This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Toric resolutions of strongly mixed weighted homogeneous polynomial germs of type J10J_{10}^{-}

Sachiko Saito In Commemoration of Professor Goo Ishikawa’s all years of hard work Department of Mathematics Education, Asahikawa Campus, Hokkaido University of Education, Asahikawa 070-8621, Hokkaido, Japan [email protected]
Abstract.

We consider toric resolutions of some strongly mixed weighted homogeneous polynomials of type J10J_{10}^{-}. We show that the strongly mixed weighted homogeneous polynomial f:=f2,2,1,2,1,4(k=3)f:=f_{2,2,1,2,1,4}\ (k=3) (see §3) has no mixed critical points on 2{\mathbb{C}^{*}}^{2} (Lemma 14), and moreover, show that the strict transform V~\tilde{V} of the mixed hypersurface singularity V:=f1(0)V:=f^{-1}(0) via the toric modification π^:X2\hat{\pi}:X\to\mathbb{C}^{2}, where we set f:=f2,2,1,2,1,4(k=3)f:=f_{2,2,1,2,1,4}\ (k=3), is not only a real analytic manifold outside of V~π^1(𝟎){\tilde{V}}\cap\hat{\pi}^{-1}(\boldsymbol{0}) but also a real analytic manifold as a germ of V~π^1(𝟎){\tilde{V}}\cap\hat{\pi}^{-1}(\boldsymbol{0}) (Theorem 15).

Key words and phrases:
J10J_{10}-singularity, mixed weighted homogeneous polynomial, Newton non-degenerate, toric modification, toric resolution
2020 Mathematics Subject Classification:
14P05, 32S45

1. Introduction

The famous Hilbert’s 16th problem (see [1], [18], [2] for example) asks the topology of nonsingular real algebraic curves of degree 66 on the real projective plane P2\mathbb{R}P^{2} and nonsingular real algebraic surfaces of degree 44 in the real projective space P3\mathbb{R}P^{3}. D.A. Gudkov completed the isotopic classification (the 56 isotopy types) of nonsingular real algebraic curves of degree 66 on P2\mathbb{R}P^{2} in 1971 (cf. [1]). Especially he proved that the number of the isotopy types of nonsingular real algebraic MM-curves of degree 66 on P2\mathbb{R}P^{2} is three. See Figure 1 below:

Refer to caption
Figure 1. The isotopy types of nonsingular real algebraic MM-curves of degree 66 on P2\mathbb{R}P^{2}

In the early 1970s, V. A. Rokhlin ([10], [11], [12]) reproved this Gudkov’s result by differential topology, which includes Smith theory on group actions, and some index theorems on 44-dimensional manifolds. From complex geometric point of view, double coverings of P2\mathbb{C}P^{2} branched along nonsingular algebraic sextic curves and nonsingular algebraic quartic surfaces in P3\mathbb{C}P^{3} are K3 surfaces. V. M. Kharlamov ([3]) started applying the K3 surface theory and the deformation theory to Hilbert’s 16th problem and obtained many remarkable results. Subsequently to Kharlamov’s approaches, V.V. Nikulin ([4]) reproved Gudkov’s isotopic classification of nonsingular real sextic curves by using the moduli spaces (period domains, or Hilbert schemes) of real projective K3 surfaces and his lattice (integral symmetric bilinear forms) theory in 1979.

In the 1980s, O. Ya. Viro ([15]) reconstructed Gudkov’s 56 isotopy types of nonsingular real algebraic curves of degree 66 by his patchworking method (see [17] for the details), where he used the real weighted homogeneous polynomials of type J10J_{10}^{-} with two variables:

f(z1,z2):=(z2z12)(z22z12)(z2kz12),f(z_{1},z_{2}):=(z_{2}-z_{1}^{2})(z_{2}-2z_{1}^{2})(z_{2}-kz_{1}^{2}),

where kk is a real number and k>2k>2, and their nonsingular perturbations. He got all the nonsingular perturbations of the weighted homogeneous polynomials of type J10J_{10}^{-} ([16]). Roughly speaking, he patchworked two appropriate nonsingular perturbations of some polynomials of type J10J_{10}^{-}, and projectified the patchworked polynomial of degree 66. Nonsingular perturbations whose zero sets (in 2\mathbb{R}^{2}) have many connected components are very useful for constructions of nonsingular real algebraic MM-curves of degree 66 on P2\mathbb{R}P^{2}. Thus, the weighted homogeneous polynomials of type J10J_{10}^{-} were found to be very important for the constructions of nonsingular real algebraic curves of degree 66 on P2\mathbb{R}P^{2}.

In this paper we consider mixed weighted homogeneous polynomials of type J10J_{10}^{-}, especially, strongly mixed weighted homogeneous polynomials of type J10J_{10}^{-}. It would be expected that there exist some relations between the topology of the real parts of (toric) resolutions of mixed weighted homogeneous polynomials with real coefficients and that of nonsingular perturbations of real weighted homogeneous polynomials. In this paper we eventually show that the strongly mixed weighted homogeneous polynomial (the polynomial (3.3) in §3):

f:=f2,2,1,2,1,4(k=3)f:=f_{2,2,1,2,1,4}\ (k=3)

has no mixed critical points on 2{\mathbb{C}^{*}}^{2} (Lemma 14), and moreover, show that the strict transform V~\tilde{V} of the mixed hypersurface singularity V:=f1(0)V:=f^{-1}(0) via the toric modification π^:X2\hat{\pi}:X\to\mathbb{C}^{2}, where we set f:=f2,2,1,2,1,4(k=3)f:=f_{2,2,1,2,1,4}\ (k=3), is not only a real analytic manifold outside of V~π^1(𝟎)\tilde{V}\cap\hat{\pi}^{-1}(\boldsymbol{0}) but also a real analytic manifold as a germ of V~π^1(𝟎)\tilde{V}\cap\hat{\pi}^{-1}(\boldsymbol{0}) (Theorem 15).


2. Basic terminology about mixed polynomials

Here we recall basic terminology about mixed polynomials.

2.1. Mixed functions and their radial Newton polyhedrons

Let UU be a neighborhood of 𝟎\boldsymbol{0} in n\mathbb{C}^{n} with U¯=U\bar{U}=U, where 𝒛¯\bar{\boldsymbol{z}} stands for the complex conjugate (z1¯,,zn¯)(\bar{z_{1}},\dots,\bar{z_{n}}) of 𝒛=(z1,,zn)n\boldsymbol{z}=(z_{1},\dots,z_{n})\in\mathbb{C}^{n}. Let F(𝒛,𝒘)F(\boldsymbol{z},\boldsymbol{w}) be a complex valued holomorphic function on U×UU\times U with complex 2n2n variables. We assume that F(𝟎,𝟎)=0F(\boldsymbol{0},\boldsymbol{0})=0 We define f:Uf:U\to\mathbb{C} by

f(𝒛,𝒛¯):=F(𝒛,𝒛¯).f(\boldsymbol{z},\bar{\boldsymbol{z}}):=F(\boldsymbol{z},\bar{\boldsymbol{z}}).

We call such a ff (or f(𝒛,𝒛¯)f(\boldsymbol{z},\bar{\boldsymbol{z}})) a mixed analytic function (or mixed function) on UU. Let F(𝒛,𝒘)=ν,μcν,μ𝒛ν𝒘μF(\boldsymbol{z},\boldsymbol{w})=\sum_{\nu,\mu}c_{\nu,\mu}\boldsymbol{z}^{\nu}\boldsymbol{w}^{\mu} be the Taylor expansion of FF at (𝟎,𝟎)(\boldsymbol{0},\boldsymbol{0}), where ν=(ν1,,νn),μ=(μ1,,μn),νi0,μj0,𝒛ν:=z1ν1znνn,𝒘μ:=w1μ1wnμn.\nu=(\nu_{1},\dots,\nu_{n}),\ \mu=(\mu_{1},\dots,\mu_{n}),\ \nu_{i}\geq 0,\ \mu_{j}\geq 0,\ \ \boldsymbol{z}^{\nu}:=z_{1}^{\nu_{1}}\cdots z_{n}^{\nu_{n}},\ \ \boldsymbol{w}^{\mu}:=w_{1}^{\mu_{1}}\cdots w_{n}^{\mu_{n}}. Then we have

f(𝒛,𝒛¯)=ν,μcν,μ𝒛ν𝒛¯μ.f(\boldsymbol{z},\bar{\boldsymbol{z}})=\sum_{\nu,\mu}c_{\nu,\mu}\boldsymbol{z}^{\nu}\bar{\boldsymbol{z}}^{\mu}. (2.1)

Note that the coefficients of the Taylor expansion (2.1) of a mixed function ff are unique. We call f(𝒛,𝒛¯)f(\boldsymbol{z},\bar{\boldsymbol{z}}) a mixed polynomial if the number of monomials cν,μ𝒛ν𝒛¯μ,cν,μ0c_{\nu,\mu}\boldsymbol{z}^{\nu}\bar{\boldsymbol{z}}^{\mu},\ c_{\nu,\mu}\neq 0 is finite.

Definition 1.

Let f(𝒛,𝒛¯)f(\boldsymbol{z},\bar{\boldsymbol{z}}) be a mixed function on U(n)U\ (\subset\mathbb{C}^{n}). We say 𝒂=(a1,,an)U\boldsymbol{a}=(a_{1},\dots,a_{n})\in U is a mixed critical point (or a mixed singular point) of ff if the rank of the differential map

(df)𝒂:T𝒂nTf(𝒂)Tf(𝒂)2(df)_{\boldsymbol{a}}:T_{\boldsymbol{a}}\mathbb{C}^{n}\to T_{f(\boldsymbol{a})}\mathbb{C}\cong T_{f(\boldsymbol{a})}\mathbb{R}^{2}

is less than 22. We say 𝒂U\boldsymbol{a}\in U is a mixed regular point of ff if it is not a mixed critical point of ff.

We set K+n:={(x1,,xn)Kn|xi0for everyi}K_{+}^{n}:=\{(x_{1},\dots,x_{n})\in K^{n}\ |\ x_{i}\geq 0\ \text{for\ every}\ i\}, where K=orK=\mathbb{R}\ \text{or}\ \mathbb{Z}.

For the germ (f,𝟎)(f,\boldsymbol{0}) (at 𝟎n\boldsymbol{0}\in\mathbb{C}^{n}) of a mixed function f(𝒛,𝒛¯)=ν,μcν,μ𝒛ν𝒛¯μf(\boldsymbol{z},\bar{\boldsymbol{z}})=\displaystyle\sum_{\nu,\mu}c_{\nu,\mu}\boldsymbol{z}^{\nu}\bar{\boldsymbol{z}}^{\mu},

Γ+(f)\Gamma_{+}(f)

is defined to be the convex hull of the set cν,μ0(ν+μ)++n\displaystyle\bigcup_{c_{\nu,\mu}\neq 0}(\nu+\mu)+\mathbb{R}_{+}^{n}. We call Γ+(f)\Gamma_{+}(f) the (radial) Newton polyhedron of (f,𝟎)(f,\boldsymbol{0}).

For a “weight vector” P=(p1,,pn)t(𝟎)+nP={}^{t}(p_{1},\dots,p_{n})\ (\neq\boldsymbol{0})\in\mathbb{Z}_{+}^{n}, we define d(P)d(P) to be the minimum value of the linear function P:Γ+(f),P(ξ):=j=1npjξj,P:\Gamma_{+}(f)\to\mathbb{R},\ P(\xi):=\displaystyle\sum_{j=1}^{n}p_{j}\xi_{j}, where ξ=(ξ1,,ξn)Γ+(f)\xi=(\xi_{1},\dots,\xi_{n})\in\Gamma_{+}(f). We set

Δ(P):={ξΓ+(f)|P(ξ)=d(P)},\Delta(P):=\{\xi\in\Gamma_{+}(f)\ |\ P(\xi)=d(P)\},

which we call a face of Γ+(f)\Gamma_{+}(f). Note that Δ(P)\Delta(P)\neq\emptyset by its definition.

We say a weight vector P=(p1,,pn)t+nP={}^{t}(p_{1},\dots,p_{n})\in\mathbb{Z}_{+}^{n} is strictly positive (P0P\gg 0) if pi>0p_{i}>0 for every i(=1,,n)i\ (=1,\dots,n). Note that a face Δ\Delta of Γ+(f)\Gamma_{+}(f) is compact if and only if Δ=Δ(P)\Delta=\Delta(P) for some strictly positive weight vector PP. For a compact face Δ(P)\Delta(P), we define

fΔ(P)(𝒛)(orfP(𝒛)):=μ+νΔ(P)cν,μ𝒛ν𝒛¯μ,f_{\Delta(P)}(\boldsymbol{z})\ (\text{or}\ f_{P}(\boldsymbol{z})\,):=\sum_{\mu+\nu\in\Delta(P)}c_{\nu,\mu}\boldsymbol{z}^{\nu}\bar{\boldsymbol{z}}^{\mu},

which we call a face function (or face polynomial) of a mixed function germ (f,𝟎)(f,\boldsymbol{0}) ([9], p.78).

Definition 2 ([9], p.79).

Let (f,𝟎)(f,\boldsymbol{0}) be the germ of a mixed function ff at 𝟎n\boldsymbol{0}\in\mathbb{C}^{n}. For I{1,,n}I\subset\{1,\dots,n\}, fIf^{I} denotes the restriction of ff on the coordinate subspace I:={𝒛|zj=0,jI}\mathbb{C}^{I}:=\{\boldsymbol{z}\,|\,z_{j}=0,\,j\notin I\}. A mixed function germ (f,𝟎)(f,\boldsymbol{0}) is called convenient if fI0f^{I}\not\equiv 0 for every I{1,2,,n}I\subset\{1,2,\cdots,n\} with II\neq\emptyset.

2.2. Radially and polar weighted homogeneous polynomials

Definition 3 ([9], p.182; see also [8]).
  • A mixed polynomial f(𝒛,𝒛¯)=ν,μcν,μ𝒛ν𝒛¯μf(\boldsymbol{z},\bar{\boldsymbol{z}})=\sum_{\nu,\mu}c_{\nu,\mu}\boldsymbol{z}^{\nu}\bar{\boldsymbol{z}}^{\mu} is called radially weighted homogeneous if there exists a weight vector P=(p1,,pn)t(𝟎)+nP={}^{t}(p_{1},\dots,p_{n})\ (\neq\boldsymbol{0})\in\mathbb{Z}_{+}^{n} and a positive integer dr(>0)d_{r}\ (>0) such that

    cν,μ0P(ν+μ)=i=1npi(νi+μi)=dr.c_{\nu,\mu}\neq 0\Longrightarrow P(\nu+\mu)=\sum_{i=1}^{n}p_{i}(\nu_{i}+\mu_{i})=d_{r}.

    We call drd_{r} the radial degree of ff, and define rdegPf:=dr.{\rm{rdeg}\/}_{P}f:=d_{r}.

  • A mixed polynomial f(𝒛,𝒛¯)=ν,μcν,μ𝒛ν𝒛¯μf(\boldsymbol{z},\bar{\boldsymbol{z}})=\sum_{\nu,\mu}c_{\nu,\mu}\boldsymbol{z}^{\nu}\bar{\boldsymbol{z}}^{\mu} is called polar weighted homogeneous if there exists a weight vector Q=(q1,,qn)t(𝟎)nQ={}^{t}(q_{1},\dots,q_{n})\ (\neq\boldsymbol{0})\in\mathbb{Z}^{n} and an integer dpd_{p} (>0, 0or<0>0,\ 0\ \text{or}\ <0) such that

    cν,μ0Q(νμ)=i=1nqi(νiμi)=dp.c_{\nu,\mu}\neq 0\Longrightarrow Q(\nu-\mu)=\sum_{i=1}^{n}q_{i}(\nu_{i}-\mu_{i})=d_{p}.

    We call dpd_{p} the polar degree of ff, and define pdegQf:=dp.{\rm{pdeg}\/}_{Q}f:=d_{p}.

Every face function fΔ(P)(𝒛)f_{\Delta(P)}(\boldsymbol{z}), where PP is strictly positive, of a mixed function germ (f,𝟎)(f,\boldsymbol{0}) is a radially weighted homogeneous polynomial of positive radial degree d(P)d(P) with respect to the weight vector PP.

Example 4 ([9], Example 9.17).

f(𝒛,𝒛¯):=z12z1¯z2z2¯2f(\boldsymbol{z},\bar{\boldsymbol{z}}):=z_{1}^{2}\bar{z_{1}}-z_{2}\bar{z_{2}}^{2} is radially weighted homogeneous with respect to P=(1,1)tP={}^{t}(1,1) and polar weighted homogeneous with respect to Q=(1,1)tQ={}^{t}(1,-1).

For radially and polar weighted homogeneous polynomials, we have the following basic facts:

Lemma 5 (cf.[6], [7]).

Let f(𝐳,𝐳¯)f(\boldsymbol{z},\bar{\boldsymbol{z}}) be a mixed polynomial. We have the following.

  • Let P=(p1,,pn)t(𝟎)+nP={}^{t}(p_{1},\dots,p_{n})\ (\neq\boldsymbol{0})\in\mathbb{Z}_{+}^{n} be a weight vector and drd_{r} be a positive integer. For a positive real number tt and 𝒛n\boldsymbol{z}\in\mathbb{C}^{n}, we define

    t𝒛:=(tp1z1,,tpnzn).t\circ\boldsymbol{z}:=(t^{p_{1}}z_{1},\dots,t^{p_{n}}z_{n}).

    Then, f(t𝒛)=tdrf(𝒛)f(t\circ\boldsymbol{z})=t^{d_{r}}f(\boldsymbol{z}) for every t>0t>0 and every 𝒛n\boldsymbol{z}\in\mathbb{C}^{n} if and only if “cν,μ0P(ν+μ)=drc_{\nu,\mu}\neq 0\Rightarrow P(\nu+\mu)=d_{r}” holds.

  • Let Q=(q1,,qn)t(𝟎)nQ={}^{t}(q_{1},\dots,q_{n})\ (\neq\boldsymbol{0})\in\mathbb{R}^{n} be a weight vector and dpd_{p} be an integer. For a real number θ\theta and 𝒛n\boldsymbol{z}\in\mathbb{C}^{n}, we define

    θ𝒛:=(eiq1θz1,,eiqnθzn).\theta\circ\boldsymbol{z}:=(e^{iq_{1}\theta}z_{1},\dots,e^{iq_{n}\theta}z_{n}).

    Then, f(θ𝒛)=eidpθf(𝒛)f(\theta\circ\boldsymbol{z})=e^{id_{p}\theta}f(\boldsymbol{z}) for every θ\theta\in\mathbb{R} and every 𝒛n\boldsymbol{z}\in\mathbb{C}^{n} if and only if “cν,μ0Q(νμ)=dpc_{\nu,\mu}\neq 0\Rightarrow Q(\nu-\mu)=d_{p}” holds. \Box

Proposition 6 (Euler equalities, [9]).

Let f(𝐳,𝐳¯)=ν,μcν,μ𝐳ν𝐳¯μf(\boldsymbol{z},\overline{\boldsymbol{z}})=\sum_{\nu,\mu}c_{\nu,\mu}\boldsymbol{z}^{\nu}\overline{\boldsymbol{z}}^{\mu} be a mixed polynomial.

(R):

If f(𝒛,𝒛¯)f(\boldsymbol{z},\overline{\boldsymbol{z}}) is a radially weighted homogeneous polynomial of radial degree dr(>0)d_{r}\ (>0) with respect to a weight vector P=(p1,,pn)tP={}^{t}\!(p_{1},\dots,p_{n}), then we have

j=1npj(zjfzj+zj¯fzj¯)=drf(𝒛,𝒛¯).\sum_{j=1}^{n}p_{j}\left(z_{j}\frac{\partial f}{\partial z_{j}}+\overline{z_{j}}\frac{\partial f}{\partial\overline{z_{j}}}\right)=d_{r}f(\boldsymbol{z},\overline{\boldsymbol{z}}). (2.2)
(P):

If f(𝒛,𝒛¯)f(\boldsymbol{z},\overline{\boldsymbol{z}}) is a polar weighted homogeneous polynomial of polar degree dpd_{p} with respect to a weight vector Q=(q1,,qn)tQ={}^{t}\!(q_{1},\dots,q_{n}), then we have

j=1nqj(zjfzjzj¯fzj¯)=dpf(𝒛,𝒛¯).\sum_{j=1}^{n}q_{j}\left(z_{j}\frac{\partial f}{\partial z_{j}}-\overline{z_{j}}\frac{\partial f}{\partial\overline{z_{j}}}\right)=d_{p}f(\boldsymbol{z},\overline{\boldsymbol{z}}).\ \ \Box (2.3)
Definition 7 (mixed weighted homogeneous polynomial, [9], pp.182–184).

We say a mixed polynomial f(𝒛,𝒛¯)f(\boldsymbol{z},\bar{\boldsymbol{z}}) is a mixed weighted homogeneous polynomial if it is both radially and polar weighted homogeneous. Here, the corresponding weight vectors PP and QQ are possibly different. We say a mixed weighted homogeneous polynomial f(𝒛,𝒛¯)f(\boldsymbol{z},\bar{\boldsymbol{z}}) is a strongly mixed weighted homogeneous polynomial if ff is radially and polar weighted homogeneous with respect to the same weight vector PP. Furthermore, a mixed weighted homogeneous polynomial ff is called a strongly polar positive mixed weighted homogeneous polynomial with respect to a weight vector PP if ff is radially and polar weighted homogeneous with respect to the same weight vector PP and pdegPf>0{\rm{pdeg}\/}_{P}f>0.

Definition 8 (cf.[9],Definition 9.18; [8],p.174).

Let (f,𝟎)(f,\boldsymbol{0}) be a mixed function germ at 𝟎n\boldsymbol{0}\in\mathbb{C}^{n}. The germ (f,𝟎)(f,\boldsymbol{0}) of a mixed function f(𝒛,𝒛¯)f(\boldsymbol{z},\bar{\boldsymbol{z}}) at 𝟎n\boldsymbol{0}\in\mathbb{C}^{n} is defined to be of strongly polar positive mixed weighted homogeneous face type if for every compact face 111 In [8], a convenient (Definition 2) mixed function germ (f(𝒛,𝒛¯),𝟎)(f(\boldsymbol{z},\bar{\boldsymbol{z}}),\boldsymbol{0}) is defined to be of strongly polar positive mixed weighted homogeneous face type if the face function fΔ(𝒛,𝒛¯)f_{\Delta}(\boldsymbol{z},\bar{\boldsymbol{z}}) is a strongly polar positive mixed weighted homogeneous polynomial for every (n1)(n-1)-dimensional face. Besed on this definition, Proposition 10 of [8] asserts that the face function fΔ(P)f_{\Delta(P)} is also a strongly polar positive mixed weighted homogeneous polynomial with respect to PP for every weight vector PP when (f,𝟎)(f,\boldsymbol{0}) is a convenient mixed function germ of strongly polar positive mixed weighted homogeneous face type in the sense of [8]. Δ\Delta, the face function fΔ(𝒛,𝒛¯)f_{\Delta}(\boldsymbol{z},\bar{\boldsymbol{z}}) is a strongly polar positive mixed weighted homogeneous polynomial (Definition 7) with respect to some strictly positive weight vector PP with Δ=Δ(P)\Delta=\Delta(P).

2.3. Newton non-degeneracy and Strong Newton non-degeneracy

Definition 9 ([7], p.6, Definition 3; [9], p.80 and pp.181–182).

Let (f,𝟎)(f,\boldsymbol{0}) be the germ of a mixed function ff at 𝟎n\boldsymbol{0}\in\mathbb{C}^{n}.

  1. (1)

    We say (f,𝟎)(f,\boldsymbol{0}) is Newton non-degenerate over a compact face Δ\Delta if 0 is not a mixed critical value of the face function fΔ:nf_{\Delta}:{\mathbb{C}^{*}}^{n}\to\mathbb{C}. (In particular, if fΔ1(0)n=f_{\Delta}^{-1}(0)\cap{\mathbb{C}^{*}}^{n}=\emptyset, then 0 is not a mixed critical value of the face function fΔ:nf_{\Delta}:{\mathbb{C}^{*}}^{n}\to\mathbb{C}.)

  2. (2)

    Let Δ\Delta be a compact face with dimΔ1\dim\Delta\geq 1. We say (f,𝟎)(f,\boldsymbol{0}) is strongly Newton non-degenerate over Δ\Delta if the face function fΔ:nf_{\Delta}:{\mathbb{C}^{*}}^{n}\to\mathbb{C} has no mixed critical points and fΔ:nf_{\Delta}:{\mathbb{C}^{*}}^{n}\to\mathbb{C} is surjective onto \mathbb{C}.

  3. (3)

    Let Δ\Delta be a compact face with dimΔ=0\dim\Delta=0, that is, Δ\Delta is a vertex of Γ+(f)\Gamma_{+}(f). We say (f,𝟎)(f,\boldsymbol{0}) is strongly Newton non-degenerate over Δ\Delta if the face function fΔ:nf_{\Delta}:{\mathbb{C}^{*}}^{n}\to\mathbb{C} has no mixed critical points.

Definition 10 ([9], p.80 and p.182).

We say the germ (f,𝟎)(f,\boldsymbol{0}) of a mixed function ff at 𝟎n\boldsymbol{0}\in\mathbb{C}^{n} is Newton non-degenerate (respectively, strongly Newton non-degenerate) if (f,𝟎)(f,\boldsymbol{0}) is Newton non-degenerate (respectively, strongly Newton non-degenerate) over every compact face Δ\Delta.

Example 11 ([9], 8.3.1).

The germ of the mixed homogeneous polynomial ρ(𝐳,𝐳¯)=j=1nzjzj¯=j=1n|zj|2\rho(\boldsymbol{z},\overline{\boldsymbol{z}})=\sum_{j=1}^{n}z_{j}\overline{z_{j}}=\sum_{j=1}^{n}|z_{j}|^{2} of degree 22 at 𝟎n\boldsymbol{0}\in\mathbb{C}^{n} is Newton non-degenerate, but not strongly Newton non-degenerate. Actually, for every compact face Δ\Delta, we have ρΔ1(0)n={\rho_{\Delta}}^{-1}(0)\cap\mathbb{C}^{*n}=\emptyset. However, since ρΔ(n)\rho_{\Delta}(\mathbb{C}^{n})\subset\mathbb{R}, every point in n\mathbb{C}^{*n} is a mixed critical point. Hence, ρ\rho is not strongly Newton non-degenerate.

Note that if f1(0)nf^{-1}(0)\cap{\mathbb{C}^{*}}^{n}\neq\emptyset, then f:nf:{\mathbb{C}^{*}}^{n}\to\mathbb{C} is surjective. Namely, in this case, Newton non-degeneracy over a compact face Δ(P)\Delta(P) implies strong Newton non-degeneracy over Δ(P)\Delta(P). For more precise statements, see Proposition 12 below:

Proposition 12 (Remark 4 in [7]; and also [13], [14]).
  • Let f(𝒛)f(\boldsymbol{z}) be a holomorphic weighted homogeneous polynomial of positive degree with respect to a strictly positive weight vector PP. (Then, f=fΔ(P)f=f_{\Delta(P)}.)

    (i) Suppose that ff is Newton non-degenerate over Δ(P)\Delta(P), namely, 0 is not a critical value of fΔ(P)=f:nf_{\Delta(P)}=f:{\mathbb{C}^{*}}^{n}\to\mathbb{C}. Then fΔ(P)=f:nf_{\Delta(P)}=f:{\mathbb{C}^{*}}^{n}\to\mathbb{C} has no critical point. Hence, with (ii) below, ff is strongly Newton non-degenerate over Δ(P)\Delta(P).

    (ii) Suppose that dimΔ(P)1\dim\Delta(P)\geq 1, namely, f=fΔ(P)f=f_{\Delta(P)} has at least two monomials. Then fΔ(P)=f:nf_{\Delta(P)}=f:{\mathbb{C}^{*}}^{n}\to\mathbb{C} is surjective.

  • Let f(𝒛,𝒛¯)f(\boldsymbol{z},\bar{\boldsymbol{z}}) be a mixed weighted homogeneous polynomial (Definition 7) with respect to a radial weight vector P(0)P\ (\gg 0) and a polar weight vector QQ.

    (iii) Suppose that (f,𝟎)(f,\boldsymbol{0}) is Newton non-degenerate over a compact face Δ(P)\Delta(P) and the face function fΔ(P)=ff_{\Delta(P)}=f is a polar weighted homogeneous polynomial of non-zero polar degree with respect to the polar weight vector QQ. Then f:nf:{\mathbb{C}^{*}}^{n}\to\mathbb{C} has no mixed critical points.

    (iv) In addition to (iii), we assume that f1(0)nf^{-1}(0)\cap{\mathbb{C}^{*}}^{n}\neq\emptyset. Then f:nf:{\mathbb{C}^{*}}^{n}\to\mathbb{C} is surjective. Hence, with (iii), in this case, Newton non-degeneracy over a compact face Δ(P)\Delta(P) implies strong Newton non-degeneracy over Δ(P)\Delta(P). \Box


3. Mixed weighted homogeneous polynomials of type J10J_{10}^{-}

We now consider the weighted homogeneous polynomials of type J10J_{10}^{-}:

f(z1,z2):=(z2z12)(z22z12)(z2kz12)=z23(k+3)z12z22+(3k+2)z14z22kz16,\begin{array}[]{ccl}f(z_{1},z_{2})&:=&(z_{2}-z_{1}^{2})(z_{2}-2z_{1}^{2})(z_{2}-kz_{1}^{2})\\ &=&z_{2}^{3}-(k+3)z_{1}^{2}z_{2}^{2}+(3k+2)z_{1}^{4}z_{2}-2kz_{1}^{6},\end{array} (3.1)

where we assume that kk\in\mathbb{R} and k>2k>2. Note that these polynomials are weighted homogeneous with respect to the weight vector

P:=(1,2)tP:={}^{t}(1,2)

of degree 66 with real coefficients.

Based on the weighted homogeneous polynomials (3.1), let us consider the radially weighted homogeneous polynomials with respect to the radial weight vector P=(1,2)tP={}^{t}(1,2) of radial degree 66:

fa,b,c,d,e,f:=z2az¯23a(k+3)z1bz¯12bz2cz¯22c+(3k+2)z1dz¯14dz2ez¯21e2kz1fz¯16f,f_{a,b,c,d,e,\mathrm{f}}:=z_{2}^{a}\bar{z}_{2}^{3-a}-(k+3)z_{1}^{b}\bar{z}_{1}^{2-b}z_{2}^{c}\bar{z}_{2}^{2-c}+(3k+2)z_{1}^{d}\bar{z}_{1}^{4-d}z_{2}^{e}\bar{z}_{2}^{1-e}-2kz_{1}^{\mathrm{f}}\bar{z}_{1}^{6-\mathrm{f}}, (3.2)

where a,b,c,d,e,fa,b,c,d,e,\mathrm{f} are integers with 0a3, 0b,c2, 0d4, 0e10\leq a\leq 3,\ 0\leq b,c\leq 2,\ 0\leq d\leq 4,\ 0\leq e\leq 1 and 0f60\leq\mathrm{f}\leq 6.

Obviously fa,b,c,d,e,ff_{a,b,c,d,e,\mathrm{f}} are convenient (Definition 2).

3.1. The radial Newton polyhedron, the dual Newton diagram and the regular simplicial cone subdivision

The radial Newton polyhedron of the mixed function germ fa,b,c,d,e,ff_{a,b,c,d,e,\mathrm{f}} at 𝟎\boldsymbol{0} is as follows:

011223344556677011223344ν2+μ2\nu_{2}+\mu_{2}ν1+μ1\nu_{1}+\mu_{1}
Figure 2. The radial Newton polyhedron of fa,b,c,d,e,ff_{a,b,c,d,e,\mathrm{f}}

The dual Newton diagram Γ(f)\Gamma^{*}(f) of the mixed function germ f:=fa,b,c,d,e,ff:=f_{a,b,c,d,e,\mathrm{f}} at 𝟎\boldsymbol{0} is as in the Figure 3, where we set E1=(1,0)t,P=(1,2)t,E2=(0,1)tE_{1}={}^{t}(1,0),\ P={}^{t}(1,2),\ \ E_{2}={}^{t}(0,1).

Refer to caption
Figure 3. The dual Newton diagram Γ(f)\Gamma^{*}(f)

Adding the vertex S:=t(1,1)S:=\ ^{t}(1,1) to Γ(f)\Gamma^{*}(f), we obtain a regular simplicial cone subdivision (see [9], §5.6; or [5] for the definition) Σ\Sigma^{*} of N+N^{+}_{\mathbb{R}} which is admissible for Γ(f)\Gamma^{*}(f).

Refer to caption
Figure 4. The regular simplicial subdivision Σ\Sigma^{*} which is admissible for Γ(f)\Gamma^{*}(f).
Definition 13 ([9], p.98).

We set Ej:=(0,,0,1j,0,,0)t(n)E_{j}:={}^{t}(\underbrace{0,\dots,0,1}_{j},0,\dots,0)\ (\in\mathbb{Z}^{n}) for every j(=1,,n)j\ (=1,\dots,n), and

EJ:=Cone(Ej1,,Ejk),E_{J}:=\operatorname{Cone}(E_{j_{1}},\dots,E_{j_{k}}),

where J:={j1,,jk}({1,,n})J:=\{j_{1},\dots,j_{k}\}\ (\subsetneqq\{1,\dots,n\}). Let (f,𝟎)(f,\boldsymbol{0}) be the germ of a mixed function ff at 𝟎n\boldsymbol{0}\in\mathbb{C}^{n}. For I{1,,n}I\subset\{1,\dots,n\}, fIf^{I} denotes the restriction of ff on the coordinate subspace I:={𝒛|zj=0,jI}\mathbb{C}^{I}:=\{\boldsymbol{z}\,|\,z_{j}=0,\,j\notin I\}. Let Σ\Sigma^{*} be a regular simplicial cone subdivision which is admissible for Γ(f)\Gamma^{*}(f). We say Σ\Sigma^{*} is convenient if for every II with fI0f^{I}\not\equiv 0, the cone EIcE_{I^{c}} is contained in Σ\Sigma^{*}.

Then our Σ\Sigma^{*} (Figure 4) is convenient in the sense of Definition 13, namely, the cone EIcE_{I^{c}} is contained in Σ\Sigma^{*} for every II with fI0f^{I}\not\equiv 0.


We moreover set T:=(1,3)tT:={}^{t}(1,3). Then, all the compact faces of the radial Newton polyhedron of the germ (fa,b,c,d,e,f,𝟎)(f_{a,b,c,d,e,\mathrm{f}},\boldsymbol{0}) are

Δ(P),Δ(S),andΔ(T),\Delta(P),\ \ \Delta(S),\ \text{and}\ \Delta(T),

and hence, the face functions of (f:=fa,b,c,d,e,f,𝟎)(f:=f_{a,b,c,d,e,\mathrm{f}},\boldsymbol{0}) are

fP=fa,b,c,d,e,f,fS=z2az¯23aandfT=2kz1fz¯16f.f_{P}=f_{a,b,c,d,e,\mathrm{f}},\ f_{S}=z_{2}^{a}\bar{z}_{2}^{3-a}\ \text{and}\ f_{T}=-2kz_{1}^{\mathrm{f}}\bar{z}_{1}^{6-\mathrm{f}}.

3.2. Strongly mixed weighted homogeneous polynomials of type J10J_{10}^{-}

The radially weighted homogeneous polynomials fa,b,c,d,e,ff_{a,b,c,d,e,\mathrm{f}} are strongly mixed weighted homogeneous with respect to PP (Definition 7) if and only if (a,b,c,d,e,f)(a,b,c,d,e,\mathrm{f}) are in the following 55 cases:

aa bb cc dd ee f\mathrm{f} polar degree
I 3 2 2 4 1 6 6 holomorphic case
II 2 2 1 4 0 4 2
III 2 0 2 4 0 4 2
IV 2 2 1 2 1 4 2
V 2 0 2 2 1 4 2

In the cases II \sim V (a=2,f=4a=2,\ \mathrm{f}=4), the radial degrees of f:=f2,b,c,d,e,4f:=f_{2,b,c,d,e,4} are 66, and the polar degrees of those are 22. For their 0-dimensional face functions fS=z22z¯2f_{S}=z_{2}^{2}\bar{z}_{2} and fT=2kz14z¯12f_{T}=-2kz_{1}^{4}\bar{z}_{1}^{2}, we have

rdegSfS=10+1(2+1)=3,pdegSfS=10+1(21)=1,{\rm{rdeg}\/}_{S}f_{S}=1\cdot 0+1\cdot(2+1)=3,\ \ \ {\rm{pdeg}\/}_{S}f_{S}=1\cdot 0+1\cdot(2-1)=1,
rdegTfT=1(4+2)+30=6,andpdegTfT=1(42)+30=2.{\rm{rdeg}\/}_{T}f_{T}=1\cdot(4+2)+3\cdot 0=6,\ \text{and}\ {\rm{pdeg}\/}_{T}f_{T}=1\cdot(4-2)+3\cdot 0=2.

Hence, remark that the germs (f2,b,c,d,e,4,𝟎)(f_{2,b,c,d,e,4},\boldsymbol{0}) (in the cases II \sim V) are of strongly polar positive mixed weighted homogeneous face type (Definition 8).

3.3. Strong Newton non-degeneracy

We now argue about the Newton degeneracy of the strongly mixed weighted homogeneous polynomials f2,b,c,d,e,4f_{2,b,c,d,e,4} in the cases II \sim V. Especially let us investigate the case IV with k=3k=3:

f2,2,1,2,1,4(k=3)=z22z¯26z12z2z¯2+11z12z¯12z26z14z¯12.f_{2,2,1,2,1,4}\ (k=3)=z_{2}^{2}\bar{z}_{2}-6z_{1}^{2}z_{2}\bar{z}_{2}+11z_{1}^{2}\bar{z}_{1}^{2}z_{2}-6z_{1}^{4}\bar{z}_{1}^{2}. (3.3)
Lemma 14.

We have the following.

  1. (1)

    f:=f2,2,1,2,1,4:(k=3)f:=f_{2,2,1,2,1,4}:\ (k=3) has no mixed critical points on 2{\mathbb{C}^{*}}^{2}.

  2. (2)

    f:2f:{\mathbb{C}^{*}}^{2}\to\mathbb{C} is surjective.

  3. (3)

    The 0-dimensional face functions fS,fTf_{S},\ f_{T} of (f,𝟎)(f,\boldsymbol{0}) also have has no mixed critical points on 2{\mathbb{C}^{*}}^{2}.

Thus, the germ (f,𝟎)(f,\boldsymbol{0}) is strongly Newton non-degenerate (Definition 10).

Proof.

We first prove the assertion (1). We have

fz1=12z1z2z¯2+22z1z¯12z224z13z¯12,fz¯1=22z12z¯1z212z14z¯1=2z12z¯1(11z26z12),fz2=2z2z¯26z12z¯2+11z12z¯12=2|z2|2+z12(11z¯126z¯2),fz¯2=z226z12z2=z2(z26z12).\begin{array}[]{ccl}\vspace{0.3cm}\displaystyle\frac{\partial f}{\partial z_{1}}&=&-12z_{1}z_{2}\bar{z}_{2}+22z_{1}\bar{z}_{1}^{2}z_{2}-24z_{1}^{3}\bar{z}_{1}^{2},\\ \displaystyle\frac{\partial f}{\partial\bar{z}_{1}}&=&22z_{1}^{2}\bar{z}_{1}z_{2}-12z_{1}^{4}\bar{z}_{1}\\ &=&2z_{1}^{2}\bar{z}_{1}(11z_{2}-6z_{1}^{2}),\\ \displaystyle\frac{\partial f}{\partial z_{2}}&=&2z_{2}\bar{z}_{2}-6z_{1}^{2}\bar{z}_{2}+11z_{1}^{2}\bar{z}_{1}^{2}\\ &=&2|z_{2}|^{2}+z_{1}^{2}(11\bar{z}_{1}^{2}-6\bar{z}_{2}),\\ \displaystyle\frac{\partial f}{\partial\bar{z}_{2}}&=&z_{2}^{2}-6z_{1}^{2}z_{2}\\ &=&z_{2}(z_{2}-6z_{1}^{2}).\end{array} (3.4)

By Lemma 5, we have f(tz1,t2z2)=r6e2iθf(z1,z2)f(tz_{1},t^{2}z_{2})=r^{6}e^{2i\theta}f(z_{1},z_{2}) for every t=reiθ(),r>0,θt=re^{i\theta}\ (\in\mathbb{C}^{*}),r>0,\theta\in\mathbb{R} since dr=6d_{r}=6 (radial degree) and dp=2d_{p}=2 (polar degree). Hence, if f(z1,z2)=0f(z_{1},z_{2})=0, then we have

f(tz1,t2z2)=0f(tz_{1},t^{2}z_{2})=0 (3.5)

for all tt\in\mathbb{C}^{*}. By Proposition 6, we have

6+22f(z1,z2)=z1fz1+2z2fz2\frac{6+2}{2}f(z_{1},z_{2})=z_{1}\frac{\partial f}{\partial z_{1}}+2z_{2}\frac{\partial f}{\partial z_{2}}

and

622f(z1,z2)=z¯1fz¯1+2z¯2fz¯2.\frac{6-2}{2}f(z_{1},z_{2})=\bar{z}_{1}\frac{\partial f}{\partial\bar{z}_{1}}+2\bar{z}_{2}\frac{\partial f}{\partial\bar{z}_{2}}.

Suppose that 𝒂=(a1,a2)2\boldsymbol{a}=(a_{1},a_{2})\in{\mathbb{C}^{*}}^{2} is a mixed critical point of ff. Recall that the following two conditions are equivalent (Proposition 1 in [6]):

  1. (1)

    𝒂=(a1,a2)(2)\boldsymbol{a}=(a_{1},a_{2})\ (\in\mathbb{C}^{2}) is a mixed critical point of ff.

  2. (2)

    There exists a complex number α\alpha with |α|=1|\alpha|=1 which satisfies

    (fz1(𝒂)¯,fz2(𝒂)¯)=α(fz1¯(𝒂),fz2¯(𝒂)).\left(\overline{\frac{\partial f}{z_{1}}(\boldsymbol{a})},\ \overline{\frac{\partial f}{z_{2}}(\boldsymbol{a})}\right)=\alpha\left(\frac{\partial f}{\partial\bar{z_{1}}}(\boldsymbol{a}),\ \frac{\partial f}{\partial\bar{z_{2}}}(\boldsymbol{a})\right).

We have

4f(a1,a2)¯=a¯1fz1(a1,a2)¯+2a¯2fz2(a1,a2)¯=a¯1αfz1¯(a1,a2)+2a¯2αfz2¯(a1,a2)=α(a¯1fz1¯(a1,a2)+2a¯2fz2¯(a1,a2))\begin{array}[]{ccl}\vspace{0.2cm}4\overline{f(a_{1},a_{2})}&=&\bar{a}_{1}\overline{\frac{\partial f}{\partial z_{1}}(a_{1},a_{2})}+2\bar{a}_{2}\overline{\frac{\partial f}{\partial z_{2}}(a_{1},a_{2})}\\ \vspace{0.2cm}\hfil&=&\bar{a}_{1}\alpha\frac{\partial f}{\partial\bar{z_{1}}}(a_{1},a_{2})+2\bar{a}_{2}\alpha\frac{\partial f}{\partial\bar{z_{2}}}(a_{1},a_{2})\\ &=&\alpha(\bar{a}_{1}\frac{\partial f}{\partial\bar{z_{1}}}(a_{1},a_{2})+2\bar{a}_{2}\frac{\partial f}{\partial\bar{z_{2}}}(a_{1},a_{2}))\end{array}

and

2f(a1,a2)=a¯1fz¯1(a1,a2)+2a¯2fz¯2(a1,a2).2f(a_{1},a_{2})=\bar{a}_{1}\frac{\partial f}{\partial\bar{z}_{1}}(a_{1},a_{2})+2\bar{a}_{2}\frac{\partial f}{\partial\bar{z}_{2}}(a_{1},a_{2}).

Thus we have 4f(a1,a2)¯=2αf(a1,a2)4\overline{f(a_{1},a_{2})}=2\alpha f(a_{1},a_{2}) and 4|f(a1,a2)|=2|α||f(a1,a2)|=2|f(a1,a2)|.4|f(a_{1},a_{2})|=2|\alpha||f(a_{1},a_{2})|=2|f(a_{1},a_{2})|. Hence, it is concluded that f(a1,a2)=0f(a_{1},a_{2})=0. Thus we see that every mixed critical point of ff is a zero of that.

Now we show that ff has no mixed critical points on 2{\mathbb{C}^{*}}^{2}. It is sufficient to prove that ff has no mixed critical points in f1(0)2f^{-1}(0)\cap{\mathbb{C}^{*}}^{2}, namely, ff is Newton non-degenerate over Δ(P)\Delta(P).

Suppose that (a1,a2)2(a_{1},a_{2})\in{\mathbb{C}^{*}}^{2} and f(a1,a2)=0f(a_{1},a_{2})=0. If |fz1(a1,a2)||fz1¯(a1,a2)||\frac{\partial f}{\partial z_{1}}(a_{1},a_{2})|\neq|\frac{\partial f}{\partial\bar{z_{1}}}(a_{1},a_{2})| or |fz2(a1,a2)||fz2¯(a1,a2)||\frac{\partial f}{\partial z_{2}}(a_{1},a_{2})|\neq|\frac{\partial f}{\partial\bar{z_{2}}}(a_{1},a_{2})|, then (a1,a2)(a_{1},a_{2}) is not a mixed critical point. Thus we may moreover suppose that |fz1(a1,a2)|=|fz1¯(a1,a2)||\frac{\partial f}{\partial z_{1}}(a_{1},a_{2})|=|\frac{\partial f}{\partial\bar{z_{1}}}(a_{1},a_{2})| and |fz2(a1,a2)|=|fz2¯(a1,a2)||\frac{\partial f}{\partial z_{2}}(a_{1},a_{2})|=|\frac{\partial f}{\partial\bar{z_{2}}}(a_{1},a_{2})|. Then we have

fz1(a1,a2)¯=α1fz1¯(a1,a2)andfz2(a1,a2)¯=α2fz2¯(a1,a2)\overline{\frac{\partial f}{\partial z_{1}}(a_{1},a_{2})}=\alpha_{1}\frac{\partial f}{\partial\bar{z_{1}}}(a_{1},a_{2})\ \ \ \text{and}\ \ \ \overline{\frac{\partial f}{\partial z_{2}}(a_{1},a_{2})}=\alpha_{2}\frac{\partial f}{\partial\bar{z_{2}}}(a_{1},a_{2}) (3.6)

for some α1,α2\alpha_{1},\alpha_{2}\in\mathbb{C} with |α1|=|α2|=1|\alpha_{1}|=|\alpha_{2}|=1. On the other hand, by (3.5), we have f(ta1,t2a2)=0f(ta_{1},t^{2}a_{2})=0 for all tt\in\mathbb{C}^{*}. We set 𝐜(t)=(c1(t),c2(t)):=(ta1,t2a2)\mathbf{c}(t)=(c_{1}(t),c_{2}(t)):=(ta_{1},t^{2}a_{2}). Then, by the chain rules for Wirtinger derivative, we have

ddt(f𝐜)(t)=j=12(fzj𝐜)(t)dcjdt(t)+j=12(fz¯j𝐜)(t)dcj¯dt(t)=j=12(fzj𝐜)(t)dcjdt(t).\begin{array}[]{ccl}\vspace{0.2cm}\frac{d}{dt}(f\circ\mathbf{c})(t)&=&\sum_{j=1}^{2}(\frac{\partial f}{\partial z_{j}}\circ\mathbf{c})(t)\frac{dc_{j}}{dt}(t)+\sum_{j=1}^{2}(\frac{\partial f}{\partial\bar{z}_{j}}\circ\mathbf{c})(t)\frac{d\overline{c_{j}}}{dt}(t)\\ &=&\sum_{j=1}^{2}(\frac{\partial f}{\partial z_{j}}\circ\mathbf{c})(t)\frac{dc_{j}}{dt}(t).\end{array}

Hence, we have

fz1(ta1,t2a2)dc1dt(t)+fz2(ta1,t2a2)dc2dt(t)=0.\frac{\partial f}{\partial z_{1}}(ta_{1},t^{2}a_{2})\frac{dc_{1}}{dt}(t)+\frac{\partial f}{\partial z_{2}}(ta_{1},t^{2}a_{2})\frac{dc_{2}}{dt}(t)=0.

Setting t=1t=1, we have

a1fz1(a1,a2)+2a2fz2(a1,a2)=0.a_{1}\frac{\partial f}{\partial z_{1}}(a_{1},a_{2})+2a_{2}\frac{\partial f}{\partial z_{2}}(a_{1},a_{2})=0.

By (3.6), we have

a¯1α1fz1¯(a1,a2)+2a¯2α2fz2¯(a1,a2)=0.\bar{a}_{1}\alpha_{1}\frac{\partial f}{\partial\bar{z_{1}}}(a_{1},a_{2})+2\bar{a}_{2}\alpha_{2}\frac{\partial f}{\partial\bar{z_{2}}}(a_{1},a_{2})=0. (3.7)

We now show that such (a1,a2)(a_{1},a_{2}) is not a mixed critical point. It is sufficient to prove that α1α2\alpha_{1}\neq\alpha_{2}. Suppose that α1=α2\alpha_{1}=\alpha_{2}. We have

a¯1fz1¯(a1,a2)+2a¯2fz2¯(a1,a2)=0,\bar{a}_{1}\frac{\partial f}{\partial\bar{z_{1}}}(a_{1},a_{2})+2\bar{a}_{2}\frac{\partial f}{\partial\bar{z_{2}}}(a_{1},a_{2})=0, (3.8)

that is,

a¯1a12a¯1(11a26a12)+a¯2a2(a26a12)=0.\bar{a}_{1}a_{1}^{2}\bar{a}_{1}(11a_{2}-6a_{1}^{2})+\bar{a}_{2}a_{2}(a_{2}-6a_{1}^{2})=0.

We have

|a1|4(11a26a12)+|a2|2(a26a12)=0,|a_{1}|^{4}(11a_{2}-6a_{1}^{2})+|a_{2}|^{2}(a_{2}-6a_{1}^{2})=0, (3.9)
11|a1|4a26|a1|4a12+|a2|2a26|a2|2a12=0,11|a_{1}|^{4}a_{2}-6|a_{1}|^{4}a_{1}^{2}+|a_{2}|^{2}a_{2}-6|a_{2}|^{2}a_{1}^{2}=0,
(11|a1|4+|a2|2)a2=6(|a1|4+|a2|2)a12,(11|a_{1}|^{4}+|a_{2}|^{2})a_{2}=6(|a_{1}|^{4}+|a_{2}|^{2})a_{1}^{2},

and

a2=6(|a1|4+|a2|2)11|a1|4+|a2|2a12.a_{2}=\frac{6(|a_{1}|^{4}+|a_{2}|^{2})}{11|a_{1}|^{4}+|a_{2}|^{2}}\,a_{1}^{2}. (3.10)

This means that a2a_{2} and a12a_{1}^{2} have the same direction in the complex plane \mathbb{C}. Note that by (3.9), we also have

11a26a12=|a2|2|a1|4(a26a12)11a_{2}-6a_{1}^{2}=-\frac{|a_{2}|^{2}}{|a_{1}|^{4}}(a_{2}-6a_{1}^{2}) (3.11)

and

a26a12=10|a1|4|a1|4+|a2|2a2.a_{2}-6a_{1}^{2}=\frac{-10|a_{1}|^{4}}{|a_{1}|^{4}+|a_{2}|^{2}}\,a_{2}. (3.12)

By the calculations (3.4) of partial derivatives, we have

fz¯2(a1,a2)=a2(a26a12)=10|a1|4|a1|4+|a2|2a22.\frac{\partial f}{\partial\bar{z}_{2}}(a_{1},a_{2})=a_{2}(a_{2}-6a_{1}^{2})=\frac{-10|a_{1}|^{4}}{|a_{1}|^{4}+|a_{2}|^{2}}a_{2}^{2}.

On the other hand, we have

fz2(a1,a2)=2a2a¯26a12a¯2+11a12a¯12=a2a¯2+a2a¯26a12a¯2+11a12a¯12=a2a¯2+(a26a12)a¯2+11a12a¯12=a2a¯2+10|a1|4|a1|4+|a2|2a2a¯2+11a12a¯12=|a2|2+10|a1|4|a1|4+|a2|2|a2|2+11|a1|4=10|a1|4+|a1|4+|a2|2|a1|4+|a2|2|a2|2+11|a1|4=9|a1|4+|a2|2|a1|4+|a2|2|a2|2+11|a1|4=9|a1|4|a2|2+|a2|4+11|a1|8+11|a1|4|a2|2|a1|4+|a2|2=2|a1|4|a2|2+|a2|4+11|a1|8|a1|4+|a2|2>0.\begin{array}[]{ccl}\frac{\partial f}{\partial z_{2}}(a_{1},a_{2})&=&2a_{2}\bar{a}_{2}-6a_{1}^{2}\bar{a}_{2}+11a_{1}^{2}\bar{a}_{1}^{2}\\ &=&a_{2}\bar{a}_{2}+a_{2}\bar{a}_{2}-6a_{1}^{2}\bar{a}_{2}+11a_{1}^{2}\bar{a}_{1}^{2}\\ \vspace{0.1cm}\hfil&=&a_{2}\bar{a}_{2}+(a_{2}-6a_{1}^{2})\bar{a}_{2}+11a_{1}^{2}\bar{a}_{1}^{2}\\ \vspace{0.1cm}\hfil&=&a_{2}\bar{a}_{2}+\frac{-10|a_{1}|^{4}}{|a_{1}|^{4}+|a_{2}|^{2}}a_{2}\bar{a}_{2}+11a_{1}^{2}\bar{a}_{1}^{2}\\ \vspace{0.1cm}\hfil&=&|a_{2}|^{2}+\frac{-10|a_{1}|^{4}}{|a_{1}|^{4}+|a_{2}|^{2}}|a_{2}|^{2}+11|a_{1}|^{4}\\ \vspace{0.1cm}\hfil&=&\frac{-10|a_{1}|^{4}+|a_{1}|^{4}+|a_{2}|^{2}}{|a_{1}|^{4}+|a_{2}|^{2}}|a_{2}|^{2}+11|a_{1}|^{4}\\ \vspace{0.1cm}\hfil&=&\frac{-9|a_{1}|^{4}+|a_{2}|^{2}}{|a_{1}|^{4}+|a_{2}|^{2}}|a_{2}|^{2}+11|a_{1}|^{4}\\ \vspace{0.1cm}\hfil&=&\frac{-9|a_{1}|^{4}|a_{2}|^{2}+|a_{2}|^{4}+11|a_{1}|^{8}+11|a_{1}|^{4}|a_{2}|^{2}}{|a_{1}|^{4}+|a_{2}|^{2}}\\ \vspace{0.1cm}\hfil&=&\frac{2|a_{1}|^{4}|a_{2}|^{2}+|a_{2}|^{4}+11|a_{1}|^{8}}{|a_{1}|^{4}+|a_{2}|^{2}}>0.\end{array}

By the latter equality of (3.6), we have

2|a1|4|a2|2+|a2|4+11|a1|8|a1|4+|a2|2=10|a1|4|a1|4+|a2|2α2a22.\frac{2|a_{1}|^{4}|a_{2}|^{2}+|a_{2}|^{4}+11|a_{1}|^{8}}{|a_{1}|^{4}+|a_{2}|^{2}}=\frac{-10|a_{1}|^{4}}{|a_{1}|^{4}+|a_{2}|^{2}}\,\alpha_{2}a_{2}^{2}.

Since α2a22\alpha_{2}a_{2}^{2} is a negative real number, we have α2a22|a2|2=1\alpha_{2}\frac{a_{2}^{2}}{|a_{2}|^{2}}=-1. Namely, we have

α1=α2=|a2|2a22.\alpha_{1}=\alpha_{2}=-\frac{|a_{2}|^{2}}{a_{2}^{2}}.

Then, on the other hand, we have

fz1(a1,a2)¯=12a¯1a¯2a2+22a¯1a12a¯224a¯13a12\overline{\frac{\partial f}{\partial z_{1}}(a_{1},a_{2})}=-12\bar{a}_{1}\bar{a}_{2}a_{2}+22\bar{a}_{1}a_{1}^{2}\bar{a}_{2}-24\bar{a}_{1}^{3}a_{1}^{2}

and

α1fz¯1(a1,a2)=2α1a12a¯1(11a26a12)=2|a2|2a22a12a¯1(11a26a12)=2a¯2a2a12a¯1(11a26a12).\begin{array}[]{ccl}\alpha_{1}\frac{\partial f}{\partial\bar{z}_{1}}(a_{1},a_{2})&=&2\alpha_{1}a_{1}^{2}\bar{a}_{1}(11a_{2}-6a_{1}^{2})\\ \vspace{0.1cm}\hfil&=&-2\frac{|a_{2}|^{2}}{a_{2}^{2}}a_{1}^{2}\bar{a}_{1}(11a_{2}-6a_{1}^{2})\\ &=&-2\frac{\bar{a}_{2}}{a_{2}}a_{1}^{2}\bar{a}_{1}(11a_{2}-6a_{1}^{2}).\end{array}

Thus, by the first equality of (3.6), we have

12a¯1a¯2a2+22a¯1a12a¯224a¯13a12=2a¯2a2a12a¯1(11a26a12),-12\bar{a}_{1}\bar{a}_{2}a_{2}+22\bar{a}_{1}a_{1}^{2}\bar{a}_{2}-24\bar{a}_{1}^{3}a_{1}^{2}=-2\frac{\bar{a}_{2}}{a_{2}}a_{1}^{2}\bar{a}_{1}(11a_{2}-6a_{1}^{2}),
6a¯1a¯2a211a¯1a12a¯2+12a¯13a12=a¯2a2a12a¯1(11a26a12),6\bar{a}_{1}\bar{a}_{2}a_{2}-11\bar{a}_{1}a_{1}^{2}\bar{a}_{2}+12\bar{a}_{1}^{3}a_{1}^{2}=\frac{\bar{a}_{2}}{a_{2}}a_{1}^{2}\bar{a}_{1}(11a_{2}-6a_{1}^{2}),

and

6a¯2a211a12a¯2+12a¯12a12=a¯2a2a12(11a26a12).6\bar{a}_{2}a_{2}-11a_{1}^{2}\bar{a}_{2}+12\bar{a}_{1}^{2}a_{1}^{2}=\frac{\bar{a}_{2}}{a_{2}}a_{1}^{2}(11a_{2}-6a_{1}^{2}). (3.13)

The equality (3.13) with (3.11) and (3.12) yields

6a¯2a211a12a¯2+12a¯12a12=a¯2a2a12|a2|2|a1|4(a26a12)=a¯2a2a12|a2|2|a1|410|a1|4|a1|4+|a2|2a2=10|a2|2|a1|4+|a2|2a12a¯2.\begin{array}[]{ccl}\vspace{0.1cm}6\bar{a}_{2}a_{2}-11a_{1}^{2}\bar{a}_{2}+12\bar{a}_{1}^{2}a_{1}^{2}&=&-\frac{\bar{a}_{2}}{a_{2}}a_{1}^{2}\frac{|a_{2}|^{2}}{|a_{1}|^{4}}(a_{2}-6a_{1}^{2})\\ \vspace{0.1cm}\hfil&=&\frac{\bar{a}_{2}}{a_{2}}a_{1}^{2}\frac{|a_{2}|^{2}}{|a_{1}|^{4}}\frac{10|a_{1}|^{4}}{|a_{1}|^{4}+|a_{2}|^{2}}a_{2}\\ &=&\frac{10|a_{2}|^{2}}{|a_{1}|^{4}+|a_{2}|^{2}}a_{1}^{2}\bar{a}_{2}.\end{array}

Thus we have

12|a1|4+6|a2|2=(10|a2|2|a1|4+|a2|2+11)a12a¯2.12|a_{1}|^{4}+6|a_{2}|^{2}=\left(\frac{10|a_{2}|^{2}}{|a_{1}|^{4}+|a_{2}|^{2}}+11\right)a_{1}^{2}\bar{a}_{2}.

Using (3.10), we have

12|a1|4+6|a2|2=(10|a2|2+11|a1|4+11|a2|2|a1|4+|a2|2)6(|a1|4+|a2|2)11|a1|4+|a2|2a12a¯12=(11|a1|4+21|a2|2|a1|4+|a2|2)6(|a1|4+|a2|2)11|a1|4+|a2|2|a1|4=611|a1|4+21|a2|211|a1|4+|a2|2|a1|4,\begin{array}[]{ccl}\vspace{0.1cm}12|a_{1}|^{4}+6|a_{2}|^{2}&=&\left(\frac{10|a_{2}|^{2}+11|a_{1}|^{4}+11|a_{2}|^{2}}{|a_{1}|^{4}+|a_{2}|^{2}}\right)\frac{6(|a_{1}|^{4}+|a_{2}|^{2})}{11|a_{1}|^{4}+|a_{2}|^{2}}\,a_{1}^{2}\bar{a}_{1}^{2}\\ \vspace{0.1cm}\hfil&=&\left(\frac{11|a_{1}|^{4}+21|a_{2}|^{2}}{|a_{1}|^{4}+|a_{2}|^{2}}\right)\frac{6(|a_{1}|^{4}+|a_{2}|^{2})}{11|a_{1}|^{4}+|a_{2}|^{2}}\,|a_{1}|^{4}\\ &=&6\frac{11|a_{1}|^{4}+21|a_{2}|^{2}}{11|a_{1}|^{4}+|a_{2}|^{2}}\,|a_{1}|^{4},\end{array} (3.14)

namely,

2|a1|4+|a2|2=11|a1|4+21|a2|211|a1|4+|a2|2|a1|4=(1+20|a2|211|a1|4+|a2|2)|a1|4=|a1|4+20|a1|4|a2|211|a1|4+|a2|2.\begin{array}[]{ccl}\vspace{0.1cm}2|a_{1}|^{4}+|a_{2}|^{2}&=&\frac{11|a_{1}|^{4}+21|a_{2}|^{2}}{11|a_{1}|^{4}+|a_{2}|^{2}}\,|a_{1}|^{4}\\ \vspace{0.1cm}\hfil&=&\left(1+\frac{20|a_{2}|^{2}}{11|a_{1}|^{4}+|a_{2}|^{2}}\right)\,|a_{1}|^{4}\\ &=&|a_{1}|^{4}+\frac{20|a_{1}|^{4}|a_{2}|^{2}}{11|a_{1}|^{4}+|a_{2}|^{2}}.\end{array}

Hence, we have

|a1|4+|a2|2=20|a1|4|a2|211|a1|4+|a2|2,|a_{1}|^{4}+|a_{2}|^{2}=\frac{20|a_{1}|^{4}|a_{2}|^{2}}{11|a_{1}|^{4}+|a_{2}|^{2}},
(11|a1|4+|a2|2)(|a1|4+|a2|2)=20|a1|4|a2|2,(11|a_{1}|^{4}+|a_{2}|^{2})(|a_{1}|^{4}+|a_{2}|^{2})=20|a_{1}|^{4}|a_{2}|^{2},
11|a1|8+12|a1|4|a2|2+|a2|4=20|a1|4|a2|2,11|a_{1}|^{8}+12|a_{1}|^{4}|a_{2}|^{2}+|a_{2}|^{4}=20|a_{1}|^{4}|a_{2}|^{2},
|a2|48|a1|4|a2|2+11|a1|8=0,|a_{2}|^{4}-8|a_{1}|^{4}|a_{2}|^{2}+11|a_{1}|^{8}=0,

and

(|a2|2(45)|a1|4)(|a2|2(4+5)|a1|4)=0.(|a_{2}|^{2}-(4-\sqrt{5})|a_{1}|^{4})(|a_{2}|^{2}-(4+\sqrt{5})|a_{1}|^{4})=0.

Hence, we have

|a2|2=(4±5)|a1|4,|a_{2}|^{2}=(4\pm\sqrt{5})|a_{1}|^{4},

that is,

|a2|=4±5|a1|2.|a_{2}|=\sqrt{4\pm\sqrt{5}}\,|a_{1}|^{2}.

Since a2a_{2} and a12a_{1}^{2} have the same direction in \mathbb{C} (see (3.10)), we have

a2=4±5a12.a_{2}=\sqrt{4\pm\sqrt{5}}\,a_{1}^{2}.

Recall that (a1,a2)(a_{1},a_{2}) is a zero of ff. We have

0=f(a1,a2)=a22a¯26a12a2a¯2+11a12a¯12a26a14a¯12=a2|a2|26a12|a2|2+11a2|a1|46a12|a1|4=(a26a12)|a2|2+(11a26a12)|a1|4=(ξ±6)a12|a2|2+(11ξ±6)a12|a1|4=(ξ±6)ξ±2a12|a1|4+(11ξ±6)a12|a1|4,\begin{array}[]{ccl}0=f(a_{1},a_{2})&=&a_{2}^{2}\bar{a}_{2}-6a_{1}^{2}a_{2}\bar{a}_{2}+11a_{1}^{2}\bar{a}_{1}^{2}a_{2}-6a_{1}^{4}\bar{a}_{1}^{2}\\ &=&a_{2}|a_{2}|^{2}-6a_{1}^{2}|a_{2}|^{2}+11a_{2}|a_{1}|^{4}-6a_{1}^{2}|a_{1}|^{4}\\ &=&(a_{2}-6a_{1}^{2})|a_{2}|^{2}+(11a_{2}-6a_{1}^{2})|a_{1}|^{4}\\ &=&(\xi_{\pm}-6)a_{1}^{2}|a_{2}|^{2}+(11\xi_{\pm}-6)a_{1}^{2}|a_{1}|^{4}\\ &=&(\xi_{\pm}-6)\xi_{\pm}^{2}a_{1}^{2}|a_{1}|^{4}+(11\xi_{\pm}-6)a_{1}^{2}|a_{1}|^{4},\end{array}

where we set ξ±:=4±5\xi_{\pm}:=\sqrt{4\pm\sqrt{5}}. Then we have

(ξ±6)ξ±2+(11ξ±6)=0,(\xi_{\pm}-6)\xi_{\pm}^{2}+(11\xi_{\pm}-6)=0,
ξ±36ξ±2+11ξ±6=0,\xi_{\pm}^{3}-6\xi_{\pm}^{2}+11\xi_{\pm}-6=0,

and

(ξ±1)(ξ±2)(ξ±3)=0.(\xi_{\pm}-1)(\xi_{\pm}-2)(\xi_{\pm}-3)=0.

Finally we have

ξ±=1, 2or 3.\xi_{\pm}=1,\ 2\ \text{or}\ 3.

This assertion contradicts to ξ±=4±5\xi_{\pm}=\sqrt{4\pm\sqrt{5}}. We finally have α1α2\alpha_{1}\neq\alpha_{2}, and see that (a1,a2)(a_{1},a_{2}) is not a mixed critical point.

We next prove the assertion (2), i.e., the surjectivity of f:2f:{\mathbb{C}^{*}}^{2}\to\mathbb{C}. For the mixed polynomial (3.2), if z2z_{2} is a real variable, then we have

fa,b,c,d,e,f(1,z2)=z23(k+3)z22+(3k+2)z22k.f_{a,b,c,d,e,\mathrm{f}}(1,z_{2})=z_{2}^{3}-(k+3)z_{2}^{2}+(3k+2)z_{2}-2k.

Since k>2k>2, the equation fa,b,c,d,e,f(1,z2)=0f_{a,b,c,d,e,\mathrm{f}}(1,z_{2})=0 has a real solution z2(0)z_{2}\ (\neq 0). Hence we have

fa,b,c,d,e,f1(0)2.f_{a,b,c,d,e,\mathrm{f}}^{-1}(0)\cap{\mathbb{C}^{*}}^{2}\neq\emptyset.

Recall that fa,b,c,d,e,ff_{a,b,c,d,e,\mathrm{f}} are strongly mixed weighted homogeneous if (a,b,c,d,e,f)(a,b,c,d,e,\mathrm{f}) is one of the 55 cases in Table LABEL:strongly-mixed-whp-5cases. By the above results and (iii),(iv) of Proposition 12, we conclude that f2,2,1,2,1,4(k=3):2f_{2,2,1,2,1,4}\ (k=3):{\mathbb{C}^{*}}^{2}\to\mathbb{C} is surjective. (Hence, f2,2,1,2,1,4(k=3)f_{2,2,1,2,1,4}\ (k=3) is strongly Newton non-degenerate over the 11-dimensional face Δ(P)\Delta(P), where P=(1,2)tP={}^{t}(1,2). )


Finally, we prove the assertion (3). Let us consider the 0-dimensional face functions fS=z2az¯23af_{S}=z_{2}^{a}\bar{z}_{2}^{3-a} and fT=2kz1fz¯16ff_{T}=-2kz_{1}^{\mathrm{f}}\bar{z}_{1}^{6-\mathrm{f}} of fa,b,c,d,e,ff_{a,b,c,d,e,\mathrm{f}} in the Table LABEL:strongly-mixed-whp-5cases. If a=2a=2, then we have

fSz2=2z2z¯2,fSz¯2=z22,\frac{\partial f_{S}}{\partial z_{2}}=2z_{2}\bar{z}_{2},\ \frac{\partial f_{S}}{\partial\bar{z}_{2}}=z_{2}^{2},

and hence, fS:2f_{S}:{\mathbb{C}^{*}}^{2}\to\mathbb{C} has no mixed critical points. If f=4\mathrm{f}=4, then we have

fTz1=8kz13z¯12,fTz¯1=4kz14z¯1,\frac{\partial f_{T}}{\partial z_{1}}=-8kz_{1}^{3}\bar{z}_{1}^{2},\ \frac{\partial f_{T}}{\partial\bar{z}_{1}}=-4kz_{1}^{4}\bar{z}_{1},

and hence, fT:2f_{T}:{\mathbb{C}^{*}}^{2}\to\mathbb{C} has no mixed critical points. Hence, the 0-dimensional face functions fSf_{S} and fTf_{T} of f:=f2,b,c,d,e,4f:=f_{2,b,c,d,e,4} are strongly Newton non-degenerate. This completes the proof of Lemma 14. ∎

3.4. Toric modifications associated with the regular simplicial cone subdivision Σ\Sigma^{*}

Now let us consider the toric modification π^:X2\hat{\pi}:X\to\mathbb{C}^{2} associated with the regular simplicial cone subdivision Σ\Sigma^{*} (Figure 4). Note that

π^1(𝟎)=E^(S)E^(P).\hat{\pi}^{-1}(\boldsymbol{0})=\hat{E}(S)\cup\hat{E}(P).

All 22-dimensional cones of Σ\Sigma^{*} are as follows (up to permutations of vertices):

σ1:=Cone(E1,S)=(1101),σ2:=Cone(S,P)=(1112),σ3:=Cone(P,E2)=(1021).\begin{array}[]{l}\sigma_{1}:=\operatorname{Cone}(E_{1},S)=\begin{pmatrix}1&1\\ 0&1\end{pmatrix},\ \ \sigma_{2}:=\operatorname{Cone}(S,P)=\begin{pmatrix}1&1\\ 1&2\end{pmatrix},\ \ \sigma_{3}:=\operatorname{Cone}(P,E_{2})=\begin{pmatrix}1&0\\ 2&1\end{pmatrix}.\end{array} (3.15)


We now show that the Assumption (*) in Theorem 32 of [13] is satisfied for the mixed polynomial germ (f2,2,1,2,1,4(k=3),𝟎)(f_{2,2,1,2,1,4}\ (k=3),\boldsymbol{0}) and our regular simplicial cone subdivision Σ\Sigma^{*}.


(I)  We first set

σ1:=Cone(S,E1)=(1110).\sigma_{1}^{\prime}:=\operatorname{Cone}(S,E_{1})=\begin{pmatrix}1&1\\ 1&0\end{pmatrix}.

On the toric chart σ12\mathbb{C}^{2}_{\sigma_{1}^{\prime}}, the toric modification is written as π^σ1(u1,u2)=(u1u2,u1)\hat{\pi}_{\sigma_{1}^{\prime}}(u_{1},u_{2})=(u_{1}u_{2},u_{1}). The toric chart σ12\mathbb{C}^{2}_{\sigma_{1}^{\prime}} intersects the exceptional divisor E^(S)\hat{E}(S) only. If 𝒖σ10V~π^1(𝟎)σ12\boldsymbol{u}_{\sigma_{1}^{\prime}}^{0}\in\tilde{V}\cap\hat{\pi}^{-1}(\boldsymbol{0})\cap\mathbb{C}^{2}_{\sigma_{1}^{\prime}}, then 𝒖σ10V~E^(S)\boldsymbol{u}_{\sigma_{1}^{\prime}}^{0}\in\tilde{V}\cap\hat{E}(S). We have fS=z22z¯2f_{S}=z_{2}^{2}\bar{z}_{2}. Here we set

r1:=rdegSfS=10+1(2+1)=3,andp1:=pdegSfS=10+1(21)=1.r_{1}:={\rm{rdeg}\/}_{S}f_{S}=1\cdot 0+1\cdot(2+1)=3,\ \ \ \text{and}\ \ \ p_{1}:={\rm{pdeg}\/}_{S}f_{S}=1\cdot 0+1\cdot(2-1)=1.

Then we have

r1+p12=3+12=2,andr1p12=312=1,\frac{r_{1}+p_{1}}{2}=\frac{3+1}{2}=2,\ \ \ \text{and}\ \ \ \frac{r_{1}-p_{1}}{2}=\frac{3-1}{2}=1,

and

(π^σ1f)(u1,u2)=u12u¯16u13u¯1u22+11u13u¯12u22u¯226u14u¯12u24u¯22=u12u¯1(16u1u22+11u1u¯1u22u¯226u12u¯1u24u¯22).\begin{array}[]{ccl}(\hat{\pi}_{\sigma_{1}^{\prime}}^{*}f)(u_{1},u_{2})&=&u_{1}^{2}\bar{u}_{1}-6u_{1}^{3}\bar{u}_{1}u_{2}^{2}+11u_{1}^{3}\bar{u}_{1}^{2}u_{2}^{2}\bar{u}_{2}^{2}-6u_{1}^{4}\bar{u}_{1}^{2}u_{2}^{4}\bar{u}_{2}^{2}\\ &=&u_{1}^{2}\bar{u}_{1}(1-6u_{1}u_{2}^{2}+11u_{1}\bar{u}_{1}u_{2}^{2}\bar{u}_{2}^{2}-6u_{1}^{2}\bar{u}_{1}u_{2}^{4}\bar{u}_{2}^{2}).\end{array}

We set

f~(u1,u2)=16u1u22+11u1u¯1u22u¯226u12u¯1u24u¯22\widetilde{f}(u_{1},u_{2})=1-6u_{1}u_{2}^{2}+11u_{1}\bar{u}_{1}u_{2}^{2}\bar{u}_{2}^{2}-6u_{1}^{2}\bar{u}_{1}u_{2}^{4}\bar{u}_{2}^{2}

and the strict transform V~\tilde{V} of VV to XX in the toric chart σ12\mathbb{C}^{2}_{\sigma_{1}^{\prime}} is given by

V~={f~(u1,u2)=0}.\tilde{V}=\{\widetilde{f}(u_{1},u_{2})=0\}.

If 𝒖σ10V~π^1(𝟎)σ12\boldsymbol{u}_{\sigma_{1}^{\prime}}^{0}\in\tilde{V}\cap\hat{\pi}^{-1}(\boldsymbol{0})\cap\mathbb{C}^{2}_{\sigma_{1}^{\prime}}, then 𝒖σ10V~E^(S)\boldsymbol{u}_{\sigma_{1}^{\prime}}^{0}\in\tilde{V}\cap\hat{E}(S). Hence, 𝒖σ10=(0,u2)\boldsymbol{u}_{\sigma_{1}^{\prime}}^{0}=(0,u_{2}) for some u2u_{2}\in\mathbb{C}. However, we have f(0,u2)=10f(0,u_{2})=1\neq 0. Thus we have V~E^(S)=\tilde{V}\cap\hat{E}(S)=\emptyset on the toric chart σ12\mathbb{C}^{2}_{\sigma_{1}^{\prime}}. Thus, the Assumption (*) in Theorem 32 of [13] is satisfied for Σ\Sigma^{*} on the toric chart σ12\mathbb{C}^{2}_{\sigma_{1}^{\prime}}.

(II)  We next consider the cone σ2:=Cone(S,P)=(1112)\sigma_{2}:=\operatorname{Cone}(S,P)=\begin{pmatrix}1&1\\ 1&2\end{pmatrix} and the toric chart σ22\mathbb{C}^{2}_{\sigma_{2}}. Both SS and PP are strictly positive, and σ22\mathbb{C}^{2}_{\sigma_{2}} intersects the exceptional divisors E^(S)\hat{E}(S) and E^(P)\hat{E}(P). If 𝒖σ20V~π^1(𝟎)σ22\boldsymbol{u}_{\sigma_{2}}^{0}\in\tilde{V}\cap\hat{\pi}^{-1}(\boldsymbol{0})\cap\mathbb{C}^{2}_{\sigma_{2}}, then 𝒖σ20V~E^(S)\boldsymbol{u}_{\sigma_{2}}^{0}\in\tilde{V}\cap\hat{E}(S) or 𝒖σ20V~E^(P)\boldsymbol{u}_{\sigma_{2}}^{0}\in\tilde{V}\cap\hat{E}(P). If 𝒖σ20E^(S)E^(P)\boldsymbol{u}_{\sigma_{2}}^{0}\in\hat{E}(S)\cap\hat{E}(P), then 𝒖σ20=(0,0)\boldsymbol{u}_{\sigma_{2}}^{0}=(0,0). If 𝒖σ20E^(S)\boldsymbol{u}_{\sigma_{2}}^{0}\in\hat{E}(S) and 𝒖σ20E^(P)\boldsymbol{u}_{\sigma_{2}}^{0}\not\in\hat{E}(P), then 𝒖σ20=(0,u2)\boldsymbol{u}_{\sigma_{2}}^{0}=(0,u_{2}) for some u2(0)u_{2}\ (\neq 0)\in\mathbb{C}. If 𝒖σ20E^(S)\boldsymbol{u}_{\sigma_{2}}^{0}\not\in\hat{E}(S) and 𝒖σ20E^(P)\boldsymbol{u}_{\sigma_{2}}^{0}\in\hat{E}(P), then 𝒖σ20=(u1,0)\boldsymbol{u}_{\sigma_{2}}^{0}=(u_{1},0) for some u1(0)u_{1}\ (\neq 0)\in\mathbb{C}. Then 𝒖σ20\boldsymbol{u}_{\sigma_{2}}^{0} is written as (0,u2)(0,u_{2}) for some u2(0)u_{2}\ (\neq 0)\in\mathbb{C} in the toric chart σ22\mathbb{C}^{2}_{\sigma_{2}^{\prime}}, where we set

σ2:=Cone(P,S)=(1121).\sigma_{2}^{\prime}:=\operatorname{Cone}(P,S)=\begin{pmatrix}1&1\\ 2&1\end{pmatrix}.

Thus, the Assumption (*) in Theorem 32 of [13] is satisfied for Σ\Sigma^{*} on the toric chart σ22\mathbb{C}^{2}_{\sigma_{2}}.

(III)  We finally consider the cone σ3:=Cone(P,E2)=(1021)\sigma_{3}:=\operatorname{Cone}(P,E_{2})=\begin{pmatrix}1&0\\ 2&1\end{pmatrix} and the toric chart σ32\mathbb{C}^{2}_{\sigma_{3}}. On the toric chart σ32\mathbb{C}^{2}_{\sigma_{3}}, the toric modification is written as π^σ3(u1,u2)=(u1,u12u2)\hat{\pi}_{\sigma_{3}}(u_{1},u_{2})=(u_{1},u_{1}^{2}u_{2}). The toric chart σ32\mathbb{C}^{2}_{\sigma_{3}} intersects the exceptional divisor E^(P)\hat{E}(P) only. If 𝒖σ30V~π^1(𝟎)σ32\boldsymbol{u}_{\sigma_{3}}^{0}\in\tilde{V}\cap\hat{\pi}^{-1}(\boldsymbol{0})\cap\mathbb{C}^{2}_{\sigma_{3}}, then 𝒖σ30V~E^(P)\boldsymbol{u}_{\sigma_{3}}^{0}\in\tilde{V}\cap\hat{E}(P). Here fP=ff_{P}=f and recall that

r1:=rdegPf=6,andp1:=pdegSfS=2.r_{1}:={\rm{rdeg}\/}_{P}f=6,\ \ \ \text{and}\ \ \ p_{1}:={\rm{pdeg}\/}_{S}f_{S}=2.

Then we have

r1+p12=6+22=4,andr1p12=622=2,\frac{r_{1}+p_{1}}{2}=\frac{6+2}{2}=4,\ \ \ \text{and}\ \ \ \frac{r_{1}-p_{1}}{2}=\frac{6-2}{2}=2,

and

(π^σ3f)(u1,u2)=u14u¯12u22u¯26u14u¯12u2u¯2+11u14u¯12u26u14u¯12=u14u¯2(u22u¯26u2u¯2+11u26).\begin{array}[]{ccl}(\hat{\pi}_{\sigma_{3}}^{*}f)(u_{1},u_{2})&=&u_{1}^{4}\bar{u}_{1}^{2}u_{2}^{2}\bar{u}_{2}-6u_{1}^{4}\bar{u}_{1}^{2}u_{2}\bar{u}_{2}+11u_{1}^{4}\bar{u}_{1}^{2}u_{2}-6u_{1}^{4}\bar{u}_{1}^{2}\\ &=&u_{1}^{4}\bar{u}_{2}(u_{2}^{2}\bar{u}_{2}-6u_{2}\bar{u}_{2}+11u_{2}-6).\end{array}

We set

f~(u1,u2)=u22u¯26u2u¯2+11u26,\widetilde{f}(u_{1},u_{2})=u_{2}^{2}\bar{u}_{2}-6u_{2}\bar{u}_{2}+11u_{2}-6,

then the strict transform V~\tilde{V} of VV to XX in the toric chart σ32\mathbb{C}^{2}_{\sigma_{3}} is given by

V~={f~(u1,u2)=0}.\tilde{V}=\{\widetilde{f}(u_{1},u_{2})=0\}.

If 𝒖σ30V~π^1(𝟎)σ32\boldsymbol{u}_{\sigma_{3}}^{0}\in\tilde{V}\cap\hat{\pi}^{-1}(\boldsymbol{0})\cap\mathbb{C}^{2}_{\sigma_{3}}, then 𝒖σ30V~E^(P)\boldsymbol{u}_{\sigma_{3}}^{0}\in\tilde{V}\cap\hat{E}(P). Hence, 𝒖σ30=(0,u2)\boldsymbol{u}_{\sigma_{3}}^{0}=(0,u_{2}) for some u2u_{2}\in\mathbb{C}. Since f~(0,0)=60\widetilde{f}(0,0)=-6\neq 0, we see that u20u_{2}\neq 0. Thus, the Assumption (*) in Theorem 32 of [13] is satisfied for Σ\Sigma^{*} on the toric chart σ32\mathbb{C}^{2}_{\sigma_{3}}.


By the above arguments (I)\sim(III), the Assumption (*) in Theorem 32 of [13] is satisfied for the mixed polynomial germ (f2,2,1,2,1,4(k=3),𝟎)(f_{2,2,1,2,1,4}\ (k=3),\boldsymbol{0}) and Σ\Sigma^{*}. Hence, by Theorem 32, it is concluded that the strict transform V~\tilde{V} of V:=f1(0)V:=f^{-1}(0) via the toric modification π^:X2\hat{\pi}:X\to\mathbb{C}^{2} is a real analytic manifold outside of V~π^1(𝟎)\tilde{V}\cap\hat{\pi}^{-1}(\boldsymbol{0}), and a topological manifold as a germ at V~π^1(𝟎)\tilde{V}\cap\hat{\pi}^{-1}(\boldsymbol{0}).


Moreover, we have the following theorem:

Theorem 15.

We set f:=f2,2,1,2,1,4(k=3)f:=f_{2,2,1,2,1,4}\ (k=3). The strict transform V~\tilde{V} of V:=f1(0)V:=f^{-1}(0) via the toric modification π^:X2\hat{\pi}:X\to\mathbb{C}^{2} is a real analytic manifold as a germ at V~π^1(𝟎)\tilde{V}\cap\hat{\pi}^{-1}(\boldsymbol{0}).

Proof.

Recall the definition of L(Σ)L(\Sigma^{*}) in Theorem 32 of [13]. It is sufficient to prove that L(Σ)=L(\Sigma^{*})=\emptyset. The cones of Σ\Sigma^{*} whose vertices are all strictly positive are

τ1:=Cone(S),τ2:=Cone(P),σ2:=Cone(S,P).\tau_{1}:=\operatorname{Cone}(S),\ \ \tau_{2}:=\operatorname{Cone}(P),\ \ \sigma_{2}:=\operatorname{Cone}(S,P).

For τ1\tau_{1}, we have {(ν,μ)|cν,μ0,ν+μΔ(S)}={((2,1),(0,1)),((2,1),(2,0)),((4,0),(2,0))}\{(\nu,\mu)\ |\ c_{\nu,\mu}\neq 0,\ \nu+\mu\not\in\Delta(S)\}=\{((2,1),(0,1)),\ ((2,1),(2,0)),\ ((4,0),(2,0))\}\neq\emptyset. Recall that rdegSfS=3{\rm{rdeg}\/}_{S}f_{S}=3. Hence, we have

Λ(τ1)=min{S(ν+μ)3|(ν,μ)=((2,1),(0,1)),((2,1),(2,0)),((4,0),(2,0))}=min{(1,1)t(ν+μ)3|ν+μ=(2,2),(4,1),(6,0)}=min{43, 53, 63}=1.\begin{array}[]{ccl}\Lambda(\tau_{1})&=&\operatorname{min}\{S(\nu+\mu)-3\ |\ (\nu,\mu)=((2,1),(0,1)),\ ((2,1),(2,0)),\ ((4,0),(2,0))\}\\ &=&\operatorname{min}\{{}^{t}(1,1)(\nu+\mu)-3\ |\ \nu+\mu=(2,2),(4,1),(6,0)\}\\ &=&\operatorname{min}\{4-3,\ 5-3,\ 6-3\}=1.\end{array}

For τ2\tau_{2}, we have {(ν,μ)|cν,μ0,ν+μΔ(P)}=\{(\nu,\mu)\ |\ c_{\nu,\mu}\neq 0,\ \nu+\mu\not\in\Delta(P)\}=\emptyset. For σ2\sigma_{2}, we have {(ν,μ,S)|cν,μ0,ν+μΔ(S)}{(ν,μ,P)|cν,μ0,ν+μΔ(P)}={((2,1),(0,1),S),((2,1),(2,0),S),((4,0),(2,0),S)}\{(\nu,\mu,S)\ |\ c_{\nu,\mu}\neq 0,\ \nu+\mu\not\in\Delta(S)\}\cup\{(\nu,\mu,P)\ |\ c_{\nu,\mu}\neq 0,\ \nu+\mu\not\in\Delta(P)\}=\{((2,1),(0,1),S),\ ((2,1),(2,0),S),\ ((4,0),(2,0),S)\}\neq\emptyset. Hence, we have Λ(σ2)=min{S(ν+μ)3|(ν,μ)=((2,1),(0,1)),((2,1),(2,0)),((4,0),(2,0))}=1\Lambda(\sigma_{2})=\operatorname{min}\{S(\nu+\mu)-3\ |\ (\nu,\mu)=((2,1),(0,1)),\ ((2,1),(2,0)),\ ((4,0),(2,0))\}=1.

On the other hand, we see that V~(τ1)σ12=,V~(τ1)σ22=\tilde{V}(\tau_{1})^{*}\cap\mathbb{C}_{\sigma_{1}}^{2}=\emptyset,\ \tilde{V}(\tau_{1})^{*}\cap\mathbb{C}_{\sigma_{2}}^{2}=\emptyset, and moreover, V~(σ2)σ22=\tilde{V}(\sigma_{2})^{*}\cap\mathbb{C}_{\sigma_{2}}^{2}=\emptyset. Thus it is concluded that L(Σ)=L(\Sigma^{*})=\emptyset. This completes the proof of Theorem 15. ∎


At the end of this paper, we present the following problem:

Problem 16.
  • Does each f2,2,1,2,1,4(k3andk>2)f_{2,2,1,2,1,4}\ (k\neq 3\ \text{and}\ k>2) have some mixed critical points on 2{\mathbb{C}^{*}}^{2}?

  • More generally, does each f2,b,c,d,e,4f_{2,b,c,d,e,4} in the cases II \sim V (a=2,f=4a=2,\ \mathrm{f}=4) of Table LABEL:strongly-mixed-whp-5cases have some mixed critical points on 2{\mathbb{C}^{*}}^{2}?

We need another useful criteria for mixed critical points like Proposition 1 of [6].

References

  • [1] D. A. Gudkov, The topology of real projective algebraic varieties, Usp. Mat. Nauk, 29–4 (1974), 3–79, English transl., Russ. Math. Surveys, 29–4 (1974), 1–79.
  • [2] G. Ishikawa, S. Saito and T. Fukui (the second part), I. Shimada and H. Tokunaga (the first part), Algebraic curves and singularities (in Japanese), Kyoritsu shuppan, 2001.
  • [3] V. M. Kharlamov, The topological type of nonsingular surfaces in P3\mathbb{R}P^{3} of degree four, Funct. Anal. Appl. 10 (1976), 295–305.
  • [4] V. V. Nikulin, Integral symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser Mat. 43-1 (1979), 111–177, English transl., Math. USSR Izv., 14-1 (1980), 103–167.
  • [5] M. Oka, Non-degenerate complete intersection singularity, Hermann, Paris, 1997.
  • [6] M. Oka, Topology of polar weighted homogeneous hypersurfaces, Kodai Math. J. 31 (2008), 163–182.
  • [7] M. Oka, Non-degenerate mixed functions, Kodai Math. J. 33 (2010), 1–62.
  • [8] M. Oka, Mixed functions of strongly polar weighted homogeneous face type, Singularities in Geometry and Topology 2011, Advanced Study in Pure Math. 66 (2015), 173–202.
  • [9] M. Oka, Introduction to Complex and Mixed hypersurface singularities (in Japanese), Maruzen, Tokyo, 2018.
  • [10] V. A. Rokhlin, Proof of Gudkov conjecture, Funkts. Anal. Prilozhen., 6–2 (1972), 62–64. English transl., Funct. Anal. Appl., 6 (1972), 62–64.
  • [11] V. A. Rokhlin, Congruences modulo 16 in Hilbert’s sixteenth problem I, Funkts. Anal. Prilozhen., 6–4 (1972), English transl., Funct. Anal. Appl., 6 (1972), 301–306.
  • [12] V. A. Rokhlin, Congruences modulo 16 in Hilbert’s sixteenth problem II, Funkts. Anal. Prilozhen., 7–2 (1973), 91–92. English transl., Funct. Anal. Appl., 7 (1973), 163–164.
  • [13] S. Saito and K. Takashimizu, Resolutions of Newton non-degenerate mixed polynomials of strongly polar non-negative mixed weighted homogeneous face type, Kodai Math. J. 44 (2021), 457–491.
  • [14] S. Saito and K. Takashimizu, A note on Newton non-degeneracy of mixed weighted homogeneous polynomials, arXiv:2107.08691, preprint.
  • [15] O. Ya. Viro, Gluing of plane algebraic curves and constructions of curves of degree 6 and 7, Lecture Notes in Math., 1060 (1984), 187–200.
  • [16] O. Ya. Viro, Real algebraic plane curves: Constructions with controlled topology, Algebra and analysis, 1–5 (1989); English transl. Leningrad Math. J., 1–5 (1990), 1059–1134.
  • [17] O. Ya. Viro, Patchworking real algebraic varieties, arXiv:math/0611382 [math.AG], 2006.
  • [18] G. Wilson, Hilbert’s sixteenth problem, Topology, 17 (1978), 53–73.