This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Topological superconductivity in a spin-orbit coupled Kondo lattice

Zekun Zhuang Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA    Piers Coleman Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
Abstract

We consider the effect of spin-orbit coupling on a two-dimensional Kondo Lattice model, in which conduction electrons are antiferromagnetically coupled to a Yao-Lee spin liquid. When a Rashba spin-orbit interaction and a nearest-neighbor Kondo interaction is introduced, the low-energy Majorana bands become gapped and develop Chern numbers, protecting unidirectionally propagating Majorana edge modes. Our model describes a chiral topological superconductor with fractionalized charge-ee order parameter and spontaneously broken time-reversal symmetry, which may be of interest for certain heavy fermion superconductors, such as UTe2.

I Introduction

Though the first heavy fermion materials were discovered half a century ago[1, 2, 3, 4], they continue to challenge our fundamental understanding of strongly correlated quantum materials. The discovery of topological insulators[5, 6], with helical boundary modes protected by nontrivial topology and time-reversal symmetry, inspired the prediction that analogous topological Kondo insulators, may develop in Kondo systems with strong spin-orbit coupling, such as SmB6 [7, 8, 9]. On the other hand, the possible existence of topological superconductors in Kondo systems remains elusive, motivating ongoing theoretical and experimental research.

Recently, a heavy-fermion superconductor UTe2 with an extremely high upper critical field exceeding 65 T has attracted enormous attention[10, 11, 12, 13]. One of the exciting features of this material, is that it may provide a realization of a long-sought chiral topological superconductor [14, 15, 16], as evidenced by the observation of chiral edge states in scanning tunneling experiments [17]. The presence of chiral edge modes implies that the time-reversal symmetry (TRS) must be spontaneously broken, consistent with the early Kerr rotation experiment results [14]. However, the nature of the superconducting transition remains unclear and controversial: in improved samples, the Kerr rotation signal appears to be absent and the superconducting transition seems to be a single second-order transition, which at first sight rules out a TRS superconductor, as the underlying crystal structure allows no multidimensional irreducible Cooper pair representations [18, 19].

In this Letter, we propose a model that describes a novel charge-ee topological superconductor sharing a few exotic properties with that of UTe2. Firstly, it models a superconductor with spontaneous TRS breaking guaranteed by Kramer’s theorem, regardless of the space group of the underlying lattice. Secondly, it is topological and possesses a chiral Majorana edge mode. While our model does not describe UTe2, the new symmetry class it represents may be of interest as a novel pairing state of non-trivial topology that lies beyond the BCS paradigm. Previous efforts to explore topological superconductivity in the Kondo lattice have relied on the Kitaev Kondo model[20]. Our model is an extension of the Kondo Lattice model considered by Coleman, Panigraphi and Tsvelik (CPT) [21, 22], which describes a phase with charge-ee spinor order parameter and gapless Majorana excitation. Unlike the Kitaev-Kondo lattice[20], the CPT model allows the inclusion of Kondo interactions that do not disturb the static gauge degrees of freedom associated with spin fractionalization. Our generalization of the CPT model incorporates spin-orbit coupling, a realistic feature of heavy fermion materials. We also introduce nearest-neighbor Kondo interaction, which allows for a spontaneous chiral (or sublattice) symmetry breaking and the consequential development of chiral edge states. We demonstrate that, for sufficiently large Kondo coupling and nonzero Rashba interaction, at half-filling, the system spontaneously breaks the global U(1)U(1) and discrete TRS and chiral symmetries of the original model (U(1)×Z2×Z2U(1)\times Z_{2}\times Z_{2} symmetry). The gapless Majorana band of the original CPT model becomes gapped, acquiring a nontrivial Chern number and forming chiral Majorana edge modes. When the chemical potential is finite, our model describes a TRS-breaking charge-ee topological superconductor, the transition of which from the normal state is of single-step.

II Model

Refer to caption
Figure 1: Left: The honeycomb lattice where x,y,zx,y,z denotes the type of bonds. Right: The reciprocal lattice and first Brillouin zone of the honeycomb lattice.

We consider coupling a Yao-Lee (YL) spin liquid to a conduction sea on the honeycomb lattice described by the Hamiltonian H=HC+HYL+HKH=H_{C}+H_{YL}+H_{K}, where

HC\displaystyle H_{C} =\displaystyle= ijci[tI+iλR(σ×dij)z^]cj+H.c.,\displaystyle\sum_{\langle ij\rangle}c_{i}^{\dagger}\left[-tI+i\lambda_{R}(\vec{\sigma}\times\vec{d}_{ij})\cdot\hat{z}\right]c_{j}+\text{H.c.}, (1)
HYL\displaystyle H_{YL} =\displaystyle= K2ij(σiσj)λiαijλjαij,\displaystyle\frac{K}{2}\sum_{\langle ij\rangle}(\vec{\sigma}_{i}\cdot\vec{\sigma}_{j})\lambda^{\alpha_{ij}}_{i}\lambda^{\alpha_{ij}}_{j}, (2)
HK\displaystyle H_{K} =\displaystyle= 12i,jJijσi(cjσcj).\displaystyle\frac{1}{2}\sum_{i,j}J_{ij}\vec{\sigma}_{i}\cdot(c_{j}^{\dagger}\vec{\sigma}c_{j}). (3)

Here HCH_{C} describes the conduction electron Hamiltonian in the presence of Rashba spin-orbit interaction where II is the identity matrix, σ\vec{\sigma} is the Pauli matrix associated with spins, ij\langle ij\rangle denotes the pair of nearest-neighbor (NN) sites (i,j)(i,j) where iA,jBi\in A,j\in B, dij\vec{d}_{ij} represents the vector pointing from site jj to ii, and we have used the shorthand cj(cj,cj)c_{j}^{\dagger}\equiv(c_{j\uparrow}^{\dagger},c_{j\downarrow}^{\dagger}). HYLH_{YL} describes the Yao-Lee spin liquid[23], in which σi\vec{\sigma}_{i} and λi\vec{\lambda}_{i} are Pauli matrices denoting the spin and orbital degrees of freedom at each site ii, while αij=x,y,z\alpha_{ij}=x,y,z denotes the direction of the Ising coupling between neighboring orbitals (see Fig. 1). HKH_{K} describes the Kondo coupling between the conduction electrons and local moments, where Jij=J1δij+J2ηijJ_{ij}=J_{1}\delta_{ij}+J_{2}\eta_{\langle ij\rangle} where ηij=1\eta_{\langle ij\rangle}=1 when ii and jj are nearest neighbors and J1,20J_{1,2}\geq 0 are antiferromagnetic.

It is convenient to make a global gauge transformation for conduction electrons on the AA sublattice, (cA,cB)(icA,cB)(c_{A}^{\dagger},c_{B}^{\dagger})\rightarrow(ic_{A}^{\dagger},c_{B}^{\dagger}), so HCH_{C} becomes

H~C=ijci[itI+λR(σ×dij)z^]cj+H.c..\tilde{H}_{C}=-\sum_{\langle ij\rangle}c_{i}^{\dagger}\left[itI+\lambda_{R}(\vec{\sigma}\times\vec{d}_{ij})\cdot\hat{z}\right]c_{j}+\text{H.c.}. (4)

The YL model can be exactly solved using the Majorana representation σj=iχj×χj\vec{\sigma}_{j}=-i\vec{\chi}_{j}\times\vec{\chi}_{j} and λj=ibj×bj\vec{\lambda}_{j}=-i\vec{b}_{j}\times\vec{b}_{j} with the constraint Dj=8iχj1χj2χj3bj1bj2bj3=1D_{j}=8i\chi_{j}^{1}\chi_{j}^{2}\chi_{j}^{3}b_{j}^{1}b_{j}^{2}b_{j}^{3}=1 [24, 25, 23]. Here the Majorana fermions χ,b\chi,b obey anticommutation relations {χiα,χjβ}={biα,bjβ}=δijδαβ\{\chi_{i}^{\alpha},\chi_{j}^{\beta}\}=\{b_{i}^{\alpha},b_{j}^{\beta}\}=\delta_{ij}\delta^{\alpha\beta} and {χiα,bjβ}=0\{\chi_{i}^{\alpha},b_{j}^{\beta}\}=0. Equation (2) then becomes

H~YL=iKijuij(χiχj),\tilde{H}_{YL}=iK\sum_{\langle ij\rangle}u_{ij}(\vec{\chi}_{i}\cdot\vec{\chi}_{j}), (5)

where uij=2ibiαijbjαij=±1u_{ij}=-2ib_{i}^{\alpha_{ij}}b_{j}^{\alpha_{ij}}=\pm 1 are independent, static Z2Z_{2} gauge fields that commute with the Hamiltonian. Note that unlike a Kitaev Kondo lattice, where the spin-operator creates visons, the Yao-Lee structure of the CPT model means that the spin operator Sj\vec{S}_{j} commutes with the gauge fields so that action of the Kondo interaction does not disturb the static gauge fields. The ground state of Eq. (5) lies in the fluxless gauge sector [26], where the gauge fluxes Wp=i,jpuij=1W_{p}=\prod_{i,j\in p}u_{ij}=1 (here we use the convention iA,jBi\in A,j\in B). Provided the flux gap is larger than all other relevant energy scales, we can fix the ground-state gauge to be uij=1u_{ij}=1 whereupon Eq. (5) becomes

HYL=iKij(χiχj).H_{YL}=iK\sum_{\langle ij\rangle}(\vec{\chi}_{i}\cdot\vec{\chi}_{j}). (6)

In terms of Majorana fermions χ\vec{\chi}, the Kondo interaction HKH_{K} becomes

HK=i,jJij2(cjσχi)(χiσcj).H_{K}=-\sum_{i,j}\frac{J_{ij}}{2}(c_{j}^{\dagger}\vec{\sigma}\cdot\vec{\chi}_{i})(\vec{\chi}_{i}\cdot\vec{\sigma}c_{j}). (7)

To construct a mean-field solution we need to understand the underlying symmetries. The Hamiltonian H~=H~C+HYL+HK\tilde{H}=\tilde{H}_{C}+H_{YL}+H_{K} (4,6,7) has three discrete symmetries:

(1) Time-reversal 𝒯~=𝒯𝒢\mathcal{\tilde{T}}=\mathcal{TG}, where 𝒯cj𝒯1=iσycj\mathcal{T}c_{j}\mathcal{T}^{-1}=i\sigma_{y}c_{j}, 𝒯i𝒯1=i\mathcal{T}i\mathcal{T}^{-1}=-i, 𝒯χj𝒯1=χj\mathcal{T}\vec{\chi}_{j}\mathcal{T}^{-1}=\vec{\chi}_{j} and 𝒢\mathcal{G} is the global Z2Z_{2} gauge transformation that flips the signs on the B sublattice: 𝒢cA(B)𝒢1=±cA(B)\mathcal{G}c_{A(B)}\mathcal{G}^{-1}=\pm c_{A(B)}, 𝒢χA(B)𝒢1=±χA(B)\mathcal{G}\vec{\chi}_{A(B)}\mathcal{G}^{-1}=\pm\vec{\chi}_{A(B)}.

(2) Spin-lattice rotation 𝒞=𝒰𝒢\mathcal{C}=\mathcal{RUG}, where \mathcal{R} and 𝒰\mathcal{U} rotate the lattice and spin clockwise by π/3\pi/3: 𝒰cj𝒰1=exp(iπ6σz)cj\mathcal{U}c_{j}\mathcal{U}^{-1}=\exp({i\frac{\pi}{6}\sigma^{z}})c_{j}, 𝒰χj𝒰1=Rz1(π3)χj\mathcal{U}\vec{\chi}_{j}\mathcal{U}^{-1}=R^{-1}_{z}(\frac{\pi}{3})\vec{\chi}_{j}, where Rz(ϕ)R_{z}(\phi) is the SO(3)SO(3) matrix that rotates a vector around zz-axis by ϕ\phi; cj1=cj\mathcal{R}c_{j}\mathcal{R}^{-1}=c_{j^{\prime}}, χj1=χj\mathcal{R}\vec{\chi}_{j}\mathcal{R}^{-1}=\vec{\chi}_{j^{\prime}}, where 𝐫j=Rz(π3)𝐫j\mathbf{r}_{j^{\prime}}=R_{z}(\frac{\pi}{3})\mathbf{r}_{j} and 𝐫j\mathbf{r}_{j} is the position vector of site jj. The additional Z2Z_{2} gauge transformation 𝒢{\mathcal{G}} in 𝒞\mathcal{C} is needed to preserve the rotational invariance of the hopping terms in the Hamiltonian.

(3) Sublattice particle-hole, or “chiral” symmetry: 𝒮\mathcal{S}: 𝒮i𝒮1=i\mathcal{S}i\mathcal{S}^{-1}=-i, 𝒮cA(B)𝒮1=±cA(B)\mathcal{S}c_{A(B)}\mathcal{S}^{-1}=\pm c^{\dagger}_{A(B)}, and 𝒮χA(B)𝒮1=±χA(B)\mathcal{S}\vec{\chi}_{A(B)}\mathcal{S}^{-1}=\pm\vec{\chi}_{A(B)}.

III Mean-field solution

With a Hubbard-Stratonovich transformation, the local and nearest-neighbor Kondo interactions become [21, 22]

HK1=j{[(cjσVj)χj+H.c.]+2|Vj|2J1},H_{K1}=\sum_{j}\left\{[(c_{j}^{\dagger}\vec{\sigma}V_{j})\cdot\vec{\chi}_{j}+\text{H.c.}]+2\frac{|V_{j}|^{2}}{J_{1}}\right\}, (8)
HK2=ij{[(ci(σχj)Vji)+H.c.]+2|Vij|2J2+(ij)},H_{K2}=\sum_{\langle ij\rangle}\left\{[(c_{i}^{\dagger}(\vec{\sigma}\cdot\vec{\chi}_{j})V_{ji})+\text{H.c.}]+2\frac{|V_{ij}|^{2}}{J_{2}}+(i\leftrightarrow j)\right\}, (9)

where VjV_{j} and VijV_{ij} are charge-ee spinors: stationarity with respect to variations in these spinors imposes the self-consistency conditions:

Vj=J12(χjσ)cj,Vij=J22(χiσ)cj.V_{j}=-\frac{J_{1}}{2}\langle(\vec{\chi}_{j}\cdot\vec{\sigma})c_{j}\rangle,\quad V_{ij}=-\frac{J_{2}}{2}\langle(\vec{\chi}_{i}\cdot\vec{\sigma})c_{j}\rangle. (10)

If J2=0J_{2}=0, beyond a critical value of J1J_{1}, a uniform spinor condensate develops, in which Vj=W1vj/2V_{j}=W_{1}v_{j}/\sqrt{2}, where W1>0W_{1}>0 and we may take vj=eiα(1,0)Tv_{j}=e^{i\alpha}(1,0)^{T} [22].

Refer to caption
Figure 2: Left: the mean-field ansatz of the normalized spinor order parameter vijv_{ij}, denoted by the arrow pointing from site jj to site ii; Right: the direction of the spinor. We have taken α=β=0\alpha=\beta=0 and ϕ=π/2\phi=-\pi/2 as stated in the text.

When J2>0J_{2}>0, a second spinor order parameter Vij=W2vij/2V_{ij}=W_{2}v_{ij}/\sqrt{2} (W2>0W_{2}>0) also develops at sufficiently large J2J_{2}. As we will show below, when W1W_{1} or W2W_{2} becomes nonzero, the model describes a superconductor, which has superfluid stiffness proportional to W12,W22W_{1}^{2},W_{2}^{2}. The ansatz for vijv_{ij} is parametrized by

vij\displaystyle v_{ij} =ei(α+β)(sinγ2eiϕe3iθijcosγ2e4iθij),\displaystyle=e^{i(\alpha+\beta)}\left(\begin{array}[]{c}-\sin\frac{\gamma}{2}e^{-i\phi}e^{3i\theta_{ij}}\\ \cos\frac{\gamma}{2}e^{4i\theta_{ij}}\end{array}\right), (13)

which is the spin-down spinor along the axis n^=(sinγcos(ϕ+θij),sinγsin(ϕ+θij),cosγ)\hat{n}=(\sin\gamma\cos(\phi+\theta_{ij}),\sin\gamma\sin(\phi+\theta_{ij}),\cos\gamma). Here θij\theta_{ij} is the angle between dij\vec{d}_{ij} and y^-\hat{y}, as shown in Fig. 2. The ansatz (13) has been chosen so that both viv_{i} and vijv_{ij} transform under the same spin 12\frac{1}{2} representation under a 6060^{\circ} spin-lattice rotation: vieiπ/6viv_{i}\rightarrow e^{i\pi/6}v_{i}, vijeiπ/6vijv_{ij}\rightarrow e^{i\pi/6}v_{ij}.

The low-energy degrees of freedom of the system involve fluctuations in the overall phase α\alpha, which couple to the external electromagnetic field. Under a spin-lattice rotation 𝒞\mathcal{C}, eiαei(α+π/6)e^{i\alpha}\rightarrow e^{i(\alpha+\pi/6)} while the relative U(1)U(1) phase β\beta is unchanged, indicating that vjv_{j} and vijv_{ij} transform under the same one-dimensional irreducible representation (see Appendix A for a detailed discussion of the symmetry transformation of the order parameters). We have verified that the energy is minimized for β=0,π\beta=0,\pi. This residual Z2Z_{2} degeneracy originates from spontaenous chiral symmetry breaking: under the chiral operation 𝒮\mathcal{S}, vjvjv_{j}\rightarrow-v_{j} while vijvijv_{ij}\rightarrow v_{ij}. It is this broken chiral symmetry that is responsible for chiral edge states, demonstrated below. The other two degrees of freedom ϕ\phi and γ\gamma are generally gapped and hence do not affect the low-energy physics. Kramers’ theorem implies there are two other states which are the time-reversal partners of the above Z2Z_{2} states, with order parameters given by vjiσyvjv_{j}\rightarrow-i\sigma_{y}v_{j}^{*}, vijiσyvijv_{ij}\rightarrow i\sigma_{y}v_{ij}^{*}, leading to 4-fold degenerate U(1)×Z2×Z2U(1)\times Z_{2}\times Z_{2} state, where time-reversal, chiral, and electromagnetic U(1)U(1) gauge symmetry are spontaneously broken. From now we only focus on the representative case vj=(1,0)Tv_{j}=(1,0)^{T} by gauge-fixing α=0\alpha=0 and absorbing the phase factor eiβ=±1e^{i\beta}=\pm 1 into W2W_{2} by allowing it to acquire both positive and negative values. In fact, we find the energy is minimized only when ϕ=±π/2\phi=\pm\pi/2, allowing us to fix ϕ=π/2\phi=-\pi/2 and γ[π,π]\gamma\in\left[-\pi,\pi\right]. Without loss of generality, we can take λR\lambda_{R} in (4) to be positive, noting that the opposite case is obtained by a global spin rotation through 180 around the zz-axis, under which λRλR\lambda_{R}\rightarrow-\lambda_{R}, γγ\gamma\rightarrow-\gamma and W2W2W_{2}\rightarrow-W_{2}.

It is useful[22] to decompose the conduction electrons into a scalar and vector Majorana components, c0c^{0} and c\vec{c} respectively,

(cj,cj,)=12(cj0+icj3icj1cj2).\left(\begin{array}[]{c}c_{j,\uparrow}\\ c_{j,\downarrow}\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}[]{c}c_{j}^{0}+ic_{j}^{3}\\ ic_{j}^{1}-c_{j}^{2}\end{array}\right). (14)

The key feature that then emerges, is that when W2=λR=0W_{2}=\lambda_{R}=0, the vector components cjαc^{\alpha}_{j} (α=1,2,3\alpha=1,2,3) develop a gap by selectively hybridizing with the Yao-Lee spin liquid, while the scalar components cj0c^{0}_{j} decouple, forming a gapless Majorana sea. The corresponding Hamiltonian is

H=\displaystyle H= 𝐤12BZα=13(c𝐤αχ𝐤α)(tA𝐤τiW1iW1KA𝐤τ)(c𝐤αχ𝐤α)\displaystyle\sum_{\mathbf{k}\in\frac{1}{2}\text{BZ}}\sum_{\alpha=1}^{3}\left(\begin{array}[]{cc}c_{\mathbf{k}}^{\alpha\dagger}&\chi_{\mathbf{k}}^{\alpha\dagger}\end{array}\right)\left(\begin{array}[]{cc}-t\vec{A}_{\mathbf{k}}\cdot\vec{\tau}&-iW_{1}\\ iW_{1}&K\vec{A}_{\mathbf{k}}\cdot\vec{\tau}\end{array}\right)\left(\begin{array}[]{c}c_{\mathbf{k}}^{\alpha}\\ \chi_{\mathbf{k}}^{\alpha}\end{array}\right) (20)
+𝐤12BZc𝐤0(tA𝐤τ)c𝐤0,\displaystyle+\sum_{\mathbf{k}\in\frac{1}{2}\text{BZ}}c_{\mathbf{k}}^{0\dagger}\left(-t\vec{A}_{\mathbf{k}}\cdot\vec{\tau}\right)c_{\mathbf{k}}^{0},

where τ\vec{\tau} are the Pauli matrices spanning the sublattice degrees of freedom and the form-factor A𝐤=1+ei𝐤𝐚𝟏+ei𝐤𝐚𝟐A_{\mathbf{k}}=1+e^{-i\mathbf{k}\cdot\mathbf{a_{1}}}+e^{-i\mathbf{k}\cdot\mathbf{a_{2}}} (where 𝐚𝟏,𝟐=(±3/2,3/2)\mathbf{a_{1,2}}=(\pm\sqrt{3}/2,3/2) are the Bravais lattice vectors) has been rewritten as a vector A𝐤=(ImA𝐤,ReA𝐤,0)\vec{A}_{\mathbf{k}}=-(\text{Im}A_{\mathbf{k}},\text{Re}A_{\mathbf{k}},0). Here we have defined Fourier transforms of Majorana fermions cαc^{\alpha}, χ\vec{\chi}

c𝐤α\displaystyle c_{\mathbf{k}}^{\alpha\dagger} =1Njei𝐤𝐑j(cjAα,cjBα),\displaystyle=\frac{1}{\sqrt{N}}\sum_{j}e^{i\mathbf{k}\cdot\mathbf{R}_{j}}\left(c_{jA}^{\alpha},c_{jB}^{\alpha}\right), (21)
χ𝐤\displaystyle\vec{\chi}_{\mathbf{k}}^{\dagger} =1Njei𝐤𝐑j(χjA,χjB),\displaystyle=\frac{1}{\sqrt{N}}\sum_{j}e^{i\mathbf{k}\cdot\mathbf{R}_{j}}\left(\vec{\chi}_{jA},\vec{\chi}_{jB}\right),

where 𝐑j\mathbf{R}_{j} is the position of the unit cell. The summations run over half of the Brillouin zone (BZ), due to the redundancies χ𝐤=χ𝐤\vec{\chi}_{\mathbf{k}}^{\dagger}=\vec{\chi}_{\mathbf{-k}} and c𝐤α=c𝐤αc_{\mathbf{k}}^{\alpha\dagger}=c_{\mathbf{-k}}^{\alpha}.

Refer to caption
Figure 3: Spectrum obtained by exact diagonalization of the full Hamiltonian in a ribbon geometry, which is infinite in the yy-direction and has NxN_{x} unit cells in the xx-direction. The black lines denote the bulk modes while the red and blue lines represent the unidirectional boundary modes on opposite edges. Parameters: t=K=W1=1t=K=W_{1}=1, W2=0.3W_{2}=0.3, λR=0.3\lambda_{R}=0.3, γ=0\gamma=0, μ=0\mu=0, Nx=20N_{x}=20.

The energies of the gapped vector fermions are ±E𝐤+\pm E_{\mathbf{k}}^{+} and ±E𝐤\pm E_{\mathbf{k}}^{-}, where

E𝐤±=(K+t2|A𝐤|)2+W12±(Kt2)|A𝐤|,E_{\mathbf{k}}^{\pm}=\sqrt{\left(\frac{K+t}{2}|{A}_{\mathbf{k}}|\right)^{2}+W_{1}^{2}}\pm\left(\frac{K-t}{2}\right)|{A}_{\mathbf{k}}|, (22)

while the energy of the gapless scalars, c0c^{0} is E𝐤0=±t|A𝐤|E_{\mathbf{k}}^{0}=\pm t|{A}_{\mathbf{k}}|.

When λR\lambda_{R} and W2W_{2} are nonzero, matrix elements develop which link the low-energy subspace ||\mathcal{L}\rangle of gapless scalars c0c^{0} to the high-energy subspace ||\mathcal{H}\rangle of gapped vector Majoranas (See Appendix B for the full mean-field Hamiltonian). Using second-order perturbation theory (see Appendix C for detailed calculation), the low-energy effective Hamiltonian near the high-symmetry momenta K(K)=(±4π/33,0)K(K^{\prime})=(\pm 4\pi/3\sqrt{3},0) is given by

Heff(k)=c𝐤0[vF(±kxτykyτx)mτz)]c𝐤0,H_{\text{eff}}(k)=c_{\mathbf{k}}^{0\dagger}\left[v_{F}\left(\pm k_{x}\tau_{y}-k_{y}\tau_{x}\right)\mp m\tau_{z})\right]c_{\mathbf{k}}^{0}, (23)

where vF=3t/2v_{F}=3t/2 is the Fermi velocity, m=9W2λRcos(γ/2)/W1m=9W_{2}\lambda_{R}\cos(\gamma/2)/W_{1} is the mass and we have taken t=Kt=K for simplicity. It is important to note that the mass has an opposite sign at different valleys K,KK,K^{\prime}, indicating that the low-energy band is topological with a non-trivial Chern number 𝒞=sgn(m)\mathcal{C}=\text{sgn}(m), resembling the Kitaev and Haldane models [25, 27].

As the high-energy bands are topologically trivial and the order parameter carries U(1)U(1) electric charge, we conclude that the system is a charge-ee topological superconductor, which, at the mean-field level, belongs to the symmetry class D in the Altland-Zirnbauer classification [28, 29]. Due to the bulk-edge correspondence and the fact that the low-energy gapped excitations are Majorana fermions (or complex fermions living in half of the Brillouin zone), there must be a chiral Majorana edge mode, as shown in Fig. 3. For larger W2W_{2} and λR\lambda_{R} where the perturbative analysis breaks down, the bulk gap may close and reopen, leading to other topological phases with different Chern numbers. In Fig. 4, we show the W1W_{1}-W2W_{2} phase diagram for γ=0\gamma=0 obtained by exact diagonalization of the mean-field Hamiltonian, from which one finds phases with other higher Chern numbers (see Appendix D for phase diagrams at other values of γ\gamma). We note that the phase diagram is symmetric about W2=0W_{2}=0 and the Chern number changes sign if W2W_{2} is opposite. This is a consequence of the chiral symmetry, recalling that the chiral operation reverses the chirality (velocity) of the edge modes as well as the sign of W2W_{2}.

The J1J2J_{1}-J_{2} phase diagrams are obtained by solving the self-consistent mean-field equations numerically (see Appendix B for the expression of mean-field equations) and depicted in Fig. 5(a)(b). For sufficiently large J1J_{1} and J2J_{2}, a phase region with nonzero W1W_{1} and W2W_{2} exists. Remarkably we find both the 𝒞=±1\mathcal{C}=\pm 1, 𝒞=2\mathcal{C}=\mp 2 topological superconductor phases, which are separated by a first-order transition with a sudden jump of order parameters.

It is essential to note that the second-order transition from the disordered phase to the topological phase is generally two-step. This can be understood by writing down the Landau theory for the order parameters W1,W2W_{1},W_{2}: =c1W12+c2W22+\mathcal{L}=c_{1}W_{1}^{2}+c_{2}W_{2}^{2}+..., where the W1W2W_{1}W_{2} term is absent due to the chiral symmetry. As W1W_{1} and W2W_{2} are not coupled to the lowest order, one expects that their condensations are generally independent. To make a single-step second-order transition possible, we introduce a chemical potential term

Hμ=μicici=iμi(ci3ci0+ci2ci1),H_{\mu}=-\mu\sum_{i}c_{i}^{\dagger}c_{i}=i\mu\sum_{i}(c_{i}^{3}c_{i}^{0}+c_{i}^{2}c_{i}^{1}), (24)

which explicitly breaks the chiral symmetry for μ0\mu\neq 0 and couples W1W_{1} and W2W_{2}. Consequently, when μ0\mu\neq 0, W1W_{1} and W2W_{2} condense simultaneously for sufficiently large Kondo coupling, and the 4-fold degenerate state becomes the 2-fold degenerate U(1)×Z2U(1)\times Z_{2} state, as shown in Fig. 5(c). Remarkably, the topological phases we found earlier are robust against the nonzero chemical potential μ\mu, unless it closes and reopens the gap. Therefore, when μ0\mu\neq 0, the TRS-breaking transition to a (possibly topological) superconductor becomes one-step.

Refer to caption
Figure 4: Topological phase diagram as a function of W1W_{1} and W2W_{2}, which are proportional to the amplitude of the spinor order parameters defined in Eq. (10). We choose t=K=1t=K=1, λR=0.3\lambda_{R}=0.3, γ=0\gamma=0, μ=0\mu=0. The numbers indicate the Chern number of the corresponding topological phase.
Refer to caption
Refer to caption
Refer to caption
Figure 5: Mean-field phase diagram for (a) λR=0,μ=0\lambda_{R}=0,\mu=0 (b) λR=0.3,μ=0\lambda_{R}=0.3,\mu=0 (c) λR=0.3,μ=0.1\lambda_{R}=0.3,\mu=0.1 when t=K=1t=K=1. The solid (dashed) line denotes the continuous(discontinuous) phase transition. Here J1J_{1} and J2J_{2} are the on-site and nearest-neighbor Kondo coupling respectively.

IV Conclusion

We have presented calculations on the CPT Kondo lattice which demonstrate the feasibility of topological superconductivity in the Kondo lattice. Our approach takes advantage of an underlying Yao-Lee spin model to control the gauge fluctuations associated with fractionalization, without the need to invoke a large-N expansion. While our model calculation depends on a specific model, the results exhibit a new class of topological superconductivity that may occur under a wide range of circumstances. The model state we have uncovered involves Z2Z_{2} fractionalized order: the pairing between electrons and a Z2Z_{2} spin liquid with gapless spin excitations. A fascinating aspect of this topological superconductivity, is the spin-1/2 character of the order parameter, for unlike conventional Cooper pairing, the order parameter transforms under a S=1/2S=1/2, double group representation and is consequently subject to Kramer’s theorem, allowing for a spontaneous time-reversal breaking chiral superconductor, developing via a single phase transition, independently of the underlying lattice. We remark that although our mean-field calculations suggest the existence of novel charge-ee topological superconductivity, fluctuations beyond mean-field theory may as well lead to other competing phases. Therefore, complementary numerical methods are necessary to justify the existence of the proposed phase, which is beyond the scope of this work and interesting for future studies.

We end by returning to our initial motivation, speculating on whether this novel type of order could develop in heavy fermion materials such as UTe2. Although our model calculation relies on a pre-existing spin liquid, which is not proved to exist in UTe2 and hence our model is not directly applicable, it may also be possible to enter this novel superconducting state from a heavy Fermion liquid[30]. As mentioned in the introduction, early measurements on superconducting UTe2 suggested that the condensate breaks time-reversal symmetry, producing a Kerr rotation, with STM evidence for chiral edge states. More recent measurements, on improved samples have not reproduced the early Kerr rotation results, but chiral edge states are still believed to still be present. A one-stage transition into a chiral topological superconductor is prohibited in orthorhombic Cooper-paired superconductors, as there are no two dimensional triplet representations. It would thus be interesting to revisit the question of time-reversal symmetry breaking in this material, for a single stage transition into a chiral state would be strong evidence for beyond BCS pairing.

Acknowledgement

This work was supported by the U.S. National Science Foundation grant DMR-1830707. Part of the work by Z.Z. was financially supported by the National Science Foundation, Quantum Leap Challenge Institute for Hybrid Quantum Architectures and Networks Grant No. OMA-2016136. We gratefully acknowledge discussions with Aaditya Panigrahi and Alexei Tsvelik.

Appendix A Transformation of order parameters under symmetry operations

In this section, we present how the order parameters transform under the time-reversal operation 𝒯~\mathcal{\tilde{T}}, the chiral operation 𝒮\mathcal{S} and the spin-lattice rotation 𝒞\mathcal{C} defined in the main text.

We first consider the effects of 𝒮\mathcal{S} and 𝒯~\mathcal{\tilde{T}}. As the original full Hamiltonian is invariant under the defined transformations 𝒮\mathcal{S} and 𝒯~\mathcal{\tilde{T}}, it suffices to investigate how the mean-field Hamiltonian transforms under these symmetry operations. As in the main text, the factorized mean-field Hamiltonian is given by

HK1=j{[(cjσVj)χj+H.c.]+2|Vj|2J1},H_{K1}=\sum_{j}\left\{[(c_{j}^{\dagger}\vec{\sigma}V_{j})\cdot\vec{\chi}_{j}+\text{H.c.}]+2\frac{|V_{j}|^{2}}{J_{1}}\right\}, (25)
HK2=ij{[(ci(σχj)Vji)+H.c.]+2|Vij|2J2+(ij)}.H_{K2}=\sum_{\langle ij\rangle}\left\{[(c_{i}^{\dagger}(\vec{\sigma}\cdot\vec{\chi}_{j})V_{ji})+\text{H.c.}]+2\frac{|V_{ij}|^{2}}{J_{2}}+(i\leftrightarrow j)\right\}. (26)

It is straightforward to show that under the chiral operation 𝒮\mathcal{S}

𝒮(cjσVj)χj𝒮1=(cjTσVj)χj=(cjασαβVjβ)χj=(Vjβσβαcjα)χj=χj(Vjσcj).\mathcal{S}(c_{j}^{\dagger}\vec{\sigma}V_{j})\cdot\vec{\chi}_{j}\mathcal{S}^{-1}=(c_{j}^{T}\vec{\sigma}^{*}V_{j}^{*})\cdot\vec{\chi}_{j}=(c_{j\alpha}\vec{\sigma}^{*}_{\alpha\beta}V_{j\beta}^{*})\cdot\vec{\chi}_{j}=(V_{j\beta}^{*}\vec{\sigma}_{\beta\alpha}c_{j\alpha})\cdot\vec{\chi}_{j}=-\vec{\chi}_{j}\cdot(V_{j}^{\dagger}\vec{\sigma}c_{j}). (27)

Compare it with Eq. (25) one concludes that under 𝒮\mathcal{S}, VjVjV_{j}\rightarrow-V_{j}. Similarly one obtains that under 𝒮\mathcal{S}, VijVijV_{ij}\rightarrow V_{ij} where the extra minus sign is due to the Z2Z_{2} gauge transformation 𝒢\mathcal{G}. Under the time-reversal operation 𝒯~\mathcal{\tilde{T}}, we have

𝒮(cjσVj)χj𝒮1=cj(iσyσVj)χj=(cjσiσyVj)χj\mathcal{S}(c_{j}^{\dagger}\vec{\sigma}V_{j})\cdot\vec{\chi}_{j}\mathcal{S}^{-1}=c_{j}^{\dagger}(-i\sigma_{y}\vec{\sigma^{*}}V_{j}^{*})\cdot\vec{\chi_{j}}=(c_{j}^{\dagger}\vec{\sigma}i\sigma_{y}V_{j}^{*})\cdot\vec{\chi}_{j} (28)

where we have used iσyσiσy=σTi\sigma_{y}\vec{\sigma}i\sigma_{y}=\vec{\sigma}^{T}. This indicates that under 𝒯~\mathcal{\tilde{T}}, VjiσyVjV_{j}\rightarrow i\sigma_{y}V_{j}^{*} and Vij=iσyVijV_{ij}=-i\sigma_{y}V_{ij}^{*}.

The spin-lattice rotation 𝒞\mathcal{C} is a combination of the spin-rotation 𝒰\mathcal{U}, the lattice rotation \mathcal{R} and the Z2Z_{2} gauge transformation 𝒢{\mathcal{G}}. Under the spin-rotation over angle π/3\pi/3, the Majorana fermions in the spin liquid transform as a SO(3) vector

χRz1(π3)χ,\vec{\chi}\rightarrow R_{z}^{-1}(\frac{\pi}{3})\vec{\chi}, (29)

while the conduction electrons transform as

ceiπ6σzc.c\rightarrow e^{i\frac{\pi}{6}\sigma_{z}}c. (30)

Neglecting the multiplicative factor, one obtains that the on-site spinor order parameter VjV_{j} transforms as

Vj=(χjσ)cj(Rz1(π3)χjσ)eiπ6σzcj=eiπ6σz(χjσ)cj=eiπ6σzVj,V_{j}=(\vec{\chi}_{j}\cdot\vec{\sigma})c_{j}\rightarrow(R_{z}^{-1}(\frac{\pi}{3})\vec{\chi}_{j}\cdot\vec{\sigma})e^{i\frac{\pi}{6}\sigma_{z}}c_{j}=e^{i\frac{\pi}{6}\sigma_{z}}(\vec{\chi}_{j}\cdot\vec{\sigma})c_{j}=e^{i\frac{\pi}{6}\sigma_{z}}V_{j}, (31)

where we have used the identity eiπ6σzσeiπ6σz=Rz(π/3)σe^{-i\frac{\pi}{6}\sigma_{z}}\vec{\sigma}e^{i\frac{\pi}{6}\sigma_{z}}=R_{z}(\pi/3)\vec{\sigma}. Now we consider how the ansatz we adopt in the main text transforms under 𝒞\mathcal{C}. As vjv_{j} is uniform and involves fermions on the same site, \mathcal{R} and 𝒢{\mathcal{G}} have no effects. Therefore

vj=(10)eiπ6σz(10)=eiπ6vj.v_{j}=\left(\begin{array}[]{c}1\\ 0\end{array}\right)\rightarrow e^{i\frac{\pi}{6}\sigma_{z}}\left(\begin{array}[]{c}1\\ 0\end{array}\right)=e^{i\frac{\pi}{6}}v_{j}. (32)

For vijv_{ij}, the lattice rotation results in θijθij+π/3\theta_{ij}\rightarrow\theta_{ij}+\pi/3, while the gauge transformation 𝒢{\mathcal{G}} gives an extra minus sign, so

vij=(sinγ2eiϕe3iθijcosγ2e4iθij)eiπ6σz(sinγ2eiϕe3iθijcosγ2e4iθijeiπ/3)=eiπ6vij.v_{ij}=\left(\begin{array}[]{c}-\sin\frac{\gamma}{2}e^{-i\phi}e^{3i\theta_{ij}}\\ \cos\frac{\gamma}{2}e^{4i\theta_{ij}}\end{array}\right)\rightarrow-e^{i\frac{\pi}{6}\sigma_{z}}\left(\begin{array}[]{c}\sin\frac{\gamma}{2}e^{-i\phi}e^{3i\theta_{ij}}\\ -\cos\frac{\gamma}{2}e^{4i\theta_{ij}}e^{i\pi/3}\end{array}\right)=e^{i\frac{\pi}{6}}v_{ij}. (33)

We hence have proved that vjv_{j} and vijv_{ij} transform in the same 1-D irreducible representation.

Appendix B Full mean-field Hamiltonians

In this section, we present the full mean-field Hamiltonians in terms of Majorana fermions.

With the mean-field ansatz and Majorana representation in the main text, HCH_{C}, HRH_{R} and HKH_{K} can be rewritten as

HC=itijcicj+H.c.=itijα=03ciαcjα,H_{C}=-it\sum_{\langle ij\rangle}c_{i}^{\dagger}c_{j}+\text{H.c.}=-it\sum_{\langle ij\rangle}\sum_{\alpha=0}^{3}c_{i}^{\alpha}c_{j}^{\alpha}, (34)
HR\displaystyle H_{R} =λRijci[(σ×dij)z^]cj+H.c.\displaystyle=-\lambda_{R}\sum_{\langle ij\rangle}c_{i}^{\dagger}\left[(\vec{\sigma}\times\vec{d}_{ij})\cdot\hat{z}\right]c_{j}+\text{H.c.}
=iλRij[dijy(ci0cj1ci1cj0+ci3cj2ci2cj3)dijx(ci0cj2ci2cj0+ci1cj3ci3cj1)],\displaystyle=-i\lambda_{R}\sum_{\langle ij\rangle}\left[d_{ij}^{y}\left(c_{i}^{0}c_{j}^{1}-c_{i}^{1}c_{j}^{0}+c_{i}^{3}c_{j}^{2}-c_{i}^{2}c_{j}^{3}\right)-d_{ij}^{x}\left(c_{i}^{0}c_{j}^{2}-c_{i}^{2}c_{j}^{0}+c_{i}^{1}c_{j}^{3}-c_{i}^{3}c_{j}^{1}\right)\right], (35)
HK1=12jJ1σj(cjσcj)=iW1j(cjχj)+2NW12J1,H_{K1}=\frac{1}{2}\sum_{j}J_{1}\vec{\sigma}_{j}\cdot(c_{j}^{\dagger}\vec{\sigma}c_{j})=-iW_{1}\sum_{j}(\vec{c}_{j}\cdot\vec{\chi}_{j})+\frac{2NW_{1}^{2}}{J_{1}}, (36)
HK2=12ij\displaystyle H_{K2}=\frac{1}{2}\sum_{\langle ij\rangle} J2σi(cjσcj)\displaystyle J_{2}\vec{\sigma}_{i}\cdot(c_{j}^{\dagger}\vec{\sigma}c_{j}) (37)
=iW2ij\displaystyle=iW_{2}\sum_{\langle ij\rangle} [cosγ2sin(4θij+β)(cj0χi1cj3χi2+cj2χi3)cosγ2cos(4θij+β)(cj3χi1+cj0χi2cj1χi3)\displaystyle\left[\cos\frac{\gamma}{2}\sin(4\theta_{ij}+\beta)\left(c_{j}^{0}\chi_{i}^{1}-c_{j}^{3}\chi_{i}^{2}+c_{j}^{2}\chi_{i}^{3}\right)-\cos\frac{\gamma}{2}\cos(4\theta_{ij}+\beta)\left(c_{j}^{3}\chi_{i}^{1}+c_{j}^{0}\chi_{i}^{2}-c_{j}^{1}\chi_{i}^{3}\right)\right.
+sinγ2cos(3θij+βϕ)(cj1χi1+cj2χi2+cj3χi3)+sinγ2sin(3θij+βϕ)(cj2χi1cj1χi2cj0χi3)]\displaystyle\left.+\sin\frac{\gamma}{2}\cos(3\theta_{ij}+\beta-\phi)\left(c_{j}^{1}\chi_{i}^{1}+c_{j}^{2}\chi_{i}^{2}+c_{j}^{3}\chi_{i}^{3}\right)+\sin\frac{\gamma}{2}\sin(3\theta_{ij}+\beta-\phi)\left(c_{j}^{2}\chi_{i}^{1}-c_{j}^{1}\chi_{i}^{2}-c_{j}^{0}\chi_{i}^{3}\right)\right]
(ij)+6NW22J2,\displaystyle(i\leftrightarrow j)+\frac{6NW_{2}^{2}}{J_{2}},

where NN is the number of unit cells. Eqs.(34)-(37) can be diagonalized by Fourier transforming the Majorana operators

χ𝐤Λα=1Njei𝐤𝐑jχjΛα,\chi_{\mathbf{k}\Lambda}^{\alpha\dagger}=\frac{1}{\sqrt{N}}\sum_{j}e^{i\mathbf{k}\cdot\mathbf{R}_{j}}\chi_{j\Lambda}^{\alpha}, (38)
c𝐤Λα=1Njei𝐤𝐑jcjΛα,c_{\mathbf{k}\Lambda}^{\alpha\dagger}=\frac{1}{\sqrt{N}}\sum_{j}e^{i\mathbf{k}\cdot\mathbf{R}_{j}}c_{j\Lambda}^{\alpha}, (39)

where 𝐑j\mathbf{R}_{j} is the position of the unit cell and Λ=A,B\Lambda=A,B labels different sublattices. In momentum space, the Hamiltonian reads

H~C=it𝐤12BZα=03(A(𝐤)c𝐤Aαc𝐤BαA(𝐤)c𝐤Bαc𝐤Aα),\tilde{H}_{C}=-it\sum_{\mathbf{k}\in\frac{1}{2}\text{BZ}}\sum_{\alpha=0}^{3}\left(A(\mathbf{k})c_{\mathbf{k}A}^{\alpha\dagger}c_{\mathbf{k}B}^{\alpha}-A^{*}(\mathbf{k})c_{\mathbf{k}B}^{\alpha\dagger}c_{\mathbf{k}A}^{\alpha}\right), (40)
HYL=iK𝐤12BZα=13(A(𝐤)χ𝐤Aαχ𝐤BαA(𝐤)χ𝐤Bαχ𝐤Aα),H_{YL}=iK\sum_{\mathbf{k}\in\frac{1}{2}\text{BZ}}\sum_{\alpha=1}^{3}\left(A(\mathbf{k})\chi_{\mathbf{k}A}^{\alpha\dagger}\chi_{\mathbf{k}B}^{\alpha}-A^{*}(\mathbf{k})\chi_{\mathbf{k}B}^{\alpha\dagger}\chi_{\mathbf{k}A}^{\alpha}\right), (41)
HR=iλR𝐤12BZ[B(𝐤)(c𝐤A0c𝐤B1+c𝐤A3c𝐤B2c𝐤A1c𝐤B0c𝐤A2c𝐤B3)+C(𝐤)(c𝐤A0c𝐤B2+c𝐤A1c𝐤B3c𝐤A2c𝐤B0c𝐤A3c𝐤B1)]+H.c.,H_{R}=i\lambda_{R}\sum_{\mathbf{k}\in\frac{1}{2}\text{BZ}}\left[B(\mathbf{k})\left(c_{\mathbf{k}A}^{0\dagger}c_{\mathbf{k}B}^{1}+c_{\mathbf{k}A}^{3\dagger}c_{\mathbf{k}B}^{2}-c_{\mathbf{k}A}^{1\dagger}c_{\mathbf{k}B}^{0}-c_{\mathbf{k}A}^{2\dagger}c_{\mathbf{k}B}^{3}\right)+C(\mathbf{k})\left(c_{\mathbf{k}A}^{0\dagger}c_{\mathbf{k}B}^{2}+c_{\mathbf{k}A}^{1\dagger}c_{\mathbf{k}B}^{3}-c_{\mathbf{k}A}^{2\dagger}c_{\mathbf{k}B}^{0}-c_{\mathbf{k}A}^{3\dagger}c_{\mathbf{k}B}^{1}\right)\right]+\text{H.c.}, (42)
HK=i𝐤12BZ\displaystyle H_{K}=-i\sum_{\mathbf{k}\in\frac{1}{2}\text{BZ}} {W2[B~(𝐤)(c𝐤A3χ𝐤B1+c𝐤A0χ𝐤B2c𝐤A1χ𝐤B3)+B~(𝐤)(c𝐤B3χ𝐤A1+c𝐤B0χ𝐤A2c𝐤B1χ𝐤A3)]\displaystyle\left\{W_{2}\left[\tilde{B}(\mathbf{k})\left(c_{\mathbf{k}A}^{3\dagger}\chi_{\mathbf{k}B}^{1}+c_{\mathbf{k}A}^{0\dagger}\chi_{\mathbf{k}B}^{2}-c_{\mathbf{k}A}^{1\dagger}\chi_{\mathbf{k}B}^{3}\right)+\tilde{B}^{*}(\mathbf{k})\left(c_{\mathbf{k}B}^{3\dagger}\chi_{\mathbf{k}A}^{1}+c_{\mathbf{k}B}^{0\dagger}\chi_{\mathbf{k}A}^{2}-c_{\mathbf{k}B}^{1\dagger}\chi_{\mathbf{k}A}^{3}\right)\right]\right. (43)
W2[C~(𝐤)(c𝐤A0χ𝐤B1c𝐤A3χ𝐤B2+c𝐤A2χ𝐤B3)+C~(𝐤)(c𝐤B0χ𝐤A1c𝐤B3χ𝐤A2+c𝐤B2χ𝐤A3)]\displaystyle-W_{2}\left[\tilde{C}(\mathbf{k})\left(c_{\mathbf{k}A}^{0\dagger}\chi_{\mathbf{k}B}^{1}-c_{\mathbf{k}A}^{3\dagger}\chi_{\mathbf{k}B}^{2}+c_{\mathbf{k}A}^{2\dagger}\chi_{\mathbf{k}B}^{3}\right)+\tilde{C}^{*}(\mathbf{k})\left(c_{\mathbf{k}B}^{0\dagger}\chi_{\mathbf{k}A}^{1}-c_{\mathbf{k}B}^{3\dagger}\chi_{\mathbf{k}A}^{2}+c_{\mathbf{k}B}^{2\dagger}\chi_{\mathbf{k}A}^{3}\right)\right]
+W2sinγ2cos(βϕ)(A(𝐤)α=13c𝐤Aαχ𝐤BαA(𝐤)α=13c𝐤Bαχ𝐤Aα)\displaystyle+W_{2}\sin\frac{\gamma}{2}\cos(\beta-\phi)\left(A(\mathbf{k})\sum_{\alpha=1}^{3}c_{\mathbf{k}A}^{\alpha\dagger}\chi_{\mathbf{k}B}^{\alpha}-A^{*}(\mathbf{k})\sum_{\alpha=1}^{3}c_{\mathbf{k}B}^{\alpha\dagger}\chi_{\mathbf{k}A}^{\alpha}\right)
+W2sinγ2sin(βϕ)[A(𝐤)(c𝐤A2χ𝐤B1c𝐤A1χ𝐤B2c𝐤A0χ𝐤B3)A(𝐤)(c𝐤B2χ𝐤A1c𝐤B1χ𝐤A2c𝐤B0χ𝐤A3)]\displaystyle+W_{2}\sin\frac{\gamma}{2}\sin(\beta-\phi)\left[A(\mathbf{k})\left(c_{\mathbf{k}A}^{2\dagger}\chi_{\mathbf{k}B}^{1}-c_{\mathbf{k}A}^{1\dagger}\chi_{\mathbf{k}B}^{2}-c_{\mathbf{k}A}^{0\dagger}\chi_{\mathbf{k}B}^{3}\right)-A^{*}(\mathbf{k})\left(c_{\mathbf{k}B}^{2\dagger}\chi_{\mathbf{k}A}^{1}-c_{\mathbf{k}B}^{1\dagger}\chi_{\mathbf{k}A}^{2}-c_{\mathbf{k}B}^{0\dagger}\chi_{\mathbf{k}A}^{3}\right)\right]
+W1α=13(c𝐤Aαχ𝐤Aα+c𝐤Bαχ𝐤Bα)+H.c.},\displaystyle\left.+W_{1}\sum_{\alpha=1}^{3}\left(c_{\mathbf{k}A}^{\alpha\dagger}\chi_{\mathbf{k}A}^{\alpha}+c_{\mathbf{k}B}^{\alpha\dagger}\chi_{\mathbf{k}B}^{\alpha}\right)+\text{H.c.}\right\},

where A(𝐤)=1+ei𝐤𝐚𝟏+ei𝐤𝐚𝟐A(\mathbf{k})=1+e^{-i\mathbf{k}\cdot\mathbf{a_{1}}}+e^{-i\mathbf{k}\cdot\mathbf{a_{2}}}, B~(𝐤)=cos(γ/2)[cosβ+ei𝐤𝐚𝟏cos(2π/3+β)+ei𝐤𝐚𝟐cos(4π/3+β)]\tilde{B}(\mathbf{k})=\cos(\gamma/2)[\cos\beta+e^{-i\mathbf{k}\cdot\mathbf{a_{1}}}\cos(2\pi/3+\beta)+e^{-i\mathbf{k}\cdot\mathbf{a_{2}}}\cos(4\pi/3+\beta)], C~(𝐤)=cos(γ/2)[sinβ+ei𝐤𝐚𝟏sin(2π/3+β)+ei𝐤𝐚𝟐sin(4π/3+β)]\tilde{C}(\mathbf{k})=\cos(\gamma/2)[\sin\beta+e^{-i\mathbf{k}\cdot\mathbf{a_{1}}}\sin(2\pi/3+\beta)+e^{-i\mathbf{k}\cdot\mathbf{a_{2}}}\sin(4\pi/3+\beta)], B(𝐤)=B~(𝐤)|γ,β=0B(\mathbf{k})=\tilde{B}(\mathbf{k})|_{\gamma,\beta=0}, C(𝐤)=C~(𝐤)|γ,β=0C(\mathbf{k})=\tilde{C}(\mathbf{k})|_{\gamma,\beta=0} and 𝐚𝟏=(3/2,3/2)\mathbf{a_{1}}=(\sqrt{3}/2,3/2), 𝐚𝟐=(3/2,3/2)\mathbf{a_{2}}=(-\sqrt{3}/2,3/2) are the Bravais lattice vectors. Here, we note that only half of the Brillouin zone (BZ) is summed over due to the redundancy χ𝐤Λα=χ𝐤Λα\chi_{\mathbf{k}\Lambda}^{\alpha\dagger}=\chi_{\mathbf{-k}\Lambda}^{\alpha} and c𝐤Λα=c𝐤Λαc_{\mathbf{k}\Lambda}^{\alpha\dagger}=c_{\mathbf{-k}\Lambda}^{\alpha}. The self-consistency condition for the spinor order parameter VΛV_{\Lambda} at sublattice Λ\Lambda becomes

VΛ=1N𝐤12BZ(V𝐤𝚲V𝐤𝚲)=W12(10),\displaystyle V_{\Lambda}=\frac{1}{N}\sum_{\mathbf{k}\in\frac{1}{2}\text{BZ}}\left(\begin{array}[]{c}V_{\mathbf{k\Lambda\uparrow}}\\ V_{\mathbf{k\Lambda\downarrow}}\end{array}\right)=\frac{W_{1}}{\sqrt{2}}\left(\begin{array}[]{c}1\\ 0\end{array}\right), (48)

where

V𝐤𝚲=J12[2(X𝐤Λc𝐤Λ,c𝐤Λ,X𝐤Λ)+χ𝐤Λ3c𝐤Λ,c𝐤Λ,χ𝐤Λ3],V_{\mathbf{k\Lambda\uparrow}}=-\frac{J_{1}}{2}\left[\sqrt{2}\left(X_{\mathbf{-k}\Lambda}c_{\mathbf{k}\Lambda,\downarrow}-c_{\mathbf{-k}\Lambda,\downarrow}X_{\mathbf{k}\Lambda}\right)+\chi_{\mathbf{k}\Lambda}^{3\dagger}c_{\mathbf{k}\Lambda,\uparrow}-c_{\mathbf{-k}\Lambda,\uparrow}\chi_{\mathbf{k}\Lambda}^{3}\right], (49)
V𝐤𝚲=J12[2(X𝐤Λc𝐤Λ,c𝐤Λ,X𝐤Λ)χ𝐤Λ3c𝐤Λ,+c𝐤Λ,χ𝐤Λ3].V_{\mathbf{k\Lambda\downarrow}}=-\frac{J_{1}}{2}\left[\sqrt{2}(X_{\mathbf{k}\Lambda}^{\dagger}c_{\mathbf{k}\Lambda,\uparrow}-c_{\mathbf{-k}\Lambda,\uparrow}X_{\mathbf{-k}\Lambda}^{\dagger})-\chi_{\mathbf{k}\Lambda}^{3\dagger}c_{\mathbf{k}\Lambda,\downarrow}+c_{\mathbf{-k}\Lambda,\downarrow}\chi_{\mathbf{k}\Lambda}^{3}\right]. (50)

Here we have defined X𝐤Λ=(χ𝐤1iχ𝐤2)/2X_{\mathbf{k}\Lambda}=(\chi^{1}_{\mathbf{k}}-i\chi^{2}_{\mathbf{k}})/\sqrt{2} and used the relation c𝐤Λ,=(c𝐤Λ0+ic𝐤Λ3)/2c_{\mathbf{k}\Lambda,\uparrow}=(c_{\mathbf{k}\Lambda}^{0}+ic_{\mathbf{k}\Lambda}^{3})/\sqrt{2}, c𝐤Λ,=i(c𝐤Λ1+ic𝐤Λ2)/2c_{\mathbf{k}\Lambda,\downarrow}=i(c_{\mathbf{k}\Lambda}^{1}+ic_{\mathbf{k}\Lambda}^{2})/\sqrt{2}. Similarly for the order parameter VABVijV_{AB}\equiv V_{ij} where 𝐫i𝐫j=y^\mathbf{r}_{i}-\mathbf{r}_{j}=-\hat{y}, we have

VAB=1N𝐤12BZ(V𝐤,𝐀𝐁V𝐤,𝐀𝐁)=W22(01),\displaystyle V_{AB}=\frac{1}{N}\sum_{\mathbf{k}\in\frac{1}{2}\text{BZ}}\left(\begin{array}[]{c}V_{\mathbf{k,AB\uparrow}}\\ V_{\mathbf{k,AB\downarrow}}\end{array}\right)=\frac{W_{2}}{\sqrt{2}}\left(\begin{array}[]{c}0\\ 1\end{array}\right), (55)

where

V𝐤,𝐀𝐁=J22[2(X𝐤Ac𝐤B,c𝐤B,X𝐤A)+χ𝐤A3c𝐤B,c𝐤B,χ𝐤A3],V_{\mathbf{k,AB\uparrow}}=-\frac{J_{2}}{2}\left[\sqrt{2}\left(X_{\mathbf{-k}A}c_{\mathbf{k}B,\downarrow}-c_{\mathbf{-k}B,\downarrow}X_{\mathbf{k}A}\right)+\chi_{\mathbf{k}A}^{3\dagger}c_{\mathbf{k}B,\uparrow}-c_{\mathbf{-k}B,\uparrow}\chi_{\mathbf{k}A}^{3}\right], (56)
V𝐤,𝐀𝐁=J22[2(X𝐤Ac𝐤B,c𝐤B,X𝐤A)χ𝐤A3c𝐤B,+c𝐤B,χ𝐤A3].V_{\mathbf{k,AB\downarrow}}=-\frac{J_{2}}{2}\left[\sqrt{2}(X_{\mathbf{k}A}^{\dagger}c_{\mathbf{k}B,\uparrow}-c_{\mathbf{-k}B,\uparrow}X_{\mathbf{-k}A}^{\dagger})-\chi_{\mathbf{k}A}^{3\dagger}c_{\mathbf{k}B,\downarrow}+c_{\mathbf{-k}B,\downarrow}\chi_{\mathbf{k}A}^{3}\right]. (57)

Appendix C Second-order perturbation calculations

In this section, we briefly apply the second-order perturbation theory to derive the low-energy Hamiltonian in the main text. For simplicity, we have assumed t=Kt=K. From Eq. (42) and Eq. (43), it is obvious that the first-order correction vanishes as there are no intraband matrix elements, so one has to calculate the second-order contribution of interband matrix elements. Near the high-symmetry momentum K(K)=(±4π/33,0)K(K^{\prime})=(\pm 4\pi/3\sqrt{3},0), the interband Hamiltonian is given by

𝒫HK2(𝐤)𝒫=3iW22cosγ2×[c𝐤A0(χ𝐤B2±iχ𝐤B1)+c𝐤B0(χ𝐤A2iχ𝐤A1)],\mathcal{P_{L}}H_{K2}(\mathbf{k})\mathcal{P_{H}}=-\frac{3iW_{2}}{2}\cos\frac{\gamma}{2}\times\left[c_{\mathbf{k}A}^{0\dagger}\left(\chi_{\mathbf{k}B}^{2}\pm i\chi_{\mathbf{k}B}^{1}\right)+c_{\mathbf{k}B}^{0\dagger}\left(\chi_{\mathbf{k}A}^{2}\mp i\chi_{\mathbf{k}A}^{1}\right)\right], (58)
𝒫HR(𝐤)𝒫=3iλR2[c𝐤A0(c𝐤B1ic𝐤B2)+c𝐤B0(c𝐤A1±ic𝐤A2)],\mathcal{P_{L}}H_{R}(\mathbf{k})\mathcal{P_{H}}=\frac{3i\lambda_{R}}{2}\left[c_{\mathbf{k}A}^{0\dagger}\left(c_{\mathbf{k}B}^{1}\mp ic_{\mathbf{k}B}^{2}\right)+c_{\mathbf{k}B}^{0\dagger}\left(c_{\mathbf{k}A}^{1}\pm ic_{\mathbf{k}A}^{2}\right)\right], (59)

where 𝒫=||\mathcal{P_{L}}=|\mathcal{L}\rangle\langle\mathcal{L}| and 𝒫=||\mathcal{P_{H}}=|\mathcal{H}\rangle\langle\mathcal{H}| are the projection operators. From the second-order perturbation theory, the low-energy effective Hamiltonian is given by

(Heff)mn=12l(m|H|ll|H|nEmEl+m|H|ll|H|nEnEl),(H_{\text{eff}})_{mn}=\frac{1}{2}\sum_{l\in\mathcal{H}}\left(\frac{\langle m|H^{\prime}|l\rangle\langle l|H^{\prime}|n\rangle}{E_{m}-E_{l}}+\frac{\langle m|H^{\prime}|l\rangle\langle l|H^{\prime}|n\rangle}{E_{n}-E_{l}}\right), (60)

where H=HR+HK2H^{\prime}=H_{R}+H_{K2} is the perturbation. We shall restrict ourselves to the momentum at the high-symmetry point K(K)=(±4π/33,0)K(K^{\prime})=(\pm 4\pi/3\sqrt{3},0), at which the high-energy states are

|lΛ,±α=12(ck,Λα±iχk,Λα)|0|l^{\alpha}_{\Lambda,\pm}\rangle=\frac{1}{\sqrt{2}}\left(c_{k,\Lambda}^{\alpha\dagger}\pm i\chi_{k,\Lambda}^{\alpha\dagger}\right)|0\rangle (61)

with eigenenergies El=±W1E_{l}=\pm W_{1}. One can show that Eq. (60) vanishes to the order O(W22)O(W_{2}^{2}) or O(λR2)O(\lambda_{R}^{2}), but is nonzero to the order O(W2λR)O(W_{2}\lambda_{R}). The matrix elements at k=(±4π/33,0)k=(\pm 4\pi/3\sqrt{3},0) between |k,A|k,A\rangle and |k,B|k,B\rangle vanish while

k,A|Heff|k,A\displaystyle\langle k,A|H_{\text{eff}}|k,A\rangle =l(k,A|HK2|ll|HR|k,AEl+c.c.)\displaystyle=\sum_{l\in\mathcal{H}}\left(\frac{\langle k,A|H_{K2}|l\rangle\langle l|H_{R}|k,A\rangle}{-E_{l}}+\text{c.c.}\right) (62)
=α=13(k,A|HK2|lB,+αlB,+α|HR|k,AW1+k,A|HK2|lB,αlB,α|HR|k,AW1+c.c.)\displaystyle=\sum_{\alpha=1}^{3}\left(\frac{\langle k,A|H_{K2}|l_{B,+}^{\alpha}\rangle\langle l_{B,+}^{\alpha}|H_{R}|k,A\rangle}{-W_{1}}+\frac{\langle k,A|H_{K2}|l_{B,-}^{\alpha}\rangle\langle l_{B,-}^{\alpha}|H_{R}|k,A\rangle}{W_{1}}+\text{c.c.}\right)
=9W2λRW1cosγ2cosβ,\displaystyle=\mp\frac{9W_{2}\lambda_{R}}{W_{1}}\cos\frac{\gamma}{2}\cos\beta,
k,B|Heff|k,B\displaystyle\langle k,B|H_{\text{eff}}|k,B\rangle =l(k,B|HK2|ll|HR|k,BEl+c.c.)\displaystyle=\sum_{l\in\mathcal{H}}\left(\frac{\langle k,B|H_{K2}|l\rangle\langle l|H_{R}|k,B\rangle}{-E_{l}}+\text{c.c.}\right) (63)
=α=13(k,B|HK2|lA,+αlA,+α|HR|k,BW1+k,B|HK2|lA,αlA,α|HR|k,BW1+c.c.)\displaystyle=\sum_{\alpha=1}^{3}\left(\frac{\langle k,B|H_{K2}|l_{A,+}^{\alpha}\rangle\langle l_{A,+}^{\alpha}|H_{R}|k,B\rangle}{-W_{1}}+\frac{\langle k,B|H_{K2}|l_{A,-}^{\alpha}\rangle\langle l_{A,-}^{\alpha}|H_{R}|k,B\rangle}{W_{1}}+\text{c.c.}\right)
=±9W2λRW1cosγ2cosβ,\displaystyle=\pm\frac{9W_{2}\lambda_{R}}{W_{1}}\cos\frac{\gamma}{2}\cos\beta,

where we have used Eq. (42) and Eq. (43).

Appendix D Mean-field diagram

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: The mean-field phase diagram as a function of W1W_{1} and W2W_{2} when (a) γ=π\gamma=-\pi, (b) γ=2π/3\gamma=-2\pi/3, (c) γ=π/3\gamma=-\pi/3, (d) γ=0\gamma=0, (e) γ=π/3\gamma=\pi/3, (f) γ=2π/3\gamma=2\pi/3. The parameters used are: λR=0.3,μ=0\lambda_{R}=0.3,\mu=0 and t=K=1t=K=1. The number indicates the Chern number of the corresponding topological phase.

Figure 6 shows the mean-field phase diagram as a function of W1W_{1} and W2W_{2} for different γ\gammas.

References

  • Menth et al. [1969] A. Menth, E. Buehler, and T. Geballe, Magnetic and Semiconducting Properties of SmB6Physical review letters 22, 295–297 (1969).
  • Andres et al. [1975] K. Andres, J. Graebner, and H. R. Ott,  4f-Virtual-Bound-State Formation in CeAl3CeAl_{3} at Low Temperatures, Phys. Rev. Lett. 35, 1779 (1975).
  • Steglich et al. [1976] F. Steglich, J. Aarts, C. D. Bredl, W. Leike, D. E. M. W. Franz, and H. Schäfer,  Superconductivity in the Presence of Strong Pauli Paramagnetism: CeCu2Si2CeCu_{2}Si_{2}Phys. Rev. Lett 43, 1892 (1976).
  • Ott et al. [1983] H. R. Ott, H. Rudigier, Z. Fisk, and J. L. Smith,  UBe13UBe_{13}: an unconventional actinide superconductor, Phys. Rev. Lett 50, 1595 (1983).
  • Kane and Mele [2005a] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005a).
  • Kane and Mele [2005b] C. L. Kane and E. J. Mele, Z2{Z}_{2} Topological Order and the Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802 (2005b).
  • Dzero et al. [2010] M. Dzero, K. Sun, V. Galitski, and P. Coleman, Topological Kondo Insulators, Phys. Rev. Lett. 104, 106408 (2010).
  • Alexandrov et al. [2013] V. Alexandrov, M. Dzero, and P. Coleman, Cubic Topological Kondo Insulators, Phys. Rev. Lett. 111, 226403 (2013).
  • Dzero et al. [2016] M. Dzero, J. Xia, V. Galitski, and P. Coleman, Topological kondo insulators, Annual Review of Condensed Matter Physics 7, 249 (2016).
  • Ran et al. [2019a] S. Ran, C. Eckberg, Q.-P. Ding, Y. Furukawa, T. Metz, S. R. Saha, I.-L. Liu, M. Zic, H. Kim, J. Paglione, et al., Nearly ferromagnetic spin-triplet superconductivity, Science 365, 684 (2019a).
  • Ran et al. [2019b] S. Ran, I.-L. Liu, Y. S. Eo, D. J. Campbell, P. M. Neves, W. T. Fuhrman, S. R. Saha, C. Eckberg, H. Kim, D. Graf, et al., Extreme magnetic field-boosted superconductivity, Nature Physics 15, 1250 (2019b).
  • Aoki et al. [2019] D. Aoki, A. Nakamura, F. Honda, D. Li, Y. Homma, Y. Shimizu, Y. J. Sato, G. Knebel, J.-P. Brison, A. Pourret, et al., Unconventional superconductivity in heavy fermion UTe2Journal of the Physical society of Japan 88, 043702 (2019).
  • Aoki et al. [2022] D. Aoki, J.-P. Brison, J. Flouquet, K. Ishida, G. Knebel, Y. Tokunaga, and Y. Yanase, Unconventional superconductivity in UTe2Journal of Physics: Condensed Matter 34, 243002 (2022).
  • Hayes et al. [2021] I. Hayes, D. S. Wei, T. Metz, J. Zhang, Y. S. Eo, S. Ran, S. Saha, J. Collini, N. Butch, D. Agterberg, et al., Multicomponent superconducting order parameter in UTe2Science 373, 797 (2021).
  • Bae et al. [2021] S. Bae, H. Kim, Y. S. Eo, S. Ran, I.-l. Liu, W. T. Fuhrman, J. Paglione, N. P. Butch, and S. M. Anlage, Anomalous normal fluid response in a chiral superconductor UTe2Nature communications 12, 2644 (2021).
  • Ishihara et al. [2023] K. Ishihara, M. Roppongi, M. Kobayashi, K. Imamura, Y. Mizukami, H. Sakai, P. Opletal, Y. Tokiwa, Y. Haga, K. Hashimoto, et al., Chiral superconductivity in UTe2 probed by anisotropic low-energy excitations, Nature Communications 14, 2966 (2023).
  • Jiao et al. [2020] L. Jiao, S. Howard, S. Ran, Z. Wang, J. O. Rodriguez, M. Sigrist, Z. Wang, N. P. Butch, and V. Madhavan, Chiral superconductivity in heavy-fermion metal UTe2Nature 579, 523 (2020).
  • Thomas et al. [2020] S. Thomas, F. Santos, M. Christensen, T. Asaba, F. Ronning, J. Thompson, E. Bauer, R. Fernandes, G. Fabbris, and P. Rosa, Evidence for a pressure-induced antiferromagnetic quantum critical point in intermediate-valence UTe2Science Advances 6, eabc8709 (2020).
  • Thomas et al. [2021] S. M. Thomas, C. Stevens, F. B. Santos, S. S. Fender, E. D. Bauer, F. Ronning, J. D. Thompson, A. Huxley, and P. F. S. Rosa, Spatially inhomogeneous superconductivity in UTe2{\mathrm{UTe}}_{2}Phys. Rev. B 104, 224501 (2021).
  • Choi et al. [2018] W. Choi, P. W. Klein, A. Rosch, and Y. B. Kim, Topological superconductivity in the Kondo-Kitaev model, Phys. Rev. B 98, 155123 (2018).
  • Coleman et al. [2022] P. Coleman, A. Panigrahi, and A. Tsvelik, Solvable 3D Kondo Lattice Exhibiting Pair Density Wave, Odd-Frequency Pairing, and Order Fractionalization, Phys. Rev. Lett. 129, 177601 (2022).
  • Tsvelik and Coleman [2022] A. M. Tsvelik and P. Coleman, Order fractionalization in a Kitaev-Kondo model, Phys. Rev. B 106, 125144 (2022).
  • Yao and Lee [2011] H. Yao and D.-H. Lee, Fermionic Magnons, Non-Abelian Spinons, and the Spin Quantum Hall Effect from an Exactly Solvable Spin-1/21/2 Kitaev Model with SU(2) Symmetry, Phys. Rev. Lett. 107, 087205 (2011).
  • Coleman et al. [1993] P. Coleman, E. Miranda, and A. Tsvelik, Possible realization of odd-frequency pairing in heavy fermion compounds, Phys. Rev. Lett. 70, 2960 (1993).
  • Kitaev [2006] A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321, 2 (2006).
  • Lieb [1994] E. H. Lieb, Flux phase of the half-filled band, Phys. Rev. Lett. 73, 2158 (1994).
  • Haldane [1988] F. D. M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the ”Parity Anomaly”, Phys. Rev. Lett. 61, 2015 (1988).
  • Altland and Zirnbauer [1997] A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55, 1142 (1997).
  • Ludwig [2015] A. W. W. Ludwig, Topological phases: classification of topological insulators and superconductors of non-interacting fermions, and beyond, Physica Scripta 2016, 014001 (2015).
  • Panigrahi et al. [2024] A. Panigrahi, A. Tsvelik, and P. Coleman, Breakdown of order fractionalization in the CPT model, Phys. Rev. B 110, 104520 (2024).