy¯)dt(\vectorsymx¯)\displaystyle\sum_{k=1}^{\infty}\int_{\Gamma^{\prime\prime}}\int_{\Gamma^{\prime\prime}_{\rho_{k}}(\overline{\vectorsym{x}})}\frac{|Tu(\overline{\vectorsym{y}})-Tu(\overline{\vectorsym{x}})|^{p}}{\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
cC1ελ3npη12t+ωβpk=1ρk(tω)βp|u|𝒩s(),p(2δk1(Γ′′))p\displaystyle\qquad\qquad\qquad\qquad\leq cC_{1}\varepsilon_{\lambda_{3}}^{-n-p}\eta_{1}^{-2t+\omega-\beta p}\sum_{k=1}^{\infty}\rho_{k}^{(t-\omega)-\beta p}|u|^{p}_{\mathscr{N}^{s(\cdot),p}(\mathcal{B}_{2\delta_{k-1}}(\Gamma^{\prime\prime}))}
C2|u|𝒩s(),p(2δΓ(Γ′′))p,\displaystyle\qquad\qquad\qquad\qquad\leq C^{\prime}_{2}|u|^{p}_{\mathscr{N}^{s(\cdot),p}(\mathcal{B}_{2\delta_{\Gamma}}(\Gamma^{\prime\prime}))}, (25)

since βp<tω\beta p<t-\omega. Here, we have put

C2=C2(λ0,η1,δΓ,ω,β):=\displaystyle C^{\prime}_{2}=C^{\prime}_{2}(\lambda_{0},\eta_{1},\delta_{\Gamma},\omega,\beta):= cC1(λ0,η1,ω)δΓ(tω)βpη1t2βp(1η1(tω)βp)1\displaystyle cC_{1}(\lambda_{0},\eta_{1},\omega)\delta_{\Gamma}^{(t-\omega)-\beta p}\eta_{1}^{-t-2\beta p}\left(1-\eta_{1}^{(t-\omega)-\beta p}\right)^{-1}
\displaystyle\leq cC1(λ0,η1,ω)η13t+2ω(1η1(tω)βp)1.\displaystyle cC_{1}(\lambda_{0},\eta_{1},\omega)\eta_{1}^{-3t+2\omega}\left(1-\eta_{1}^{(t-\omega)-\beta p}\right)^{-1}.

We now turn to establishing a bound for

k=1Γ′′Γρk′′(\vectorsymx¯)|Tu(\vectorsymy¯)Tu(\vectorsymx¯)|p\vectorsymy¯\vectorsymx¯nt+βpdt(\vectorsymy¯)dt(\vectorsymx¯).\sum_{k=-\infty}^{1}\int_{\Gamma^{\prime\prime}}\int\limits_{\Gamma^{\prime\prime}_{\rho_{k}}(\overline{\vectorsym{x}})}\frac{|Tu(\overline{\vectorsym{y}})-Tu(\overline{\vectorsym{x}})|^{p}}{\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}}).

In this case, we have \vectorsymy¯\vectorsymx¯nρk+1\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}\geq\rho_{k+1}, for each \vectorsymy¯Γρk(\vectorsymx¯)\overline{\vectorsym{y}}\in\Gamma_{\rho_{k}}(\overline{\vectorsym{x}}) and k1k\leq 1. Consequently,

k=1Γ′′Γρk′′(\vectorsymx¯)|Tu(\vectorsymy¯)Tu(\vectorsymx¯)|p\vectorsymy¯\vectorsymx¯nt+βpdt(\vectorsymy¯)dt(\vectorsymx¯)\displaystyle\sum_{k=-\infty}^{1}\int_{\Gamma^{\prime\prime}}\int_{\Gamma^{\prime\prime}_{\rho_{k}}(\overline{\vectorsym{x}})}\frac{|Tu(\overline{\vectorsym{y}})-Tu(\overline{\vectorsym{x}})|^{p}}{\|\overline{\vectorsym{y}}-\overline{\vectorsym{x}}\|_{\mathbb{R}^{n}}^{t+\beta p}}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
k=1ρk+1tβpΓ′′Γρk′′(\vectorsymx¯)|Tu(\vectorsymy¯)Tu(\vectorsymx¯)|pdt(\vectorsymy¯)dt(\vectorsymx¯)\displaystyle\qquad\qquad\qquad\qquad\leq\sum_{k=-\infty}^{1}\rho_{k+1}^{-t-\beta p}\int_{\Gamma^{\prime\prime}}\int_{\Gamma^{\prime\prime}_{\rho_{k}}(\overline{\vectorsym{x}})}|Tu(\overline{\vectorsym{y}})-Tu(\overline{\vectorsym{x}})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{y}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
ck=1ρk+1tβpΓ′′t(Γρk′′(\vectorsymx¯))|Tu(\vectorsymx¯)|pdt(\vectorsymx¯)\displaystyle\qquad\qquad\qquad\qquad\leq c\sum_{k=-\infty}^{1}\rho_{k+1}^{-t-\beta p}\int_{\Gamma^{\prime\prime}}\mathscr{H}^{t}(\Gamma^{\prime\prime}_{\rho_{k}}(\overline{\vectorsym{x}}))|Tu(\overline{\vectorsym{x}})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
cAΓη1tβpTuLp(Γ′′)pk=1ρkβp\displaystyle\qquad\qquad\qquad\qquad\leq cA_{\Gamma}\eta_{1}^{-t-\beta p}\|Tu\|^{p}_{L^{p}(\Gamma^{\prime\prime})}\sum_{k=-\infty}^{1}\rho_{k}^{-\beta p}
=cδΓβpη1t2βpTuLp(Γ′′)pk=0η1kβp=C2′′TuLp(Γ)p,\displaystyle\qquad\qquad\qquad\qquad=c\delta_{\Gamma}^{-\beta p}\eta_{1}^{-t-2\beta p}\|Tu\|^{p}_{L^{p}(\Gamma^{\prime\prime})}\sum_{k=0}^{\infty}\eta_{1}^{k\beta p}=C^{\prime\prime}_{2}\|Tu\|^{p}_{L^{p}(\Gamma)}, (26)

with

C2′′=C2′′(λ0,η1,δΓ,β):=cδΓβpη1t2βp(1η1βp)1.C^{\prime\prime}_{2}=C_{2}^{\prime\prime}(\lambda_{0},\eta_{1},\delta_{\Gamma},\beta):=c\delta_{\Gamma}^{-\beta p}\eta_{1}^{-t-2\beta p}\left(1-\eta_{1}^{\beta p}\right)^{-1}.

Recalling (21) and (25), the result is proved. ∎

This section’s second main result will be used to establish Theorem 1.2(b).

Theorem 4.6.

Assume (H1), (H2), (H4), and (H4′′). There exists δ,ρ>0\delta^{\prime},\rho^{\prime}>0 such that Ωρ(\vectorsymx¯0)Aω,δΓt\partial\Omega\cap\mathcal{B}_{\rho^{\prime}}(\overline{\vectorsym{x}}_{0})\subseteq A_{\omega,\delta^{\prime}}\cap\Gamma_{t}, with ω<tn(θΓ(\vectorsymx¯0)1)\omega<t-n(\theta_{\Gamma}(\overline{\vectorsym{x}}_{0})-1). Then,

limρ0+Ωρ(\vectorsymx¯0)|Tu(\vectorsymx¯0)u(\vectorsymx)|pd\vectorsymx=0.\lim_{\rho\to 0^{+}}\fint_{\Omega_{\rho}(\overline{\vectorsym{x}}_{0})}|Tu(\overline{\vectorsym{x}}_{0})-u(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}=0.
Remark 8.
  1. (a)

    The assumption Ωρ(\vectorsymx¯0)Aω,δΓt\partial\Omega\cap\mathcal{B}_{\rho^{\prime}}(\overline{\vectorsym{x}}_{0})\subseteq A_{\omega,\delta^{\prime}}\cap\Gamma_{t} requires Γρ(\vectorsymx¯0)=Ωρ(\vectorsymx¯0)\Gamma\cap\mathcal{B}_{\rho}(\overline{\vectorsym{x}}_{0})=\partial\Omega\cap\mathcal{B}_{\rho}(\overline{\vectorsym{x}}_{0}), for all 0<ρρ0<\rho\leq\rho^{\prime}.

  2. (b)

    The result implies there exists ρ0>0\rho_{0}>0 such that

    Ωρ0(\vectorsymx¯0)|u(\vectorsymx)|pd\vectorsymxcΩρ0(\vectorsymx¯0)|Tu(\vectorsymx¯0)u(\vectorsymx)|pd\vectorsymx+cρ0n|Tu(\vectorsymx¯0)|p<\displaystyle\int_{\Omega_{\rho_{0}}(\overline{\vectorsym{x}}_{0})}|u(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}\leq c\int_{\Omega_{\rho_{0}}(\overline{\vectorsym{x}}_{0})}|Tu(\overline{\vectorsym{x}}_{0})-u(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}+c\rho_{0}^{n}|Tu(\overline{\vectorsym{x}}_{0})|^{p}<\infty
    \displaystyle\Longrightarrow uLp(Ωρ0(\vectorsymx¯0)).\displaystyle u\in L^{p}(\Omega_{\rho_{0}}(\overline{\vectorsym{x}}_{0})).

    Recall that u𝒩s(),p(Ω)u\in\mathscr{N}^{s(\cdot),p}(\Omega) implies uLlocp(Ω)u\in L^{p}_{\operatorname{loc}}(\Omega). Since TuTu need not be bounded, however, we cannot conclude that uLp(Ω)u\in L^{p}(\Omega).

Proof.

Put θ0:=θΓ(\vectorsymx¯0)\theta_{0}:=\theta_{\Gamma}(\overline{\vectorsym{x}}_{0}). We may write

Ωρ(\vectorsymx¯0)|u(\vectorsymx)Tu(\vectorsymx¯0)|pd\vectorsymxcΩρ(\vectorsymx¯0)|u(\vectorsymx)g(\vectorsymx)|pd\vectorsymx+Ωρ(\vectorsymx¯0)|Tu(\vectorsymx0)g(\vectorsymx)|pd\vectorsymx.\fint_{\Omega_{\rho}(\overline{\vectorsym{x}}_{0})}|u(\vectorsym{x})-Tu(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\vectorsym{x}\leq c\fint_{\Omega_{\rho}(\overline{\vectorsym{x}}_{0})}|u(\vectorsym{x})-g(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}+\fint_{\Omega_{\rho}(\overline{\vectorsym{x}}_{0})}|Tu(\vectorsym{x}_{0})-g(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}. (27)

For the first integral, the same argument used for the proof of Corollary 3.2 can be used to show

limρ0+Ωρ(\vectorsymx¯0)|u(\vectorsymx)g(\vectorsymx)|pd\vectorsymx=0.\lim_{\rho\to 0^{+}}\fint_{\Omega_{\rho}(\overline{\vectorsym{x}}_{0})}|u(\vectorsym{x})-g(\vectorsym{x})|^{p}\mathrm{d}\vectorsym{x}=0.

For the last integral in (27), we need to introduce several additional definitions. Since ω<tn(θ01)\omega<t-n(\theta_{0}-1), we may select n(θ01)/p<β<(tω)/pn(\theta_{0}-1)/p<\beta<(t-\omega)/p. By Theorem 4.5, we find TuWβ,p(Γρ(\vectorsymx¯0))Tu\in W^{\beta,p}(\Gamma\cap\mathcal{B}_{\rho^{\prime}}(\overline{\vectorsym{x}}_{0})). Corollary 2.4 implies

limρ0+ρn(θ01)Γρ(\vectorsymx¯0)|Tu(\vectorsymx¯)Tu(\vectorsymx¯0)|pdt(\vectorsymx¯)limρ0+ρpβΓρ(\vectorsymx¯0)|Tu(\vectorsymx¯)Tu(\vectorsymx¯0)|pdt(\vectorsymx¯)=0.\lim_{\rho\to 0^{+}}\rho^{-n(\theta_{0}-1)}\fint_{\Gamma\cap\mathcal{B}_{\rho}(\overline{\vectorsym{x}}_{0})}|Tu(\overline{\vectorsym{x}})-Tu(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\\ \leq\lim_{\rho\to 0^{+}}\rho^{-p\beta}\fint_{\Gamma\cap\mathcal{B}_{\rho}(\overline{\vectorsym{x}}_{0})}|Tu(\overline{\vectorsym{x}})-Tu(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})=0. (28)

With Λ:=30CΓη11\Lambda:=30C_{\Gamma}\eta_{1}^{-1}, and let 0<ρ014Λ1ρ0<\rho_{0}\leq\frac{1}{4}\Lambda^{-1}\rho^{\prime} be given. For each j𝕎j\in\mathbb{W}, define ρj:=2jρ0\rho_{j}:=2^{-j}\rho_{0} and

Ej:={\vectorsymxΩρ(\vectorsymx¯0):ρj+1dΩ(\vectorsymx)<ρj}.E_{j}:=\left\{\vectorsym{x}\in\Omega_{\rho}(\overline{\vectorsym{x}}_{0}):\rho_{j+1}\leq d_{\partial\Omega}(\vectorsym{x})<\rho_{j}\right\}. (29)

We observe that Ωρ0(\vectorsymx¯0)=j=0Ej\Omega_{\rho_{0}}(\overline{\vectorsym{x}}_{0})=\bigcup_{j=0}^{\infty}E_{j}. Define r:Ωρ0(\vectorsymx¯0)(0,ρ2)r:\Omega_{\rho_{0}}(\overline{\vectorsym{x}}_{0})\to(0,\rho_{2}) by r:=14dΩρ0(\vectorsymx¯0)(\vectorsymx)>0r:=\frac{1}{4}d_{\partial\Omega_{\rho_{0}}(\overline{\vectorsym{x}}_{0})}(\vectorsym{x})>0. Besicovitch’s covering theorem provides countable sets II and {\vectorsymxi}iIjD\{\vectorsym{x}_{i}\}_{i\in I_{j}}\subseteq D such that

Ωρ(\vectorsymx¯0)=iIBi and sup\vectorsymxiIχBi(\vectorsymx)c(n).\Omega_{\rho}(\overline{\vectorsym{x}}_{0})=\bigcup_{i\in I}B_{i}\quad\text{ and }\quad\sup_{\vectorsym{x}\in\mathbb{R}}\sum_{i\in I}\chi_{B_{i}}(\vectorsym{x})\leq c(n).

Here, we have put Bi:=ri(\vectorsymx¯i)B_{i}:=\mathcal{B}_{r_{i}}(\overline{\vectorsym{x}}_{i}) and ri:=r(\vectorsymxi)r_{i}:=r(\vectorsym{x}_{i}), for iIi\in I. For each j𝕎j\in\mathbb{W}, define

Ij:={iI:\vectorsymxiEj}.I_{j}:=\left\{i\in I:\vectorsym{x}_{i}\in E_{j}\right\}.

For each jj\in\mathbb{N} and iIji\in I_{j}, we have dΩ(\vectorsymxi)<ρjd_{\partial\Omega}(\vectorsym{x}_{i})<\rho_{j} and \vectorsymxi\vectorsymx¯0n<ρ0\|\vectorsym{x}_{i}-\overline{\vectorsym{x}}_{0}\|_{\mathbb{R}^{n}}<\rho_{0}, so we may select \vectorsymx¯iΩρ0(\vectorsymx¯0)\overline{\vectorsym{x}}_{i}\in{\partial\Omega}\cap\mathcal{B}_{\rho_{0}}(\overline{\vectorsym{x}}_{0}) such that \vectorsymx¯i\vectorsymxin<2dΩ(\vectorsymxi)<ρj1\|\overline{\vectorsym{x}}_{i}-\vectorsym{x}_{i}\|_{\mathbb{R}^{n}}<2d_{\partial\Omega}(\vectorsym{x}_{i})<\rho_{j-1}. Using Lemma 2.2, we may select a countable, in fact finite, set KjK_{j}\subset\mathbb{N} and {\vectorsymy¯j,k}kKjΩρ0(\vectorsymx¯0)\left\{\overline{\vectorsym{y}}_{j,k}\right\}_{k\in K_{j}}\subseteq{\partial\Omega}\cap\mathcal{B}_{\rho_{0}}(\overline{\vectorsym{x}}_{0}) such that

Ωρ0(\vectorsymx¯0)kKjΓj,kΓ2ρ0(\vectorsymx¯0) and supxnkKjχ2Λρj(\vectorsymy¯j,k)(\vectorsymx)c(n).\partial\Omega\cap\mathcal{B}_{\rho_{0}}(\overline{\vectorsym{x}}_{0})\subseteq\bigcup_{k\in K_{j}}\Gamma^{\prime}_{j,k}\subseteq\Gamma\cap\mathcal{B}_{2\rho_{0}}(\overline{\vectorsym{x}}_{0})\quad\text{ and }\quad\sup_{x\in\mathbb{R}^{n}}\sum_{k\in K_{j}}\chi_{\mathcal{B}_{2\Lambda\rho_{j}}(\overline{\vectorsym{y}}_{j,k})}(\vectorsym{x})\leq c(n). (30)

Here Γj,k:=Ωρj(\vectorsymy¯j,k)\Gamma^{\prime}_{j,k}:=\partial\Omega\cap\mathcal{B}_{\rho_{j}}(\overline{\vectorsym{y}}_{j,k}). Note that kKjΓj,kΓ2ρ0(\vectorsymx¯0)Γρ(\vectorsymx¯0)\bigcup_{k\in K_{j}}\Gamma^{\prime}_{j,k}\subseteq\Gamma\cap\mathcal{B}_{2\rho_{0}}(\overline{\vectorsym{x}}_{0})\subseteq\Gamma\cap\mathcal{B}_{\rho^{\prime}}(\overline{\vectorsym{x}}_{0}).

Given jj\in\mathbb{N} and iIji\in I_{j}, there exists a unique smallest kKjk\in K_{j} such that \vectorsymx¯iΓj,k\overline{\vectorsym{x}}_{i}\in\Gamma_{j,k}. Thus, defining

Ij,k:={iIj:\vectorsymx¯iΓj,kk<k;kKjΓj,k},I_{j,k}:=\left\{i\in I_{j}:\overline{\vectorsym{x}}_{i}\in\Gamma^{\prime}_{j,k}\setminus\bigcup_{k^{\prime}<k;k^{\prime}\in K_{j}}\Gamma^{\prime}_{j,k^{\prime}}\right\},

we find Ij:=kKjIj,kI_{j}:=\bigcup_{k\in K_{j}}I_{j,k}. Set Uj,k:=iIj,kBiU_{j,k}:=\bigcup_{i\in I_{j,k}}B_{i}. Then {Uj,k}kKj\{U_{j,k}\}_{k\in K_{j}} has bounded overlap. Indeed, since for each iIji\in I_{j}, there is only one kKjk\in K_{j} such that iIj,ki\in I_{j,k}, we deduce that

sup\vectorsymxnkKjχUj,k(\vectorsymx)sup\vectorsymxnkKjiIj,kχBi(\vectorsymx)=sup\vectorsymxniIjχBi(\vectorsymx)c(n).\sup_{\vectorsym{x}\in\mathbb{R}^{n}}\sum_{k\in K_{j}}\chi_{U_{j,k}}(\vectorsym{x})\leq\sup_{\vectorsym{x}\in\mathbb{R}^{n}}\sum_{k\in K_{j}}\sum_{i\in I_{j,k}}\chi_{B_{i}}(\vectorsym{x})=\sup_{\vectorsym{x}\in\mathbb{R}^{n}}\sum_{i\in I_{j}}\chi_{B_{i}}(\vectorsym{x})\leq c(n).

With kKjk\in K_{j} and iIj,ki\in I_{j,k}, let \vectorsymxUj,k\vectorsym{x}\in U_{j,k} and \vectorsymy¯Γj,k\overline{\vectorsym{y}}\in\Gamma_{j,k} be given. Then, there exists an iIj,ki\in I_{j,k} such that \vectorsymxBi\vectorsym{x}\in B_{i}. We see that

dΩ(\vectorsymxi)<dΩ(\vectorsymx)+ri<dΩ(\vectorsymx)+14dΩ(\vectorsymxi)dΩ(\vectorsymxi)<43dΩ(\vectorsymx)d_{\partial\Omega}(\vectorsym{x}_{i})<d_{\partial\Omega}(\vectorsym{x})+r_{i}<d_{\partial\Omega}(\vectorsym{x})+{\textstyle{\frac{1}{4}}}d_{\partial\Omega}(\vectorsym{x}_{i})\Longrightarrow d_{\partial\Omega}(\vectorsym{x}_{i})<{\textstyle{\frac{4}{3}}}d_{\partial\Omega}(\vectorsym{x})

and

\vectorsymx¯\vectorsymx\displaystyle\|\overline{\vectorsym{x}}-\vectorsym{x}\|\leq \vectorsymx¯\vectorsymx¯in+\vectorsymx¯i\vectorsymxin+\vectorsymxi\vectorsymxn<2ρj+ρj1+ri\displaystyle\|\overline{\vectorsym{x}}-\overline{\vectorsym{x}}_{i}\|_{\mathbb{R}^{n}}+\|\overline{\vectorsym{x}}_{i}-\vectorsym{x}_{i}\|_{\mathbb{R}^{n}}+\|\vectorsym{x}_{i}-\vectorsym{x}\|_{\mathbb{R}^{n}}<2\rho_{j}+\rho_{j-1}+r_{i}
<\displaystyle< 5ρj10dΩ(\vectorsymxi)<15dΩ(\vectorsymx).\displaystyle 5\rho_{j}\leq 10d_{\partial\Omega}(\vectorsym{x}_{i})<15d_{\partial\Omega}(\vectorsym{x}).

Put λ:=115λ0\lambda^{\prime}:=\frac{1}{15}\lambda_{0}. We conclude that

BiUj,kQ115,5ρj1(\vectorsymx¯)Qλ,5ρj(\vectorsymx¯), for all \vectorsymx¯Γj,k.B_{i}\subseteq U_{j,k}\subseteq Q^{1}_{\frac{1}{15},5\rho_{j}}(\overline{\vectorsym{x}})\subseteq Q_{\lambda^{\prime},5\rho_{j}}(\overline{\vectorsym{x}}),\quad\text{ for all }\overline{\vectorsym{x}}\in\Gamma^{\prime}_{j,k}. (31)

Now, we are prepared to bound the second integral in (27). Since {Uk,j}j,kKj\{U_{k,j}\}_{j\in\mathbb{N},k\in K_{j}} is a cover for Ωρ\Omega_{\rho}, we have

Ωρ(\vectorsymx¯0)|g(\vectorsymx)Tu(\vectorsymx¯0)|pd\vectorsymx1|Ωρ(\vectorsymx¯0)|j=1kKjUj,k|g(\vectorsymx)Tu(\vectorsymx¯0)|pd\vectorsymx\displaystyle\fint_{\Omega_{\rho}(\overline{\vectorsym{x}}_{0})}|g(\vectorsym{x})-Tu(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\vectorsym{x}\leq\frac{1}{|\Omega_{\rho}(\overline{\vectorsym{x}}_{0})|}\sum_{j=1}^{\infty}\sum_{k\in K_{j}}\int_{U_{j,k}}|g(\vectorsym{x})-Tu(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\vectorsym{x}
1|Ωρ(\vectorsymx¯0)|j=1kKj1|Γj,k|Γj,kUj,k|g(\vectorsymx)Tu(\vectorsymx¯0)|pd\vectorsymxdt(\vectorsymx¯)\displaystyle\quad\leq\frac{1}{|\Omega_{\rho}(\overline{\vectorsym{x}}_{0})|}\sum_{j=1}^{\infty}\sum_{k\in K_{j}}\frac{1}{|\Gamma^{\prime}_{j,k}|}\int_{\Gamma_{j,k}}\int_{U_{j,k}}|g(\vectorsym{x})-Tu(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\vectorsym{x}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
1|Ωρ(\vectorsymx¯0)|j=1kKj|Uj,k||Γj,k|Γj,kUj,k|g(\vectorsymx)Tu(\vectorsymy¯)|pd\vectorsymxdt(\vectorsymx¯)\displaystyle\quad\leq\frac{1}{|\Omega_{\rho}(\overline{\vectorsym{x}}_{0})|}\sum_{j=1}^{\infty}\sum_{k\in K_{j}}\frac{|U_{j,k}|}{|\Gamma^{\prime}_{j,k}|}\int_{\Gamma_{j,k}}\fint_{U_{j,k}}|g(\vectorsym{x})-Tu(\overline{\vectorsym{y}})|^{p}\mathrm{d}\vectorsym{x}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
+1|Ωρ(\vectorsymx¯0)|j=1kKj|Uj,k|Γj,k|Tu(\vectorsymx¯)Tu(\vectorsymx¯0)|pd\vectorsymxdt(\vectorsymx¯).\displaystyle\qquad\qquad\qquad+\frac{1}{|\Omega_{\rho}(\overline{\vectorsym{x}}_{0})|}\sum_{j=1}^{\infty}\sum_{k\in K_{j}}|U_{j,k}|\fint_{\Gamma_{j,k}}|Tu(\overline{\vectorsym{x}})-Tu(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\vectorsym{x}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}}). (32)

Select j𝕎\ell_{j}\in\mathbb{W} such that η1j+1ρΓ5ρj<η1jρΓ\eta_{1}^{\ell_{j}+1}\rho_{\Gamma}\leq 5\rho_{j}<\eta_{1}^{\ell_{j}}\rho_{\Gamma}. For the first integral in (32), since Uj,kQλ,5ρj(\vectorsymx¯)U_{j,k}\subseteq Q_{\lambda^{\prime},5\rho_{j}}(\overline{\vectorsym{x}}), for each \vectorsymx¯Γj,k\overline{\vectorsym{x}}\in\Gamma^{\prime}_{j,k}, Lemma 4.2 implies

Γj,kUj,k|g(\vectorsymx)Tu(\vectorsymx¯)|pd\vectorsymxdt(\vectorsymx¯)cελ′′np(=j(η1ωΓj,kGη1δΓ(\vectorsymx¯)dt(\vectorsymx¯))1p)p,\int_{\Gamma^{\prime}_{j,k}}\fint_{U_{j,k}}|g(\vectorsym{x})-Tu(\overline{\vectorsym{x}})|^{p}\mathrm{d}\vectorsym{x}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\\ \leq c\varepsilon_{\lambda^{\prime\prime}}^{-n-p}\left(\sum_{\ell=\ell_{j}}^{\infty}\left(\eta_{1}^{-\omega}\int_{\Gamma^{\prime}_{j,k}}G_{\eta_{1}^{\ell}\delta_{\Gamma}}(\overline{\vectorsym{x}})\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\right)^{\frac{1}{p}}\right)^{p},

with λ′′:=η12λ\lambda^{\prime\prime}:=\eta_{1}^{2}\lambda^{\prime}. Continuing with Lemma 4.3, we obtain

Γj,kUj,k|g(\vectorsymx)Tu(\vectorsymx¯)|pd\vectorsymxdt(\vectorsymx¯)\displaystyle\int_{\Gamma^{\prime}_{j,k}}\fint_{U_{j,k}}|g(\vectorsym{x})-Tu(\overline{\vectorsym{x}})|^{p}\mathrm{d}\vectorsym{x}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\leq cελ′′np(=j(η1(tω)νs(),p(2η1δΓ(Γj,k)))1p)p\displaystyle c\varepsilon_{\lambda^{\prime\prime}}^{-n-p}\left(\sum_{\ell=\ell_{j}}^{\infty}\left(\eta_{1}^{\ell(t-\omega)}\nu^{s(\cdot),p}(\mathcal{B}_{2\eta_{1}^{\ell}\delta_{\Gamma}}(\Gamma^{\prime}_{j,k}))\right)^{\frac{1}{p}}\right)^{p}
\displaystyle\leq C3η1(j+1)(tω)νs(),p(2η1jδΓ(Γj,k))\displaystyle C_{3}^{\prime}\eta_{1}^{(\ell_{j}+1)(t-\omega)}\nu^{s(\cdot),p}(\mathcal{B}_{2\eta_{1}^{\ell_{j}}\delta_{\Gamma}}(\Gamma^{\prime}_{j,k}))
\displaystyle\leq C32j(tω)ρ0tωνs(),p(Λρj(Γj,k)),\displaystyle C_{3}^{\prime}2^{-j(t-\omega)}\rho_{0}^{t-\omega}\nu^{s(\cdot),p}(\mathcal{B}_{\Lambda\rho_{j}}(\Gamma^{\prime}_{j,k})),

Here C3:=cελ′′npη1ωt(1η1tω)1C_{3}^{\prime}:=c\varepsilon_{\lambda^{\prime\prime}}^{-n-p}\eta_{1}^{\omega-t}\left(1-\eta_{1}^{t-\omega}\right)^{-1} and, recalling the definition of Λ\Lambda above,

Λρj=30CΓη11ρj6CΓη1jρΓ=2η1jδΓ\Lambda\rho_{j}=30C_{\Gamma}\eta_{1}^{-1}\rho_{j}\geq 6C_{\Gamma}\eta_{1}^{\ell_{j}}\rho_{\Gamma}=2\eta_{1}^{\ell_{j}}\delta_{\Gamma}

The lower Ahlfor’s regularity implies t(Γj,k)AΓ1ρjt=c2jtρ0t\mathscr{H}^{t}(\Gamma^{\prime}_{j,k})\geq A_{\Gamma}^{-1}\rho_{j}^{t}=c2^{-jt}\rho_{0}^{t}. Recalling (31) and the bounded overlap property in (29), we find |Uj,k|cρjn=c2jnρ0n|U_{j,k}|\leq c\rho_{j}^{n}=c2^{-jn}\rho_{0}^{n}. Given \vectorsymxΛρj(Γj,k)\vectorsym{x}\in\mathcal{B}_{\Lambda\rho_{j}}(\Gamma^{\prime}_{j,k}), we must have \vectorsymx\vectorsymy¯j,kn(Λ+1)ρj2Λρj\|\vectorsym{x}-\overline{\vectorsym{y}}_{j,k}\|_{\mathbb{R}^{n}}\leq(\Lambda+1)\rho_{j}\leq 2\Lambda\rho_{j}, so Λρj(Γj,k)2Λρj(\vectorsymy¯j,k)4Λρ0(\vectorsymx¯0)\mathcal{B}_{\Lambda\rho_{j}}(\Gamma^{\prime}_{j,k})\subseteq\mathcal{B}_{2\Lambda\rho_{j}}(\overline{\vectorsym{y}}_{j,k})\subseteq\mathcal{B}_{4\Lambda\rho_{0}}(\overline{\vectorsym{x}}_{0}). Using the bounded overlap property for {2Λρj(\vectorsymy¯j,k)}kKj\{\mathcal{B}_{2\Lambda\rho_{j}}(\overline{\vectorsym{y}}_{j,k})\}_{k\in K_{j}}, we deduce that

kKj|Uj,k|t(Γj,k)Γj,kBi|g(\vectorsymx)Tu(\vectorsymx¯)|pd\vectorsymxdt(\vectorsymx¯)\displaystyle\sum_{k\in K_{j}}\frac{|U_{j,k}|}{\mathscr{H}^{t}(\Gamma^{\prime}_{j,k})}\int_{\Gamma^{\prime}_{j,k}}\fint_{B_{i}}|g(\vectorsym{x})-Tu(\overline{\vectorsym{x}})|^{p}\mathrm{d}\vectorsym{x}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
cC3(2j(tω)ρ0tω)(2jtρt)kKj(|Uj,k|νs(),p(Λρj(Γj,k)))\displaystyle\qquad\qquad\qquad\qquad\leq cC_{3}^{\prime}\left(2^{-j(t-\omega)}\rho_{0}^{t-\omega}\right)\left(2^{jt}\rho^{-t}\right)\sum_{k\in K_{j}}\left(|U_{j,k}|\nu^{s(\cdot),p}(\mathcal{B}_{\Lambda\rho_{j}}(\Gamma^{\prime}_{j,k}))\right)
cC3(2jωρ0ω)(2jnρn)kKjνs(),p(2Λρj(\vectorsymy¯j,k))\displaystyle\qquad\qquad\qquad\qquad\leq cC_{3}\left(2^{j\omega}\rho_{0}^{-\omega}\right)\left(2^{-jn}\rho^{n}\right)\sum_{k\in K_{j}}\nu^{s(\cdot),p}(\mathcal{B}_{2\Lambda\rho_{j}}(\overline{\vectorsym{y}}_{j,k}))
cC32j(nω)ρ0nωνs(),p(kKj2Λρj(\vectorsymy¯j,k))\displaystyle\qquad\qquad\qquad\qquad\leq cC_{3}^{\prime}2^{-j(n-\omega)}\rho_{0}^{n-\omega}\nu^{s(\cdot),p}\left(\bigcup_{k\in K_{j}}\mathcal{B}_{2\Lambda\rho_{j}}(\overline{\vectorsym{y}}_{j,k})\right)
cC32j(nω)ρ0nωνs(),p(4Λρ0(\vectorsymx¯0))\displaystyle\qquad\qquad\qquad\qquad\leq cC_{3}^{\prime}2^{-j(n-\omega)}\rho_{0}^{n-\omega}\nu^{s(\cdot),p}(\mathcal{B}_{4\Lambda\rho_{0}}(\overline{\vectorsym{x}}_{0}))

Also

kKj|Uj,k|Γj,k|Tu(\vectorsymx¯)Tu(\vectorsymx¯0)|pdt(\vectorsymx¯)\displaystyle\sum_{k\in K_{j}}|U_{j,k}|\fint_{\Gamma^{\prime}_{j,k}}|Tu(\overline{\vectorsym{x}})-Tu(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
c2jtρ0tkKj|Uj,k|Γj,k|Tu(\vectorsymx¯)Tu(\vectorsymx¯0)|pdt(\vectorsymx¯)\displaystyle\qquad\qquad\qquad\qquad\leq c2^{jt}\rho_{0}^{-t}\sum_{k\in K_{j}}|U_{j,k}|\int_{\Gamma^{\prime}_{j,k}}|Tu(\overline{\vectorsym{x}})-Tu(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})
c2j(nt)ρ0ntΓ2ρ0(\vectorsymx¯0)|Tu(\vectorsymx¯)Tu(\vectorsymx¯0)|pdt(\vectorsymx¯).\displaystyle\qquad\qquad\qquad\qquad\leq c2^{-j(n-t)}\rho_{0}^{n-t}\int_{\Gamma\cap\mathcal{B}_{2\rho_{0}}(\overline{\vectorsym{x}}_{0})}|Tu(\overline{\vectorsym{x}})-Tu(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}}).

Returning to (32), we have established

Ωρ0(\vectorsymx¯0)|g(\vectorsymx)Tu(\vectorsymx¯0)|pd\vectorsymx\displaystyle\fint_{\Omega_{\rho_{0}}(\overline{\vectorsym{x}}_{0})}|g(\vectorsym{x})-Tu(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\vectorsym{x}
c|Ωρ0(\vectorsymx¯0)|(C3ρ0nωνs(),p(4Λρ0(\vectorsymx¯0))j=12j(nω)\displaystyle\qquad\leq\frac{c}{|\Omega_{\rho_{0}}(\overline{\vectorsym{x}}_{0})|}\left(C_{3}^{\prime}\rho_{0}^{n-\omega}\nu^{s(\cdot),p}(\mathcal{B}_{4\Lambda\rho_{0}}(\overline{\vectorsym{x}}_{0}))\sum_{j=1}^{\infty}2^{-j(n-\omega)}\right.
+ρ0ntΓ2ρ(\vectorsymx¯0)|Tu(\vectorsymx¯)Tu(\vectorsymx¯0)|pdt(\vectorsymx¯)j=12j(nt))\displaystyle\qquad\qquad\qquad\qquad\left.+\rho_{0}^{n-t}\int_{\Gamma\cap\mathcal{B}_{2\rho}(\overline{\vectorsym{x}}_{0})}|Tu(\overline{\vectorsym{x}})-Tu(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}})\sum_{j=1}^{\infty}2^{-j(n-t)}\right)
cC3ρ0tωn(θ01)(ρ0tνs(),p(4Λρ0(\vectorsymx¯0)))Mt(\vectorsymx¯0)<\displaystyle\quad\leq cC_{3}^{\prime}\rho_{0}^{t-\omega-n(\theta_{0}-1)}\underbrace{\left(\rho_{0}^{-t}\nu^{s(\cdot),p}(\mathcal{B}_{4\Lambda\rho_{0}}(\overline{\vectorsym{x}}_{0}))\right)}_{\leq M_{t}(\overline{\vectorsym{x}}_{0})<\infty}
+cρ0n(θ01)Γ2ρ0(\vectorsymx¯0)|Tu(\vectorsymx¯)Tu(\vectorsymx¯0)|pdt(\vectorsymx¯).\displaystyle\qquad\qquad\qquad\qquad+c\rho_{0}^{-n(\theta_{0}-1)}\fint_{\Gamma\cap\mathcal{B}_{2\rho_{0}}(\overline{\vectorsym{x}}_{0})}|Tu(\overline{\vectorsym{x}})-Tu(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\mathscr{H}^{t}(\overline{\vectorsym{x}}).

Recalling that tω>n(θ01)t-\omega>n(\theta_{0}-1) and (28), we conclude that the upper bound above approaches vanishes as ρ00+\rho_{0}\to 0^{+}. Hence

limρ00+Ωρ0(\vectorsymx¯0)|g(\vectorsymx)Tu(\vectorsymx¯0)|pd\vectorsymx=0,\lim_{\rho_{0}\to 0^{+}}\fint_{\Omega_{\rho_{0}}(\overline{\vectorsym{x}}_{0})}|g(\vectorsym{x})-Tu(\overline{\vectorsym{x}}_{0})|^{p}\mathrm{d}\vectorsym{x}=0,

and the result is proved. ∎

Theorem 1.2 follows from this section’s main results.

Proof for Theorem 1.2.

Assumption (H3′′) implies Γ=Aω,δΓ\Gamma=A_{\omega,\delta_{\Gamma}}, with ω=α¯Γ<t\omega=-\underline{\alpha}_{\Gamma}<t. Thus Theorem 1.2(a) follows from Theorem 4.5.

For Theorem 1.2(b), we assume that Γ=Ω\Gamma=\partial\Omega, so ΩρΓ(\vectorsymx¯0)Aω,δΓ\partial\Omega\cap\mathcal{B}_{\rho_{\Gamma}}(\overline{\vectorsym{x}}_{0})\subseteq A_{\omega,\delta_{\Gamma}}. The result follows from Theorem 4.6. ∎

5 Appendix

Here, we provide some details for the “prickly” snowflake Ω2\Omega\subseteq\mathbb{R}^{2} region presented in Example 1.1(b). The Koch snowflake curve can be identified as the attractor for a finte iterated function system (IFS), of similarity transforms, which facilitates many of the curves properties [20]. Though the structure is similar, we require an infinite iterated function system (IIFS) to generate the curve Γ\Gamma in Example 1.1(b). This makes the analysis of Γ\Gamma substantially more difficult. One of the key ideas is that the images of certain compositions of the IIFS can be grouped together to mimic those produced by the IFS generating the Koch curve. Thi, in particular, allows us to establish t(Γ)>0\mathscr{H}^{t}(\Gamma)>0 and the Ahlfors-regularity with an argument similar to a standard one used for IFSs.

To organize the system and its compositions, we introduce several index sets. First, define :={3,4}\mathcal{I}^{\prime}:=\{3,4\}, 0′′:=\mathcal{I}^{\prime\prime}_{0}:=\emptyset, and j′′:={1,2}j\mathcal{I}^{\prime\prime}_{j}:=\{1,2\}^{j}, for each jj\in\mathbb{N}. We write ii^{\prime} or (i)(i^{\prime}) for \vectorsymi×0′′\vectorsym{i}\in\mathcal{I}^{\prime}\times\mathcal{I}^{\prime\prime}_{0}. Define

j:=×j′′,′′:=j=0j′′, and :=×′′=j=0j.\mathcal{I}_{j}:=\mathcal{I}^{\prime}\times\mathcal{I}^{\prime\prime}_{j},\quad\mathcal{I}^{\prime\prime}:=\bigcup_{j=0}^{\infty}\mathcal{I}^{\prime\prime}_{j},\quad\text{ and }\quad\mathcal{I}:=\mathcal{I}^{\prime}\times\mathcal{I}^{\prime\prime}=\bigcup_{j=0}^{\infty}\mathcal{I}_{j}.

Our IIFS is :={\vectorsymf\vectorsymi}\vectorsymi\mathscr{F}:=\{\vectorsym{f}_{\vectorsym{i}}\}_{\vectorsym{i}\in\mathcal{I}}, where each map \vectorsymf\vectorsymi𝒞(2;2)\vectorsym{f}_{\vectorsym{i}}\in\mathscr{C}^{\infty}(\mathbb{R}^{2};\mathbb{R}^{2}) is a contracting similarity, described below. To index the compositions of functions in \mathscr{F}, we will use

j:=j=××j times,:=×, and :=j=1j,\mathcal{I}^{*}_{j}:=\mathcal{I}^{j}=\underbrace{\mathcal{I}\times\cdots\times\mathcal{I}}_{j\text{ times}},\quad\mathcal{I}^{*}_{\infty}:=\mathcal{I}\times\mathcal{I}\cdots,\quad\text{ and }\quad\mathcal{I}^{*}:=\bigcup_{j=1}^{\infty}\mathcal{I}^{*}_{j},

so \mathcal{I}^{*} consists of all finite sequences of elements of \mathcal{I}, and \mathcal{I}^{*}_{\infty} is the set of all infinite sequences. The lengths of \vectorsymi′′j′′\vectorsym{i}^{\prime\prime}\in\mathcal{I}^{\prime\prime}_{j}, \vectorsymi=(i,\vectorsymi′′)j\vectorsym{i}=(i^{\prime},\vectorsym{i}^{\prime\prime})\in\mathcal{I}_{j}, and \vectorsymi=(\vectorsymi1,,\vectorsymij)j\vectorsym{i}^{*}=(\vectorsym{i}_{1},\dots,\vectorsym{i}_{j^{*}})\in\mathcal{I}^{*}_{j^{*}} are |\vectorsymi′′|:=j|\vectorsym{i}^{\prime\prime}|:=j, |\vectorsymi|:=1+|\vectorsymi′′|:=1+j|\vectorsym{i}|:=1+|\vectorsym{i}^{\prime\prime}|:=1+j, and |\vectorsymi|:=j|\vectorsym{i}^{*}|:=j^{*}, respectively. We also define \vectorsymi:=k=1|\vectorsymi||\vectorsymik||\vectorsymi|\|\vectorsym{i}^{*}\|:=\sum_{k=1}^{|\vectorsym{i}^{*}|}|\vectorsym{i}_{k}|\geq|\vectorsym{i}^{*}|. Given \vectorsymi′′′′\vectorsym{i}^{\prime\prime}\in\mathcal{I}^{\prime\prime} and 0k|\vectorsymi′′|0\leq k\leq|\vectorsym{i}^{\prime\prime}|, we use \vectorsymi′′|k\vectorsym{i}^{\prime\prime}\big{|}_{k} for the truncation of \vectorsymi′′\vectorsym{i}^{\prime\prime} to length kk, so \vectorsymi′′|k:=(i1′′,,ik′′)\vectorsym{i}^{\prime\prime}\big{|}_{k}:=(i^{\prime\prime}_{1},\dots,i^{\prime\prime}_{k}) and \vectorsymi′′|0\vectorsym{i}^{\prime\prime}\big{|}_{0} is the null vector. Similarly \vectorsymi|k:=(\vectorsymi1,,\vectorsymik)\vectorsym{i}^{*}\big{|}_{k}:=(\vectorsym{i}_{1},\dots,\vectorsym{i}_{k}), for 1k|\vectorsymi|1\leq k\leq|\vectorsym{i}^{*}|. The truncation for \vectorsymi\vectorsym{i}^{*}\in\mathcal{I}^{*} is denoted similarly. We will use ++\cdot\mathbin{+\mkern-10.0mu+}\cdot to denote concatenation of two vectors. Given \vectorsymi1=(i1,\vectorsymi1′′)\vectorsym{i}_{1}=(i_{1}^{\prime},\vectorsym{i}_{1}^{\prime\prime})\in\mathcal{I}

, so for example, if \vectorsymi1′′j1′′\vectorsym{i}^{\prime\prime}_{1}\in\mathcal{I}^{\prime\prime}_{j_{1}} and \vectorsymi2′′j2′′\vectorsym{i}^{\prime\prime}_{2}\in\mathcal{I}^{\prime\prime}_{j_{2}}, then

\vectorsymi1′′++\vectorsymi2′′=(i1,1′′,,i1,j1′′)++(i2,1′′,,i2,j2′′)=(i1,1′′,,i1,j1′′,i2,1′′,,i2,j2′′)j1+j2′′.\vectorsym{i}^{\prime\prime}_{1}\mathbin{+\mkern-10.0mu+}\vectorsym{i}^{\prime\prime}_{2}=(i^{\prime\prime}_{1,1},\dots,i^{\prime\prime}_{1,j_{1}})\mathbin{+\mkern-10.0mu+}(i^{\prime\prime}_{2,1},\dots,i^{\prime\prime}_{2,j_{2}})=(i^{\prime\prime}_{1,1},\dots,i^{\prime\prime}_{1,j_{1}},i^{\prime\prime}_{2,1},\dots,i^{\prime\prime}_{2,j_{2}})\in\mathcal{I}^{\prime\prime}_{j_{1}+j_{2}}.

If \vectorsymi1\vectorsym{i}_{1}\in\mathcal{I} and \vectorsymi2′′′′\vectorsym{i}^{\prime\prime}_{2}\in\mathcal{I}^{\prime\prime}, then \vectorsymi1++\vectorsymi2′′:=(i1,\vectorsymi1′′++\vectorsymi2′′)|\vectorsymi1′′|+|\vectorsymi2′′|\vectorsym{i}_{1}\mathbin{+\mkern-10.0mu+}\vectorsym{i}^{\prime\prime}_{2}:=(i_{1}^{\prime},\vectorsym{i}^{\prime\prime}_{1}\mathbin{+\mkern-10.0mu+}\vectorsym{i}^{\prime\prime}_{2})\in\mathcal{I}_{|\vectorsym{i}^{\prime\prime}_{1}|+|\vectorsym{i}^{\prime\prime}_{2}|}. Finally, we introduce a partial ordering on \mathcal{I}^{*} by writing \vectorsymi1=(\vectorsymi1,1,,\vectorsymi1,j1)(\vectorsymi2,1,,\vectorsymi2,j2)=\vectorsymi2\vectorsym{i}_{1}^{*}=(\vectorsym{i}_{1,1},\dots,\vectorsym{i}_{1,j_{1}^{*}})\leq(\vectorsym{i}_{2,1},\dots,\vectorsym{i}_{2,j_{2}^{*}})=\vectorsym{i}^{*}_{2} if

|\vectorsymi1|=j1j2=|\vectorsymi2|,|\vectorsymi1,j1||\vectorsymi2,j1|,\vectorsymi2|j11=\vectorsymi1|j11, and \vectorsymi2,j1||\vectorsymi1,j1|=\vectorsymi1,j1,|\vectorsym{i}_{1}^{*}|=j_{1}^{*}\leq j_{2}^{*}=|\vectorsym{i}_{2}^{*}|,\quad|\vectorsym{i}_{1,j_{1}^{*}}|\leq|\vectorsym{i}_{2,j_{1}^{*}}|,\quad\vectorsym{i}^{*}_{2}\big{|}_{j_{1}^{*}-1}=\vectorsym{i}_{1}^{*}\big{|}_{j_{1}^{*}-1},\text{ and }\;\vectorsym{i}_{2,j_{1}^{*}}\big{|}_{|\vectorsym{i}_{1,j_{1}^{*}}|}=\vectorsym{i}_{1,j_{1}^{*}},

so the first (j11)(j_{1}^{*}-1) components of \vectorsymi1\vectorsym{i}_{1}^{*} and \vectorsymi2\vectorsym{i}_{2}^{*} are identical and \vectorsymi1,j1\vectorsym{i}_{1,j_{1}^{*}}, the last component of \vectorsymi1\vectorsym{i}^{*}_{1}, is identical to the first |\vectorsymi1,j1||\vectorsym{i}_{1,j_{1}^{*}}| components of \vectorsymi2,j1\vectorsym{i}_{2,j_{1}^{*}}.

We now describe the similarity maps in \mathscr{F}. For each |\vectorsymi|3|\vectorsym{i}|\leq 3, the action of \vectorsymf\vectorsymi\vectorsym{f}_{\vectorsym{i}} on the polygonal region U0U_{0} is illustrated in Figs. 6 and 6.

Refer to caption
Figure 5: Initial Set U0U_{0}
Refer to caption
Figure 6: Images of the Initial Set

To be more precise, let {I\vectorsymi′′}\vectorsymi′′I′′\{I_{\vectorsym{i}^{\prime\prime}}\}_{\vectorsym{i}^{\prime\prime}\in I^{\prime\prime}} denote the open intervals that are removed during the construction of the middle-thirds Cantor set 𝒞[0,1]\mathcal{C}\subseteq[0,1]. Given \vectorsymi′′′′\vectorsym{i}^{\prime\prime}\in\mathcal{I}^{\prime\prime}, the interval I\vectorsymi′′++(1)I_{\vectorsym{i}^{\prime\prime}\mathbin{+\mkern-10.0mu+}(1)} is the middle-third interval to the left of I\vectorsymi′′I_{\vectorsym{i}^{\prime\prime}} and I\vectorsymi′′++(2)I_{\vectorsym{i}^{\prime\prime}\mathbin{+\mkern-10.0mu+}(2)} is the middle-third to the right, so for example,

I:=(13,23),I(1)=(19,29),I(2)=(79,89),I(1,1)=(127,227),I(1,2)=(727,827),etc..I:=({\textstyle{\frac{1}{3}}},{\textstyle{\frac{2}{3}}}),\>I_{(1)}=({\textstyle{\frac{1}{9}}},{\textstyle{\frac{2}{9}}}),\>I_{(2)}=({\textstyle{\frac{7}{9}}},{\textstyle{\frac{8}{9}}}),\>I_{(1,1)}=({\textstyle{\frac{1}{27}}},{\textstyle{\frac{2}{27}}}),\>I_{(1,2)}=({\textstyle{\frac{7}{27}}},{\textstyle{\frac{8}{27}}}),\>\text{etc..}

Let x\vectorsymi′′x_{\vectorsym{i}^{\prime\prime}}^{-} and x\vectorsymi′′+x_{\vectorsym{i}^{\prime\prime}}^{+} be the left and right endpoints of I\vectorsymi′′I_{\vectorsym{i}^{\prime\prime}}, respectively. Suppose that the base of U0U_{0} has unit length, is centered at \vectorsym0\vectorsym{0}, and is aligned with the first-coordinate axis. Further suppose that its height is at most 3/2\sqrt{3}/2. Let \vectorsymγi𝒞([0,1];2)\vectorsym{\gamma}_{i^{\prime}}\in\mathscr{C}([0,1];\mathbb{R}^{2}), with i{3,4}i^{\prime}\in\{3,4\}, be parameterizations for the curves depicted in Fig. 6 with the following property: for each \vectorsymi′′′′\vectorsym{i}^{\prime\prime}\in\mathcal{I}^{\prime\prime}, and i′′{1,2}i^{\prime\prime}\in\{1,2\},

\vectorsymγi(x\vectorsymi′′+)\vectorsymγi(x\vectorsymi′′)2=3\vectorsymγi(x\vectorsymi′′++(i′′)+)\vectorsymγi(x\vectorsymi′′++(i′′))2, for all i′′{1,2}.\|\vectorsym{\gamma}_{i^{\prime}}(x^{+}_{\vectorsym{i}^{\prime\prime}})-\vectorsym{\gamma}_{i^{\prime}}(x^{-}_{\vectorsym{i}^{\prime\prime}})\|_{\mathbb{R}^{2}}=3\|\vectorsym{\gamma}_{i^{\prime}}(x^{+}_{\vectorsym{i}^{\prime\prime}\mathbin{+\mkern-10.0mu+}(i^{\prime\prime})})-\vectorsym{\gamma}_{i^{\prime}}(x^{-}_{\vectorsym{i}^{\prime\prime}\mathbin{+\mkern-10.0mu+}(i^{\prime\prime})})\|_{\mathbb{R}^{2}},\quad\text{ for all }i^{\prime\prime}\in\{1,2\}.

We orient the curves so that \vectorsymγi(1)\vectorsym{\gamma}_{i^{\prime}}(1) corresponds to the point at the base of U0U_{0} and \vectorsymγi(0)\vectorsym{\gamma}_{i^{\prime}}(0) is the cusp point. Put L:=3\vectorsymγi(13)\vectorsymγi(23)2<12(1+3)L:=3\|\vectorsym{\gamma}_{i^{\prime}}(\frac{1}{3})-\vectorsym{\gamma}_{i^{\prime}}(\frac{2}{3})\|_{\mathbb{R}^{2}}<\frac{1}{2}\left(1+\sqrt{3}\right). Then

\vectorsymγi(x\vectorsymi′′+)\vectorsymγi(x\vectorsymi′′)2=(13)1+|\vectorsymi′′|L.\|\vectorsym{\gamma}_{i^{\prime}}(x^{+}_{\vectorsym{i}^{\prime\prime}})-\vectorsym{\gamma}_{i^{\prime}}(x^{-}_{\vectorsym{i}^{\prime\prime}})\|_{\mathbb{R}^{2}}=\left({\textstyle{\frac{1}{3}}}\right)^{1+|\vectorsym{i}^{\prime\prime}|}L.

The map \vectorsymf3,\vectorsymi′′\vectorsym{f}_{3,\vectorsym{i}^{\prime\prime}} is the unique orientation preserving similarity transform that maps the bottom right point (12,0)(\frac{1}{2},0) of U0U_{0} to \vectorsymx3,\vectorsymi′′:=\vectorsymγ3(x\vectorsymi′′)\vectorsym{x}^{-}_{3,\vectorsym{i}^{\prime\prime}}:=\vectorsym{\gamma}_{3}(x_{\vectorsym{i}^{\prime\prime}}^{-}) and maps the bottom left point (12,0)(-\frac{1}{2},0) to \vectorsymx3,\vectorsymi′′+:=\vectorsymγ3(x\vectorsymi′′+)\vectorsym{x}^{+}_{3,\vectorsym{i}^{\prime\prime}}:=\vectorsym{\gamma}_{3}(x_{\vectorsym{i}^{\prime\prime}}^{+}). On the other hand, \vectorsymf4,\vectorsymi′′\vectorsym{f}_{4,\vectorsym{i}^{\prime\prime}} maps (12,0)(-\frac{1}{2},0) to \vectorsymx4,\vectorsymi′′:=\vectorsymγ4(x\vectorsymi′′)\vectorsym{x}^{-}_{4,\vectorsym{i}^{\prime\prime}}:=\vectorsym{\gamma}_{4}(x_{\vectorsym{i}^{\prime\prime}}^{-}) and (12,0)(\frac{1}{2},0) to \vectorsymx4,\vectorsymi′′+:=\vectorsymγ4(x\vectorsymi′′+)\vectorsym{x}^{+}_{4,\vectorsym{i}^{\prime\prime}}:=\vectorsym{\gamma}_{4}(x_{\vectorsym{i}^{\prime\prime}}^{+}). With \vectorsymi=(i,\vectorsymi′′)\vectorsym{i}=(i^{\prime},\vectorsym{i}^{\prime\prime})\in\mathcal{I}, the similarity ratio for \vectorsymf\vectorsymi\vectorsym{f}_{\vectorsym{i}} is σ\vectorsymi=σi,\vectorsymi′′:=3|\vectorsymi|L<16(1+3)<12\sigma_{\vectorsym{i}}=\sigma_{i^{\prime},\vectorsym{i}^{\prime\prime}}:=3^{-|\vectorsym{i}|}L<\frac{1}{6}(1+\sqrt{3})<\frac{1}{2}.

The set ΓU¯0\Gamma\subseteq\overline{U}_{0}, considered in Example 1.1(b), is the unique compact set satisfying Γ=\vectorsymiI\vectorsymf\vectorsymi(Γ)¯\Gamma=\overline{\bigcup_{\vectorsym{i}\in I}\vectorsym{f}_{\vectorsym{i}}(\Gamma)}. Unlike finite iterated function systems, the closure is necessary [22], so Γ\Gamma is not necessarily an invariant set for \mathscr{F}. To establish the measure theoretic properties of Γ\Gamma and take advantage of its self-similarity properties, we need to identify an invariant set Γ0\Gamma_{0} such that ΓΓ0\Gamma\setminus\Gamma_{0} is a null set, with respect to an appropriate Hausdorff measure that will be determined later. Given \vectorsymij\vectorsym{i}^{*}\in\mathcal{I}^{*}_{j} and EU¯0E\subseteq\overline{U}_{0}, define

\vectorsymf\vectorsymi1:=\vectorsymf\vectorsymi1\vectorsymf\vectorsymij,E\vectorsymi:=f\vectorsymi(E), and σ\vectorsymi:=σ\vectorsymi1σ\vectorsymij=3\vectorsymiL|\vectorsymi|.\vectorsym{f}_{\vectorsym{i}_{1}^{*}}:=\vectorsym{f}_{\vectorsym{i}_{1}}\circ\cdots\circ\vectorsym{f}_{\vectorsym{i}_{j^{*}}},\quad E_{\vectorsym{i}^{*}}:=f_{\vectorsym{i}^{*}}(E),\quad\text{ and }\quad\sigma_{\vectorsym{i}^{*}}:=\sigma_{\vectorsym{i}_{1}}\cdots\sigma_{\vectorsym{i}_{j^{*}}}=3^{-\|\vectorsym{i}^{*}\|}L^{-|\vectorsym{i}^{*}|}.

If EE is closed and nonempty, then so is E\vectorsymiE_{\vectorsym{i}^{*}}. For convenience, we will use U\vectorsymi=U0,\vectorsymiU_{\vectorsym{i}^{*}}=U_{0,\vectorsym{i}^{*}}. We point out that \mathscr{F} satisfies the open set condition: for each \vectorsymi1,\vectorsymi2\vectorsym{i}_{1},\vectorsym{i}_{2}\in\mathcal{I}, we find U\vectorsymi1,U\vectorsymi2U0U_{\vectorsym{i}_{1}},U_{\vectorsym{i}_{2}}\subseteq U_{0} and U\vectorsymi1U\vectorsymi1=U_{\vectorsym{i}_{1}}\cap U_{\vectorsym{i}_{1}}=\emptyset if \vectorsymi1\vectorsymi2\vectorsym{i}_{1}\neq\vectorsym{i}_{2}. More generally, if \vectorsymi1,\vectorsymi2\vectorsym{i}_{1}^{*},\vectorsym{i}^{*}_{2}, satisfies \vectorsymi2|k\vectorsymi1|k\vectorsym{i}_{2}^{*}\big{|}_{k}\neq\vectorsym{i}_{1}^{*}\big{|}_{k}, for some 1kmin{|\vectorsymi1|,|\vectorsymi2|}1\leq k\leq\min\{|\vectorsym{i}_{1}^{*}|,|\vectorsym{i}_{2}^{*}|\}, then U\vectorsymi2U\vectorsymi1=U_{\vectorsym{i}_{2}^{*}}\cap U_{\vectorsym{i}_{1}^{*}}=\emptyset. Otherwise, either U\vectorsymi2U\vectorsymi1U_{\vectorsym{i}_{2}^{*}}\subseteq U_{\vectorsym{i}_{1}^{*}} or U\vectorsymi1U\vectorsymi2U_{\vectorsym{i}_{1}^{*}}\subseteq U_{\vectorsym{i}_{2}^{*}}. We also observe that E\vectorsymiE\vectorsymi++\vectorsymiE_{\vectorsym{i}^{*}}\subseteq E_{\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}\vectorsym{i}} and

diam(E\vectorsymi++\vectorsymi)=3\vectorsymi|\vectorsymi|L1+|\vectorsymi|diam(E)<(23)|\vectorsymi|+|\vectorsymi|diam(E), for all \vectorsymi.\operatorname{diam}(E_{\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}\vectorsym{i}})=3^{-\|\vectorsym{i}^{*}\|-|\vectorsym{i}|}L^{1+|\vectorsym{i}^{*}|}\operatorname{diam}(E)<\left(\frac{2}{3}\right)^{|\vectorsym{i}^{*}|+|\vectorsym{i}|}\operatorname{diam}(E),\quad\text{ for all }\vectorsym{i}\in\mathcal{I}.

Thus, for \vectorsymi\vectorsym{i}^{*}\in\mathcal{I}^{*}_{\infty}, the set E¯\vectorsymi:=j=1E¯\vectorsymi|j\overline{E}_{\vectorsym{i}^{*}}:=\bigcap_{j=1}^{\infty}\overline{E}_{\left.\vectorsym{i}^{*}\right|_{j}} is well-defined and a singleton. In [36], it is shown that Γ0:=\vectorsymiU¯\vectorsymi\Gamma_{0}:=\bigcup_{\vectorsym{i}^{*}\in\mathcal{I}^{*}_{\infty}}\overline{U}_{\vectorsym{i}^{*}} is an invariant set with respect to \mathscr{F}; i.e.,

Γ0=\vectorsymi\vectorsymf\vectorsymi(Γ0).\Gamma_{0}=\bigcup_{\vectorsym{i}\in\mathcal{I}}\vectorsym{f}_{\vectorsym{i}}(\Gamma_{0}).

We can now identify ΓΓ0\Gamma\setminus\Gamma_{0}. Set 𝒞i:=\vectorsymγi(𝒞)\mathcal{C}_{i^{\prime}}:=\vectorsym{\gamma}_{i^{\prime}}(\mathcal{C}). Since 𝒞i\mathcal{C}_{i^{\prime}} is closed and dist(Γi,\vectorsymi′′,𝒞i)0\operatorname{dist}(\Gamma_{i^{\prime},\vectorsym{i}^{\prime\prime}},\mathcal{C}_{i^{\prime}})\to 0, as |\vectorsymi′′||\vectorsym{i}^{\prime\prime}|\to\infty, if {\vectorsymi′′}k=1′′\{\vectorsym{i}^{\prime\prime}\}_{k=1}^{\infty}\subseteq\mathcal{I}^{\prime\prime} consists of distinct indices, then limk|\vectorsymik′′|\lim_{k\to\infty}|\vectorsym{i}_{k}^{\prime\prime}|\to\infty and the limit points of any sequence {\vectorsymyk}k=1\{\vectorsym{y}_{k}\}_{k=1}^{\infty} satisfying \vectorsymykΓi,\vectorsymik′′\vectorsym{y}_{k}\in\Gamma_{i^{\prime},\vectorsym{i}^{\prime\prime}_{k}} must belong to 𝒞i\mathcal{C}_{i^{\prime}}. Since each point in 𝒞\mathcal{C} is a limit point of a sequence of endpoints of the intervals removed to generate 𝒞\mathcal{C}, we conclude that ΓΓ0=𝒞\Gamma\setminus\Gamma_{0}=\mathcal{C}. By Lemma 2.1 in [36],

ΓΓ0=i(𝒞i\vectorsymi\vectorsymf\vectorsymi(𝒞i)).\Gamma\setminus\Gamma_{0}=\bigcup_{i^{\prime}\in\mathcal{I}^{\prime}}\left(\mathcal{C}_{i^{\prime}}\cup\bigcup_{\vectorsym{i}^{*}\in\mathcal{I}^{*}}\vectorsym{f}_{\vectorsym{i}^{*}}(\mathcal{C}_{i^{\prime}})\right).

Since 1(𝒞)=0\mathscr{H}^{1}(\mathcal{C})=0 and \mathcal{I}^{*} is countable, we conclude that 1(ΓΓ0)=0\mathscr{H}^{1}(\Gamma\setminus\Gamma_{0})=0. We also note that Γ0\Gamma_{0} is the set of so-called twist points for Γ\Gamma.

Next, we show that Γ0\Gamma_{0}, and thus Γ\Gamma, has Hausdorff dimension t>1t>1, and argue that its t\mathscr{H}^{t}-measure is finite. Since the system \mathscr{F} satisfies the open set condition, we may use a result from [22] to conclude that the Hausdorff dimension for Γ0\Gamma_{0} is

t=inf{τ:\vectorsymiσ\vectorsymiτ1}=inf{τ:Lτj=1(23τ)j1}.t=\inf\left\{\tau\in\mathbb{R}:\sum_{\vectorsym{i}\in\mathcal{I}}\sigma^{\tau}_{\vectorsym{i}}\leq 1\right\}=\inf\left\{\tau\in\mathbb{R}:L^{\tau}\sum_{j=1}^{\infty}\left(\frac{2}{3^{\tau}}\right)^{j}\leq 1\right\}.

In our case, the infimum is attained and is the unique solution to 2(Lt+1)=3t2\left(L^{t}+1\right)=3^{t}. The bounds for LL imply t1tt2t_{1}\leq t\leq t_{2}, where t1:=(ln4/ln3)1.26186t_{1}:=(\ln 4/\ln 3)\approx 1.26186 and t21.49936t_{2}\approx 1.49936 is the unique solution to 2((1+3)t2+2t2)=6t22\left((1+\sqrt{3})^{t_{2}}+2^{t_{2}}\right)=6^{t_{2}}. Note, we could reduce the height of U0U_{0}, while leaving the base unchanged, so that L=1L=1 and t=(ln4/ln3)t=(\ln 4/\ln 3). More generally, for any positive height, we find L>12L>\frac{1}{2} and Γ0\Gamma_{0} has Hausdorff dimension t>1t>1. In any case, as t(ΓΓ0)=0\mathscr{H}^{t}(\Gamma\setminus\Gamma_{0})=0, we conclude that, for all E(U¯0) and \vectorsymiE\in\mathscr{B}(\overline{U}_{0})\text{ and }\vectorsym{i}^{*}\in\mathcal{I}^{*},

t(EΓ)=t(EΓ0) and t(EΓ\vectorsymi)=t(EΓ0,\vectorsymi).\mathscr{H}^{t}(E\cap\Gamma)=\mathscr{H}^{t}(E\cap\Gamma_{0})\quad\text{ and }\quad\mathscr{H}^{t}(E\cap\Gamma_{\vectorsym{i}^{*}})=\mathscr{H}^{t}(E\cap\Gamma_{0,\vectorsym{i}^{*}}).

Thus, to establish Ahlfors-regularity for Γ\Gamma, it is sufficient prove it for Γ0\Gamma_{0}.

To this end, we will take advantage of some results provided by [36]. The class \mathscr{F} is clearly a conformal infinite iterated function system. The topological pressure, as defined in [36], is

limj1jln\vectorsymijσ\vectorsymit=limj1jln((\vectorsymi1σ\vectorsymi1t)(\vectorsymijσ\vectorsymijt))=limjlnjj=0.\lim_{j\to\infty}\frac{1}{j}\ln\sum_{\vectorsym{i}^{*}\in\mathcal{I}^{*}_{j}}\sigma^{t}_{\vectorsym{i}^{*}}=\lim_{j\to\infty}\frac{1}{j}\ln\left(\left(\sum_{\vectorsym{i}_{1}\in\mathcal{I}}\sigma^{t}_{\vectorsym{i}_{1}}\right)\cdots\left(\sum_{\vectorsym{i}_{j}\in\mathcal{I}}\sigma^{t}_{\vectorsym{i}_{j}}\right)\right)=\lim_{j\to\infty}\frac{\ln j}{j}=0.

Therefore, there exists a tt-conformal measure m:(U¯0)[0,1]m:\mathscr{B}(\overline{U}_{0})\to[0,1] on U¯0\overline{U}_{0}. That is, mm has the following properties: for each E(U¯0)E\in\mathscr{B}(\overline{U}_{0}),

  • m(E)=m(EΓ0)m(E)=m(E\cap\Gamma_{0}) and m(Γ0)=1m(\Gamma_{0})=1;

  • m(E\vectorsymi)=m(\vectorsymf\vectorsymi(E))=Eσ\vectorsymitdm=σ\vectorsymitm(E)=Lt3|\vectorsymi|tm(E)m(E_{\vectorsym{i}})=m(\vectorsym{f}_{\vectorsym{i}}(E))=\int_{E}\sigma_{\vectorsym{i}}^{t}\mathrm{d}m=\sigma_{\vectorsym{i}}^{t}m(E)=L^{t}3^{-|\vectorsym{i}|t}m(E), for each \vectorsymi\vectorsym{i}\in\mathcal{I};

  • m(U¯\vectorsymi1U¯\vectorsymi2)=0m(\overline{U}_{\vectorsym{i}_{1}}\cap\overline{U}_{\vectorsym{i}_{2}})=0 if and only if \vectorsymi1,\vectorsymi2\vectorsym{i}_{1},\vectorsym{i}_{2}\in\mathcal{I} satisfy \vectorsymi1\vectorsymi2\vectorsym{i}_{1}\neq\vectorsym{i}_{2}.

Lemma 4.2, in [36], implies the restriction of t\mathscr{H}^{t} to Γ0\Gamma_{0}, and thus Γ\Gamma, is absolutely continuous with respect to mm and finite. In fact, by inspecting the proof, we may deduce t(Γ)=t(Γ0)diam(U0)t\mathscr{H}^{t}(\Gamma)=\mathscr{H}^{t}(\Gamma_{0})\leq\operatorname{diam}(U_{0})^{t}. In any case, as we are only interested in the t\mathscr{H}^{t}-properties and mm-properties of Γ\Gamma, throughout the remainder of this section, we need not distinguish between Γ0\Gamma_{0} and Γ\Gamma.

We now work to establish a positive lower bound for t(Γ)\mathscr{H}^{t}(\Gamma). As stated earlier, a key idea is to group subcollections of \mathcal{I}^{*} in such a way that we may work with \mathscr{F} in a manner similar to an IFS (properties (a) and (c)) below). Our objective is to show that there exists a constant 0<c<0<c<\infty such that m(E)cdiam(E)tm(E)\leq c\operatorname{diam}(E)^{t}, for all E(U¯0)E\in\mathscr{B}(\overline{U}_{0}). Then, the Mass Distribution Principle [20] delivers the lower bound t(Γ)c1m(Γ)=c1\mathscr{H}^{t}(\Gamma)\geq c^{-1}m(\Gamma)=c^{-1}. Iterating the properties for mm stated above yields

  • m(E\vectorsymi)=m(\vectorsymf\vectorsymi(E)Γ0)=Eσ\vectorsymitdm=σ\vectorsymitm(E)m(E_{\vectorsym{i}^{*}})=m(\vectorsym{f}_{\vectorsym{i}^{*}}(E)\cap\Gamma_{0})=\int_{E}\sigma_{\vectorsym{i}^{*}}^{t}\mathrm{d}m=\sigma_{\vectorsym{i}^{*}}^{t}m(E), for all E(U¯0)E\in\mathscr{B}(\overline{U}_{0});

  • m(U¯\vectorsymi1U¯\vectorsymi2)=0m(\overline{U}_{\vectorsym{i}^{*}_{1}}\cap\overline{U}_{\vectorsym{i}_{2}^{*}})=0 if and only if \vectorsymi2|k\vectorsymi1|k\vectorsym{i}_{2}^{*}\big{|}_{k}\neq\vectorsym{i}^{*}_{1}\big{|}_{k}, for some 1kmin{|\vectorsymi1|,|\vectorsymi2|}1\leq k\leq\min\{|\vectorsym{i}^{*}_{1}|,|\vectorsym{i}^{*}_{2}|\}.

Put r0:=sup{r>0:r(\vectorsymx)U0}>0r_{0}:=\sup\{r>0:\mathcal{B}_{r}(\vectorsym{x})\subseteq U_{0}\}>0. Select \vectorsymx0U0\vectorsym{x}_{0}\in U_{0} such that r0(\vectorsymx0)U0\mathcal{B}_{r_{0}}(\vectorsym{x}_{0})\subseteq U_{0}. For each \vectorsymi\vectorsym{i}^{*}\in\mathcal{I}^{*},

diam(U\vectorsymi)=σ\vectorsymiD0 and σ\vectorsymir0(\vectorsymf\vectorsymi(\vectorsymx0))U\vectorsymiσ\vectorsymiD0(\vectorsymf\vectorsymi(\vectorsymx0)).\operatorname{diam}(U_{\vectorsym{i}^{*}})=\sigma_{\vectorsym{i}^{*}}D_{0}\quad\text{ and }\quad\mathcal{B}_{\sigma_{\vectorsym{i}^{*}}r_{0}}(\vectorsym{f}_{\vectorsym{i}^{*}}(\vectorsym{x}_{0}))\subseteq U_{\vectorsym{i}^{*}}\subseteq\mathcal{B}_{\sigma_{\vectorsym{i}^{*}}D_{0}}(\vectorsym{f}_{\vectorsym{i}^{*}}(\vectorsym{x}_{0})).

Define I^(\vectorsymi):={\vectorsymi^:\vectorsymi\vectorsymi^}\widehat{I}^{*}(\vectorsym{i}^{*}):=\left\{\widehat{\vectorsym{i}}^{*}\in\mathcal{I}^{*}:\vectorsym{i}^{*}\leq\widehat{\vectorsym{i}}^{*}\right\},

U^\vectorsymi:=\vectorsymi^^(\vectorsymi)U\vectorsymi^, and Γ^\vectorsymi:=\vectorsymi^^(\vectorsymi)Γ\vectorsymi^.\widehat{U}_{\vectorsym{i}^{*}}:=\bigcup_{\widehat{\vectorsym{i}}^{*}\in\widehat{\mathcal{I}}^{*}(\vectorsym{i}^{*})}U_{\widehat{\vectorsym{i}}^{*}},\quad\text{ and }\quad\widehat{\Gamma}_{\vectorsym{i}^{*}}:=\bigcup_{\widehat{\vectorsym{i}}^{*}\in\widehat{\mathcal{I}}^{*}(\vectorsym{i}^{*})}\Gamma_{\widehat{\vectorsym{i}}^{*}}.

For convenience, given \vectorsymi′′′′\vectorsym{i}^{\prime\prime}\in\mathcal{I}^{\prime\prime}, we will use \vectorsymi++(i′′)=(\vectorsymi1,,\vectorsymi|\vectorsymi|++(\vectorsymi′′))|\vectorsymi|\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}(i^{\prime\prime})=(\vectorsym{i}_{1},\dots,\vectorsym{i}_{|\vectorsym{i}^{*}|}\mathbin{+\mkern-10.0mu+}(\vectorsym{i}^{\prime\prime}))\in\mathcal{I}^{*}_{|\vectorsym{i}^{*}|}. Recall that \vectorsymi++(i)=(\vectorsymi1,,\vectorsymi|\vectorsymi|,(i))1+|\vectorsymi|\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}(i^{\prime})=(\vectorsym{i}_{1},\dots,\vectorsym{i}_{|\vectorsym{i}^{*}|},(i^{\prime}))\in\mathcal{I}^{*}_{1+|\vectorsym{i}^{*}|}, for ii^{\prime}\in\mathcal{I}^{\prime}. In either case, \vectorsymi++(i)=1+\vectorsymi\|\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}(i)\|=1+\|\vectorsym{i}^{*}\|. We then may write

  1. (a)

    U^\vectorsymi=i=14U^\vectorsymi++i\widehat{U}_{\vectorsym{i}^{*}}=\bigcup_{i=1}^{4}\widehat{U}_{\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}i} and Γ^\vectorsymi=i=14Γ^\vectorsymi++i\widehat{\Gamma}_{\vectorsym{i}^{*}}=\bigcup_{i=1}^{4}\widehat{\Gamma}_{\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}i};

  2. (b)

    U^\vectorsymi=\vectorsymi′′′′U\vectorsymi++\vectorsymi′′\widehat{U}_{\vectorsym{i}^{*}}=\bigcup_{\vectorsym{i}^{\prime\prime}\in\mathcal{I}^{\prime\prime}}U_{\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}\vectorsym{i}^{\prime\prime}} and Γ^\vectorsymi=\vectorsymi′′′′Γ\vectorsymi++\vectorsymi′′\widehat{\Gamma}_{\vectorsym{i}^{*}}=\bigcup_{\vectorsym{i}^{\prime\prime}\in\mathcal{I}^{\prime\prime}}\Gamma_{\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}\vectorsym{i}^{\prime\prime}};

  3. (c)

    U^\vectorsymi2U^\vectorsymi1\widehat{U}_{\vectorsym{i}_{2}^{*}}\subseteq\widehat{U}_{\vectorsym{i}_{1}^{*}} if and only if \vectorsymi1\vectorsymi2\vectorsym{i}_{1}^{*}\leq\vectorsym{i}_{2}^{*}. Otherwise U^\vectorsymi1U^\vectorsymi2=\widehat{U}_{\vectorsym{i}_{1}^{*}}\cap\widehat{U}_{\vectorsym{i}_{2}^{*}}=\emptyset;

  4. (d)

    σ\vectorsymir0(\vectorsymf\vectorsymi(\vectorsymx0))U^\vectorsymi3σ\vectorsymiD0(\vectorsymf\vectorsymi(\vectorsymx0))\mathcal{B}_{\sigma_{\vectorsym{i}^{*}}r_{0}}(\vectorsym{f}_{\vectorsym{i}^{*}}(\vectorsym{x}_{0}))\subseteq\widehat{U}_{\vectorsym{i}^{*}}\subseteq\mathcal{B}_{3\sigma_{\vectorsym{i}^{*}}}D_{0}(\vectorsym{f}_{\vectorsym{i}^{*}}(\vectorsym{x}_{0})).

This last property follows from U\vectorsymiU^\vectorsymiU_{\vectorsym{i}^{*}}\subseteq\widehat{U}_{\vectorsym{i}^{*}} and the observation that diam(D^\vectorsymi)\operatorname{diam}(\widehat{D}_{\vectorsym{i}^{*}}) cannot exceed the diameter of the set produced by arranging the sets {U\vectorsymi++\vectorsymi′′}\vectorsymi′′′′\{U_{\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}\vectorsym{i}^{\prime\prime}}\}_{\vectorsym{i}^{\prime\prime}\in\mathcal{I}^{\prime\prime}} adjacent to each other so that their bases are adjoined along a common line, as would occur if Γ\Gamma was the Koch snowflake curve. In this case

diam(U^\vectorsymi)\vectorsymi′′′′diam(U\vectorsymi++\vectorsymi′′)=D0\vectorsymi′′σ\vectorsymi++\vectorsymi′′=D0σ\vectorsymik=0(23)k=3σ\vectorsymiD0.\operatorname{diam}(\widehat{U}_{\vectorsym{i}^{*}})\leq\sum_{\vectorsym{i}^{\prime\prime}\in\mathcal{I}^{\prime\prime}}\operatorname{diam}(U_{\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}\vectorsym{i}^{\prime\prime}})=D_{0}\sum_{\vectorsym{i}^{\prime\prime}}\sigma_{\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}\vectorsym{i}^{\prime\prime}}=D_{0}\sigma_{\vectorsym{i}^{*}}\sum_{k=0}^{\infty}\left(\frac{2}{3}\right)^{k}=3\sigma_{\vectorsym{i}^{*}}D_{0}.

Since each pair of sets in {Γ\vectorsymi++\vectorsymi′′}\vectorsymi′′′′\{\Gamma_{\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}\vectorsym{i}^{\prime\prime}}\}_{\vectorsym{i}^{\prime\prime}\in\mathcal{I}^{\prime\prime}} can only intersect in an mm-null set, property (b) implies

m(Γ^\vectorsymi)=\vectorsymi′′′′m(Γ\vectorsymi++\vectorsymi′′)=m(Γ)\vectorsymi′′′′σ\vectorsymi++\vectorsymi′′t=σ\vectorsymitk=0(23t)k=(3t3t2)σ\vectorsymit.m(\widehat{\Gamma}_{\vectorsym{i}^{*}})=\sum_{\vectorsym{i}^{\prime\prime}\in\mathcal{I}^{\prime\prime}}m(\Gamma_{\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}\vectorsym{i}^{\prime\prime}})=m(\Gamma)\sum_{\vectorsym{i}^{\prime\prime}\in\mathcal{I}^{\prime\prime}}\sigma^{t}_{\vectorsym{i}^{*}\mathbin{+\mkern-10.0mu+}\vectorsym{i}^{\prime\prime}}=\sigma^{t}_{\vectorsym{i}^{*}}\sum_{k=0}^{\infty}\left(\frac{2}{3^{t}}\right)^{k}=\left(\frac{3^{t}}{3^{t}-2}\right)\sigma^{t}_{\vectorsym{i}^{*}}. (33)

The scaling properties for t\mathscr{H}^{t} similarly produce

t(Γ^\vectorsymi)=(3t3t2)σ\vectorsymitt(Γ).\mathscr{H}^{t}(\widehat{\Gamma}_{\vectorsym{i}^{*}})=\left(\frac{3^{t}}{3^{t}-2}\right)\sigma^{t}_{\vectorsym{i}^{*}}\mathscr{H}^{t}(\Gamma). (34)

Next, for \vectorsymi=(\vectorsymi1,,\vectorsymij)\vectorsym{i}^{*}=(\vectorsym{i}_{1},\dots,\vectorsym{i}_{j^{*}})\in\mathcal{I}^{*} satisfying \vectorsymi>1\|\vectorsym{i}^{*}\|>1, put

\vectorsymi¯:={(\vectorsymi1,,\vectorsymij1)++\vectorsymij||\vectorsymij|1, if |\vectorsymij|>1,(\vectorsymi1,,\vectorsymij1), if |\vectorsymij|=1,\overline{\vectorsym{i}}^{*}:=\left\{\begin{array}[]{ll}(\vectorsym{i}_{1},\dots,\vectorsym{i}_{j^{*}-1})\mathbin{+\mkern-10.0mu+}\vectorsym{i}_{j^{*}}\big{|}_{|\vectorsym{i}_{j^{*}}|-1},&\text{ if }|\vectorsym{i}_{j^{*}}|>1,\\ (\vectorsym{i}_{1},\dots,\vectorsym{i}_{j^{*}-1}),&\text{ if }|\vectorsym{i}_{j^{*}}|=1,\end{array}\right.

so \vectorsymi¯=\vectorsymi1\|\overline{\vectorsym{i}}^{*}\|=\|\vectorsym{i}^{*}\|-1. For each 0<ρ130<\rho\leq\frac{1}{3} and \vectorsymxU¯0\vectorsym{x}\in\overline{U}_{0}, set

ρ:={\vectorsymi:σ\vectorsymiD0ρ<σ\vectorsymi¯D0}\mathcal{I}^{*}_{\rho}:=\left\{\vectorsym{i}^{*}\in\mathcal{I}^{*}:\sigma_{\vectorsym{i}^{*}}D_{0}\leq\rho<\sigma_{\overline{\vectorsym{i}}^{*}}D_{0}\right\}

and

ρ(\vectorsymx):={\vectorsymiρ:Γ^\vectorsymiρ(\vectorsymx)}.\mathcal{I}^{*}_{\rho}(\vectorsym{x}):=\{\vectorsym{i}^{*}\in\mathcal{I}_{\rho}^{*}:\widehat{\Gamma}_{\vectorsym{i}^{*}}\cap\mathcal{B}_{\rho}(\vectorsym{x})\neq\emptyset\}.

For any \vectorsymi\vectorsym{i}^{*}\in\mathcal{I}^{*}, we have Γ\vectorsymiΓ^\vectorsymiΓ^\vectorsymi¯\Gamma_{\vectorsym{i}^{*}}\subseteq\widehat{\Gamma}_{\vectorsym{i}^{*}}\subseteq\widehat{\Gamma}_{\overline{\vectorsym{i}}^{*}} and σ\vectorsymi¯3σ\vectorsymi\sigma_{\overline{\vectorsym{i}}^{*}}\geq 3\sigma_{\vectorsym{i}^{*}}. Thus, for each \vectorsymxΓ\vectorsym{x}\in\Gamma and \vectorsymi1\vectorsym{i}_{1}^{*}\in\mathcal{I}^{*}, satisfying σ\vectorsymi1D0ρ\sigma_{\vectorsym{i}_{1}^{*}}D_{0}\leq\rho and Γ\vectorsymi1ρ(\vectorsymx)\Gamma_{\vectorsym{i}_{1}^{*}}\cap\mathcal{B}_{\rho}(\vectorsym{x})\neq\emptyset, there exists a \vectorsymi2ρ(\vectorsymx)\vectorsym{i}_{2}^{*}\in\mathcal{I}^{*}_{\rho}(\vectorsym{x}), possibly equal to \vectorsymi1\vectorsym{i}_{1}^{*}, such that Γ\vectorsymi1Γ^\vectorsymi2\Gamma_{\vectorsym{i}_{1}^{*}}\subseteq\widehat{\Gamma}_{\vectorsym{i}_{2}^{*}}. This implies

Γρ(\vectorsymx)\vectorsymiρ(\vectorsymx)Γ^\vectorsymi¯(ΓΓ0)\vectorsymiρ(\vectorsymx)Γ^\vectorsymi,\Gamma\cap\mathcal{B}_{\rho}(\vectorsym{x})\subseteq\overline{\bigcup_{\vectorsym{i}^{*}\in\mathcal{I}^{*}_{\rho}(\vectorsym{x})}\widehat{\Gamma}_{\vectorsym{i}^{*}}}\subseteq(\Gamma\setminus\Gamma_{0})\cup\bigcup_{\vectorsym{i}^{*}\in\mathcal{I}^{*}_{\rho}(\vectorsym{x})}\widehat{\Gamma}_{\vectorsym{i}^{*}},

and thus,

m(Γρ(\vectorsymx))\vectorsymiρ(\vectorsymx)m(Γ^\vectorsymi).m(\Gamma\cap\mathcal{B}_{\rho}(\vectorsym{x}))\leq\sum_{\vectorsym{i}^{*}\in\mathcal{I}^{*}_{\rho}(\vectorsym{x})}m(\widehat{\Gamma}_{\vectorsym{i}^{*}}). (35)

With E(U¯0)E\in\mathscr{B}(\overline{U}_{0}), we now show that m(E)cdiam(E)tm(E)\leq c\operatorname{diam}(E)^{t}, with cc independent of EE. We may assume that 0<diam(E)<160<\operatorname{diam}(E)<\frac{1}{6}, so there exists \vectorsymxΓ\vectorsym{x}\in\Gamma and 0<ρ2diam(E)130<\rho\leq 2\operatorname{diam}(E)\leq\frac{1}{3} such that EΓΓρ(\vectorsymx)E\cap\Gamma\subseteq\Gamma\cap\mathcal{B}_{\rho}(\vectorsym{x}). By property (d), for each \vectorsymiρ(\vectorsymx)\vectorsym{i}^{*}\in\mathcal{I}^{*}_{\rho}(\vectorsym{x}), we must have

|U^\vectorsymi|(σ\vectorsymir0)n|1|(13Lσ\vectorsymi¯r0)n|1|(r03LD0)n|ρ||\widehat{U}_{\vectorsym{i}^{*}}|\geq(\sigma_{\vectorsym{i}^{*}}r_{0})^{n}|\mathcal{B}_{1}|\geq\left(\frac{1}{3L}\sigma_{\overline{\vectorsym{i}}^{*}}r_{0}\right)^{n}|\mathcal{B}_{1}|\geq\left(\frac{r_{0}}{3LD_{0}}\right)^{n}|\mathcal{B}_{\rho}|

and U^\vectorsymi3ρ(\vectorsymx)\widehat{U}_{\vectorsym{i}^{*}}\subseteq\mathcal{B}_{3\rho}(\vectorsym{x}). By property (c) and the definition of ρ\mathcal{I}^{*}_{\rho}, the family {U^\vectorsymi}\vectorsymiρ(\vectorsymx)\{\widehat{U}_{\vectorsym{i}^{*}}\}_{\vectorsym{i}^{*}\in\mathcal{I}^{*}_{\rho}(\vectorsym{x})} must consist of mutually disjoint sets. Consequently, there is an upper bound on the number of elements in ρ(\vectorsymx)\mathcal{I}^{*}_{\rho}(\vectorsym{x}). In fact, we conclude that

card(ρ(\vectorsymx))sup\vectorsymiρ(\vectorsymx)(|3ρ||U^\vectorsymi|)(9LD0r0)n.\operatorname{card}(\mathcal{I}^{*}_{\rho}(\vectorsym{x}))\leq\sup_{\vectorsym{i}^{*}\in\mathcal{I}^{*}_{\rho}(\vectorsym{x})}\left(\frac{|\mathcal{B}_{3\rho}|}{|\widehat{U}_{\vectorsym{i}^{*}}|}\right)\leq\left(\frac{9LD_{0}}{r_{0}}\right)^{n}.

Using (33) and (35), we obtain

m(ρ(\vectorsymx))=\displaystyle m(\mathcal{B}_{\rho}(\vectorsym{x}))= m(ρ(\vectorsymx)Γ)(9LD0r0)nmax\vectorsymiρ(\vectorsymx)m(Γ^\vectorsymi)\displaystyle m(\mathcal{B}_{\rho}(\vectorsym{x})\cap\Gamma)\leq\left(\frac{9LD_{0}}{r_{0}}\right)^{n}\max_{\vectorsym{i}^{*}\in\mathcal{I}^{*}_{\rho}(\vectorsym{x})}m(\widehat{\Gamma}_{\vectorsym{i}^{*}})
\displaystyle\leq m(Γ)(9LD0r0)n(3t3t2)max\vectorsymiρ(\vectorsymx)σ\vectorsymit(9LD0r0)n(3t3t2)(ρD0)t.\displaystyle m(\Gamma)\left(\frac{9LD_{0}}{r_{0}}\right)^{n}\!\left(\frac{3^{t}}{3^{t}-2}\right)\max_{\vectorsym{i}^{*}\in\mathcal{I}^{*}_{\rho}(\vectorsym{x})}\!\sigma^{t}_{\vectorsym{i}^{*}}\leq\left(\frac{9LD_{0}}{r_{0}}\right)^{n}\!\left(\frac{3^{t}}{3^{t}-2}\right)\left(\frac{\rho}{D_{0}}\right)^{t}. (36)

Since ρt2tdiam(E)t\rho^{t}\leq 2^{t}\operatorname{diam}(E)^{t}, the Mass Distribution Principle [20] implies

t(Γ)(3t23t)(r09LD0)n(D02)t.\mathscr{H}^{t}(\Gamma)\geq\left(\frac{3^{t}-2}{3^{t}}\right)\left(\frac{r_{0}}{9LD_{0}}\right)^{n}\left(\frac{D_{0}}{2}\right)^{t}.

We have thus far shown that 0<t(Γ)<0<\mathscr{H}^{t}(\Gamma)<\infty.

Next, we work towards establishing the Ahlfors-regulartiy for Γ\Gamma. First, with mm replaced by t\mathscr{H}^{t}, we can incorporate (34) into the exact same argument that established (36) to prove the upper Ahlfors-regularity of Γ\Gamma. Thus, we need only show lower Ahlfors-regularity. Let \vectorsymxΓ\vectorsym{x}\in\Gamma and 0<ρ130<\rho\leq\frac{1}{3} be given. For each kk\in\mathbb{N}, there exists \vectorsymik\vectorsym{i}^{*}_{k}\in\mathcal{I}^{*} such that \vectorsymik=k\|\vectorsym{i}_{k}^{*}\|=k and \vectorsymxΓ^¯\vectorsymikU^¯\vectorsymik\vectorsym{x}\in\overline{\widehat{\Gamma}}_{\vectorsym{i}_{k}^{*}}\subseteq\overline{\widehat{U}}_{\vectorsym{i}_{k}^{*}}. Since limkσ\vectorsymik=0\lim_{k\to\infty}\sigma_{\vectorsym{i}^{*}_{k}}=0, we may select \vectorsymi\vectorsym{i}^{*}\in\mathcal{I}^{*} such that \vectorsymxΓ^¯\vectorsymi\vectorsym{x}\in\overline{\widehat{\Gamma}}_{\vectorsym{i}^{*}} and 3σ\vectorsymiD012ρ<3σ\vectorsymi¯D03\sigma_{\vectorsym{i}^{*}}D_{0}\leq\frac{1}{2}\rho<3\sigma_{\overline{\vectorsym{i}}^{*}}D_{0}. By property (d), diam(Γ^¯\vectorsymi)12ρ\operatorname{diam}(\overline{\widehat{\Gamma}}_{\vectorsym{i}^{*}})\leq\frac{1}{2}\rho, and therefore, Γ^¯\vectorsymiρ(\vectorsymx)Γ\overline{\widehat{\Gamma}}_{\vectorsym{i}^{*}}\subseteq\mathcal{B}_{\rho}(\vectorsym{x})\cap\Gamma. By (34),

t(ρ(\vectorsymx)Γ)t(Γ^\vectorsymi)=\displaystyle\mathscr{H}^{t}(\mathcal{B}_{\rho}(\vectorsym{x})\cap\Gamma)\geq\mathscr{H}^{t}(\widehat{\Gamma}_{\vectorsym{i}^{*}})= (3t3t2)σ\vectorsymitt(Γ)(3t3t2)(σ\vectorsymi¯3L)tt(Γ)\displaystyle\left(\frac{3^{t}}{3^{t}-2}\right)\sigma^{t}_{\vectorsym{i}^{*}}\mathscr{H}^{t}(\Gamma)\geq\left(\frac{3^{t}}{3^{t}-2}\right)\left(\frac{\sigma_{\overline{\vectorsym{i}}^{*}}}{3L}\right)^{t}\mathscr{H}^{t}(\Gamma)
\displaystyle\geq (16D0L)t(13t2)t(Γ)ρt.\displaystyle\left(\frac{1}{6D_{0}L}\right)^{t}\left(\frac{1}{3^{t}-2}\right)\mathscr{H}^{t}(\Gamma)\rho^{t}.

This concludes the proof.

Finally, we discuss the other claims made in Example 1.1(b). The domain Ω\Omega is bounded by Γ\Gamma and the line segment joining the points (±12,0)(\pm\frac{1}{2},0). Let T0T_{0} be the open subset of Ω\Omega bounded by the curves \vectorsymγ3([0,1])\vectorsym{\gamma}_{3}([0,1]) and \vectorsymγ4([0,1])\vectorsym{\gamma}_{4}([0,1]). For some θ01\theta_{0}\geq 1, this wedge-shaped region is congruent to Ωθ0\Omega^{\theta_{0}}, as defined in Example 1.1(a). It is clear that Ω\Omega satisfies hypotheses (H1) and (H2) with θΓθ0\theta_{\Gamma}\equiv\theta_{0}. Put \vectorsymy¯0:=\vectorsymγ3(0)=\vectorsymγ4(0)T0\overline{\vectorsym{y}}_{0}:=\vectorsym{\gamma}_{3}(0)=\vectorsym{\gamma}_{4}(0)\in\partial T_{0}. There is, however, no approach region for the cusp point \vectorsymy¯0\overline{\vectorsym{y}}_{0} that has both the (η,θ)(\eta,\theta)-corkscrew and the (C,θ)(C,\theta)-connectedness properties, for any 0<η<1θ<θ00<\eta<1\leq\theta<\theta_{0} and C1C\geq 1. If there were, then we could use the symmetry of Ω\Omega and an argument similar to the one used for Lemma 2.5(d), to conclude that the set T0T_{0} must be a (η,θ)(\eta,\theta)-corkscrew region for \vectorsymy¯0\overline{\vectorsym{y}}_{0}, which is a contradiction. By the self-similarity of Γ\Gamma, this must also true for each point in \vectorsymy¯Λ:={\vectorsymy¯0}\vectorsymi\vectorsymf\vectorsymi(\vectorsymy¯0)\overline{\vectorsym{y}}\in\Lambda:=\{\overline{\vectorsym{y}}_{0}\}\cup\bigcup_{\vectorsym{i}^{*}\in\mathcal{I}^{*}}\vectorsym{f}_{\vectorsym{i}^{*}}(\overline{\vectorsym{y}}_{0}). One easily sees that given any \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma and ρ>0\rho>0, there exists \vectorsymy¯ΓΛρ(\vectorsymx¯)\overline{\vectorsym{y}}\in\Gamma\cap\Lambda\cap\mathcal{B}_{\rho}(\overline{\vectorsym{x}}). This implies Ωρ(\vectorsymx¯)\Omega_{\rho}(\overline{\vectorsym{x}}) fails to satisfy (H1) and (H2), for any 1θ<θ01\leq\theta<\theta_{0}, and thus, in particular, there is no 11-sided NTA neighborhood of any \vectorsymx¯Γ\overline{\vectorsym{x}}\in\Gamma (see Remark 1(b)). We similarly conclude that there are no locally uniform neighborhoods of points in Γ\Gamma.

References

  • [1] Achdou, Y., Sabot, C., Tchou, N.: Diffusion and propagation problems in some ramified domains with a fractal boundary. ESAIM: Mathematical Modelling and Numerical Analysis 40(4), 623–652 (2006). DOI 10.1051/m2an:2006027. URL http://www.esaim-m2an.org/10.1051/m2an:2006027
  • [2] Achdou, Y., Tchou, N.: Trace theorems for a class of ramified domains with self-similar fractal boundaries. SIAM Journal on Mathematical Analysis 42(4), 1449–1482 (2010). DOI 10.1137/090747294. URL http://epubs.siam.org/doi/10.1137/090747294
  • [3] Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.J.: Nonlocal diffusion problems, Mathematical Surveys and Monographs, vol. 165. American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid (2010). DOI 10.1090/surv/165. URL https://doi-org.libproxy.unl.edu/10.1090/surv/165
  • [4] Azzam, J., Hofmann, S., Martell, J.M., Nyström, K., Toro, T.: A new characterization of chord-arc domains. J. Eur. Math. Soc. (JEMS) 19(4), 967–981 (2017). DOI 10.4171/JEMS/685. URL https://doi-org.libproxy.unl.edu/10.4171/JEMS/685
  • [5] Bates, P.W., Han, J.: The Neumann boundary problem for a nonlocal Cahn–Hilliard equation. Journal of Differential Equations 212(2), 235–277 (2005). DOI 10.1016/j.jde.2004.07.003. URL https://linkinghub.elsevier.com/retrieve/pii/S0022039604002669
  • [6] Brezis, H.: How to recognize constant functions. Connections with Sobolev spaces. Russian Mathematical Surveys 57(4), 693–708 (2002). DOI 10.1070/RM2002v057n04ABEH000533. URL http://stacks.iop.org/0036-0279/57/i=4/a=R02?key=crossref.0ac4b146e61752823da0889db473fb68
  • [7] Capitanelli, R., Lancia, M.R., Vivaldi, M.A.: Insulating layers of fractal type. Differential and Integral Equations. An International Journal for Theory & Applications 26(9-10), 1055–1076 (2013)
  • [8] Coville, J., Dupaigne, L.: On a non-local equation arising in population dynamics. Proc. Roy. Soc. Edinburgh Sect. A 137(4), 727–755 (2007). DOI 10.1017/S0308210504000721. URL https://doi-org.libproxy.unl.edu/10.1017/S0308210504000721
  • [9] David, G., Feneuil, J., Mayboroda, S.: A new elliptic measure on lower dimensional sets. Acta Mathematica Sinica, English Series 35(6), 876–902 (2019). DOI 10.1007/s10114-019-9001-5. URL http://link.springer.com/10.1007/s10114-019-9001-5
  • [10] David, G.R., Feneuil, J., Mayboroda, S.: Elliptic theory for sets with higher co-dimensional boundaries. arXiv preprint arXiv:1702.05503 (2017)
  • [11] De Marco, G., Mariconda, C., Solimini, S.: An elementary proof of a characterization of constant functions. Advanced Nonlinear Studies 8(3), 597–602 (2008). DOI 10.1515/ans-2008-0306. URL https://doi-org.libproxy.unl.edu/10.1515/ans-2008-0306
  • [12] D’Elia, M., Li, X., Seleson, P., Tian, X., Yu, Y.: A review of local-to-nonlocal coupling methods in nonlocal diffusion and nonlocal mechanics. arXiv:1912.06668 [math] (2019). URL http://arxiv.org/abs/1912.06668. ArXiv: 1912.06668
  • [13] Di Biase, F.: Approach regions and maximal functions in theorems of Fatou type. ProQuest LLC, Ann Arbor, MI (1995). Thesis (Ph.D.)–Washington University in St. Louis
  • [14] Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). DOI 10.1007/978-3-642-18363-8. URL http://link.springer.com/10.1007/978-3-642-18363-8
  • [15] Du, Q.: Nonlocal modeling, analysis, and computation, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 94. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2019). DOI 10.1137/1.9781611975628.ch1. URL https://doi-org.libproxy.unl.edu/10.1137/1.9781611975628.ch1
  • [16] Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Mathematical Models and Methods in Applied Sciences 23(03), 493–540 (2013)
  • [17] Du, Q., Mengesha, T., Tian, X.: Fractional hardy-type and trace theorems for a function space of nonlocal character. preprint
  • [18] Duzaar, F., Gastel, A., Mingione, G.: Elliptic systems, singular sets and Dini continuity. Comm. Partial Differential Equations 29(7-8), 1215–1240 (2004). DOI 10.1081/PDE-200033734. URL https://doi-org.libproxy.unl.edu/10.1081/PDE-200033734
  • [19] Emilio Gagliardo: Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in nn variabili. Rendiconti del Seminario Matematico della Università di Padova 27, 284–305 (1957)
  • [20] Falconer, K.: Fractal geometry, second edn. John Wiley & Sons, Inc., Hoboken, NJ (2003). DOI 10.1002/0470013850. URL https://doi-org.libproxy.unl.edu/10.1002/0470013850. Mathematical foundations and applications
  • [21] Feneuil, J., Mayboroda, S., Zhao, Z.: Dirichlet problem in domains with lower dimensional boundaries. arXiv preprint arXiv:1810.06805 p. 84 (2018)
  • [22] Fernau, H.: Infinite iterated function systems. Mathematische Nachrichten 170, 79–91 (1994). DOI 10.1002/mana.19941700107. URL https://doi-org.libproxy.unl.edu/10.1002/mana.19941700107
  • [23] Gal, C.G., Giorgini, A., Grasselli, M.: The nonlocal Cahn–Hilliard equation with singular potential: Well-posedness, regularity and strict separation property. Journal of Differential Equations 263(9), 5253–5297 (2017). DOI 10.1016/j.jde.2017.06.015. URL https://linkinghub.elsevier.com/retrieve/pii/S0022039617303224
  • [24] Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Modeling & Simulation 7(3), 1005–1028 (2009). DOI 10.1137/070698592. URL http://epubs.siam.org/doi/10.1137/070698592
  • [25] Giusti, E.: Precisazione delle funzioni di H1,pH^{1,p} e singolarità delle soluzioni deboli di sistemi ellittici non lineari. Boll. Un. Mat. Ital. (4) 2, 71–76 (1969)
  • [26] Hu, J.: A note on Hajłasz–Sobolev spaces on fractals. Journal of Mathematical Analysis and Applications 280(1), 91–101 (2003). DOI 10.1016/S0022-247X(03)00039-8. URL https://linkinghub.elsevier.com/retrieve/pii/S0022247X03000398
  • [27] Jerison, D.S., Kenig, C.E.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. in Math. 46(1), 80–147 (1982). DOI 10.1016/0001-8708(82)90055-X. URL https://doi-org.libproxy.unl.edu/10.1016/0001-8708(82)90055-X
  • [28] Jones, P.W.: Extension theorems for BMO. Indiana University Mathematics Journal 29(1), 41–66 (1980). DOI 10.1512/iumj.1980.29.29005. URL https://doi-org.libproxy.unl.edu/10.1512/iumj.1980.29.29005
  • [29] Jones, P.W.: Quasiconformal mappings and extendability of functions in sobolev spaces. Acta Mathematica 147(0), 71–88 (1981). DOI 10.1007/BF02392869. URL http://projecteuclid.org/euclid.acta/1485890130
  • [30] Jonsson, A.: Besov spaces on closed subsets of n\mathbb{R}^{n}. Transactions of the American Mathematical Society 341(1), 355 (1994). DOI 10.2307/2154626. URL https://www.jstor.org/stable/2154626?origin=crossref
  • [31] Jonsson, A., Wallin, H.: Function spaces on subsets of 𝐑n{\bf R}^{n}. Math. Rep. 2(1), xiv+221 (1984)
  • [32] Katkovnik, V., Foi, A., Egiazarian, K., Astola, J.: From local kernel to nonlocal multiple-model image denoising. International Journal of Computer Vision 86(1), 1–32 (2010). DOI 10.1007/s11263-009-0272-7. URL http://link.springer.com/10.1007/s11263-009-0272-7
  • [33] Marcos, M.A.: A trace theorem for Besov functions in spaces of homogeneous type. Publicacions Matemàtiques 62, 185–211 (2018). DOI 10.5565/PUBLMAT6211810. URL http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT6211810
  • [34] Marschall, J.: The trace of Sobolev-Slobodeckij spaces on Lipschitz domains. Manuscripta Mathematica 58(1-2), 47–65 (1987). DOI 10.1007/BF01169082. URL http://link.springer.com/10.1007/BF01169082
  • [35] Martio, O., Sarvas, J.: Injectivity theorems in plane and space. Annales Academiae Scientiarum Fennicae Series A I Mathematica 4, 383–401 (1979). DOI 10.5186/aasfm.1978-79.0413. URL http://www.acadsci.fi/mathematica/Vol04/vol04pp383-401.pdf
  • [36] Mauldin, R.D., Urbański, M.: Dimensions and measures in infinite iterated function systems. Proceedings of the London Mathematical Society s3-73(1), 105–154 (1996). DOI 10.1112/plms/s3-73.1.105. URL http://doi.wiley.com/10.1112/plms/s3-73.1.105
  • [37] Mayboroda, S., Zhao, Z.: Square function estimates, the BMO Dirichlet problem, and absolute continuity of harmonic measure on lower-dimensional sets. Analysis & PDE 12(7), 1843–1890 (2019). DOI 10.2140/apde.2019.12.1843. URL https://msp.org/apde/2019/12-7/p06.xhtml
  • [38] Ros-Oton, X.: Nonlocal elliptic equations in bounded domains: a survey. Publicacions Matemàtiques 60, 3–26 (2016). DOI 10.5565/PUBLMAT˙60116˙01. URL http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT_60116_01
  • [39] Saksman, E., Soto, T.: Traces of Besov, Triebel-Lizorkin and Sobolev spaces on metric spaces. Analysis and Geometry in Metric Spaces 5(1), 98–115 (2017). DOI 10.1515/agms-2017-0006. URL http://content.sciendo.com/view/journals/agms/5/1/article-p98.xml
  • [40] Shvydkoy, R., Tadmor, E.: Topological models for emergent dynamics with short-range interactions. arXiv:1806.01371 [math] (2019). URL http://arxiv.org/abs/1806.01371. ArXiv: 1806.01371
  • [41] Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids p. 35 (2000)
  • [42] Silling, S.A.: Peridynamics: Introduction. In: G.Z. Voyiadjis (ed.) Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp. 1–38. Springer International Publishing, Cham (2018). DOI 10.1007/978-3-319-22977-5˙29-1. URL http://link.springer.com/10.1007/978-3-319-22977-5_29-1
  • [43] Tao, Y., Tian, X., Du, Q.: Nonlocal models with heterogeneous localization and their application to seamless local-nonlocal coupling. Multiscale Modeling & Simulation 17(3), 1052–1075 (2019). DOI 10.1137/18M1184576. URL https://epubs.siam.org/doi/10.1137/18M1184576
  • [44] Tian, X., Du, Q.: Trace theorems for some nonlocal function spaces with heterogeneous localization. SIAM J. Math. Anal. 49(2), 1621–1644 (2017). DOI 10.1137/16M1078811. URL https://doi-org.libproxy.unl.edu/10.1137/16M1078811