This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Towards an optimal hypergraph container lemma

Marcelo Campos Trinity College, University of Cambridge, Cambridge CB2 1TQ, United Kingdom [email protected]  and  Wojciech Samotij School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6997801, Israel [email protected]
Abstract.

The hypergraph container lemma is a powerful tool in probabilistic combinatorics that has found many applications since it was first proved a decade ago. Roughly speaking, it asserts that the family of independent sets of every uniform hypergraph can be covered by a small number of almost-independent sets, called containers. In this article, we formulate and prove two new versions of the lemma that display the following three attractive features. First, they both admit short and simple proofs that have surprising connections to other well-studied topics in probabilistic combinatorics. Second, they use alternative notions of almost-independence in order to describe the containers. Third, they yield improved dependence of the number of containers on the uniformity of the hypergraph, hitting a natural barrier for second-moment-type approaches.

This research was supported by: the Israel Science Foundation grant 2110/22; the grant 2019679 from the United States–Israel Binational Science Foundation (BSF) and the United States National Science Foundation (NSF); and the ERC Consolidator Grant 101044123 (RandomHypGra).

1. Introduction

The method of hypergraph containers is a powerful and widely-applicable technique in probabilistic combinatorics. The method enables one to control the independent sets of many ‘interesting’ uniform hypergraphs by exploiting the fact that these sets exhibit a certain subtle clustering phenomenon. The survey [2] provides a gentle introduction to the method, illustrated with several example applications.

The heart of the method is a hypergraph container lemma (HCL for short) – a statement that formalises and quantifies the notion of clustering we alluded to above. A generic HCL asserts that every uniform hypergraph \mathcal{H} admits a collection 𝒞=𝒞()\mathcal{C}=\mathcal{C}(\mathcal{H}) of containers for the family ()\mathcal{I}(\mathcal{H}) of independent sets of \mathcal{H} with the following three properties:

  1. (i)

    each I()I\in\mathcal{I}(\mathcal{H}) is contained in some C𝒞C\in\mathcal{C};

  2. (ii)

    the family 𝒞\mathcal{C} has ‘small’ cardinality; and

  3. (iii)

    each C𝒞C\in\mathcal{C} is ‘almost independent’.

Note that such a statement is vacuously true when \mathcal{H} is 11-uniform, as then each I()I\in\mathcal{I}(\mathcal{H}) is contained in the largest independent set {vV():{v}}\{v\in V(\mathcal{H}):\{v\}\notin\mathcal{H}\}. Although a HCL for 22-uniform hypergraphs is already implicit in the works of Kleitman and Winston [13] from the early 1980s, an explicit statement was formulated and proved only a decade later by Sapozhenko [22]. General HCLs that are applicable to hypergraphs of an arbitrary uniformity were proved much later, independently and simultaneously, by Balogh, Morris, and Samotij [1] and by Saxton and Thomason [23].

The precise meaning of small in (ii) above depends not only on the notion of almost-independence in (iii), but also on the uniformity of the hypergraph. The dependence on the uniformity in the original HCLs of [1, 23] was rather unfavourable. Roughly speaking, the guaranteed upper bound on log|𝒞()|\log|\mathcal{C}(\mathcal{H})| for an rr-uniform hypergraph \mathcal{H} in [1] and [23] was proportional to eΘ(r2)e^{\Theta(r^{2})} and r!r!, respectively. To remedy this, Balogh and Samotij [3] proved a more ‘efficient’ HCL that yielded an upper bound on log|𝒞()|\log|\mathcal{C}(\mathcal{H})| that was proportional to merely a polynomial in rr. Let us also mention that Morris, Samotij, and Saxton [18] proved an ‘asymmetric’ HCL that was fine-tuned to enumeration of sparse graphs not containing an induced copy of a given subgraph, but has since found additional applications [7, 8, 9, 15].

While the proofs of the four HCLs mentioned in the previous paragraph are elementary, they all are rather lengthy and technical (there are much easier arguments that prove the existence of containers in the 22-uniform case, see the survey [21]). This motivated several groups of authors to seek HCLs that admit shorter and simpler proofs. Saxton and Thomason [25] found an easy method for building containers for independent sets in simple hypergraphs. In another work [24], the same authors presented a streamlined proof of their original HCL [23] that yields an additional ‘online’ property. A few years later, Bernshteyn, Delcourt, Towsner, and Tserunyan [5] formulated a HCL whose statement adapts notions from nonstandard analysis and supplied a compact (spanning approximately four pages), non-algorithmic proof; unfortunately, their HCL still suffers from unfavourable dependence on the uniformity. Finally, Nenadov [19] recently proved a statement that may be interpreted as a probabilistic HCL; while it does not supply a collection of containers for independent sets, it is sufficiently powerful to replace HCL in most of its typical applications.

1.1. Motivation

We embarked on this project with two independent goals in mind. Our first aim was to further improve the dependence of (the logarithm of) the number of containers on the uniformity of the hypergraph. The second aim was to find a simple(r) construction of containers for general uniform hypergraphs that admits a compact proof. Whereas the first goal has been achieved only partially – each HCL formulated and proved in this paper encounters the same ‘second-moment barrier’ that results in O(r2)O(r^{2})-type dependence of log|𝒞|\log|\mathcal{C}| on the uniformity rr, we do suggest a pathway to improving it further.

1.2. Our results

We formulate two new HCLs that are stronger than the efficient HCL of Balogh and the second author and, at the same time, admit short proofs. The two lemmas use different notions of almost-independence that, unlike all previous works, are not expressed in terms of a ‘balanced supersaturation’ condition; however, both of them are at least as strong as the usual notion (to certify this, we will present short derivations of the efficient HCL from each of our two lemmas). Furthermore, one of our HCLs does not even require the input hypergraph to be uniform.

The statement of our first HCL, A below, is inspired by the recent developments in the study of threshold phenomena in random sets [10, 20]. In order to state it, we need to introduce some notation. First, given a hypergraph 𝒢\mathcal{G}, we write

𝒢E𝒢{FV(𝒢):FE}\langle\mathcal{G}\rangle\coloneqq\bigcup_{E\in\mathcal{G}}\{F\subseteq V(\mathcal{G}):F\supseteq E\}

for the up-set generated by 𝒢\mathcal{G}. We say that 𝒢\mathcal{G} covers a hypergraph \mathcal{H} if 𝒢\mathcal{H}\subseteq\langle\mathcal{G}\rangle; in other words, 𝒢\mathcal{G} covers \mathcal{H} is every edge of \mathcal{H} contains some edge of 𝒢\mathcal{G}. Second, for each p[0,1]p\in[0,1], define the pp-weight of a hypergraph 𝒢\mathcal{G} to be

wp(𝒢)E𝒢p|E|,w_{p}(\mathcal{G})\coloneqq\sum_{E\in\mathcal{G}}p^{|E|},

which is just the expected number of edges of 𝒢\mathcal{G} induced by the pp-random subset111The pp-random subset of a finite set XX is the random set formed by independently retaining each element of XX with probability pp. of V(𝒢)V(\mathcal{G}).

Theorem A.

Let \mathcal{H} be an rr-uniform hypergraph with a finite vertex set VV. For every p(0,1/(8r2)]p\in(0,1/(8r^{2})], there exists a family 𝒮2V\mathcal{S}\subseteq 2^{V} and functions

g:()𝒮andf:𝒮2Vg\colon\mathcal{I}(\mathcal{H})\rightarrow\mathcal{S}\qquad\text{and}\qquad f\colon\mathcal{S}\rightarrow 2^{V}

such that:

  1. (a)

    For each I()I\in\mathcal{I}(\mathcal{H}), we have g(I)If(g(I))g(I)\subseteq I\subseteq f(g(I)).

  2. (b)

    Each S𝒮S\in\mathcal{S} has at most 8r2p|V|8r^{2}p|V| elements.

  3. (c)

    For every S𝒮S\in\mathcal{S}, letting Cf(S)C\coloneqq f(S), there exists a hypergraph 𝒢\mathcal{G} on CC with

    wp(𝒢)p|C|w_{p}(\mathcal{G})\leqslant p|C|

    that covers [C]\mathcal{H}[C] and satisfies |E|2|E|\geqslant 2 for all E𝒢E\in\mathcal{G}.

Let us point out that the above theorem does not assume anything about the input hypergraph, except that it is uniform. The condition that all edges of the cover have size at least two is necessary to prevent the conclusion from being trivial; indeed, every hypergraph with vertex set CC admits a cover (by singletons) of pp-weight p|C|p|C|. An analogous comment applies to the assumption that p1/(8r2)p\leqslant 1/(8r^{2}); if p1/(8r2)p\geqslant 1/(8r^{2}), then one may simply set f(I)=g(I)=If(I)=g(I)=I for all I()I\in\mathcal{I}(\mathcal{H}) and let 𝒢\mathcal{G} be the empty hypergraph.

Our second HCL, B, has a probabilistic flavour; this stems form the fact that its proof views independent sets as samples from a hard-core model. Perhaps surprisingly, it does not assume anything about the hypergraph, not even uniformity. Given an arbitrary set XX and a real p[0,1]p\in[0,1], we write XpX_{p} to denote the pp-random subset of XX.

Theorem B.

Let \mathcal{H} be a hypergraph with a finite vertex set VV. For all reals δ\delta and pp satisfying 0<pδ<10<p\leqslant\delta<1, there exists a family 𝒮2V\mathcal{S}\subseteq 2^{V} and functions

g:()𝒮andf:𝒮2Vg\colon\mathcal{I}(\mathcal{H})\rightarrow\mathcal{S}\qquad\text{and}\qquad f\colon\mathcal{S}\rightarrow 2^{V}

such that:

  1. (a)

    For each I()I\in\mathcal{I}(\mathcal{H}), we have g(I)If(g(I))g(I)\subseteq I\subseteq f(g(I)).

  2. (b)

    Each S𝒮S\in\mathcal{S} has at most p|V|/δp|V|/\delta elements.

  3. (c)

    For every S𝒮S\in\mathcal{S}, letting Cf(S)C\coloneqq f(S),

    (SCp())(1p)δ|CS|.\mathbb{P}\bigl{(}S\cup C_{p}\in\mathcal{I}(\mathcal{H})\bigr{)}\geqslant(1-p)^{\delta|C\setminus S|}.

The proofs of both A and B follow the same general strategy that was also used to prove most HCLs to date; it can be traced back to the work of Kleitman and Winston [13]. Namely, we define an algorithm that, given an independent set II as input, builds sets SS and CC satisfying SICS\subseteq I\subseteq C and, in the proof of A, also a hypergraph 𝒢\mathcal{G} that covers [C]\mathcal{H}[C]. Crucially, the set CC depends on II only through SS in the following sense: If for some two inputs I,II,I^{\prime}, the algorithm outputs the same set SS, it also returns the same set CC. This property allows one to define the functions gg and ff via the algorithm. The main novelty in the algorithm that underlies the proof of A is that it considers queries of the form ‘Is LIL\subseteq I?’ for sets LL that are not necessarily singletons. The algorithm used in the proof of B considers only queries of the form ‘Does vIv\in I?’, but it chooses the vertex vv based on its occupancy probability in a certain hard-core model.

1.3. Comparing A and B

Even though the descriptions of the container sets f(S)f(S) in A and B look rather different, they are in fact essentially equivalent. This is a consequence of the following proposition, which quantifies the relation between the smallest pp-weight of a cover for a uniform hypergraph \mathcal{H} and the probability that the pp-random subset of vertices of \mathcal{H} is independent.

Proposition 1.1.

Suppose that \mathcal{H} is a hypergraph on a finite vertex set VV.

  1. (i)

    For every hypergraph 𝒢2V{}\mathcal{G}\subseteq 2^{V}\setminus\{\emptyset\} that covers \mathcal{H} and all p(0,1/2)p\in(0,1/2),

    (Vp())exp(2wp(𝒢)).\mathbb{P}(V_{p}\in\mathcal{I}(\mathcal{H}))\geqslant\exp\bigl{(}-2w_{p}(\mathcal{G})\bigr{)}.
  2. (ii)

    If \mathcal{H} is rr-uniform, then, for every p(0,1/(4r))p\in(0,1/(4r)), there exists a hypergraph 𝒢2V{}\mathcal{G}\subseteq 2^{V}\setminus\{\emptyset\} that covers \mathcal{H} and satisfies

    (Vp())exp(wp/(4r2)(𝒢)/8).\mathbb{P}(V_{p}\in\mathcal{I}(\mathcal{H}))\leqslant\exp\bigl{(}-w_{p/(4r^{2})}(\mathcal{G})/8\bigr{)}.

We postpone the proof of 1.1 to Section 2 and now only elaborate on the qualitative equivalence between the notions of almost-independence used in A and B. First, let 𝒢\mathcal{G} be the hypergraph from assertion (c) of A. The assumption that |E|2|E|\geqslant 2 for all E𝒢E\in\mathcal{G} and the fact wp(𝒢)p|C|w_{p}(\mathcal{G})\leqslant p|C| guarantee that, for all δ(0,1)\delta\in(0,1) and all pδpp^{\prime}\leqslant\delta p,

wp(𝒢)(p/p)2wp(𝒢)(p/p)p|C|δp|C|.w_{p^{\prime}}(\mathcal{G})\leqslant(p^{\prime}/p)^{2}\cdot w_{p}(\mathcal{G})\leqslant(p^{\prime}/p)\cdot p^{\prime}|C|\leqslant\delta p^{\prime}|C|.

Since 𝒢\mathcal{G} covers [C]\mathcal{H}[C], it follows from part (i) of 1.1 that (Vp([C]))exp(2δp|C|)\mathbb{P}\bigl{(}V_{p^{\prime}}\in\mathcal{I}(\mathcal{H}[C])\bigr{)}\geqslant\exp\bigl{(}-2\delta p^{\prime}|C|\bigr{)}.

Conversely, assume that p1/(4r)p\leqslant 1/(4r) and let SS and CC be the sets from assertion (c) of B. Since (Cp([C]))(SCp())\mathbb{P}\bigl{(}C_{p}\in\mathcal{I}(\mathcal{H}[C])\bigr{)}\geqslant\mathbb{P}\bigl{(}S\cup C_{p}\in\mathcal{I}(\mathcal{H})\bigr{)}, it follows from part (ii) of 1.1 that [C]\mathcal{H}[C] admits a cover 𝒢\mathcal{G} that satisfies

wp/(4r2)(𝒢)8log(SCp())8log(1p)δ|C|10δp|C|.w_{p/(4r^{2})}(\mathcal{G})\leqslant-8\log\mathbb{P}\bigl{(}S\cup C_{p}\in\mathcal{I}(\mathcal{H})\bigr{)}\leqslant-8\log(1-p)^{\delta|C|}\leqslant 10\delta p|C|\,.

1.4. Relation to earlier HCLs

An attractive feature of A and B is that each of them implies (a slight strengthening of) the ‘efficient’ HCL of Balogh and Samotij [3, Theorem 1.1], stated here as C below, which in turn significantly improves the original HCLs proved in [1, 23]. Given a hypergraph \mathcal{H} with vertex set VV and a set LVL\subseteq V, we define

degL|{E:LE}|.\deg_{\mathcal{H}}L\coloneqq|\{E\in\mathcal{H}:L\subseteq E\}|.

Further, for an integer 1\ell\geqslant 1, we let

Δ()max{degL:LV,|L|=}.\Delta_{\ell}(\mathcal{H})\coloneqq\max\{\deg_{\mathcal{H}}L:L\subseteq V,|L|=\ell\}.

The following statement can be easily derived from both A as well as B and Janson’s inequality. We present the two derivations in Section 5.

Theorem C ([3]).

Let \mathcal{H} be an rr-uniform hypergraph with a finite vertex set VV. Suppose that τ(0,1)\tau\in(0,1) and KrK\geqslant r are such that, for every r\ell\in\llbracket{r}\rrbracket,

Δ()K(τ32Kr2)1e()|V|.\Delta_{\ell}(\mathcal{H})\leqslant K\cdot\left(\frac{\tau}{32Kr^{2}}\right)^{\ell-1}\cdot\frac{e(\mathcal{H})}{|V|}. (1)

There exists a family 𝒮2V\mathcal{S}\subseteq 2^{V} and functions

g:()𝒮andf:𝒮2Vg\colon\mathcal{I}(\mathcal{H})\rightarrow\mathcal{S}\qquad\text{and}\qquad f\colon\mathcal{S}\rightarrow 2^{V}

such that:

  1. (a)

    For each I()I\in\mathcal{I}(\mathcal{H}), we have g(I)If(g(I))g(I)\subseteq I\subseteq f(g(I)).

  2. (b)

    Each S𝒮S\in\mathcal{S} has at most τ|V|\tau|V| elements.

  3. (c)

    For every S𝒮S\in\mathcal{S}, we have |f(S)|(11/(2K))|V||f(S)|\leqslant\bigl{(}1-1/(2K)\bigr{)}|V|.

In most applications of the hypergraph container method, one recursively applies a basic HCL, such as C, to construct a family of containers that are almost independent in the sense that one can no longer prove a balanced supersaturation result in any of the containers. In order to avoid explicitly performing such a recursive procedure, one may instead invoke one of the several ‘packaged’ HCLs that exist in the literature (see, e.g., [1, Theorem 2.2], [3, Theorem 1.6], or [23, Corollary 3.6]). Both A and B allow one to deduce such a packaged HCL directly, without the need for recursion. For example, the following statement is a straightforward consequence of A.

Theorem D.

Let \mathcal{H} be an rr-uniform hypergraph with a finite vertex set VV. For every p(0,1/(8r2)]p\in(0,1/(8r^{2})], there exists a family 𝒮2V\mathcal{S}\subseteq 2^{V} and functions

g:()𝒮andf:𝒮2Vg\colon\mathcal{I}(\mathcal{H})\rightarrow\mathcal{S}\qquad\text{and}\qquad f\colon\mathcal{S}\rightarrow 2^{V}

such that:

  1. (a)

    For each I()I\in\mathcal{I}(\mathcal{H}), we have g(I)If(g(I))g(I)\subseteq I\subseteq f(g(I)).

  2. (b)

    Each S𝒮S\in\mathcal{S} has at most 8r2p|V|8r^{2}p|V| elements.

  3. (c)

    For every S𝒮S\in\mathcal{S}, there does not exist a hypergraph S[f(S)]\mathcal{H}_{S}\subseteq\mathcal{H}[f(S)] that satisfies

    Δ(S)<p1e(S)|f(S)|for all {2,,r}.\Delta_{\ell}(\mathcal{H}_{S})<\frac{p^{\ell-1}e(\mathcal{H}_{S})}{|f(S)|}\qquad\text{for all $\ell\in\{2,\dotsc,r\}$.} (2)

We note that condition (c) in the above theorem is the negation of a balanced supersaturation statement that would enable one to construct a small family of containers for independent sets in [f(S)]\mathcal{H}[f(S)] using a basic HCL such as C.

We present the derivation of D from A in Section 5 and only mention here that the existence of a hypergraph 𝒢\mathcal{G} with small pp-weight that covers [f(S)]\mathcal{H}[f(S)] precludes the existence of a hypergraph S[f(S)]\mathcal{H}_{S}\subseteq\mathcal{H}[f(S)] that satisfies the balancedness condition (2). We further note that the derivation of D from A in fact allows one to prove a strengthening of the former, where the assertion (c) is replaced by the stronger assertion that there does not exist a probability distribution on [f(S)]\mathcal{H}[f(S)] under which the random edge 𝐑[f(S)]\mathbf{R}\in\mathcal{H}[f(S)] satisfies

(L𝐑)<p1|f(S)|for all LV with 2|L|r.\mathbb{P}(L\subseteq\mathbf{R})<\frac{p^{\ell-1}}{|f(S)|}\qquad\text{for all $L\subseteq V$ with $2\leqslant|L|\leqslant r$}.

Note the striking similarity between this condition and the notion of a pp-spread measure, introduced by Talagrand [26], which played a key role in the proof [10] of the fractional version of the ‘expectation-threshold’ conjecture of Kahn and Kalai [12], conjectured by Talagrand [26].

Finally, we remark that one may use B to derive an alternative version of D, where assumption (2) is replaced by an analogous sequence of upper bounds on the degrees Δ1(S),,Δr(S)\Delta_{1}(\mathcal{H}_{S}),\dotsc,\Delta_{r}(\mathcal{H}_{S}). The existence of an S[f(S)]\mathcal{H}_{S}\subseteq\mathcal{H}[f(S)] that satisfies such a modified assumption would imply, via Janson’s inequality, an upper bound on the probability that the pp-random set f(S)pf(S)_{p} is independent in S\mathcal{H}_{S}, and thus also in [f(S)]\subseteq\mathcal{H}[f(S)], that is smaller than the upper bound on this probability asserted by B.

1.5. Interpolating between A and B

Before concluding our discussion, we state one more HCL, where the characterisation of almost independence interpolates between those given by A and B.

Theorem E.

Let \mathcal{H} be a hypergraph with a finite vertex set VV. For all reals δ\delta and pp satisfying 0<pδ<10<p\leqslant\delta<1, there exists a family 𝒮2V\mathcal{S}\subseteq 2^{V} and functions

g:()𝒮andf:𝒮2Vg\colon\mathcal{I}(\mathcal{H})\rightarrow\mathcal{S}\qquad\text{and}\qquad f\colon\mathcal{S}\rightarrow 2^{V}

such that:

  1. (a)

    For each I()I\in\mathcal{I}(\mathcal{H}), we have g(I)If(g(I))g(I)\subseteq I\subseteq f(g(I)).

  2. (b)

    Each S𝒮S\in\mathcal{S} has at most p|V|/δp|V|/\delta elements.

  3. (c)

    For every S𝒮S\in\mathcal{S}, letting Cf(S)C\coloneqq f(S), there exists a hypergraph 𝒢\mathcal{G} with vertex set CSC\setminus S and |E|2|E|\geqslant 2 for all E𝒢E\in\mathcal{G} that covers [C]\mathcal{H}[C] and satisfies

    (LCpCp(𝒢))(1δ)|L|p|L|\mathbb{P}\bigl{(}L\subseteq C_{p}\mid C_{p}\in\mathcal{I}(\mathcal{G})\bigr{)}\geqslant(1-\delta)^{|L|}p^{|L|}

    for all L(𝒢)L\in\mathcal{I}(\mathcal{G}).

The proof of E, which we sketch in Section 6, is very similar to the proof of B, the only difference being that the algorithm that is used here to build the sets SS and CC considers the more general queries of the form ‘Is LIL\subseteq I?’, as in the proof of A.

While it may not be immediately clear, E simultaneously strengthens both A and B. We postpone the proofs of these two facts (E\impliesA and E\impliesB) to Section 6.

1.6. Organisation

In Section 2, we set a few notational conventions, state several auxiliary results, and prove 1.1. In Sections 3 and 4, we prove A and B, respectively. Section 5 is devoted to derivations of standard HCLs (C and D) from A and B. In Section 6, we sketch the proof of E and show that it implies both A and B. In Section 7, we present an attractive conjecture that strengthens 1.1 and discuss some of its implications. Finally, Appendix A contains three proofs of one of our key auxiliary results, 2.2.

2. Preliminaries

2.1. Notation

Given a hypergraph \mathcal{H} and a positive integer ss, we define

s{E:|E|=s}.\mathcal{H}^{s}\coloneqq\{E\in\mathcal{H}:|E|=s\}.

It will be also convenient to introduce the shorthand notations

>1s>1sand<rs<rs.\mathcal{H}^{>1}\coloneqq\bigcup_{s>1}\mathcal{H}^{s}\qquad\text{and}\qquad\mathcal{H}^{<r}\coloneqq\bigcup_{s<r}\mathcal{H}^{s}.

Finally, for every LV()L\subseteq V(\mathcal{H}), we denote by L\partial_{L}\mathcal{H} the link of LL in \mathcal{H}, i.e.,

L{EL:LE};\partial_{L}\mathcal{H}\coloneqq\{E\setminus L:L\subseteq E\in\mathcal{H}\};

for the sake of brevity, we will write v\partial_{v}\mathcal{H} in place of {v}\partial_{\{v\}}\mathcal{H}.

2.2. Auxiliary results

While comparing B to other HCLs, we will crucially use the following well-known inequality due to Janson [11].

Theorem 2.1 (Janson’s Inequality).

Suppose that 𝒢\mathcal{G} is a hypergraph on a finite set CC. For every p[0,1]p\in[0,1],

(Cp(𝒢))exp(μ22Δ),\mathbb{P}(C_{p}\in\mathcal{I}(\mathcal{G}))\leqslant\exp\left(-\frac{\mu^{2}}{2\Delta^{*}}\right),

where

μA𝒢p|A|andΔA,B𝒢ABp|AB|\mu\coloneqq\sum_{A\in\mathcal{G}}p^{|A|}\qquad\text{and}\qquad\Delta^{*}\coloneqq\sum_{\begin{subarray}{c}A,B\in\mathcal{G}\\ A\cap B\neq\emptyset\end{subarray}}p^{|A\cup B|}

and the second sum ranges over all ordered pairs (AA and BB are not necessarily distinct).

Our proof of B, as well as the derivation of this theorem from E, requires the following probabilistic estimate. Since this estimate follows from standard techniques, we postpone its proof to the appendix (where we in fact present three different proofs).

Proposition 2.2.

Suppose that CC is a finite set and let 2C\mathcal{I}\subseteq 2^{C} be a decreasing family of subsets. For every p(0,1)p\in(0,1), we have

log(Cp)(|C|𝔼[|Cp|Cp]p)log(1p).\log\mathbb{P}(C_{p}\in\mathcal{I})\geqslant\left(|C|-\frac{\mathbb{E}\bigl{[}|C_{p}|\mid C_{p}\in\mathcal{I}\bigr{]}}{p}\right)\cdot\log(1-p).

Finally, we will also employ the following well-known inequality, discovered independently by Bollobás [6], Lubell [16], Meshalkin [17], and Yamamoto [27].

Proposition 2.3 (LYMB inequality).

Suppose that XX is a finite set and that 𝒜2X\mathcal{A}\subseteq 2^{X} is an antichain. Then,

A𝒜(|X||A|)11.\sum_{A\in\mathcal{A}}\binom{|X|}{|A|}^{-1}\leqslant 1.

2.3. Proof of 1.1

The first assertion is a straightforward application of Harris’s inequality. Indeed, for every hypergraph 𝒢2V{}\mathcal{G}\subseteq 2^{V}\setminus\{\emptyset\} that covers \mathcal{H}, we have

(Vp())(Vp(𝒢))A𝒢(1p|A|)exp(2A𝒢p|A|),\mathbb{P}(V_{p}\in\mathcal{I}(\mathcal{H}))\geqslant\mathbb{P}(V_{p}\in\mathcal{I}(\mathcal{G}))\geqslant\prod_{A\in\mathcal{G}}(1-p^{|A|})\geqslant\exp\left(-2\sum_{A\in\mathcal{G}}p^{|A|}\right),

where the final inequality holds as 1xe2x1-x\geqslant e^{-2x} for all x<1/2x<1/2.

We now prove the second assertion. Suppose that \mathcal{H} is rr-uniform and define, for each r\ell\in\llbracket{r}\rrbracket, λ4min{,r}\lambda_{\ell}\coloneqq 4^{-\min\{\ell,r-\ell\}}. Let \mathcal{H}^{\prime} be a maximal subgraph of \mathcal{H} subject to Δ()λ(r)1pr\Delta_{\ell}(\mathcal{H}^{\prime})\leqslant\lambda_{\ell}\binom{r}{\ell}^{-1}p^{\ell-r} for all r\ell\in\llbracket{r}\rrbracket. Define μAp|A|=e()pr\mu\coloneqq\sum_{A\in\mathcal{H}^{\prime}}p^{|A|}=e(\mathcal{H}^{\prime})p^{r} and

ΔAp|A|BABp|BA|μ=1r(r)Δ()prμ=1rλ2μ.\Delta^{*}\coloneqq\sum_{A\in\mathcal{H}^{\prime}}p^{|A|}\cdot\sum_{\begin{subarray}{c}B\in\mathcal{H}^{\prime}\\ A\cap B\neq\emptyset\end{subarray}}p^{|B\setminus A|}\leqslant\mu\cdot\sum_{\ell=1}^{r}\binom{r}{\ell}\Delta_{\ell}(\mathcal{H}^{\prime})p^{r-\ell}\leqslant\mu\cdot\sum_{\ell=1}^{r}\lambda_{\ell}\leqslant 2\mu.

Let 𝒢\mathcal{G} be the set of minimal elements in the family

𝒢{TV:1|T|rdegT=λ|T|(r|T|)1p|T|r}\mathcal{G}^{\prime}\coloneqq\left\{T\subseteq V:1\leqslant|T|\leqslant r\wedge\deg_{\mathcal{H}^{\prime}}T=\left\lfloor\lambda_{|T|}\binom{r}{|T|}^{-1}p^{|T|-r}\right\rfloor\right\}

and note that 𝒢=𝒢\mathcal{H}\subseteq\langle\mathcal{G}^{\prime}\rangle=\langle\mathcal{G}\rangle by maximality of \mathcal{H}^{\prime}. Since 𝒢\mathcal{G} is an antichain, the LYMB inequality (2.3) yields

e()AT𝒢TA(r|T|)1=T𝒢(r|T|)1degT.e(\mathcal{H}^{\prime})\geqslant\sum_{A\in\mathcal{H}^{\prime}}\sum_{\begin{subarray}{c}T\in\mathcal{G}\\ T\subseteq A\end{subarray}}\binom{r}{|T|}^{-1}=\sum_{T\in\mathcal{G}}\binom{r}{|T|}^{-1}\deg_{\mathcal{H}^{\prime}}T.

Since our upper-bound assumption on pp yields

λ(r)1pr(4rp)r1\lambda_{\ell}\binom{r}{\ell}^{-1}p^{\ell-r}\geqslant(4rp)^{\ell-r}\geqslant 1

for every r\ell\in\llbracket{r}\rrbracket, we may conclude that

μ=e()pr12T𝒢λ|T|(r|T|)2p|T|12T𝒢(p4r2)|T|=wp/(4r2)(𝒢)2.\mu=e(\mathcal{H}^{\prime})p^{r}\geqslant\frac{1}{2}\sum_{T\in\mathcal{G}}\lambda_{|T|}\binom{r}{|T|}^{-2}p^{|T|}\geqslant\frac{1}{2}\sum_{T\in\mathcal{G}}\left(\frac{p}{4r^{2}}\right)^{|T|}=\frac{w_{p/(4r^{2})}(\mathcal{G})}{2}.

We may now apply Janson’s inequality (Theorem 2.1) to conclude that

(Vp())(Vp())exp(μ22Δ)exp(μ4)exp(wp/(4r2)(𝒢)8),\mathbb{P}(V_{p}\in\mathcal{I}(\mathcal{H}))\leqslant\mathbb{P}(V_{p}\in\mathcal{I}(\mathcal{H}^{\prime}))\leqslant\exp\left(-\frac{\mu^{2}}{2\Delta^{*}}\right)\leqslant\exp\left(-\frac{\mu}{4}\right)\leqslant\exp\left(-\frac{w_{p/(4r^{2})}(\mathcal{G})}{8}\right),

as desired.

3. Proof of A

3.1. The algorithm

Assume that \mathcal{H} is an rr-uniform hypergraph on a finite set VV and fix some p(0,1/(8r2)]p\in(0,1/(8r^{2})]. The following algorithm takes as input an independent set I()I\in\mathcal{I}(\mathcal{H}) and returns sets S,CVS,C\subseteq V and a hypergraph 𝒢\mathcal{G} on VV.

  1. (1)

    Let 0\mathcal{H}_{0}\coloneqq\mathcal{H} and S0S_{0}\coloneqq\emptyset.

  2. (2)

    Do the following for i=0,1,i=0,1,\dotsc:

    1. (a)

      Let Ci{vV:{v}i}C_{i}\coloneqq\{v\in V:\{v\}\notin\mathcal{H}_{i}\}.

    2. (b)

      If wp(i>1)p|Ci|w_{p}(\mathcal{H}_{i}^{>1})\leqslant p|C_{i}|, then set JiJ\coloneqq i and STOP.

    3. (c)

      Otherwise, let sis_{i} be the smallest s{2,,r}s\in\{2,\dotsc,r\} such that wp(Lis)1/(4r)w_{p}(\partial_{L}\mathcal{H}_{i}^{s})\geqslant 1/(4r) for some nonempty L2ViL\in 2^{V}\setminus\mathcal{H}_{i} and let LiL_{i} be an inclusion-maximal set LL with this property.222It may not be clear at this point that such ss and LL exist, but we will prove this shortly.

    4. (d)

      If LiIL_{i}\subseteq I, then set Si+1SiLiS_{i+1}\coloneqq S_{i}\cup L_{i} and iLiisi\mathcal{F}_{i}\coloneqq\partial_{L_{i}}\mathcal{H}_{i}^{s_{i}}.

    5. (e)

      Otherwise, if LiIL_{i}\nsubseteq I, set Si+1SiS_{i+1}\coloneqq S_{i} and i{Li}\mathcal{F}_{i}\coloneqq\{L_{i}\}.

    6. (f)

      Finally, set i+1(ii)i\mathcal{H}_{i+1}\coloneqq(\mathcal{H}_{i}\setminus\langle\mathcal{F}_{i}\rangle)\cup\mathcal{F}_{i}.

  3. (3)

    Return SSJS\coloneqq S_{J}, CCJC\coloneqq C_{J}, and 𝒢J>1\mathcal{G}\coloneqq\mathcal{H}_{J}^{>1}.

3.2. Well-definedness

We now show that the algorithm described in the previous section is well defined and that it terminates on every input. Our first lemma takes care of the former and shows that the definition of sis_{i} and LiL_{i} in step (2)(2c) is always valid.

Lemma 3.1.

If wp(i>1)p|Ci|w_{p}(\mathcal{H}_{i}^{>1})\geqslant p|C_{i}|, then there are s{2,,r}s\in\{2,\dotsc,r\} and nonempty L2ViL\in 2^{V}\setminus\mathcal{H}_{i} with wp(Lis)1/rw_{p}(\partial_{L}\mathcal{H}_{i}^{s})\geqslant 1/r.

Proof.

Note first that our assumption implies that

p|Ci|wp(i>1)=s=2rwp(is)s=2rswp(is)=s=2rvCipwp(vis).p|C_{i}|\leqslant w_{p}(\mathcal{H}_{i}^{>1})=\sum_{s=2}^{r}w_{p}(\mathcal{H}_{i}^{s})\leqslant\sum_{s=2}^{r}s\cdot w_{p}(\mathcal{H}_{i}^{s})=\sum_{s=2}^{r}\sum_{v\in C_{i}}p\cdot w_{p}(\partial_{v}\mathcal{H}_{i}^{s}).

Consequently, there must be some vCiv\in C_{i} such that

s=2rwp(vis)1.\sum_{s=2}^{r}w_{p}(\partial_{v}\mathcal{H}_{i}^{s})\geqslant 1.

Since the fact that vCiv\in C_{i} guarantees that {v}i\{v\}\notin\mathcal{H}_{i}, we may take L{v}L\coloneqq\{v\} and an index ss that achieves maxswp(vis)1/r\max_{s}w_{p}(\partial_{v}\mathcal{H}_{i}^{s})\geqslant 1/r. ∎

Next, we show that each hypergraph i\mathcal{H}_{i} defined in the algorithm is an antichain and that the sequence (i)i(\langle\mathcal{H}_{i}\rangle)_{i} is strictly increasing. Note that this implies that the algorithm terminates on every input. Indeed, the fact that i\mathcal{H}_{i} is an antichain means that it comprises precisely all the minimal elements of i\langle\mathcal{H}_{i}\rangle and therefore 0,1,\mathcal{H}_{0},\mathcal{H}_{1},\dotsc are pairwise distinct.

Lemma 3.2.

The hypergraph i\mathcal{H}_{i} is an antichain for every ii.

Proof.

We prove the assertion of the lemma by induction on ii. The induction basis holds due to our assumption that 0=\mathcal{H}_{0}=\mathcal{H} is rr-uniform. For the induction step, assume that i\mathcal{H}_{i} is an antichain for some i0i\geqslant 0. Observe first that i\mathcal{F}_{i} is an antichain as well. Indeed, this is clear when i={Li}\mathcal{F}_{i}=\{L_{i}\}; otherwise iLii\mathcal{F}_{i}\subseteq\partial_{L_{i}}\mathcal{H}_{i} and this is a straightforward consequence of the assumption that i\mathcal{H}_{i} is an antichain. Suppose that i+1=(ii)i\mathcal{H}_{i+1}=(\mathcal{H}_{i}\setminus\langle\mathcal{F}_{i}\rangle)\cup\mathcal{F}_{i} contained a pair of sets E,FE,F with EFE\subsetneq F. Since both i\mathcal{H}_{i} and i\mathcal{F}_{i} are antichains, then either EiE\in\mathcal{F}_{i} and FiiF\in\mathcal{H}_{i}\setminus\langle\mathcal{F}_{i}\rangle, which is clearly impossible, or vice-versa. However, if FiF\in\mathcal{F}_{i}, then FGF\subseteq G for some GiG\in\mathcal{H}_{i}. (Indeed, when i=Liisi\mathcal{F}_{i}=\partial_{L_{i}}\mathcal{H}_{i}^{s_{i}}, we may take G=FLiG=F\cup L_{i}; otherwise, F=LiF=L_{i} and the existence of such a GG follows from the fact that wp(Lii)>0w_{p}(\partial_{L_{i}}\mathcal{H}_{i})>0.) As a result, if there was EiE\in\mathcal{H}_{i} with EFE\subsetneq F, then EGE\subsetneq G for some GiG\in\mathcal{H}_{i}, contradicting the inductive assumption that i\mathcal{H}_{i} is an antichain. ∎

Lemma 3.3.

We have ii+1\langle\mathcal{H}_{i}\rangle\subsetneq\langle\mathcal{H}_{i+1}\rangle and ii=\mathcal{F}_{i}\cap\langle\mathcal{H}_{i}\rangle=\emptyset for every ii.

Proof.

The definition of i+1\mathcal{H}_{i+1} implies that i+1=iii\langle\mathcal{H}_{i+1}\rangle=\langle\mathcal{H}_{i}\rangle\cup\langle\mathcal{F}_{i}\rangle\supseteq\langle\mathcal{H}_{i}\rangle. To complete the proof of the lemma, it is therefore enough to show that i\mathcal{F}_{i}\neq\emptyset and ii=\mathcal{F}_{i}\cap\langle\mathcal{H}_{i}\rangle=\emptyset. The former statement is clear when i={Li}\mathcal{F}_{i}=\{L_{i}\}; otherwise, it follows from the assumption that Liisi\partial_{L_{i}}\mathcal{H}_{i}^{s_{i}}\neq\emptyset. For the latter statement, since i\mathcal{H}_{i} is an antichain (by Lemma 3.2), it is enough to argue that every element of i\mathcal{F}_{i} is a proper subset of some element of i\mathcal{H}_{i}. When i={Li}\mathcal{F}_{i}=\{L_{i}\}, this is the case since LiiL_{i}\notin\mathcal{H}_{i} and Lii\partial_{L_{i}}\mathcal{H}_{i}\neq\emptyset; otherwise, if i=Liisi\mathcal{F}_{i}=\partial_{L_{i}}\mathcal{H}_{i}^{s_{i}}, this follows as LiL_{i}\neq\emptyset. ∎

3.3. Properties

We now turn to establishing some key properties of the algorithm. We will show that, for every input I()I\in\mathcal{I}(\mathcal{H}), we have SICS\subseteq I\subseteq C, the set SS has at most 8r2p|V|8r^{2}p|V| elements, and the hypergraph 𝒢\mathcal{G} (which clearly satisfies wp(𝒢)p|C|w_{p}(\mathcal{G})\leqslant p|C|, see the stopping condition (2)(2b), and |E|2|E|\geqslant 2 for all E𝒢E\in\mathcal{G}) covers [C]\mathcal{H}[C]. Further, we will prove that the set CC (and the hypergraph 𝒢\mathcal{G}) depends on II only through SS, which will allow us to define the functions ff and gg by g(I)Sg(I)\coloneqq S and f(g(I))Cf(g(I))\coloneqq C.

Lemma 3.4.

The hypergraph 𝒢\mathcal{G} covers [C]\mathcal{H}[C].

Proof.

Note first that Lemma 3.3 implies that =00J\mathcal{H}=\mathcal{H}_{0}\subseteq\langle\mathcal{H}_{0}\rangle\subseteq\langle\mathcal{H}_{J}\rangle. Let FF be an arbitrary edge of [C]\mathcal{H}[C]. Since J\mathcal{H}_{J} covers \mathcal{H}, there must be some EJE\in\mathcal{H}_{J} with EFE\subseteq F. However, as FC=CJF\subseteq C=C_{J}, the set EE cannot be a singleton and thus EJ>1=𝒢E\in\mathcal{H}_{J}^{>1}=\mathcal{G}, as required. ∎

Lemma 3.5.

For each ii, we have I(i)I\in\mathcal{I}(\mathcal{H}_{i}) and SiICiS_{i}\subseteq I\subseteq C_{i}.

Proof.

It suffices to show that SiI(i)S_{i}\subseteq I\in\mathcal{I}(\mathcal{H}_{i}) for all ii; indeed, I(i)I\in\mathcal{I}(\mathcal{H}_{i}) implies that ICiI\subseteq C_{i}, as {v}i\{v\}\in\mathcal{H}_{i} for every vVCiv\in V\setminus C_{i}. We prove this by induction on ii. The induction basis follows as S0=S_{0}=\emptyset and I()=I(0)I\in\mathcal{I}(\mathcal{H})=I(\mathcal{H}_{0}). For the induction step, assume that SiI(i)S_{i}\subseteq I\in\mathcal{I}(\mathcal{H}_{i}) for some i0i\geqslant 0. Note first that either Si+1=SiS_{i+1}=S_{i} or Si+1SiLiIS_{i+1}\setminus S_{i}\subseteq L_{i}\subseteq I and thus Si+1IS_{i+1}\subseteq I. Further, since i+1ii\mathcal{H}_{i+1}\subseteq\mathcal{H}_{i}\cup\mathcal{F}_{i}, it suffices to show that I(i)I\in\mathcal{I}(\mathcal{F}_{i}). If LiIL_{i}\nsubseteq I, then i={Li}\mathcal{F}_{i}=\{L_{i}\} and thus (i)\mathcal{I}(\mathcal{F}_{i}) comprises all subsets of VV not containing LiL_{i} (which includes II). Otherwise, if LiIL_{i}\subseteq I, we have iLii\mathcal{F}_{i}\subseteq\partial_{L_{i}}\mathcal{H}_{i} and thus (i)(Lii)\mathcal{I}(\mathcal{F}_{i})\supseteq\mathcal{I}(\partial_{L_{i}}\mathcal{H}_{i}); further, (Lii)\mathcal{I}(\partial_{L_{i}}\mathcal{H}_{i}) contains all sets IVI^{\prime}\subseteq V such that LiI(i)L_{i}\cup I^{\prime}\in\mathcal{I}(\mathcal{H}_{i}) (which again includes I=LiII=L_{i}\cup I). ∎

Lemma 3.6.

For every ii, the hypergraph i\mathcal{F}_{i} is uu-uniform for some u<siu<s_{i}.

Proof.

Suppose first that i={Li}\mathcal{F}_{i}=\{L_{i}\}. In this case, i\mathcal{F}_{i} is clearly |Li||L_{i}|-uniform and |Li|<si|L_{i}|<s_{i} as wp(Liisi)>0w_{p}(\partial_{L_{i}}\mathcal{H}_{i}^{s_{i}})>0 and LiiL_{i}\notin\mathcal{H}_{i}. Suppose now that i=Liisi\mathcal{F}_{i}=\partial_{L_{i}}\mathcal{H}_{i}^{s_{i}}. In this case, i\mathcal{F}_{i} is clearly (si|Li|)(s_{i}-|L_{i}|)-uniform and si|Li|<sis_{i}-|L_{i}|<s_{i} as LiL_{i} is nonempty. ∎

Lemma 3.7.

For every ii and all ss and LVL\subseteq V with 1|L|<s<r1\leqslant|L|<s<r,

wp(Lis)12r.w_{p}(\partial_{L}\mathcal{H}_{i}^{s})\leqslant\frac{1}{2r}.
Proof.

We prove the lemma by induction on ii. The base case i=0i=0 is trivial, as \mathcal{H} is rr-uniform and thus the hypergraphs 02,,0r1\mathcal{H}_{0}^{2},\dotsc,\mathcal{H}_{0}^{r-1} are all empty. For the induction step, assume that the assertion holds for some i0i\geqslant 0 (and all ss and LL). Since i+1ii\mathcal{H}_{i+1}\subseteq\mathcal{H}_{i}\cup\mathcal{F}_{i}, we have

wp(Li+1s)wp(Lis)+wp(Lis)w_{p}(\partial_{L}\mathcal{H}_{i+1}^{s})\leqslant w_{p}(\partial_{L}\mathcal{H}_{i}^{s})+w_{p}(\partial_{L}\mathcal{F}_{i}^{s}) (3)

for all ss and all LVL\subseteq V. Further, since the hypergraph i\mathcal{F}_{i} is uu-uniform for some u<siu<s_{i} (by Lemma 3.6), we have wp(Lis)=0w_{p}(\partial_{L}\mathcal{F}_{i}^{s})=0 unless s=us=u. We may therefore assume from now on that s=us=u, as otherwise the desired inequality (for all LVL\subseteq V with 1|L|<s1\leqslant|L|<s) follows from (3) and the inductive assumption. The minimality of sis_{i} and the fact that u<siu<s_{i} imply that wp(Liu)<1/(4r)w_{p}(\partial_{L}\mathcal{H}_{i}^{u})<1/(4r). It thus suffices to show that wp(Li)<1/(4r)w_{p}(\partial_{L}\mathcal{F}_{i})<1/(4r) for every LVL\subseteq V with |L|<u|L|<u. Fix some such set LL. If i=Liisi\mathcal{F}_{i}=\partial_{L_{i}}\mathcal{H}_{i}^{s_{i}}, then the maximality of LiL_{i} implies that wp(Li)=𝟙LLi=wp(LLiisi)<1/(4r)w_{p}(\partial_{L}\mathcal{F}_{i})=\mathbbm{1}_{L\cap L_{i}=\emptyset}\cdot w_{p}(\partial_{L\cup L_{i}}\mathcal{H}_{i}^{s_{i}})<1/(4r). Otherwise, if ={Li}\mathcal{F}=\{L_{i}\}, we have

wp(Li)=𝟙LLip|Li||L|=𝟙LLipu|L|p1/(4r),w_{p}(\partial_{L}\mathcal{F}_{i})=\mathbbm{1}_{L\subseteq L_{i}}\cdot p^{|L_{i}|-|L|}=\mathbbm{1}_{L\subseteq L_{i}}\cdot p^{u-|L|}\leqslant p\leqslant 1/(4r),

as desired. ∎

Corollary 3.8.

For every ii and all L2ViL\in 2^{V}\setminus\langle\mathcal{H}_{i}\rangle,

wp(Li<r)12.w_{p}(\partial_{L}\mathcal{H}_{i}^{<r})\leqslant\frac{1}{2}.
Lemma 3.9.

For every i{0,,J1}i\in\{0,\dotsc,J-1\},

wp(i+1<r)wp(i<r)+18r𝟙LiI.w_{p}(\mathcal{H}_{i+1}^{<r})\geqslant w_{p}(\mathcal{H}_{i}^{<r})+\frac{1}{8r}\cdot\mathbbm{1}_{L_{i}\subseteq I}.
Proof.

Since the hypergraph i\mathcal{F}_{i} is uu-uniform for some u<siru<s_{i}\leqslant r (by Lemma 3.6), it follows from the definition of i+1\mathcal{H}_{i+1} that

wp(i+1<r)wp(i<r)Lip|L|(1wp(Li<r)).w_{p}(\mathcal{H}_{i+1}^{<r})-w_{p}(\mathcal{H}_{i}^{<r})\geqslant\sum_{L\in\mathcal{F}_{i}}p^{|L|}\cdot\bigl{(}1-w_{p}(\partial_{L}\mathcal{H}_{i}^{<r})\bigr{)}.

Further, since ii=\mathcal{F}_{i}\cap\langle\mathcal{H}_{i}\rangle=\emptyset (by Lemma 3.3), Corollary 3.8 implies that wp(Li<r)1/2w_{p}(\partial_{L}\mathcal{H}_{i}^{<r})\leqslant 1/2 for each LiL\in\mathcal{F}_{i} and thus wp(i+1<r)wp(i<r)wp(i)/2w_{p}(\mathcal{H}_{i+1}^{<r})-w_{p}(\mathcal{H}_{i}^{<r})\geqslant w_{p}(\mathcal{F}_{i})/2. The assertion of the lemma follows as wp(i)0w_{p}(\mathcal{F}_{i})\geqslant 0 and wp(i)=wp(Liisi)1/(4r)w_{p}(\mathcal{F}_{i})=w_{p}(\partial_{L_{i}}\mathcal{H}_{i}^{s_{i}})\geqslant 1/(4r) when LiIL_{i}\subseteq I. ∎

Lemma 3.10.

We have |S|8r2p|V||S|\leqslant 8r^{2}p|V|.

Proof.

Let mm denote the number of rounds of the algorithm in which LiIL_{i}\subseteq I. Since 0\mathcal{H}_{0} is rr-uniform, it follows from Lemma 3.9 that

wp(J<r)=wp(J<r)wp(0<r)=i=0J1(wp(i+1<r)wp(i<r))m8r.w_{p}(\mathcal{H}_{J}^{<r})=w_{p}(\mathcal{H}_{J}^{<r})-w_{p}(\mathcal{H}_{0}^{<r})=\sum_{i=0}^{J-1}\bigl{(}w_{p}(\mathcal{H}_{i+1}^{<r})-w_{p}(\mathcal{H}_{i}^{<r})\bigr{)}\geqslant\frac{m}{8r}.

On the other hand, since J=J1𝒢\mathcal{H}_{J}=\mathcal{H}_{J}^{1}\cup\mathcal{G} and wp(𝒢)p|CJ|w_{p}(\mathcal{G})\leqslant p|C_{J}|, we have

wp(J)=wp(J1)+wp(𝒢)=|VCJ|p+wp(𝒢)p|V|.w_{p}(\mathcal{H}_{J})=w_{p}(\mathcal{H}_{J}^{1})+w_{p}(\mathcal{G})=|V\setminus C_{J}|\cdot p+w_{p}(\mathcal{G})\leqslant p|V|.

We conclude that m8r|V|m\leqslant 8r|V|. Since |Si+1||Si|r|S_{i+1}|-|S_{i}|\leqslant r when LiIL_{i}\subseteq I and |Si+1|=|Si||S_{i+1}|=|S_{i}| otherwise, the assertion of the lemma follows. ∎

Lemma 3.11.

Suppose that the algorithm with inputs I,I()I,I^{\prime}\in\mathcal{I}(\mathcal{H}) outputs (S,C,𝒢)(S,C,\mathcal{G}) and (S,C,𝒢)(S^{\prime},C^{\prime},\mathcal{G}^{\prime}), respectively. If S=SS=S^{\prime}, then (C,𝒢)=(C,𝒢)(C,\mathcal{G})=(C^{\prime},\mathcal{G}^{\prime}).

Proof.

Observe first that the execution of the algorithm on a given input (an independent set of \mathcal{H}) depends solely on how the set Si+1S_{i+1} and the hypergraph i+1\mathcal{F}_{i+1} are defined in each round ii (via step (2)(2d) or step (2)(2e)). Thus, if the outputs of the algorithm applied to II and II^{\prime} are different, then there must be some ii for which LiIL_{i}^{\prime}\subseteq I^{\prime} but LiIL_{i}\nsubseteq I, or vice-versa. Let ii be the earliest such round and note that i=i\mathcal{H}_{i}^{\prime}=\mathcal{H}_{i} and thus also Li=LiL^{\prime}_{i}=L_{i}. We may clearly assume that Li=LiIL_{i}=L^{\prime}_{i}\subseteq I^{\prime} and LiIL_{i}\nsubseteq I. However, Lemma 3.5 implies that Li=LiSi+1S=SIL_{i}=L^{\prime}_{i}\subseteq S^{\prime}_{i+1}\subseteq S^{\prime}=S\subseteq I, a contradiction. ∎

We finish our discussion with a formal proof of A.

Proof of A.

For each independent set I()I\in\mathcal{I}(\mathcal{H}), set g(I)Sg(I)\coloneqq S and f(S)Cf(S)\coloneqq C, where (S,C,𝒢)(S,C,\mathcal{G}) is the output of the algorithm with input II. (Recall that Lemmas 3.2 and 3.3 imply that the algorithm terminates on every input.) Further, set 𝒮{g(I):I()}\mathcal{S}\coloneqq\{g(I):I\in\mathcal{I}(\mathcal{H})\}. Lemma 3.11 guarantees that the function ff is well-defined. By Lemma 3.5, we have g(I)If(g(I))g(I)\subseteq I\subseteq f(g(I)) for every I()I\in\mathcal{I}(\mathcal{H}) whereas Lemma 3.10 shows that |S|8r2pn|S|\leqslant 8r^{2}pn for every S𝒮S\in\mathcal{S}. Finally, writing C=f(g(I))C=f(g(I)), Lemma 3.4 guarantees that the hypergraph 𝒢\mathcal{G} is a cover for [C]\mathcal{H}[C] with wp(𝒢)p|C|w_{p}(\mathcal{G})\leqslant p|C|; the property that |E|2|E|\geqslant 2 for all E𝒢E\in\mathcal{G} is straightforward from the definition of 𝒢\mathcal{G}. This concludes the proof of the theorem. ∎

4. Proof of B

4.1. The algorithm

Assume that \mathcal{H} is a hypergraph on a finite set VV and fix some p(0,1]p\in(0,1]. The following algorithm takes as input an independent set I()I\in\mathcal{I}(\mathcal{H}) and returns sets S,CVS,C\subseteq V.

  1. (1)

    Let 0\mathcal{H}_{0}\coloneqq\mathcal{H} and S0S_{0}\coloneqq\emptyset.

  2. (2)

    Do the following for i=0,1,i=0,1,\dotsc:

    1. (a)

      If there exists a vertex vVSiv\in V\setminus S_{i} such that {v}i\{v\}\notin\mathcal{H}_{i} and

      (vVpVp(i))<(1δ)p,\mathbb{P}\bigl{(}v\in V_{p}\mid V_{p}\in\mathcal{I}(\mathcal{H}_{i})\bigr{)}<(1-\delta)p,

      let viv_{i} be some such vertex; otherwise, set JiJ\coloneqq i and STOP.

    2. (b)

      If viIv_{i}\in I, set Si+1Si{vi}S_{i+1}\coloneqq S_{i}\cup\{v_{i}\} and i+1ivii\mathcal{H}_{i+1}\coloneqq\mathcal{H}_{i}\cup\partial_{v_{i}}\mathcal{H}_{i}.

    3. (c)

      Otherwise, if viIv_{i}\notin I, set Si+1SiS_{i+1}\coloneqq S_{i} and i+1i{{vi}}\mathcal{H}_{i+1}\coloneqq\mathcal{H}_{i}\cup\{\{v_{i}\}\}.

  3. (3)

    Return SSJS\coloneqq S_{J} and C{vV:{v}J}C\coloneqq\left\{v\in V:\{v\}\notin\mathcal{H}_{J}\right\}.

4.2. Properties

We now establish some key properties of the algorithm. We first claim that the algorithm always terminates with J|V|J\leqslant|V|. Indeed, for each ii, the vertex viv_{i} is either added to SiS_{i} or {vi}\{v_{i}\} becomes an edge of i\mathcal{H}_{i}; in both cases, viv_{i} is never considered again in step (2)(2a). Further, we claim that the set CC can be reconstructed with the knowledge of SS only. Indeed, for all ii, the hypergraph i\mathcal{H}_{i} depends on SiS_{i} only. Therefore, running the algorithm with input SS instead of II results in the same sets SS and CC. This allows us to define the functions ff and gg by g(I)Sg(I)\coloneqq S and f(g(I))Cf(g(I))\coloneqq C. It remains to show that, for every input I()I\in\mathcal{I}(\mathcal{H}), we have SICS\subseteq I\subseteq C, the set SS has at most p|V|/δp|V|/\delta elements, and that SCp()S\cup C_{p}\in\mathcal{I}(\mathcal{H}) with probability at least (1p)δ|C|(1-p)^{\delta|C|}.

Lemma 4.1.

For each ii, we have SiI(i)S_{i}\subseteq I\in\mathcal{I}(\mathcal{H}_{i}) and I(i)SiI(i)I^{\prime}\in\mathcal{I}(\mathcal{H}_{i})\iff S_{i}\cup I^{\prime}\in\mathcal{I}(\mathcal{H}_{i}).

Proof.

We prove the assertion of the lemma by induction on ii. The induction basis follows as S0=S_{0}=\emptyset and =0\mathcal{H}=\mathcal{H}_{0}. For the induction step, assume that the assertion holds for some i0i\geqslant 0. Suppose first that viIv_{i}\in I. In this case, Si+1=Si{vi}IS_{i+1}=S_{i}\cup\{v_{i}\}\subseteq I and i+1=ivii\mathcal{H}_{i+1}=\mathcal{H}_{i}\cup\partial_{v_{i}}\mathcal{H}_{i}, which means that (i+1)={IV:{vi}I(i)}I\mathcal{I}(\mathcal{H}_{i+1})=\{I^{\prime}\subseteq V:\{v_{i}\}\cup I^{\prime}\in\mathcal{I}(\mathcal{H}_{i})\}\ni I. Further

I(i+1){vi}I(i)Si{vi}I(i)Si+1I(i+1).I^{\prime}\in\mathcal{I}(\mathcal{H}_{i+1})\iff\{v_{i}\}\cup I^{\prime}\in\mathcal{I}(\mathcal{H}_{i})\iff S_{i}\cup\{v_{i}\}\cup I^{\prime}\in\mathcal{I}(\mathcal{H}_{i})\iff S_{i+1}\cup I^{\prime}\in\mathcal{I}(\mathcal{H}_{i+1}).

Suppose now that viIv_{i}\notin I. In this case, Si+1=SiIS_{i+1}=S_{i}\subseteq I and i+1=i{{vi}}\mathcal{H}_{i+1}=\mathcal{H}_{i}\cup\{\{v_{i}\}\}, which means that (i+1)={I(i):viI}I\mathcal{I}(\mathcal{H}_{i+1})=\{I^{\prime}\in\mathcal{I}(\mathcal{H}_{i}):v_{i}\notin I^{\prime}\}\ni I. Further, I(i+1)Si+1I(i+1)I^{\prime}\in\mathcal{I}(\mathcal{H}_{i+1})\iff S_{i+1}\cup I^{\prime}\in\mathcal{I}(\mathcal{H}_{i+1}), as Si+1=Si∌viS_{i+1}=S_{i}\not\ni v_{i}. ∎

The above lemma clearly implies that S=SJIS=S_{J}\subseteq I. Further, I(J)2CI\in\mathcal{I}(\mathcal{H}_{J})\subseteq 2^{C}, as no vertex vv satisfying {v}J\{v\}\in\mathcal{H}_{J} can belong to an independent set of J\mathcal{H}_{J}. This establishes SICS\subseteq I\subseteq C.

Lemma 4.2.

We have δ|S|p|V|\delta|S|\leqslant p|V|.

Proof.

We claim that the sequence of probabilities Pi(Vp(i))P_{i}\coloneqq\mathbb{P}\bigl{(}V_{p}\in\mathcal{I}(\mathcal{H}_{i})\bigr{)} satisfies

Pi+1(1δ)𝟙viIPi,P_{i+1}\leqslant(1-\delta)^{\mathbbm{1}_{v_{i}\in I}}\cdot P_{i},

for all i{0,,J1}i\in\{0,\dotsc,J-1\}, which gives

(1p)|V|=(Vp=)PJ(1δ)|{i:viI}|P0=(1δ)|S|P0(1δ)|S|.(1-p)^{|V|}=\mathbb{P}(V_{p}=\emptyset)\leqslant P_{J}\leqslant(1-\delta)^{|\{i:v_{i}\in I\}|}\cdot P_{0}=(1-\delta)^{|S|}\cdot P_{0}\leqslant(1-\delta)^{|S|}. (4)

Indeed, if viIv_{i}\notin I, then the inequality Pi+1PiP_{i+1}\leqslant P_{i} follows as ii+1\mathcal{H}_{i}\subseteq\mathcal{H}_{i+1}, and thus (i+1)(i)\mathcal{I}(\mathcal{H}_{i+1})\subseteq\mathcal{I}(\mathcal{H}_{i}). On the other hand, if viIv_{i}\in I, then i+1=ivii\mathcal{H}_{i+1}=\mathcal{H}_{i}\cup\partial_{v_{i}}\mathcal{H}_{i}, and thus (i+1)={IV:I{vi}(i)}\mathcal{I}(\mathcal{H}_{i+1})=\{I^{\prime}\subseteq V:I^{\prime}\cup\{v_{i}\}\in\mathcal{I}(\mathcal{H}_{i})\}. Consequently, by the choice of viv_{i},

pPi+1=(viVp(i))=(viVpVp(i))Pi<(1δ)pPi,p\cdot P_{i+1}=\mathbb{P}\bigl{(}v_{i}\in V_{p}\in\mathcal{I}(\mathcal{H}_{i})\bigr{)}=\mathbb{P}(v_{i}\in V_{p}\mid V_{p}\in\mathcal{I}(\mathcal{H}_{i}))\cdot P_{i}<(1-\delta)p\cdot P_{i},

which gives the desired inequality. We claim that (4) implies the desired inequality δ|S|p|V|\delta|S|\leqslant p|V|. Indeed, if δ|S|>p|V|\delta|S|>p|V|, then (1δ)|S|<(1δ)p|V|/δ(1p)|V|(1-\delta)^{|S|}<(1-\delta)^{p|V|/\delta}\leqslant(1-p)^{|V|}, where the second inequality follows as pδp\leqslant\delta and the map x(1x)1/xx\mapsto(1-x)^{1/x} is decreasing on (0,1)(0,1). ∎

Lemma 4.3.

We have (SCp())(1p)δ|CS|\mathbb{P}\bigl{(}S\cup C_{p}\in\mathcal{I}(\mathcal{H})\bigr{)}\geqslant(1-p)^{\delta|C\setminus S|}.

Proof.

Define CCSC^{\prime}\coloneqq C\setminus S. Since clearly =01J\mathcal{H}=\mathcal{H}_{0}\subseteq\mathcal{H}_{1}\subseteq\dotsb\subseteq\mathcal{H}_{J}, we have

(SCp())(SCp(J))=(SCp(J)).\mathbb{P}(S\cup C_{p}\in\mathcal{I}(\mathcal{H}))\geqslant\mathbb{P}(S\cup C_{p}\in\mathcal{I}(\mathcal{H}_{J}))=\mathbb{P}(S\cup C_{p}^{\prime}\in\mathcal{I}(\mathcal{H}_{J})).

In view of 2.2, the assertion of the lemma will follow if we prove that

𝔼[|Cp|SCp(J)](1δ)p|C|.\mathbb{E}\bigl{[}|C_{p}^{\prime}|\mid S\cup C_{p}^{\prime}\in\mathcal{I}(\mathcal{H}_{J})\bigr{]}\geqslant(1-\delta)p|C^{\prime}|. (5)

To this end, fix an arbitrary vCv\in C^{\prime}. Since (J)2C\mathcal{I}(\mathcal{H}_{J})\subseteq 2^{C}, as we have already observed above, and since SVp(J)Vp(J)S\cup V_{p}\in\mathcal{I}(\mathcal{H}_{J})\iff V_{p}\in\mathcal{I}(\mathcal{H}_{J}), by Lemma 4.1, we have

(vCpSCp(J))=(vVpSVp(J))=(vVpVp(J)).\mathbb{P}\bigl{(}v\in C_{p}^{\prime}\mid S\cup C_{p}^{\prime}\in\mathcal{I}(\mathcal{H}_{J})\bigr{)}=\mathbb{P}\bigl{(}v\in V_{p}\mid S\cup V_{p}\in\mathcal{I}(\mathcal{H}_{J})\bigr{)}=\mathbb{P}\bigl{(}v\in V_{p}\mid V_{p}\in\mathcal{I}(\mathcal{H}_{J})\bigr{)}.

Finally, since vC=CSv\in C^{\prime}=C\setminus S, the stopping condition (2)(2a) implies that the above probability is at least (1δ)p(1-\delta)p. Summing this inequality over all vCv\in C^{\prime} yields (5). ∎

We conclude our discussion with a short derivation of B.

Proof of B.

For each independent set I()I\in\mathcal{I}(\mathcal{H}), set g(I)Sg(I)\coloneqq S and f(S)Cf(S)\coloneqq C, where (S,C)(S,C) is the output of the algorithm with input II. Further, set 𝒮{g(I):I()}\mathcal{S}\coloneqq\{g(I):I\in\mathcal{I}(\mathcal{H})\}. Since the algorithm will perform the exact same operations when we replace the input set II with SS, the function ff is well-defined. Now, Lemma 4.1 implies assertion (a), Lemma 4.2 proves assertion (b), and Lemma 4.3 establishes assertion (c). ∎

5. Derivations of the standard HCLs

Derivation of C from A.

We apply A with pτ/(8r2)p\coloneqq\tau/(8r^{2}) to obtain a family 𝒮\mathcal{S}, functions ff and gg, and a hypergraph 𝒢S\mathcal{G}_{S} for every S𝒮S\in\mathcal{S}. Assertions (a) and (b) follow immediately from the respective assertions in A, so we only need to argue that (c) holds as well.

To this end, fix some S𝒮S\in\mathcal{S}, let Cf(S)C\coloneqq f(S), and let 𝒢𝒢S\mathcal{G}\coloneqq\mathcal{G}_{S} be the hypergraph covering [C]\mathcal{H}[C] that satisfies wp(𝒢)p|C|p|V|w_{p}(\mathcal{G})\leqslant p|C|\leqslant p|V| and whose all edges have size at least two. By the assumption of the theorem, for every E𝒢E\in\mathcal{G},

degEK(p4K)|E|1e()|V|<p|E|12e()|V|,\deg_{\mathcal{H}}E\leqslant K\cdot\left(\frac{p}{4K}\right)^{|E|-1}\cdot\frac{e(\mathcal{H})}{|V|}<\frac{p^{|E|-1}}{2}\cdot\frac{e(\mathcal{H})}{|V|},

where the second inequality follows as |E|2|E|\geqslant 2 and Kr1K\geqslant r\geqslant 1. The fact that 𝒢\mathcal{G} covers [C]\mathcal{H}[C] implies that

e([C])E𝒢degE<e()2p|V|E𝒢p|E|=e()2p|V|wp([C])e()2.e(\mathcal{H}[C])\leqslant\sum_{E\in\mathcal{G}}\deg_{\mathcal{H}}E<\frac{e(\mathcal{H})}{2p|V|}\cdot\sum_{E\in\mathcal{G}}p^{|E|}=\frac{e(\mathcal{H})}{2p|V|}\cdot w_{p}(\mathcal{H}[C])\leqslant\frac{e(\mathcal{H})}{2}.

On the other hand,

e([C])e()|VC|Δ1()e()|VC|Ke()|V|,e(\mathcal{H}[C])\geqslant e(\mathcal{H})-|V\setminus C|\cdot\Delta_{1}(\mathcal{H})\geqslant e(\mathcal{H})-|V\setminus C|\cdot\frac{Ke(\mathcal{H})}{|V|},

which yields |VC|/|V|>1/(2K)|V\setminus C|/|V|>1/(2K) or, equivalently, |C|<(11/(2K))|V||C|<\bigl{(}1-1/(2K)\bigr{)}|V|. ∎

Remark.

A careful examination of the proof allows one to improve the bounds in assumption (1) in C somewhat further. First, note that we only needed the bounds

Δ1()Ke()|V| and Δ()(τ32r2)1e()|V|for {2,,r}.\Delta_{1}(\mathcal{H})\leqslant K\cdot\frac{e(\mathcal{H})}{|V|}\qquad\text{ and }\qquad\Delta_{\ell}(\mathcal{H})\leqslant\left(\frac{\tau}{32r^{2}}\right)^{\ell-1}\,\frac{e(\mathcal{H})}{|V|}\quad\text{for $\ell\in\{2,\dotsc,r\}$}.

Further, we claim that changing step (2)(2b) in the algorithm from the proof of A to

  1. (2b’)

    If wp(i>1)(logr/r)p|Ci|w_{p}(\mathcal{H}_{i}^{>1})\leqslant(\log r/r)\cdot p|C_{i}| or |Ci|(11/(2K))|V||C_{i}|\leqslant\bigl{(}1-1/(2K)\bigr{)}|V|, then set JiJ\coloneqq i and STOP

allows us to derive a stronger version of C, with the upper bound on Δ()\Delta_{\ell}(\mathcal{H}) in (1) increased by a factor of roughly (r/logr)1(r/\log r)^{\ell-1}. To see this, notice that the only modifications needed in the proof of A occur in Lemmas 3.1 and 3.10. The conclusion of Lemma 3.1 still holds since

logrrp|Ci|wp(i>1)=s=2rvCipwp(vis)s\frac{\log r}{r}\cdot p|C_{i}|\leqslant w_{p}(\mathcal{H}_{i}^{>1})=\sum_{s=2}^{r}\sum_{v\in C_{i}}\frac{p\cdot w_{p}(\partial_{v}\mathcal{H}_{i}^{s})}{s}

and, consequently, there must be some vCiv\in C_{i} such that

s=2rwp(vis)slogrrs=2r1rs\sum_{s=2}^{r}\frac{w_{p}(\partial_{v}\mathcal{H}_{i}^{s})}{s}\geqslant\frac{\log r}{r}\geqslant\sum_{s=2}^{r}\frac{1}{rs}

which implies that wp(vis)1/rw_{p}(\partial_{v}\mathcal{H}_{i}^{s})\geqslant 1/r for some ss. On the other hand, the assertion of Lemma 3.10 may now be strengthened. Indeed, since now

wp(J)=|VCJ|p+wp(𝒢)|V|p2K+logrr|V|p2logrr|V|p,w_{p}(\mathcal{H}_{J})=|V\setminus C_{J}|\cdot p+w_{p}(\mathcal{G})\leqslant\frac{|V|p}{2K}+\frac{\log r}{r}\cdot|V|p\leqslant\frac{2\log r}{r}\cdot|V|p,

we may deduce the stronger bound |S|16(rlogr)p|V||S|\leqslant 16(r\log r)\cdot p|V|, which allows the conclusion of C to be reached under the weaker assumption

Δ1()Ke()|V| and Δ()(τ26rlogr)1e()|V|for {2,,r}.\Delta_{1}(\mathcal{H})\leqslant K\cdot\frac{e(\mathcal{H})}{|V|}\qquad\text{ and }\qquad\Delta_{\ell}(\mathcal{H})\leqslant\left(\frac{\tau}{2^{6}r\log r}\right)^{\ell-1}\frac{e(\mathcal{H})}{|V|}\quad\text{for $\ell\in\{2,\dotsc,r\}$}.
Derivation of C from B.

We apply B with pτ/(16Kr)p\coloneqq\tau/(16Kr) and δp/τ=(16Kr)1\delta\coloneqq p/\tau=(16Kr)^{-1} to obtain a family 𝒮\mathcal{S} and functions ff and gg. Assertions (a) and (b) follow immediately from the respective assertions in B, so we only need to argue that (c) holds as well.

Suppose that S𝒮S\in\mathcal{S} and let Cf(S)C\coloneqq f(S). We may assume that e([C])e()/2e(\mathcal{H}[C])\geqslant e(\mathcal{H})/2, as otherwise |C|(11/(2K))|V||C|\leqslant\bigl{(}1-1/(2K)\bigr{)}|V| follows from the assumption that Δ1()Ke()/|V|\Delta_{1}(\mathcal{H})\leqslant Ke(\mathcal{H})/|V|, as in the previous derivation. Preparing to apply Janson’s inequality (Theorem 2.1), we define μA[C]p|A|=e([C])pr\mu\coloneqq\sum_{A\in\mathcal{H}[C]}p^{|A|}=e(\mathcal{H}[C])p^{r} and

ΔA[C]p|A|B[C]ABp|BA|μ=1r(r)Δ()pr.\Delta^{*}\coloneqq\sum_{A\in\mathcal{H}[C]}p^{|A|}\sum_{\begin{subarray}{c}B\in\mathcal{H}[C]\\ A\cap B\neq\emptyset\end{subarray}}p^{|B\setminus A|}\leqslant\mu\cdot\sum_{\ell=1}^{r}\binom{r}{\ell}\Delta_{\ell}(\mathcal{H})p^{r-\ell}.

By the assumption of the theorem,

=1r(r)Δ()p1=1rrK(τ32Kr2p)1e()|V|=Kre()|V|=1r21,\sum_{\ell=1}^{r}\binom{r}{\ell}\Delta_{\ell}(\mathcal{H})p^{1-\ell}\leqslant\sum_{\ell=1}^{r}r^{\ell}K\left(\frac{\tau}{32Kr^{2}p}\right)^{\ell-1}\cdot\frac{e(\mathcal{H})}{|V|}=\frac{Kre(\mathcal{H})}{|V|}\cdot\sum_{\ell=1}^{r}2^{1-\ell},

and consequently, by Janson’s inequality,

(Cp())exp(μ22Δ)exp(μ|V|4Kre()pr1)exp(p|V|8Kr),\mathbb{P}(C_{p}\in\mathcal{I}(\mathcal{H}))\leqslant\exp\left(-\frac{\mu^{2}}{2\Delta^{*}}\right)\leqslant\exp\left(-\frac{\mu|V|}{4Kre(\mathcal{H})p^{r-1}}\right)\leqslant\exp\left(-\frac{p|V|}{8Kr}\right),

where the last inequality holds thanks to our assumption that e([C])e()/2e(\mathcal{H}[C])\geqslant e(\mathcal{H})/2. On the other hand, the assertion of B gives

(Cp())(SCp())(1p)δ|C|>exp(2δp|V|)exp(p|V|8Kr),\mathbb{P}\bigl{(}C_{p}\in\mathcal{I}(\mathcal{H})\bigr{)}\geqslant\mathbb{P}\bigl{(}S\cup C_{p}\in\mathcal{I}(\mathcal{H})\bigr{)}\geqslant(1-p)^{\delta|C|}>\exp\left(-2\delta p|V|\right)\geqslant\exp\left(-\frac{p|V|}{8Kr}\right),

a contradiction. ∎

Derivation of D from A.

We apply A to obtain a family 𝒮\mathcal{S}, functions ff and gg, and a hypergraph 𝒢S\mathcal{G}_{S} for every S𝒮S\in\mathcal{S}. Assertions (a) and (b) follow immediately from the respective assertions in A, so we only need to argue that (c) holds as well.

To this end, fix some S𝒮S\in\mathcal{S}, let Cf(S)C\coloneqq f(S), and let 𝒢𝒢S\mathcal{G}\coloneqq\mathcal{G}_{S} be the hypergraph covering [C]\mathcal{H}[C] that satisfies wp(𝒢)p|C|w_{p}(\mathcal{G})\leqslant p|C| and whose all edges have size at least two. Assume toward contradiction that there is a hypergraph S[C]\mathcal{H}_{S}\subseteq\mathcal{H}[C] that satisfies (2). Since 𝒢\mathcal{G} covers [C]\mathcal{H}[C], and thus also S\mathcal{H}_{S}, we have

e(S)E𝒢degSE<E𝒢p|E|1e(S)|C|=wp(𝒢)e(S)p|C|e(S),e(\mathcal{H}_{S})\leqslant\sum_{E\in\mathcal{G}}\deg_{\mathcal{H}_{S}}E<\sum_{E\in\mathcal{G}}\frac{p^{|E|-1}e(\mathcal{H}_{S})}{|C|}=w_{p}(\mathcal{G})\cdot\frac{e(\mathcal{H}_{S})}{p|C|}\leqslant e(\mathcal{H}_{S}),

a contradiction. ∎

6. Interpolating between A and B

In this section, we sketch the proof of E, which is a fairly straightforward adaptation of the proof of B (given in Section 4), and present derivations of A and B from E.

6.1. The algorithm

Assume that \mathcal{H} is a hypergraph on a finite set VV and fix some p(0,1]p\in(0,1]. The following algorithm takes as input an independent set I()I\in\mathcal{I}(\mathcal{H}) and returns sets S,CVS,C\subseteq V and a hypergraph 𝒢\mathcal{G}.

  1. (1)

    Let 0\mathcal{H}_{0}\coloneqq\mathcal{H} and S0S_{0}\coloneqq\emptyset.

  2. (2)

    Do the following for i=0,1,i=0,1,\dotsc:

    1. (a)

      If there exists a set LVSiL\subseteq V\setminus S_{i} such that L(i)L\in\mathcal{I}(\mathcal{H}_{i}) and

      (LVpVp(i))<(1δ)|L|p|L|,\mathbb{P}\bigl{(}L\subseteq V_{p}\mid V_{p}\in\mathcal{I}(\mathcal{H}_{i})\bigr{)}<(1-\delta)^{|L|}p^{|L|},

      let LiL_{i} be a minimal such set; otherwise, set JiJ\coloneqq i and STOP.

    2. (b)

      If LiIL_{i}\subseteq I, set Si+1SiLiS_{i+1}\coloneqq S_{i}\cup L_{i} and i+1{ELi:Ei}Li(i)\mathcal{H}_{i+1}\coloneqq\{E\setminus L_{i}:E\in\mathcal{H}_{i}\}\eqqcolon\partial_{L_{i}}^{*}(\mathcal{H}_{i}).

    3. (c)

      Otherwise, if LiIL_{i}\nsubseteq I, set Si+1SiS_{i+1}\coloneqq S_{i} and i+1i{Li}\mathcal{H}_{i+1}\coloneqq\mathcal{H}_{i}\cup\{L_{i}\}.

  3. (3)

    Return SSJS\coloneqq S_{J}, C{vV:{v}J}C\coloneqq\left\{v\in V:\{v\}\notin\mathcal{H}_{J}\right\} and 𝒢J[C]\mathcal{G}\coloneqq\mathcal{H}_{J}[C].

6.2. Properties

The above algorithm always terminates because no set LL is ever considered more than once. Indeed, either LiSi+1L_{i}\subseteq S_{i+1}, and thus LiVSjL_{i}\nsubseteq V\setminus S_{j} for all j>ij>i, or Lii+1L_{i}\in\mathcal{H}_{i+1}, and thus Li(j)L_{i}\notin\mathcal{I}(\mathcal{H}_{j}) for all j>ij>i. Moreover, the set CC and the hypergraph 𝒢\mathcal{G} can be reconstructed with the knowledge of SS only, as running the algorithm with input SS instead of II results in the same sets SS and CC and hypergraph 𝒢\mathcal{G}. This allows us to define g(I)Sg(I)\coloneqq S and f(g(I))Cf(g(I))\coloneqq C. It remains to show that, for every input I()I\in\mathcal{I}(\mathcal{H}), we have SICS\subseteq I\subseteq C, the set S has at most p|V|/δp|V|/\delta elements, and that 𝒢\mathcal{G} is a cover of [C]\mathcal{H}[C] with the desired property.

The assertion of Lemma 4.1, that is, SiI(i)S_{i}\subseteq I\in\mathcal{I}(\mathcal{H}_{i}) and I(i)SiI(i)I^{\prime}\in\mathcal{I}(\mathcal{H}_{i})\iff S_{i}\cup I^{\prime}\in\mathcal{I}(\mathcal{H}_{i}) for all ii, remains true, with essentially the same proof. Consequently, I(J)I\in\mathcal{I}(\mathcal{H}_{J}) and thus ICI\subseteq C, as no vertex in VCV\setminus C can belong to an independent set of J\mathcal{H}_{J}. Observe additionally that, for all ii, we have ii+1\langle\mathcal{H}_{i}\rangle\subseteq\langle\mathcal{H}_{i+1}\rangle and thus (i+1)(i)\mathcal{I}(\mathcal{H}_{i+1})\subseteq\mathcal{I}(\mathcal{H}_{i}). The desired upper bound on |S||S| can be established by adapting the proof of Lemma 4.2. Indeed, note first that it is enough to show that the sequence Pi(Vp(i))P_{i}\coloneqq\mathbb{P}\bigl{(}V_{p}\in\mathcal{I}(\mathcal{H}_{i})\bigr{)} satisfies the inequality Pi+1(1δ)𝟙LiI|Li|PiP_{i+1}\leqslant(1-\delta)^{\mathbbm{1}_{L_{i}\subseteq I}\cdot|L_{i}|}\cdot P_{i} for all ii. The inequality Pi+1PiP_{i+1}\leqslant P_{i} follows as (i+1)(i)\mathcal{I}(\mathcal{H}_{i+1})\subseteq\mathcal{I}(\mathcal{H}_{i}). Further, if LiIL_{i}\subseteq I, then

p|Li|(Vp(i+1))=(LiVp(i))<(1δ)|Li|p|Li|(Vp(i)),p^{|L_{i}|}\cdot\mathbb{P}\bigl{(}V_{p}\in\mathcal{I}(\mathcal{H}_{i+1})\bigr{)}=\mathbb{P}\bigl{(}L_{i}\subseteq V_{p}\in\mathcal{I}(\mathcal{H}_{i})\bigr{)}<(1-\delta)^{|L_{i}|}p^{|L_{i}|}\cdot\mathbb{P}\bigl{(}V_{p}\in\mathcal{I}(\mathcal{H}_{i})\bigr{)},

where the equality holds as (i+1)=(Lii)={I(i):LiI(i)}\mathcal{I}(\mathcal{H}_{i+1})=\mathcal{I}(\partial_{L_{i}}^{*}\mathcal{H}_{i})=\{I^{\prime}\in\mathcal{I}(\mathcal{H}_{i}):L_{i}\cup I^{\prime}\in\mathcal{I}(\mathcal{H}_{i})\}.

Last but not least, we argue that 𝒢\mathcal{G} possesses all the claimed properties. First, 𝒢=J[C]\mathcal{G}=\mathcal{H}_{J}[C] covers [C]\mathcal{H}[C] since =0J\langle\mathcal{H}\rangle=\langle\mathcal{H}_{0}\rangle\subseteq\dotsb\subseteq\langle\mathcal{H}_{J}\rangle. Second, each E𝒢E\in\mathcal{G} satisfies |E|2|E|\geqslant 2 as otherwise we would have EC=E\cap C=\emptyset, by the definition of CC. We also remark that, for all LCSL\subseteq C\setminus S with L(𝒢)L\in\mathcal{I}(\mathcal{G}), we have

(LCpCp(𝒢))=(LVpVp(J))(1δ)|L|p|L|,\mathbb{P}\bigl{(}L\subseteq C_{p}\mid C_{p}\in\mathcal{I}(\mathcal{G})\bigr{)}=\mathbb{P}\bigl{(}L\subseteq V_{p}\mid V_{p}\in\mathcal{I}(\mathcal{H}_{J})\bigr{)}\geqslant(1-\delta)^{|L|}p^{|L|},

by the terminating condition in the algorithm and the fact that (J)2C\mathcal{I}(\mathcal{H}_{J})\subseteq 2^{C}.

Finally, we show that ES=E\cap S=\emptyset for every E𝒢E\in\mathcal{G}. Since S=SJS=S_{J} and 𝒢J\mathcal{G}\subseteq\mathcal{H}_{J}, it is enough to prove the stronger statement that ESi=E\cap S_{i}=\emptyset for all EiE\in\mathcal{H}_{i} and all ii. We show this by induction on ii. The induction basis is vacuously true as S0=S_{0}=\emptyset. Assume that i0i\geqslant 0. If LiIL_{i}\nsubseteq I, then Si+1=SiS_{i+1}=S_{i} and the only edge in i+1i\mathcal{H}_{i+1}\setminus\mathcal{H}_{i} is LiL_{i}, which is disjoint from SiS_{i}. Else, if LiIL_{i}\subseteq I, then Si+1Si=LiS_{i+1}\setminus S_{i}=L_{i} and we replace each EiE\in\mathcal{H}_{i}, which is disjoint from SiS_{i}, with the edge ELi=ESi+1E\setminus L_{i}=E\setminus S_{i+1}, which is disjoint from Si+1S_{i+1}.

6.3. Derivations of A and B

We first show that Theorem B follows by a simple application of Proposition 2.2.

Derivation of B from E.

Since the assumptions of the two theorems are identical, and their assertions differ only in the characterisation of the sets f(S)f(S), we just need to show that assertion (c) in E implies that, for every S𝒮S\in\mathcal{S}, we have

(SCp())(1p)δ|CS|,\mathbb{P}\bigl{(}S\cup C_{p}\in\mathcal{I}(\mathcal{H})\bigr{)}\geqslant(1-p)^{\delta|C\setminus S|},

where Cf(S)C\coloneqq f(S). Let CCSC^{\prime}\coloneqq C\setminus S and note that the fact that 𝒢\mathcal{G} is a cover of [C]\mathcal{H}[C] implies that

(SCp())=(SCp())(SCp(𝒢)).\mathbb{P}\bigl{(}S\cup C_{p}\in\mathcal{I}(\mathcal{H})\bigr{)}=\mathbb{P}\bigl{(}S\cup C_{p}^{\prime}\in\mathcal{I}(\mathcal{H})\bigr{)}\geqslant\mathbb{P}\bigl{(}S\cup C_{p}^{\prime}\in\mathcal{I}(\mathcal{G})\bigr{)}.

Further, the fact that ES=E\cap S=\emptyset for all E𝒢E\in\mathcal{G} implies that, for every vCv\in C^{\prime}

(vCpSCp(𝒢))=(vCpCp(𝒢))(1δ)p.\mathbb{P}\bigl{(}v\in C_{p}^{\prime}\mid S\cup C_{p}^{\prime}\in\mathcal{I}(\mathcal{G})\bigr{)}=\mathbb{P}\bigl{(}v\in C_{p}^{\prime}\mid C_{p}\in\mathcal{I}(\mathcal{G})\bigr{)}\geqslant(1-\delta)p.

It follows that

𝔼[|Cp|SCp(𝒢)](1δ)p|C|\mathbb{E}\bigl{[}|C_{p}^{\prime}|\mid S\cup C_{p}^{\prime}\in\mathcal{I}(\mathcal{G})\bigr{]}\geqslant(1-\delta)p|C^{\prime}|

and consequently, by 2.2, that (SCp(𝒢))(1p)δ|C|\mathbb{P}\bigl{(}S\cup C_{p}^{\prime}\in\mathcal{I}(\mathcal{G})\bigr{)}\geqslant(1-p)^{\delta|C^{\prime}|}. ∎

The derivation of A from E is decidedly more complicated. We will show that that the cover 𝒢\mathcal{G} of [C]\mathcal{H}[C] given by E has the property wp(𝒢)p|C|w_{p}(\mathcal{G})\leqslant p|C|. We will argue by contradiction, showing that, if wp(𝒢)>p|C|w_{p}(\mathcal{G})>p|C|, some maximal set LL among those whose degree in 𝒢\mathcal{G} is large satisfies (LCpCp(𝒢))<(1δ)|L|p|L|\mathbb{P}\bigl{(}L\subseteq C_{p}\mid C_{p}\in\mathcal{I}(\mathcal{G})\bigr{)}<(1-\delta)^{|L|}p^{|L|}; the proof of this inequality will employ a second-moment argument.

Derivation of A from E.

Suppose that \mathcal{H} is an rr-uniform hypergraph with vertex set VV and let p(0,1/(8r2)]p\in(0,1/(8r^{2})] be arbitrary. We apply E with δ1/(4r)\delta\coloneqq 1/(4r) and density parameter q2rp1/(4r)=δq\coloneqq 2rp\leqslant 1/(4r)=\delta to obtain a family 𝒮2V\mathcal{S}\subseteq 2^{V} of sets satisfying |S|q|V|/δ=8r2p|V||S|\leqslant q|V|/\delta=8r^{2}p|V| for each S𝒮S\in\mathcal{S} and functions g:()𝒮g\colon\mathcal{I}(\mathcal{H})\rightarrow\mathcal{S} and f:𝒮2Vf\colon\mathcal{S}\rightarrow 2^{V} such that g(I)If(g(I))g(I)\subseteq I\subseteq f(g(I)) for all I()I\in\mathcal{I}(\mathcal{H}). It suffices to show that, for every S𝒮S\in\mathcal{S}, there is a hypergraph 𝒢\mathcal{G} on VV with all edges of size at least two that covers [C]\mathcal{H}[C] and satisfies wp(𝒢)p|C|w_{p}(\mathcal{G})\leqslant p|C|, where Cf(S)C\coloneqq f(S). To this end, fix some S𝒮S\in\mathcal{S} and let 𝒢\mathcal{G} be the set of all inclusion-minimal elements in the cover given by (c) in E. As 𝒢\mathcal{G} covers [C]\mathcal{H}[C] and satisfies |E|2|E|\geqslant 2 for all E𝒢E\in\mathcal{G}, we only need to show that wp(𝒢)p|C|w_{p}(\mathcal{G})\leqslant p|C|.

Assume by contradiction that wp(𝒢)>p|C|w_{p}(\mathcal{G})>p|C|. We claim that there exists a set L(𝒢)L\in\mathcal{I}(\mathcal{G}) and an s{2,,r}s\in\{2,\dotsc,r\} such that

wp(L𝒢s)1/r.w_{p}(\partial_{L}\mathcal{G}^{s})\geqslant 1/r. (6)

To this end, note that

p|C|<wp(𝒢)=s=2rwp(𝒢s)=s=2r1svCpwp(v𝒢s)pvCs=2rwp(v𝒢s),p|C|<w_{p}(\mathcal{G})=\sum_{s=2}^{r}w_{p}(\mathcal{G}^{s})=\sum_{s=2}^{r}\frac{1}{s}\sum_{v\in C}p\cdot w_{p}(\partial_{v}\mathcal{G}^{s})\leqslant p\cdot\sum_{v\in C}\sum_{s=2}^{r}w_{p}(\partial_{v}\mathcal{G}^{s}),

which means that (6) must hold with L={v}L=\{v\} for some vCv\in C and s{2,,r}s\in\{2,\dotsc,r\}; note that {v}(𝒢)\{v\}\in\mathcal{I}(\mathcal{G}) for every vCv\in C since all edges of 𝒢\mathcal{G} have at least two vertices. Let LL be an inclusion-maximal set that is independent in 𝒢\mathcal{G} and satisfies (6) for some s{2,,r}s\in\{2,\dotsc,r\} and let |L|s1\ell\coloneqq|L|\in\llbracket{s-1}\rrbracket. Such choice of LL guarantees that, on the one hand,

|L𝒢s|=pswp(L𝒢s)ps/r|\partial_{L}\mathcal{G}^{s}|=p^{\ell-s}\cdot w_{p}(\partial_{L}\mathcal{G}^{s})\geqslant p^{\ell-s}/r

and, on the other hand, for every ts1t\in\llbracket{s-\ell-1}\rrbracket,

Δt(L𝒢s)=max{|LT𝒢s|:TVL|T|=t}=max{pt+swp(LT𝒢s):TVL|T|=t}<pt+s/r,\begin{split}\Delta_{t}(\partial_{L}\mathcal{G}^{s})&=\max\{|\partial_{L\cup T}\mathcal{G}^{s}|:T\subseteq V\setminus L\wedge|T|=t\}\\ &=\max\{p^{t+\ell-s}\cdot w_{p}(\partial_{L\cup T}\mathcal{G}^{s}):T\subseteq V\setminus L\wedge|T|=t\}<p^{t+\ell-s}/r,\end{split}

where the last inequality follows as every set LLL^{\prime}\supseteq L that has fewer than ss elements and satisfies L𝒢s\partial_{L^{\prime}}\mathcal{G}^{s}\neq\emptyset is independent in 𝒢\mathcal{G} (otherwise, LL^{\prime} would be a proper subset of some edge of 𝒢s\mathcal{G}^{s}, contradicting the fact that 𝒢\mathcal{G} is an antichain).

Since L(𝒢)L\in\mathcal{I}(\mathcal{G}), assertion (c) of E yields

(LCqCq(𝒢))(1δ)q(1δ)q3q/4\mathbb{P}\bigl{(}L\subseteq C_{q}\mid C_{q}\in\mathcal{I}(\mathcal{G})\bigr{)}\geqslant(1-\delta)^{\ell}q^{\ell}\geqslant(1-\delta\ell)q^{\ell}\geqslant 3q^{\ell}/4

whereas, by Harris’s inequality, writing C~\tilde{C} for CqC_{q} conditioned on the event Cq(𝒢)C_{q}\in\mathcal{I}(\mathcal{G}),

(LCqCq(𝒢))=(LCqCq(L𝒢)Cq(𝒢))q(Cq(L𝒢)Cq(𝒢))=q(C~(L𝒢)),\begin{split}\mathbb{P}\bigl{(}L\subseteq C_{q}\mid C_{q}\in\mathcal{I}(\mathcal{G})\bigr{)}&=\mathbb{P}\bigl{(}L\subseteq C_{q}\wedge C_{q}\in\mathcal{I}(\partial_{L}\mathcal{G})\mid C_{q}\in\mathcal{I}(\mathcal{G})\bigr{)}\\ &\leqslant q^{\ell}\cdot\mathbb{P}\bigl{(}C_{q}\in\mathcal{I}(\partial_{L}\mathcal{G})\mid C_{q}\in\mathcal{I}(\mathcal{G})\bigr{)}=q^{\ell}\cdot\mathbb{P}\bigl{(}\tilde{C}\in\mathcal{I}(\partial_{L}\mathcal{G})\bigr{)},\end{split}

Let Xe(L𝒢s[C~])X\coloneqq e(\partial_{L}\mathcal{G}^{s}[\tilde{C}]) denote the number of edges that C~\tilde{C} induces in L𝒢s\partial_{L}\mathcal{G}^{s}. Using the Paley–Zygmund inequality, we may bound

34(C~(L𝒢))(C~(L𝒢s))=(X=0)1𝔼[X]2𝔼[X2],\frac{3}{4}\leqslant\mathbb{P}\bigl{(}\tilde{C}\in\mathcal{I}(\partial_{L}\mathcal{G})\bigr{)}\leqslant\mathbb{P}\bigl{(}\tilde{C}\in\mathcal{I}(\partial_{L}\mathcal{G}^{s})\bigr{)}=\mathbb{P}(X=0)\leqslant 1-\frac{\mathbb{E}[X]^{2}}{\mathbb{E}[X^{2}]},

which means that 𝔼[X2]4𝔼[X]2\mathbb{E}[X^{2}]\geqslant 4\mathbb{E}[X]^{2}.

Since each EL𝒢sE\in\partial_{L}\mathcal{G}^{s} is independent in 𝒢\mathcal{G} (as LL\neq\emptyset and 𝒢\mathcal{G} is an antichain), assertion (c) of E yields

𝔼[X]=EL𝒢s(EC~)EL𝒢s(1δ)|E|q|E|=(1δ)s|L𝒢s|qsμ.\mathbb{E}[X]=\sum_{E\in\partial_{L}\mathcal{G}^{s}}\mathbb{P}(E\subseteq\tilde{C})\geqslant\sum_{E\in\partial_{L}\mathcal{G}^{s}}(1-\delta)^{|E|}q^{|E|}=(1-\delta)^{s-\ell}\cdot\underbrace{|\partial_{L}\mathcal{G}^{s}|\cdot q^{s-\ell}}_{\mu}.

Further,

μ=|L𝒢s|qs=wp(L𝒢s)(qp)s1r(qp)s2.\mu=|\partial_{L}\mathcal{G}^{s}|\cdot q^{s-\ell}=w_{p}(\partial_{L}\mathcal{G}^{s})\cdot\left(\frac{q}{p}\right)^{s-\ell}\geqslant\frac{1}{r}\cdot\left(\frac{q}{p}\right)^{s-\ell}\geqslant 2.

On the other hand, by Harris’s inequality,

𝔼[X2]=E,EL𝒢s(EEC~)E,EL𝒢sq|EE|=EL𝒢sq|E|EL𝒢sq|EE|μ(μ+1+t=1s1(st)Δt(L𝒢s)qst).\begin{split}\mathbb{E}[X^{2}]&=\sum_{E,E^{\prime}\in\partial_{L}\mathcal{G}^{s}}\mathbb{P}(E\cup E^{\prime}\subseteq\tilde{C})\leqslant\sum_{E,E^{\prime}\in\partial_{L}\mathcal{G}^{s}}q^{|E\cup E^{\prime}|}=\sum_{E\in\partial_{L}\mathcal{G}^{s}}q^{|E|}\sum_{E^{\prime}\in\partial_{L}\mathcal{G}^{s}}q^{|E^{\prime}\setminus E|}\\ &\leqslant\mu\cdot\left(\mu+1+\sum_{t=1}^{s-\ell-1}\binom{s-\ell}{t}\Delta_{t}(\partial_{L}\mathcal{G}^{s})q^{s-\ell-t}\right).\end{split}

Further, for every ts1t\in\llbracket{s-\ell-1}\rrbracket,

Δt(L𝒢s)qstpt+sqstr(pq)tμ=μ(2r)t\Delta_{t}(\partial_{L}\mathcal{G}^{s})\cdot q^{s-\ell-t}\leqslant\frac{p^{t+\ell-s}\cdot q^{s-\ell-t}}{r}\leqslant\left(\frac{p}{q}\right)^{t}\cdot\mu=\frac{\mu}{(2r)^{t}}

and thus

𝔼[X2]μ+μ2t=0s1(st)1(8r)tμ+μ2(1+12r)sμ+32μ22μ2.\mathbb{E}[X^{2}]\leqslant\mu+\mu^{2}\cdot\sum_{t=0}^{s-\ell-1}\binom{s-\ell}{t}\cdot\frac{1}{(8r)^{t}}\leqslant\mu+\mu^{2}\cdot\left(1+\frac{1}{2r}\right)^{s-\ell}\leqslant\mu+\frac{3}{2}\cdot\mu^{2}\leqslant 2\mu^{2}.

We conclude that

𝔼[X2]𝔼[X]22(1δ)s21δr83,\frac{\mathbb{E}[X^{2}]}{\mathbb{E}[X]^{2}}\leqslant\frac{2}{(1-\delta)^{s-\ell}}\leqslant\frac{2}{1-\delta r}\leqslant\frac{8}{3},

which is a contradiction. ∎

7. Concluding remarks

Comparing the two notions of almost-independence that are used to describe the containers in A and B led us to proving 1.1. While part (ii) of this proposition is sufficient for our purposes, we hope that a much stronger statement is true. We will say that a hypergraph \mathcal{H} is rr-bounded, for some positive integer rr, if |E|r|E|\leqslant r for all EE\in\mathcal{H}.

Question 7.1.

What is the smallest function K:K\colon\mathbb{N}\rightarrow\mathbb{R} such that any rr-bounded hypergraph \mathcal{H} on a finite vertex set VV admits a cover 𝒢2V{}\mathcal{G}\subseteq 2^{V}\setminus\{\emptyset\} that satisfies

([Vp]=)exp(wp/K(r)(𝒢))?\mathbb{P}(\mathcal{H}[V_{p}]=\emptyset)\leqslant\exp\left(-w_{p/K(r)}(\mathcal{G})\right)?

1.1 (ii) shows that K(r)=O(r2)K(r)=O(r^{2}) when one assumes that \mathcal{H} is rr-uniform rather than rr-bounded. However, a fairly straightforward adaptation of the proof of this proposition extends its validity to all rr-bounded hypergraphs. On the other hand, it is not hard to see that K(r)=Ω(logr)K(r)=\Omega(\log r). (Indeed, consider the hypergraph \mathcal{H} with vertex set K2nK_{2n} whose edges are all perfect matchings and p=clogn/np=c\log n/n for some small constant cc.) Originally, we conjectured that KK does not have to depend on rr, at the cost of multiplying the above upper bound on the probability by a factor polynomial in rr. Soon after the original version of this work was made public, Quentin Dubroff found a counterexample to this stronger conjecture. (His counterexample is the hypergraph with vertex set KnK_{n} whose edges are all K1,dK_{1,d}-factors in KnK_{n}, for some d=nΘ(1)d=n^{\Theta(1)}, and pp slightly larger than d/nd/n.) We later realised that a universal upper bound on the probability that [Vp]=\mathcal{H}[V_{p}]=\emptyset that has the form exp(wp/K(r)(𝒢)+f(r))\exp(-w_{p/K(r)}(\mathcal{G})+f(r)), for some f(r)0f(r)\geqslant 0 that depends only on rr, implies the corresponding stronger upper bound of exp(wp/K(r)(𝒢))\exp(-w_{p/K(r)}(\mathcal{G})). To see this, consider the hypergraph mm\mathcal{H} that comprises mm vertex-disjoint copies of \mathcal{H}. It is easy to verify that (m[mVp]=)=([Vp]=)m\mathbb{P}(m\mathcal{H}[mV_{p}]=\emptyset)=\mathbb{P}(\mathcal{H}[V_{p}]=\emptyset)^{m} and that, for every qq, the smallest qq-weight of a cover of mm\mathcal{H} is mm times the smallest qq-weight of a cover for \mathcal{H}. This observation leads to many further counterexamples to our (very naive) conjecture.

We remark that showing that K(r)=O(logr)K(r)=O(\log r) would imply the Kahn–Kalai Conjecture / Park–Pham Theorem [20, Theorem 1.1]; it would also be consistent with the strengthening of the Park–Pham Theorem due to Bell [4]. Indeed, let VV be a finite set and let 2V\mathcal{F}\subseteq 2^{V} be an arbitrary increasing property. Recall that the expectation threshold of \mathcal{F} is the number q()q(\mathcal{F}) defined as follows:

q()max{q:𝒢2V𝒢wq(𝒢)1/2}.q(\mathcal{F})\coloneqq\max\{q:\exists\,\mathcal{G}\subseteq 2^{V}\;\langle\mathcal{G}\rangle\supseteq\mathcal{F}\wedge w_{q}(\mathcal{G})\leqslant 1/2\}.

Let \mathcal{H} be the set of all minimal elements of \mathcal{F} and let rmax{|E|:E}{2}r\coloneqq\max\{|E|:E\in\mathcal{H}\}\cup\{2\}, so that \mathcal{H} is an rr-bounded hypergraph on VV and RR\in\mathcal{F} if and only if [R]\mathcal{H}[R]\neq\emptyset. Let qq()q\coloneqq q(\mathcal{H}), suppose that p4K(r)qp\geqslant 4K(r)\cdot q, and let 𝒢\mathcal{G} be the cover of \mathcal{H} from the statement of 7.1. Observe that

wp/K(r)(𝒢)p/(qK(r))wq(𝒢)4wq(𝒢)2.w_{p/K(r)}(\mathcal{G})\geqslant p/(qK(r))\cdot w_{q}(\mathcal{G})\geqslant 4\cdot w_{q}(\mathcal{G})\geqslant 2.

Consequently, we may conclude that

(Vp)=([Vp]=)2/e21/2.\mathbb{P}(V_{p}\notin\mathcal{F})=\mathbb{P}(\mathcal{H}[V_{p}]=\emptyset)\leqslant 2/e^{2}\leqslant 1/2.

Finally, showing that K(r)=o(r)K(r)=o(r) would imply an improvement of the upper bound on the number of containers in A, as the following theorem shows.

Theorem F.

Let \mathcal{H} be an rr-bounded hypergraph with a finite vertex set VV. For all reals δ\delta and pp that satisfy 0<pδ/(2K(r)2)0<p\leqslant\delta/(2K(r)^{2}), there exists a family 𝒮2V\mathcal{S}\subseteq 2^{V} and functions

g:()𝒮andf:𝒮2Vg\colon\mathcal{I}(\mathcal{H})\rightarrow\mathcal{S}\qquad\text{and}\qquad f\colon\mathcal{S}\rightarrow 2^{V}

such that:

  1. (a)

    For each I()I\in\mathcal{I}(\mathcal{H}), we have g(I)If(g(I))g(I)\subseteq I\subseteq f(g(I)).

  2. (b)

    Each S𝒮S\in\mathcal{S} has at most 2K(r)2p|V|/δ2K(r)^{2}p|V|/\delta elements.

  3. (c)

    For every S𝒮S\in\mathcal{S}, letting Cf(S)C\coloneqq f(S), there exists a hypergraph 𝒢2CS{}\mathcal{G}\subseteq 2^{C\setminus S}\setminus\{\emptyset\} with

    wp(𝒢)δp|C|w_{p}(\mathcal{G})\leqslant\delta p|C|

    that covers [C]\mathcal{H}[C].

Proof.

Let 𝒮\mathcal{S}, ff, and gg be the collection and the functions given by B with K(r)pK(r)p in place of pp and δ/(2K(r))\delta/(2K(r)) in place of δ\delta. Fix some S𝒮S\in\mathcal{S}, let Cf(S)C\coloneqq f(S), and let 𝒢2CS{}\mathcal{G}\subseteq 2^{C\setminus S}\setminus\{\emptyset\} be a cover of [C]\mathcal{H}[C] with smallest pp-weight. The assertion of B and the definition of K(r)K(r) yield the following two inequalities:

(1K(r)p)δ|CS|/2K(r)(SCK(r)p())exp(wp(𝒢)).\bigl{(}1-K(r)p\bigr{)}^{\delta|C\setminus S|/2K(r)}\leqslant\mathbb{P}\bigl{(}S\cup C_{K(r)p}\in\mathcal{I}(\mathcal{H})\bigr{)}\leqslant\exp\bigl{(}-w_{p}(\mathcal{G})\bigr{)}.

Taking logarithms of both sides yields the inequality

wp(𝒢)δ|CS|2K(r)log(1K(r)p)δp|C|,w_{p}(\mathcal{G})\leqslant-\frac{\delta|C\setminus S|}{2K(r)}\cdot\log\bigl{(}1-K(r)p\bigr{)}\leqslant\delta p|C|,

as required. ∎

8. Acknowledgements

First and foremost, we are indebted to Quentin Dubroff for supplying a counterexample to a conjecture stated in a previous version of this article. Further, we would like to thank Jinyoung Park for helpful discussions of this conjecture and the counterexample. Last but not least, we would like to thank Rob Morris, Peter Keevash, and Huy Pham for helpful comments and suggestions.

References

  • [1] J. Balogh, R. Morris, and W. Samotij. Independent sets in hypergraphs. J. Amer. Math. Soc., 28(3):669–709, 2015.
  • [2] J. Balogh, R. Morris, and W. Samotij. The method of hypergraph containers. In Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, pages 3059–3092. World Sci. Publ., Hackensack, NJ, 2018.
  • [3] J. Balogh and W. Samotij. An efficient container lemma. Discrete Anal., pages Paper No. 17, 56, 2020.
  • [4] T. Bell. The Park-Pham theorem with optimal convergence rate. Electron. J. Combin., 30(2):Paper No. 2.25, 8, 2023.
  • [5] A. Bernshteyn, M. Delcourt, H. Towsner, and A. Tserunyan. A short nonalgorithmic proof of the containers theorem for hypergraphs. Proc. Amer. Math. Soc., 147(4):1739–1749, 2019.
  • [6] B. Bollobás. On generalized graphs. Acta Math. Acad. Sci. Hungar., 16:447–452, 1965.
  • [7] M. Campos. On the number of sets with a given doubling constant. Israel J. Math., 236(2):711–726, 2020.
  • [8] M. Campos, M. Collares, R. Morris, N. Morrison, and V. Souza. The typical structure of sets with small sumset. Int. Math. Res. Not. IMRN, 2022(14):11011–11055, 2022.
  • [9] M. Campos, M. Coulson, O. Serra, and M. Wötzel. The typical approximate structure of sets with bounded sumset. SIAM J. Discrete Math., 37(3):1386–1418, 2023.
  • [10] K. Frankston, J. Kahn, B. Narayanan, and J. Park. Thresholds versus fractional expectation-thresholds. Ann. of Math. (2), 194(2):475–495, 2021.
  • [11] S. Janson. Poisson approximation for large deviations. Random Structures Algorithms, 1(2):221–229, 1990.
  • [12] J. Kahn and G. Kalai. Thresholds and expectation thresholds. Combin. Probab. Comput., 16(3):495–502, 2007.
  • [13] D. J. Kleitman and K. J. Winston. On the number of graphs without 44-cycles. Discrete Math., 41(2):167–172, 1982.
  • [14] G. Kozma and W. Samotij. Lower tails via relative entropy. Ann. Probab., 51(2):665–698, 2023.
  • [15] D. Liu, L. Mattos, and T. Szabó. On the number of sets with small sumset. arXiv:2407.04492.
  • [16] D. Lubell. A short proof of Sperner’s lemma. J. Combinatorial Theory, 1:299, 1966.
  • [17] L. D. Mešalkin. A generalization of Sperner’s theorem on the number of subsets of a finite set. Teor. Verojatnost. i Primenen., 8:219–220, 1963.
  • [18] R. Morris, W. Samotij, and D. Saxton. An asymmetric container lemma and the structure of graphs with no induced 44-cycle. J. Eur. Math. Soc. (JEMS), 26(5):1655–1711, 2024.
  • [19] R. Nenadov. Probabilistic hypergraph containers. Israel J. Math., 261(2):879–897, 2024.
  • [20] J. Park and H. T. Pham. A proof of the Kahn-Kalai conjecture. J. Amer. Math. Soc., 37(1):235–243, 2024.
  • [21] W. Samotij. Counting independent sets in graphs. European J. Combin., 48:5–18, 2015.
  • [22] A. A. Sapozhenko. On the number of independent sets in extenders. Diskret. Mat., 13(1):56–62, 2001.
  • [23] D. Saxton and A. Thomason. Hypergraph containers. Invent. Math., 201(3):925–992, 2015.
  • [24] D. Saxton and A. Thomason. Online containers for hypergraphs, with applications to linear equations. J. Combin. Theory Ser. B, 121:248–283, 2016.
  • [25] D. Saxton and A. Thomason. Simple containers for simple hypergraphs. Combin. Probab. Comput., 25(3):448–459, 2016.
  • [26] M. Talagrand. Are many small sets explicitly small? In STOC’10—Proceedings of the 2010 ACM International Symposium on Theory of Computing, pages 13–35. ACM, New York, 2010.
  • [27] K. Yamamoto. Logarithmic order of free distributive lattice. J. Math. Soc. Japan, 6:343–353, 1954.

Appendix A Three proofs of 2.2

One can see the assertion of the proposition is best-possible by picking an arbitrary subset UCU\subseteq C and considering the family =2U\mathcal{I}=2^{U}. Indeed, in this case 𝔼[|Cp|Cp]=𝔼[|Up|]=p|U|\mathbb{E}[|C_{p}|\mid C_{p}\in\mathcal{I}]=\mathbb{E}[|U_{p}|]=p|U| and

log(Cp)=log(Cp(CU)=)=(|C||U|)log(1p).\log\mathbb{P}(C_{p}\in\mathcal{I})=\log\mathbb{P}(C_{p}\cap(C\setminus U)=\emptyset)=(|C|-|U|)\log(1-p).

We provide three proofs of the proposition. The first proof uses the chain rule for relative entropy, the second proof employs a compression argument combined with the Kruskal–Katona theorem, and the third proof uses a generalisation of the edge-isoperimetric inequality for the hypercube due to Kahn and Kalai [12].

First proof.

Without loss of generality, we may assume that C=NC=\llbracket{N}\rrbracket. Let Y=(Y1,,YN)Y=(Y_{1},\dotsc,Y_{N}) be the indicator function of CpC_{p} conditioned on CpC_{p}\in\mathcal{I} and note that

log(Cp)=DKL(YCp),\log\mathbb{P}(C_{p}\in\mathcal{I})=-D_{KL}(Y\,\|\,C_{p}),

where DKL()D_{KL}(\cdot\,\|\,\cdot) denotes the Kullback–Leibler divergence between two probability distributions. For any JNJ\subseteq\llbracket{N}\rrbracket, write Ip((Yj)jJ)I_{p}((Y_{j})_{j\in J}) in place of DKL((Yj)jJJp)D_{KL}((Y_{j})_{j\in J}\,\|\,J_{p}). With this notational convention, DKL(YCp)=Ip(Y1,,YN)D_{KL}(Y\,\|\,C_{p})=I_{p}(Y_{1},\dotsc,Y_{N}). The first key property of IpI_{p} that we will use is that it obeys the familiar chain rule (see, e.g., [14, Section 4]):

Ip(Y1,,YN)=i=1NIp(YiY1,,Yi1)=i=1N𝔼[ip(𝔼[YiY1,,Yi1])],I_{p}(Y_{1},\dots,Y_{N})=\sum_{i=1}^{N}I_{p}(Y_{i}\mid Y_{1},\dotsc,Y_{i-1})=\sum_{i=1}^{N}\mathbb{E}[i_{p}(\mathbb{E}[Y_{i}\mid Y_{1},\dotsc,Y_{i-1}])],

where we wrote Ip(YiY1,,Yi1)I_{p}(Y_{i}\mid Y_{1},\dotsc,Y_{i-1}) for the conditional relative entropy and

ip(q)DKL(Ber(q)Ber(p))=qlogqp+(1q)log1q1p.i_{p}(q)\coloneqq D_{KL}(\mathrm{Ber}(q)\,\|\,\mathrm{Ber}(p))=q\log\frac{q}{p}+(1-q)\log\frac{1-q}{1-p}.

Since the function ip:[0,1]i_{p}\colon[0,1]\rightarrow\mathbb{R} is convex, we have, for every random variable Z[0,p]Z\in[0,p],

𝔼[ip(Z)](1𝔼[Z]/p)ip(0)+(𝔼[Z]/p)ip(p)=(𝔼[Z]/p1)log(1p).\mathbb{E}[i_{p}(Z)]\leqslant(1-\mathbb{E}[Z]/p)\cdot i_{p}(0)+(\mathbb{E}[Z]/p)\cdot i_{p}(p)=(\mathbb{E}[Z]/p-1)\log(1-p).

Finally, since conditioned on Y1,,Yi1Y_{1},\dotsc,Y_{i-1}, the vector (Yi,,YN)(Y_{i},\dotsc,Y_{N}) is the indicator function of (N{1,,i1})p(\llbracket{N}\rrbracket\setminus\{1,\dotsc,i-1\})_{p} conditioned on belonging to a decreasing family of sets, we have 𝔼[YiY1,,Yi1]p\mathbb{E}[Y_{i}\mid Y_{1},\dotsc,Y_{i-1}]\leqslant p almost surely. This implies that

Ip(Y1,,YN)i=1N(𝔼[Yi]/p1)log(1p)=(𝔼[|Y|]/pN)log(1p),I_{p}(Y_{1},\dotsc,Y_{N})\leqslant\sum_{i=1}^{N}(\mathbb{E}[Y_{i}]/p-1)\log(1-p)=(\mathbb{E}[|Y|]/p-N)\log(1-p),

as claimed. ∎

Second proof.

We are going to prove the following equivalent inequality:

𝔼[|Cp|Cp](|C|log1p(Cp))p.\mathbb{E}[|C_{p}|\mid C_{p}\in\mathcal{I}]\leqslant\bigl{(}|C|-\log_{1-p}\mathbb{P}(C_{p}\in\mathcal{I})\bigr{)}\cdot p. (7)

Let =(p)log1p(Cp)\ell=\ell(p)\coloneqq\log_{1-p}\mathbb{P}(C_{p}\in\mathcal{I}). We first argue that it is enough to establish (7) in the case where \ell is an integer. To see this, suppose that \ell\notin\mathbb{Z}. We claim that the (continuous) function q(q)q\mapsto\ell(q) cannot be constant on any open interval II containing pp and thus it takes rational values for qq arbitrarily close to pp. Suppose that this were not true and (Cq)=(1q)\mathbb{P}(C_{q}\in\mathcal{I})=(1-q)^{\ell} for all qIq\in I. We would then have, for all mm,

dmdqm(Cq)=i=0m1(i)(1q)m0,\frac{d^{m}}{dq^{m}}\mathbb{P}(C_{q}\in\mathcal{I})=\prod_{i=0}^{m-1}(i-\ell)\cdot(1-q)^{\ell-m}\neq 0,

contradicting the fact that (Cq)=Iq|I|(1q)|C||I|\mathbb{P}(C_{q}\in\mathcal{I})=\sum_{I\in\mathcal{I}}q^{|I|}(1-q)^{|C|-|I|} is a polynomial in qq. Since both sides of (7) are continuous in pp, it is enough to prove this inequality when \ell is rational.

Assume now that \ell\in\mathbb{Q} and let bb be a positive integer such that bb\ell\in\mathbb{Z}. Consider the family b2C×b\mathcal{I}^{b}\subseteq 2^{C\times\llbracket{b}\rrbracket} defined by

b{I1×{1}Ib×{b}:I1,,Ib}.\mathcal{I}^{b}\coloneqq\bigl{\{}I_{1}\times\{1\}\cup\dotsb\cup I_{b}\times\{b\}:I_{1},\dotsc,I_{b}\in\mathcal{I}\bigr{\}}.

and observe that b\mathcal{I}^{b} is decreasing and that ((C×b)pb)=(Cp)b=(1p)b\mathbb{P}((C\times\llbracket{b}\rrbracket)_{p}\in\mathcal{I}^{b})=\mathbb{P}(C_{p}\in\mathcal{I})^{b}=(1-p)^{b\ell}. Invoking (7) with \mathcal{I} replaced by b\mathcal{I}^{b}, we conclude that

b𝔼[|Cp|Cp]=𝔼[|(C×b)p|b(C×b)pb|](b|C|b)p.b\cdot\mathbb{E}[|C_{p}|\mid C_{p}\in\mathcal{I}]=\mathbb{E}\bigl{[}|(C\times\llbracket{b}\rrbracket)_{p}|\in\mathcal{I}^{b}\mid(C\times\llbracket{b}\rrbracket)_{p}\in\mathcal{I}^{b}|\bigr{]}\leqslant\bigl{(}b|C|-b\ell\bigr{)}\cdot p.

Assume \ell\in\mathbb{Z}, let λp/(1p)\lambda\coloneqq p/(1-p), and let ZIλ|I|Z\coloneqq\sum_{I\in\mathcal{I}}\lambda^{|I|}. Our first key observation is that

Z=(1p)|C|(Cp)=(1p)|C|=(1+λ)|C|.Z=(1-p)^{-|C|}\cdot\mathbb{P}(C_{p}\in\mathcal{I})=(1-p)^{\ell-|C|}=(1+\lambda)^{|C|-\ell}.

Write n|C|n\coloneqq|C|-\ell, so that Z=(1+λ)nZ=(1+\lambda)^{n}. For each ini\in\llbracket{n}\rrbracket, let xix_{i} be the unique number in {0}[i,)\{0\}\cup[i,\infty) such that (xii)=|(Ci)|\binom{x_{i}}{i}=|\binom{C}{i}\cap\mathcal{I}|. The assumption that \mathcal{I} is decreasing implies that 2I2^{I}\subseteq\mathcal{I} for all II\in\mathcal{I} and, consequently, Z(1+λ)|I|Z\geqslant(1+\lambda)^{|I|} for each II\in\mathcal{I}. Therefore, maxI|I|n\max_{I\in\mathcal{I}}|I|\leqslant n and

f(x1,,xn)1+i=1n(xii)λi=i=0|C||(Ci)|λi=Z.f(x_{1},\dotsc,x_{n})\coloneqq 1+\sum_{i=1}^{n}\binom{x_{i}}{i}\cdot\lambda^{i}=\sum_{i=0}^{|C|}\left|\binom{C}{i}\cap\mathcal{I}\right|\cdot\lambda^{i}=Z.

Our second key observation is that

g(x1,,xn)i=1n(xii)iλi=Z𝔼[|Cp|Cp].g(x_{1},\dotsc,x_{n})\coloneqq\sum_{i=1}^{n}\binom{x_{i}}{i}\cdot i\lambda^{i}=Z\cdot\mathbb{E}[|C_{p}|\mid C_{p}\in\mathcal{I}].

Since \mathcal{I} is decreasing, the Kruskal–Katona theorem implies that x1xnx_{1}\geqslant\dotsb\geqslant x_{n}. In particular, letting

𝒳{(x1,,xn)n:x1xn and xi{0}(i1,) for all in},\mathcal{X}\coloneqq\{(x_{1},\dotsc,x_{n})\in\mathbb{R}^{n}:x_{1}\geqslant\dotsb\geqslant x_{n}\text{ and }x_{i}\in\{0\}\cup(i-1,\infty)\text{ for all $i\in\llbracket{n}\rrbracket$}\},

we have

𝔼[|Cp|Cp]Z1max{g(x1,,xn):(x1,,xn)𝒳f(x1,,xn)=Z}.\mathbb{E}[|C_{p}|\mid C_{p}\in\mathcal{I}]\leqslant Z^{-1}\cdot\max\{g(x_{1},\dotsc,x_{n}):(x_{1},\dotsc,x_{n})\in\mathcal{X}\wedge f(x_{1},\dotsc,x_{n})=Z\}.

Let 𝐱=(x1,,xn)\mathbf{x}=(x_{1},\dotsc,x_{n}) be a vector that achieves the above maximum. We claim that x1==xnx_{1}=\dotsb=x_{n}. Indeed, suppose that xi>xi+1x_{i}>x_{i+1} for some ii and let xx^{\prime} be the unique number satisfying max{xi+1,i}<x<xi\max\{x_{i+1},i\}<x^{\prime}<x_{i} and

d(xii)(xi)=[(xi+1)(xi+1i+1)]λ.d\coloneqq\binom{x_{i}}{i}-\binom{x^{\prime}}{i}=\left[\binom{x^{\prime}}{i+1}-\binom{x_{i+1}}{i+1}\right]\cdot\lambda.

Let 𝐱\mathbf{x}^{\prime} be the vector obtained from 𝐱\mathbf{x} by replacing the iith and the (i+1)(i+1)th coordinates by xx^{\prime} and note that

f(𝐱)f(𝐱)=[(xi)(xii)]λi+[(xi+1)(xi+1i+1)]λi+1=dλi+dλi=0f(\mathbf{x}^{\prime})-f(\mathbf{x})=\left[\binom{x^{\prime}}{i}-\binom{x_{i}}{i}\right]\cdot\lambda^{i}+\left[\binom{x^{\prime}}{i+1}-\binom{x_{i+1}}{i+1}\right]\cdot\lambda^{i+1}=-d\lambda^{i}+d\lambda^{i}=0

and, similarly,

g(𝐱)g(𝐱)=(i+1)dλiidλi=dλi>0,g(\mathbf{x}^{\prime})-g(\mathbf{x})=(i+1)d\lambda^{i}-id\lambda^{i}=d\lambda^{i}>0,

contradicting the maximality of 𝐱\mathbf{x}. Let x(n1,)x\in(n-1,\infty) be the number such that x1==xn=xx_{1}=\dotsb=x_{n}=x. Since

(1+λ)n=Z=1+i=1n(xi)λi=i=1n(xi)λi,(1+\lambda)^{n}=Z=1+\sum_{i=1}^{n}\binom{x}{i}\cdot\lambda^{i}=\sum_{i=1}^{n}\binom{x}{i}\cdot\lambda^{i},

we have x=nx=n and thus

𝔼[|Cp|Cp](1+λ)ni=1n(ni)iλi=nλ1+λ=np,\mathbb{E}[|C_{p}|\mid C_{p}\in\mathcal{I}]\leqslant(1+\lambda)^{-n}\cdot\sum_{i=1}^{n}\binom{n}{i}\cdot i\lambda^{i}=n\cdot\frac{\lambda}{1+\lambda}=np,

as claimed. ∎

Third proof.

Let q1pq\coloneqq 1-p and let f:2C{0,1}f\colon 2^{C}\rightarrow\{0,1\} be the function defined by f(A)=1f(A)=1 if and only if AcA^{c}\in\mathcal{I}. Note that ff is increasing and that 𝔼[f(Cq)]=(Cp)\mathbb{E}[f(C_{q})]=\mathbb{P}(C_{p}\in\mathcal{I}). Recall that the total influence of ff with respect to CqC_{q} is the quantity

Infq(f)xC(f(Cq{x})f(Cq{x}))=xC((Cp{x})(Cp{x})).\mathrm{Inf}_{q}(f)\coloneqq\sum_{x\in C}\mathbb{P}\bigl{(}f(C_{q}\cup\{x\})\neq f(C_{q}\setminus\{x\})\bigr{)}=\sum_{x\in C}\bigl{(}\mathbb{P}(C_{p}\setminus\{x\}\in\mathcal{I})-\mathbb{P}(C_{p}\cup\{x\}\in\mathcal{I})\bigr{)}.

Observe now that, for every xCx\in C,

(Cp{x})=(CpxCp)=(Cp)(xCp)(xCpCp)\mathbb{P}(C_{p}\setminus\{x\}\in\mathcal{I})=\mathbb{P}(C_{p}\in\mathcal{I}\mid x\notin C_{p})=\frac{\mathbb{P}(C_{p}\in\mathcal{I})}{\mathbb{P}(x\notin C_{p})}\cdot\mathbb{P}(x\notin C_{p}\mid C_{p}\in\mathcal{I})

and, similarly,

(Cp{x})=(CpxCp)=(Cp)(xCp)(xCpCp).\mathbb{P}(C_{p}\cup\{x\}\in\mathcal{I})=\mathbb{P}(C_{p}\in\mathcal{I}\mid x\in C_{p})=\frac{\mathbb{P}(C_{p}\in\mathcal{I})}{\mathbb{P}(x\in C_{p})}\cdot\mathbb{P}(x\in C_{p}\mid C_{p}\in\mathcal{I}).

Consequently, letting px(xCpCp)p_{x}\coloneqq\mathbb{P}(x\in C_{p}\mid C_{p}\in\mathcal{I}), we have

Infq(f)(Cp)=xC(1px1ppxp)=11pxC(1pxp)=|C|𝔼[|Cp|Cp]/p1p.\frac{\mathrm{Inf}_{q}(f)}{\mathbb{P}(C_{p}\in\mathcal{I})}=\sum_{x\in C}\left(\frac{1-p_{x}}{1-p}-\frac{p_{x}}{p}\right)=\frac{1}{1-p}\cdot\sum_{x\in C}\left(1-\frac{p_{x}}{p}\right)=\frac{|C|-\mathbb{E}[|C_{p}|\mid C_{p}\in\mathcal{I}]/p}{1-p}.

The desired inequality follows from the edge-isoperimetric inequality for ff, which states that

qInfq(f)𝔼[f(Cq)]logq𝔼[f(Cq)],q\cdot\mathrm{Inf}_{q}(f)\geqslant\mathbb{E}[f(C_{q})]\cdot\log_{q}\mathbb{E}[f(C_{q})],

see [12, Section 4]. ∎