This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Towards a q-series for osp(2|2n)osp(2|2n)

John Chae Department of Physics and QMAP, UC Davis, 1 Shields Ave, Davis, CA, 95616, USA
[email protected]
Abstract

A series invariant for a certain class of closed 3-manifolds associated with a type I Lie superalgebra sl(m|n)sl(m|n) was introduced recently. We find a q-series for the other Lie superalgebra of the same type of the minimum rank.

1 Introduction

Motivated by a prediction for a categorification of the Witten-Reshitikhin-Turaev invariant of a closed oriented 3-manifold [19, 17, 18] in [11, 10], a topological invariant q-series for graph 3-manifolds associated with a type I Lie superalgebra sl(m|n)sl(m|n) was introduced recently in [4]. This q-series denoted as Z^ab\hat{Z}_{ab} is labeled by a pair of SpincSpin^{c} structures of the manifolds as opposed to one label for a q-series (Z^b\hat{Z}_{b}) corresponding to a classical Lie algebra [16]. Another core difference is that the q-series invariant Z^ab\hat{Z}_{ab} decomposes an extension of the WRT invariant, namely, the CGP invariant based on a Lie superalgebra [2]. In the most general topological setting, the CGP invariant is a topological invariant of a triple consisting of a closed oriented 3-manifold, a link and a certain cohomology class 111It is denoted ωH1(Y;/2)\omega\in H^{1}(Y;\mathbb{Z}/2\mathbb{Z}), which induces coloring on a surgery link; this link is not part of the triplet [2].. The construction of the CGP invariant associated to a Lie (super)algebra involves a new facet: the modified quantum dimension, which was first introduced in [8] for the quantum groups of Lie superalgebra of type I and then for the quantum groups of sl(2)sl(2) at roots of unity [9]. In general, for a complex Lie superalgebra, the standard quantum dimension vanishes, which makes the WRT invariant of links and 3-manifolds trivial. The modified quantum dimension overcomes the obstacle. In the case of a complex simple Lie algebra, the modified quantum dimension enables to extend the WRT invariant to the above mentioned triplet. Furthermore, for a fixed Lie (super)algebra, the modified dimension can be defined for semisimple and nonsemisimple ribbon categories. Specific examples of the former type were given in [9] and [5]. The latter type, which is relevant to this paper, was first dealt with in [6]. And then it was expanded into a Lie superalgebra in [1] and [12] in which finite dimensional irreducible representations of the (unrolled) quantum groups of sl(m|n)(mn)sl(m|n)\,(m\neq n) at roots of unity was analyzed (the latter paper focuses on sl(2|1)sl(2|1)). The CGP invariant contains a variety of information such as the multivariable Alexander polynomial and the ADO polynomial of a link. The relation between the CGP invariant and the WRT invariant for sl(2;)sl(2;\mathbb{C}) was conjectured in [3] and was proved for certain classes of 3-manifolds.

In this paper we analyze Z^ab\hat{Z}_{ab} associated with osp(2|2)osp(2|2) for plumbed 3-manifolds and observe that it is either even or odd power series in the examples. The rest of the paper is organized as follows. In Section 2 we review the ingredients involved in the CGP invariant and in Z^ab\hat{Z}_{ab} for sl(m|n)sl(m|n). In Section 3 we present the formula for homological blocks Z^ab\hat{Z}_{ab} for osp(2|2)osp(2|2). And then in Section 4, we apply the formula to a few examples.

Acknowledgments. I am grateful to Bertrand Patureau-Mirand and Pavel Putrov for helpful explanations, as well as to Sergei Gukov for reading a draft of this paper.

2 Background

The twist θ\theta, the S-matrix and the modified quantum dimension dd for the quantum group 𝒰h(g)\mathcal{U}_{h}(g) of g=g= type I =sl(m|n),osp(2|2n)=sl(m|n),osp(2|2n) are given in [8], where h is a formal variable related to q=eh/2q=e^{h/2}:

θV(λ)=qλ,λ+2ρ1V,\theta_{V}(\lambda)=q^{\left\langle\lambda,\lambda+2\rho\right\rangle}1_{V},

where λ\lambda is the highest weight of a highest weight 𝒰h(g)\mathcal{U}_{h}(g)-module VV coloring the a link component and ρ=ρ0ρ1\rho=\rho_{0}-\rho_{1} and ,\left\langle-,-\right\rangle is the bilinear form (see the appendix A for the details of representation theoretic concepts).

S(V,V)=φμ+ρ(sch(V(λ))),S(V,V^{\prime})=\varphi_{\mu+\rho}(sch(V(\lambda))),

where λ\lambda and μ\mu are weights of (irreducible) 𝒰h(g)\mathcal{U}_{h}(g)-modules VV and VV^{\prime}, respectively, coloring each link component. Moreover, sch(V(λ))sch(V(\lambda)) is a supercharacter of VV and φβ\varphi_{\beta} is a map from a group ring [Λ]\mathbb{Z}[\Lambda] to [[h]]\mathbb{C}[[h]]222 eαq2α,βfor any weightβe^{\alpha}\mapsto q^{2\left\langle\alpha,\beta\right\rangle}\qquad\text{for any weight}\quad\beta . The modified quantum dimension dd is

d(μ)S(λ,μ)=d(λ)S(μ,λ).d(\mu)S(\lambda,\mu)=d(\lambda)S(\mu,\lambda).

In the case of sl(m|n)sl(m|n), for the unrolled quantum group at roots of unity 𝒰lH(sl(m|n))(mn)\mathcal{U}^{H}_{l}(sl(m|n))\,(m\neq n), the above formulas modify [1]:

θV(λ;l)=ξλ,λ+π1Vξ=ei2πllm+n1\theta_{V}(\lambda;l)=\xi^{\left\langle\lambda,\lambda+\pi\right\rangle}1_{V}\qquad\xi=e^{\frac{i2\pi}{l}}\quad l\geq m+n-1
S(V,V;l)=φλ+π2(sch(V(λ))),π=2ρ2lρ0¯ΛR=ξ2λ+π2,μ+π2αΔ0¯+{lλ+π2,α}ξ{λ+π2,α}ξαΔ1¯+{λ+π2,α}ξ\begin{split}S(V,V^{\prime};l)&=\varphi_{\lambda+\frac{\pi}{2}}(sch(V(\lambda))),\qquad\pi=2\rho-2l\rho_{\bar{0}}\in\Lambda_{R}\\ &=\xi^{2\left\langle\lambda+\frac{\pi}{2},\mu+\frac{\pi}{2}\right\rangle}\prod_{\alpha\in\Delta^{+}_{\bar{0}}}\frac{\left\{l\left\langle\lambda+\frac{\pi}{2},\alpha\right\rangle\right\}_{\xi}}{\left\{\left\langle\lambda+\frac{\pi}{2},\alpha\right\rangle\right\}_{\xi}}\prod_{\alpha\in\Delta^{+}_{\bar{1}}}\left\{\left\langle\lambda+\frac{\pi}{2},\alpha\right\rangle\right\}_{\xi}\end{split}
d(μ;l)S(λ,μ;l)=d(λ;l)S(μ,λ;l).d(\mu;l)S(\lambda,\mu;l)=d(\lambda;l)S(\mu,\lambda;l).

The second equality in the S-matrix element assumes V is a simple 𝒰lH(sl(m|n))\mathcal{U}^{H}_{l}(sl(m|n))-module that is typical having dimension D. The changes of the formula are due to the different pivotal structure of 𝒰lH(sl(m|n))\mathcal{U}^{H}_{l}(sl(m|n)). Since the modifications are on the representation theory level and don’t seem to involve unique features of sl(m|n)sl(m|n), we assume that the same modifications occur for osp(2|2n)osp(2|2n). We next summarize the concepts involved in the homological blocks Z^ab\hat{Z}_{ab} associated with a Lie superalgebra [4].

Generic graph In type I Lie superalgebra case, plumbing graph used in practice needs to satisfy certain conditions due to the functional form of the edge factor in the integrand of Z^\hat{Z}; a plumbing graph is called generic, if

  1. 1.

    at least one vertex of a graph has degree >2>2

  2. 2.

    V|deg>2UWV|_{deg>2}\neq U\sqcup W such that BIJ1=0B^{-1}_{IJ}=0 for some I V\in V, J W\in W,

where V is a set of vertices of a graph.

Good Chamber For Z^\hat{Z} associated with type I Lie superalgebra, there is a notion of a good chamber introduced in [4]. Existence of a good chamber guarantees that Z^\hat{Z} is a power series with integer coefficients. Specifically, an adjacency matrix BB of a generic plumbing graph needs to admit a good chamber. It turns out that osp(2|2)osp(2|2) requires positive definite (generic) plumbing graphs, its criteria for good chamber existence shown below are opposite of sl(2|1)sl(2|1) criteria in [4]. Good chamber exists, if there exists a vector α\alpha whose components are

αI=±1,IV|deg2\alpha_{I}=\pm 1,\quad I\in V|_{deg\neq 2}

such that

BIJ1αIαJ0IV|deg=1,JV|deg2B^{-1}_{IJ}\alpha_{I}\alpha_{J}\geq 0\quad\forall I\in V|_{deg=1},\quad J\in V|_{deg\neq 2}
BIJ1αIαJ>0I,JV|deg=1,IJB^{-1}_{IJ}\alpha_{I}\alpha_{J}>0\quad\forall I,J\in V|_{deg=1},\quad I\neq J
XIJis copositiveXIJ=BIJ1αIαJI,JV|deg>2X_{IJ}\quad\text{is copositive}\qquad X_{IJ}=B^{-1}_{IJ}\alpha_{I}\alpha_{J}\quad I,J\in V|_{deg>2}

are satisfied. Furthermore, a good chamber corresponding to such α\alpha is

deg(I)=1:{|yI|αI<1|zI|αI>1deg(I)=1:\begin{cases}|y_{I}|^{\alpha_{I}}<1\\ |z_{I}|^{\alpha_{I}}>1\end{cases}
deg(I)>2:|yIzI|αI<1.deg(I)>2:\bigg{|}\frac{y_{I}}{z_{I}}\bigg{|}^{\alpha_{I}}<1.

Chamber Expansion The series expansions for the good chambers for osp(2|2)osp(2|2) turn out to be the same as that of sl(2|1)sl(2|1) in [4]. We record here the expansions.

  • degree(I)=2+K>2\text{degree(I)}=2+K>2

    ((1zI)(1yI)yIzI)K={(zI1)K(1yI1)KrI=0(rI+1)(rI+2)(rI+K1)(K1)!(zI/yI)rI,|zI|<|yI|(1yI)K(1zI1)KrI=0(rI+1)(rI+2)(rI+K1)(K1)!(yI/zI)rI,|zI|>|yI|\left(\frac{(1-z_{I})(1-y_{I})}{y_{I}-z_{I}}\right)^{K}=\begin{cases}(z_{I}-1)^{K}(1-y_{I}^{-1})^{K}\sum_{r_{I}=0}^{\infty}\frac{(r_{I}+1)(r_{I}+2)\cdots(r_{I}+K-1)}{(K-1)!}\left(z_{I}/y_{I}\right)^{r_{I}},&|z_{I}|<|y_{I}|\\ (1-y_{I})^{K}(1-z_{I}^{-1})^{K}\sum_{r_{I}=0}^{\infty}\frac{(r_{I}+1)(r_{I}+2)\cdots(r_{I}+K-1)}{(K-1)!}\left(y_{I}/z_{I}\right)^{r_{I}},&|z_{I}|>|y_{I}|\\ \end{cases}

  • degree(I)=1\text{degree(I)}=1

    yIzI(1zI)(1yI)={rI=1yIrI+rI=0zIrI,|yI|<1,|zI|>1rI=0yIrIrI=1zIrI,|yI|>1,|zI|<1\frac{y_{I}-z_{I}}{(1-z_{I})(1-y_{I})}=\begin{cases}\sum_{r_{I}=1}^{\infty}y_{I}^{r_{I}}+\sum_{r_{I}=0}^{\infty}z_{I}^{-r_{I}},&|y_{I}|<1,|z_{I}|>1\\ -\sum_{r_{I}=0}^{\infty}y_{I}^{-r_{I}}-\sum_{r_{I}=1}^{\infty}z_{I}^{r_{I}},&|y_{I}|>1,|z_{I}|<1\\ \end{cases}

3 Result

For closed oriented plumbed 3-manifolds Y(Γ)Y(\Gamma) having b1(Y)=0b_{1}(Y)=0 and a,bSpinc(Y)H1(Y)a,b\in Spin^{c}(Y)\cong H_{1}(Y), Z^ab[Y;q]\hat{Z}_{ab}[Y;q] associated with osp(2|2)osp(2|2) is

Z^abosp(2|2)[Y;q]\displaystyle\hat{Z}^{osp(2|2)}_{ab}[Y;q] =(1)πΩIVdzIi2πzIdyIi2πyI(yIzI(1zI)(1yI))2deg(I)nBZL+amBZL+bq2nB1mJVzJmJyJnJ\displaystyle=(-1)^{\pi}\int_{\Omega}\prod_{I\in V}\frac{dz_{I}}{i2\pi z_{I}}\frac{dy_{I}}{i2\pi y_{I}}\left(\frac{y_{I}-z_{I}}{(1-z_{I})(1-y_{I})}\right)^{2-deg(I)}\sum_{\begin{subarray}{c}n\in BZ^{L}+a\\ m\in BZ^{L}+b\end{subarray}}q^{-2nB^{-1}m}\prod_{J\in V}z_{J}^{m_{J}}y_{J}^{n_{J}}
+qΔab[[q]],ΔabH1(Y)=L/BL|q|<1\displaystyle\in\mathbb{Q}+q^{\Delta_{ab}}\mathbb{Z}[[q]],\qquad\Delta_{ab}\in\mathbb{Q}\qquad H_{1}(Y)=\mathbb{Z}^{L}/B\mathbb{Z}^{L}\qquad|q|<1

where B=B(Γ)B=B(\Gamma) is an adjacency matrix of a generic plumbing graph Γ\Gamma. Moreover, the convergent q-series in a complex unit disc requires Γ\Gamma to be positive definite plumbing graphs inside a complex unit disc. This is opposite of the sl(m|n)sl(m|n) case (and for su(n)su(n)). The edge factor in the integrand turns out to be the same as that of sl(2|1)sl(2|1) 333This seems to be no longer true in higher rank cases. The integration prescription states that one chooses a chamber for an expansion of the integrand using the chamber expansion in the previous section and then picks constant terms in yIy_{I} and zIz_{I}.

4 Examples

We apply the above formula to HS3\mathbb{Z}HS^{3} and HS3\mathbb{Q}HS^{3}. Each Z^\hat{Z} is either even or odd power series and the regularized constants are given by the zeta function ζ(s)\zeta(s) or the Hurwitz zeta function ζ(s,x)\zeta(s,x) (see [4] for details).

  • Y=S3Y=S^{3} The adjacency matrix of a generic plumbing graph of S3S^{3} (Figure 1 in appendix B) is

    B(Γ)=(4111110010101001)DetB=1|H1(Y)|=|DetB|B(\Gamma)=\begin{pmatrix}4&1&1&1\\ 1&1&0&0\\ 1&0&1&0\\ 1&0&0&1\\ \end{pmatrix}\qquad DetB=1\qquad|H_{1}(Y)|=|DetB|

    The two chambers are

    α=±(1,1,1,1).\alpha=\pm(1,-1,-1,-1).
    Z^00osp(2|2)[Y;q]=1+2ζ(1)+2ζ(0)2q24q44q66q84q108q124q148q166q18+\hat{Z}^{osp(2|2)}_{00}[Y;q]=1+2\zeta(-1)+2\zeta(0)-2q^{2}-4q^{4}-4q^{6}-6q^{8}-4q^{10}-8q^{12}-4q^{14}-8q^{16}-6q^{18}+\cdots

  • Y=Σ(2,3,7)Y=\Sigma(2,3,7) The adjacency matrix of a (generic) plumbing graph (Figure 2 in appendix B) is

    B(Γ)=(1111120010301007)DetB=1B(\Gamma)=\begin{pmatrix}1&1&1&1\\ 1&2&0&0\\ 1&0&3&0\\ 1&0&0&7\\ \end{pmatrix}\qquad DetB=1

    The two chambers are

    α=±(1,1,1,1).\alpha=\pm(1,-1,-1,-1).
    Z^00osp(2|2)\displaystyle\hat{Z}^{osp(2|2)}_{00} =1+2ζ(1)+2ζ(0)2q42q64q82q106q124q146q166q188q20\displaystyle=1+2\zeta(-1)+2\zeta(0)-2q^{4}-2q^{6}-4q^{8}-2q^{10}-6q^{12}-4q^{14}-6q^{16}-6q^{18}-8q^{20}
    4q2210q246q268q28+\displaystyle-4q^{22}-10q^{24}-6q^{26}-8q^{28}+\cdots

  • Y=M(1|12,13,18)Y=M(-1|\frac{1}{2},\frac{1}{3},\frac{1}{8}) The adjacency matrix of a (generic) plumbing graph (Figure 3 in appendix B) is

    B(Γ)=(1111120010301008)DetB=2B(\Gamma)=\begin{pmatrix}1&1&1&1\\ 1&2&0&0\\ 1&0&3&0\\ 1&0&0&8\\ \end{pmatrix}\qquad DetB=2

    The two chambers are

    α=±(1,1,1,1).\alpha=\pm(1,-1,-1,-1).

    The independent Z^ab\hat{Z}_{ab} are

    Z^00\displaystyle\hat{Z}_{00} =1+2ζ(1)+2ζ(0)2q44q82q104q122q146q162q186q202q228q24\displaystyle=1+2\zeta(-1)+2\zeta(0)-2q^{4}-4q^{8}-2q^{10}-4q^{12}-2q^{14}-6q^{16}-2q^{18}-6q^{20}-2q^{22}-8q^{24}
    2q264q28+\displaystyle-2q^{26}-4q^{28}+\cdots
    Z^11\displaystyle\hat{Z}_{11} =2q32q52q74q94q112q136q154q174q196q214q236q27+\displaystyle=-2q^{3}-2q^{5}-2q^{7}-4q^{9}-4q^{11}-2q^{13}-6q^{15}-4q^{17}-4q^{19}-6q^{21}-4q^{23}-6q^{27}+\cdots
    Z^01\displaystyle\hat{Z}_{01} =2ζ(1,1/2)+ζ(0,1/2)q2q43q62q83q104q124q143q165q185q20\displaystyle=2\zeta(-1,1/2)+\zeta(0,1/2)-q^{2}-q^{4}-3q^{6}-2q^{8}-3q^{10}-4q^{12}-4q^{14}-3q^{16}-5q^{18}-5q^{20}
    4q225q244q265q28+\displaystyle-4q^{22}-5q^{24}-4q^{26}-5q^{28}+\cdots

    where the labels denote the last components of elements of H1(Y)H_{1}(Y).

  • Y=M(1|12,13,19)Y=M(-1|\frac{1}{2},\frac{1}{3},\frac{1}{9}) The adjacency matrix of a (generic) plumbing graph (Figure 4 in appendix B) is

    B(Γ)=(1111120010301009)DetB=3B(\Gamma)=\begin{pmatrix}1&1&1&1\\ 1&2&0&0\\ 1&0&3&0\\ 1&0&0&9\\ \end{pmatrix}\qquad DetB=3

    The independent Z^abosp(2|2)[Y]\hat{Z}^{osp(2|2)}_{ab}[Y] are

    Z^00\displaystyle\hat{Z}_{00} =1+2ζ(1)+2ζ(0)2q62q84q122q142q164q182q202q226q242q26\displaystyle=1+2\zeta(-1)+2\zeta(0)-2q^{6}-2q^{8}-4q^{12}-2q^{14}-2q^{16}-4q^{18}-2q^{20}-2q^{22}-6q^{24}-2q^{26}
    2q28+\displaystyle-2q^{28}+\cdots
    Z^11\displaystyle\hat{Z}_{11} =q13(qq33q52q73q92q115q132q154q172q195q214q232q25\displaystyle=q^{\frac{1}{3}}\left(-q-q^{3}-3q^{5}-2q^{7}-3q^{9}-2q^{11}-5q^{13}-2q^{15}-4q^{17}-2q^{19}-5q^{21}-4q^{23}-2q^{25}\right.
    q273q29+)\displaystyle\left.-q^{27}-3q^{29}+\cdots\right)
    Z^22\displaystyle\hat{Z}_{22} =q13(qq33q52q73q92q115q132q154q172q195q214q232q25\displaystyle=q^{\frac{1}{3}}\left(-q-q^{3}-3q^{5}-2q^{7}-3q^{9}-2q^{11}-5q^{13}-2q^{15}-4q^{17}-2q^{19}-5q^{21}-4q^{23}-2q^{25}\right.
    q273q29+)\displaystyle\left.-q^{27}-3q^{29}+\cdots\right)
    Z^01\displaystyle\hat{Z}_{01} =3ζ(1,1/2)+ζ(0,1/2)2q4q62q83q103q122q144q162q185q203q22\displaystyle=3\zeta(-1,1/2)+\zeta(0,1/2)-2q^{4}-q^{6}-2q^{8}-3q^{10}-3q^{12}-2q^{14}-4q^{16}-2q^{18}-5q^{20}-3q^{22}
    2q242q263q28+\displaystyle-2q^{24}-2q^{26}-3q^{28}+\cdots
    Z^02\displaystyle\hat{Z}_{02} =3ζ(1,1/2)+ζ(0,1/2)q2q4q63q82q102q123q144q162q184q20\displaystyle=3\zeta(-1,1/2)+\zeta(0,1/2)-q^{2}-q^{4}-q^{6}-3q^{8}-2q^{10}-2q^{12}-3q^{14}-4q^{16}-2q^{18}-4q^{20}
    2q223q242q264q28+\displaystyle-2q^{22}-3q^{24}-2q^{26}-4q^{28}+\cdots
    Z^12\displaystyle\hat{Z}_{12} =q13(2q32q52q72q94q112q134q152q176q192q214q232q25\displaystyle=q^{-\frac{1}{3}}\left(-2q^{3}-2q^{5}-2q^{7}-2q^{9}-4q^{11}-2q^{13}-4q^{15}-2q^{17}-6q^{19}-2q^{21}-4q^{23}-2q^{25}\right.
    4q27+)\displaystyle\left.-4q^{27}+\cdots\right)

Appendix

Appendix A Type I Lie superalgebra and its quantization

We give a summary of the representation theory of osp(2|2n)osp(2|2n) and the quantum group Uh(typeI)U_{h}(\text{type}\,\textup{I}) in [8]444For reviews on Lie superalgebras, see [13, 14, 15]. For osp(2|2n)osp(2|2n), the set of positive roots is Δ+=Δ0¯+Δ1¯+\Delta^{+}=\Delta^{+}_{\bar{0}}\cup\Delta^{+}_{\bar{1}} with

Δ0¯+={δi±δj|1i<jn}{2δi}andΔ1¯+={ϵ±δi},n+,\Delta^{+}_{\bar{0}}=\left\{\delta_{i}\pm\delta_{j}|1\leq i<j\leq n\right\}\cup\left\{2\delta_{i}\right\}\quad\text{and}\quad\Delta^{+}_{\bar{1}}=\left\{\epsilon\pm\delta_{i}\right\},\qquad n\in\mathbb{Z}_{+},

where {ϵ,δ1,,δn}\left\{\epsilon,\delta_{1},\cdots,\delta_{n}\right\} form the dual basis of the Cartan subalgebra. Their inner products are

ϵ,ϵ=1δi,δj=δijϵ,δj=0\left\langle\epsilon,\epsilon\right\rangle=1\qquad\left\langle\delta_{i},\delta_{j}\right\rangle=-\delta_{ij}\qquad\left\langle\epsilon,\delta_{j}\right\rangle=0

The half sums of positive roots are

ρ0=i(n+1i)δi,ρ1=nϵandρ=ρ0ρ1.\rho_{0}=\sum_{i}(n+1-i)\delta_{i},\quad\rho_{1}=n\epsilon\quad\text{and}\quad\rho=\rho_{0}-\rho_{1}.

The fundamental weights are

w1=ϵwk+1=ϵ+i=1kδiandk=1,,n.w_{1}=\epsilon\qquad w_{k+1}=\epsilon+\sum_{i=1}^{k}\delta_{i}\quad\text{and}\quad k=1,\cdots,n.

The weight λac\lambda^{c}_{a} decomposes as

λac=aw1+c1w2++cnwn+1,\lambda^{c}_{a}=aw_{1}+c_{1}w_{2}+\cdots+c_{n}w_{n+1},

where cr1,ac\in\mathbb{N}^{r-1},a\in\mathbb{C}

Let gg be a Lie superalgebra of type I, sl(m|n)sl(m|n) or osp(2|2n)(mn)osp(2|2n)\,(m\neq n). Uh(g)U_{h}(g) is the [[h]]\mathbb{C}[[h]]-Hopf superalgebra generated by

Ei,Fi,hi,i=1,,r=m+n1orn+1E_{i},F_{i},h_{i},\quad i=1,\cdots,r=m+n-1\quad\text{or}\quad n+1

satisfying the relations

[hi,hj]=0,[hi,Ej]=AijEj,[hi,Fj]=AijFj,[h_{i},h_{j}]=0,\quad[h_{i},E_{j}]=A_{ij}E_{j},\quad[h_{i},F_{j}]=A_{ij}F_{j},
[Ei,Fj]=δi,jqhiqhiqq1,Es2=Fs2=0[E_{i},F_{j}]=\delta_{i,j}\frac{q^{h_{i}}-q^{-h_{i}}}{q-q^{-1}},\quad E_{s}^{2}=F_{s}^{2}=0

and the quantum Serre-type relations; they are quadratic, cubic and quartic relations among EiE_{i} or FiF_{i} (see [20] Definition 4.2.1). AijA_{ij} is r×rr\times r Cartan matrix and {s}=τ{1,,r}\left\{s\right\}=\tau\subset\left\{1,\cdots,r\right\} determining the parity of the generators. Es,FsE_{s},F_{s} are the only odd generators. Moreover, the (anti)commutator is [x,y]:=xy(1)x¯y¯yx[x,y]:=xy-(-1)^{\bar{x}\bar{y}}yx. The Hopf algebra structure is

Δ(Ei)=Δ(Ei)1+qhiΔ(Ei),ϵ(Δ(Ei))=0,S(Δ(Ei))=qhiΔ(Ei)\Delta(E_{i})=\Delta(E_{i})\otimes 1+q^{-h_{i}}\otimes\Delta(E_{i}),\quad\epsilon(\Delta(E_{i}))=0,\quad S(\Delta(E_{i}))=-q^{h_{i}}\Delta(E_{i})
Δ(Fi)=Δ(Fi)1+qhiΔ(Fi),ϵ(Δ(Fi))=0,S(Δ(Ei))=Δ(Fi)qhi\Delta(F_{i})=\Delta(F_{i})\otimes 1+q^{-h_{i}}\otimes\Delta(F_{i}),\quad\epsilon(\Delta(F_{i}))=0,\quad S(\Delta(E_{i}))=-\Delta(F_{i})q^{h_{i}}
Δ(hi)=Δ(Fi)1+1Δ(hi),ϵ(Δ(hi))=0,S(Δ(hi))=hi\Delta(h_{i})=\Delta(F_{i})\otimes 1+1\otimes\Delta(h_{i}),\quad\epsilon(\Delta(h_{i}))=0,\quad S(\Delta(h_{i}))=-h_{i}

Appendix B Invariance checks

We display the weighted positive definite generic plumbing graphs and their equivalent graphs of the examples in Section 4. Each vertex corresponds to a S1S^{1}-bundle over S2S^{2}; a positive integer is the Euler number of a bundle. The graphs are related by the Kirby-Neumman moves:

[Uncaptioned image]

The invariance of Z^ab\hat{Z}_{ab} under the Kirby-Neumman moves for the exhibited graphs and the graphs mentioned in the captions of Figure 3 and 4 were verified.

44111111
5511111111
2211441111
5511111111
1122022112211
Figure 1: A generic plumbing graph of S3S^{3} (left most) and its equivalent graphs
11223377
2233112277
1133331177
1144112277
1133228811
2233113377
2211442277
2233221188
22110033077
33110022077
77110022033
Figure 2: A generic plumbing graph of Σ(2,3,7)\Sigma(2,3,7) (the first graph) and its equivalent graphs
11223388
Figure 3: A generic plumbing graph of M(1|12,13,18)M(-1|\frac{1}{2},\frac{1}{3},\frac{1}{8}) and its equivalent graphs can be obtained from Figure 2 by replacing the weight 7 by 8 or 8 by 9.
11223399
Figure 4: A generic plumbing graph of M(1|12,13,19)M(-1|\frac{1}{2},\frac{1}{3},\frac{1}{9}) and its equivalent graphs can be obtained from Figure 2 by replacing the weight 7 by 9 or 8 by 10.

Appendix C Derivations

We setup for the derivations of the ingredients in the CGP invariant formula using the appendix A and outline the derivation of Z^osp(2|2)\hat{Z}^{osp(2|2)} in Section 3.

The root lattice ΛR\Lambda_{R} of osp(2|2)osp(2|2) are generated by 2δ2\delta and ϵδ\epsilon-\delta, hence, two dimensional. The pivotal element π\pi

π=2(ρ0ρ1)2lρ0ΛR=2(ϵδ)l(2δ)\begin{split}\pi&=2(\rho_{0}-\rho_{1})-2l\rho_{0}\in\Lambda_{R}\\ &=-2(\epsilon-\delta)-l(2\delta)\end{split}

This implies that

Kπ=K1lK22UξH(osp(2|2))K_{\pi}=K_{1}^{-l}K_{2}^{-2}\in U^{H}_{\xi}(osp(2|2))

The weight λ\lambda of VV is

λ=μ1w1+μ2w2=(μ1+μ2)ϵ+μ2δ,\begin{split}\lambda&=\mu_{1}w_{1}+\mu_{2}w_{2}\\ &=(\mu_{1}+\mu_{2})\epsilon+\mu_{2}\delta,\end{split}

where w1=ϵw_{1}=\epsilon and w2=ϵ+δw_{2}=\epsilon+\delta. Under the assumption mentioned in Section 2, we arrive at

θV(μ;l)=ξ2lμ2ξμ12+2μ1μ24μ22μ1 1Vl=odd and3.\theta_{V}(\vec{\mu};l)=\xi^{2l\mu_{2}}\xi^{\mu_{1}^{2}+2\mu_{1}\mu_{2}-4\mu_{2}-2\mu_{1}}\,1_{V}\qquad l=\text{odd and}\geq 3.
S(μ,μ;l)=ξ2l(μ2+μ2)ξ2(μ1μ1+μ1μ2+μ1μ2)2(μ1+μ1+2μ2+2μ2)×{2l(μ2+1l)}{2(μ2+1l)}{μ12+l}{μ1+2μ2l}\begin{split}S(\vec{\mu},\vec{\mu}^{\prime};l)&=\xi^{2l(\mu_{2}+\mu^{\prime}_{2})}\xi^{2\left(\mu_{1}\mu^{\prime}_{1}+\mu_{1}\mu^{\prime}_{2}+\mu^{\prime}_{1}\mu_{2}\right)-2\left(\mu_{1}+\mu^{\prime}_{1}+2\mu_{2}+2\mu^{\prime}_{2}\right)}\\ &\times\frac{\left\{2l(\mu^{\prime}_{2}+1-l)\right\}}{\left\{2(\mu^{\prime}_{2}+1-l)\right\}}\left\{\mu^{\prime}_{1}-2+l\right\}\left\{\mu^{\prime}_{1}+2\mu^{\prime}_{2}-l\right\}\end{split}
d(μ;l)={2(μ2+1l)}{2l(μ2+1l)}1{μ12+l}{μ1+2μ2l},d(\vec{\mu};l)=\frac{\left\{2(\mu_{2}+1-l)\right\}}{\left\{2l(\mu_{2}+1-l)\right\}}\frac{1}{\left\{\mu_{1}-2+l\right\}\left\{\mu_{1}+2\mu_{2}-l\right\}},
{x}ξ:=ξxξxξ=q1/2=ei2π/l,\left\{x\right\}_{\xi}:=\xi^{x}-\xi^{-x}\quad\xi=q^{1/2}=e^{i2\pi/l},

where (μ1,μ2)(\mu_{1},\mu_{2}) and (μ1,μ2)(\mu^{\prime}_{1},\mu^{\prime}_{2}) are the coefficients in the weight decompositions of λ\lambda and μ\mu for VV and VV^{\prime}, respectively (see appendix A). For the S-matrix, notations for VV and VV^{\prime} are switched.

In order to apply the derivation of the superalgebra Z^\hat{Z} given in [4], we need to adapt the above three expressions into a plumbing graph setup. We first let

α=(α1=μ12+l,α2=2μ2+22l)2\vec{\alpha}=(\alpha_{1}=\mu_{1}-2+l,\,\alpha_{2}=2\mu_{2}+2-2l)\quad\in\mathbb{C}^{2}

Then

θV=ξα12+α1α2\theta_{V}=\xi^{\alpha_{1}^{2}+\alpha_{1}\alpha_{2}}
S=ξ2α1α1+α1α2+α2α1{lα2}ξ{α1}ξ{α1+α2}ξ{α2}ξS^{\prime}=\xi^{2\alpha_{1}\alpha^{\prime}_{1}+\alpha_{1}\alpha^{\prime}_{2}+\alpha_{2}\alpha^{\prime}_{1}}\frac{\left\{l\alpha^{\prime}_{2}\right\}_{\xi}\left\{\alpha^{\prime}_{1}\right\}_{\xi}\left\{\alpha^{\prime}_{1}+\alpha^{\prime}_{2}\right\}_{\xi}}{\left\{\alpha^{\prime}_{2}\right\}_{\xi}}

We next shift α1\alpha_{1} and α2\alpha_{2} by s and t, respectively. And then we associate θV\theta_{V} to each vertex. This leads to

θVαsItII=ξ(μ12+s)I(μ1+2μ2+s+t)I.\theta_{V_{\alpha^{I}_{s^{I}t^{I}}}}=\xi^{(\mu_{1}-2+s)^{I}(\mu_{1}+2\mu_{2}+s+t)^{I}}.

Similarly, the S-matrix elements between to vertices I and J of graphs contain

(I,J)EdgesS(αsJtJJ,αsItII)ξIJBIJ(μ12+s)I(μ1+2μ2+s+t)J,\prod_{(I,J)\in Edges}S^{\prime}(\alpha^{J}_{s^{J}t^{J}},\alpha^{I}_{s^{I}t^{I}})\supset\xi^{\sum_{IJ}B_{IJ}(\mu_{1}-2+s)^{I}(\mu_{1}+2\mu_{2}+s+t)^{J}},

which is the relevant part for the derivation. For the modified quantum dimension d(α)d(\vec{\alpha})

d(α)={α2}ξ{lα2}ξ{α1}ξ{α1+α2}ξ,d(\vec{\alpha})=\frac{\left\{\alpha_{2}\right\}_{\xi}}{\left\{l\alpha_{2}\right\}_{\xi}\left\{\alpha_{1}\right\}_{\xi}\left\{\alpha_{1}+\alpha_{2}\right\}_{\xi}},

after shifting by s and t as above and some manipulations, the roots of unity dependent factor becomes

d(α)ξ2(μ1+2μ2+s+t)ξ2(μ1+s2)(1ξ2(μ1+2μ2+s+t))(1ξ2(μ1+s2))d(\vec{\alpha})\supset\frac{\xi^{2(\mu_{1}+2\mu_{2}+s+t)}-\xi^{2(\mu_{1}+s-2)}}{\left(1-\xi^{2(\mu_{1}+2\mu_{2}+s+t)}\right)\left(1-\xi^{2(\mu_{1}+s-2)}\right)}

We define coordinates of the 2D Cartan subalgebra of osp(2|2)osp(2|2) to be

y=ξ2(μ1+2μ2+s+t)z=ξ2(μ1+s2)y=\xi^{2(\mu_{1}+2\mu_{2}+s+t)}\qquad z=\xi^{2(\mu_{1}+s-2)}

Then the modified quantum dimension for a graph contains

d(y,z)yIzI(1yI)(1zI)d(y,z)\supset\frac{y_{I}-z_{I}}{(1-y_{I})(1-z_{I})}

We next sketch the derivation of Z^osp(2|2)\hat{Z}^{osp(2|2)} in Section 3 by applying the procedure in the appendix D of [4]. For a closed oriented graph 3-manifold YY equipped with ωH1(Y;/×/)\omega\in H^{1}(Y;\mathbb{Q}/\mathbb{Z}\times\mathbb{Q}/\mathbb{Z}), the CGP invariant for a pair (Y,ω)(Y,\omega) in which Y is presented by Dehn surgery is

Nl(Y,ω)=sI,tI=0l1d(αsI0tI0I0)IVertd(αsItII)θVαsItIIBII(I,J)EdgesS(αsJtJJ,αsItII)N_{l}(Y,\omega)=\sum_{s^{I},t^{I}=0}^{l-1}d(\alpha^{I_{0}}_{s^{I_{0}}t^{I_{0}}})\prod_{I\in Vert}d(\alpha^{I}_{s^{I}t^{I}})\left\langle\theta_{V_{\alpha^{I}_{s^{I}t^{I}}}}\right\rangle^{B_{II}}\prod_{(I,J)\in Edges}S^{\prime}(\alpha^{J}_{s^{J}t^{J}},\alpha^{I}_{s^{I}t^{I}})
ωH1(Y;/×/)B1L/L×B1L/L\omega\in H^{1}(Y;\mathbb{Q}/\mathbb{Z}\times\mathbb{Q}/\mathbb{Z})\cong B^{-1}\mathbb{Z}^{L}/\mathbb{Z}^{L}\times B^{-1}\mathbb{Z}^{L}/\mathbb{Z}^{L}
ω([mI])=μI=(μ1I,μ2I)/×/,JBIJμJ=0mod×,\omega([m_{I}])=\mu^{I}=(\mu^{I}_{1},\mu^{I}_{2})\in\mathbb{Q}/\mathbb{Z}\times\mathbb{Q}/\mathbb{Z},\qquad\sum_{J}B_{IJ}\mu^{J}=0\quad\text{mod}\,\mathbb{Z}\times\mathbb{Z},

where mIm_{I} is a meridian of I-th component LIL_{I} of a surgery link LL and [mI][m_{I}] is its homology class and BB is a linking matrix of LL. A color of LIL_{I} is set by ω([mI])\omega([m_{I}]). The origin of ω\omega can be found in the footnote in Section 1.3 of [2]. After substituting the ingredients, the right hand side becomes

Nl(Y,ω)=1lL+1IV(ei2πμ1Iei2πμ1I)deg(I)2×aI,bIL/lLF({ξ2(μ1+2μ2+a),ξ2(μ1+b)}IV)ξIJBIJ(μ1+2μ2+a)I(μ1+b)J,\begin{split}N_{l}(Y,\omega)&=\frac{1}{l^{L+1}}\prod_{I\in V}\left(e^{i2\pi\mu^{I}_{1}}-e^{-i2\pi\mu^{I}_{1}}\right)^{deg(I)-2}\\ &\times\sum_{a^{I},b^{I}\in\mathbb{Z}^{L}/l\mathbb{Z}^{L}}F\left(\left\{\xi^{2(\mu_{1}+2\mu_{2}+a)},\xi^{2(\mu_{1}+b)}\right\}_{I\in V}\right)\xi^{\sum_{IJ}B_{IJ}(\mu_{1}+2\mu_{2}+a)^{I}(\mu_{1}+b)^{J}},\end{split}

where aI=sI+tI,bI=sI2a^{I}=s^{I}+t^{I},\,b^{I}=s^{I}-2 and

F(y,z)=IV(yIzI(1yI)(1zI))2deg(I).F(y,z)=\prod_{I\in V}\left(\frac{y_{I}-z_{I}}{(1-y_{I})(1-z_{I})}\right)^{2-deg(I)}.

We next expand F(y,z)F(y,z), which modifies the summand as

aI,bIL/lLξIJBIJ(μ1+2μ2+a)I(μ1+b)J+2InI(μ1+2μ2+a)I+mI(μ1+b)I\sum_{a^{I},b^{I}\in\mathbb{Z}^{L}/l\mathbb{Z}^{L}}\xi^{\sum_{IJ}B_{IJ}(\mu_{1}+2\mu_{2}+a)^{I}(\mu_{1}+b)^{J}+2\sum_{I}n_{I}(\mu_{1}+2\mu_{2}+a)^{I}+m_{I}(\mu_{1}+b)^{I}}

And then we recast it in terms of matrices by forming

=12(0BB0)r=(ba)p=(B(μ1+2μ2)+2mBμ1+2n),\mathcal{M}=\frac{1}{2}\begin{pmatrix}0&B\\ B&0\end{pmatrix}\qquad r=\begin{pmatrix}b\\ a\end{pmatrix}\qquad p=\begin{pmatrix}B(\mu_{1}+2\mu_{2})+2m\\ B\mu_{1}+2n\end{pmatrix},

This enables us to apply the appropriate Gauss reciprocity formula

rL/lLexp(i2πlrTr+i2πlpTr)=eiπσ()/4(l/2)N/2|Det|1/2δL/2Lexp(iπl2(δ+pl)T1(δ+pl)),\sum_{r\in\mathbb{Z}^{L}/l\mathbb{Z}^{L}}exp\left(\frac{i2\pi}{l}r^{T}\mathcal{M}r+\frac{i2\pi}{l}p^{T}r\right)=\\ \frac{e^{i\pi\sigma(\mathcal{M})/4}(l/2)^{N/2}}{|Det\mathcal{M}|^{1/2}}\sum_{\delta\in\mathbb{Z}^{L}/2\mathcal{M}\mathbb{Z}^{L}}exp\left(-\frac{i\pi l}{2}\left(\delta+\frac{p}{l}\right)^{T}\mathcal{M}^{-1}\left(\delta+\frac{p}{l}\right)\right),

where \mathcal{M} is a non-degenerate symmetric 2L×2L2L\times 2L matrix over \mathbb{Z} and σ()\sigma(\mathcal{M}) is its signature. From the p-quadratic term in the exponential we read off

RHSξ4mTB1n,RHS\supset\xi^{-4m^{T}B^{-1}n},

which becomes the q-term in the summand in Section 3 after we analytically continue from a complex unit circle into an interior of an unit disc coordinatized by q.

References

  • [1] C. Anghel, N. Geer, B. Patureau-Mirand, Renormalized Witten-Reshetikhin-Turaev invariants and m-traces associated to the special linear Lie superalgebra, arxiv:2010.13759.
  • [2] F. Costantino, N. Geer, B. Patureau-Mirand, Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories, J. Topol. 7 (2014), no. 4, 1005–1053, arxiv:1202.3553.
  • [3] F. Costantino, N. Geer, B. Patureau-Mirand, Relations between Witten–Reshetikhin–Turaev and nonsemisimple sl(2)sl(2) 3–manifold invariants, Algebr. Geom. Topol. 15(3): 1363-1386 (2015), arxiv:1310.2735.
  • [4] F. Ferrari, P. Putrov, Supergroups, q-series and 3-manifolds, arxiv:2009.14196.
  • [5] N. Geer, J. Kujawa, B.Patureau-Mirand, Generalized trace and modified dimension functions on ribbon categories, Selecta Mathematica volume 17, pages453–504 (2011), arxiv:1001.0985.
  • [6] N. Geer, J. Kujawa, B.Patureau-Mirand, Ambidextrous objects and trace functions for nonsemisimple categories, Proc. Amer. Math. Soc. 141 (2013), no. 9, arxiv:1106.4477.
  • [7] N. Geer, B.Patureau-Mirand, Multivariable link invariants arising from sl(2|1)sl(2|1) and the Alexander polynomial, J. Pure Appl. Algebra 210 (2007), no. 1, 283–298, arxiv:math/0601291.
  • [8] N. Geer, B.Patureau-Mirand, Multivariable link invariants arising from Lie superalgebras of type I, J. Knot Theory Ramifications 19 (2010), no. 1, 93–115, arxiv:math/0609034.
  • [9] N. Geer, B. Patureau-Mirand, V. Turaev, Modified quantum dimensions and re-normalized link invariants, Compos. Math. 145 (2009), no. 1, 196–212, arxiv:0711.4229.
  • [10] S. Gukov, P. Putrov and C. Vafa, Fivebranes and 3-manifold homology, J. High Energ. Phys. 07, 71, 2017, arxiv:1602.05302.
  • [11] S. Gukov, D. Pei, P. Putrov and C. Vafa, BPS spectra and 3-manifold invariants, arxiv:1701.06567.
  • [12] N. P. Ha, Topological invariants from quantum group Uζ(sl(2|1))U_{\zeta}(sl(2|1)) at roots of unity, in Abhandlungen aus dem Mathematischen Seminar der Universit¨at Hamburg, vol. 88, pp. 163–188, Springer, 2018, arxiv:1607.03728.
  • [13] V. Kac, Lie superalgebras, Advances in Mathematics, Volume 26, Issue 1, October 1977, Pages 8-96.
  • [14] V. Kac, Representations of classical lie superalgebras, Differential Geometrical Methods in Mathematical Physics 2,Lecture Notes in Mathematics, vol 676. Springer, Berlin, Heidelberg, 1978.
  • [15] V. Kac, A sketch of Lie superalgebra theory, Comm. Math. Phys. 53(1): 31-64 (1977).
  • [16] SH Park, Higher Rank Z^\hat{Z} and FKF_{K}, SIGMA 16, 044, 2020, arxiv:1909.13002.
  • [17] N. Reshetikhin and V. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103, no. 3, 547-597, 1991.
  • [18] N. Reshetikhin and V. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127, no. 1, 1-26, 1990.
  • [19] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121, no. 3, 351-399, 1989.
  • [20] H. Yamane, - Quantized enveloping algebras associated with simple Lie superalgebras and their universal R-matrices, Publ. Res. Inst. Math. Sci. 30 (1994), no. 1, 15–87.