This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Institut des Hautes Études Scientifiques, 35 Route de Chartres 91440, Bures-sur-Yvette, France 11email: [email protected]

Towards a functorial description of quantum relative entropy

Arthur J. Parzygnat 0000-0002-7264-3991
Abstract

A Bayesian functorial characterization of the classical relative entropy (KL divergence) of finite probabilities was recently obtained by Baez and Fritz. This was then generalized to standard Borel spaces by Gagné and Panangaden. Here, we provide preliminary calculations suggesting that the finite-dimensional quantum (Umegaki) relative entropy might be characterized in a similar way. Namely, we explicitly prove that it defines an affine functor in the special case where the relative entropy is finite. A recent non-commutative disintegration theorem provides a key ingredient in this proof.

Keywords:
Bayesian inversion disintegration optimal hypothesis.

1 Introduction and outline

In 2014, Baez and Fritz provided a categorical Bayesian characterization of the relative entropy of finite probability measures using a category of hypotheses [1]. This was then extended to standard Borel spaces by Gagné and Panangaden in 2018 [5]. An immediate question remains as to whether or not the quantum (Umegaki) relative entropy [12] has a similar characterization.111The ordinary Shannon and von Neumann entropies were characterized in [2] and [7], respectively, in a similar categorical setting. The purpose of the present work is to begin filling this gap by using the recently proved non-commutative disintegration theorem [9].

The original motivation of Baez and Fritz came from Petz’ characterization of the quantum relative entropy [11], which used a quantum analogue of hypotheses known as conditional expectations. Although Petz’ characterization had some minor flaws, which were noticed in [1], we believe Petz’ overall idea is correct when formulated on an appropriate category of non-commutative probability spaces and non-commutative hypotheses. In this article, we show how the Umegaki relative entropy defines an affine functor that vanishes on the subcategory of non-commutative optimal hypotheses for faithful states. The chain rule for quantum conditional entropy is a consequence of functoriality. The non-faithful case will be addressed in future work, where we hope to provide a characterization of the quantum relative entropy as an affine functor.

2 The categories of hypotheses and optimal hypotheses

In this section, we introduce non-commutative analogues of the categories from [1]. All CC^{*}-algebras here are finite-dimensional and unital. All *-homomorphisms are unital unless stated otherwise. n\mathcal{M}_{n} denotes the algebra of n×nn\times n matrices. If V:mnV:\mathbb{C}^{m}\to\mathbb{C}^{n} is a linear map, AdV:nm\mathrm{Ad}_{V}:\mathcal{M}_{n}\;\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 9.0pt\hbox{\ignorespaces{}{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawsquiggles@}}\ignorespaces{\hbox{\kern 10.07996pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{\hbox{\kern 6.0pt\vrule height=3.0pt,depth=3.0pt,width=0.0pt}}$}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawsquiggles@}}\ignorespaces{\hbox{\kern 9.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawsquiggles@}}\ignorespaces}}}}\!\mathcal{M}_{m} denotes the linear map sending AA to VAVVAV^{{\dagger}}, where VV^{{\dagger}} is the adjoint (conjugate transpose) of VV. Linear maps between algebras are written with squiggly arrows  , while *-homomorphisms are written as straight arrows \rightarrow. The acronym CPU stands for “completely positive unital.” If 𝒜\mathcal{A} and \mathcal{B} are matrix algebras, then tr𝒜:𝒜{\rm tr}_{\mathcal{A}}:\mathcal{A}\otimes\mathcal{B}\;\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 9.0pt\hbox{\ignorespaces{}{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawsquiggles@}}\ignorespaces{\hbox{\kern 10.07996pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{\hbox{\kern 6.0pt\vrule height=3.0pt,depth=3.0pt,width=0.0pt}}$}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawsquiggles@}}\ignorespaces{\hbox{\kern 9.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawsquiggles@}}\ignorespaces}}}}\!\mathcal{B} denotes the partial trace over 𝒜\mathcal{A} and is the unique linear map determined by tr𝒜(AB)=tr(A)B{\rm tr}_{\mathcal{A}}(A\otimes B)={\rm tr}(A)B for A𝒜A\in\mathcal{A} and BB\in\mathcal{B}. If ω\omega is a state on 𝒜\mathcal{A}, its quantum entropy is denoted by S(ω)S(\omega) (cf. [7, Definition 2.20]).

Definition 1

Let 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat} be the category of non-commutative probability spaces, whose objects are pairs (𝒜,ω)(\mathcal{A},\omega), with 𝒜\mathcal{A} a CC^{*}-algebra and ω\omega a state on 𝒜\mathcal{A}. A morphism (,ξ)(𝒜,ω)(\mathcal{B},\xi)\rightarrowtriangle(\mathcal{A},\omega) is a pair (F,Q)(F,Q) with F:𝒜F:\mathcal{B}\to\mathcal{A} a *-homomorphism and Q:𝒜Q:\mathcal{A}\;\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 9.0pt\hbox{\ignorespaces{}{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawsquiggles@}}\ignorespaces{\hbox{\kern 10.07996pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{\hbox{\kern 6.0pt\vrule height=3.0pt,depth=3.0pt,width=0.0pt}}$}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawsquiggles@}}\ignorespaces{\hbox{\kern 9.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawsquiggles@}}\ignorespaces}}}}\!\mathcal{B} a CPU map (called a hypothesis), such that

ωF=ξ and QF=id.\omega\circ F=\xi\qquad\text{ and }\qquad Q\circ F=\mathrm{id}_{\mathcal{B}}.

The composition rule in 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat} is given by

(𝒞,ζ)\ext@arrow0055\arrowfill@--(G,R)(,ξ)\ext@arrow0055\arrowfill@--(F,Q)(𝒜,ω)(𝒞,ζ)\ext@arrow0055\arrowfill@--(FG,RQ)(𝒜,ω).(\mathcal{C},\zeta)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(G,R)}(\mathcal{B},\xi)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(F,Q)}(\mathcal{A},\omega)\quad\mapsto\quad(\mathcal{C},\zeta)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(F\circ G,R\circ Q)}(\mathcal{A},\omega).

Let 𝐍𝐂𝐅𝐏\mathbf{NCFP} be the subcategory of 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat} with the same objects but whose morphisms are pairs (F,Q)(F,Q) as above and QQ is an optimal hypothesis, i.e. ξQ=ω\xi\circ Q=\omega.

The subcategories of 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭op\mathbf{NCFinStat}^{\mathrm{op}} and 𝐍𝐂𝐅𝐏op\mathbf{NCFP}^{\mathrm{op}} consisting of commutative CC^{*}-algebras are equivalent to the categories 𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{FinStat} and 𝐅𝐏\mathbf{FP} from [1] by stochastic Gelfand duality (cf. [6, Sections 2.5 and 2.6][4], and [9, Corollary 3.23]).

Notation 1

On occasion, the notation 𝒜\mathcal{A}, \mathcal{B}, and 𝒞\mathcal{C} will be used to mean

𝒜:=xXmx,:=yYny, and 𝒞:=zZoz,\mathcal{A}:=\bigoplus_{x\in X}\mathcal{M}_{m_{x}},\qquad\mathcal{B}:=\bigoplus_{y\in Y}\mathcal{M}_{n_{y}},\quad\text{ and }\quad\mathcal{C}:=\bigoplus_{z\in Z}\mathcal{M}_{o_{z}},

where X,Y,ZX,Y,Z are finite sets, often taken to be ordered sets X={1,,s}X=\{1,\dots,s\}, Y={1,,t}Y=\{1,\dots,t\}, Z={1,,u}Z=\{1,\dots,u\} for convenience (cf. [9, Section 5] and/or [7, Example 2.2]). Note that every element of 𝒜\mathcal{A} (and analogously for \mathcal{B} and 𝒞\mathcal{C}) is of the form A=xXAxA=\bigoplus_{x\in X}A_{x}, with AxmxA_{x}\in\mathcal{M}_{m_{x}}. Furthermore, ω\omega, ξ\xi, and ζ\zeta will refer to states on 𝒜\mathcal{A}, \mathcal{B}, and 𝒞\mathcal{C}, respectively, with decompositions of the form

ω=xXpxtr(ρx),ξ=yYqytr(σy), and ζ=zZrztr(τz).\omega=\sum_{x\in X}p_{x}{\rm tr}(\rho_{x}\;\cdot\;),\qquad\xi=\sum_{y\in Y}q_{y}{\rm tr}(\sigma_{y}\;\cdot\;),\quad\text{ and }\quad\zeta=\sum_{z\in Z}r_{z}{\rm tr}(\tau_{z}\;\cdot\;).

If Q:𝒜Q:\mathcal{A}\;\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 9.0pt\hbox{\ignorespaces{}{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawsquiggles@}}\ignorespaces{\hbox{\kern 10.07996pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{\hbox{\kern 6.0pt\vrule height=3.0pt,depth=3.0pt,width=0.0pt}}$}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawsquiggles@}}\ignorespaces{\hbox{\kern 9.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawsquiggles@}}\ignorespaces}}}}\!\mathcal{B} is a linear map, its yxyx component QyxQ_{yx} is the linear map obtained from the composite mx𝒜Q ny\mathcal{M}_{m_{x}}\hookrightarrow\mathcal{A}\mathrel{\leavevmode\hbox to16.19pt{\vbox to12.9pt{\pgfpicture\makeatletter\hbox{\hskip 8.09741pt\lower-7.67497pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.54465pt}{-1.71112pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\;$\scriptstyle Q$\;}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}}{}{{}}{}{{}} {}{} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}} {{{{}{}{{}} }}{{}} }{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}{{}}} {{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}} } {{{{}{}{{}} }}{{}}{{}}} {}{{ {\pgfsys@beginscope \pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-2.6pt}{2.05pt}\pgfsys@curveto{-2.125pt}{0.81998pt}{-1.06648pt}{0.23917pt}{0.0pt}{0.0pt}\pgfsys@curveto{-1.06648pt}{-0.23917pt}{-2.125pt}{-0.81998pt}{-2.6pt}{-2.05pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}\pgfsys@moveto{7.49742pt}{-5.42497pt}\pgfsys@lineto{6.89742pt}{-5.42497pt}\pgfsys@curveto{6.15054pt}{-5.42497pt}{5.7771pt}{-6.27855pt}{5.03021pt}{-6.27855pt}\pgfsys@curveto{4.48949pt}{-6.27855pt}{4.02344pt}{-5.862pt}{3.53645pt}{-5.42497pt}\pgfsys@curveto{3.04948pt}{-4.98796pt}{2.58344pt}{-4.5714pt}{2.0427pt}{-4.5714pt}\pgfsys@curveto{1.50197pt}{-4.5714pt}{1.03592pt}{-4.98795pt}{0.54893pt}{-5.42497pt}\pgfsys@curveto{0.06197pt}{-5.86198pt}{-0.40408pt}{-6.27855pt}{-0.94482pt}{-6.27855pt}\pgfsys@curveto{-1.48555pt}{-6.27855pt}{-1.9516pt}{-5.862pt}{-2.43858pt}{-5.42497pt}\pgfsys@curveto{-2.92555pt}{-4.98796pt}{-3.3916pt}{-4.5714pt}{-3.93234pt}{-4.5714pt}\pgfsys@lineto{-7.89742pt}{-5.42497pt}\pgfsys@lineto{-7.89742pt}{-5.42497pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.69742pt}{-5.42497pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{}{{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\mathcal{B}\twoheadrightarrow\mathcal{M}_{n_{y}}, where the first and last maps are the (non-unital) inclusion and projection, respectively.

Definition 2

Let 𝒜\mathcal{A} and \mathcal{B} be as in Notation 1. A morphism (,ξ)\ext@arrow0055\arrowfill@--(F,Q)(𝒜,ω)(\mathcal{B},\xi)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(F,Q)}(\mathcal{A},\omega) in 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat} is said to be in standard form iff there exist non-negative integers cyxFc^{F}_{yx} such that (cf. [7, Lemma 2.11] and [3, Theorem 5.6])

F(B)=xXyY(𝟙cyxFBy)xXdiag(𝟙c1xFB1,,𝟙ctxFBt)B,F(B)=\bigoplus_{x\in X}\mathop{\vphantom{\bigoplus}\mathchoice{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}}\displaylimits_{y\in Y}\big{(}\mathds{1}_{c^{F}_{yx}}\otimes B_{y}\big{)}\equiv\bigoplus_{x\in X}\mathrm{diag}\left(\mathds{1}_{c^{F}_{1x}}\otimes B_{1},\dots,\mathds{1}_{c^{F}_{tx}}\otimes B_{t}\right)\quad\forall\;B\in\mathcal{B},

which is a direct sum of block diagonal matrices. The number cyxFc^{F}_{yx} is called the multiplicity of ny\mathcal{M}_{n_{y}} in mx\mathcal{M}_{m_{x}} associated to FF. In this case, each AxmxA_{x}\in\mathcal{M}_{m_{x}} will occasionally be decomposed as Ax=y,yYEyy(t)Ax;yyA_{x}=\sum_{y,y^{\prime}\in Y}E_{yy^{\prime}}^{(t)}\otimes A_{x;yy^{\prime}}, where {Eyy(t)}\{E_{yy^{\prime}}^{(t)}\} denote the matrix units of t\mathcal{M}_{t} and Ax;yyA_{x;yy^{\prime}} is a (cyxFny)×(cyxFny)(c^{F}_{yx}n_{y})\times(c^{F}_{y^{\prime}x}n_{y^{\prime}}) matrix.

If FF is in standard form and if ω\omega and ξ\xi are states on 𝒜\mathcal{A} and \mathcal{B} (as in Notation 1) such that ξ=ωF\xi=\omega\circ F, then (cf. [7, Lemma 2.11] and [9, Proposition 5.67])

qyσy=xXpxtrcyxF(ρx;yy).q_{y}\sigma_{y}=\sum_{x\in X}p_{x}{\rm tr}_{\mathcal{M}_{c^{F}_{yx}}}(\rho_{x;yy}). (2.1)

The standard form of a morphism will be useful later for proving functoriality of relative entropy, and it will allow us to formulate expressions more explicitly in terms of matrices.

Lemma 1

Given a morphism (,ξ)\ext@arrow0055\arrowfill@--(F,Q)(𝒜,ω)(\mathcal{B},\xi)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(F,Q)}(\mathcal{A},\omega) in 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat}, with 𝒜\mathcal{A} and \mathcal{B} be as in Notation 1, there exists a unitary U𝒜U\in\mathcal{A} such that (,ξ)\ext@arrow0055\arrowfill@--(AdUF,QAdU)(𝒜,ωAdU)(\mathcal{B},\xi)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(\mathrm{Ad}_{U^{{\dagger}}}\circ F,Q\circ\mathrm{Ad}_{U})}(\mathcal{A},\omega\circ\mathrm{Ad}_{U}) is a morphism in 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat} that is in standard form. Furthermore, if (F,Q)(F,Q) is in 𝐍𝐂𝐅𝐏\mathbf{NCFP}, then (AdUF,QAdU)(\mathrm{Ad}_{U^{{\dagger}}}\circ F,Q\circ\mathrm{Ad}_{U}) is also in 𝐍𝐂𝐅𝐏\mathbf{NCFP}.

Proof

First, (AdUF,QAdU)(\mathrm{Ad}_{U^{{\dagger}}}\circ F,Q\circ\mathrm{Ad}_{U}) is in 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat} for any unitary UU because

(ωAdU)(AdUF)=ξ and (QAdU)(AdUF)=id,(\omega\circ\mathrm{Ad}_{U})\circ(\mathrm{Ad}_{U^{{\dagger}}}\circ F)=\xi\quad\text{ and }\quad(Q\circ\mathrm{Ad}_{U})\circ(\mathrm{Ad}_{U^{{\dagger}}}\circ F)=\mathrm{id}_{\mathcal{B}},

so that the two required conditions hold. Second, the fact that a unitary UU exists such that FF is in the form in Definition 2 is a standard fact regarding (unital) *-homomorphisms between direct sums of matrix algebras [3, Theorem 5.6]. Finally, if (F,Q)(F,Q) is in 𝐍𝐂𝐅𝐏\mathbf{NCFP}, which means ξQ=ω\xi\circ Q=\omega, then (AdUF,QAdU)(\mathrm{Ad}_{U^{{\dagger}}}\circ F,Q\circ\mathrm{Ad}_{U}) is also in 𝐍𝐂𝐅𝐏\mathbf{NCFP} because ξ(QAdU)=(ξQ)AdU=ωAdU\xi\circ(Q\circ\mathrm{Ad}_{U})=(\xi\circ Q)\circ\mathrm{Ad}_{U}=\omega\circ\mathrm{Ad}_{U}.

Although the composite of two morphisms in standard form is not necessarily in standard form, a permutation can always be applied to obtain one. Furthermore, a pair of composable morphisms in 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat} can also be simultaneously rectified. This is the content of the following lemmas.

Lemma 2

Given a composable pair (𝒞,ζ)\ext@arrow0055\arrowfill@--(G,R)(,ξ)\ext@arrow0055\arrowfill@--(F,Q)(𝒜,ω)(\mathcal{C},\zeta)\!\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{\!\!(G,R)\!\!}\!(\mathcal{B},\xi)\!\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{\!\!(F,Q)\!\!}\!(\mathcal{A},\omega) in 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat}, there exist unitaries U𝒜U\in\mathcal{A} and VV\in\mathcal{B} such that

(𝒞,ζ)\ext@arrow0055\arrowfill@--(AdVG,RAdV)(,ξAdV)\ext@arrow0055\arrowfill@--(AdUFAdV,AdVQAdU)(𝒜,ωAdU)(\mathcal{C},\zeta)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(\mathrm{Ad}_{V^{{\dagger}}}\circ G,R\circ\mathrm{Ad}_{V})}(\mathcal{B},\xi\circ\mathrm{Ad}_{V})\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(\mathrm{Ad}_{U^{{\dagger}}}\circ F\circ\mathrm{Ad}_{V},\mathrm{Ad}_{V^{{\dagger}}}\circ Q\circ\mathrm{Ad}_{U})}(\mathcal{A},\omega\circ\mathrm{Ad}_{U})

is a pair of composable morphisms in 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat} that are both in standard form.

Proof

By Lemma 1, there exists a unitary VV\in\mathcal{B} such that

(𝒞,ζ)\ext@arrow0055\arrowfill@--(AdVG,RAdV)(,ξAdV)\ext@arrow0055\arrowfill@--(FAdV,AdVQ)(𝒜,ω)(\mathcal{C},\zeta)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(\mathrm{Ad}_{V^{{\dagger}}}\circ G,R\circ\mathrm{Ad}_{V})}(\mathcal{B},\xi\circ\mathrm{Ad}_{V})\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(F\circ\mathrm{Ad}_{V},\mathrm{Ad}_{V^{{\dagger}}}\circ Q)}(\mathcal{A},\omega)

is a composable pair of morphisms in 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat} with the left morphism in standard form. The right morphism is indeed in 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat} because

ω(FAdV)=(ωF)AdV=ξAdV and \omega\circ(F\circ\mathrm{Ad}_{V})=(\omega\circ F)\circ\mathrm{Ad}_{V}=\xi\circ\mathrm{Ad}_{V}\qquad\text{ and }
(AdVQ)(FAdV)=AdV(QF)AdV=AdVAdV=id.(\mathrm{Ad}_{V^{{\dagger}}}\circ Q)\circ(F\circ\mathrm{Ad}_{V})=\mathrm{Ad}_{V^{{\dagger}}}\circ(Q\circ F)\circ\mathrm{Ad}_{V}=\mathrm{Ad}_{V^{{\dagger}}}\circ\mathrm{Ad}_{V}=\mathrm{id}_{\mathcal{B}}.

Then, applying Lemma 1 again, but to the new morphism on the right, gives a unitary UU satisfying the conditions claimed.

Lemma 3

Given a composable pair (𝒞,ζ)\ext@arrow0055\arrowfill@--(G,R)(,ξ)\ext@arrow0055\arrowfill@--(F,Q)(𝒜,ω)(\mathcal{C},\zeta)\!\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{\!\!(G,R)\!\!}\!(\mathcal{B},\xi)\!\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{\!\!(F,Q)\!\!}\!(\mathcal{A},\omega) in 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat}, each in standard form, there exist permutation matrices PxmxP_{x}\in\mathcal{M}_{m_{x}} such that

(𝒞,ζ)\ext@arrow0055\arrowfill@--(AdPFG,RQAdP)(𝒜,ωAdP)(\mathcal{C},\zeta)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(\mathrm{Ad}_{P^{{\dagger}}}\circ F\circ G,R\circ Q\circ\mathrm{Ad}_{P})}(\mathcal{A},\omega\circ\mathrm{Ad}_{P})

is also in standard form, where P:=xXPxP:=\bigoplus_{x\in X}P_{x} and the multiplicities czxGFc^{G\circ F}_{zx} of AdPGF\mathrm{Ad}_{P^{{\dagger}}}\circ G\circ F are given by czxGF=yYczyGcyxF.c^{G\circ F}_{zx}=\sum_{y\in Y}c^{G}_{zy}c^{F}_{yx}.

Proof

The composite FGF\circ G is given by

F(G(C))=F(yYzZ(𝟙cyzGCz)By)=xXyY(𝟙cyxFzZ(𝟙cyzGCz))Ax.F\big{(}G(C)\big{)}=F\Bigg{(}\bigoplus_{y\in Y}\underbrace{\mathop{\vphantom{\bigoplus}\mathchoice{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}}\displaylimits_{z\in Z}\big{(}\mathds{1}_{c^{G}_{yz}}\otimes C_{z}\big{)}}_{B_{y}}\Bigg{)}=\bigoplus_{x\in X}\underbrace{\mathop{\vphantom{\bigoplus}\mathchoice{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}}\displaylimits_{y\in Y}\Bigg{(}\mathds{1}_{c^{F}_{yx}}\otimes\mathop{\vphantom{\bigoplus}\mathchoice{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}}\displaylimits_{z\in Z}\big{(}\mathds{1}_{c^{G}_{yz}}\otimes C_{z}\big{)}\Bigg{)}}_{A_{x}}.

The matrix AxA_{x} takes the more explicit form (with zeros in unfilled entries)

Ax=diag(𝟙c1xF[𝟙c11GC1𝟙cu1GCu],,𝟙ctxF[𝟙c11GC1𝟙cu1GCu]).A_{x}=\mathrm{diag}\left(\!\mathds{1}_{c^{F}_{1x}}\otimes\left[\begin{smallmatrix}\mathds{1}_{c^{G}_{11}}\otimes C_{1}&&\\ &\ddots&\\ &&\mathds{1}_{c^{G}_{u1}}\otimes C_{u}\end{smallmatrix}\right],\dots,\mathds{1}_{c^{F}_{tx}}\otimes\left[\begin{smallmatrix}\mathds{1}_{c^{G}_{11}}\otimes C_{1}&&\\ &\ddots&\\ &&\mathds{1}_{c^{G}_{u1}}\otimes C_{u}\end{smallmatrix}\right]\!\right).

From this, one sees that the number of times CzC_{z} appears on the diagonal is yYczyGcyxF\sum_{y\in Y}c^{G}_{zy}c^{F}_{yx}. However, the positions of CzC_{z} are not all next to each other. Hence, a permutation matrix PxP_{x} is needed to put them into standard form.

Notation 2

Given a composable pair (𝒞,ζ)\ext@arrow0055\arrowfill@--(G,R)(,ξ)\ext@arrow0055\arrowfill@--(F,Q)(𝒜,ω)(\mathcal{C},\zeta)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(G,R)}(\mathcal{B},\xi)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(F,Q)}(\mathcal{A},\omega) in standard form as in Lemma 3, the states ζR\zeta\circ R and ξQ\xi\circ Q will be decomposed as

ζR=yYqyRtr(σyR) and ξQ=xXpxQtr(ρxQ).\zeta\circ R=\sum_{y\in Y}q_{y}^{R}{\rm tr}\big{(}\sigma_{y}^{R}\;\cdot\;\big{)}\qquad\text{ and }\qquad\xi\circ Q=\sum_{x\in X}p_{x}^{Q}{\rm tr}\big{(}\rho_{x}^{Q}\;\cdot\;\big{)}.
Lemma 4

Given a morphism (F,Q)(F,Q) in standard form as in Notation 2 such that all states are faithful, there exist strictly positive matrices αyxcyxF\alpha_{yx}\in\mathcal{M}_{c^{F}_{yx}} for all xXx\in X and yYy\in Y such that

tr(xXαyx)=1yY,pxQρxQ=yY(αyxqyσy)xX,and{\rm tr}\left(\sum_{x\in X}\alpha_{yx}\right)=1\quad\forall\;y\in Y,\qquad p_{x}^{Q}\rho_{x}^{Q}=\mathop{\vphantom{\bigoplus}\mathchoice{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}}\displaylimits_{y\in Y}(\alpha_{yx}\otimes q_{y}\sigma_{y})\;\;\forall\;x\in X,\quad\text{and}
Qyx(Ax)=trcyxF((αyx𝟙ny)Ax;yy)yY,Axmx,xX.Q_{yx}(A_{x})={\rm tr}_{\mathcal{M}_{c_{yx}^{F}}}\big{(}(\alpha_{yx}\otimes\mathds{1}_{n_{y}})A_{x;yy}\big{)}\qquad\forall\;y\in Y,\;A_{x}\in\mathcal{M}_{m_{x}},\;x\in X.
Proof

Because QQ and RR are disintegrations of (F,ξQ,ξ)(F,\xi\circ Q,\xi) and (G,ζR,ζ)(G,\zeta\circ R,\zeta), respectively, the claim follows from the non-commutative disintegration theorem [9, Theorem 5.67] and the fact that FF is an injective *-homomorphism. The αyx\alpha_{yx} matrices are strictly positive by the faithful assumption.

If (𝒞,ζ)\ext@arrow0055\arrowfill@--(G,R)(,ξ)\ext@arrow0055\arrowfill@--(F,Q)(𝒜,ω)(\mathcal{C},\zeta)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(G,R)}(\mathcal{B},\xi)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(F,Q)}(\mathcal{A},\omega) is composable pair, a consequence of Lemma 4 is

ζRQ=xXtr((yYαyxqyRσyR)).\zeta\circ R\circ Q=\sum_{x\in X}{\rm tr}\Bigg{(}\Bigg{(}\mathop{\vphantom{\bigoplus}\mathchoice{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}}\displaylimits_{y\in Y}\alpha_{yx}\otimes q_{y}^{R}\sigma^{R}_{y}\Bigg{)}\;\cdot\;\Bigg{)}. (2.2)

3 The relative entropy as a functor

Definition 3

Set RE:𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭𝔹(,]\mathrm{RE}:\mathbf{NCFinStat}\rightarrow\mathbb{B}(-\infty,\infty] to be the assignment that sends a morphism (,ξ)\ext@arrow0055\arrowfill@--(F,Q)(𝒜,ω)(\mathcal{B},\xi)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(F,Q)}(\mathcal{A},\omega) to S(ωξQ)S(\omega\;\|\;\xi\circ Q) (the assignment is trivial on objects). Here, 𝔹M\mathbb{B}M is the one object category associated to any monoid222The morphisms of 𝔹M\mathbb{B}M from that single object to itself equals the set MM and the composition is the monoid multiplication. Here, the monoid is (,](-\infty,\infty] under addition (with the convention that a+=a+\infty=\infty for all a(,]a\in(-\infty,\infty]. MM, S()S(\cdot\;\|\;\cdot) is the relative entropy of two states on the same CC^{*}-algebra, which is defined on an ordered pair of states (ω,ω)(\omega,\omega^{\prime}), with ωω\omega\preceq\omega^{\prime} (meaning ω(aa)=0\omega^{\prime}(a^{*}a)=0 implies ω(aa)=0\omega(a^{*}a)=0), on 𝒜=xXmx\mathcal{A}=\bigoplus_{x\in X}\mathcal{M}_{m_{x}} by

S(ωω):=tr(xXpxρx(log(pxρx)log(pxρx))),S(\omega\;\|\;\omega^{\prime}):={\rm tr}\left(\bigoplus_{x\in X}p_{x}\rho_{x}\Big{(}\log(p_{x}\rho_{x})-\log(p^{\prime}_{x}\rho^{\prime}_{x})\Big{)}\right),

where 0log0:=00\log 0:=0 by convention. If ωω\omega\npreceq\omega^{\prime}, then S(ωω):=S(\omega\;\|\;\omega^{\prime}):=\infty.

Lemma 5

Using the notation from Definition 3, the following facts hold.

  1. (a)

    RE\mathrm{RE} factors through 𝔹[0,]\mathbb{B}[0,\infty].

  2. (b)

    RE\mathrm{RE} vanishes on the subcategory 𝐍𝐂𝐅𝐏\mathbf{NCFP}.

  3. (c)

    RE\mathrm{RE} is invariant with respect to changing a morphism to standard form, i.e. in terms of the notation introduced in Lemma 1,

    RE((,ξ)\ext@arrow0055\arrowfill@--(F,Q)(𝒜,ω))=RE((,ξ)\ext@arrow0055\arrowfill@--(AdUF,QAdU)(𝒜,ωAdU)).\mathrm{RE}\left((\mathcal{B},\xi)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(F,Q)}(\mathcal{A},\omega)\right)=\mathrm{RE}\left((\mathcal{B},\xi)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(\mathrm{Ad}_{U^{{\dagger}}}\circ F,Q\circ\mathrm{Ad}_{U})}(\mathcal{A},\omega\circ\mathrm{Ad}_{U})\right).
Proof

Left as an exercise.

Proposition 1

For a composable pair (𝒞,ζ)\ext@arrow0055\arrowfill@--(G,R)(,ξ)\ext@arrow0055\arrowfill@--(F,Q)(𝒜,ω)(\mathcal{C},\zeta)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(G,R)}(\mathcal{B},\xi)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(F,Q)}(\mathcal{A},\omega) in 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat} (with all states and CPU maps faithful),333Faithfulness guarantees the finiteness of all expressions. More generally, our proof works if the appropriate absolute continuity conditions hold. Also, note that the “conditional expectation property” in [11] is a special case of functoriality applied to a composable pair of morphisms of the form (,id)\ext@arrow0055\arrowfill@--(!,R)(,ξ)\ext@arrow0055\arrowfill@--(F,Q)(𝒜,ω)(\mathbb{C},\mathrm{id}_{\mathbb{C}})\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(!_{\mathcal{B}},R)}(\mathcal{B},\xi)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(F,Q)}(\mathcal{A},\omega), where !:!_{\mathcal{B}}:\mathbb{C}\to\mathcal{B} is the unique unital linear map. Indeed, Petz’ 𝒜\mathcal{A}, \mathcal{B}, EE, ω|𝒜\omega_{|\mathcal{A}}, φ|𝒜\varphi_{|\mathcal{A}}, and φ\varphi, are our \mathcal{B}, 𝒜\mathcal{A}, QQ, ξ\xi, RR, and RQR\circ Q, respectively (ω\omega is the same). S(ωζRQ)=S(ξζR)+S(ωξQ),S(\omega\;\|\;\zeta\circ R\circ Q)=S(\xi\;\|\;\zeta\circ R)+S(\omega\;\|\;\xi\circ Q), i.e. RE((FG,RQ))=RE((G,R))+RE((F,Q))\mathrm{RE}\big{(}(F\circ G,R\circ Q)\big{)}=\mathrm{RE}\big{(}(G,R)\big{)}+\mathrm{RE}\big{(}(F,Q)\big{)}.

Proof

By Lemma 5, it suffices to assume (F,Q)(F,Q) and (G,R)(G,R) are in standard form. To prove the claim, we expand each term. First,444Equation (3.1) is a generalization of Equation (3.2) in [1], which plays a crucial role in proving many claims. We will also use it to prove affinity of RE\mathrm{RE}.

S(ωξQ)====Lem 4S(ω)xXtr(pxρxlog(yYαyxqyσy))=S(ω)xXyYtr(pxρx;yy(log(αyx)𝟙ny))xXyYtr(pxtrcyxF(ρx;yy)log(qyσy)).\begin{split}S(\omega\;\|\;\xi\circ Q)&\overset{\text{Lem~{}\ref{lem:explicitformstandard}}}{=\joinrel=\joinrel=\joinrel=}-S(\omega)-\sum_{x\in X}{\rm tr}\Bigg{(}p_{x}\rho_{x}\log\Bigg{(}\mathop{\vphantom{\bigoplus}\mathchoice{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}{\vbox{\hbox{\leavevmode\resizebox{0.0pt}{}{$\boxplus$}}}}}\displaylimits_{y\in Y}\alpha_{yx}\otimes q_{y}\sigma_{y}\Bigg{)}\Bigg{)}\\ &=-S(\omega)-\sum_{x\in X}\sum_{y\in Y}{\rm tr}\Big{(}p_{x}\rho_{x;yy}\big{(}\log(\alpha_{yx})\otimes\mathds{1}_{n_{y}}\big{)}\Big{)}\\ &\quad-\sum_{x\in X}\sum_{y\in Y}{\rm tr}\Big{(}p_{x}{\rm tr}_{\mathcal{M}_{c^{F}_{yx}}}(\rho_{x;yy})\log(q_{y}\sigma_{y})\Big{)}.\end{split} (3.1)

The last equality follows from the properties of the trace, partial trace, and logarithms of tensor products. By similar arguments,

S(ξζR)===(2.1)xXyYtr(pxtrcyxF(ρx;yy)log(qyσy))xXyYtr(pxtrcyxF(ρx;yy)log(qyRσyR))\begin{split}S(\xi\;\|\;\zeta\circ R)&\overset{\text{(\ref{eq:sigmayintermsofrhox})}}{=\joinrel=\joinrel=}\sum_{x\in X}\sum_{y\in Y}{\rm tr}\Big{(}p_{x}{\rm tr}_{\mathcal{M}_{c^{F}_{yx}}}(\rho_{x;yy})\log(q_{y}\sigma_{y})\Big{)}\\ &\quad-\sum_{x\in X}\sum_{y\in Y}{\rm tr}\Big{(}p_{x}{\rm tr}_{\mathcal{M}_{c^{F}_{yx}}}(\rho_{x;yy})\log(q^{R}_{y}\sigma^{R}_{y})\Big{)}\end{split} (3.2)

and

S(ωζRQ)===(2.2)S(ω)xXyYtr(pxρx;yy(log(αyx)𝟙ny))xXyYtr(pxtrcyxF(ρx;yy)log(qyRσyR)).\begin{split}S(\omega\;\|\;\zeta\circ R\circ Q)&\overset{\text{(\ref{eq:zRQ})}}{=\joinrel=\joinrel=}-S(\omega)-\sum_{x\in X}\sum_{y\in Y}{\rm tr}\left(p_{x}\rho_{x;yy}\Big{(}\log(\alpha_{yx})\otimes\mathds{1}_{n_{y}}\Big{)}\right)\\ &\quad-\sum_{x\in X}\sum_{y\in Y}{\rm tr}\Big{(}p_{x}{\rm tr}_{\mathcal{M}_{c^{F}_{yx}}}(\rho_{x;yy})\log(q^{R}_{y}\sigma^{R}_{y})\Big{)}.\end{split} (3.3)

Hence, (3.1)+(3.2)=(3.3)(\ref{eq:SomxQ})+(\ref{eq:SxzR})=(\ref{eq:SomzRQ}), which proves the claim.

Example 1

The usual chain rule for the quantum conditional entropy is a special case of Proposition 1. To see this, set 𝒜:=dA,:=dB,𝒞:=dC\mathcal{A}:=\mathcal{M}_{d_{A}},\mathcal{B}:=\mathcal{M}_{d_{B}},\mathcal{C}:=\mathcal{M}_{d_{C}} with dA,dB,dCd_{A},d_{B},d_{C}\in\mathbb{N}. Given a density matrix ρABC\rho_{ABC} on 𝒜𝒞\mathcal{A}\otimes\mathcal{B}\otimes\mathcal{C}, we implement subscripts to denote the associated density matrix after tracing out a subsystem. The chain rule for the conditional entropy states

H(AB|C)=H(A|BC)+H(B|C),H(AB|C)=H(A|BC)+H(B|C), (3.4)

where (for example)

H(B|C):=tr(ρBClogρBC)tr(ρClogρC)H(B|C):={\rm tr}(\rho_{BC}\log\rho_{BC})-{\rm tr}(\rho_{C}\log\rho_{C})

is the quantum conditional entropy of ρBC\rho_{BC} given ρC\rho_{C}. One can show that

RE((FG,RQ))=H(AB|C)+log(dA)+log(dB),\mathrm{RE}\big{(}(F\circ G,R\circ Q)\big{)}=H(AB|C)+\log(d_{A})+\log(d_{B}),
RE((G,R))=H(B|C)+log(dB),andRE((F,Q))=H(A|BC)+log(dA)\mathrm{RE}\big{(}(G,R)\big{)}=H(B|C)+\log(d_{B}),\quad\text{and}\quad\mathrm{RE}\big{(}(F,Q)\big{)}=H(A|BC)+\log(d_{A})

by applying Proposition 1 to the composable pair

(𝒞,tr(ρC))\ext@arrow0055\arrowfill@--(G,R)(𝒞,tr(ρBC))\ext@arrow0055\arrowfill@--(F,Q)(𝒜𝒞,tr(ρABC)),\Big{(}\mathcal{C},{\rm tr}(\rho_{C}\;\cdot\;)\Big{)}\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{\left(G,R\right)}\Big{(}\mathcal{B}\otimes\mathcal{C},{\rm tr}(\rho_{BC}\;\cdot\;)\Big{)}\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{\left(F,Q\right)}\Big{(}\mathcal{A}\otimes\mathcal{B}\otimes\mathcal{C},{\rm tr}(\rho_{ABC}\;\cdot\;)\Big{)},

where GG and FF are the standard inclusions, υB:=1dB𝟙dB\upsilon_{B}:=\frac{1}{d_{B}}\mathds{1}_{d_{B}}, υA:=1dA𝟙dA\upsilon_{A}:=\frac{1}{d_{A}}\mathds{1}_{d_{A}}, and RR and QQ are the CPU maps given by R:=tr(υB1𝒞)R:={\rm tr}_{\mathcal{B}}\left(\upsilon_{B}\otimes 1_{\mathcal{C}}\;\cdot\;\right), and Q:=tr𝒜(υA11𝒞)Q:={\rm tr}_{\mathcal{A}}\left(\upsilon_{A}\otimes 1_{\mathcal{B}}\otimes 1_{\mathcal{C}}\;\cdot\;\right). This reproduces (3.4).

Proposition 1 does not fully prove functoriality of RE\mathrm{RE}. One still needs to check functoriality in case one of the terms is infinite (eg. if S(ωζRQ)=S(\omega\;\|\;\zeta\circ R\circ Q)=\infty, then at least one of S(ξζR)S(\xi\;\|\;\zeta\circ R) or S(ωξQ)S(\omega\;\|\;\xi\circ Q) must be infinite, and conversely). This will be addressed in future work. In the remainder, we prove affinity of RE\mathrm{RE}.

Definition 4

Given λ[0,1]\lambda\in[0,1], set λ¯:=1λ\overline{\lambda}:=1-\lambda. The λ\lambda-weighted convex sum λ(𝒜,ω)λ¯(𝒜¯,ω¯)\lambda(\mathcal{A},\omega)\oplus\overline{\lambda}(\overline{\mathcal{A}},\overline{\omega}) of objects (𝒜,ω)(\mathcal{A},\omega) and (𝒜¯,ω¯)(\overline{\mathcal{A}},\overline{\omega}) in 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat} is given by the pair (𝒜𝒜¯,λωλ¯ω¯)(\mathcal{A}\oplus\overline{\mathcal{A}},\lambda\omega\oplus\overline{\lambda}\overline{\omega}), where (λωλ¯ω¯)(AA¯):=λω(A)+λ¯ω¯(A¯)\big{(}\lambda\omega\oplus\overline{\lambda}\overline{\omega}\big{)}(A\oplus\overline{A}):=\lambda\omega(A)+\overline{\lambda}\overline{\omega}(\overline{A}) whenever A𝒜,A¯𝒜¯.A\in\mathcal{A},\,\overline{A}\in\overline{\mathcal{A}}. The convex sum λ(F,Q)λ¯(F¯,Q¯)\lambda(F,Q)\oplus\overline{\lambda}(\overline{F},\overline{Q}) of (,ξ)\ext@arrow0055\arrowfill@--(F,Q)(𝒜,ω)(\mathcal{B},\xi)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(F,Q)}(\mathcal{A},\omega) and (¯,ξ¯)\ext@arrow0055\arrowfill@--(F¯,Q¯)(𝒜¯,ω¯)(\overline{\mathcal{B}},\overline{\xi})\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(\overline{F},\overline{Q})}(\overline{\mathcal{A}},\overline{\omega}) is the morphism (FF¯,QQ¯)(F\oplus\overline{F},Q\oplus\overline{Q}). A functor 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭𝔏𝔹[0,]\mathbf{NCFinStat}\xrightarrow{\mathfrak{L}}\mathbb{B}[0,\infty] is affine iff 𝔏(λ(F,Q)λ¯(F¯,Q¯))=λ𝔏(F,Q)+λ¯𝔏(F¯,Q¯)\mathfrak{L}\big{(}\lambda(F,Q)\oplus\overline{\lambda}(\overline{F},\overline{Q})\big{)}=\lambda\mathfrak{L}(F,Q)+\overline{\lambda}\mathfrak{L}(\overline{F},\overline{Q}) for all pairs of morphisms in 𝐍𝐂𝐅𝐢𝐧𝐒𝐭𝐚𝐭\mathbf{NCFinStat} and λ[0,1]\lambda\in[0,1].

Proposition 2

Let (,ξ)\ext@arrow0055\arrowfill@--(F,Q)(𝒜,ω)(\mathcal{B},\xi)\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(F,Q)}(\mathcal{A},\omega) and (¯,ξ¯)\ext@arrow0055\arrowfill@--(F¯,Q¯)(𝒜¯,ω¯)(\overline{\mathcal{B}},\overline{\xi})\ext@arrow 0055{\arrowfill@\relbar\relbar\rightarrowtriangle}{}{(\overline{F},\overline{Q})}(\overline{\mathcal{A}},\overline{\omega}) be two morphisms for which RE(F,Q)\mathrm{RE}(F,Q) and RE(F¯,Q¯)\mathrm{RE}(\overline{F},\overline{Q}) are finite. Then RE(λ(F,Q)λ¯(F¯,Q¯))=λRE(F,Q)+λ¯RE(F¯,Q¯)\mathrm{RE}\big{(}\lambda(F,Q)\oplus\overline{\lambda}(\overline{F},\overline{Q})\big{)}=\lambda\mathrm{RE}(F,Q)+\overline{\lambda}\mathrm{RE}(\overline{F},\overline{Q}).

Proof

When λ{0,1}\lambda\in\{0,1\}, the claim follows from the convention 0log0=00\log 0=0. For λ(0,1)\lambda\in(0,1), temporarily set μ:=RE(λ(F,Q)λ¯(F¯,Q¯))\mu:=\mathrm{RE}\big{(}\lambda(F,Q)\oplus\overline{\lambda}(\overline{F},\overline{Q})\big{)}. Then

μ===(3.1)xXtr(λpxρxlog(λpxρx))+x¯X¯tr(λ¯p¯x¯ρ¯x¯log(λ¯p¯x¯ρ¯x¯))x,y[tr(λpxρx;yy(log(αyx)𝟙ny))+tr(λpxtrcyxF(ρx;yy)log(λqyσy))]x¯,y¯[tr(λ¯p¯x¯ρx¯;y¯y¯(log(α¯y¯x¯)𝟙n¯y¯))+tr(λ¯p¯x¯trcy¯x¯F¯(ρx¯;y¯y¯)log(λ¯q¯y¯σ¯y¯))],\begin{split}\mu&\overset{\text{(\ref{eq:SomxQ})}}{=\joinrel=\joinrel=}\sum_{x\in X}{\rm tr}\Big{(}\lambda p_{x}\rho_{x}\log(\lambda p_{x}\rho_{x})\Big{)}+\sum_{\overline{x}\in\overline{X}}{\rm tr}\Big{(}\overline{\lambda}\overline{p}_{\overline{x}}\overline{\rho}_{\overline{x}}\log\big{(}\overline{\lambda}\overline{p}_{\overline{x}}\overline{\rho}_{\overline{x}}\big{)}\Big{)}\\ &-\sum_{x,y}\left[{\rm tr}\Big{(}\lambda p_{x}\rho_{x;yy}\big{(}\log(\alpha_{yx})\otimes\mathds{1}_{n_{y}}\big{)}\Big{)}+{\rm tr}\Big{(}\lambda p_{x}{\rm tr}_{\mathcal{M}_{c^{F}_{yx}}}(\rho_{x;yy})\log(\lambda q_{y}\sigma_{y})\Big{)}\right]\\ &-\sum_{\overline{x},\overline{y}}\left[{\rm tr}\Big{(}\overline{\lambda}\overline{p}_{\overline{x}}\rho_{\overline{x};\overline{y}\overline{y}}\big{(}\log(\overline{\alpha}_{\overline{y}\overline{x}})\otimes\mathds{1}_{\overline{n}_{\overline{y}}}\big{)}\Big{)}+{\rm tr}\Big{(}\overline{\lambda}\overline{p}_{\overline{x}}{\rm tr}_{\mathcal{M}_{c^{\overline{F}}_{\overline{y}\overline{x}}}}(\rho_{\overline{x};\overline{y}\overline{y}})\log\big{(}\overline{\lambda}\overline{q}_{\overline{y}}\overline{\sigma}_{\overline{y}}\big{)}\Big{)}\right],\end{split}

where we have used bars to denote analogous expressions for the algebras, morphisms, and states with bars over them. From this, the property log(ab)=log(a)+log(b)\log(ab)=\log(a)+\log(b) of logarithms is used to complete the proof.

In summary, we have taken the first steps towards illustrating that the quantum relative entropy may have a functorial description along similar lines to those of the classical one in [1]. Using the recent non-commutative disintegration theorem [9], we have proved parts of affinity and functoriality of the relative entropy. The importance of functoriality comes from the connection between the quantum relative entropy and the reversibility of morphisms [10, Theorem 4]. For example, optimal hypotheses are Bayesian inverses [8, Theorem 8.3], which admit stronger compositional properties [8, Propositions 7.18 and 7.21] than alternative recovery maps in quantum information theory [13, Section 4].555One must assume faithfulness for some of the calculations in [13, Section 4]. The compositional properties in [8, Proposition 7.21], however, need no such assumptions. In future work, we hope to prove functoriality (without any faithfulness assumptions), continuity, and a complete characterization.

Acknowledgements. The author thanks the reviewers of GSI’21 for their numerous helpful suggestions. This research has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (QUASIFT grant agreement 677368).

References

  • [1] Baez, J.C., Fritz, T.: A Bayesian characterization of relative entropy. Theory Appl. Categ. 29(16), 422–457 (2014)
  • [2] Baez, J.C., Fritz, T., Leinster, T.: A characterization of entropy in terms of information loss. Entropy 13(11), 1945–1957 (2011). https://doi.org/10.3390/e13111945
  • [3] Farenick, D.R.: Algebras of linear transformations. Universitext, Springer-Verlag, New York (2001). https://doi.org/10.1007/978-1-4613-0097-7
  • [4] Furber, R., Jacobs, B.: From Kleisli categories to commutative CC^{*}-algebras: probabilistic Gelfand duality. Log. Methods Comput. Sci. 11(2), 1:5, 28 (2015). https://doi.org/10.2168/LMCS-11(2:5)2015
  • [5] Gagné, N., Panangaden, P.: A categorical characterization of relative entropy on standard Borel spaces. In: The Thirty-third Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXIII), Electron. Notes Theor. Comput. Sci., vol. 336, pp. 135–153. Elsevier Sci. B. V., Amsterdam (2018). https://doi.org/10.1016/j.entcs.2018.03.020
  • [6] Parzygnat, A.J.: Discrete probabilistic and algebraic dynamics: a stochastic Gelfand–Naimark theorem (2017), arXiv preprint: 1708.00091 [math.FA]
  • [7] Parzygnat, A.J.: A functorial characterization of von Neumann entropy (2020), arXiv preprint: 2009.07125 [quant-ph]
  • [8] Parzygnat, A.J.: Inverses, disintegrations, and Bayesian inversion in quantum Markov categories (2020), arXiv preprint: 2001.08375 [quant-ph]
  • [9] Parzygnat, A.J., Russo, B.P.: Non-commutative disintegrations: existence and uniqueness in finite dimensions (2019), arXiv preprint: 1907.09689 [quant-ph]
  • [10] Petz, D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105(1), 123–131 (1986). https://doi.org/10.1007/BF01212345
  • [11] Petz, D.: Characterization of the relative entropy of states of matrix algebras. Acta Math. Hung. 59(3-4), 449–455 (1992). https://doi.org/https://doi.org/10.1007/BF00050907
  • [12] Umegaki, H.: Conditional expectation in an operator algebra. IV. entropy and information. Kodai Math. Sem. Rep. 14(2), 59–85 (1962). https://doi.org/10.2996/kmj/1138844604
  • [13] Wilde, M.M.: Recoverability in quantum information theory. Proc. R. Soc. A. 471, 20150338 (2015). https://doi.org/10.1098/rspa.2015.0338