This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Topological Spin Hall Effect in Antiferromagnets Driven by Vector Néel Chirality

Kazuki Nakazawa1, Koujiro Hoshi1, Jotaro J. Nakane2, Jun-ichiro Ohe3, Hiroshi Kohno2 1Department of Applied Physics, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
2Department of Physics, Nagoya University, Nagoya 464-8602, Japan
3Department of Physics, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
Abstract

Spin Hall effect of spin-texture origin is explored theoretically for antiferromagnetic (AF) metals. It is found that a vector chirality formed by the Néel vector gives rise to a topological spin Hall effect. This is topological since it is proportional to the winding number counted by in-plane vector chirality along the sample edge, which can be nonvanishing for AF merons but not for AF skyrmions. The effect is enhanced when the Fermi level lies near the AF gap, and, surprisingly, at weak coupling with small AF gap. These features are confirmed numerically based on the Landauer-Büttiker formula. Important roles played by nonadiabatic processes and spin dephasing are pointed out.

Spin-charge interconversion has been extensively studied in spintronics with the aim of application to next-generation devices. It is typically achieved by the spin Hall effect (SHE) [1] originating from the relativistic spin-orbit coupling (SOC), mostly in nonmagnetic materials [2, 3, 4, 5, 6]. Ferromagnets (FMs) are another class of materials that enable spin-charge conversion, not just as a simple spin source, but also by emergent electromagnetism due to spatiotemporal magnetization dynamics. In particular, a magnetization texture forming a finite scalar spin chirality simulates a magnetic field that affects electrons’ orbital motion but in a spin-dependent way. The resulting Hall effect, often called the topological Hall effect (THE), is thus the SHE in essence [7].

Antiferromagnets (AF) are a material having both aspects, magnetic at the microscopic scale but nonmagnetic at the (semi)macroscopic scale, and offers a unique platform to generate pure spin currents. A large SHE was reported in Ir20Mn80{\rm Ir_{20}Mn_{80}} [9], which originates from SOC. Recently, there are some proposals of SHE that arise from the antiferromagnetic spin texture, providing another means of pure spin-current generation without relying on relativistic SOC.

In this Letter, we explore theoretically the SHE in AF originating from AF spin textures. From the analogy with FMs, an AF with a textured Néel vector 𝒏{\bm{n}} is expected to generate a spin Hall current,

j~s,iz\displaystyle\tilde{j}_{{\rm s},i}^{z} =σ~SH𝒏(i𝒏×j𝒏)eEj,\displaystyle=\tilde{{\sigma}}_{\rm SH}\,{{\bm{n}}}\cdot({\partial}_{i}{{\bm{n}}}\times{\partial}_{j}{{\bm{n}}})eE_{j}, (1)

under an applied electric field EjE_{j} (σ~SH\tilde{{\sigma}}_{\rm SH} is a coefficient, and e>0e>0 is the elementary charge). Because of the scalar chirality, 𝒏(i𝒏×j𝒏){{\bm{n}}}\cdot({\partial}_{i}{{\bm{n}}}\times{\partial}_{j}{{\bm{n}}}), this effect may be termed as a topological spin Hall (TSH) effect [10, 11, 12]. Such a texture has opposite spin chiralities on different sublattices and deflects spin-up and spin-down electrons in mutually opposite directions; the charge Hall currents then cancel out, but the spin Hall currents add up. However, Eq. (1) is not a macroscopically observable quantity since its sign depends on the definition of sublattice or 𝒏{\bm{n}}; it changes sign under 𝒏𝒏{\bm{n}}\to-{\bm{n}}. We define the physical spin current 𝒋s,i{\bm{j}}_{{\rm s},i} through j~s,iz=𝒏𝒋s,i\tilde{j}_{{\rm s},i}^{z}={\bm{n}}\cdot{\bm{j}}_{{\rm s},i}, hence by

js,iα\displaystyle j_{{\rm s},i}^{\alpha} =σ~SH(i𝒏×j𝒏)αeEj.\displaystyle=\tilde{{\sigma}}_{\rm SH}({\partial}_{i}{{\bm{n}}}\times{\partial}_{j}{{\bm{n}}})^{\alpha}eE_{j}. (2)

The factor (i𝒏×j𝒏)α({\partial}_{i}{{\bm{n}}}\times{\partial}_{j}{{\bm{n}}})^{\alpha} may be identified as an emergent magnetic field in spin channel, and interestingly, it can be expressed as (iajαjaiα)/2(\partial_{i}a_{j}^{\alpha}-\partial_{j}a_{i}^{\alpha})/2 with an emergent vector potential,

aiα=(𝒏×i𝒏)α.\displaystyle a_{i}^{\alpha}=({\bm{n}}\times\partial_{i}{\bm{n}})^{\alpha}. (3)

This is the vector chirality (𝑺1×𝑺2\sim{\bm{S}}_{1}\times{\bm{S}}_{2} for two spins) formed by the Néel vector, and we call it “vector Néel chirality” [13]. Spatially-averaged spin current js,iα\langle j_{{\rm s},i}^{\alpha}\rangle is proportional to a winding number defined by the vector chirality, hence is “topological.” To date, the vector spin chirality is known to induce charge [14, 15] and (equilibrium) spin currents [16, 17, 18], but its AF counterpart in terms of the Néel vector has been less focused on.

In the following, we derive Eqs. (1) and (2) and demonstrate the topological character of Eq. (2). The effect is present in systems with AF merons [19] but not with AF skyrmions [20, 21, 22, 23, 24, 25, 26], and is enhanced in the weak-coupling regime. These results are confirmed numerically based on the Landauer-Büttiker formula.

Refer to caption
Figure 1: (a) Static magnetic structure considered in this work, a checkerboard type AF on a square lattice with a very slow spatial modulation. The two sublattices (A or B) are indicated by color (red or blue). (b) Electron dispersion in a uniform AF state. Each subband is spin degenerate.

We consider electrons on a square lattice and coupled to a static spin texture. The Hamiltonian

H\displaystyle H =t(i,j)cicjJsdi𝑺i(ci𝝈ci)+uiicici,\displaystyle=-t\sum_{(i,j)}c_{i}^{\dagger}c_{j}-J_{\rm sd}\sum_{i}{\bm{S}}_{i}\cdot(c_{i}^{\dagger}{\bm{\sigma}}c_{i})+u_{\rm i}{\sum_{i}}^{\prime}c_{i}^{\dagger}c_{i}, (4)

consists of nearest-neighbor hopping (first term), s-d exchange coupling to localized spins 𝑺i{\bm{S}}_{i} (second term), and on-site impurity potential (third term), with electron operators ci=(ci,ci)tc_{i}={}^{t}(c_{i\uparrow},c_{i\downarrow}) at site ii and Pauli matrices 𝝈=(σx,σy,σz){\bm{\sigma}}=(\sigma^{x},\sigma^{y},\sigma^{z}). We assume a slowly-varying checkerboard type AF texture, 𝑺i=S(1)i𝒏i{\bm{S}}_{i}=S(-1)^{i}{\bm{n}}_{i}, where 𝒏i{\bm{n}}_{i} is the Néel vector varying slowly in space [Fig. 1 (a)].

With a unitary transformation, ci=Uic~ic_{i}=U_{i}\tilde{c}_{i}, which diagonalizes the s-d coupling, Ui(𝒏i𝝈)Ui=σzU_{i}^{\dagger}({\bm{n}}_{i}\cdot{\bm{\sigma}})U_{i}=\sigma^{z}, HH is transformed into H=t(i,j)c~ieiAijc~jJi()ic~iσzc~i+uiic~ic~iH=-t\sum_{(i,j)}\tilde{c}_{i}^{\dagger}{\rm e}^{iA_{ij}}\tilde{c}_{j}-J\sum_{i}(-)^{i}\tilde{c}_{i}^{\dagger}\sigma^{z}\tilde{c}_{i}+u_{\rm i}{\sum_{i}}^{\prime}\tilde{c}_{i}^{\dagger}\tilde{c}_{i}, where J=JsdSJ=J_{\rm sd}S, and AijA_{ij} is the spin gauge field defined by UiUj=eiAijU_{i}^{\dagger}U_{j}={{\rm e}}^{iA_{ij}} [27, 28]. Because of slow variations of the texture, AijA_{ij} is small and can be treated perturbatively. The unperturbed state (with Aij=0A_{ij}=0) is a uniform AF, and the electron band splits into spin-degenerate upper and lower bands, ±E𝒌\pm E_{\bm{k}}, with an AF gap 2|J|2|J| in between [Fig. 1 (b)]. Here, E𝒌ε𝒌2+J2E_{\bm{k}}\equiv\sqrt{\varepsilon_{\bm{k}}^{2}+J^{2}} with ε𝒌=2t(coskx+cosky)\varepsilon_{\bm{k}}=-2t(\cos k_{x}+\cos k_{y}). Also, AijA_{ij} can be treated in the continuum approximation, AijAμA_{ij}\to A_{\mu}, where μ\mu (=x,y=x,y) specifies the bond direction of (i,j)(i,j), and expanded as

Aμ=12Aμασα=12(Aμzσz+𝑨μ𝝈),\displaystyle A_{\mu}=\frac{1}{2}A_{\mu}^{\alpha}\sigma^{\alpha}=\frac{1}{2}(A_{\mu}^{z}\sigma^{z}+{\bm{A}}_{\mu}^{\perp}\cdot{\bm{\sigma}}^{\perp}), (5)

where α=x,y,z{\alpha}=x,y,z and =x,y\perp=x,y. The spin-conserving component AzA^{z} describes adiabatic processes, whereas the spin-flip component 𝑨{\bm{A}}^{\perp} induces nonadiabatic transitions. In FM, the latter can be important only in the weak-coupling regime [3], but in AF, both are important because of spin degeneracy of the AF bands. Both produce the same effective field, (×𝑨z)z=(𝑨x×𝑨y)z=𝒏(x𝒏×y𝒏)(\nabla\times{\bm{A}}^{z})_{z}=({\bm{A}}_{x}^{\perp}\times{\bm{A}}_{y}^{\perp})^{z}={{\bm{n}}}\cdot({\partial}_{x}{{\bm{n}}}\times{\partial}_{y}{{\bm{n}}}).

To calculate the spin Hall conductivity, σSH12(σxyzσyxz)\sigma_{\rm SH}\equiv\frac{1}{2}(\sigma_{xy}^{z}-\sigma_{yx}^{z}), we assume a good AF metal and focus on the Fermi-surface contribution [30],

σijz(𝑸)\displaystyle\sigma_{ij}^{z}({{\bm{Q}}}) =e4πTr𝒥s,izG𝒌+,𝒌R𝒥jG𝒌,𝒌Ai,\displaystyle=-\frac{e\hbar}{4\pi}{\rm Tr}\left\langle{\cal J}_{{\rm s},i}^{z}G_{{{\bm{k}}}_{+},{{\bm{k}}}^{\prime}}^{\rm R}{\cal J}_{j}G_{{{\bm{k}}}^{\prime},{{\bm{k}}}_{-}}^{\rm A}\right\rangle_{\rm i}, (6)

where 𝒥s,iz{\cal J}_{{\rm s},i}^{z} and 𝒥j{\cal J}_{j} are spin-current and number-current vertices, Tr\rm Tr means the trace in spin, sublattice, and 𝒌{{\bm{k}}} spaces (𝒌{{\bm{k}}}, 𝒌{{\bm{k}}}^{\prime}-integrals), and i\langle\cdots\rangle_{\rm i} represents impurity average. The Green’s function G𝒌,𝒌R(A)=(μH±i0)𝒌,𝒌1G_{{{\bm{k}}},{{\bm{k}}}^{\prime}}^{\rm R(A)}=(\mu-H\pm i0)_{{{\bm{k}}},{{\bm{k}}}^{\prime}}^{-1} takes full account of impurities and the gauge field, and 𝒌±=𝒌±𝑸/2{{\bm{k}}}_{\pm}={{\bm{k}}}\pm{{\bm{Q}}}/2. We treat the impurity scattering in the Born approximation with ladder vertex corrections (VC) [31]. The superscript zz on σijz\sigma_{ij}^{z} and 𝒥s,iz{\cal J}_{{\rm s},i}^{z} indicates the spin component in the rotated frame, thus it is the component projected to the local Néel vector 𝒏{\bm{n}}.

After a standard procedure (see Supplemental Material [31]), we obtain Eq. (1) with σ~SH=σ~SH(0)+σ~SH(1)\tilde{\sigma}_{\rm SH}=\tilde{\sigma}_{\rm SH}^{(0)}+\tilde{\sigma}_{\rm SH}^{(1)},

σ~SH(0)\displaystyle\tilde{\sigma}_{\rm SH}^{(0)} =(Jτ)2t2νμ(1J2μ2)Cxy,\displaystyle=(J\tau)^{2}\frac{t^{2}\nu}{\mu}\left(1-\frac{J^{2}}{\mu^{2}}\right)C_{xy}, (7)
σ~SH(1)\displaystyle\tilde{\sigma}_{\rm SH}^{(1)} =(Jτ)2t2νμ8t2μ2+J2(τ1τφ1+τs1)Cxx2,\displaystyle=(J\tau)^{2}\frac{t^{2}\nu}{\mu}\frac{8t^{2}}{\mu^{2}+J^{2}}\left(\frac{\tau^{-1}}{\tau_{\varphi}^{-1}+\tau_{\rm s}^{-1}}\right)C_{xx}^{2}, (8)

where σ~SH(0)\tilde{\sigma}_{\rm SH}^{(0)} is the contribution without VC, which comes from both adiabatic and nonadiabatic processes, and σ~SH(1)\tilde{\sigma}_{\rm SH}^{(1)} is the contribution with VC, coming only from nonadiabatic processes. Here, ν=ν(μ)\nu=\nu(\mu) is the density of states (per spin) at chemical potential μ\mu, Cij=1coskicoskjFSC_{ij}=\langle 1-\cos k_{i}\cos k_{j}\rangle_{\rm FS} is the Fermi surface average [32], τ=[γ0+(J/μ)γ3]1/2\tau=[{\gamma}_{0}+(J/\mu){\gamma}_{3}]^{-1}/2 is the scattering time (γ0=πniui2ν{\gamma}_{0}=\pi n_{\rm i}u_{\rm i}^{2}\nu and γ3=(J/μ)γ0{\gamma}_{3}=(J/\mu){\gamma}_{0} are the sublattice-independent and dependent parts, respectively, of the damping, and nin_{\rm i} is the impurity concentration), and

1τφ=4Jμμ2+J2μ2J2γ3=2J2μ2J21τ,\displaystyle\frac{1}{\tau_{\varphi}}=\frac{4J}{\mu}\frac{\mu^{2}+J^{2}}{\mu^{2}-J^{2}}{\gamma}_{3}=\frac{2J^{2}}{\mu^{2}-J^{2}}\frac{1}{\tau}, (9)

is the “spin dephasing” rate [2]. We introduced a finite spin relaxation rate τs1\tau_{\rm s}^{-1} by hand [34]; without τs1\tau_{\rm s}^{-1}, we would have an unphysical result that σ~SH(1)\tilde{\sigma}_{\rm SH}^{(1)} does not vanish in the limit J0J\to 0. Note that τφ1\tau_{\varphi}^{-1} differs from τs1\tau_{\rm s}^{-1} in that it does not require spin-dependent scattering, randomizes only the transverse (𝒏\perp{\bm{n}}) components of the electron spin (see below), and vanishes as J0J\to 0. The results (7) and (8) are obtained at the leading order, i.e., second order in spatial gradient and second order in τ\tau.

Refer to caption
Figure 2: (a,b) Normalized topological spin Hall conductivity vs. chemical potential μ\mu for several choices of J/tJ/t. (a) σ~SH(0)γ~2\tilde{\sigma}_{\rm SH}^{(0)}\tilde{\gamma}^{2} and σ~SH(1)γ~2\tilde{\sigma}_{\rm SH}^{(1)}\tilde{\gamma}^{2}, where γ~=πniui2/t2\tilde{\gamma}=\pi n_{\rm i}u_{\rm i}^{2}/t^{2} is a dimensionless damping parameter. (b) σ~SH=σ~SH(0)+σ~SH(1)\tilde{\sigma}_{\rm SH}=\tilde{\sigma}_{\rm SH}^{(0)}+\tilde{\sigma}_{\rm SH}^{(1)}. In (b), σ~SH\tilde{\sigma}_{\rm SH} with finite qq are also shown (dotted lines). These are odd functions of μ\mu, hence plotted only for the lower AF band. The parameters used are γ~=0.2\tilde{\gamma}=0.2 and τs1=104t\tau_{\rm s}^{-1}=10^{-4}t. (c) Characteristic parameter regions for the TSH conductivity. The red dashed line, given by J/|μ|=ql/4+(ql)2J/|\mu|=ql/\sqrt{4+(ql)^{2}} in the diffusive regime, is a crossover line separating the local and nonlocal field regions, and εm=(4t)2+J2\varepsilon_{\rm m}=\sqrt{(4t)^{2}+J^{2}}. The analytical results, Eqs. (7), (8), and (13), apply to the blue shaded region, while the numerical results (Fig. 4) apply to the green shaded region.

The coefficients σ~SH(0)\tilde{\sigma}_{\rm SH}^{(0)} and σ~SH(1)\tilde{\sigma}_{\rm SH}^{(1)} are plotted in Fig. 2 (a). They are comparable in magnitude at large JJ (1.5t\sim 1.5t), but as JJ is reduced, σ~SH(1)\tilde{\sigma}_{\rm SH}^{(1)} grows markedly whereas σ~SH(0)\tilde{\sigma}_{\rm SH}^{(0)} decreases. The sum σ~SH=σ~SH(0)+σ~SH(1)\tilde{\sigma}_{\rm SH}=\tilde{\sigma}_{\rm SH}^{(0)}+\tilde{\sigma}_{\rm SH}^{(1)} is plotted in Fig. 2 (b) by solid lines, which grows as JJ is reduced, especially near the AF gap edge, but finally vanishes at J=0J=0. Since σ~SH(1)\tilde{\sigma}_{\rm SH}^{(1)} comes solely from nonadiabatic processes, these results show that the combined effect of nonadiabaticity and the VC is important for the present SHE [35]. Physically, a nonadiabatic process produces a transverse spin polarization, and the VC describes its collective transport, which is however limited by spin dephasing [2, 28, 36]. The origin of the enhancement at small JJ can be traced to the reduced dephasing at small JJ [31]. As seen from Eq. (9), the spin dephasing arises through γ3{\gamma}_{3}, a sublattice asymmetry in (nonmagnetic) scattering [28, 37], and its physical picture is illustrated in Fig. 3.

The obtained result, Eq. (1), needs to be interpreted with care. It arises with the scalar chirality formed by the Néel vector 𝒏{\bm{n}}, and changes sign under 𝒏𝒏{\bm{n}}\to-{\bm{n}}. This is not a pleasant situation since any physical quantity measurable by (semi)macroscopic means should not depend on the sign of 𝒏{\bm{n}}, or on the definition of sublattice. This (apparent) puzzle is resolved if we note that the spin component of the calculated spin current j~x,sz\tilde{j}_{x,{\rm s}}^{z} is the one projected to the Néel vector 𝒏\bm{n}. Therefore, we write j~sz=𝒏𝒋s\tilde{j}_{\rm s}^{z}={\bm{n}}\cdot{\bm{j}}_{\rm s} and identify 𝒋s{\bm{j}}_{\rm s} as a physical spin current. The physical spin Hall current is thus given by Eq. (2).

It is in fact possible to obtain Eq. (2) directly. By assuming JJ is small and treating it perturbatively, we found the spin current arises at second order in JJ [31],

js,iα\displaystyle j_{{\rm s},i}^{\alpha} =(Jτ)2t2νμCxy(i𝒏×j𝒏)αeEj.\displaystyle=(J\tau)^{2}\frac{t^{2}\nu}{\mu}C_{xy}(\partial_{i}{\bm{n}}\times\partial_{j}{\bm{n}})^{\alpha}eE_{j}. (10)

This contrasts with the THE in FM caused by scalar spin chirality, which starts at third order (J3\sim J^{3}) [38], and demonstrates that the essential quantity for the present SHE is the vector (not scalar) chirality. That Eq. (10) is an even function of JJ (or J𝒏J{\bm{n}}) is consistent with the fact that the spin current is even under time reversal.

Refer to caption
Figure 3: Physical picture of electron spin transport in a uniform antiferromagnet. The blue sphere with an arrow represents an electron, the green arrow a localized spin, and the red star a nonmagnetic impurity. (a) The electron spin precesses around the local moment, alternating its sense from site to site. (b) Interaction with impurities locally modifies the precession. (c) A “collective” transverse spin density contributed from many electrons decays and loses its original information through the impurity scattering. This is because the degree of the modification, mentioned in (b), varies from electron to electron. This is called “dephasing” and the characteristic length is the “dephasing length” λφ=Dτφ\lambda_{\varphi}=\sqrt{D\tau_{\varphi}}. The orange stars represent averaged impurities.

The expression Eq. (2) holds locally in space (as far as the variation of 𝒏{\bm{n}} is sufficiently slow). As a spin current measured experimentally, we consider a spatially-averaged one, 𝒋sα=Ω1𝒋sα𝑑x𝑑y\langle{\bm{j}}_{\rm s}^{\alpha}\rangle=\Omega^{-1}\int{\bm{j}}_{\rm s}^{\alpha}dxdy (in two dimensions), where Ω\Omega is the sample area. It can be written as

𝒋sα\displaystyle\langle{\bm{j}}_{\rm s}^{\alpha}\rangle =πσ~SHmαΩ(e𝑬×z^),\displaystyle=\pi\tilde{{\sigma}}_{\rm SH}\frac{m^{\alpha}}{\Omega}\left(e{\bm{E}}\times\hat{z}\right), (11)

where

mα\displaystyle m^{\alpha} =12π(×𝒂α)z𝑑x𝑑y=12π𝒂α𝑑,\displaystyle=\frac{1}{2\pi}\int(\nabla\times{\bm{a}}^{\alpha})_{z}dxdy=\frac{1}{2\pi}\oint{\bm{a}}^{\alpha}\cdot d{\bm{\ell}}, (12)

and aiα=(𝒏×i𝒏)αa_{i}^{\alpha}=({\bm{n}}\times\partial_{i}{\bm{n}})^{\alpha} [Eq. (3)] is an emergent vector potential in spin channel. The line integral is taken along the sample perimeter. If the system has easy-plane magnetic anisotropy, and the Néel vector on the sample edge is constrained to lie in-plane, e.g., xx-yy plane, the line integral of the vector chirality defines a topological winding number mzm^{z}\in\mathbb{Z} in π1(S1)\pi_{1}(S^{1}). The spin Hall conductivity is thus proportional to the topological number density mz/Ωm^{z}/\Omega, and this fact resurrects the naming “topological” spin Hall effect. We emphasize that it is characterized by the vector chirality of Néel vector along the sample edge. Therefore, the present TSHE is absent for AF skyrmions, in which the Néel vector at the edge is uniaxial. On the other hand, it is finite for AF merons, which have finite in-plane winding of the Néel vector along the edge.

Refer to caption
Figure 4: Topological spin Hall conductance (GSHCz)(G_{\rm SHC}^{z}) based on the Landauer-Büttiker formula for finite systems with L×LL\times L sites. (a) AF skyrmion system. (b) AF meron system. (c) LL-dependence of the peak value of GSHCzG_{\rm SHC}^{z}. The data are fitted with functions, f(x)=286x0.504f(x)=286x-0.504 and g(x)=0.237/x2.22g(x)=0.237/x-2.22. (d) AF meron system with L=70L=70 for several choices of J/tJ/t. We took J/t=0.3J/t=0.3 [except in (d)] and meron/skyrmion radius r=15r=15. The data are symmetrized with respect to JJJ\to-J, as explained in [31].

To verify these results, we have conducted numerical works based on the four-terminal Landauer-Büttiker formula [39]. We consider ballistic systems with L×LL\times L sites without disorder, and containing a single AF skyrmion or a single AF meron. For both textures, the spin Hall conductance GSHCzG_{\rm SHC}^{z} shows a strong peak just below the AF gap [Fig. 4 (a) and (b)], which, however, behave oppositely as LL is increased (with the skyrmion/meron size fixed); for the AF skyrmion the peak decreases with LL and seems to vanish in the thermodynamic limit. In contrast, for the AF meron it increases with LL [Fig. 4 (c)]. This is consistent with the analytical result, which is valid for infinite-size systems. Plots for several J/tJ/t values are shown in Fig. 4 (d) for the AF meron system, showing that it is indeed enhanced at small J/tJ/t. All these agree with the analytic results, except for the detailed shape of μ\mu-dependence.

The discrepancy in shape (μ\mu-dependence) between the numerical [Fig. 4 (d)] and analytic results [Fig. 2 (b)] may be understood as due to the nonlocality effect in the former. To illustrate this, let us first consider the diffusive regime. As the typical wave number qq of the Néel texture (i.e., inverse of meron/skyrmion size) is increased, Eq. (8) is modified as

(τφ1+τs1)1(τφ1+τs1+Dq2)1,\displaystyle(\tau_{\varphi}^{-1}+\tau_{\rm s}^{-1})^{-1}\to(\tau_{\varphi}^{-1}+\tau_{\rm s}^{-1}+Dq^{2})^{-1}, (13)

in the denominator, where DD is the diffusion constant. When electron spin diffusion (Dq2Dq^{2}) occurs faster than spin dephasing (τφ1\tau_{\varphi}^{-1}), the effective field becomes “nonlocal”. Similar feature has been noted for FMs, in which Dq2Dq^{2} is compared to the exchange splitting [3]. Here in AF, it is compared to the (much smaller) spin dephasing rate, τφ1\tau_{\varphi}^{-1}, hence the present SHE enters the nonlocal regime rather easily compared to the THE in FM. More explicitly, the nonlocality appears if

ql>2Jμ2J2,or|μ|>J1+(2/ql)2,\displaystyle ql>\frac{2J}{\sqrt{\mu^{2}-J^{2}}},\ \ \ {\rm or}\ \ \ |\mu|>J\sqrt{1+(2/ql)^{2}}, (14)

where ll is the mean free path. In Fig. 2 (b), the analytic results with q2=6000q^{-2}=6000 (with lattice constant taken unity) are plotted by dotted lines. The suppression due to nonlocality is more significant at larger |μ||\mu| (away from the AF gap), leaving a sharp peak in the vicinity of the AF gap edge. Since cleaner systems enter the nonlocal regime more easily [see Eq. (14) and a red dotted line in Fig. 2 (c)], this feature is expected to persist into the ballistic regime with a wider nonlocality region. The shape of Fig. 4 (d) may thus be understood as due to the nonlocality effect.

Thus, as in the case of THE in FM [3], the present TSHE in AF exhibits various characteristic regimes [Fig. 2 (c)]. These are summarized as follows. First, for a ballistic and local regime, the effect is truly topological. As qq is increased and the nonlocal effects become important, the SHC deviates from the topological expression. In the diffusive case, it is difficult to have the topological expression because of dephasing (and nonlocality), but the effect is enhanced for weak-coupling AF with small AF gap. An interesting possibility may be found in mesoscopic systems, for which the effect can be topological even if the system is in a diffusive regime.

The emergent vector potential 𝒂α{\bm{a}}^{\alpha} in the spin channel, identified here through TSHE, has more generality. In a study on THE in canted AF [28], an emergent vector potential in charge channel was identified as lα𝒂αl^{\alpha}{\bm{a}}^{\alpha}, where lαl^{\alpha} is the canting (uniform) moment. Also, 𝒂α{\bm{a}}^{\alpha} can be expressed as aiα=(𝑨i)αa_{i}^{\alpha}=-({\cal R}{\bm{A}}^{\perp}_{i})^{\alpha} [40], where {\cal R} is an SO(3) matrix that connects the rotated and the original frames (e.g., 𝒏=z^{\bm{n}}={\cal R}\hat{z}), showing its conformity with the spin gauge field 𝑨i{\bm{A}}^{\perp}_{i}. These facts reinforce our interpretation of 𝒂α{\bm{a}}^{\alpha} as an effective vector potential in spin channel.

To realize the present TSHE experimentally, a prime candidate texture is 𝒏{\bm{n}}-meron. Such texture was found very recently in α\alpha-Fe2O3 [19], which is however an insulator; search for metallic systems is desired. Another candidate is a canted AF; if the ferromagnetic moment 𝒍{\bm{l}} (due to canting) forms a skyrmion (called “𝒍{\bm{l}}-skyrmion” in [28]), topological consideration shows that the Néel vector winds at least twice around the skyrmion, i.e., mz=2m^{z}=2 per skyrmion [28, 41]. A recent experiment on thin films of Ce-doped CaMnO3, a canted AF, observed skyrmion bubbles formed by the (weak) ferromagnetic moment [42]. Therefore, this system can also be a candidate for the present TSHE.

Finally, we discuss the relationship with previous theoretical studies. In Ref. [11], the TSH conductivity was investigated in an AF skyrmion lattice with a focus on the intrinsic (Berry curvature) contribution. It is a future issue to investigate such intrinsic contribution in our framework. For example, one may consider a “meron-antimeron lattice” which contains a vortex with m=±2m=\pm 2 per unit cell. In Ref. [12], the Landauer-Büttiker method was used to study the TSHE in AF skyrmion systems, and a finite TSHE was found for finite-size systems, which does not contradict with our result because of finite size. More importantly, an increase of the spin Hall conductivity was pointed out for special impurity configurations, and it is also interesting to investigate how the impurity configuration affect the spin dephasing and TSHE.

To summarize, we have studied a spin Hall effect due to magnetic textures in AF metals. By analytic calculations, we found a topological contribution proportional to the winding number defined by vector chirality. This is finite for AF merons but not for AF skyrmions, and is enhanced at weak coupling. These results may provide hints to enhance spin currents and give directions for experimental investigations and device fabrications. The results are confirmed by numerical calculations based on the Landauer-Büttiker formula. Important roles played by nonadiabatic processes and spin dephasing are pointed out.

We would like to thank A. Yamakage, J. Fujimoto, T. Yamaguchi, Y. Imai, A. Matsui, and T. Nomoto for valuable discussions. This work was partly supported by JSPS KAKENHI Grant Numbers JP15H05702, JP17H02929, JP19K03744 and No. JP21H01799, and the Center of Spintronics Research Network of Japan. KN is supported by JSTCREST (JP-MJCR18T2) and JSPS KAKENHI Grant Number JP21K13875. JJN is supported by a Program for Leading Graduate Schools “Integrative Graduate Education and Researchin Green Natural Sciences” and Grant-in-Aid for JSPS Research Fellow Grant Number JP19J23587.

References

  • [1] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).
  • [2] M. I. Dyakonov and V. I. Perel, JETP, Lett. 13, 467 (1971); Phys. Lett. A35, 459 (1971).
  • [3] S. Murakami, N. Nagaosa, and S. -C. Zhang, Science 301, 1348 (2003).
  • [4] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004).
  • [5] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306, 1910 (2004).
  • [6] J. Wunderlich, B. Kastner, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2004).
  • [7] This applies to the strong ss-dd coupling regime. In the weak-coupling regime, there is a proposal recently that the essence is the Hall effect in the charge channel [8].
  • [8] K. S. Denisov, I. V. Rozhansky, N. S. Averkiev, and E. Lähderanta, Phys. Rev. Lett. 117, 027202 (2016); Phys. Rev. B 98, 195439 (2018); I. V. Rozhansky, K. S. Denisov, M. B. Lifshits, N. S. Averkiev, and E. Lähderanta, Phys. Status Solidi (b) 1900033 (2019).
  • [9] J. B. S. Mendes, R. O. Cunha, O. Alves Santos, P. R. T. Ribeiro, F. L. A. Machado, R. L. Rodríguez-Suárez, A. Azevedo, and S. M. Rezende et al., Phys. Rev. B 89, 140406(R) (2014).
  • [10] P. M. Buhl, F. Freimuth, S. Blügel, and Y. Mokrousov, Phys. Status Solidi RRL 11, 1700007 (2017).
  • [11] B. Göbel, A. Mook, J. Henk, I. Mertig, Phys. Rev. B 96, 060406(R) (2017).
  • [12] C. A. Akosa, O. A. Tretiakov, G. Tatara, and A. Manchon, Phys. Rev. Lett. 121, 097204, (2018).
  • [13] One may also think of “Néel vector chirality”, which, however, has more flavor of scalar chirality formed by the Néel vector, i.e., 𝒏(i𝒏×j𝒏){{\bm{n}}}\cdot({\partial}_{i}{{\bm{n}}}\times{\partial}_{j}{{\bm{n}}}).
  • [14] K. Taguchi and G. Tatara, Phys. Rev. B 79, 054423 (2009)
  • [15] H. Ishizuka and N. Nagaosa, New J. Phys. 20, 123027 (2018).
  • [16] G. Tatara and N. Garcia, Phys. Rev. Lett. 91, 076806 (2003).
  • [17] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
  • [18] T. Kikuchi, T. Koretsune, R. Arita, and G. Tatara, Phys. Rev. Lett. 116, 247201 (2016).
  • [19] H. Jani, J. -C. Lin, J. Chen, J. Harrison, F. Maccherozzi, J. Schad, S. Prakash, C. -B. Eom, A. Ariando, T. Venkatesan and P. G. Radaelli, Nature 590, 74-79 (2021).
  • [20] C. Jin, C. Song, J. Wang, and Q. Liu, Appl. Phys. Lett. 109, 182404 (2016).
  • [21] X. Zhang, Y. Zhou, and M. Ezawa, Sci. Rep. 6, 24795 (2016).
  • [22] H. Velkov, O. Gomonay, M. Beens, G. Schwiete, A. Brataas, J. Sinova, and R. A. Duine, New J. Phys. 18, 075016 (2016).
  • [23] J. Barker and O. A. Tretiakov, Phys. Rev. Lett. 116, 147203 (2016).
  • [24] T. Dohi, S. DuttaGupta, S. Fukami, and H. Ohno, Nat. Commun. 10, 5153 (2019).
  • [25] W. Legrand, D. Maccariello, F. Ajejas, S. Collin, A. Vecchiola, K. Bouzehouane, N. Reyren, V. Cros, and A. Fert, Nat. Mater. 19, 34 (2020).
  • [26] R. Yambe and S. Hayami, Phys. Rev B 107, 014417 (2023).
  • [27] G. Tatara, H. Kohno, and J. Shibata, Phys. Rep. 468, 213-301 (2008).
  • [28] J. J. Nakane, K. Nakazawa, and H. Kohno, Phys. Rev. B 101, 174432 (2020).
  • [29] K. Nakazawa, M. Bibes, and H. Kohno, J. Phys. Soc. Jpn. 87, 033705 (2018); K. Nakazawa, and H. Kohno, Phys. Rev. B 99, 174425, (2019).
  • [30] P. Středa, J. Phys. C 15, L717 (1982).
  • [31] See Supplemental Material for calculational details, explicit formula of the adiabatic and nonadiabatic contributions, analysis on the enhancement at weak couling, perturbative treatment of JJ, and further plots including the spin Hall angle.
  • [32] Explicitly, they are evaluated as [28]
    Cxy\displaystyle C_{xy} =14π2|μ|t2ν[2μ~K(x)(1+1μ~)E(x)],\displaystyle=\frac{1}{4\pi^{2}}\frac{|\mu|}{t^{2}\nu}\left[\frac{2}{\tilde{\mu}}K(x)-\left(1+\frac{1}{\tilde{\mu}}\right)E(x)\right],
    Cxx\displaystyle C_{xx} =14π2|μ|t2ν[(1+1μ~)E(x)2K(x)],\displaystyle=\frac{1}{4\pi^{2}}\frac{|\mu|}{t^{2}\nu}\left[\left(1+\frac{1}{\tilde{\mu}}\right)E(x)-2K(x)\right],
    where K(x)K(x) and E(x)E(x) are the complete elliptic integrals of the first and the second kind, respectively, and μ~=μ2J2/4t\tilde{\mu}=\sqrt{\mu^{2}-J^{2}}/4t and x=(1μ~)/(1+μ~)x=(1-\tilde{\mu})/(1+\tilde{\mu}) are dimensionless parameters.
  • [33] A. Manchon, J. Phys. Condens. Matter 29, 104002 (2017). Their β\beta seems to be sinχkF\sin\chi_{k_{\rm F}} instead of cosχkF\cos\chi_{k_{\rm F}}.
  • [34] A microscopic calculation of the spin relaxation rate in AF metal can be found in Ref. [37], in which magnetic impurities are considered as a spin sink.
  • [35] The nonadiabatic process is important at a more fundamental level. Both the adiabatic and nonadiabatic contributions to σ~SH(0)\tilde{\sigma}_{\rm SH}^{(0)} contain terms of O(J0)O(J^{0}), which do not vanish at J=0J=0, but when added they cancel each other and the resulting σ~SH(0)\tilde{\sigma}_{\rm SH}^{(0)} vanishes at J=0J=0 [31].
  • [36] S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
  • [37] J. J. Nakane and H. Kohno, Phys. Rev. B 103, L180405 (2021).
  • [38] G. Tatara and H. Kawamura, J. Phys. Soc. Jpn. 71, 2613 (2002).
  • [39] J. Ohe, T. Ohtsuki, and B. Kramer, Phys. Rev. B 75, 245313 (2017).
  • [40] H. Kohno and J. Shibata, J. Phys. Soc. Jpn. 76, 063710 (2007).
  • [41] O. Meshcheriakova, S. Chadov, A. K. Nayak, U. K. Rößler, J. Kübler, G. André, A. A. Tsirilin, J. Kiss, S. Hausdorf, A. Kalache, W. Schnelle, M. Nicklas, and C. Felser, Phys. Rev. Lett. 113, 087203 (2014).
  • [42] L. Vistoli, W. Wang, A. Sander, Q. Zhu, B. Casals, R. Cichelero, A. Barthélémy, S. Fusil, G. Herranz, S. Valencia, R. Abrudan, E. Weschke, K. Nakazawa, H. Kohno, J. Santamaria, W. Wu, V. Garcia, and M. Bibes, Nat. Phys. 15, 67 (2019).

Supplemental material
Topological Spin Hall Effect in Antiferromagnets Driven by Vector Néel Chirality

I Preliminary

I.1 Green’s function and vertex corrections

Before presenting the calculation of the topological spin Hall conductivity (TSHC), we define some building blocks of the calculation. The first one is the Green’s function that does not contain the spin gauge field but with the effects of impurities evaluated in the Born approximation [Fig. S1(a)].

G𝒌R(ε)=μR(11)+JR(σzτ3)+T𝒌R(1τ1),\displaystyle G_{{\bm{k}}}^{\rm R}(\varepsilon)=\mu^{\rm R}(1\otimes 1)+J^{\rm R}(\sigma^{z}\otimes\tau_{3})+T_{{\bm{k}}}^{\rm R}(1\otimes\tau_{1}), (S1)

where μR=(ε+μ+iγ0)/D𝒌R\mu^{\rm R}=(\varepsilon+\mu+i\gamma_{0})/D_{\bm{k}}^{\rm R}, JR=(iγ3J)/D𝒌RJ^{\rm R}=(i\gamma_{3}-J)/D_{\bm{k}}^{\rm R}, T𝒌R=T𝒌/D𝒌R=2t(coskx+cosky)/D𝒌RT_{\bm{k}}^{\rm R}=T_{{\bm{k}}}/D_{\bm{k}}^{\rm R}=-2t(\cos k_{x}+\cos k_{y})/D_{\bm{k}}^{\rm R}, with D𝒌R(ε)=(ε+μ)2E𝒌2+2i[(ε+μ)γ0+Jγ3]D_{\bm{k}}^{\rm R}(\varepsilon)=(\varepsilon+\mu)^{2}-E_{\bm{k}}^{2}+2i\left[(\varepsilon+\mu)\gamma_{0}+J\gamma_{3}\right], and E𝒌=T𝒌2+J2E_{\bm{k}}=\sqrt{T_{\bm{k}}^{2}+J^{2}}. The damping constants are given by γ0=πniui2ν{\gamma}_{0}=\pi n_{\rm i}u_{\rm i}^{2}\nu and γ3=(J/μ)γ0{\gamma}_{3}=(J/\mu){\gamma}_{0}, where nin_{\rm i} is the impurity concentration and ν=(1/N)𝒌δ(|μ|E𝒌)\nu=(1/N)\sum_{{\bm{k}}}\delta(|\mu|-E_{{\bm{k}}}) is the density of states per spin at the chemical potential μ\mu, and we define elastic scattering (mean free) time τ\tau by (2τ)1=γ0+(J/μ)γ3=(1+J2/μ2)γ0(2\tau)^{-1}={\gamma}_{0}+(J/\mu){\gamma}_{3}=(1+J^{2}/\mu^{2}){\gamma}_{0}. In Eq. (S1), the spin degree of freedom is described by the Pauli matrices 𝝈=(σx,σy,σz){\bm{{\sigma}}}=({\sigma}^{x},{\sigma}^{y},{\sigma}^{z}), and the sublattice degree of freedom by another Pauli matrices 𝝉=(τ1,τ2,τ3){\bm{\tau}}=(\tau_{1},\tau_{2},\tau_{3}). We occasionally suppress/simplify the wave-vector dependence, such as G=G𝒌G=G_{{\bm{k}}}, G±=G𝒌±𝒒/2G_{\pm}=G_{{{\bm{k}}}\pm{{\bm{q}}}/2}, GR(A)G𝒌R(A)G^{\rm R(A)}\equiv G_{{\bm{k}}}^{\rm R(A)}, or G±R(A)G𝒌±𝒒/2R(A)G_{\pm}^{\rm R(A)}\equiv G_{{{\bm{k}}}\pm{{\bm{q}}}/2}^{\rm R(A)}.

To be consistent with the self-energy considered above, we also consider the ladder-type vertex corrections [Fig. S1(b)]. The particle-hole correlation with opposite spins (i.e., transverse spin diffusion propagator) plays an essential role in the present TSHE. Explicit form of the spin diffusion propagator (red broken line in Fig. S3) is [1, 2]

Π(α0)(α0)(𝒒,ω)\displaystyle\Pi^{({\alpha}0)({\alpha}0)}({{\bm{q}}},\omega) =4πντ2μ2μ2J21τφ1+τs1+Dq2iωΠσ¯σ,\displaystyle=\frac{4}{\pi\nu\tau^{2}}\frac{\mu^{2}}{\mu^{2}-J^{2}}\frac{1}{\tau_{\rm\varphi}^{-1}+\tau_{\rm s}^{-1}+Dq^{2}-i\omega}\equiv\Pi_{\bar{\sigma}\sigma}, (S2)
Π(α3)(α3)(𝒒,ω)\displaystyle\Pi^{({\alpha}3)({\alpha}3)}({{\bm{q}}},\omega) =4πντμ2μ2+J2,\displaystyle=\frac{4}{\pi\nu\tau}\frac{\mu^{2}}{\mu^{2}+J^{2}}, (S3)

where α=x,y{\alpha}=x,y, D=μ2J2μ2(2tsinkx)2FSD=\frac{\mu^{2}-J^{2}}{\mu^{2}}\langle(2t\sin k_{x})^{2}\rangle_{\rm FS} is the diffusion constant, τφ\tau_{\varphi} is the spin dephasing time [Eq. (9) in the main text], τs\tau_{\rm s} is the (isotropic) spin relaxation time, and Π(α0)(α0)\Pi^{({\alpha}0)({\alpha}0)} corresponds to Eq. (13) in the main text. These have been derived in Ref. [1].

Refer to caption
Figure S1: Feynman diagrams for the self energy (a) and the ladder-type vertex correction (b). The blue solid line with arrow is a retarded or advanced Green’s function. The blue broken line with a cross represents (averaged) impurity scattering.

I.2 Current and density vertices

The vertices we use in the following are defined as follows,

ji\displaystyle j_{i} 2tsinkiσ0τ1,\displaystyle\equiv 2t\sin k_{i}\sigma^{0}\tau_{1}, (S4)
jiα\displaystyle j_{i}^{\alpha} 2tsinkiσατ1,\displaystyle\equiv 2t\sin k_{i}\sigma^{\alpha}\tau_{1}, (S5)
ρijα\displaystyle\rho_{ij}^{\alpha} 2tcoskiσατ1δij,\displaystyle\equiv 2t\cos k_{i}\sigma^{\alpha}\tau_{1}\delta_{ij}, (S6)
ρijαβ\displaystyle\rho_{ij}^{{\alpha}{\beta}} 2tcoskiσασβτ1δij+h.c.,\displaystyle\equiv 2t\cos k_{i}\sigma^{\alpha}\sigma^{\beta}\tau_{1}\delta_{ij}+{\rm h.c.}, (S7)

where α,β=x,y,z\alpha,\beta=x,y,z. We write as ji±2etsin(ki±qi/2)σ0τ1j_{i\pm}\equiv 2et\sin(k_{i}\pm q_{i}/2)\sigma^{0}\tau_{1} and ji±α2tsin(ki±qi/2)σατ1j_{i\pm}^{\alpha}\equiv 2t\sin(k_{i}\pm q_{i}/2)\sigma^{\alpha}\tau_{1}. The spin-current and number-current vertices are given by

𝒥s,iα\displaystyle{\cal J}_{{\rm s},i}^{\alpha} =jiα+ρijαβAjβ,\displaystyle=j_{i}^{\alpha}+\rho_{ij}^{{\alpha}{\beta}}A_{j}^{\beta}, (S8)
𝒥i\displaystyle{\cal J}_{i} =ji+ρijαAjα.\displaystyle=j_{i}+\rho_{ij}^{\alpha}A_{j}^{\alpha}. (S9)

II Calculation of TSHC without VC

We first study the contribution without vertex corrections (VC). After a perturbative treatment of the gauge field and taking impurity averaging, we divide the perturbation terms into two parts; adiabatic part (which contains AzA^{z} only) and nonadiabatic part (which contains AA^{\perp} only). The adiabatic contribution consists of three terms,

σxyz,z=e4π12Aiz𝒌tr[jxzG+RjizGRjyGA+jxzG+RjyG+AjizGA+jxzG+RρiyzGA],\displaystyle\sigma_{xy}^{z,z}=-\frac{e}{4\pi}\cdot\frac{1}{2}A_{i}^{z}\sum_{\bm{k}}{\rm tr}\left[j_{x}^{z}G_{+}^{\rm R}j_{i}^{z}G_{-}^{\rm R}j_{y-}G_{-}^{\rm A}+j_{x}^{z}G_{+}^{\rm R}j_{y-}G_{+}^{\rm A}j_{i}^{z}G_{-}^{\rm A}+j_{x}^{z}G_{+}^{\rm R}\rho_{iy}^{z}G_{-}^{\rm A}\right], (S10)

and the nonadiabatic contribution consists of eight terms,

σxyz,=σxyz,1a+σxyz,1b+σxyz,1c+σxyz,2a+σxyz,2b+σxyz,3a+σxyz,3b+σxyz,4,\displaystyle\sigma_{xy}^{z,\perp}=\sigma_{xy}^{z,1a}+\sigma_{xy}^{z,1b}+\sigma_{xy}^{z,1c}+\sigma_{xy}^{z,2a}+\sigma_{xy}^{z,2b}+\sigma_{xy}^{z,3a}+\sigma_{xy}^{z,3b}+\sigma_{xy}^{z,4}, (S11)

where

σxyz,1a\displaystyle\sigma_{xy}^{z,1a} =e4π14AiαAjβ𝒌tr[jxzGRjiαGRjjβGRjyGA],\displaystyle=-\frac{e}{4\pi}\cdot\frac{1}{4}A_{i}^{\alpha}A_{j}^{\beta}\sum_{\bm{k}}{\rm tr}\left[j_{x}^{z}G^{\rm R}j_{i}^{\alpha}G^{\rm R}j_{j}^{\beta}G^{\rm R}j_{y}G^{\rm A}\right], (S12)
σxyz,1b\displaystyle\sigma_{xy}^{z,1b} =e4π14AiαAjβ𝒌tr[jxzGRjiαGRjyGAjjβGA],\displaystyle=-\frac{e}{4\pi}\cdot\frac{1}{4}A_{i}^{\alpha}A_{j}^{\beta}\sum_{\bm{k}}{\rm tr}\left[j_{x}^{z}G^{\rm R}j_{i}^{\alpha}G^{\rm R}j_{y}G^{\rm A}j_{j}^{\beta}G^{\rm A}\right], (S13)
σxyz,1c\displaystyle\sigma_{xy}^{z,1c} =e4π14AiαAjβ𝒌tr[jxzGRjyGAjiαGAjjβGA],\displaystyle=-\frac{e}{4\pi}\cdot\frac{1}{4}A_{i}^{\alpha}A_{j}^{\beta}\sum_{\bm{k}}{\rm tr}\left[j_{x}^{z}G^{\rm R}j_{y}G^{\rm A}j_{i}^{\alpha}G^{\rm A}j_{j}^{\beta}G^{\rm A}\right], (S14)
σxyz,2a\displaystyle\sigma_{xy}^{z,2a} =e4π14AiαAjβ𝒌tr[ρixzαGRjjβGRjyGA],\displaystyle=-\frac{e}{4\pi}\cdot\frac{1}{4}A_{i}^{\alpha}A_{j}^{\beta}\sum_{\bm{k}}{\rm tr}\left[\rho_{ix}^{z\alpha}G^{\rm R}j_{j}^{\beta}G^{\rm R}j_{y}G^{\rm A}\right], (S15)
σxyz,2b\displaystyle\sigma_{xy}^{z,2b} =e4π14AiαAjβ𝒌tr[ρixzαGRjyGAjjβGA],\displaystyle=-\frac{e}{4\pi}\cdot\frac{1}{4}A_{i}^{\alpha}A_{j}^{\beta}\sum_{\bm{k}}{\rm tr}\left[\rho_{ix}^{z\alpha}G^{\rm R}j_{y}G^{\rm A}j_{j}^{\beta}G^{\rm A}\right], (S16)
σxyz,3a\displaystyle\sigma_{xy}^{z,3a} =e4π14AiαAjβ𝒌tr[jxzGRjiαGRρjyβGA],\displaystyle=-\frac{e}{4\pi}\cdot\frac{1}{4}A_{i}^{\alpha}A_{j}^{\beta}\sum_{\bm{k}}{\rm tr}\left[j_{x}^{z}G^{\rm R}j_{i}^{\alpha}G^{\rm R}\rho_{jy}^{\beta}G^{\rm A}\right], (S17)
σxyz,3b\displaystyle\sigma_{xy}^{z,3b} =e4π14AiαAjβ𝒌tr[jxzGRρjyβGAjiαGA],\displaystyle=-\frac{e}{4\pi}\cdot\frac{1}{4}A_{i}^{\alpha}A_{j}^{\beta}\sum_{\bm{k}}{\rm tr}\left[j_{x}^{z}G^{\rm R}\rho_{jy}^{\beta}G^{\rm A}j_{i}^{\alpha}G^{\rm A}\right], (S18)
σxyz,4\displaystyle\sigma_{xy}^{z,4} =e4π14AiαAjβ𝒌tr[ρixzαGRρjyβGA].\displaystyle=-\frac{e}{4\pi}\cdot\frac{1}{4}A_{i}^{\alpha}A_{j}^{\beta}\sum_{\bm{k}}{\rm tr}\left[\rho_{ix}^{z\alpha}G^{\rm R}\rho_{jy}^{\beta}G^{\rm A}\right]. (S19)

The corresponding Feynman diagrams are shown in Fig. S2.

Refer to caption
Figure S2: Feynman diagrams for the TSH conductivity without vertex corrections. The blue and red solid lines represent the Green’s functions with mutually opposite spin states. The total wave vector 𝑸=𝒒+𝒒{\bm{Q}}={{\bm{q}}}+{{\bm{q}}}^{\prime} in the nonadiabatic terms (σxyz,\sigma_{xy}^{z,\perp}) is provided by the gauge fields, which will be set 𝑸𝟎{{\bm{Q}}}\to{\bm{0}} later in the calculation. The diagrams in the green-shaded region turned out to vanish because of symmetry.

Most of the nonadiabatic terms can be disregarded, however. First, σxyz,1a,σxyz,1b\sigma_{xy}^{z,1a},\sigma_{xy}^{z,1b}, and σxyz,1c\sigma_{xy}^{z,1c} do not contain anti-symmetric components, so they are not studied here. Also, we find σxyz,2a=σxyz,2b=0\sigma_{xy}^{z,2a}=\sigma_{xy}^{z,2b}=0 and σxyz,4=0\sigma_{xy}^{z,4}=0 because of the cancellation with the Hermitian conjugate part of ρijzα\rho_{ij}^{z{\alpha}}. Hence, it is sufficient to consider σxyz,=σxyz,3a+σxyz,3b\sigma_{xy}^{z,\perp}=\sigma_{xy}^{z,3a}+\sigma_{xy}^{z,3b}, or

σxyz,=e4π14AiαAjβ𝒌tr[jxzGRjiαGRρjyβGA+jxzGRρjyβGAjiαGA].\displaystyle\sigma_{xy}^{z,\perp}=-\frac{e}{4\pi}\cdot\frac{1}{4}A_{i}^{\alpha}A_{j}^{\beta}\sum_{\bm{k}}{\rm tr}\left[j_{x}^{z}G^{\rm R}j_{i}^{\alpha}G^{\rm R}\rho_{jy}^{\beta}G^{\rm A}+j_{x}^{z}G^{\rm R}\rho_{jy}^{\beta}G^{\rm A}j_{i}^{\alpha}G^{\rm A}\right]. (S20)

Let us first calculate the adiabatic contribution, Eq. (S10), which is expressed as.

σxyz,z\displaystyle\sigma_{xy}^{z,z} =e4πAiz𝒌tr[G𝒌AjxzG𝒌+R{jiz(GRjyGAjy)(jyGRjyGA)+jiz}].\displaystyle=-\frac{e}{4\pi}A_{i}^{z}\sum_{\bm{k}}{\rm tr}\left[G_{{\bm{k}}-}^{\rm A}j_{x}^{z}G_{{\bm{k}}+}^{\rm R}\left\{j_{i}^{z}\left(G^{\rm R}j_{y}-G^{\rm A}j_{y}\right)_{-}-\left(j_{y}G^{\rm R}-j_{y}G^{\rm A}\right)_{+}j_{i}^{z}\right\}\right]. (S21)

Expanding it with respect to qq, we write

σxyz,z=e16πqjAiz(KijKji)=e16π(𝒒×𝑨z)zK,\displaystyle\sigma_{xy}^{z,z}=-\frac{e}{16\pi}q_{j}A_{i}^{z}\left(K_{ij}-K_{ji}\right)=-\frac{e}{16\pi}\left({{\bm{q}}}\times{\bm{A}}^{z}\right)_{z}K, (S22)

where

Kij\displaystyle K_{ij} =𝒌tr[GAjxzGRjiz(GRGA)ρjy0]=δixδjyK,\displaystyle=\sum_{\bm{k}}{\rm tr}\left[G^{\rm A}j_{x}^{z}G^{\rm R}j_{i}^{z}\left(G^{\rm R}-G^{\rm A}\right)\rho_{jy}^{0}\right]=\delta_{ix}\delta_{jy}K, (S23)
K\displaystyle K =(2t)3𝒌sin2kxcoskytr[σzτ1GRσzτ1GRσ0τ1GAσzτ1GRσzτ1GAσ0τ1GA]\displaystyle=(2t)^{3}\sum_{\bm{k}}\sin^{2}k_{x}\cos k_{y}\cdot{\rm tr}\left[\sigma^{z}\tau_{1}G^{\rm R}\sigma^{z}\tau_{1}G^{\rm R}\sigma^{0}\tau_{1}G^{\rm A}-\sigma^{z}\tau_{1}G^{\rm R}\sigma^{z}\tau_{1}G^{\rm A}\sigma^{0}\tau_{1}G^{\rm A}\right]
=8i(2t)3𝒌sin2kxcoskyIm[TA{(μR)2(JR)2+(TR)2}+2TR(μRμAJRJA)].\displaystyle=8i(2t)^{3}\sum_{\bm{k}}\sin^{2}k_{x}\cos k_{y}\cdot{\rm Im}\left[T^{\rm A}\left\{(\mu^{\rm R})^{2}-(J^{\rm R})^{2}+(T^{\rm R})^{2}\right\}+2T^{\rm R}\left(\mu^{\rm R}\mu^{\rm A}-J^{\rm R}J^{\rm A}\right)\right]. (S24)

Using

𝒌A𝒌(DR)2DA=iπτ22μ|μ|[A𝒌]πτ2|μ|[A𝒌],\displaystyle\sum_{{\bm{k}}}\frac{A_{{\bm{k}}}}{(D^{\rm R})^{2}D^{\rm A}}=-\frac{i\pi\tau^{2}}{2\mu|\mu|}\left[A_{{\bm{k}}}\right]-\frac{\pi\tau}{2|\mu|}\left[A_{{\bm{k}}}\right]^{\prime}, (S25)

where

[A𝒌]\displaystyle\left[A_{{\bm{k}}}\right] =𝒌A𝒌δ(μ2E𝒌2),\displaystyle=\sum_{{\bm{k}}}A_{{\bm{k}}}\delta(\mu^{2}-E_{{\bm{k}}}^{2}), (S26)
[A𝒌]\displaystyle\left[A_{{\bm{k}}}\right]^{\prime} =𝒌A𝒌μ2δ(μ2E𝒌2),\displaystyle=\sum_{{\bm{k}}}A_{{\bm{k}}}\frac{\partial}{\partial\mu^{2}}\delta(\mu^{2}-E_{{\bm{k}}}^{2}), (S27)

with (2τ)1=γ=(1+J2/μ2)γ0(2\tau)^{-1}={\gamma}=(1+J^{2}/\mu^{2}){\gamma}_{0}, we obtain

σxyz,z=et2νμ(μ234J2)τ2(1J2μ2)1coskxcoskyFS𝒏(x𝒏×y𝒏).\displaystyle\sigma_{xy}^{z,z}=-\frac{et^{2}\nu}{\mu}\left(\mu^{2}-\frac{3}{4}J^{2}\right)\tau^{2}\left(1-\frac{J^{2}}{\mu^{2}}\right)\left\langle 1-\cos k_{x}\cos k_{y}\right\rangle_{\rm FS}\,{\bm{n}}\cdot(\partial_{x}{\bm{n}}\times\partial_{y}{\bm{n}}). (S28)

This contains a term independent to JJ (which survives the limit J0J\to 0).

Next, the nonadiabatic terms [Eq. (S20)] are calculated as

σxyz,\displaystyle\sigma_{xy}^{z,\perp} =e16π(𝑨x×𝑨y)zL\displaystyle=\frac{e}{16\pi}\left({\bm{A}}_{x}^{\perp}\times{\bm{A}}_{y}^{\perp}\right)^{z}L (S29)
L\displaystyle L =8(2t)3𝒌sin2kxcoskyIm[TA{(μR)2+(JR)2+(TR)2}+2TRμRμA].\displaystyle=8(2t)^{3}\sum_{\bm{k}}\sin^{2}k_{x}\cos k_{y}\cdot{\rm Im}\left[T^{\rm A}\left\{(\mu^{\rm R})^{2}+(J^{\rm R})^{2}+(T^{\rm R})^{2}\right\}+2T^{\rm R}\mu^{\rm R}\mu^{\rm A}\right]. (S30)

Similar manipulation leads to

σxyz,=et2νμ(μ2+14J2)τ2(1J2μ2)1coskxcoskyFS𝒏(x𝒏×y𝒏).\displaystyle\sigma_{xy}^{z,\perp}=\frac{et^{2}\nu}{\mu}\left(\mu^{2}+\frac{1}{4}J^{2}\right)\tau^{2}\left(1-\frac{J^{2}}{\mu^{2}}\right)\left\langle 1-\cos k_{x}\cos k_{y}\right\rangle_{\rm FS}\,{\bm{n}}\cdot(\partial_{x}{\bm{n}}\times\partial_{y}{\bm{n}}). (S31)

Here we also find a JJ-independent term.

Summing the adiabatic and nonadiabatic terms, the VC-free contribution is obtained as

σSH(0)\displaystyle\sigma_{\rm SH}^{(0)} =σxyz,z+σxyz,\displaystyle=\sigma_{xy}^{z,z}+\sigma_{xy}^{z,\perp}
=et2νμ(Jτ)2(1J2μ2)1coskxcoskyFS𝒏(x𝒏×y𝒏).\displaystyle=\frac{et^{2}\nu}{\mu}(J\tau)^{2}\left(1-\frac{J^{2}}{\mu^{2}}\right)\left\langle 1-\cos k_{x}\cos k_{y}\right\rangle_{\rm FS}\,{\bm{n}}\cdot(\partial_{x}{\bm{n}}\times\partial_{y}{\bm{n}}). (S32)

This is Eq. (7) in the main text. Note that the JJ-independent term is now absent; those in σxyz,z\sigma_{xy}^{z,z} and σxyz,\sigma_{xy}^{z,\perp} have been canceled. This fact clearly shows the importance of nonadiabatic processes.

III Calculation of TSHC with VC

We next consider the effect of vertex corrections (VC). The terms with a longitudinal spin diffusion propagator (green broken line in Fig. S3) with same-spin electrons vanish for the uniform and DC component of spin Hall current. This can be justified by taking the 𝑸𝟎{{\bm{Q}}}\to{\bm{0}} limit before taking the ω0\omega\to 0 limit, similar to the case of ferromagnets [3].

Refer to caption
Figure S3: Feynman diagrams for the TSH conductivity which contain vertex corrections. The red and green broken lines are the longitudinal and transverse spin diffusion propagators, respectively. The primes on ρjyα\rho_{jy}^{{}^{\prime}{\alpha}}, jiα′′j_{i}^{{}^{\prime\prime}{\alpha}}, etc. are used to distinguish loop momenta. The upside-down diagrams are also considered in the calculation. The diagrams in the green-shaded regions are disregarded.

Thus, we consider the nonadiabatic contribution with transverse-spin diffusion propagator, Eq. (S2). Assuming a very slow spatial variation of the texture, we set q=0q=0 in Eq. (S2). As in the preceding section, the diagrams that contain ρijαβ\rho_{ij}^{{\alpha}{\beta}} vanish, and it suffices to consider

σxyz,(1)=e4π14AiαAjβ116(P+P¯)ixα,aΠab[(R+R¯)(S+S¯)]jyβ,b,\displaystyle\sigma_{xy}^{z,(1)}=-\frac{e}{4\pi}\cdot\frac{1}{4}A_{i}^{\alpha}A_{j}^{\beta}\cdot\frac{1}{16}\left(P+\bar{P}\right)_{ix}^{\alpha,a}\Pi^{ab}\left[(R+\bar{R})-(S+\bar{S})\right]_{jy}^{\beta,b}, (S33)

where α,β=x,y{\alpha},{\beta}=x,y, and

Pixα,a=𝒌tr[GAjxzGRjiαGRλa],\displaystyle P_{ix}^{{\alpha},a}=\sum_{{\bm{k}}}{\rm tr}\left[G^{\rm A}j_{x}^{z}G^{\rm R}j_{i}^{\alpha}G^{\rm R}{\lambda}^{a}\right], (S34)
P¯ixα,a=𝒌tr[GAjiαGAjxzGRλa],\displaystyle\bar{P}_{ix}^{{\alpha},a}=\sum_{{\bm{k}}}{\rm tr}\left[G^{\rm A}j_{i}^{\alpha}G^{\rm A}j_{x}^{z}G^{\rm R}{\lambda}^{a}\right], (S35)
Rjyβ,b=𝒌tr[GRjjβGRjyGAλb],\displaystyle R_{jy}^{{\beta},b}=\sum_{{\bm{k}}}{\rm tr}\left[G^{\rm R}j_{j}^{\beta}G^{\rm R}j_{y}G^{\rm A}{\lambda}^{b}\right], (S36)
R¯jyβ,b=𝒌tr[GRjyGAjjβGAλb],\displaystyle\bar{R}_{jy}^{{\beta},b}=\sum_{{\bm{k}}}{\rm tr}\left[G^{\rm R}j_{y}G^{\rm A}j_{j}^{\beta}G^{\rm A}{\lambda}^{b}\right], (S37)
Sjyβ,b=𝒌tr[GRjyGRjjβGAλb],\displaystyle S_{jy}^{{\beta},b}=\sum_{{\bm{k}}}{\rm tr}\left[G^{\rm R}j_{y}G^{\rm R}j_{j}^{\beta}G^{\rm A}{\lambda}^{b}\right], (S38)
S¯jyβ,b=𝒌tr[GRjiβGAjyGAλb].\displaystyle\bar{S}_{jy}^{{\beta},b}=\sum_{{\bm{k}}}{\rm tr}\left[G^{\rm R}j_{i}^{\beta}G^{\rm A}j_{y}G^{\rm A}{\lambda}^{b}\right]. (S39)

Here, Πab\Pi^{ab} are matrix elements of the vertex correction, with indices a,ba,b taking (γδ)({\gamma}\delta), where γ=x,y{\gamma}=x,y and δ=0,1,2,3\delta=0,1,2,3, which specify the channel λ(γδ)σγτδ{\lambda}^{({\gamma}\delta)}\equiv\sigma^{\gamma}\otimes\tau_{\delta}. Taking the trace in (P+P¯)ixα,a\left(P+\bar{P}\right)_{ix}^{\alpha,a}, (R+R¯)jyβ,b\left(R+\bar{R}\right)_{jy}^{\beta,b} and (S+S¯)jyβ,b\left(S+\bar{S}\right)_{jy}^{\beta,b}, we have

(P+P¯)ixα,(γ0)\displaystyle\left(P+\bar{P}\right)_{ix}^{\alpha,({\gamma}0)} =8(2t)2δixεαγP0,\displaystyle=-8(2t)^{2}\delta_{ix}\varepsilon^{{\alpha}{\gamma}}P_{0}, (S40)
(R+R¯)jyβ,(γ0)\displaystyle\left(R+\bar{R}\right)_{jy}^{\beta,({\gamma}0)} =8(2t)2δjyδγβR0,\displaystyle=8(2t)^{2}\delta_{jy}\delta^{{\gamma}{\beta}}R_{0}, (S41)
(S+S¯)jyβ,(γ0)\displaystyle\left(S+\bar{S}\right)_{jy}^{\beta,({\gamma}0)} =8(2t)2δjyδγβS0,\displaystyle=8(2t)^{2}\delta_{jy}\delta^{{\gamma}{\beta}}S_{0}, (S42)
(P+P¯)ixα,(γ3)\displaystyle\left(P+\bar{P}\right)_{ix}^{\alpha,({\gamma}3)} =8(2t)2δixδαγP3,\displaystyle=8(2t)^{2}\delta_{ix}\delta^{{\alpha}{\gamma}}P_{3}, (S43)
(R+R¯)jyβ,(γ3)\displaystyle\left(R+\bar{R}\right)_{jy}^{\beta,({\gamma}3)} =8(2t)2δjyεγβR3,\displaystyle=8(2t)^{2}\delta_{jy}\varepsilon^{{\gamma}{\beta}}R_{3}, (S44)
(S+S¯)jyβ,(γ3)\displaystyle\left(S+\bar{S}\right)_{jy}^{\beta,({\gamma}3)} =8(2t)2δjyεγβS3,\displaystyle=-8(2t)^{2}\delta_{jy}\varepsilon^{{\gamma}{\beta}}S_{3}, (S45)

with

P0\displaystyle P_{0} =𝒌sin2kxIm[μA{(μR)2+(JR)2+(TR)2}2JRJAμR+2TRTAμR],\displaystyle=\sum_{{\bm{k}}}\sin^{2}k_{x}\,{\rm Im}\left[\mu^{\rm A}\left\{(\mu^{\rm R})^{2}+(J^{\rm R})^{2}+(T^{\rm R})^{2}\right\}-2J^{\rm R}J^{\rm A}\mu^{\rm R}+2T^{\rm R}T^{\rm A}\mu^{\rm R}\right], (S46)
R0\displaystyle R_{0} =𝒌sin2kyRe[μA{(μR)2+(JR)2+(TR)2}2JRJAμR+2TRTAμR],\displaystyle=\sum_{{\bm{k}}}\sin^{2}k_{y}\,{\rm Re}\left[\mu^{\rm A}\left\{(\mu^{\rm R})^{2}+(J^{\rm R})^{2}+(T^{\rm R})^{2}\right\}-2J^{\rm R}J^{\rm A}\mu^{\rm R}+2T^{\rm R}T^{\rm A}\mu^{\rm R}\right], (S47)
S0\displaystyle S_{0} =𝒌sin2kyRe[μA{(μR)2(JR)2+(TR)2}+2TRTAμR],\displaystyle=\sum_{{\bm{k}}}\sin^{2}k_{y}\,{\rm Re}\left[\mu^{\rm A}\left\{(\mu^{\rm R})^{2}-(J^{\rm R})^{2}+(T^{\rm R})^{2}\right\}+2T^{\rm R}T^{\rm A}\mu^{\rm R}\right], (S48)
P3\displaystyle P_{3} =𝒌sin2kxRe[JA{(μR)2+(JR)2+(TR)2}2μRμAJR],\displaystyle=\sum_{{\bm{k}}}\sin^{2}k_{x}\,{\rm Re}\left[J^{\rm A}\left\{(\mu^{\rm R})^{2}+(J^{\rm R})^{2}+(T^{\rm R})^{2}\right\}-2\mu^{\rm R}\mu^{\rm A}J^{\rm R}\right], (S49)
R3\displaystyle R_{3} =𝒌sin2kyIm[JA{(μR)2+(JR)2+(TR)2}2μRμAJR],\displaystyle=\sum_{{\bm{k}}}\sin^{2}k_{y}\,{\rm Im}\left[J^{\rm A}\left\{(\mu^{\rm R})^{2}+(J^{\rm R})^{2}+(T^{\rm R})^{2}\right\}-2\mu^{\rm R}\mu^{\rm A}J^{\rm R}\right], (S50)
S3\displaystyle S_{3} =𝒌sin2kyIm[JA{(μR)2(JR)2+(TR)2}2TRTAJR].\displaystyle=\sum_{{\bm{k}}}\sin^{2}k_{y}\,{\rm Im}\left[J^{\rm A}\left\{(\mu^{\rm R})^{2}-(J^{\rm R})^{2}+(T^{\rm R})^{2}\right\}-2T^{\rm R}T^{\rm A}J^{\rm R}\right]. (S51)

Using Eq. (S25), we obtain

P0\displaystyle P_{0} =πντ2μ2J2μ2sin2kxFS,\displaystyle=-\pi\nu\tau^{2}\frac{\mu^{2}-J^{2}}{\mu^{2}}\left\langle\sin^{2}k_{x}\right\rangle_{\rm FS}, (S52)
R0S0\displaystyle R_{0}-S_{0} =πντ2μJ2μ2+J2sin2kyFS.\displaystyle=-\frac{\pi\nu\tau}{2\mu}\frac{J^{2}}{\mu^{2}+J^{2}}\left\langle\sin^{2}k_{y}\right\rangle_{\rm FS}. (S53)

Therefore, Eq. (S33) becomes

σSH(1)\displaystyle\sigma_{\rm SH}^{(1)} =4et4π(𝑨x×𝑨y)zP0Πσ¯σ(R0S0)\displaystyle=\frac{4et^{4}}{\pi}({\bm{A}}_{x}\times{\bm{A}}_{y})^{z}\cdot P_{0}\,\Pi_{\bar{\sigma}\sigma}(R_{0}-S_{0}) (S54)
=2et2νμ(Jτ)2(2t)2μ2+J2τ1τφ1+τs1sin2kxFS2𝒏(x𝒏×y𝒏).\displaystyle=\frac{2et^{2}\nu}{\mu}(J\tau)^{2}\frac{(2t)^{2}}{\mu^{2}+J^{2}}\frac{\tau^{-1}}{\tau_{\varphi}^{-1}+\tau_{\rm s}^{-1}}\left\langle\sin^{2}k_{x}\right\rangle_{\rm FS}^{2}\,{\bm{n}}\cdot(\partial_{x}{\bm{n}}\times\partial_{y}{\bm{n}}). (S55)

This is Eq. (8) in the main text. We note that the contribution with Π(γ3)(γ3)\Pi^{({\gamma}3)({\gamma}3)} is smaller than the one with Π(γ0)(γ0)\Pi^{({\gamma}0)({\gamma}0)} by a factor of (J/μ2τ)2(J/\mu^{2}\tau)^{2}, and is zeroth order in τ\tau; thus it can be disregarded for good metals considered here.

Refer to caption
Figure S4: Comparison of JJ-dependence of the peak value of σSH(1)\sigma_{\rm SH}^{(1)} (red lines) with (a) Πσ¯σ\Pi_{\bar{\sigma}\sigma} and τφ\tau_{\varphi}, (b) |P0||P_{0}|, and (c) |R0S0||R_{0}-S_{0}| (blue lines). See Eqs. (S2) and (S46)-(S48) for the definition of Πσ¯σ\Pi_{\bar{\sigma}\sigma}, P0P_{0}, R0R_{0}, and S0S_{0}, and Eq. (S54) for the relation among them. In the plots, we set ee, tt, and the lattice constant unity, and τφ\tau_{\varphi} is divided by 40.

IV Enhancement at weak coupling

As discussed in the main text, one of the most spectacular aspect of the present TSHE is the enhancement at weak coupling (small JJ). More specifically, the peak value of the spin Hall conductivity near the AF gap edge increases as JJ is decreased. To see the origin of this enhancement, we compare in Fig. S4 the JJ-dependence of the peak value of σSH(1)\sigma_{\rm SH}^{(1)} with that of Πσ¯σ\Pi_{\bar{{\sigma}}{\sigma}} (vertex correction; see Eq. (S2)), τφ\tau_{\varphi} (spin dephasing time), P0P_{0} (left loop integral), and R0S0R_{0}-S_{0} (right loop integral) [see Eq. (S54)] in the weak coupling regime, J/t<1J/t<1. The value of μ\mu is taken at which σSH(1)\sigma_{\rm SH}^{(1)} is peaked. As seen, the overall JJ-dependence of σSH(1)\sigma_{\rm SH}^{(1)} follows that of Πσ¯σ\Pi_{\bar{\sigma}\sigma} and τφ\tau_{\varphi}, rather than P0P_{0} and R0S0R_{0}-S_{0}, implying that the spin dephasing time is the key parameter for the enhancement of TSHE. At very small J/tJ/t (<0.2<0.2), |R0S0||R_{0}-S_{0}| shows a remarkable increase, which may also be important. Overall, it is very important to consider τφ\tau_{\varphi} in the weak coupling regime.

V Perturbative treatment of JJ

Refer to caption
Figure S5: Feynman diagrams for the TSH conductivity at second order in JJ.

In this section, we calculate the TSH conductivity by treating the exchange coupling JJ perturbatively. Relevant diagrams are shown in Fig. S5. The Green’s functions in this section are those at J=0J=0. Extracting 𝒒{{\bm{q}}} to the lowest (second) order, we write the antisymmetric part as

σxyα,A\displaystyle\sigma_{xy}^{{\alpha},{\rm A}} =e8πJ2qxqyn𝒒βn𝒒γ(2t)3𝒌coskxsin2kytr[σασβσγτ1GRτ3GRτ1GRτ3GRτ1GA],\displaystyle=-\frac{e}{8\pi}J^{2}q_{x}q^{\prime}_{y}n_{{\bm{q}}}^{\beta}n_{{{\bm{q}}}^{\prime}}^{\gamma}(-2t)^{3}\sum_{{\bm{k}}}\cos k_{x}\sin^{2}k_{y}{\rm tr}\left[{\sigma}^{\alpha}{\sigma}^{\beta}{\sigma}^{\gamma}\otimes\tau_{1}G^{\rm R}\tau_{3}G^{\rm R}\tau_{1}G^{\rm R}\ \tau_{3}G^{\rm R}\tau_{1}G^{\rm A}\right], (S56)
σxyα,B\displaystyle\sigma_{xy}^{{\alpha},{\rm B}} =e8πJ2qxqyn𝒒βn𝒒γ(2t)3𝒌coskxsin2kytr[σασβσγτ1GRτ1GAτ3GAτ1GAτ3GA],\displaystyle=-\frac{e}{8\pi}J^{2}q^{\prime}_{x}q_{y}n_{{\bm{q}}}^{\beta}n_{{{\bm{q}}}^{\prime}}^{\gamma}(-2t)^{3}\sum_{{\bm{k}}}\cos k_{x}\sin^{2}k_{y}{\rm tr}\left[{\sigma}^{\alpha}{\sigma}^{\beta}{\sigma}^{\gamma}\otimes\tau_{1}G^{\rm R}\tau_{1}G^{\rm A}\tau_{3}G^{\rm A}\tau_{1}G^{\rm A}\tau_{3}G^{\rm A}\right], (S57)
σxyα,C1\displaystyle\sigma_{xy}^{{\alpha},{\rm C1}} =e8πJ2qxqyn𝒒βn𝒒γ(2t)3𝒌coskxsin2kytr[σασβσγτ1GRτ1GRτ3GRτ1GAτ3GA],\displaystyle=\frac{e}{8\pi}J^{2}q^{\prime}_{x}q_{y}n_{{\bm{q}}}^{\beta}n_{{{\bm{q}}}^{\prime}}^{\gamma}(-2t)^{3}\sum_{{\bm{k}}}\cos k_{x}\sin^{2}k_{y}{\rm tr}\left[{\sigma}^{\alpha}{\sigma}^{\beta}{\sigma}^{\gamma}\otimes\tau_{1}G^{\rm R}\tau_{1}G^{\rm R}\tau_{3}G^{\rm R}\tau_{1}G^{\rm A}\tau_{3}G^{\rm A}\right], (S58)
σxyα,C2\displaystyle\sigma_{xy}^{{\alpha},{\rm C2}} =e8πJ2qxqyn𝒒βn𝒒γ(2t)3𝒌coskxsin2kytr[σασβσγτ1GRτ3GRτ1GAτ3GAτ1GA],\displaystyle=\frac{e}{8\pi}J^{2}q_{x}q^{\prime}_{y}n_{{\bm{q}}}^{\beta}n_{{{\bm{q}}}^{\prime}}^{\gamma}(-2t)^{3}\sum_{{\bm{k}}}\cos k_{x}\sin^{2}k_{y}{\rm tr}\left[{\sigma}^{\alpha}{\sigma}^{\beta}{\sigma}^{\gamma}\otimes\tau_{1}G^{\rm R}\tau_{3}G^{\rm R}\tau_{1}G^{\rm A}\tau_{3}G^{\rm A}\tau_{1}G^{\rm A}\right], (S59)

where σxyα,C1+σxyα,C2=σxyα,C\sigma_{xy}^{{\alpha},{\rm C1}}+\sigma_{xy}^{{\alpha},{\rm C2}}=\sigma_{xy}^{{\alpha},{\rm C}}. Noting (μR(A))2(TR(A))2=1/DR(A)\left(\mu^{\rm R(A)}\right)^{2}-\left(T^{\rm R(A)}\right)^{2}=1/D^{\rm R(A)} and Eq. (S25), we proceed as

σxyα,A+σxyα,B\displaystyle\sigma_{xy}^{{\alpha},{\rm A}}+\sigma_{xy}^{{\alpha},{\rm B}} =ie2πJ2(x𝒏×y𝒏)α(2t)32iIm𝒌coskxsin2ky[(μR)2(TR)2]2TA\displaystyle=\frac{ie}{2\pi}J^{2}\left(\partial_{x}{\bm{n}}\times\partial_{y}{\bm{n}}\right)^{\alpha}(-2t)^{3}2i{\rm Im}\sum_{{\bm{k}}}\cos k_{x}\sin^{2}k_{y}\left[(\mu^{\rm R})^{2}-(T^{\rm R})^{2}\right]^{2}T^{\rm A} (S60)
=eπJ2(x𝒏×y𝒏)α(2t)3Im𝒌coskxsin2kyT𝒌(DR)2DA\displaystyle=-\frac{e}{\pi}J^{2}\left(\partial_{x}{\bm{n}}\times\partial_{y}{\bm{n}}\right)^{\alpha}(-2t)^{3}{\rm Im}\sum_{{\bm{k}}}\frac{\cos k_{x}\sin^{2}k_{y}T_{{\bm{k}}}}{\left(D^{\rm R}\right)^{2}D^{\rm A}} (S61)
=12et2νμ(Jτ)21coskxcoskyFS(x𝒏×y𝒏)α,\displaystyle=\frac{1}{2}\frac{et^{2}\nu}{\mu}(J\tau)^{2}\left\langle 1-\cos k_{x}\cos k_{y}\right\rangle_{\rm FS}\left(\partial_{x}{\bm{n}}\times\partial_{y}{\bm{n}}\right)^{\alpha}, (S62)
σxyα,C1+σxyα,C2\displaystyle\sigma_{xy}^{{\alpha},{\rm C1}}+\sigma_{xy}^{{\alpha},{\rm C2}} =ie2πJ2(x𝒏×y𝒏)α(2t)32iIm𝒌coskxsin2ky[(μR)2(TR)2][(μA)2(TA)2]TR\displaystyle=\frac{ie}{2\pi}J^{2}\left(\partial_{x}{\bm{n}}\times\partial_{y}{\bm{n}}\right)^{\alpha}(-2t)^{3}2i{\rm Im}\sum_{{\bm{k}}}\cos k_{x}\sin^{2}k_{y}\left[(\mu^{\rm R})^{2}-(T^{\rm R})^{2}\right]\left[(\mu^{\rm A})^{2}-(T^{\rm A})^{2}\right]T^{\rm R} (S63)
=eπJ2(x𝒏×y𝒏)α(2t)3Im𝒌coskxsin2kyT𝒌(DR)2DA\displaystyle=-\frac{e}{\pi}J^{2}\left(\partial_{x}{\bm{n}}\times\partial_{y}{\bm{n}}\right)^{\alpha}(-2t)^{3}{\rm Im}\sum_{{\bm{k}}}\frac{\cos k_{x}\sin^{2}k_{y}T_{{\bm{k}}}}{\left(D^{\rm R}\right)^{2}D^{\rm A}} (S64)
=12et2νμ(Jτ)21coskxcoskyFS(x𝒏×y𝒏)α.\displaystyle=\frac{1}{2}\frac{et^{2}\nu}{\mu}(J\tau)^{2}\left\langle 1-\cos k_{x}\cos k_{y}\right\rangle_{\rm FS}\left(\partial_{x}{\bm{n}}\times\partial_{y}{\bm{n}}\right)^{\alpha}. (S65)

Therefore, we obtain

js,xα=et2νμ(Jτ)21coskxcoskyFS(x𝒏×y𝒏)αEy.\displaystyle j_{{\rm s},x}^{\alpha}=\frac{et^{2}\nu}{\mu}(J\tau)^{2}\left\langle 1-\cos k_{x}\cos k_{y}\right\rangle_{\rm FS}\left(\partial_{x}{\bm{n}}\times\partial_{y}{\bm{n}}\right)^{\alpha}E_{y}. (S66)

This is Eq. (10) in the main text, and agrees with Eq. (S32) at order J2J^{2}.

VI Spin Hall angle

For a comparison to experiments, we plot a normalized spin Hall angle θ~SHσ~SH/σ~c\tilde{\theta}_{\rm SH}\equiv\tilde{\sigma}_{\rm SH}/\tilde{\sigma}_{\rm c}, where σ~c=σcγ~\tilde{\sigma}_{\rm c}=\sigma_{\rm c}\tilde{\gamma} (σc=2e2Dν\sigma_{\rm c}=2e^{2}D\nu) is the normalized longitudinal conductivity [Fig. S6(a)].

Refer to caption
Figure S6: (a) and (b) show the chemical potential dependence of the normalized longitudinal conductivity (a) and the spin Hall angle (b) for several choices of J/tJ/t. (c) and (d) are color plots in the plane of nn (average electron number per site) and J/tJ/t of the normalized topological spin Hall conductivity (c) and the normalized spin Hall angle (d). (n=1n=1 corresponds to completely filled lower and empty upper AF bands.)

The spin Hall angle θ~SH\tilde{\theta}_{\rm SH} is shown in Fig. S6(b). As JJ is increased from J=0.1tJ=0.1t, the peak value decreases first quickly, then moderately and becomes stationary. This is because the longitudinal conductivity also decreases but rather constantly; see Fig. S6(a).

The normalized TSH conductivity σ~SHγ~2\tilde{\sigma}_{\rm SH}\tilde{\gamma}^{2} and the normalized TSH angle θ~SH\tilde{\theta}_{\rm SH} are plotted in Fig. S6 (c) and (d), respectively, in the plane of JJ and electron filling nn. As for the former [Fig. S6(c)], we see a very sharp peak in a very narrow region at weak coupling (J0.5tJ\lesssim 0.5t) and n0.4n\gtrsim 0.4. This is discussed in the main text. The spin Hall angle θ~SH\tilde{\theta}_{\rm SH} [Fig. S6(d)] has a similar structure, but also has a broad tail (or plateau) extended to larger JJ.

VII nonlocality

As the wave-vector 𝒒{\bm{q}} of spin texture (or spin gauge field) is increased, the effective field becomes nonlocal with respect to the spin texture. This is induced through spin diffusion. To study this, we retain the 𝒒{\bm{q}}-dependence of the texture, and write the TSH conductivity as

σSH(𝑸)Π(𝒒)[𝑨x(𝒒)×𝑨y(𝒒)]z+(𝒒𝒒)(xy).\displaystyle\sigma_{\rm SH}({{\bm{Q}}})\propto\Pi({{\bm{q}}}^{\prime})[{\bm{A}}_{x}^{\perp}({{\bm{q}}})\times{\bm{A}}_{y}^{\perp}({{\bm{q}}}^{\prime})]^{z}+({{\bm{q}}}\leftrightarrow{{\bm{q}}}^{\prime})-(x\leftrightarrow y). (S67)

In real space, it reads

σSH\displaystyle\sigma_{\rm SH} d𝒓Π(𝒓𝒓)[𝑨x(𝒓)×𝑨y(𝒓)]z(xy)\displaystyle\propto\int d{{\bm{r}}}^{\prime}\Pi({{\bm{r}}}-{{\bm{r}}}^{\prime})[{\bm{A}}_{x}^{\perp}({{\bm{r}}})\times{\bm{A}}_{y}^{\perp}({{\bm{r}}}^{\prime})]^{z}-(x\leftrightarrow y)
=𝒏(x𝒏×(z^×𝑨~y))(xy)\displaystyle={\bm{n}}\cdot(\partial_{x}{\bm{n}}\times{\cal R}(\hat{z}\times\tilde{\bm{A}}_{y}^{\perp}))-(x\leftrightarrow y)
=𝒏(x𝒏×𝒅~y)(xy),\displaystyle={\bm{n}}\cdot(\partial_{x}{\bm{n}}\times\tilde{\bm{d}}_{y})-(x\leftrightarrow y), (S68)

with

𝑨~i\displaystyle\tilde{\bm{A}}_{i}^{\perp} =𝑑𝒓Π(𝒓𝒓)𝑨i(𝒓),\displaystyle=\int d{{\bm{r}}}^{\prime}\Pi({{\bm{r}}}-{{\bm{r}}}^{\prime}){\bm{A}}_{i}^{\perp}({{\bm{r}}}^{\prime}), (S69)
𝒅~i\displaystyle\tilde{\bm{d}}_{i} =𝑑𝒓Π(𝒓𝒓)(𝒓)1(𝒓)i𝒏(𝒓),\displaystyle=\int d{{\bm{r}}}^{\prime}\Pi({{\bm{r}}}-{{\bm{r}}}^{\prime}){\cal R}({{\bm{r}}}){\cal R}^{-1}({{\bm{r}}}^{\prime})\partial_{i}{\bm{n}}({{\bm{r}}}^{\prime}), (S70)

and

Π(𝑹)=𝒒Πσ¯σ(𝒒)ei𝒒𝑹=2π2ντμ2μ2J21DτK0(R/φs),\displaystyle\Pi({\bm{R}})=\sum_{{\bm{q}}}\Pi_{\bar{\sigma}\sigma}({{\bm{q}}})\,{{\rm e}}^{i{{\bm{q}}}\cdot{\bm{R}}}=\frac{2}{\pi^{2}\nu\tau}\frac{\mu^{2}}{\mu^{2}-J^{2}}\frac{1}{D\tau}K_{0}(R/\ell_{{\varphi}{\rm s}}), (S71)

where φs=Dτφs\ell_{{\varphi}{\rm s}}=\sqrt{D\tau_{{\varphi}{\rm s}}} with τφs1=τφ1+τs1\tau_{{\varphi}{\rm s}}^{-1}=\tau_{{\varphi}}^{-1}+\tau_{\rm s}^{-1}, 𝑹=𝒓𝒓{\bm{R}}={{\bm{r}}}-{{\bm{r}}}^{\prime}, and K0(x)K_{0}(x) is the modified Bessel function of the second kind. We identify the physical spin Hall current as

𝒋s,i(i𝒏×𝒅~jj𝒏×𝒅~i)Ej.\displaystyle{\bm{j}}_{{\rm s},i}\propto(\partial_{i}{\bm{n}}\times\tilde{\bm{d}}_{j}-\partial_{j}{\bm{n}}\times\tilde{\bm{d}}_{i})E_{j}. (S72)

VIII Numerics with Landauer-Büttiker formula

Refer to caption
Figure S7: Chemical potential dependence of the spin Hall conductance before the “symmetrization” for systems with AF skyrmion (upper panels) and AF meron (lower panels), and for J=0.3tJ=0.3t (left panels) and J=0.3tJ=-0.3t (right panels).

In the calculation based on the Landauer-Büttiker formula, we employ the four-terminal geometry with nonmagnetic leads and obtained numerically the spin Hall conductance from the transmission coefficients [4]. The magnetic textures employed are as follows. For AF skyrmion, we take

𝒏(𝒓)=(cosφsinθ,sinφsinθ,cosθ),\displaystyle{\bm{n}}({{\bm{r}}})=\left(\cos\varphi\sin\theta,\ \sin\varphi\sin\theta,\ \cos\theta\right), (S73)

where φ=Arg(x+iy)+π/2\varphi={\rm Arg}(x+iy)+\pi/2 and θ=θ++θ\theta=\theta_{+}+\theta_{-} with sinθ±=tanh2(|𝒓|±Rsk)Rsk\sin\theta_{\pm}=\tanh\frac{2(|{{\bm{r}}}|\pm R_{\rm sk})}{R_{\rm sk}} [5]. For AF meron, we take

𝒏(𝒓)\displaystyle{\bm{n}}({{\bm{r}}}) =(cosφsinθ,sinφsinθ,cosθ)(cosθ>0)\displaystyle=\left(\cos\varphi\sin\theta,\ \sin\varphi\sin\theta,\ \cos\theta\right)\quad(\cos\theta>0) (S74)
𝒏(𝒓)\displaystyle{\bm{n}}({{\bm{r}}}) =(cosφ,sinφ, 0)(otherwise),\displaystyle=\left(\cos\varphi,\ \sin\varphi,\ 0\right)\quad({\rm otherwise}), (S75)

with same φ\varphi and θ\theta.

The results are shown in Fig. S7 for J=0.3tJ=0.3t and J=0.3tJ=-0.3t. While the analytical result indicates that contributions from vector chirality are even in JJ (see the main text), a substantial JJ-odd component is seen in Fig. S7 for AF skyrmion whereas it is almost absent for AF meron. We have thus extracted the JJ-even contribution by symmetrizing as

GSHCz[GSHCz(J)+GSHCz(J)]/2.\displaystyle G_{\rm SHC}^{z}\equiv\left[G_{\rm SHC}^{z}(J)+G_{\rm SHC}^{z}(-J)\right]/2. (S76)

Figure 3 in the main text shows this “symmetrized” data. Since the (disregarded) JJ-odd components do not depend much on the system size, they are likely to come from the boundary between the sample and the lead.

References

  • [1] J. J. Nakane, K. Nakazawa, and H. Kohno, Phys. Rev. B 101, 174432 (2020).
  • [2] A. Manchon, J. Phys. Condens. Matter 29, 104002 (2017).
  • [3] K. Nakazawa, M. Bibes, and H. Kohno, J. Phys. Soc. Jpn. 87, 033705 (2018); K. Nakazawa and H. Kohno, Phys. Rev. B 99, 033705 (2018).
  • [4] J. Ohe, T. Ohtsuki, B. Kramer, Phys. Rev. B 75, 245313 (2007).
  • [5] N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, and R. Wiesendanger, Phys. Rev. Lett. 114, 177203 (2015).