This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Toward discovering the excited Ω\Omega baryons through nonleptonic weak decays of Ωc\Omega_{c}

Kai-Lei Wang [email protected] Department of Physics, Changzhi University, Changzhi, Shanxi,046011,China Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China    Qi-Fang Lü [email protected] Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China    Ju-Jun Xie [email protected] Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China    Xian-Hui Zhong [email protected] Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China
Abstract

The nonleptonic weak decay processes ΩcΩπ+/Ω(1P)π+/Ω(1D)π+/Ω(2S)π+\Omega_{c}\to\Omega\pi^{+}/\Omega(1P)\pi^{+}/\Omega(1D)\pi^{+}/\Omega(2S)\pi^{+} are studied using the constituent quark model. The branching fraction of ΩcΩπ+\Omega_{c}\to\Omega\pi^{+} is predicted to be 1.0%1.0\%. Considering the newly observed Ω(2012)\Omega(2012) resonance as a conventional 1P1P-wave Ω\Omega excite state with spin-parity JP=3/2J^{P}=3/2^{-}, the newly measured ratio [ΩcΩ(2012)π+(ΞK¯)π+]/[ΩcΩπ+]\mathcal{B}[\Omega_{c}\to\Omega(2012)\pi^{+}\to(\Xi\bar{K})^{-}\pi^{+}]/\mathcal{B}[\Omega_{c}\to\Omega\pi^{+}] at Belle can be well understood. Besides, the production rates for the missing 1P1P-wave state Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}), two spin quartet 1D1D-wave states Ω(14D1/2+)\Omega(1^{4}D_{1/2^{+}}) and Ω(14D3/2+)\Omega(1^{4}D_{3/2^{+}}), and two 2S2S-wave states Ω(22S1/2+)\Omega(2^{2}S_{1/2^{+}}) and Ω(24S3/2+)\Omega(2^{4}S_{3/2^{+}}) are also investigated. It is expected that these missing excited Ω\Omega baryons should have large potentials to be discovered through the nonleptonic weak decays of Ωc\Omega_{c} in forthcoming experiments by Belle II and/or LHCb.

I Introduction

Establishing a relatively complete hadron spectrum and understanding the properties of hadrons are important topics in hadron physics. The knowledge about the Ω\Omega baryon spectrum is very scarce. So far, the ground state Ω(1672)\Omega(1672) and its four possible excited states Ω(2012)\Omega(2012), Ω(2250)\Omega(2250), Ω(2380)\Omega(2380), and Ω(2470)\Omega(2470), have been observed in experiments ParticleDataGroup:2020ssz . The unambiguous discovery of Ω(1672)\Omega(1672) in both production and decay was by Barnes et al. in 1964 using the KK^{-}-meson beam at the Brookhaven National Laboratory Abrams:1964tu ; Barnes:1964pd . In 1985, the Ω(2250)\Omega(2250) and Ω(2380)\Omega(2380) resonances decaying into Ξπ+K\Xi^{-}\pi^{+}K^{-} were observed in an experiment at the CERN SPS charged hyperon beam using incident Ξ\Xi^{-} Biagi:1985rn . In 1987, the Ω(2250)\Omega(2250) resonance was produced in KpK^{-}p interactions at SLAC Aston:1987bb . In 1988, the Ω(2470)\Omega(2470) resonance was observed in the Ωπ+π\Omega^{-}\pi^{+}\pi^{-} invariant mass spectrum with a signal significance claimed to be at least 5.5 standard deviations by using the KpK^{-}p scattering at SLAC Aston:1988yn . Since then, there was no progress toward searching for Ω\Omega resonances for as long as 30 years due to no effective production mechanisms. In order to promote the experiment, people proposed to produce Ω\Omega states on a proton target in CLAS12 through the photoproduction processes Afanasev:2012fh , or produce them by using a secondary kaon beam from the photoproduction processes at JLab etc. Amaryan:2015swp ; Briscoe:2015qia .

In 2018, the first low-lying Ω(2012)\Omega(2012) resonance was observed by the Belle Collaboration in the KΞ0K^{-}\Xi^{0} and KS0ΞK_{S}^{0}\Xi^{-} invariant mass distributions by using a data sample of e+ee^{+}e^{-} annihilations Belle:2018mqs . The Ω(2012)\Omega(2012) resonance may favor the low-lying PP-wave excited Ω\Omega state with JP=3/2J^{P}=3/2^{-} Xiao:2018pwe ; Liu:2019wdr ; Aliev:2018yjo ; Aliev:2018syi ; Polyakov:2018mow , although it may be a candidate of hadronic molecule state as discussed in the literatures  Wang:2007bf ; Wang:2008zzz ; Valderrama:2018bmv ; Lin:2018nqd ; Huang:2018wth ; Pavao:2018xub ; Lu:2020ste ; Ikeno:2020vqv . Recently, the Belle Collaboration also discovered the Ω(2012)\Omega(2012) resonance by using the Ωc\Omega_{c} weak decay process ΩcΩ(2012)π+\Omega_{c}\to\Omega(2012)\pi^{+} Belle:2021gtf . The measured branching fraction ratio [ΩcΩ(2012)π+(ΞK¯)π+]/[ΩcΩπ+]\mathcal{B}[\Omega_{c}\to\Omega(2012)\pi^{+}\to(\Xi\bar{K})^{-}\pi^{+}]/\mathcal{B}[\Omega_{c}\to\Omega\pi^{+}] is 0.220±0.059(stat.)±0.035(syst.)0.220\pm 0.059(\mathrm{stat.})\pm 0.035(\mathrm{syst.}) Belle:2021gtf . Such a large relative ratio indicates that the weak decay processes ΩcΩ(X)π+\Omega_{c}\to\Omega^{*}(X)\pi^{+} may provide a new and ideal platform to investigate the low-lying excited states Ω(X)\Omega^{*}(X) both theoretically and experimentally. 111Here and after, we donote Ω\Omega excited state as Ω(X)\Omega^{*}(X) with mass XX in the unit of MeV.

Table 1: The predicted mass spectrum (MeV) of Ω\Omega baryons with principal quantum number N2N\leq 2 in various quark models. The baryon states denoted as |N6,2S+1N3,N,L,JP|N_{6},^{2S+1}N_{3},N,L,J^{P}\rangle, where N6N_{6} stands for the irreducible representation of spin-flavor SU(6) group, N3N_{3} stands for the irreducible representation of flavor SU(3) group, and NN, SS, LL, and JPJ^{P} stand for the principal, spin, total orbital angular momentum, and spin-parity quantum numbers, respectively. In the LSL-S coupling scheme, the Ω\Omega states are also denoted by n2S+1LJPn^{2S+1}L_{J^{P}}.
n2S+1LJpn^{2S+1}L_{J^{p}} |N6,2S+1N3,N,L,JP|N_{6},^{2S+1}N_{3},N,L,J^{P}\rangle Ref. Oh:2007cr Ref. Capstick:1985xss Ref. Faustov:2015eba Ref. Chao:1980em Ref. Chen:2009de Ref. Pervin:2007wa Ref. Engel:2013ig Ref. Liu:2019wdr Observed mass
14S32+1^{4}S_{\frac{3}{2}^{+}} |56,410,0,0,32+|56,^{4}10,0,0,\frac{3}{2}^{+}\rangle 1694 1635 1678 1675 1673 1656 1642(17) 1672 1672.45
12P121^{2}P_{\frac{1}{2}^{-}} |70,210,1,1,12|70,^{2}10,1,1,\frac{1}{2}^{-}\rangle 1837 1950 1941 2020 2015 1923 1944(56) 1957
12P321^{2}P_{\frac{3}{2}^{-}} |70,210,1,1,32|70,^{2}10,1,1,\frac{3}{2}^{-}\rangle 1978 2000 2038 2020 2015 1953 2049(32) 2012 2012.5
22S12+2^{2}S_{\frac{1}{2}^{+}} |70,210,2,0,12+|70,^{2}10,2,0,\frac{1}{2}^{+}\rangle 2140 2220 2301 2190 2182 2191 2350(63) 2232
24S32+2^{4}S_{\frac{3}{2}^{+}} |56,410,2,0,32+|56,^{4}10,2,0,\frac{3}{2}^{+}\rangle 2165 2173 2065 2078 2170 2159
12D32+1^{2}D_{\frac{3}{2}^{+}} |70,210,2,2,32+|70,^{2}10,2,2,\frac{3}{2}^{+}\rangle 2282 2345 2304 2265 2263 2194 2470(49) 2245
12D52+1^{2}D_{\frac{5}{2}^{+}} |70,210,2,2,52+|70,^{2}10,2,2,\frac{5}{2}^{+}\rangle 2345 2401 2265 2260 2210 2303
14D12+1^{4}D_{\frac{1}{2}^{+}} |56,410,2,2,12+|56,^{4}10,2,2,\frac{1}{2}^{+}\rangle 2140 2255 2301 2210 2202 2175 2481(51) 2141
14D32+1^{4}D_{\frac{3}{2}^{+}} |56,410,2,2,32+|56,^{4}10,2,2,\frac{3}{2}^{+}\rangle 2282 2280 2304 2215 2208 2182 2470(49) 2188
14D52+1^{4}D_{\frac{5}{2}^{+}} |56,410,2,2,52+|56,^{4}10,2,2,\frac{5}{2}^{+}\rangle 2280 2401 2225 2224 2178 2252
14D72+1^{4}D_{\frac{7}{2}^{+}} |56,410,2,2,72+|56,^{4}10,2,2,\frac{7}{2}^{+}\rangle 2295 2332 2210 2205 2183 2321

Theoretical studies on the Ω(X)\Omega^{*}(X) resonances mainly focus on the mass spectrum within various approaches, such as nonrelativistic quark models Kalman:1982ut ; Menapara:2021vug ; Pervin:2007wa ; Liu:2019wdr ; Chao:1980em ; Chen:2009de , relativistic quark models Capstick:1985xss ; Faustov:2015eba ; Loring:2001kx ; Santopinto:2014opa , Lattice QCD Engel:2013ig ; CLQCD:2015bgi , and the Skyrme model Oh:2007cr . The predicted mass spectrum for the conventional Ω\Omega baryons are collected in Table 1 as a reference. It can be seen that most of the predicted masses for the 1P1P-, 2S2S- and 1D1D-wave states lies in the mass ranges 2000±50\sim 2000\pm 50, 2200±50\sim 2200\pm 50, and 2300±50\sim 2300\pm 50 MeV, respectively. Additionally, in Refs. An:2013zoa ; An:2014lga ; Yuan:2012zs , the authors investigated the low-lying five-quark Ω\Omega configurations with negative parity and further considered their mixing combined the corresponding low-lying three-quark Ω\Omega configurations. Recently, stimulated by the newly observed resonance Ω(2012)\Omega(2012) at Belle, the strong decay behaviors of some low-lying 1P1P-, 2S2S- and 1D1D-wave Ω\Omega resonances were also systematically investigated using the chiral quark model Xiao:2018pwe ; Liu:2019wdr and P03{}^{3}P_{0} model Wang:2018hmi . The results suggest that the 1P1P-, 2S2S- and 1D1D-wave Ω\Omega baryons have relatively narrow decay widths of less than 50 MeV, and they may be discovered in the ΞK¯\Xi\bar{K} and/or Ξ(1530)K¯\Xi(1530)\bar{K} final states. Some previous studies of the decays can be found in the Refs. Bijker:2000gq ; Bijker:2015gyk .

On the other hand, there are only a few studies on the productions of Ω\Omega and its excited states through the weak decays of Ωc\Omega_{c} in theory. For example, the productions of the ground state Ω(1672)\Omega(1672) have been studied via semileptonic decays of Ωc\Omega_{c} using a constituent quark model Pervin:2006ie and the nonleptonic two-body decays of Ωc\Omega_{c} by the covariant confined quark model Gutsche:2018utw ; Korner:1992wi and the light-front quark model Hsiao:2020gtc . In Ref. Pervin:2006ie , the author also studied the productions of the 1P1P-wave excited states Ω(1P)\Omega^{*}(1P), which are considered via the Ωc\Omega_{c} semileptonic weak decay processes using a quark model. On the other hand, the newly observed Ω(2012)\Omega(2012) resonance as a dynamically generated state was theoretically studied in the nonleptonic weak decays of Ωcπ+Ω(2012)(ΞK¯)π+\Omega_{c}\to\pi^{+}\Omega(2012)\to(\Xi\bar{K})^{-}\pi^{+} and (ΞK¯π)π+(\Xi\bar{K}\pi)^{-}\pi^{+} in Ref. Zeng:2020och . So far, the productions of the 1P1P-, 2S2S- and 1D1D-wave excited states Ω(X)\Omega(X) via the Ωc\Omega_{c} nonleptonic weak decay processes are not systematically studied in theory.

In this work, we systematically study the production of the low-lying 1P1P-, 2S2S- and 1D1D-wave resonances Ω(X)\Omega^{*}(X) via the hadronic weak decays of ΩcΩ()(X)π+\Omega_{c}\to\Omega^{(*)}(X)\pi^{+} using the constituent quark model. Recently, this model has been developed to study the hadronic weak decays of Λc\Lambda_{c}, the heavy quark conserving weak decays of ΞQ\Xi_{Q}, and hyperon weak radiative decay by Niu et al. Niu:2020gjw ; Niu:2021qcc ; Niu:2020aoz . This model is similar to that developed to deal with the semileptonic decays of heavy ΛQ\Lambda_{Q} and ΩQ\Omega_{Q} baryons in Refs. Pervin:2006ie ; Pervin:2005ve .

This paper is organized as follows. We perform the detailed formalism of two-body nonleptonic weak decays of Ωc\Omega_{c} in Sec. II. Then, the theoretical numerical results and discussions are presented in Sec. III. Finally, a short summary is given in Sec. IV.

II framework

II.1 The model

A unique feature of ΩcΩ()(X)π+\Omega_{c}\to\Omega^{(*)}(X)\pi^{+} is that this decay proceeds only via external WW-emission diagram Cheng:2021qpd , which is displayed in Fig. 1. We consider the simple quark-level transition csud¯c\to su\bar{d}, which is relevant for the Cabibbo-favored decay process of ΩcΩ(X)π+\Omega_{c}\to\Omega(X)^{-}\pi^{+}. The effective Hamiltonian for csud¯c\to su\bar{d} can be given by Buchalla:1995vs

HW\displaystyle H_{W} =\displaystyle= GF2VcsVud(C1𝒪1+C2𝒪2),\displaystyle\frac{G_{F}}{\sqrt{2}}V_{cs}^{*}V_{ud}(C_{1}\mathcal{O}_{1}+C_{2}\mathcal{O}_{2}), (1)

where GF=1.1663787×105G_{F}=1.1663787\times 10^{-5} GeV-2 is the Fermi constant ParticleDataGroup:2020ssz , and C1=1.26C_{1}=1.26 and C2=0.51C_{2}=-0.51 are the Wilson coefficients taken at the mcm_{c} scale Buchalla:1995vs . The Cabibbo-Kobayashi-Maskawa matrix elements Vcs=0.987V_{cs}=0.987 and Vud=0.974V_{ud}=0.974 are taken from the Review of Particle Physics (RPP) ParticleDataGroup:2020ssz , and the current-current operators are

𝒪1\displaystyle\mathcal{O}_{1} =\displaystyle= ψ¯s¯aγμ(1γ5)ψcaψ¯u¯bγμ(1γ5)ψdb,\displaystyle\bar{\psi}_{\bar{s}_{a}}\gamma_{\mu}(1-\gamma_{5})\psi_{c_{a}}\bar{\psi}_{\bar{u}_{b}}\gamma^{\mu}(1-\gamma_{5})\psi_{d_{b}}, (2)
𝒪2\displaystyle\mathcal{O}_{2} =\displaystyle= ψ¯s¯aγμ(1γ5)ψcbψ¯u¯bγμ(1γ5)ψda,\displaystyle\bar{\psi}_{\bar{s}_{a}}\gamma_{\mu}(1-\gamma_{5})\psi_{c_{b}}\bar{\psi}_{\bar{u}_{b}}\gamma^{\mu}(1-\gamma_{5})\psi_{d_{a}}, (3)

with ψjδ\psi_{j_{\delta}} (j=u/d/s/cj=u/d/s/c, δ=a/b\delta=a/b) representing the jjth quark field in a meson or baryon, and aa and bb being color indices.

Refer to caption
Figure 1: The nonleptonic weak decay Feynman diagram for the processes of ΩcΩ(X)π+\Omega_{c}\rightarrow\Omega(X)^{-}\pi^{+}.

According to its parity behavior, HWH_{W} can be separated into a parity-conserving part (HWPCH_{W}^{PC}) and a parity-violating part (HWPVH_{W}^{PV}Niu:2020gjw ,

HW=HWPC+HWPV.\displaystyle H_{W}=H_{W}^{PC}+H_{W}^{PV}. (4)

With a non-relativistic expansion, the two operators can be approximately expressed as Niu:2020gjw

HWPC\displaystyle H_{W}^{PC} \displaystyle\simeq GF2VcsVudCiϕciγ(2π)3δ3(p3p3p4p5){s3|I|s3\displaystyle\frac{G_{F}}{\sqrt{2}}V_{cs}^{*}V_{ud}\frac{C_{i}\phi_{c}^{i}\gamma}{(2\pi)^{3}}\delta^{3}(\textbf{p}_{3}-\textbf{p}_{3}^{\prime}-\textbf{p}_{4}-\textbf{p}_{5})\{\langle s_{3}^{\prime}|I|s_{3}\rangle (5)
s5s¯4|𝝈|0(p52m5+p42m4)[(p32m3+p32m3)s3|I|s3\displaystyle\langle s_{5}\bar{s}_{4}|\mbox{\boldmath$\sigma$\unboldmath}|0\rangle\left(\frac{\textbf{p}_{5}}{2m_{5}}+\frac{\textbf{p}_{4}}{2m_{4}}\right)-\Big{[}\left(\frac{\textbf{p}_{3}^{\prime}}{2m_{3}^{\prime}}+\frac{\textbf{p}_{3}}{2m_{3}}\right)\langle s_{3}^{\prime}|I|s_{3}\rangle
is3|𝝈|s3×(p32m3p32m3)]s5s¯4|𝝈|0\displaystyle-i\langle s_{3}^{\prime}|\mbox{\boldmath$\sigma$\unboldmath}|s_{3}\rangle\times\left(\frac{\textbf{p}_{3}}{2m_{3}}-\frac{\textbf{p}_{3}^{\prime}}{2m_{3}^{\prime}}\right)\Big{]}\langle s_{5}\bar{s}_{4}|\mbox{\boldmath$\sigma$\unboldmath}|0\rangle
s3|I|s3[(p52m5+p42m4)s5s¯4|𝝈|0is5s¯4|𝝈|0\displaystyle-\langle s_{3}^{\prime}|I|s_{3}\rangle\Big{[}\left(\frac{\textbf{p}_{5}}{2m_{5}}+\frac{\textbf{p}_{4}}{2m_{4}}\right)\langle s_{5}\bar{s}_{4}|\mbox{\boldmath$\sigma$\unboldmath}|0\rangle-i\langle s_{5}\bar{s}_{4}|\mbox{\boldmath$\sigma$\unboldmath}|0\rangle
×(p42m4p52m5)]+s3|I|s3(p32m3+p32m3)\displaystyle\times\left(\frac{\textbf{p}_{4}}{2m_{4}}-\frac{\textbf{p}_{5}}{2m_{5}}\right)\Big{]}+\langle s_{3}^{\prime}|I|s_{3}\rangle\left(\frac{\textbf{p}_{3}^{\prime}}{2m_{3}^{\prime}}+\frac{\textbf{p}_{3}}{2m_{3}}\right)
s5s¯4|I|0}α^3,\displaystyle\langle s_{5}\bar{s}_{4}|I|0\rangle\}\hat{\alpha}_{3}^{-},
HWPV\displaystyle H_{W}^{PV} \displaystyle\simeq GF2VcsVudCiϕciγ(2π)3δ3(p3p3p4p5){s3|I|s3\displaystyle\frac{G_{F}}{\sqrt{2}}V_{cs}^{*}V_{ud}\frac{C_{i}\phi_{c}^{i}\gamma}{(2\pi)^{3}}\delta^{3}(\textbf{p}_{3}-\textbf{p}_{3}^{\prime}-\textbf{p}_{4}-\textbf{p}_{5})\{-\langle s_{3}^{\prime}|I|s_{3}\rangle (6)
s5s¯4|I|0s3|𝝈|s3s5s¯4|𝝈|0)α^3.\displaystyle\langle s_{5}\bar{s}_{4}|I|0\rangle-\langle s_{3}^{\prime}|\mbox{\boldmath$\sigma$\unboldmath}|s_{3}\rangle\langle s_{5}\bar{s}_{4}|\mbox{\boldmath$\sigma$\unboldmath}|0\rangle)\hat{\alpha}_{3}^{-}.

In the above equations, pj\textbf{p}_{j} and mjm_{j} stand for the momentum and mass of the jjth quark, respectively, as shown in Fig. 1. The ϕci\phi_{c}^{i} (i=1,2i=1,2 and ϕc1=1\phi_{c}^{1}=1, ϕc2=13\phi_{c}^{2}=\frac{1}{3}) are color factors, II is the dimension-two unit matrix, and α^3\hat{\alpha}_{3}^{-} is the flavor operator which transforms cc quark to ss quark. The sjs_{j} and s¯4\bar{s}_{4} stand for the spin of the jjth quark and the fourth antiquark, respectively. γ\gamma is a symmetry factor and equals to one for a direct pion emission process considering in present work.

In order to evaluate the spin matrix element s5s¯4|I|0\langle s_{5}\bar{s}_{4}|I|0\rangle and s5s¯4|𝝈|0\langle s_{5}\bar{s}_{4}|\mbox{\boldmath$\sigma$\unboldmath}|0\rangle including an antiquark, the particle-hole conjugation Racah:1942gsc should be employed. Within the particle-hole conjugation relation:

|j,m(1)j+m|j,m,\displaystyle|j,-m\rangle\rightarrow(-1)^{j+m}|j,m\rangle\,, (7)

the antiquark spin transforms as follows: |¯||\bar{\uparrow}\rangle\rightarrow|\downarrow\rangle and |¯||\bar{\downarrow}\rangle\rightarrow-|\uparrow\rangle. For instance:

12(5¯45¯4)|I|0=12(5|I|45|I|4)\displaystyle\langle\frac{1}{\sqrt{2}}(\uparrow_{5}\bar{\downarrow}_{4}-\downarrow_{5}\bar{\uparrow}_{4})|I|0\rangle=\frac{1}{\sqrt{2}}\left(\langle\uparrow_{5}|I|-\uparrow_{4}\rangle-\langle\downarrow_{5}|I|\downarrow_{4}\rangle\right)
=2.\displaystyle=-\sqrt{2}. (8)

For a given decay process ABCA\to BC, the transition amplitude \mathcal{M} is calculated by

Jf,Jfz;Ji,Jiz\displaystyle\mathcal{M}_{J_{f},J_{f}^{z};J_{i},J_{i}^{z}} =\displaystyle= C(Pf;Jf,Jfz)B(q)|HW|A(Pi;Ji,Jiz),\displaystyle\langle C(\textbf{P}_{f};J_{f},J_{f}^{z})B(\textbf{q})|H_{W}|A(\textbf{P}_{i};J_{i},J_{i}^{z})\rangle, (9)
=\displaystyle= C(Pf;Jf,Jfz)B(q)|HWPC|A(Pi;Ji,Jiz)\displaystyle\langle C(\textbf{P}_{f};J_{f},J_{f}^{z})B(\textbf{q})|H_{W}^{PC}|A(\textbf{P}_{i};J_{i},J_{i}^{z})\rangle
+C(Pf;Jf,Jfz)B(q)|HWPV|A(Pi;Ji,Jiz).\displaystyle+\langle C(\textbf{P}_{f};J_{f},J_{f}^{z})B(\textbf{q})|H_{W}^{PV}|A(\textbf{P}_{i};J_{i},J_{i}^{z})\rangle.
=\displaystyle= Jfz,JizPC+Jfz,JizPV,\displaystyle\mathcal{M}_{J_{f}^{z},J_{i}^{z}}^{PC}+\mathcal{M}_{J_{f}^{z},J_{i}^{z}}^{PV},

where A(Pi;Ji,Jiz)A(\textbf{P}_{i};J_{i},J_{i}^{z}), B(q)B(\textbf{q}) and C(Pf;Jf,Jfz)C(\textbf{P}_{f};J_{f},J_{f}^{z}) stands for the wave functions of the initial baryon AA, final meson BB and final baryon CC, respectively. (𝐏i,𝐏f)(\mathbf{P}_{i},\mathbf{P}_{f}), (Ji,Jf)(J_{i},J_{f}), and (Jiz,Jfz)(J_{i}^{z},J_{f}^{z}) are the momentum, the total angular momentum and the third component of the total angular momentum of the initial baryon AA and the final baryon CC, respectively. q is the three-momentum of the final state meson in the initial state rest frame.

Then, the partial decay width for a given decay process ABCA\to BC can be expressed as

Γ=Φ(ABC)2JA+1spins||2,\Gamma=\frac{\Phi(ABC)}{2J_{A}+1}\sum_{\texttt{spins}}|\mathcal{M}|^{2}, (10)

where Φ(ABC)\Phi(ABC) is the phase-space factor for the decay.

The choice of phase space is not clear. For the phase space factor Φ(ABC)\Phi(ABC), there are three typical options adopted in the literature Kokoski:1985is ; Kumano:1988ga ; Geiger:1994kr ; Capstick:2000qj . The usual option is the relativistic phase-space factor (RPF)

Φ(ABC)=8π2|q|EBECMA,\Phi(ABC)=8\pi^{2}\frac{|\textbf{q}|E_{B}E_{C}}{M_{A}}, (11)

where MAM_{A} is the mass of the initial hadron AA, while EBE_{B} and ECE_{C} stand for the energies of final hadrons BB and CC, respectively.

To match the transition matrix element calculated non-relativistically, a fully nonrelativistic phase-space factor (NRPF) is used, that is

Φ(ABC)=8π2|q|MBMCMA,\Phi(ABC)=8\pi^{2}\frac{|\textbf{q}|M_{B}M_{C}}{M_{A}}, (12)

where MBM_{B} and MCM_{C} is the mass of the final hadron BB and CC, respectively.

However, in many cases the momenta of the final hadrons are quite large so that the relativistic phase space is significantly different from the nonrelativistic limit. In Ref. Kokoski:1985is , Kokoski and Isgur suggested a “mock-hadron” phase-space factor (MHPF),

Φ(ABC)=8π2|q|M~BM~CM~A,\Phi(ABC)=8\pi^{2}\frac{|\textbf{q}|\tilde{M}_{B}\tilde{M}_{C}}{\tilde{M}_{A}}, (13)

in their calculation of meson decay widths. The M~A\tilde{M}_{A}, M~B\tilde{M}_{B} and M~C\tilde{M}_{C} are effective hadron masses of hadron AA, BB and CC, respectively. They are evaluated with a spin-independent inter-quark interaction. In the weak-binding limit, the mass of π\pi meson is degenerate with that of ρ\rho meson.

II.2 Wave functions

To work out the decay amplitude \mathcal{M}, we need the wave functions of the initial and final states. Here, the initial state is the ground Ωc\Omega_{c} baryon, the final states are the π+\pi^{+} meson and the Ω()(X)\Omega^{(*)}(X) states. These wave functions are constructed within the non-relativistic constituent quark model. For simplicity, the spatial wave functions of the baryons and mesons are adopted the harmonic oscillator form in our calculations.

The spatial wave function for a baryon with principal quantum number NN, total orbital angular momentum quantum numbers LL, and MLM_{L} is a product of the ρ\rho-oscillator part and the λ\lambda-oscillator part. In momentum space, the baryon spatial wave function is given by Liu:2019wdr

ΨNLMLσ(pρ,pλ)=N,MLCnλlλmλnρlρmρ[ψnρlρmρ(pρ)ψnλlλmλ(pλ)]NLMLσ,\displaystyle\Psi^{\sigma}_{NLM_{L}}(\textbf{p}_{\rho},\textbf{p}_{\lambda})\!=\!\!\!\sum_{N,M_{L}}C^{n_{\rho}l_{\rho}m_{\rho}}_{n_{\lambda}l_{\lambda}m_{\lambda}}\left[\psi_{n_{\rho}l_{\rho}m_{\rho}}(\textbf{p}_{\rho})\psi_{n_{\lambda}l_{\lambda}m_{\lambda}}(\textbf{p}_{\lambda})\right]^{\sigma}_{NLM_{L}}, (14)

with N=2(nρ+nλ)+lρ+lλN=2(n_{\rho}+n_{\lambda})+l_{\rho}+l_{\lambda}, ML=mρ+mλM_{L}=m_{\rho}+m_{\lambda}, and

ψnlmα(p)=(i)l(1)n[2n!(n+l+1/2)!]1/21αl+3/2\displaystyle\psi^{\alpha}_{nlm}(\textbf{p})=(i)^{l}(-1)^{n}\left[\frac{2n!}{(n+l+1/2)!}\right]^{1/2}\frac{1}{\alpha^{l+3/2}}
exp(p22α2)Lnl+1/2(p2/α2)𝒴lm(p).\displaystyle\mathrm{exp}\left(-\frac{\textbf{p}^{2}}{2\alpha^{2}}\right)L_{n}^{l+1/2}(\textbf{p}^{2}/\alpha^{2})\mathcal{Y}_{lm}(\textbf{p}). (15)

Here, 𝒴lm(p)=|p|lYlm(𝐩^)\mathcal{Y}_{lm}(\textbf{p})=|\textbf{p}|^{l}Y_{lm}(\mathbf{\hat{p}}) is llth solid harmonic polynomial. pρ\textbf{p}_{\rho} and pλ\textbf{p}_{\lambda} are the internal momenta of the ρ\rho- and λ\lambda-oscillator wave functions, respectively. They can be expressed as functions of the quark momenta 𝐩j\mathbf{p}_{j} (j=1,2,3j=1,2,3):

𝐩ρ\displaystyle\mathbf{p}_{\rho} =\displaystyle= 22(p1p2),\displaystyle\frac{\sqrt{2}}{2}(\textbf{p}_{1}-\textbf{p}_{2}), (16)
𝐩λ\displaystyle\mathbf{p}_{\lambda} =\displaystyle= 62m3(p1+p2)(m1+m2)p3m1+m2+m3.\displaystyle\frac{\sqrt{6}}{2}\frac{m_{3}(\textbf{p}_{1}+\textbf{p}_{2})-(m_{1}+m_{2})\textbf{p}_{3}}{m_{1}+m_{2}+m_{3}}. (17)

The nρn_{\rho} and nλn_{\lambda} are the principal quantum numbers of the ρ\rho- and λ\lambda-mode oscillators, respectively. (lρ,mρ)(l_{\rho},m_{\rho}) and (lλ,mλ)(l_{\lambda},m_{\lambda}) are the orbital angular momentum quantum numbers of the ρ\rho- and λ\lambda-mode oscillators, respectively. σ=s,ρ,λ,a,\sigma=s,\rho,\lambda,a,... stand for different excitation modes with different permutation symmetries. αρ\alpha_{\rho} and αλ\alpha_{\lambda} are two oscillator parameters. For the Ω\Omega baryons, we have αρ=αλ\alpha_{\rho}=\alpha_{\lambda}, while for the charmed Ωc\Omega_{c} baryons, we have

αλ=(3mc2ms+mc)1/4αρ,\displaystyle\alpha_{\lambda}=\left(\frac{3m_{c}}{2m_{s}+m_{c}}\right)^{1/4}\alpha_{\rho}, (18)

where msm_{s} and mcm_{c} stand for the masses of the strange and charmed quarks, respectively. The flavor and spin wave functions of the Ωc\Omega_{c} and Ω\Omega baryons have been given in our previous works Xiao:2013xi ; Wang:2017kfr . The product of spin, flavor, and spatial wave functions of the heavy baryons must be symmetric since the color wave function is antisymmetric. The details about the quark model classifications for the Ωc\Omega_{c} spectrum can be found in the works of Wang:2017kfr ; Yao:2018jmc ; Zhong:2007gp , while for the Ω\Omega baryon spectrum can be found in Refs. Xiao:2013xi ; Liu:2019wdr .

Finally, the wave function of the π+\pi^{+} meson is constructed by

φ(p4,p5)=ϕπ+χaψ(p4,p5),\displaystyle\varphi(\textbf{p}_{4},\textbf{p}_{5})=\phi_{\pi^{+}}\chi^{a}\psi(\textbf{p}_{4},\textbf{p}_{5}), (19)

where the spin wave function χa\chi^{a} is

χa=12(),\displaystyle\chi^{a}=\frac{1}{\sqrt{2}}(\uparrow\downarrow-\downarrow\uparrow), (20)

and the flavor wave function ϕπ+\phi_{\pi^{+}} is

ϕπ+=ud¯.\displaystyle\phi_{\pi^{+}}=u\bar{d}. (21)

The spatial wave function in the momentum space is adopted the simple harmonic oscillator form

ψ(p4,p5)=1π3/4β3/2exp[(p4p5)28β2],\displaystyle\psi(\textbf{p}_{4},\textbf{p}_{5})=\frac{1}{\pi^{3/4}\beta^{3/2}}\mathrm{exp}\left[-\frac{(\textbf{p}_{4}-\textbf{p}_{5})^{2}}{8\beta^{2}}\right], (22)

where β\beta is a size parameter of the meson wave function. The p4\textbf{p}_{4} and p5\textbf{p}_{5} stand for the quark momenta of the π+\pi^{+} meson as shown in Fig. 1.

II.3 Parameters

For self consistency, the quark model parameters are taken the same as those adopted in our previous work Wang:2017kfr . The constituent masses for the u/du/d, ss and cc quarks are taken to be mu/d=330m_{u/d}=330 MeV, ms=450m_{s}=450 MeV and mc=1480m_{c}=1480 MeV, respectively. For the initial state Ωc\Omega_{c}, the harmonic oscillator parameter αρ\alpha_{\rho} is taken to be αρ=440\alpha_{\rho}=440 MeV, the other harmonic oscillator parameter αλ\alpha_{\lambda} is related to αρ\alpha_{\rho} by αλ=[3mc/(2ms+mc)]1/4αρ\alpha_{\lambda}=[3m_{c}/(2m_{s}+m_{c})]^{1/4}\alpha_{\rho}. For the final state Ω()(X)\Omega^{(*)}(X), a unified harmonic oscillator parameter is adopted, i.e., αλ=αρ=440\alpha_{\lambda}=\alpha_{\rho}=440 MeV. For the π+\pi^{+} meson, the size parameter is taken to be β=280\beta=280 MeV as that adopted in Ref. Niu:2020gjw . The masses for the π+\pi^{+}, Ω\Omega and Ωc\Omega_{c} are taken the RPP average values 140 MeV, 1672 MeV and 2695 MeV, respectively ParticleDataGroup:2020ssz . In the MHPF defined in Eq. (13), we need determine the effective masses of the mock hadrons. For the process ΩcΩ()π\Omega_{c}\to\Omega^{(*)}\pi, we adopt M~π=0.72\tilde{M}_{\pi}=0.72 GeV, consistent with Kokoski and Isgur Kokoski:1985is , and M~Ωc=MΩc\tilde{M}_{\Omega_{c}}=M_{\Omega_{c}} and M~Ωc()=MΩc()\tilde{M}_{\Omega_{c}^{(*)}}=M_{\Omega_{c}^{(*)}}.

III Numerical results and discussion

In this work, considering the uncertainties from the relativistic effect, we perform our calculations with the three typical phase space options, RPF, NRPF and MHPF. Our results are listed in Table 3. It is seen that the nonleptonic weak decay properties of Ωc\Omega_{c} have a significance dependence on the options of the phase space factor. The results from RPF and MHPF are comparable with each other. However, the predicted partial widths with NRPF are a factor of 26\sim 2-6 smaller those calculated with RPF and MHPF.

Refer to caption
Figure 2: The dependencies of the partial decay width of ΩcΩπ+\Omega_{c}\rightarrow\Omega^{-}\pi^{+} on the parameters C1C_{1} and C2C_{2}. The results are obtained by adopting the RPF.

The Wilson coefficients C1C_{1} and C2C_{2} are usually taken to be C1=1.26C_{1}=1.26 and C2=0.51C_{2}=-0.51 at the mcm_{c} scale Buchalla:1995vs . These coefficients have some uncertainties due to their scale dependencies. To see the effects of the uncertainties of C1C_{1} and C2C_{2} on our results, as an example in Fig. 2 we plot the partial width of Γ[Ωc0Ωπ+]\Gamma[\Omega_{c}^{0}\to\Omega^{-}\pi^{+}] as a function of the C1C_{1} and C2C_{2} in the range of C1(1.0,1.5)C_{1}\in(1.0,1.5) and C2(0.64,0.38)C_{2}\in(-0.64,-0.38). From the figure, one can see that considering a 20%20\% uncertainty for the Wilson coefficients C1=1.26C_{1}=1.26 and C2=0.51C_{2}=-0.51 at the mcm_{c} scale, the partial decay width of Γ[Ωc0Ωπ+]\Gamma[\Omega_{c}^{0}\to\Omega^{-}\pi^{+}] lies in the range of (1.3,4.0)×1014(1.3,4.0)\times 10^{-14} GeV, which shows a sizeable decadency on the Wilson coefficients.

III.1 Ωc0Ωπ+\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}

First, we study the weak decay process Ωc0Ωπ+\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}. This weak decay process, as an important process, has been widely studied by the Belle, BaBar, CLEO, SELEX, FOCUS collaborations Belle:2017szm ; BaBar:2007jdg ; CLEO:2000dhf ; FOCUS:2003ylx ; Solovieva:2008fw ; SELEX:2007bim ; BaBar:2005yiy . With the RPF, the partial decay width of Ωc0Ωπ+\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+} is predicted to be

Γ[Ωc0Ωπ+]\displaystyle\Gamma[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}] \displaystyle\simeq 2.6×1014GeV.\displaystyle 2.6\times 10^{-14}~{}\text{GeV}. (23)

By using the measured lifetime τ=2.68×1013s\tau=2.68\times 10^{-13}s of Ωc0\Omega_{c}^{0} ParticleDataGroup:2020ssz , we further predict the branching fraction

[Ωc0Ωπ+]1.05%.\displaystyle\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}]\simeq 1.05\%. (24)

If adopting the MHPF, there is a 20%\sim 20\% correction to the results of RMF. However, when adopting the NRPF the results are about a factor of 6.6\sim 6.6 smaller than that predicted with RMF. From Table 2, it is found that our predicted branching fraction with both RPF and MHPF is close to the predictions in Refs. Cheng:1996cs ; Hsiao:2020gtc . While, if adopting the NRPF, our predicted branching fraction [Ωc0Ωπ+]0.16%\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}]\simeq 0.16\% is consistent with that from the covariant confined quark model Gutsche:2018utw .

Table 2: Predicted branching fraction for the Ωc0Ωπ+\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+} precess compared with that of other theoretical works.
RPF/MHPF/NRPF Ref. Gutsche:2018utw Ref. Cheng:1996cs Ref. Hsiao:2020gtc Ref. Korner:1992wi
1.05%/0.82%/0.16% 0.2% 1.0% 0.5% 2.3%

Furthermore, combined the predicted branching fraction of [Ωc0Ωπ+]\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}] with the measured relative branching ratios Γ[Ωc0Ξ0K¯π+]Γ[Ωc0Ωπ+]=1.20±0.24\frac{\Gamma[\Omega_{c}^{0}\rightarrow\Xi^{0}\bar{K}^{-}\pi^{+}]}{\Gamma[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}]}=1.20\pm 0.24 and Γ[Ωc0ΞK¯0π+]Γ[Ωc0Ωπ+]=2.12±0.38\frac{\Gamma[\Omega_{c}^{0}\rightarrow\Xi^{-}\bar{K}^{0}\pi^{+}]}{\Gamma[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}]}=2.12\pm 0.38, the branching fractions for the three-body weak decay processes Ωc0Ξ0K¯π+/ΞK¯0π+\Omega_{c}^{0}\rightarrow\Xi^{0}\bar{K}^{-}\pi^{+}/\Xi^{-}\bar{K}^{0}\pi^{+} can be obtained easily. With the RPF, we have

[Ωc0Ξ0K¯π+]\displaystyle\mathcal{B}[\Omega_{c}^{0}\rightarrow\Xi^{0}\bar{K}^{-}\pi^{+}] \displaystyle\simeq (1.26±0.27)×102,\displaystyle(1.26\pm 0.27)\times 10^{-2}, (25)
[Ωc0ΞK¯0π+]\displaystyle\mathcal{B}[\Omega_{c}^{0}\rightarrow\Xi^{-}\bar{K}^{0}\pi^{+}] \displaystyle\simeq (2.23±0.43)×102.\displaystyle(2.23\pm 0.43)\times 10^{-2}. (26)

While when adopting the NRPF, we have small branching fractions

[Ωc0Ξ0K¯π+]\displaystyle\mathcal{B}[\Omega_{c}^{0}\rightarrow\Xi^{0}\bar{K}^{-}\pi^{+}] \displaystyle\simeq (0.19±0.04)×102,\displaystyle(0.19\pm 0.04)\times 10^{-2}, (27)
[Ωc0ΞK¯0π+]\displaystyle\mathcal{B}[\Omega_{c}^{0}\rightarrow\Xi^{-}\bar{K}^{0}\pi^{+}] \displaystyle\simeq (0.33±0.06)×102,\displaystyle(0.33\pm 0.06)\times 10^{-2}, (28)

due to the small nonrelativistic phase space factor.

III.2 Ωc0Ω(1P)π+\Omega_{c}^{0}\rightarrow\Omega^{-}(1P)\pi^{+}

In the Ω\Omega family, there are two 1P1P-wave states Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) and Ω(12P3/2)\Omega(1^{2}P_{3/2^{-}}) with spin-parity JP=1/2J^{P}=1/2^{-} and JP=3/2J^{P}=3/2^{-}, respectively. The newly observed Ω(2012)\Omega(2012) resonance may favor the assignment of Ω(12P3/2)\Omega(1^{2}P_{3/2^{-}}) state, since both the measured mass and width are consistent with the quark model predictions Xiao:2018pwe ; Liu:2019wdr ; Aliev:2018yjo ; Aliev:2018syi ; Polyakov:2018mow . The masses of the unestablished Ω(X)\Omega^{*}(X) states are taken the predictions in Ref. Liu:2019wdr , which have been collected in Table 1. However, the Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) classified in the quark model is still missing.

Table 3: Predicted decay properties of the ΩcΩ()(X)π+\Omega_{c}\rightarrow\Omega^{(*)}(X)^{-}\pi^{+} processes within three options of the phase space, RPF, NRPF and MHPF, respectively. Γi\Gamma_{i} stands for the partial decay width, \mathcal{B} stands for the branching fraction, and MfM_{f} stands for the mass of the final state Ω()(X)\Omega^{(*)}(X). The total width of Ωc\Omega_{c} is Γ=2.47×1012\Gamma=2.47\times 10^{-12} GeV (corresponding to life time τ=2.68×1013s\tau=2.68\times 10^{-13}\mathrm{s} ParticleDataGroup:2020ssz ). The units for decay width Γi\Gamma_{i} and branching ratio \mathcal{B} are 101510^{-15} GeV and 10310^{-3}, respectively.
                      RPF                       NRPF                       MHPF
final state MfM_{f} (MeV) Γi\Gamma_{i} \mathcal{B} Γ[Ωc0Ω()(X)π+]Γ[Ωc0Ωπ+]\frac{\Gamma[\Omega_{c}^{0}\to\Omega^{(*)}(X)^{-}\pi^{+}]}{\Gamma[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}]} Γi\Gamma_{i} \mathcal{B} Γ[Ωc0Ω()(X)π+]Γ[Ωc0Ωπ+]\frac{\Gamma[\Omega_{c}^{0}\to\Omega^{(*)}(X)^{-}\pi^{+}]}{\Gamma[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}]} Γi\Gamma_{i} \mathcal{B} Γ[Ωc0Ω()(X)π+]Γ[Ωc0Ωπ+]\frac{\Gamma[\Omega_{c}^{0}\to\Omega^{(*)}(X)^{-}\pi^{+}]}{\Gamma[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}]}
Ω(14S32+)π+\Omega(1^{4}S_{\frac{3}{2}^{+}})\pi^{+} 1672 26 10.5 1.0 3.8 1.6 1.0 21 8.2 1
Ω(12P12)π+\Omega(1^{2}P_{\frac{1}{2}^{-}})\pi^{+} 1957 9.5 3.8 0.38 2.0 0.80 0.50 8.7 3.6 0.44
Ω(12P32)π+\Omega(1^{2}P_{\frac{3}{2}^{-}})\pi^{+} 2012 5.4 2.2 0.22 1.2 0.49 0.31 5.2 2.1 0.26
Ω(22S12+)π+\Omega(2^{2}S_{\frac{1}{2}^{+}})\pi^{+} 2232 1.2 5.0×101\times 10^{-1} 0.05 3.9×101\times 10^{-1} 0.16 0.01 1.5 6.3×101\times 10^{-1} 0.08
Ω(24S32+)π+\Omega(2^{4}S_{\frac{3}{2}^{+}})\pi^{+} 2159 3.0 1.2 0.12 0.8 0.34 0.21 3.3 1.4 0.17
Ω(12D32+)π+\Omega(1^{2}D_{\frac{3}{2}^{+}})\pi^{+} 2245 2.1×101\times 10^{-1} 8.4×102\times 10^{-2} 0.008 6.7×102\times 10^{-2} 2.7×102\times 10^{-2} 0.002 2.6×101\times 10^{-1} 1.1×101\times 10^{-1} 0.01
Ω(12D52+)π+\Omega(1^{2}D_{\frac{5}{2}^{+}})\pi^{+} 2303 1.3×102\times 10^{-2} 5.0×103\times 10^{-3} 5.0×104\times 10^{-4} 5.4×103\times 10^{-3} 2.0×103\times 10^{-3} 1×103\times 10^{-3} 1.9×102\times 10^{-2} 7.7×103\times 10^{-3} 9.4×104\times 10^{-4}
Ω(14D12+)π+\Omega(1^{4}D_{\frac{1}{2}^{+}})\pi^{+} 2141 3.3 1.3 0.13 8.8×101\times 10^{-1} 0.36 0.23 3.6 1.5 0.18
Ω(14D32+)π+\Omega(1^{4}D_{\frac{3}{2}^{+}})\pi^{+} 2188 2.3 0.95 0.09 6.8×101\times 10^{-1} 0.28 0.18 2.7 1.1 0.13
Ω(14D52+)π+\Omega(1^{4}D_{\frac{5}{2}^{+}})\pi^{+} 2252 3.3×103\times 10^{-3} 1.3×103\times 10^{-3} 1.3×104\times 10^{-4} 1.2×103\times 10^{-3} 4.5×104\times 10^{-4} 2.8×104\times 10^{-4} 4.2×103\times 10^{-3} 1.7×103\times 10^{-3} 2.1×104\times 10^{-4}
Ω(14D72+)π+\Omega(1^{4}D_{\frac{7}{2}^{+}})\pi^{+} 2321 3.2×103\times 10^{-3} 1.3×103\times 10^{-3} 1.3×104\times 10^{-4} 1.3×103\times 10^{-3} 5.1×104\times 10^{-4} 3.2×104\times 10^{-4} 4.7×103\times 10^{-3} 1.9×103\times 10^{-3} 2.3×104\times 10^{-4}

Considering Ω(2012)\Omega(2012) as the Ω(12P3/2)\Omega(1^{2}P_{3/2^{-}}) assignment, we have studied the Ωc0Ω(2012)π+\Omega_{c}^{0}\to\Omega^{-}(2012)\pi^{+} process, the results are listed in Table 3. It is found that the Ωc\Omega_{c} baryon has a fairly large decay rate into Ω(2012)π+\Omega(2012)^{-}\pi^{+}, with the RPF or MHPF the branching fraction is predicted to be

[Ωc0Ω(2012)π+]\displaystyle\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega(2012)^{-}\pi^{+}] \displaystyle\simeq 2.2×103.\displaystyle 2.2\times 10^{-3}. (29)

Combining it with the branching fraction of [Ωc0Ωπ+]\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}] obtained in Eq.(24), we predict the relative ratio

R1Th.=[Ωc0Ω(2012)π+][Ωc0Ωπ+]0.22,\displaystyle R^{{\rm Th.}}_{1}=\frac{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega(2012)^{-}\pi^{+}]}{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}]}\simeq 0.22, (30)

which is in good agreement with experimental value R1Exp.=0.220±0.059(stat.)±0.035(syst.)R^{\rm Exp.}_{1}=0.220\pm 0.059(\mathrm{stat.})\pm 0.035(\mathrm{syst.}) that was recently measured by the Belle Collaboration Belle:2021gtf . According to the strong decay properties of Ω(2012)\Omega(2012) predicted using the constituent quark model in Refs. Liu:2019wdr ; Xiao:2018pwe , branching fractions of Ω(2012)\Omega(2012) decaying into Ξ0K\Xi^{0}K^{-} and ΞK¯0\Xi^{-}\bar{K}^{0} are predicted to be [Ωc(2012)Ξ0K]52%\mathcal{B}[\Omega_{c}(2012)\to\Xi^{0}K^{-}]\simeq 52\% and [Ωc(2012)ΞK¯0]48%\mathcal{B}[\Omega_{c}(2012)\to\Xi^{-}\bar{K}^{0}]\simeq 48\%, respectively. Combining these strong branching fractions of Ω(2012)\Omega(2012) with our predicted branching fractions for the weak decay processes [Ωc0Ξ0K¯π+/ΞK¯0π+/Ω(2012)π+\mathcal{B}[\Omega_{c}^{0}\to\Xi^{0}\bar{K}^{-}\pi^{+}/\Xi^{-}\bar{K}^{0}\pi^{+}/\Omega(2012)^{-}\pi^{+}] in Eqs. (27)-(29), one can obtain

R2Th.\displaystyle R^{\rm Th.}_{2} =\displaystyle= [Ωc0Ω(2012)π+][Ωc(2012)Ξ0K][Ωc0Ξ0K¯π+]\displaystyle\frac{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega(2012)\pi^{+}]\mathcal{B}[\Omega_{c}(2012)\rightarrow\Xi^{0}K^{-}]}{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Xi^{0}\bar{K}^{-}\pi^{+}]} (31)
0.09,\displaystyle\simeq 0.09,
R3Th.\displaystyle R^{\rm Th.}_{3} =\displaystyle= [Ωc0Ω(2012)π+][Ωc(2012)ΞK¯0][Ωc0ΞK¯0π+]\displaystyle\frac{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega(2012)\pi^{+}]\mathcal{B}[\Omega_{c}(2012)\rightarrow\Xi^{-}\bar{K}^{0}]}{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Xi^{-}\bar{K}^{0}\pi^{+}]} (32)
0.05,\displaystyle\simeq 0.05,

which are also consistent with the experimental values R2Exp.=0.096±0.032(stat.)±0.018(syst.)R_{2}^{\rm Exp.}=0.096\pm 0.032(\mathrm{stat.})\pm 0.018(\mathrm{syst.}) and R3Exp.=0.055±0.028(stat.)±0.007(syst.)R_{3}^{\rm Exp.}=0.055\pm 0.028(\mathrm{stat.})\pm 0.007(\mathrm{syst.}) recently measured by the Belle Collaboration Belle:2021gtf , respectively. It should be mentioned that these predicted relative ratios RiTh.R^{{\rm Th.}}_{i} (i=1,2,3i=1,2,3) are nearly independent on the options of phase space factor in the calculations.

Then we consider the weak decay rate of Ωc\Omega_{c} into the other 1P1P-wave state Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) by emitting a π+\pi^{+} meson. The mass of Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) is predicted to be 1950\sim 1950 MeV within the Lattice QCD Engel:2013ig and the relativized quark models Capstick:1985xss ; Faustov:2015eba . Experimentally, there seems to be a weak enhancement around 1950 MeV in the ΞK¯\Xi\bar{K} invariant mass distributions from the Belle observations Belle:2021gtf ; Belle:2018mqs , which may be a hint of Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}). Hence, in the calculations the mass of Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) is taken to be 1957 MeV. If adopting the RPF or MHPF, the branching fraction is predicted to be

[Ωc0Ω(12P1/2)π+]\displaystyle\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega(1^{2}P_{1/2^{-}})\pi^{+}] \displaystyle\simeq 3.8×103,\displaystyle 3.8\times 10^{-3}, (33)

which is about a factor of 55 larger than that predicted with NRPF. The predicted branching fraction [Ωc0Ω(12P1/2)π+]\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega(1^{2}P_{1/2^{-}})\pi^{+}] should be slightly larger than that of the Ω(2012)π+\Omega(2012)^{-}\pi^{+} final states. The branching fraction ratio between Ωc0Ω(12P1/2)π+\Omega_{c}^{0}\rightarrow\Omega(1^{2}P_{1/2^{-}})\pi^{+} and Ωc0Ωπ+\Omega_{c}^{0}\to\Omega^{-}\pi^{+} is predicted to be

[Ωc0Ω(12P1/2)π+][Ωc0Ωπ+]0.380.50,\displaystyle\frac{\mathcal{B}[\Omega_{c}^{0}\to\Omega(1^{2}P_{1/2^{-}})\pi^{+}]}{\mathcal{B}[\Omega_{c}^{0}\to\Omega^{-}\pi^{+}]}\simeq 0.38-0.50, (34)

which is insensitive to options of the phase space factor. Such a large relative branching ratio indicates that the other missing 1P1P-wave state Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) has a good potential to be observed in the weak decay process Ωc0Ω(12P1/2)π+\Omega_{c}^{0}\rightarrow\Omega(1^{2}P_{1/2^{-}})\pi^{+}.

According to the strong decay analysis in Refs. Liu:2019wdr ; Xiao:2018pwe ; Wang:2018hmi , the decays of Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) should be nearly saturated by the Ξ0K\Xi^{0}K^{-} and ΞK¯0\Xi^{-}\bar{K}^{0} channels. Combined the strong decay properties predicted within the chiral quark model in Refs. Liu:2019wdr ; Xiao:2018pwe , we can estimate the ratios

[Ωc0Ω(12P1/2)π+][Ω(12P1/2)Ξ0K][Ωc0Ξ0Kπ+]16%,\displaystyle\frac{\mathcal{B}[\Omega_{c}^{0}\to\Omega(1^{2}P_{1/2^{-}})\pi^{+}]\mathcal{B}[\Omega(1^{2}P_{1/2^{-}})\to\Xi^{0}K^{-}]}{\mathcal{B}[\Omega_{c}^{0}\to\Xi^{0}K^{-}\pi^{+}]}\simeq 16\%, (35)
[Ωc0Ω(12P1/2)π+][Ω(12P1/2)ΞK¯0][Ωc0ΞK¯0π+]8%,\displaystyle\frac{\mathcal{B}[\Omega_{c}^{0}\to\Omega(1^{2}P_{1/2^{-}})\pi^{+}]\mathcal{B}[\Omega(1^{2}P_{1/2^{-}})\to\Xi^{-}\bar{K}^{0}]}{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Xi^{-}\bar{K}^{0}\pi^{+}]}\simeq 8\%, (36)

which may provide useful references for future experiments.

To further explain the results of the Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) and Ω(12P3/2)\Omega(1^{2}P_{3/2^{-}}) states, we fit the (K¯Ξ)(\bar{K}\Xi)^{-} invariant mass spectrum of the process Ωcπ+Ω(X)π+(K¯Ξ)\Omega_{c}\rightarrow\pi^{+}\Omega^{*}(X)\rightarrow\pi^{+}(\bar{K}\Xi)^{-} measured by Belle Collaboration Belle:2021gtf . In our analysis, we adopt a relativistic Breit-Wigner function to describe the event distribution ParticleDataGroup:2020ssz ; Xie:2015lta ; Xie:2018gbi ; Zhang:2017eui

dNdM(K¯Ξ)=fBG+CRRM(K¯Ξ)2Γπ+Ω(X)(M(K¯Ξ))Γ(ΞK¯)(M(K¯Ξ))|M(K¯Ξ)2mR2+imRΓR|2,\frac{dN}{dM_{(\bar{K}\Xi)^{-}}}=f_{BG}+C_{R}\sum_{R}\frac{M_{(\bar{K}\Xi)^{-}}^{2}\Gamma_{\pi^{+}\Omega^{*}(X)}(M_{(\bar{K}\Xi)^{-}})\Gamma_{(\Xi\bar{K})^{-}}(M_{(\bar{K}\Xi)^{-}})}{\left|M_{(\bar{K}\Xi)^{-}}^{2}-m_{R}^{2}+im_{R}\Gamma_{R}\right|^{2}}, (37)

where M(K¯Ξ))M_{(\bar{K}\Xi)^{-})} and mRm_{R} stands for the invariant mass of (K¯Ξ)(\bar{K}\Xi)^{-} and the resonance mass of Ω(X)\Omega^{*}(X), respectively. Γπ+Ω(X)(M(K¯Ξ))\Gamma_{\pi^{+}\Omega^{*}(X)}(M_{(\bar{K}\Xi)^{-}}) and Γ(ΞK¯)(M(K¯Ξ))\Gamma_{(\Xi\bar{K})^{-}}(M_{(\bar{K}\Xi)^{-}}) are the partial decay widths of Ωc0Ω(X)π+\Omega_{c}^{0}\rightarrow\Omega^{*}(X)\pi^{+} and Ω(X)(ΞK)\Omega^{*}(X)\rightarrow(\Xi K)^{-}, respectively. The total decay width ΓR\Gamma_{R} are adopted as the predictions obtained in Ref. Liu:2019wdr , while fBGf_{BG} stands for the background contributions. In this work a linear background fBG=18.5f_{BG}=18.5 (MeV/c2)1/c^{2})^{-1} is adopted, which is determined by fitting the backgrounds taken in Ref. Belle:2021gtf . Finally CRC_{R} is a global parameter related to the resonance production rates.

Refer to caption
Figure 3: The (K¯Ξ)(\bar{K}\Xi)^{-} invariant mass spectrum measured of the decay Ωcπ+Ω(X)π+((K¯Ξ))\Omega_{c}\rightarrow\pi^{+}\Omega^{*}(X)\rightarrow\pi^{+}((\bar{K}\Xi)^{-}) by Belle Collaboration Belle:2021gtf (solid squares) compared to the theoretical description with two possible Ω\Omega^{-}(1P)-wave states, Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) and Ω(12P3/2)\Omega(1^{2}P_{3/2^{-}}). Results 1 and 2 are fitting results of Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) with widths about 12.4 MeV and 20.0 MeV, respectively.

In Fig. 3, we shown our theoretical results for the (K¯Ξ)(\bar{K}\Xi)^{-} invariant mass distributions of the decay Ωcπ+Ω(X)π+((K¯Ξ))\Omega_{c}\rightarrow\pi^{+}\Omega^{*}(X)\rightarrow\pi^{+}((\bar{K}\Xi)^{-}). The red curve has been adjusted to the strength of the experimental data of Belle Collaboration Belle:2021gtf at the peak around 2012 MeV by taking CR=0.064C_{R}=0.064. Furthermore, the dashed curve stands for the resonance contribution of Ω(12P3/2)\Omega(1^{2}P_{3/2^{-}}) with MR=2012M_{R}=2012 MeV and ΓR=5.7\Gamma_{R}=5.7 MeV, while the dash-dotted curve stands for the Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) contribution with MR=1957M_{R}=1957 MeV and ΓR=12.4\Gamma_{R}=12.4 MeV. From Fig. 3 one can easily find that the Ω(12P3/2)\Omega(1^{2}P_{3/2^{-}}) state has a significant contribution around 2012 MeV and the experimental data around that energy can be well reproduced. However, the contribution of the Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) state is overestimated comparing with the experimental data around 1957 MeV. Yet, the quark model predicted widths for the Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) and Ω(12P3/2)\Omega(1^{2}P_{3/2^{-}}) states have uncertainties, we perform a new calculation with a slightly large width ΓR=20.0\Gamma_{R}=20.0 MeV for Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) state, while we take the experimental value of 6.46.4 MeV for Ω(12P3/2)\Omega(1^{2}P_{3/2^{-}}). The new theoretical results are also shown in Fig. 3 with blue curve, where we see that the signal of the Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) is much suppressed. It is expected that more precise experimental data can be used to pin down the contribution of the Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) state in future.

On the other hand, the Ωc0π+Ω(2012)π+KΞ0\Omega^{0}_{c}\to\pi^{+}\Omega(2012)\to\pi^{+}K^{-}\Xi^{0} decay was investigated within the picture that the Ω(2012)\Omega(2012) is a molecular state in Ref. Ikeno:2022jpe , where the numerical results are also consistent with the experimental data. Indeed, we need further efforts to understand the nature of Ω(2012)\Omega(2012) state Belle:2022mrg ; Hu:2022pae .

III.3 Ωc0Ω(1D)π+\Omega_{c}^{0}\rightarrow\Omega^{-}(1D)\pi^{+}

There are six 1D1D-wave states, Ω(12D3/2+,5/2+)\Omega(1^{2}D_{3/2^{+},5/2^{+}}) and Ω(14D1/2+,3/2+,5/2+,7/2+)\Omega(1^{4}D_{1/2^{+},3/2^{+},5/2^{+},7/2^{+}}) according to the quark quark model classification. Most of the predicted masses for the 1D1D-wave states lies in the mass range 2200±50\sim 2200\pm 50 MeV in various quark models. Taking the mass recently predicted in Ref. Liu:2019wdr , we calculate the weak decay properties for the Ωc0Ω(1D)π+\Omega_{c}^{0}\rightarrow\Omega^{-}(1D)\pi^{+} processes. Our results are listed in Table 3. It is seen that Ωc\Omega_{c} has significant branching fractions decaying into the spin quartet states Ω(14D1/2+)\Omega(1^{4}D_{1/2^{+}}) and Ω(14D3/2+)\Omega(1^{4}D_{3/2^{+}}). The predicted branching fractions [Ωc0Ω(14D1/2+,3/2+)π+]\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega(1^{4}D_{1/2^{+},3/2^{+}})\pi^{+}] can reach up to the order of O(104)O(103)\sim O(10^{-4})-O(10^{-3}). With the RPF, their relative ratios to [Ωc0Ωπ+]\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}] are predicted to be

[Ωc0Ω(14D1/2+)π+][Ωc0Ωπ+]0.13,\displaystyle\frac{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega(1^{4}D_{1/2^{+}})\pi^{+}]}{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}]}\simeq 0.13, (38)
[Ωc0Ω(14D3/2+)π+][Ωc0Ωπ+]0.09,\displaystyle\frac{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega(1^{4}D_{3/2^{+}})\pi^{+}]}{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}]}\simeq 0.09, (39)

which are close to the results predicted with RPF and MHPF. The predicted branching fractions and ratios are comparable with those of Ωc\Omega_{c} decaying into the Ω(2012)π+\Omega(2012)\pi^{+} and Ω(12P1/2)π+\Omega(1^{2}P_{1/2^{-}})\pi^{+} channels. However, the decay rates of Ωc\Omega_{c} into the other four 1D1D-wave states Ω(12D3/2+,5/2+)\Omega(1^{2}D_{3/2^{+},5/2^{+}}) and Ω(14D5/2+,7/2+)\Omega(1^{4}D_{5/2^{+},7/2^{+}}) are 13\sim 1-3 orders of magnitude smaller. The relatively large decay rates indicate that both Ω(14D1/2+)\Omega(1^{4}D_{1/2^{+}}) and Ω(14D3/2+)\Omega(1^{4}D_{3/2^{+}}) has good potentials to be established by using the weak decay processes Ωc0Ω(14D1/2+,3/2+)π+\Omega_{c}^{0}\to\Omega(1^{4}D_{1/2^{+},3/2^{+}})\pi^{+}.

We further analyze the reasons of the small decay rates of Ωc0Ω(14D5/2+,7/2+)π+/Ω(12D3/2+,5/2+)π+\Omega_{c}^{0}\to\Omega(1^{4}D_{5/2^{+},7/2^{+}})\pi^{+}/\Omega(1^{2}D_{3/2^{+},5/2^{+}})\pi^{+} compared with that of Ωc0Ω(14D1/2+,3/2+)π+\Omega_{c}^{0}\to\Omega(1^{4}D_{1/2^{+},3/2^{+}})\pi^{+} as follows. We note that the helicity transition amplitudes

JJz;1212ML+Sz=JzLMLSSz|JJzΨNLMLσχSzσ|O^|ΨΩcχ12λ,\mathcal{M}_{JJ_{z};\frac{1}{2}-\frac{1}{2}}\propto\sum_{M_{L}+S_{z}=J_{z}}\langle LM_{L}SS_{z}|JJ_{z}\rangle\langle\Psi_{NLM_{L}}^{\sigma}\chi_{S_{z}}^{\sigma}|\hat{O}|\Psi_{\Omega_{c}}\chi_{-\frac{1}{2}}^{\lambda}\rangle, (40)

where ΨΩc\Psi_{\Omega_{c}} (ΨNLML\Psi_{NLM_{L}}) and χ12λ\chi_{-\frac{1}{2}}^{\lambda} (χSzσ\chi_{S_{z}}^{\sigma}) are the spacial and spin wave functions of the initial (final) baryons, respectively. For the decay processes involving the spin quartet states Ω(14D1/2+,3/2+,5/2+,7/2+)\Omega(1^{4}D_{1/2^{+},3/2^{+},5/2^{+},7/2^{+}}), the decay amplitude is the sum of c1Ψ221Sχ3/2S|O^|ΨΩcχ12λc_{1}\langle\Psi_{221}^{S}\chi_{-3/2}^{S}|\hat{O}|\Psi_{\Omega_{c}}\chi_{-\frac{1}{2}}^{\lambda}\rangle and c2Ψ220Sχ1/2S|O^|ΨΩcχ12λc_{2}\langle\Psi_{220}^{S}\chi_{-1/2}^{S}|\hat{O}|\Psi_{\Omega_{c}}\chi_{-\frac{1}{2}}^{\lambda}\rangle. These two terms have strong constructive and destructive interference for the Ωc0Ω(14D1/2+,3/2+)π+\Omega_{c}^{0}\to\Omega(1^{4}D_{1/2^{+},3/2^{+}})\pi^{+} and Ωc0Ω(14D5/2+,7/2+)π+\Omega_{c}^{0}\to\Omega(1^{4}D_{5/2^{+},7/2^{+}})\pi^{+}, respectively. Thus, the decay rates of Ωc0Ω(14D5/2+,7/2+)π+\Omega_{c}^{0}\to\Omega(1^{4}D_{5/2^{+},7/2^{+}})\pi^{+} are strongly suppressed by the destructive interference between the two terms of the helicity transition amplitude. While for the decay processes involving the spin doublet Ω(12D3/2+,5/2+)\Omega(1^{2}D_{3/2^{+},5/2^{+}}), the decay amplitudes are proportional to Ψ220ρ,λχ1/2ρ,λ|O^|ΨΩcχ12λ\langle\Psi_{220}^{\rho,\lambda}\chi_{-1/2}^{\rho,\lambda}|\hat{O}|\Psi_{\Omega_{c}}\chi_{-\frac{1}{2}}^{\lambda}\rangle. In this term, the contribution from the part of the spin wave functions is about a factor of 242-4 smaller than that for the spin quartet states. Thus, the decay rates of Ωc0Ω(12D3/2+,5/2+)π+\Omega_{c}^{0}\to\Omega(1^{2}D_{3/2^{+},5/2^{+}})\pi^{+} is suppressed by the relative small overlapping of the spin wave functions of the initial and final states.

According to the analysis of the strong decay properties Liu:2019wdr ; Xiao:2018pwe , the Ω(14D1/2+)\Omega(1^{4}D_{1/2^{+}}) state has a width of Γ42\Gamma\simeq 42 MeV, and dominantly decays into the ΞK¯\Xi\bar{K} channel with a branching fraction 94%\sim 94\%. While the Ω(14D3/2+)\Omega(1^{4}D_{3/2^{+}}) has a width of Γ31\Gamma\simeq 31 MeV, and dominantly decays into ΞK¯\Xi\bar{K} with a branching fraction 64%\sim 64\%. Thus, the Ξ0K\Xi^{0}K^{-} and ΞK¯0\Xi^{-}\bar{K}^{0} final states can be used to look for the Ω(14D1/2+)\Omega(1^{4}D_{1/2^{+}}) and Ω(14D3/2+)\Omega(1^{4}D_{3/2^{+}}) states if they are produced by the Ωc\Omega_{c} weak decays. For the Ω(14D1/2+)\Omega(1^{4}D_{1/2^{+}}) state, by combining the results of RPF we can estimate the following ratios

[Ωc0Ω(14D1/2+)π+][Ω(14D1/2+)Ξ0K][Ωc0Ξ0K¯π+]5%,\displaystyle\frac{\mathcal{B}[\Omega_{c}^{0}\to\Omega(1^{4}D_{1/2^{+}})\pi^{+}]\mathcal{B}[\Omega(1^{4}D_{1/2^{+}})\to\Xi^{0}K^{-}]}{\mathcal{B}[\Omega_{c}^{0}\to\Xi^{0}\bar{K}^{-}\pi^{+}]}\simeq 5\%, (41)
[Ωc0Ω(14D1/2+)π+][Ω(14D1/2+)ΞK¯0][Ωc0ΞK¯0π+]3%,\displaystyle\frac{\mathcal{B}[\Omega_{c}^{0}\to\Omega(1^{4}D_{1/2^{+}})\pi^{+}]\mathcal{B}[\Omega(1^{4}D_{1/2^{+}})\to\Xi^{-}\bar{K}^{0}]}{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Xi^{-}\bar{K}^{0}\pi^{+}]}\simeq 3\%, (42)

while for the Ω(14D3/2+)\Omega(1^{4}D_{3/2^{+}}) state, we can estimate the following ratios

[Ωc0Ω(14D3/2+)π+][Ω(14D3/2+)Ξ0K][Ωc0Ξ0K¯π+]2%,\displaystyle\frac{\mathcal{B}[\Omega_{c}^{0}\to\Omega(1^{4}D_{3/2^{+}})\pi^{+}]\mathcal{B}[\Omega(1^{4}D_{3/2^{+}})\to\Xi^{0}K^{-}]}{\mathcal{B}[\Omega_{c}^{0}\to\Xi^{0}\bar{K}^{-}\pi^{+}]}\simeq 2\%, (43)
[Ωc0Ω(14D3/2+)π+][Ω(14D3/2+)ΞK¯0][Ωc0ΞK¯0π+]1%.\displaystyle\frac{\mathcal{B}[\Omega_{c}^{0}\to\Omega(1^{4}D_{3/2^{+}})\pi^{+}]\mathcal{B}[\Omega(1^{4}D_{3/2^{+}})\to\Xi^{-}\bar{K}^{0}]}{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Xi^{-}\bar{K}^{0}\pi^{+}]}\simeq 1\%. (44)

The above predicted ratios are less dependent on the options of the phase space factor.

Finally, it should be pointed out that the predicted masses of the 1D1D-wave Ω\Omega states have some model dependencies. To see the effects from the mass uncertainties of the 1D1D-wave Ω\Omega states on our predicted weak decay properties, we plot the weak branching fractions of Ωc0π+Ω(X)\Omega^{0}_{c}\to\pi^{+}\Omega^{*}(X) as functions of the masses of the 1D1D-wave Ω\Omega excited state in their possible range M(2.12.3)M\in(2.1-2.3) GeV in Fig. 4. It is seen that in the most possible mass range 2200±50\sim 2200\pm 50 MeV, the upper limit of our predicted partial widths is about a factor of 22 larger than that of the lower limit.

Refer to caption
Figure 4: The branching fraction of the Ωc0Ω(14D1/2+,14D3/2+,22S1/2+,24S3/2+)π+\Omega_{c}^{0}\rightarrow\Omega(1^{4}D_{1/2^{+}},1^{4}D_{3/2^{+}},2^{2}S_{1/2^{+}},2^{4}S_{3/2^{+}})\pi^{+} as a function of mass of the final state Ω(X)\Omega^{*}(X). It should be noted that since the results of 14D1/2+1^{4}D_{1/2^{+}} and 14D3/2+1^{4}D_{3/2^{+}} are the same, we omit the results of 14D3/2+1^{4}D_{3/2^{+}} here.

III.4 Ωc0Ω(2S)π+\Omega_{c}^{0}\rightarrow\Omega(2S)\pi^{+}

In the constituent quark model, there are two 2S2S-wave states Ω(22S1/2+)\Omega(2^{2}S_{1/2^{+}}) and Ω(24S3/2+)\Omega(2^{4}S_{3/2^{+}}). There are large uncertainties in the predictions of their masses in various quark models. The predicted masses scatter in the range of 2.102.30\sim 2.10\sim 2.30 GeV. In Fig. 4, by using the RPF we plot the weak decay widths of the Ωc0Ω(22S1/2+/24S3/2+)π+\Omega_{c}^{0}\rightarrow\Omega(2^{2}S_{1/2^{+}}/2^{4}S_{3/2^{+}})\pi^{+} processes as functions of the masses of the 2S2S-wave Ω\Omega states. It is seen that in the mass range 210023002100\sim 2300 MeV, for the weak decay process Ωc0Ω(22S1/2+)π+\Omega_{c}^{0}\rightarrow\Omega(2^{2}S_{1/2^{+}})\pi^{+}, the partial decay width is predicted to be Γ[Ωc0Ω(22S1/2+)π+](1.2±0.45)×1015\Gamma[\Omega_{c}^{0}\rightarrow\Omega(2^{2}S_{1/2^{+}})\pi^{+}]\simeq(1.2\pm 0.45)\times 10^{-15} GeV, the branching fraction can reach up to

[Ωc0Ω(22S1/2+)π+]\displaystyle\mathcal{B}[\Omega_{c}^{0}\to\Omega(2^{2}S_{1/2^{+}})\pi^{+}] \displaystyle\simeq (0.50±0.18)×103.\displaystyle(0.50\pm 0.18)\times 10^{-3}. (45)

Combined with the predicted branching fraction [Ωc0Ωπ+]10%\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}]\simeq 10\%, we obtain the relative branching ratio

[Ωc0Ω(22S1/2+)π+][Ωc0Ωπ+]0.05±0.02\displaystyle\frac{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega(2^{2}S_{1/2^{+}})\pi^{+}]}{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}]}\simeq 0.05\pm 0.02 (46)

The production rate of Ω(22S1/2+)\Omega(2^{2}S_{1/2^{+}}) via the Ωc\Omega_{c} weak decay is about a factor of 565-6 smaller than that of Ω(2012)\Omega(2012). Due to the large decay rate into the Ξ(1530)K¯\Xi(1530)\bar{K} channel Liu:2019wdr ; Xiao:2018pwe , the Ω(22S1/2+)\Omega(2^{2}S_{1/2^{+}}) state is suggested to be searched in the decay chain Ωc0Ω(22S1/2+)π+(Ξ(1530)K)π+(ΞπK)π+\Omega_{c}^{0}\rightarrow\Omega(2^{2}S_{1/2^{+}})\pi^{+}\to(\Xi(1530)K)^{-}\pi^{+}\to(\Xi\pi K)^{-}\pi^{+} in future experiments.

For the other weak decay process Ωc0Ω(24S3/2+)π+\Omega_{c}^{0}\to\Omega(2^{4}S_{3/2^{+}})\pi^{+}, by using the RPF the partial decay width is predicted to be Γ[Ωc0Ω(24S3/2+)π+](3.0±1.6)×1015\Gamma[\Omega_{c}^{0}\rightarrow\Omega(2^{4}S_{3/2^{+}})\pi^{+}]\simeq(3.0\pm 1.6)\times 10^{-15} GeV, the branching fraction can reach up to

[Ωc0Ω(24S3/2+)π+]\displaystyle\mathcal{B}[\Omega_{c}^{0}\to\Omega(2^{4}S_{3/2^{+}})\pi^{+}] \displaystyle\simeq (1.2±0.6)×103.\displaystyle(1.2\pm 0.6)\times 10^{-3}. (47)

Similarly, the relative branching ratio is predicted to be

[Ωc0Ω(24S3/2+)π+][Ωc0Ωπ+]0.12±0.06.\displaystyle\frac{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega(2^{4}S_{3/2^{+}})\pi^{+}]}{\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}]}\simeq 0.12\pm 0.06. (48)

The production rate of Ω(24S3/2+)\Omega(2^{4}S_{3/2^{+}}) via the Ωc\Omega_{c} weak decay is comparable with that of Ω(22S1/2+)\Omega(2^{2}S_{1/2^{+}}). The dominant decay mode of Ω(24S3/2+)\Omega(2^{4}S_{3/2^{+}}) is the Ξ(1530)K¯\Xi(1530)\bar{K} channel, and one can look for it in the decay chain Ωc0Ω(24S3/2+)π+(Ξ(1530)K¯)π+(ΞπK¯)π+\Omega_{c}^{0}\to\Omega(2^{4}S_{3/2^{+}})\pi^{+}\to(\Xi(1530)\bar{K})^{-}\pi^{+}\to(\Xi\pi\bar{K})^{-}\pi^{+}.

IV Summary

In this work, we calculate the Cabbibo-favored weak decay processes ΩcΩ()(X)π+\Omega_{c}\rightarrow\Omega^{(*)}(X)\pi^{+} within a constituent quark model. Our predicted branching fraction [Ωc0Ωπ+]1.0%\mathcal{B}[\Omega_{c}^{0}\rightarrow\Omega^{-}\pi^{+}]\simeq 1.0\% which is in agreement with the early predictions in orders in Refs. Cheng:1996cs ; Korner:1992wi . Considering the newly observed Ω(2012)\Omega(2012) resonance as the conventional Ω(12P3/2)\Omega(1^{2}P_{3/2^{-}}) state, it is found that the measured ratio [ΩcΩ(2012)π+(ΞK¯)π+]/[ΩcΩπ+]=0.220±0.059(stat.)±0.035(syst.)\mathcal{B}[\Omega_{c}\to\Omega(2012)\pi^{+}\to(\Xi\bar{K})^{-}\pi^{+}]/\mathcal{B}[\Omega_{c}\to\Omega\pi^{+}]=0.220\pm 0.059(\mathrm{stat.})\pm 0.035(\mathrm{syst.}) at Belle can be well understood within our model calculations here. The production potentials of the missing low-lying 1P1P-, 2S2S-, and 1D1D-wave resonances Ω(X)\Omega^{*}(X) via the hadronic weak decays of Ωc\Omega_{c} are discussed as well. Our main conclusions are summarized as follows.

i) The missing 1P1P-wave state Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) has a large potential to be observed in the decay chain Ωc0Ω(12P1/2)π+(ΞK¯)π+\Omega_{c}^{0}\to\Omega(1^{2}P_{1/2^{-}})\pi^{+}\to(\Xi\bar{K})^{-}\pi^{+}. The production rate of Ω(12P1/2)\Omega(1^{2}P_{1/2^{-}}) via the hadronic weak decays of Ωc\Omega_{c} is even slightly larger than that of Ω(2012)\Omega(2012).

ii) For the 1D1D-wave Ω\Omega states, we find that both Ω(14D1/2+)\Omega(1^{4}D_{1/2^{+}}) and Ω(14D3/2+)\Omega(1^{4}D_{3/2^{+}}) have fairly large production rates via the ΩcΩ(14D1/2+)π+\Omega_{c}\to\Omega(1^{4}D_{1/2^{+}})\pi^{+} and ΩcΩ(14D3/2+)π+\Omega_{c}\to\Omega(1^{4}D_{3/2^{+}})\pi^{+} processes, respectively. Their production rates via the hadronic weak decays of Ωc\Omega_{c} are comparable with those of the 1P1P-wave Ω\Omega states. Both Ω(14D1/2+)\Omega(1^{4}D_{1/2^{+}}) and Ω(14D3/2+)\Omega(1^{4}D_{3/2^{+}}) are most likely to be observed in the process Ωc0Ω(14D1/2+,3/2+)π+(ΞK¯)π+\Omega_{c}^{0}\to\Omega(1^{4}D_{1/2^{+},3/2^{+}})\pi^{+}\to(\Xi\bar{K})^{-}\pi^{+}.

iii) The 2S2S states Ω(22S1/2+)\Omega(2^{2}S_{1/2^{+}}) and Ω(24S3/2+)\Omega(2^{4}S_{3/2^{+}}) also have fairly large production rates via the hadronic weak decays of Ωc\Omega_{c}. Their production rates are about a factor of 565-6 smaller than that of Ω(2012)\Omega(2012). Both Ω(22S1/2+)\Omega(2^{2}S_{1/2^{+}}) and Ω(24S3/2+)\Omega(2^{4}S_{3/2^{+}}) dominantly decay into the Ξ(1530)K\Xi(1530)K channel, thus, they can be looked for in the decay chains Ωc0Ω(22S1/2+)π+/Ω(24S3/2+)π+(Ξ(1530)K¯)π+(ΞπK¯)π+\Omega_{c}^{0}\to\Omega(2^{2}S_{1/2^{+}})\pi^{+}/\Omega(2^{4}S_{3/2^{+}})\pi^{+}\to(\Xi(1530)\bar{K})^{-}\pi^{+}\to(\Xi\pi\bar{K})^{-}\pi^{+}.

Finally, it should be mentioned that our predicted partial widths for the weak decay processes ΩcΩ()π+\Omega_{c}\to\Omega^{(*)}\pi^{+} may have a large uncertainties due to relativistic effects. To roughly see the uncertainties from the relativistic corrections, we perform our calculations with the three typical phase space options, the relativistic phase space, the nonrelativistic phase space and the “mock-hadron” phase space. The predicted partial widths with the nonrelativistic phase space are a factor of 26\sim 2-6 smaller those calculated with the usual relativistic phase space and the “mock-hadron” phase space.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grants Nos.12205026, 12175065, 12075288, U1832173, 11775078, 11705056, 11735003, and 11961141012), and Applied Basic Research Program of Shanxi Province, China under Grant No.202103021223376. Qi-Fang Lü is partly supported by the State Scholarship Fund of China Scholarship Council under Grant No. 202006725011. Ju-Jun Xie is also supported by the Youth Innovation Promotion Association CAS.

References

  • (1) P. A. Zyla et al. (Particle Data Group), Review of Particle Physics, PTEP 2020, 083C01 (2020).
  • (2) G. S. Abrams, R. A. Burnstein, G. R. Charlton, T. B. Day, B. Kehoe, B. Sechi-Zorn, G. A. Show, M. C. Whatley, G. Wolsky and G. B. Yodh, et al. Example of decay ΩΞπ0\Omega^{-}\to\Xi^{-}\pi^{0}, Phys. Rev. Lett. 13, 670 (1964).
  • (3) V. E. Barnes, P. L. Connolly, D. J. Crennell, B. B. Culwick, W. C. Delaney, W. B. Fowler, P. E. Hagerty, E. L. Hart, N. Horwitz and P. V. C. Hough, et al. Observation of a Hyperon with Strangeness Minus Three, Phys. Rev. Lett. 12, 204 (1964).
  • (4) S. F. Biagi, M. Bourquin, R. M. Brown, H. J. Burckhart, C. Doré, P. Extermann, M. Gailloud, C. N. P. Gee, W. M. Gibson and R. J. Gray, et al. First Observation of Ω\Omega^{*} Resonances, Z. Phys. C 31, 33 (1986).
  • (5) D. Aston, N. Awaji, T. Bienz, F. Bird, J. D’Amore, W. Dunwoodie, R. Endorf, K. Fujii, H. Hayashii and S. Iwata, et al. Observation of Ω\Omega^{*}- Production in KpK^{-}p Interactions at 11-GeV/cc, Phys. Lett. B 194, 579-585 (1987).
  • (6) D. Aston, N. Awaji, T. Bienz, F. Bird, J. D’Amore, W. Dunwoodie, R. Endorf, K. Fujii, H. Hayashii and S. Iwata, et al. Observation of a New Ω\Omega^{*-}at 2.47-GeV/c2c^{2} in KpK^{-}p Interactions at 11-GeV/cc, Phys. Lett. B 215, 799 (1988).
  • (7) A. Afanasev, W. J. Briscoe, H. Haberzettl, I. I. Strakovskya, R. L. Workman, M. J. Amaryan, G. Gavalian, M. C. Kunkel, Y. I. Azimov and N. Baltzell, et al. Photoproduction of the Very Strangest Baryons on a Proton Target in CLAS12, JLAB-PR-12-008.
  • (8) M. Amaryan, Physics opportunities with a secondary KL0K_{L}^{0} beam at JLab, AIP Conf. Proc. 1735, 040006 (2016).
  • (9) W. J. Briscoe, M. Döring, H. Haberzettl, D. M. Manley, M. Naruki, I. I. Strakovsky and E. S. Swanson, Physics opportunities with meson beams, Eur. Phys. J. A 51, 129 (2015).
  • (10) J. Yelton et al. (Belle), Observation of an Excited Ω\Omega^{-} Baryon, Phys. Rev. Lett. 121, 052003 (2018).
  • (11) M. S. Liu, K. L. Wang, Q. F. Lü and X. H. Zhong, Ω\Omega baryon spectrum and their decays in a constituent quark model, Phys. Rev. D 101, 016002 (2020).
  • (12) L. Y. Xiao and X. H. Zhong, Possible interpretation of the newly observed Ω(2012)\Omega(2012) state, Phys. Rev. D 98, 034004 (2018).
  • (13) T. M. Aliev, K. Azizi, Y. Sarac and H. Sundu, Nature of the Ω(2012)\Omega(2012) through its strong decays, Eur. Phys. J. C 78, 894 (2018).
  • (14) T. M. Aliev, K. Azizi, Y. Sarac and H. Sundu, Interpretation of the newly discovered Ω(2012)\Omega(2012), Phys. Rev. D 98, 014031 (2018).
  • (15) M. V. Polyakov, H. D. Son, B. D. Sun and A. Tandogan, Ω(2012)\Omega(2012) through the looking glass of flavour SU(3), Phys. Lett. B 792, 315 (2019).
  • (16) M. P. Valderrama, Ω(2012)\Omega(2012) as a hadronic molecule, Phys. Rev. D 98, 054009(2018).
  • (17) Y. H. Lin and B. S. Zou, Hadronic molecular assignment for the newly observed Ω\Omega^{*} state, Phys. Rev. D 98, 056013 (2018).
  • (18) R. Pavao and E. Oset, Coupled channels dynamics in the generation of the Ω(2012)\Omega(2012) resonance, Eur. Phys. J. C 78, 857 (2018).
  • (19) Y. Huang, M. Z. Liu, J. X. Lu, J. J. Xie and L. S. Geng, Strong decay modes K¯Ξ\bar{K}\Xi and K¯Ξπ\bar{K}\Xi\pi of the Ω(2012)\Omega(2012) in the K¯Ξ(1530)\bar{K}\Xi(1530) and ηΩ\eta\Omega molecular scenario, Phys. Rev. D 98, 076012 (2018).
  • (20) W. L. Wang, F. Huang, Z. Y. Zhang, Y. W. Yu and F. Liu, Ω\Omega states in a chiral quark model, Commun. Theor. Phys. 48, 695 (2007).
  • (21) W. L. Wang, F. Huang, Z. Y. Zhang and F. Liu, Xi anti-K interaction in a chiral model, J. Phys. G 35, 085003 (2008).
  • (22) J. X. Lu, C. H. Zeng, E. Wang, J. J. Xie and L. S. Geng, Revisiting the Ω(2012)\Omega(2012) as a hadronic molecule and its strong decays, Eur. Phys. J. C 80, 361 (2020).
  • (23) N. Ikeno, G. Toledo and E. Oset, Molecular picture for the Ω(2012)\Omega(2012) revisited, Phys. Rev. D 101, 094016 (2020).
  • (24) Y. Li et al. (Belle), Evidence for the decay Ωc0π+Ω(2012)π+(K¯Ξ)\Omega_{c}^{0}\to\pi^{+}\Omega(2012)^{-}\to\pi^{+}(\bar{K}\Xi)^{-}, Phys. Rev. D 104, 052005 (2021).
  • (25) M. Pervin and W. Roberts, Strangeness -2 and -3 baryons in a constituent quark model, Phys. Rev. C 77, 025202 (2008).
  • (26) K. T. Chao, N. Isgur and G. Karl, Strangeness -2 and -3 Baryons in a Quark Model With Chromodynamics, Phys. Rev. D 23, 155 (1981).
  • (27) Y. Chen and B. Q. Ma, Light flavor baryon spectrum with higher order hyperfine interactions, Nucl. Phys. A 831, 1 (2009).
  • (28) C. Menapara and A. K. Rai, Spectroscopic Study of Strangeness=-3 Ω\Omega^{-} Baryon, [arXiv:2108.05071 [hep-ph]].
  • (29) C. S. Kalman, PP Wave Baryons in a Consistent Quark Model With Hyperfine Interactions, Phys. Rev. D 26, 2326 (1982).
  • (30) S. Capstick and N. Isgur, Baryons in a Relativized Quark Model with Chromodynamics, AIP Conf. Proc. 132, 267-271 (1985).
  • (31) R. N. Faustov and V. O. Galkin, Strange baryon spectroscopy in the relativistic quark model, Phys. Rev. D 92, 054005 (2015).
  • (32) U. Loring, B. C. Metsch and H. R. Petry, The Light baryon spectrum in a relativistic quark model with instanton induced quark forces: The Nonstrange baryon spectrum and ground states, Eur. Phys. J. A 10, 395 (2001).
  • (33) E. Santopinto and J. Ferretti, Strange and nonstrange baryon spectra in the relativistic interacting quark-diquark model with a Gürsey and Radicati-inspired exchange interaction, Phys. Rev. C 92, 025202 (2015).
  • (34) G. P. Engel et al., QCD with Two Light Dynamical Chirally Improved Quarks: Baryons, Phys. Rev. D 87, 074504 (2013).
  • (35) J. Liang et al. (CLQCD), Spectrum and Bethe-Salpeter amplitudes of Ω\Omega baryons from lattice QCD, Chin. Phys. C 40, 041001 (2016).
  • (36) Y. Oh, Ξ\Xi and Ω\Omega baryons in the Skyrme model, Phys. Rev. D 75, 074002 (2007).
  • (37) C. S. An, B. C. Metsch and B. S. Zou, Mixing of the low-lying three- and five-quark Ω\Omega states with negative parity, Phys. Rev. C 87, 065207 (2013).
  • (38) C. S. An and B. S. Zou, Low-lying Ω\Omega states with negative parity in an extended quark model with Nambu-Jona-Lasinio interaction, Phys. Rev. C 89, 055209 (2014).
  • (39) S. G. Yuan, C. S. An, K. W. Wei, B. S. Zou and H. S. Xu, Spectrum of low-lying s3QQ¯s^{3}Q\bar{Q} configurations with negative parity, Phys. Rev. C 87, 025205 (2013).
  • (40) Z. Y. Wang, L. C. Gui, Q. F. Lü, L. Y. Xiao and X. H. Zhong, Newly observed Ω(2012)\Omega(2012) state and strong decays of the low-lying Ω\Omega excitations, Phys. Rev. D 98, 114023 (2018).
  • (41) R. Bijker, J. Ferretti, G. Galata, H. Garca-Tecocoatzi and E. Santopinto, Strong decays of baryons and missing resonances, Phys. Rev. D 94, 074040 (2016).
  • (42) R. Bijker, F. Iachello and A. Leviatan, Algebraic models of hadron structure. 2. Strange baryons, Annals Phys. 284, 89 (2000).
  • (43) M. Pervin, W. Roberts and S. Capstick, Semileptonic decays of heavy omega baryons in a quark model, Phys. Rev. C 74, 025205 (2006).
  • (44) J. G. Korner and M. Kramer, Exclusive nonleptonic charm baryon decays, Z. Phys. C 55, 659 (1992).
  • (45) T. Gutsche, M. A. Ivanov, J. G. Körner and V. E. Lyubovitskij, Nonleptonic two-body decays of single heavy baryons ΛQ\Lambda_{Q}, ΞQ\Xi_{Q}, and ΩQ\Omega_{Q} (Q=b,c)(Q=b,c) induced by WW emission in the covariant confined quark model, Phys. Rev. D 98, 074011 (2018).
  • (46) Y. K. Hsiao, L. Yang, C. C. Lih and S. Y. Tsai, Charmed Ωc\Omega_{c} weak decays into Ω\Omega in the light-front quark model, Eur. Phys. J. C 80, 1066(2020).
  • (47) C. H. Zeng, J. X. Lu, E. Wang, J. J. Xie and L. S. Geng, Theoretical study of the Ω(2012)\Omega(2012) state in the Ωc0π+Ω(2012)π+(K¯Ξ)\Omega_{c}^{0}\to\pi^{+}\Omega(2012)^{-}\to\pi^{+}(\bar{K}\Xi)^{-} and π+(K¯Ξπ)\pi^{+}(\bar{K}\Xi\pi)^{-} decays, Phys. Rev. D 102, 076009 (2020).
  • (48) P. Y. Niu, J. M. Richard, Q. Wang and Q. Zhao, Hadronic weak decays of Λc\Lambda_{c} in the quark model, Phys. Rev. D 102, 073005 (2020).
  • (49) P. Y. Niu, J. M. Richard, Q. Wang and Q. Zhao, Hyperon Weak Radiative Decay, Chin. Phys. C 45, 013101 (2021).
  • (50) P. Y. Niu, Q. Wang and Q. Zhao, Study of heavy quark conserving weak decays in the quark model, Phys. Lett. B 826, 136916 (2022).
  • (51) M. Pervin, W. Roberts and S. Capstick, Semileptonic decays of heavy lambda baryons in a quark model, Phys. Rev. C 72, 035201 (2005).
  • (52) H. Y. Cheng, Charmed Baryon Physics Circa 2021, Chin. J. Phys. 78, 324 (2022).
  • (53) G. Buchalla, A. J. Buras and M. E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68, 1125 (1996).
  • (54) G. Racah, Theory of Complex Spectra. II, Phys. Rev. 62, 438 (1942).
  • (55) R. Kokoski and N. Isgur, Meson Decays by Flux Tube Breaking, Phys. Rev. D 35, 907 (1987).
  • (56) P. Geiger and E. S. Swanson, Distinguishing among strong decay models, Phys. Rev. D 50, 6855-6862 (1994).
  • (57) S. Kumano and V. R. Pandharipande, Decay of Mesons in Flux Tube Quark Model, Phys. Rev. D 38, 146-151 (1988).
  • (58) S. Capstick and W. Roberts, Quark models of baryon masses and decays, Prog. Part. Nucl. Phys. 45, S241-S331 (2000).
  • (59) K. L. Wang, Y. X. Yao, X. H. Zhong and Q. Zhao, Strong and radiative decays of the low-lying SS- and PP-wave singly heavy baryons, Phys. Rev. D 96, 116016 (2017).
  • (60) L. Y. Xiao and X. H. Zhong, Ξ\Xi baryon strong decays in a chiral quark model, Phys. Rev. D 87, 094002 (2013).
  • (61) X. H. Zhong and Q. Zhao, Charmed baryon strong decays in a chiral quark model, Phys. Rev. D 77, 074008 (2008).
  • (62) Y. X. Yao, K. L. Wang and X. H. Zhong, Strong and radiative decays of the low-lying DD-wave singly heavy baryons, Phys. Rev. D 98, 076015 (2018).
  • (63) J. Yelton et al. [Belle], Measurement of branching fractions of hadronic decays of the Ωc0\Omega_{c}^{0} baryon, Phys. Rev. D 97, 032001 (2018).
  • (64) B. Aubert et al. [BaBar], Production and decay of Ωc0\Omega^{0}_{c}, Phys. Rev. Lett. 99, 062001 (2007).
  • (65) D. Cronin-Hennessy et al. [CLEO], Observation of the Ωc0\Omega^{0}_{c} charmed baryon at CLEO, Phys. Rev. Lett. 86, 3730 (2001).
  • (66) J. M. Link et al. [FOCUS], Measurement of the Ωc0\Omega^{0}_{c} lifetime, Phys. Lett. B 561, 41 (2003).
  • (67) M. Iori et al. [SELEX], Measurement of the Ωc0\Omega^{0}_{c} Lifetime, [arXiv:hep-ex/0701021 [hep-ex]].
  • (68) B. Aubert et al. [BaBar], A Study of production and decays of Ωc0\Omega^{0}_{c} baryons at BaBar, [arXiv:hep-ex/0507011 [hep-ex]].
  • (69) E. Solovieva, R. Chistov, I. Adachi, H. Aihara, K. Arinstein, T. Aushev, A. M. Bakich, V. Balagura, U. Bitenc and A. Bondar, et al. Study of Ωc0\Omega_{c}^{0} and Ωc0\Omega_{c}^{*0} Baryons at Belle, Phys. Lett. B 672, 1 (2009).
  • (70) H. Y. Cheng, Nonleptonic weak decays of bottom baryons, Phys. Rev. D 56, 2799 (1997) [erratum: Phys. Rev. D 99, 079901 (2019)].
  • (71) J. J. Xie and E. Oset, Role of the f1(1285)f_{1}(1285) state in the J/ψϕK¯KJ/\psi\to\phi\bar{K}K^{*} and J/ψϕf1(1285)J/\psi\to\phi f_{1}(1285) decays, Phys. Lett. B 753, 591 (2016).
  • (72) J. J. Xie and E. Oset, Search for the Σ\Sigma^{*} state in Λc+π+π0πΣ+\Lambda^{+}_{c}\to\pi^{+}\pi^{0}\pi^{-}\Sigma^{+} decay by triangle singularity, Phys. Lett. B 792, 450 (2019).
  • (73) X. Zhang and J. J. Xie, The three-pion decays of the a1(1260)a_{1}(1260), Commun. Theor. Phys. 70, 060 (2018).
  • (74) N. Ikeno, W. H. Liang, G. Toledo and E. Oset, “Interpretation of the Ωcπ+Ω(2012)π+(K¯Ξ)\Omega_{c}\to\pi^{+}\Omega(2012)\to\pi^{+}(\bar{K}\Xi) relative to Ωcπ+K¯Ξ\Omega_{c}\to\pi^{+}\bar{K}\Xi from the Ω(2012)\Omega(2012) molecular perspective, [arXiv:2204.13396 [hep-ph]].
  • (75) [Belle], Observation of Ω(2012)Ξ(1530)K¯\Omega(2012)^{-}\to\Xi(1530)\bar{K} and measurement of the effective couplings of Ω(2012)\Omega(2012)^{-} to Ξ(1530)K¯\Xi(1530)\bar{K} and ΞK¯\Xi\bar{K}, [arXiv:2207.03090 [hep-ex]].
  • (76) X. Hu and J. Ping, Analysis of Ω(2012)\Omega(2012) as a molecule in the chiral quark model, [arXiv:2207.05598 [hep-ph]].