This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Topological Pressure of Discontinuous Potentials and Variational Principle for Flows11footnotemark: 1

Ruolan XiongπŸ–‚{}^{\href mailto:[email protected]} College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China
Abstract

Let XX be a compact metric space and Ξ¦={Ο†t}tβˆˆβ„\Phi=\{\varphi_{t}\}_{t\in\mathbb{R}} be a continuous flow on XX. We introduce two types of topological pressure for family of discontinuous potentials a={at}t>0a=\{a_{t}\}_{t>0}. First, define the topological pressure of family of measurable potentials a={at}t>0a=\{a_{t}\}_{t>0} on a subset ZZ for flow and proof its invariant principle. The second topological pressure is defined on a invariant subset having a nested family of subsets, we also proof its invariant principle.

keywords:
dynamical system, topological pressure, flow, discontinuous potential, variational principle
MSC:
[2020]37D35, 26A18

1 Introduction

Topological pressure emerged in the 1970s as an extension of topological entropy, with the purpose of measuring the complexity of motion in dynamical systems. Different potentials have varying effects on the system’s motion, which topological entropy fails to reflect. Therefore, topological pressure is defined to capture the relationship between the uncertainty in the system and the potentials.

The refined definition of topological pressure was initially formulated by David Ruelle, a prominent theoretical physicist and esteemed member of the French Academy of Sciences. Drawing inspiration from the contributions of Sinai and Bowen, Ruelle introduced the concept of topological pressure in 1973, building upon the notion of ”pressure” within statistical mechanics. His definition pertained specifically to ZvZ^{v}-actions that adhere to expansivity and specification on a compact metric space. He proved the following equation:

P​(Ο†)=maxμ∈I{s​(ΞΌ)+μ​(Ο†)},P(\varphi)=\mathop{\max}\limits_{\mu\in I}\{s(\mu)+\mu(\varphi)\},

which is the variational principle([21]). In 1984, Pesin and Pitskel further extended this condition, defining the topological pressure of continuous mappings on non-compact sets([17]). In the 1960s, the concept of topological pressure for sequences of subadditive potentials already emerged([14]). In 1988, Falconer studied the topological pressure of sequences of subadditive potentials on mixed repellers and provided a variational principle under Lipschitz conditions and bounded variation([10]). Subsequently, there have been numerous related studies on the topological pressure of sequences of subadditive potentials([7, 12, 23, 9]). In 1996, Barreira further relaxed the subadditive condition and defined the topological pressure of sequence of potentials (not necessarily subadditive) on a subsets of compact metric space([5]). Over the years, the concept of topological pressure has evolved beyond just continuous mappings in discrete dynamical systems. The topological pressure and variational principles for families of continuous potentials a={at}t>0a=\{a_{t}\}_{t>0} have also emerged([4]). Similar to the concept of metric entropy, there is also topological entropy in dynamical systems, which originates from topological pressure and is related to measures([13, 24, 8]).

The above conclusions are all about continuous potentials. When the potential does not satisfy continuity, does topological pressure still exist? In 2006, Mummert first defined the topological pressure of a discontinuous map Ξ»\lambda on a subset Ξ›\Lambda of a compact metric space (X,T)(X,T)([16]). In Mummert’s study, the set Ξ›\Lambda is represented as the union of a nested sequence of sets: Ξ›=⋃lβ‰₯1Ξ›l\Lambda=\mathop{\bigcup}\limits_{l\geq 1}\Lambda_{l}. The potential only needs to be continuous on the closure of each subset, not necessarily on the entire set. Thus, the classical topological pressure PΞ›lP_{\Lambda_{l}}(Ο†)(\varphi) can be defined on each subset Ξ›l\Lambda_{l}, and then taking the supremum over ll, we obtain the topological pressure on the subset Ξ›\Lambda: PΞ›P_{\Lambda}(Ο†)=suplβ‰₯1PΞ›l(\varphi)=\mathop{\sup}\limits_{l\geq 1}P_{\Lambda_{l}}(Ο†)(\varphi). Subsequently, Ma Xianfeng et al. extended Mummert’s conclusion from a single potential to a subadditive potential sequence([15]). In 2012, J. Barral and D. J. Feng studied the topological pressure of upper semi-continuous subadditive potentials([2]). In 2016, Feng and Huang gave the definition of weighted topological pressure for upper semi-continuous entropy maps, along with a variational principle([11]). In 2017, Marc Rauch directly defined the topological pressure of measurable potentials in compact metric spaces using the Caratheodory structure theory and proved the variational principle([19]). In subsequent research, he also introduced the topological pressure and variational principle for subadditive potential sequences([20]). Additionally, topological pressure can be defined for systems with discontinuous semi-flow([1]).

There have been some results for the topological pressure of discontinuous potentials in discrete dynamical systems, but in continuous dynamical systems it remains to be studied. This paper provides two definitions of the topological pressure of discontinuous potentials with respect to the flow and introduces the corresponding variational principles for each.

First, the topological pressure of family of measurable potentials on a subset is introduced. In a continuous dynamical system (X,Ξ¦)(X,\Phi), given a nonempty subset βˆ…β‰ ZβŠ†X\emptyset\neq Z\subseteq X, take the real numbers Ο΅>0\epsilon>0, Ξ±βˆˆβ„\alpha\in\mathbb{R}, We define the topological pressure of the family of potential aa on the set ZZ as :

PZ​(a)=limΟ΅β†’ 0PZ​(a,Ο΅)=limΟ΅β†’ 0inf{Ξ±βˆˆβ„:M​(Z,a,Ξ±,Ο΅)=0},P_{Z}(a)=\mathop{\lim}\limits_{\epsilon\to\ 0}P_{Z}(a,\epsilon)=\mathop{\lim}\limits_{\epsilon\to\ 0}\inf\{\alpha\in\mathbb{R}:M(Z,a,\alpha,\epsilon)=0\},

where

M​(Z,a,Ξ±,Ο΅)=limTβ†’+∞M​(Z,a,Ξ±,Ο΅,T),M(Z,a,\alpha,\epsilon)=\mathop{\lim}\limits_{T\to\ +\infty}M(Z,a,\alpha,\epsilon,T),
M​(Z,a,Ξ±,Ο΅,T)=infΞ“βˆ‘(x,t)βˆˆΞ“exp⁑(a​(x,t,Ξ΅)βˆ’Ξ±β€‹t),M(Z,a,\alpha,\epsilon,T)=\mathop{\inf}\limits_{\Gamma}\sum\limits_{\left({x,t}\right)\in\Gamma}{\exp\left({a\left({x,t,\varepsilon}\right)-\alpha t}\right)},

the lower bound is taken from all countably open covers Ξ“βŠ†XΓ—[T,+∞)\Gamma\subseteq X\times[T,+\infty) that cover ZZ and a​(x,t,Ο΅)=sup{at​(y):y∈Bt​(x,Ο΅)}a(x,t,\epsilon)=\sup\{a_{t}(y):y\in B_{t}(x,\epsilon)\}. In the third part we can see that such definition is well-defined, stemming from the Caratheodory dimension theory of Pesin([18]). Then we have the first main conclusion of this article.

Theorem 1.1: Let (X,Ξ¦)(X,\Phi) be a DTS without fixed point and 𝒒(a,Ξ»):={ΞΌβˆˆπ’œ(Ξ»)βˆ©β„°Ξ¦(X)βˆ©β„³Ξ¦(X):limtβ†’βˆž1tat(x)=Ξ»(ΞΌ)forΞΌβˆ’\mathcal{G}(a,\lambda):=\{\mu\in\mathcal{A}(\lambda)\cap\mathcal{E}_{\Phi}(X)\cap\mathcal{\mathcal{M}}_{\Phi}(X):\mathop{\lim}\limits_{t\to\infty}\frac{1}{t}a_{t}(x)=\lambda(\mu)\,\,for\,\,\mu-almost x∈X}x\in X\}. For each subset π’΄βŠ†π’’β€‹(a,Ξ»)\mathcal{Y}\subseteq\mathcal{G}(a,\lambda) one has

PA​(a,Ξ»,𝒴)​(a)=sup{hμ​(Ξ¦)+λ​(ΞΌ):ΞΌβˆˆπ’΄}.P_{A(a,\lambda,\mathcal{Y})}(a)=\sup\{h_{\mu}(\Phi)+\lambda(\mu):\mu\in\mathcal{Y}\}.

In particular, one can choose for each ΞΌβˆˆπ’΄\mu\in\mathcal{Y} a Borel set BΞΌβŠ†A​(a,Ξ»,𝒴)B_{\mu}\subseteq A(a,\lambda,\mathcal{Y}) such that μ​(BΞΌ=1)\mu(B_{\mu}=1), and PB​(a)=sup{hμ​(Ξ¦)+λ​(ΞΌ):ΞΌβˆˆπ’΄}P_{B}(a)=\sup\{h_{\mu}(\Phi)+\lambda(\mu):\mu\in\mathcal{Y}\}.

For the second definition, consider a Ξ¦\Phi-invariational subset ZβŠ†XZ\subseteq X. ZZ consists of a nested subset of {Zl}l≀1\{Z_{l}\}_{l\leq 1}, i.e.: Z=⋃lβ‰₯1ZlZ=\mathop{\bigcup}\limits_{l\geq 1}Z_{l} and ZlβŠ†Zl+1Z_{l}\subseteq Z_{l+1} for all lβˆˆβ„•l\in\mathbb{N}. We require that aa be continuou on the closure of each subset ZlZ_{l}, but not necessarily on ZZ. The topological pressure of aa on ZZ with respect to the flow Ξ¦\Phi is defined as:

PZ​(a)=suplβ‰₯1PZl​(a)P_{Z}(a)=\mathop{\sup}\limits_{l\geq 1}P_{Z_{l}}(a)

where PZl​(a)P_{Z_{l}}(a) is the classical topological pressure of aa on ZlZ_{l}. Since aa is continuous on the closure of every subset ZlZ_{l}, PZl​(a)P_{Z_{l}}(a) is well-defined. Then we have the second main conclusion of this article.

Theorem 1.2: Let aa be a family of functions {at}t>0\{a_{t}\}_{t>0} with tempered variation such that supt∈[0,T]β€–atβ€–βˆž<+∞\mathop{\sup}\limits_{t\in[0,T]}||a_{t}||_{\infty}<+\infty for all T>0T>0. Let Z=⋃lβ‰₯1ZlβŠ†XZ=\mathop{\bigcup}\limits_{l\geq 1}Z_{l}\subseteq X be a Borel Ξ¦βˆ’\Phi-invariant set and aa is continuous with respect to the family of subsets {Zl}\{Z_{l}\}. If there exists a continuous function b:X→ℝb:X\to\mathbb{R} such that

at+sβˆ’atβˆ˜Ο†β€‹(x)β†’βˆ«0s(bβˆ˜Ο†u)​𝑑ua_{t+s}-a_{t}\circ\varphi(x)\to\int_{0}^{s}(b\circ\varphi_{u})\,du (1.1)

uniformly on ZZ when tβ†’+∞t\to+\infty for some s>0s>0, then

Pℒ​(Z)​(a)=sup{hμ​(Ξ¦)+∫Zb​𝑑μ:μ∈MZ}.P_{\mathcal{L}(Z)}(a)=\sup\{h_{\mu}(\Phi)+\int_{Z}b\,d\mu:\mu\in M_{Z}\}.

Although the above two topological pressures are defined using different methods, they both reflect the relationship between the potentials and the complexity of the system’s motion on a subset of a continuous dynamical system.

2 Prelimilaries

Let (X,ℬ)(X,\mathcal{B}) be a measurable space and Ξ¦=(Ο†t)tβˆˆβ„\Phi=(\varphi_{t})_{t\in\mathbb{R}} be a continuous flow on XX. This is, a family of heomorphisms Ο†t:X\varphi_{t}:Xβ†’\rightarrowXX such that Ο†0=i​d\varphi_{0}=id and Ο†tβˆ˜Ο†s=Ο†t+s\varphi_{t}\circ\varphi_{s}=\varphi_{t+s} for all t,s∈t,s\inℝ\mathbb{R}.

Definition 2.1: A measure ΞΌ\mu on (X,ℬ)(X,\mathcal{B}) is said to be Ξ¦βˆ’\Phi-invariant, if μ​(Ο†tβˆ’1​B)=μ​(B)\mu(\varphi^{-1}_{t}B)=\mu(B) for each Bβˆˆβ„¬B\in\mathcal{B} and tβˆˆβ„t\in\mathbb{R}. A set ZβŠ†Z\subseteqXX is called Ξ¦βˆ’\Phi-invariant, if Ο†βˆ’1​(Z)=Z\varphi^{-1}(Z)=Z for any tβˆˆβ„t\in\mathbb{R}. A measure ΞΌ\mu on (X,ℬ)(X,\mathcal{B}) is said to be ergodic for the flow if every Borel Ξ¦βˆ’\Phi-invariant set Bβˆˆβ„¬B\in\mathcal{B} satisfies μ​(B)=0\mu(B)=0 or μ​(B)=1\mu(B)=1.

The set of all Ξ¦βˆ’\Phi-invariant probability measures on (X,ℬ)(X,\mathcal{B}) is denoted by ℳΦ​(X)\mathcal{M}_{\Phi}(X), and the set of the ergodic probability measures is denoted by ℰΦ​(X)\mathcal{E}_{\Phi}(X). For each measurable subset ZβŠ†Z\subseteqXX, we define ℳΦ​(Z)={ΞΌβˆˆβ„³Ξ¦β€‹(X):μ​(Z)=1}\mathcal{M}_{\Phi}(Z)=\{\mu\in\mathcal{M}_{\Phi}(X):\mu(Z)=1\} and ℰΦ​(Z)={ΞΌβˆˆβ„°Ξ¦β€‹(X):μ​(Z)>0}\mathcal{E}_{\Phi}(Z)=\{\mu\in\mathcal{E}_{\Phi}(X):\mu(Z)>0\}. For ΞΌβˆˆβ„³Ξ¦β€‹(X)\mu\in\mathcal{M}_{\Phi}(X), the quantity hμ​(Ξ¦):=hμ​(Ο†1)h_{\mu}(\Phi):=h_{\mu}(\varphi_{1}).

Let (X,d)(X,d) be a compact metric space. Given x∈Xx\in X and t,ϡ>0t,\epsilon>0, we consider the set

Bt(x,Ο΅)={y∈X:d(Ο†s(x),Ο†s(y)<Ο΅,s∈[0,t]}.B_{t}(x,\epsilon)=\{y\in X:d(\varphi_{s}(x),\varphi_{s}(y)<\epsilon,s\in[0,t]\}.

We call π’°βŠ†2X\mathcal{U}\subseteq 2^{X} to be a finite open cover of XX if #​(ΞΌ)<∞\#(\mu)<\infty and XβŠ†β‹ƒUβˆˆπ’°UX\subseteq\mathop{\bigcup}\limits_{U\in\mathcal{U}}U, where every Uβˆˆπ’°U\in\mathcal{U} is open.

Given x∈Xx\in X and t>0t>0, define the probability measures

Ξ΄x,t=1tβ€‹βˆ«0tδφs​(x)​𝑑s.\delta_{x,t}=\frac{1}{t}\int_{0}^{t}\delta_{\varphi_{s}(x)}\,ds.

where Ξ΄y\delta_{y} is the probability measure concentrated on {y}\{y\}. Denote by VΦ​(x)βŠ†MΦ​(X)V_{\Phi}(x)\subseteq M_{\Phi}(X) the set of all Ξ¦βˆ’\Phi-invariant sublimits of {Ξ΄x,t}t>0\{\delta_{x,t}\}_{t>0} in the weak*-topology. We can proof that VΦ​(x)β‰ βˆ…V_{\Phi}(x)\neq\emptyset for every x∈Xx\in X, and the VΦ​(x)V_{\Phi}(x) is a compact metrizable space. The set ZΞΌ:={x∈X:limtβ†’βˆžΞ΄x,t=ΞΌ}Z_{\mu}:=\{x\in X:\mathop{\lim}\limits_{t\to\infty}\delta_{x,t}=\mu\} is called the set of generic points of ΞΌ\mu. Note that μ​(ZΞΌ)=1\mu(Z_{\mu})=1 if ΞΌ\mu is ergodic.

Given Ο΅>0\epsilon>0, we say that a set Ξ“βŠ†X×ℝ0+\Gamma\subseteq X\times\mathbb{R}_{0}^{+} covers a subset ZβŠ†XZ\subseteq X if ZβŠ†β‹ƒ(x,t)βˆˆΞ“Bt​(x,Ο΅)Z\subseteq\mathop{\bigcup}\limits_{(x,t)\in\Gamma}B_{t}(x,\epsilon). Let 𝒒Z​(Ο΅,T)\mathcal{G}_{Z}(\epsilon,T) be the set of all Ξ“\Gamma satisfying tβ‰₯Tt\geq T. Let a={at}t>0a=\{a_{t}\}_{t>0} be a family of function :X→ℝ:X\to\mathbb{R} with tempered variation, that is, such that limΟ΅β†’ 0limtβ†’βˆžΒ―β€‹Ξ³t​(a,Ο΅)t=0\mathop{\lim}\limits_{\epsilon\to\ 0}\overline{\mathop{\lim}\limits_{t\to\infty}}\frac{\gamma_{t}(a,\epsilon)}{t}=0 where

Ξ³t(a,Ο΅)=sup{∣at(y)βˆ’at(z)∣:y,z∈Bt(x,Ο΅)forsomex∈X}.\gamma_{t}(a,\epsilon)=\sup\{\mid a_{t}(y)-a_{t}(z)\mid:y,z\in B_{t}(x,\epsilon)\,for\,some\,x\in X\}.

We write a​(x,t,Ο΅)=sup{at​(y):y∈Bt​(x,Ο΅)}a(x,t,\epsilon)=\sup\{a_{t}(y):y\in B_{t}(x,\epsilon)\} for (x,t)βˆˆΞ“(x,t)\in\Gamma.

Definition 2.2: Fix βˆ…β‰ ZβŠ†X\emptyset\neq Z\subseteq X, Ο΅>0\epsilon>0, Ξ±βˆˆβ„\alpha\in\mathbb{R}, Let

M​(Z,a,Ξ±,Ο΅,T)=infΞ“βˆ‘(x,t)βˆˆΞ“exp⁑(a​(x,t,Ξ΅)βˆ’Ξ±β€‹t).M(Z,a,\alpha,\epsilon,T)=\mathop{\inf}\limits_{\Gamma}\sum\limits_{\left({x,t}\right)\in\Gamma}{\exp\left({a\left({x,t,\varepsilon}\right)-\alpha t}\right)}.

with the infimum taken over all countable sets Ξ“βŠ†XΓ—[T,+∞)\Gamma\subseteq X\times[T,+\infty) covering ZZ. And let

M​(Z,a,Ξ±,Ο΅)=limTβ†’+∞M​(Z,a,Ξ±,Ο΅,T).M(Z,a,\alpha,\epsilon)=\mathop{\lim}\limits_{T\to\ +\infty}M(Z,a,\alpha,\epsilon,T).

Clearly, M​(Z,a,Ξ±,Ο΅,T)M(Z,a,\alpha,\epsilon,T) increases as TT increases.We have that

M​(Z,a,Ξ±,Ο΅)=supTM​(Z,a,Ξ±,Ο΅,T).M(Z,a,\alpha,\epsilon)=\mathop{\sup}\limits_{T}M(Z,a,\alpha,\epsilon,T).

Lemma 2.3: Let Ξ²βˆˆβ„\beta\in\mathbb{R} and ZβŠ†XZ\subseteq X. If M​(Z,a,Ξ²,Ο΅)<∞M(Z,a,\beta,\epsilon)<\infty, then M​(Z,a,Ξ±,Ο΅)=0M(Z,a,\alpha,\epsilon)=0 for all Ξ±>Ξ²\alpha>\beta and T>0T>0.

Proof.

The case Z=βˆ…Z=\emptyset is clear. Choose some Aβˆˆβ„A\in\mathbb{R} such that M​(Z,a,Ξ²,Ο΅)<AM(Z,a,\beta,\epsilon)<A. Then M​(Z,a,Ξ²,Ο΅,T)<AM(Z,a,\beta,\epsilon,T)<A for all T>0T>0. Hence

0\displaystyle 0 ≀infΞ“βˆ‘(x,t)βˆˆΞ“exp⁑(a​(x,t,Ξ΅)βˆ’Ξ±β€‹t)\displaystyle\leq\mathop{\inf}\limits_{\Gamma}\sum\limits_{\left({x,t}\right)\in\Gamma}{\exp\left({a\left({x,t,\varepsilon}\right)-\alpha t}\right)}
=infΞ“βˆ‘(x,t)βˆˆΞ“exp⁑(a​(x,t,Ξ΅)βˆ’Ξ²β€‹t)​exp⁑(t​(Ξ²βˆ’Ξ±))\displaystyle=\mathop{\inf}\limits_{\Gamma}\sum\limits_{\left({x,t}\right)\in\Gamma}{\exp\left({a\left({x,t,\varepsilon}\right)-\beta t}\right)}\exp(t(\beta-\alpha))
≀A​(exp⁑(Ξ²βˆ’Ξ±))Tβ†’0\displaystyle\leq A(\exp(\beta-\alpha))^{T}\to 0

as Tβ†’βˆžT\to\infty.The statement is proved. ∎

By Lemma 2.3, the following quantity is well defined:

PZ​(a,Ο΅)=inf{Ξ±βˆˆβ„:M​(Z,a,Ξ±,Ο΅)=0}.P_{Z}(a,\epsilon)=\inf\{\alpha\in\mathbb{R}:M(Z,a,\alpha,\epsilon)=0\}.

For 0<Ο΅β€²<Ο΅0<\epsilon^{{}^{\prime}}<\epsilon, and T>0T>0, Bt​(x,Ο΅β€²)βŠ†Bt​(x,Ο΅)B_{t}(x,\epsilon^{{}^{\prime}})\subseteq B_{t}(x,\epsilon), if ZβŠ†β‹ƒ(x,t)βˆˆΞ“Bt​(x,Ο΅β€²)Z\subseteq\mathop{\bigcup}\limits_{(x,t)\in\Gamma}B_{t}(x,\epsilon^{{}^{\prime}}) one has ZβŠ†β‹ƒ(x,t)βˆˆΞ“Bt​(x,Ο΅)Z\subseteq\mathop{\bigcup}\limits_{(x,t)\in\Gamma}B_{t}(x,\epsilon). This shows that 𝒒z​(Ο΅β€²,T)βŠ†π’’z​(Ο΅,T)\mathcal{G}_{z}(\epsilon^{{}^{\prime}},T)\subseteq\mathcal{G}_{z}(\epsilon,T). Hence the following limit is also well-defined:

PZ​(a)=limΟ΅β†’ 0PZ​(a,Ο΅)=supΟ΅>0PZ​(a,Ο΅).P_{Z}(a)=\mathop{\lim}\limits_{\epsilon\to\ 0}P_{Z}(a,\epsilon)=\mathop{\sup}\limits_{\epsilon>0}P_{Z}(a,\epsilon).

Definition 2.4: The quantity PZ​(a)P_{Z}(a) is called topological pressure of aa on ZZ with respected to Ξ¦\Phi.

For Z=βˆ…Z=\emptyset, we emphasize that Pβˆ…β€‹(a)=βˆ’βˆžP_{\emptyset}(a)=-\infty for each potential aa. This follows from M​(βˆ…,a,Ξ±,Ο΅,T)=0M(\emptyset,a,\alpha,\epsilon,T)=0 for every Ο΅>0,Ξ±βˆˆβ„\epsilon>0,\,\alpha\in\mathbb{R} and T>0T>0. Thus Pβˆ…β€‹(a)β‰ βˆ’βˆžP_{\emptyset}(a)\neq-\infty implies Zβ‰ βˆ…Z\neq\emptyset.

Next we introduce some properties of topological pressure.

Lemma 2.5: For Ο΅>0,Ξ±βˆˆβ„,T>0\epsilon>0,\,\alpha\in\mathbb{R},\,T>0, and YβŠ†ZβŠ†XY\subseteq Z\subseteq X, The following inequalities hold:

M​(Y,a,Ξ±,Ο΅,T)≀M​(Z,a,Ξ±,Ο΅,T).M(Y,a,\alpha,\epsilon,T)\leq M(Z,a,\alpha,\epsilon,T).

In particular,

PY​(a,Ο΅)≀PZ​(a,Ο΅)P_{Y}(a,\epsilon)\leq P_{Z}(a,\epsilon)

for all Ο΅>0\epsilon>0, and then

PY​(a)≀PZ​(a).P_{Y}(a)\leq P_{Z}(a).
Proof.

For a cover Ξ“βŠ†X×ℝ0+\Gamma\subseteq X\times\mathbb{R}_{0}^{+}, if Ξ“\Gamma covers ZZ, then it can cover YY. Hence M​(Y,a,Ξ±,Ο΅,T)≀M​(Z,a,Ξ±,Ο΅,T)M(Y,a,\alpha,\epsilon,T)\leq M(Z,a,\alpha,\epsilon,T) and then PY​(a,Ο΅)≀PZ​(a,Ο΅)P_{Y}(a,\epsilon)\leq P_{Z}(a,\epsilon), PY​(a)≀PZ​(a)P_{Y}(a)\leq P_{Z}(a). ∎

Lemma 2.6: Given a set ZβŠ†XZ\subseteq X, suppose Z=⋃i∈IZiZ=\mathop{\bigcup}\limits_{i\in I}Z_{i}, where IβŠ†β„•I\subseteq\mathbb{N} and ZiβŠ†XZ_{i}\subseteq X for all i∈Ii\in I. then

PZ​(a)=supi∈IPZi​(a).P_{Z}(a)=\mathop{\sup}\limits_{i\in I}P_{Z_{i}}(a).
Proof.

Since ZiβŠ†ZZ_{i}\subseteq Z, we have PZi​(a)≀PZ​(a)P_{Z_{i}}(a)\leq P_{Z}(a) for each i∈Ii\in I and so

PZ​(a)≀supi∈IPZi​(a).P_{Z}(a)\leq\mathop{\sup}\limits_{i\in I}P_{Z_{i}}(a).

Take Ξ±>supi∈IPZi​(a,Ο΅)\alpha>\mathop{\sup}\limits_{i\in I}P_{Z_{i}}(a,\epsilon). Then M​(Zi,a,Ξ±,Ο΅)=0M(Z_{i},a,\alpha,\epsilon)=0 for each ii. Hence given Ξ΄>0\delta>0 and T>0T>0, for each ii there exists Ξ“iβŠ†XΓ—[T,+∞)\Gamma_{i}\subseteq X\times[T,\,+\infty) covering ZiZ_{i} such that

βˆ‘(x,t)βˆˆΞ“iexp⁑(a​(x,t,Ξ΅)βˆ’Ξ±β€‹t)<Ξ΄2i.\sum\limits_{\left({x,t}\right)\in\Gamma_{i}}{\exp\left({a\left({x,t,\varepsilon}\right)-\alpha t}\right)}<\frac{\delta}{2^{i}}.

Then Ξ“βŠ†β‹ƒi∈IΞ“i\Gamma\subseteq\mathop{\bigcup}\limits_{i\in I}\Gamma_{i} covers ZZ and

βˆ‘(x,t)βˆˆΞ“exp⁑(a​(x,t,Ξ΅)βˆ’Ξ±β€‹t)β‰€βˆ‘i∈Iβˆ‘(x,t)βˆˆΞ“iexp⁑(a​(x,t,Ξ΅)βˆ’Ξ±β€‹t)β‰€βˆ‘i∈IΞ΄2i≀δ.\sum\limits_{\left({x,t}\right)\in\Gamma}{\exp\left({a\left({x,t,\varepsilon}\right)-\alpha t}\right)}\leq\sum\limits_{i\in I}\sum\limits_{\left({x,t}\right)\in\Gamma_{i}}{\exp\left({a\left({x,t,\varepsilon}\right)-\alpha t}\right)}\leq\sum\limits_{i\in I}\frac{\delta}{2^{i}}\leq\delta.

This gives M​(Z,a,Ξ±,Ο΅)≀δM(Z,a,\alpha,\epsilon)\leq\delta and then M​(Z,a,Ξ±,Ο΅)=0M(Z,a,\alpha,\epsilon)=0 since the arbitrariness of Ξ΄\delta. Therefore, Ξ±β‰₯PZ​(a,Ο΅)\alpha\geq P_{Z}(a,\epsilon) and letting Ξ±β†’supi∈IPZi​(a,Ο΅)\alpha\to\mathop{\sup}\limits_{i\in I}P_{Z_{i}}(a,\epsilon) gives

supi∈IPZi​(a,Ο΅)β‰₯PZ​(a,Ο΅).\mathop{\sup}\limits_{i\in I}P_{Z_{i}}(a,\epsilon)\geq P_{Z}(a,\epsilon).

Letting Ο΅β†’0\epsilon\to 0, we have that supi∈IPZi​(a)β‰₯PZ​(a)\mathop{\sup}\limits_{i\in I}P_{Z_{i}}(a)\geq P_{Z}(a). Hence

PZ​(a)=supi∈IPZi​(a).P_{Z}(a)=\mathop{\sup}\limits_{i\in I}P_{Z_{i}}(a).

∎

3 Variational principle

In this section, we will introduce the variatiional principle of above topological pressure.

Definition 3.1: A mapping Ξ»:ℳΦ​(X)β†’[βˆ’βˆž,+∞]\lambda:\,\mathcal{M}_{\Phi}(X)\to[-\infty,\,+\infty] is called Lyapunov exponent.
The corresponding set π’œβ€‹(Ξ»):={ΞΌβˆˆβ„³Ξ¦β€‹(X):hμ​(Ξ¦)​<βˆžβ€‹o​r​λ​(ΞΌ)>βˆ’βˆž}\mathcal{A}(\lambda):=\{\mu\in\mathcal{M}_{\Phi}(X):h_{\mu}(\Phi)<\infty\,or\,\lambda(\mu)>-\infty\} is called the set of all allowed Ξ¦\Phi-invariant measures with respected to Ξ»\lambda. This means that for measures ΞΌβˆˆπ’œβ€‹(Ξ»)\mu\in\mathcal{A}(\lambda) the quantity hμ​(Ξ¦)+λ​(ΞΌ)h_{\mu}(\Phi)+\lambda(\mu) is well-defined. Fix some ΞΌβˆˆβ„³Ξ¦β€‹(X)\mu\in\mathcal{M}_{\Phi}(X), a point x∈Xx\in X such that μ∈VΦ​(X)\mu\in V_{\Phi}(X) is called allowed point with respected to Ξ»,a\lambda,\,a and ΞΌ\mu if

lim supsβ†’βˆž1ts​ats​(x)≀λ​(ΞΌ)\mathop{\limsup}\limits_{s\to\infty}\frac{1}{t_{s}}a_{t_{s}}(x)\leq\lambda(\mu) (3.1)

for all sub-family (ts)s>0(t_{s})_{s>0} which satisfies Ξ΄x,tsβ†’ΞΌ\delta_{x,\,t_{s}}\to\mu as sβ†’βˆžs\to\infty. The set of all those points xx is denoted by A​(a,Ξ»,ΞΌ)A(a,\,\lambda,\,\mu). For a subset π’΄βŠ†β„³Ξ¦β€‹(X)\mathcal{Y}\subseteq\mathcal{M}_{\Phi}(X), denote in addition

A​(a,Ξ»,𝒴):=β‹ƒΞΌβˆˆπ’΄A​(a,Ξ»,ΞΌ)A(a,\,\lambda,\,\mathcal{Y}):=\mathop{\bigcup}\limits_{\mu\in\mathcal{Y}}A(a,\,\lambda,\,\mu)

and

V​(a,Ξ»,𝒴):=β‹‚ΞΌβˆˆπ’΄A​(a,Ξ»,ΞΌ).V(a,\,\lambda,\,\mathcal{Y}):=\mathop{\bigcap}\limits_{\mu\in\mathcal{Y}}A(a,\,\lambda,\,\mu).

Note that A​(a,Ξ»,ΞΌ)A(a,\,\lambda,\,\mu) can be empty in the case of ΞΌβˆ‰VΦ​(X)\mu\notin V_{\Phi}(X) for each x∈Xx\in X.

Proposition 3.2: Let f:Xβ†’[βˆ’βˆž,+∞]f:\,X\to[-\infty,\,+\infty] be upper semi-continuous, λ​(ΞΌ):=∫Xf​𝑑μ\lambda(\mu):=\int_{X}\,f\,d\mu and at:=∫0tfβˆ˜Ο†s​𝑑sa_{t}:=\int_{0}^{t}f\circ\varphi_{s}\,ds. Then one has

A​(a,Ξ»,𝒴)={x∈X:VΦ​(x)βˆ©π’΄β‰ βˆ…},A(a,\,\lambda,\,\mathcal{Y})=\{x\in X:V_{\Phi}(x)\cap\mathcal{Y}\neq\emptyset\},
V​(a,Ξ»,𝒴)={x∈X:π’΄βŠ†VΦ​(x)}.V(a,\,\lambda,\,\mathcal{Y})=\{x\in X:\mathcal{Y}\subseteq V_{\Phi}(x)\}.

That is both sets are independent of ff.

Proof.

Let x∈Xx\in X and μ∈VΦ​(x)βˆ©π’΄\mu\in V_{\Phi}(x)\cap\mathcal{Y}. If (ts)s>0(t_{s})_{s>0} is any sub-family such that limsβ†’βˆžΞ΄x,ts=ΞΌ\mathop{\lim}\limits_{s\to\infty}\delta_{x,t_{s}}=\mu. Then

lim supsβ†’βˆž1ts​ats​(x)=lim supsβ†’βˆž1tsβ€‹βˆ«0tsf​(Ο†s​(x))​𝑑s=lim supsβ†’βˆžβˆ«Xf​𝑑δx,tsβ‰€βˆ«xf​𝑑μ\mathop{\limsup}\limits_{s\to\infty}\frac{1}{t_{s}}a_{t_{s}}(x)=\mathop{\limsup}\limits_{s\to\infty}\frac{1}{t_{s}}\int_{0}^{t_{s}}f(\varphi_{s}(x))\,ds=\mathop{\limsup}\limits_{s\to\infty}\int_{X}f\,d\delta_{x,t_{s}}\leq\int_{x}f\,d\mu

as ff is upper semi-continuous (lemma A.2(d) in [20]). Thus x∈A​(a,Ξ»,ΞΌ)x\in A(a,\,\lambda,\,\mu) and {x∈X:VΦ​(x)βˆ©π’΄β‰ βˆ…}βŠ†A​(a,Ξ»,𝒴)\{x\in X:V_{\Phi}(x)\cap\mathcal{Y}\neq\emptyset\}\subseteq A(a,\,\lambda,\,\mathcal{Y}). If x∈A​(a,Ξ»,𝒴)x\in A(a,\,\lambda,\,\mathcal{Y}), then there exists a ΞΌβˆˆπ’΄\mu\in\mathcal{Y} such that x∈A​(a,Ξ»,ΞΌ)x\in A(a,\,\lambda,\,\mu). By definition this means VΦ​(x)βˆ©π’΄β‰ βˆ…V_{\Phi}(x)\cap\mathcal{Y}\neq\emptyset, and hence A​(a,Ξ»,𝒴)βŠ†{x∈X:VΦ​(x)βˆ©π’΄β‰ βˆ…}A(a,\,\lambda,\,\mathcal{Y})\subseteq\{x\in X:V_{\Phi}(x)\cap\mathcal{Y}\neq\emptyset\}. Let x∈V​(a,Ξ»,𝒴)x\in V(a,\,\lambda,\,\mathcal{Y}), then for every ΞΌβˆˆπ’΄\mu\in\mathcal{Y} and x∈A​(a,Ξ»,ΞΌ)x\in A(a,\,\lambda,\,\mu), μ∈VΦ​(x)\mu\in V_{\Phi}(x) and then π’΄βŠ†VΦ​(x)\mathcal{Y}\subseteq V_{\Phi}(x). We have V​(a,Ξ»,𝒴)βŠ†{x∈X:π’΄βŠ†VΦ​(x)}V(a,\,\lambda,\,\mathcal{Y})\subseteq\{x\in X:\mathcal{Y}\subseteq V_{\Phi}(x)\}. On the other hand, for x∈{x∈X:π’΄βŠ†VΦ​(x)}x\in\{x\in X:\mathcal{Y}\subseteq V_{\Phi}(x)\}, one has μ∈VΦ​(x)\mu\in V_{\Phi}(x) for every ΞΌβˆˆπ’΄\mu\in\mathcal{Y}. Then there exists a subsequence (tl)l>o(t_{l})_{l>o} such that limlβ†’βˆž1tl​δx,tl=ΞΌ\mathop{\lim}\limits_{l\to\infty}\frac{1}{t_{l}}\delta_{x,t_{l}}=\mu. Semilarly,

lim supsβ†’βˆž1ts​ats​(x)β‰€βˆ«xf​𝑑μ=λ​(ΞΌ).\mathop{\limsup}\limits_{s\to\infty}\frac{1}{t_{s}}a_{t_{s}}(x)\leq\int_{x}f\,d\mu=\lambda(\mu).

Hence x∈V​(a,Ξ»,ΞΌ)x\in V(a,\,\lambda,\,\mu) for every ΞΌβˆˆπ’΄\mu\in\mathcal{Y} and then x∈V​(a,Ξ»,𝒴)x\in V(a,\,\lambda,\,\mathcal{Y}), so V​(a,Ξ»,𝒴)βŠ†{x∈X:π’΄βŠ†VΦ​(x)}V(a,\,\lambda,\,\mathcal{Y})\subseteq\{x\in X:\mathcal{Y}\subseteq V_{\Phi}(x)\}. The statement for V​(a,Ξ»,𝒴)V(a,\,\lambda,\,\mathcal{Y}) holds. ∎

Let supβˆ…:βˆ’βˆž\sup\emptyset:-\infty, then for each π’΄βŠ†π’œβ€‹(Ξ»)\mathcal{Y}\subseteq\mathcal{A}(\lambda), the quantities

P𝒴​(Ξ»):=sup{hμ​(Ξ¦)+λ​(ΞΌ):ΞΌβˆˆπ’΄}P_{\mathcal{Y}}(\lambda):=\sup\{h_{\mu}(\Phi)+\lambda(\mu):\mu\in\mathcal{Y}\}

and

Q𝒴​(Ξ»):=inf{hμ​(Ξ¦)+λ​(ΞΌ):ΞΌβˆˆπ’΄}Q_{\mathcal{Y}}(\lambda):=\inf\{h_{\mu}(\Phi)+\lambda(\mu):\mu\in\mathcal{Y}\}

are well-defined and called upper variational pressure and lower variational pressure of Ξ»\lambda over 𝒴\mathcal{Y} respectively.

Theorem 3.3: Let Ξ»\lambda be a Lyapunov exponent. If π’΄βŠ†π’œβ€‹(Ξ»)\mathcal{Y}\subseteq\mathcal{A}(\lambda), then one has

PA​(a,Ξ»,𝒴)​(a)≀sup{hμ​(Ξ¦)+λ​(ΞΌ):ΞΌβˆˆπ’΄},P_{A(a,\,\lambda,\,\mathcal{Y})}(a)\leq\sup\{h_{\mu}(\Phi)+\lambda(\mu):\mu\in\mathcal{Y}\}, (3.2)
PV​(Ξ»,Ξ»,𝒴)​(a)≀inf{hμ​(Ξ¦)+λ​(ΞΌ):ΞΌβˆˆπ’΄}.P_{V(\lambda,\,\lambda,\,\mathcal{Y})}(a)\leq\inf\{h_{\mu}(\Phi)+\lambda(\mu):\mu\in\mathcal{Y}\}. (3.3)
Proof.

In case the P𝒴​(Ξ»)=∞P_{\mathcal{Y}}(\lambda)=\infty we are done, now we assume P𝒴​(Ξ»)<∞P_{\mathcal{Y}}(\lambda)<\infty. This implies 0≀hμ​(Ξ¦)<∞0\leq h_{\mu}(\Phi)<\infty and λ​(ΞΌ)<∞\lambda(\mu)<\infty for each ΞΌβˆˆπ’΄\mu\in\mathcal{Y}. Thus we can divide 𝒴\mathcal{Y} into two parts:

π’΄βˆ’βˆž:={ΞΌβˆˆπ’΄:Ξ»=βˆ’βˆž}\mathcal{Y}_{-\infty}:=\{\mu\in\mathcal{Y}:\lambda=-\infty\}

and

𝒴′:={ΞΌβˆˆπ’΄:Ξ»>βˆ’βˆž}.\mathcal{Y}^{{}^{\prime}}:=\{\mu\in\mathcal{Y}:\lambda>-\infty\}.

As a result we obtain by lemma 2.6 and A​(a,Ξ»,𝒴)=A​(a,Ξ»,π’΄βˆ’βˆž)βˆͺA​(a,Ξ»,𝒴′)A(a,\,\lambda,\,\mathcal{Y})=A(a,\,\lambda,\,\mathcal{Y}_{-\infty})\,\cup\,A(a,\,\lambda,\,\mathcal{Y}^{{}^{\prime}})

PA​(a,Ξ»,𝒴)​(a)=max⁑{PA​(a,Ξ»,π’΄βˆ’βˆž)​(a),PA​(a,Ξ»,𝒴′)​(a)}.P_{A(a,\,\lambda,\,\mathcal{Y})}(a)\,=\,\max\{P_{A(a,\,\lambda,\,\mathcal{Y}_{-\infty})}(a),\,P_{A(a,\,\lambda,\,\mathcal{Y}^{{}^{\prime}})}(a)\}. (3.4)

Now suppose we have already shown (3.2)(3.2) for each β„±βŠ†π’œβ€‹(Ξ»)\mathcal{F}\subseteq\mathcal{A}(\lambda) such that βˆ’βˆž<λ​(ΞΌ)<∞-\infty<\lambda(\mu)<\infty for all ΞΌβˆˆβ„±\mu\in\mathcal{F}. Define a sequence of Lyapunov exponents Ξ»N​(ΞΌ):=βˆ’hμ​(Ξ¦)βˆ’N\lambda_{N}(\mu):=-h_{\mu}(\Phi)-N for Nβˆˆβ„•N\in\mathbb{N} and ΞΌβˆˆβ„³Ξ¦β€‹(X)\mu\in\mathcal{M}_{\Phi}(X). As the entropies are finite for all ΞΌβˆˆπ’΄βˆ’βˆž\mu\in\mathcal{Y}_{-\infty}, one has βˆ’βˆž<Ξ»N​(ΞΌ)<∞-\infty<\lambda_{N}(\mu)<\infty for all ΞΌβˆˆπ’΄βˆ’βˆž\mu\in\mathcal{Y}_{-\infty} and Nβˆˆβ„•N\in\mathbb{N}. In addition

A​(a,Ξ»,π’΄βˆ’βˆž)βŠ†A​(a,Ξ»N,π’΄βˆ’βˆž)A(a,\,\lambda,\,\mathcal{Y}_{-\infty})\subseteq A(a,\,\lambda_{N},\,\mathcal{Y}_{-\infty})

holds for each Nβˆˆβ„•N\in\mathbb{N}. Thus by using lemma 2.5 and (3.2)(3.2) we obtain

PA​(a,Ξ»,π’΄βˆ’βˆž)​(a)\displaystyle P_{A(a,\,\lambda,\,\mathcal{Y}_{-\infty})}(a) ≀PA​(a,Ξ»N,π’΄βˆ’βˆž)​(a)≀Pπ’΄βˆ’βˆžβ€‹(Ξ»N)\displaystyle\leq P_{A(a,\,\lambda_{N},\,\mathcal{Y}_{-\infty})}(a)\leq P_{\mathcal{Y}_{-\infty}}(\lambda_{N})
=sup{hμ​(Ξ¦)βˆ’hμ​(Ξ¦)βˆ’N:ΞΌβˆˆπ’΄βˆ’βˆž}\displaystyle=\sup\{h_{\mu}(\Phi)-h_{\mu}(\Phi)-N:\mu\in\mathcal{Y}_{-\infty}\}
β‰€βˆ’N.\displaystyle\leq-N.

Note that if π’΄βˆ’βˆž=βˆ…\mathcal{Y}_{-\infty}=\emptyset, we already have

PA​(a,Ξ»,π’΄βˆ’βˆž)​(a)=Pπ’΄βˆ’βˆžβ€‹(Ξ»N)=βˆ’βˆž.P_{A(a,\,\lambda,\,\mathcal{Y}_{-\infty})}(a)=P_{\mathcal{Y}_{-\infty}}(\lambda_{N})=-\infty.

otherwise letting Nβ†’βˆžN\to\infty yields

PA​(a,Ξ»,π’΄βˆ’βˆž)​(a)=βˆ’βˆž.P_{A(a,\,\lambda,\,\mathcal{Y}_{-\infty})}(a)=-\infty.

And by (3.4)(3.4) we end at

PA​(a,Ξ»,𝒴)​(a)=PA​(a,Ξ»,𝒴′)​(a)≀P𝒴′​(Ξ»)≀P𝒴​(Ξ»).P_{A(a,\,\lambda,\,\mathcal{Y})}(a)=P_{A(a,\,\lambda,\,\mathcal{Y}^{{}^{\prime}})}(a)\leq P_{\mathcal{Y}^{{}^{\prime}}}(\lambda)\leq P_{\mathcal{Y}}(\lambda).

Hence it remains to show (3.2)(3.2) for all subsets π’΄βŠ†π’œβ€‹(Ξ»)\mathcal{Y}\subseteq\mathcal{A}(\lambda) satisfying hμ​(Ξ¦)<∞h_{\mu}(\Phi)<\infty and βˆ’βˆž<λ​(ΞΌ)<∞-\infty<\lambda(\mu)<\infty for all ΞΌβˆˆπ’΄\mu\in\mathcal{Y}. Now pick such a set 𝒴\mathcal{Y} and suppose P𝒴​(Ξ»)=βˆ’βˆžP_{\mathcal{Y}}(\lambda)=-\infty. This implies 𝒴=βˆ…\mathcal{Y}=\emptyset; Otherwise a measure ΞΌβˆˆπ’΄\mu\in\mathcal{Y} exists such that P𝒴​(Ξ»)β‰ hμ​(Ξ¦)+λ​(ΞΌ)>βˆ’βˆžP_{\mathcal{Y}}(\lambda)\neq h_{\mu}(\Phi)+\lambda(\mu)>-\infty, which is a contradiction. This means A​(a,Ξ»,𝒴)=βˆ…A(a,\,\lambda,\,\mathcal{Y})=\emptyset. Thus PA​(a,Ξ»,𝒴)​(a)=P𝒴​(Ξ»)=βˆ’βˆžP_{A(a,\,\lambda,\,\mathcal{Y})}(a)=P_{\mathcal{Y}}(\lambda)=-\infty. Therefore, without restriction we may assume

βˆ’βˆž<P𝒴​(Ξ»)<∞.-\infty<P_{\mathcal{Y}}(\lambda)<\infty. (3.5)

To proceed we need some technical lemmas.

Lemma 3.4: Let EE be a finite set, given qβˆˆβ„•q\in\mathbb{N} and Ξ±=(a1,a2,…​aq)∈Eq\alpha=(a_{1},\,a_{2},\,...\,a_{q})\in E^{q}. Define the probability measure Ξ½Ξ±\nu_{\alpha} as

να​(e)=1q​#​{jβˆˆβ„•:aj=e}\nu_{\alpha}(e)=\frac{1}{q}\#\{j\in\mathbb{N}:a_{j}=e\}

for every e∈Ee\in E, and set the entropy of α\alpha to

H​(Ξ±):=βˆ’βˆ‘e∈Eνα​(e)​log⁑να​(e).H(\alpha):=-\mathop{\sum}\limits_{e\in E}\nu_{\alpha}(e)\log\nu_{\alpha}(e).

Then for h≠0h\neq 0, one has

lim supqβ†’βˆž1q​log⁑#​{α∈Eq:H​(Ξ±)≀h}≀h.\mathop{\limsup}\limits_{q\to\infty}\frac{1}{q}\log\#\{\alpha\in E^{q}:H(\alpha)\leq h\}\leq h.

For a proof of this lemma, see lemma 2.16 in [6]

Lemma 3.5: Let x∈Xx\in X, and μ∈VΦ​(X)\mu\in V_{\Phi}(X) such that xx is allowed with respected to Ξ»,a\lambda,\,a, and ΞΌ\mu. Let Ξ΄>0\delta>0 and Ξ“βŠ†XΓ—{1}\Gamma\subseteq X\times\{1\} be a finite cover of XX. For the open cover 𝒱={V1,V2,…​Vr}\mathcal{V}=\{V_{1},\,V_{2},\,...V_{r}\} of XX, where Vj=B1​(xj,Ο΅2)V_{j}=B_{1}(x_{j},\frac{\epsilon}{2}) with (xj,1)βˆˆΞ“(x_{j},1)\in\Gamma, there exists m,pβˆˆβ„•m,\,p\in\mathbb{N} with pp arbitrary large, and a sequence U=Vi1​Vi2​…​VipU=V_{i_{1}}V_{i_{2}}...V_{i_{p}} such that
(a)(a): x∈∩r=1pΟ†βˆ’r+1​(Vir)x\in\cap_{r=1}^{p}\varphi_{-r+1}(V_{i_{r}}).
(b)(b): There exists a subset V∈(Ξ½m)kV\in(\nu^{m})^{k} of UU of length k​mβ‰₯pβˆ’mkm\geq p-m satisfying inequality

H​(V)≀m​(hμ​(Ξ¦)+Ξ΄).H(V)\leq m(h_{\mu}(\Phi)+\delta).

(c)(c): ap​(x)≀p​(λ​(ΞΌ)+3​δ)a_{p}(x)\leq p(\lambda(\mu)+3\delta).

Proof.

(a)(a) and (b)(b) are the statements of [4]. The statement (c)(c) can be proven like lemma 4.7 (3)(3) in [20], one can constructs an increasing sub-family (tjβ€²)jβˆˆβ„(t_{j}^{\prime})_{j\in\mathbb{R}} and corresponding vectors {Vij}j=1p\{V_{i_{j}}\}_{j=1}^{p} such that conditions (a)(a) and (b)(b) are satisfied, and Ξ΄x,tjβ€²β†’ΞΌ\delta_{x,t_{j}^{\prime}}\to\mu as jβ†’βˆžj\to\infty. Then by (3.1)(3.1) one has

lim supjβ†’βˆž1tj′​atj′​(x)≀λ​(ΞΌ).\mathop{\limsup}\limits_{j\to\infty}\frac{1}{t_{j}^{\prime}}a_{t_{j}^{\prime}}(x)\leq\lambda(\mu).

Thus there is an j0β‰₯0j_{0}\geq 0 such that atj′​(x)≀tj′​(λ​(ΞΌ)+Ξ΄)a_{t_{j}^{\prime}}(x)\leq t_{j}^{\prime}(\lambda(\mu)+\delta) for all j≀j0j\leq j_{0}. Hence for each jβ‰₯0j\geq 0 the number p:=[tj+j0β€²]+1p:=[t_{j+j_{0}}^{\prime}]+1 together with vij+j0v_{i_{j+j_{0}}} satisfies all the three conditions. ∎

Continuing the proof. The first goal is to cover A​(a,Ξ»,𝒴)A(a,\,\lambda,\,\mathcal{Y}) with countable many suitable subsets. we fix Ξ΄>0\delta>0 and a finite open cover 𝒰\mathcal{U} of XX such as lemma 3.5. In addition fix for each x∈A​(a,Ξ»,𝒴)x\in A(a,\,\lambda,\,\mathcal{Y}) a measure ΞΌxβˆˆπ’΄\mu_{x}\in\mathcal{Y} such that x∈A​(a,Ξ»,ΞΌx)x\in A(a,\,\lambda,\,\mu_{x}). Choose some u1,u2,β€¦βˆˆβ„u_{1},\,u_{2},\,...\in\mathbb{R} such that for every zβˆˆβ„z\in\mathbb{R} there exists a uiu_{i} satisfying |uiβˆ’z|<Ξ΄|u_{i}-z|<\delta. Now denote for m,iβ‰₯1m,\,i\,\geq 1 by Zm,iZ_{m,i} the set of points x∈A​(a,Ξ»,𝒴)x\in A(a,\,\lambda,\,\mathcal{Y}), which meet the following criteria:
βˆ™\bullet the measure ΞΌx\mu_{x} fulfills λ​(ΞΌx)∈[uiβˆ’Ξ΄,ui+Ξ΄]\lambda(\mu_{x})\in[u_{i}-\delta,\,u_{i}+\delta].
βˆ™\bullet All three properties in lemma 4.5 are satisfied by ux,Ξ΄,𝒰u_{x},\,\delta,\,\mathcal{U} and mm.
As {ui}iβˆˆβ„•\{u_{i}\}_{i\in\mathbb{N}} is Ξ΄βˆ’\delta-dense in ℝ\mathbb{R} and by (3.5)(3.5) one has λ​(ΞΌx)βˆˆβ„\lambda(\mu_{x})\in\mathbb{R}, lemma 3.5 ensures for every x∈A​(a,Ξ»,𝒴)x\in A(a,\,\lambda,\,\mathcal{Y}) the existence of some corresponding m,iβˆˆβ„•m,\,i\in\mathbb{N}. Hence we obtain

A​(a,Ξ»,𝒴)=⋃mβˆˆβ„•β‹ƒiβˆˆβ„•Zm,i.A(a,\,\lambda,\,\mathcal{Y})=\mathop{\bigcup}\limits_{m\in\mathbb{N}}\mathop{\bigcup}\limits_{i\in\mathbb{N}}Z_{m,i}.

For simplicity we may assume that all Zm,iZ_{m,i} are nonempty, else they can be called out of the union.

Now fix Zm,iβ‰ βˆ…Z_{m,i}\neq\emptyset and denote for each qβ‰₯1q\geq 1

Rq:={V∈(𝒰m)q:H​(V)≀m​(P𝒴​(Ξ»)βˆ’ui+2​δ)}R_{q}:=\{V\in(\mathcal{U}^{m})^{q}:H(V)\leq m(P_{\mathcal{Y}}(\lambda)-u_{i}+2\delta)\} (3.6)

Pick some x∈Zm,ix\in Z_{m,i}, then by lemma 4.5 one can finds arbitrary large Nβ‰₯1N\geq 1 and corresponding q≀Nm,Uβˆˆπ’°N,V∈(𝒰m)qq\leq\frac{N}{m},\,U\in\mathcal{U}^{N},\,V\in(\mathcal{U}^{m})^{q} satisfying

0≀1m​H​(V)≀hΞΌx​(Ξ¦)+δ≀hΞΌx​(Ξ¦)+λ​(ΞΌx)βˆ’ui+2​δ≀P𝒴​(Ξ»)βˆ’ui+2​δ.0\leq\frac{1}{m}H(V)\leq h_{\mu_{x}}(\Phi)+\delta\leq h_{\mu_{x}}(\Phi)+\lambda(\mu_{x})-u_{i}+2\delta\leq P_{\mathcal{Y}}(\lambda)-u_{i}+2\delta.

This means V∈RqV\in R_{q} and especially

0≀m​(P𝒴​(Ξ»)βˆ’ui+2​δ)0\leq m(P_{\mathcal{Y}}(\lambda)-u_{i}+2\delta) (3.7)

Applying lemma 3.4 to (3.6)(3.6) and (3.7)(3.7), there exists a q0βˆˆβ„•q_{0}\in\mathbb{N} such that

1q​log⁑(#​Rq)≀m​(P𝒴​(Ξ»)βˆ’ui+3​δ)\frac{1}{q}\log(\#R_{q})\leq m(P_{\mathcal{Y}}(\lambda)-u_{i}+3\delta)

for all qβ‰₯q0q\geq q_{0}. Fix Nβ‰₯N0:=q0​mN\geq N_{0}:=q_{0}m, count all vectors UU which can appear in the above situation for any x∈Zm,ix\in Z_{m,i}, and denote that number by bNb_{N}, namely,

bN=#​⋃x∈Zm,i{Uβˆˆπ’°N:U​s​a​t​i​s​f​i​e​s​(a)​(b)​a​n​d​(c)}.b_{N}=\#\mathop{\bigcup}\limits_{x\in Z_{m,i}}\{U\in\mathcal{U}^{N}:U\,satisfies\,(a)\,(b)\,and\,(c)\}.

Hence, as qβ‰₯q0q\geq q_{0}:

bN≀(#​𝒰)m​(#​Rq)≀(#​𝒰)m​exp⁑(q​m​(P𝒴​(Ξ»)βˆ’ui+3​δ)).b_{N}\leq(\#\,\mathcal{U})^{m}(\#\,R_{q})\leq(\#\,\mathcal{U})^{m}\exp(qm(P_{\mathcal{Y}}(\lambda)-u_{i}+3\delta)).

This means, as N=q​m+rN=qm+r for some corresponding 0≀r≀m0\leq r\leq m,

lim supNβ†’βˆž1N​log⁑bN≀lim supNβ†’βˆž(m​log⁑(#​𝒰)+q​m​(P𝒴​(Ξ»)βˆ’ui+3​δ))≀P𝒴​(Ξ»)βˆ’ui+3​δ.\mathop{\limsup}\limits_{N\to\infty}\frac{1}{N}\log\,b_{N}\leq\mathop{\limsup}\limits_{N\to\infty}(m\,\log(\#\,\mathcal{U})+qm(P_{\mathcal{Y}}(\lambda)-u_{i}+3\delta))\leq P_{\mathcal{Y}}(\lambda)-u_{i}+3\delta.

As a result there exists some N1β‰₯N0N_{1}\geq N_{0} such that

bN≀exp⁑(N​(P𝒴​(Ξ»)βˆ’ui+4​δ))b_{N}\leq\exp(N(P_{\mathcal{Y}}(\lambda)-u_{i}+4\delta)) (3.8)

for all Nβ‰₯N1N\geq N_{1}.

For each lβ‰₯N1l\geq N_{1} we define the collection Ξ“l\Gamma_{l} containing all Uβˆˆβ‹ƒNβ‰₯l𝒰NU\in\mathop{\bigcup}\limits_{N\geq l}\mathcal{U}^{N} which satisfying the properties of lemma 3.5 for some x∈Zm,ix\in Z_{m,i}. This is a cover of Zm,iZ_{m,i}, denote as Ξ“lβ€²\Gamma_{l}^{{}^{\prime}}. Note that by lemma 3.5 for each UβˆˆΞ“lU\in\Gamma_{l} one has

aN′​(x)≀N′​(ui+3​δ)a_{N^{{}^{\prime}}}(x)\leq N^{{}^{\prime}}(u_{i}+3\delta) (3.9)

where Nβ€²=m​(U)N^{{}^{\prime}}=m(U) and m​(U)m(U) is the number of elements in UU. Hence we can estimate for Ξ±βˆˆβ„\alpha\in\mathbb{R} and lβ‰₯N1l\geq N_{1}:

M​(Zm,i,a,Ξ±,Ξ΄,l)\displaystyle M(Z_{m,i},\,a,\,\alpha,\,\delta,\,l) β‰€βˆ‘(x,t)βˆˆΞ“lβ€²exp⁑(βˆ’Ξ±β€‹t+t​(ui+3​δ))\displaystyle\leq\sum_{(x,t)\in\Gamma_{l}^{\prime}}\exp(-\alpha t+t(u_{i}+3\delta))
β‰€βˆ‘N=l∞bN​exp⁑(βˆ’Ξ±β€‹N+N​(ui+3​δ))\displaystyle\leq\mathop{\sum}\limits_{N={l}}^{\infty}b_{N}\exp(-\alpha N+N(u_{i}+3\delta))
β‰€βˆ‘N=l∞(exp⁑(βˆ’Ξ±+P𝒴​(Ξ»)+7​δ))N\displaystyle\leq\sum\limits_{N={l}}^{\infty}(\exp(-\alpha+P_{\mathcal{Y}}(\lambda)+7\delta))^{N}

Here the last step we used the estimate (4.8)(4.8). Now for every Ξ±>P𝒴​(Ξ»)+7​δ\alpha>P_{\mathcal{Y}}(\lambda)+7\delta, we obtain

Ξ²:=exp⁑(βˆ’Ξ±+P𝒴​(Ξ»)+7​δ)<1\beta:=\exp(-\alpha+P_{\mathcal{Y}}(\lambda)+7\delta)<1

and hence

M​(Zm,i,a,Ξ±,Ξ΄)≀lim suplβ†’βˆžβˆ‘N=l∞βN=0.M(Z_{m,i},\,a,\,\alpha,\,\delta)\leq\mathop{\limsup}\limits_{l\to\infty}\sum\limits_{N={l}}^{\infty}\beta^{N}=0.

This means PZm,i​(a,Ξ΄)≀P𝒴​(Ξ»)+7​δP_{Z_{m,i}}(a,\delta)\leq P_{\mathcal{Y}}(\lambda)+7\delta for fixed Zm,iZ_{m,i}. To finish the proof we take the supreme for over all m,im,\,i and apply that A​(a,Ξ»,𝒴)=⋃mβˆˆβ„•β‹ƒiβˆˆβ„•Zm,iA(a,\,\lambda,\,\mathcal{Y})=\mathop{\bigcup}\limits_{m\in\mathbb{N}}\mathop{\bigcup}\limits_{i\in\mathbb{N}}Z_{m,i} together with lemma 3.5:

PA​(a,Ξ»,𝒴)​(a,Ξ΄)=supm,iPZm,i​(a,Ξ΄)≀P𝒴​(Ξ»)+7​δ.P_{A(a,\,\lambda,\,\mathcal{Y})}(a,\delta)=\mathop{\sup}\limits_{m,i}P_{Z_{m,i}}(a,\delta)\leq P_{\mathcal{Y}}(\lambda)+7\delta.

Finally Letting Ξ΄β†’0\delta\to 0 results PA​(a,Ξ»,𝒴)​(a)≀P𝒴​(Ξ»)P_{A(a,\,\lambda,\,\mathcal{Y})}(a)\leq P_{\mathcal{Y}}(\lambda)
For the second statement, fix ΞΌβˆˆπ’΄\mu\in\mathcal{Y}. As V​(a,Ξ»,𝒴)βŠ†A​(a,Ξ»,ΞΌ)V(a,\,\lambda,\,\mathcal{Y})\subseteq A(a,\,\lambda,\,\mu), one has by lemma 3.4 and (3.2)(3.2)

PV​(a,Ξ»,𝒴)​(a)≀PA​(a,Ξ»,𝒴)​(a)≀hμ​(Ξ¦)+λ​(ΞΌ).P_{V(a,\,\lambda,\,\mathcal{Y})}(a)\leq P_{A(a,\,\lambda,\,\mathcal{Y})}(a)\leq h_{\mu}(\Phi)+\lambda(\mu).

Taking the infimum over all ΞΌβˆˆπ’΄\mu\in\mathcal{Y}, yields the result. ∎

Theorem 3.6: Let (X,Ξ¦)(X,\Phi) be a compact metric space without fixed points. Fix ΞΌβˆˆβ„°Ξ¦β€‹(X)\mu\in\mathcal{\mathcal{E}}_{\Phi}(X) and let (at)t>0(a_{t})_{t>0} be a Borel measurable potential on (X,Ξ¦)(X,\Phi). Suppose there exists a constant b∈[βˆ’βˆž,+∞]b\in[-\infty,+\infty] and a Borel set BβŠ†XB\subseteq X satisfying μ​(B)>0\mu(B)>0, such that

lim inftβ†’βˆž1t​at​(x)≀b\mathop{\liminf}\limits_{t\to\infty}\frac{1}{t}a_{t}(x)\leq b (3.10)

for each x∈Bx\in B. Then if hμ​(Ξ¦)+bh_{\mu}(\Phi)+b is well-defined, one has

PB​(a)β‰₯hμ​(Ξ¦)+b.P_{B}(a)\geq h_{\mu}(\Phi)+b.
Proof.

we need following lemma.

Lemma 3.7[22]: Let (X,Ξ¦)(X,\Phi) be a compact metric space without fixed points. For any ΞΌβˆˆβ„°Ξ¦β€‹(X)\mu\in\mathcal{\mathcal{E}}_{\Phi}(X) and define hμ​(x,Ο΅,t):=βˆ’1t​log⁑μ​(Bt​(x,Ο΅))h_{\mu}(x,\,\epsilon,\,t):=-\frac{1}{t}\log\mu(B_{t}(x,\epsilon)). Then one has

limΟ΅β†’olim inftβ†’βˆžhμ​(x,Ο΅,t)=l​i​mΟ΅β†’olim suptβ†’βˆžhμ​(x,Ο΅,t)=hμ​(Ξ¦)\mathop{\lim}\limits_{\epsilon\to o}\mathop{\liminf}\limits_{t\to\infty}h_{\mu}(x,\,\epsilon,\,t)=\mathop{lim}\limits_{\epsilon\to o}\mathop{\limsup}\limits_{t\to\infty}h_{\mu}(x,\,\epsilon,\,t)=h_{\mu}(\Phi) (3.11)

for ΞΌβˆ’\mu-almost x∈Xx\in X.
Let GβŠ†BG\subseteq B such that (3.11)(3.11) holds for each x∈Gx\in G. Note that μ​(G)>0\mu(G)>0. Assume first hμ​(Ξ¦)+bh_{\mu}(\Phi)+b is finite. Let Ο΅>Ο΅β€²>0\epsilon>\epsilon^{\prime}>0 and Ξ΄>0\delta>0. Define the Borel sets

GΞ΄,Ο΅:={x∈G:lim inftβ†’βˆžhμ​(x,Ο΅,t)>hμ​(Ξ¦)βˆ’Ξ΄}.G^{\delta,\epsilon}:=\{x\in G:\mathop{\liminf}\limits_{t\to\infty}h_{\mu}(x,\,\epsilon,\,t)>h_{\mu}(\Phi)-\delta\}.

then GΞ΄,Ο΅βŠ†GΞ΄,Ο΅β€²G^{\delta,\epsilon}\subseteq G^{\delta,\epsilon^{\prime}} and G=βˆͺΟ΅>0GΞ΄,Ο΅G=\mathop{\cup}\limits_{\epsilon>0}G^{\delta,\epsilon}, hence: 0<μ​(G)=limmβ†’βˆžΞΌβ€‹(GΞ΄,1m)0<\mu(G)=\mathop{\lim}\limits_{m\to\infty}\mu(G^{\delta,\frac{1}{m}}). This shows that there is an ϡδ>0\epsilon_{\delta}>0 such that 0<ΞΌ(GΞ΄,ϡδ≀μ(GΞ΄,Ο΅)0<\mu(G^{\delta,\epsilon_{\delta}}\leq\mu(G^{\delta,\epsilon}) for all 0<ϡ≀ϡδ0<\epsilon\leq\epsilon_{\delta}.For each x∈GΞ΄,ϡδx\in G^{\delta,\epsilon_{\delta}} there exists a minimal T​(Ξ΄,x)βˆˆβ„+T(\delta,x)\in\mathbb{R}^{+} such that:

exp⁑(βˆ’t​(hμ​(Ξ¦)βˆ’Ξ΄))β‰₯μ​(Bt​(x,ϡδ)),\exp(-t(h_{\mu}(\Phi)-\delta))\geq\mu(B_{t}(x,\epsilon_{\delta})), (3.12)
1t​at​(x)β‰₯bβˆ’Ξ΄.\frac{1}{t}a_{t}(x)\geq b-\delta. (3.13)

for all tβ‰₯T​(Ξ΄,x)t\geq T(\delta,x). Define for each T>0T>0 the Borel sets:

GΞ΄,ϡδ,T:={x∈GΞ΄,ϡδ:x​s​a​t​i​s​f​i​e​s​(3.12)​a​n​d​(3.13)​f​o​r​a​l​l​tβ‰₯T}.G^{\delta,\epsilon_{\delta},T}:=\{x\in G^{\delta,\epsilon_{\delta}}:x\,\,satisfies\,\,(3.12)\,\,and\,\,(3.13)\,\,for\,\,all\,\,t\geq T\}.

There exists an M​(Ξ΄)βˆˆβ„+M(\delta)\in\mathbb{R}^{+} such that 0<μ​(GΞ΄,ϡδ,M​(Ξ΄))≀μ​(GΞ΄,ϡδ,M)0<\mu(G^{\delta,\epsilon_{\delta},M(\delta)})\leq\mu(G^{\delta,\epsilon_{\delta},M}) for all Mβ‰₯M​(Ξ΄)M\geq M(\delta). Now define AΞ΄:=GΞ΄,ϡδ,M​(Ξ΄)A_{\delta}:=G^{\delta,\epsilon_{\delta},M(\delta)}. If Ξ“={(xl,tl)}l∈L\Gamma=\{(x_{l},t_{l})\}_{l\in L} is an cover of AΞ΄A_{\delta} such that tlβ‰₯Mt_{l}\geq M, then Ξ“βˆ—:={(xl,tl)}l∈Lβ€²\Gamma^{*}:=\{(x_{l},t_{l})\}_{l\in L^{\prime}} is also an cover of AΞ΄A_{\delta}, where Lβ€²:={l∈L:Btl​(xl,Ο΅)∩AΞ΄β‰ βˆ…}L^{\prime}:=\{l\in L:B_{t_{l}}(x_{l},\epsilon)\cap A_{\delta}\neq\emptyset\}, and Btl​(xl,Ο΅)∩AΞ΄βŠ†Btl​(xl,Ο΅)B_{t_{l}}(x_{l},\epsilon)\cap A_{\delta}\subseteq B_{t_{l}}(x_{l},\epsilon). Fix 0<Ο΅<ϡδ20<\epsilon<\frac{\epsilon_{\delta}}{2} and Mβ‰₯M​(Ξ΄)M\geq M(\delta). Fix yl∈Btl​(xl,Ο΅)∩AΞ΄y_{l}\in B_{t_{l}}(x_{l},\epsilon)\cap A_{\delta} and let x∈Btl​(xl,Ο΅)∩AΞ΄x\in B_{t_{l}}(x_{l},\epsilon)\cap A_{\delta}. Then d​(Ο†t​(yl),Ο†t​(x))≀d​(Ο†t​(yl),Ο†t​(xl))+d​(Ο†t​(xl),Ο†t​(x))≀2​ϡ<ϡδd(\varphi_{t}(y_{l}),\varphi_{t}(x))\leq d(\varphi_{t}(y_{l}),\varphi_{t}(x_{l}))+d(\varphi_{t}(x_{l}),\varphi_{t}(x))\leq 2\epsilon<\epsilon_{\delta} for all 0≀t≀tl0\leq t\leq t_{l}. Thus Btl​(xl,Ο΅)∩AΞ΄βŠ†Btl​(yl,ϡδ)B_{t_{l}}(x_{l},\epsilon)\cap A_{\delta}\subseteq B_{t_{l}}(y_{l},\epsilon_{\delta}) for all l∈Lβ€²l\in L^{\prime}. Hence, as yl∈AΞ΄y_{l}\in A_{\delta} for all l∈Lβ€²l\in L^{\prime}

exp⁑(βˆ’tl​(hμ​(Ξ¦)βˆ’Ξ΄))β‰₯μ​(Btl​(xl,Ο΅)∩AΞ΄).\exp(-t_{l}(h_{\mu}(\Phi)-\delta))\geq\mu(B_{t_{l}}(x_{l},\epsilon)\cap A_{\delta}). (3.14)

In addition,one has by (3.13)(3.13)

atl​(Btl​(xl,Ο΅)∩AΞ΄)=supx∈Btl​(xl,Ο΅)∩AΞ΄atl​(x)β‰₯tl​(bβˆ’Ξ΄).a_{t_{l}}(B_{t_{l}}(x_{l},\epsilon)\cap A_{\delta})=\mathop{\sup}\limits_{x\in B_{t_{l}}(x_{l},\epsilon)\cap A_{\delta}}a_{t_{l}}(x)\geq t_{l}(b-\delta). (3.15)

Hence,setting Ξ±Ξ΄:=hμ​(Ξ¦)+bβˆ’2​δ\alpha_{\delta}:=h_{\mu}(\Phi)+b-2\delta, one has using (3.14)(3.14) and (3.15)(3.15)

exp⁑(βˆ’tl​αδ+atl​(Btl​(xl,Ο΅)∩AΞ΄))β‰₯μ​(Btl​(xl,Ο΅)∩AΞ΄)\exp(-t_{l}\alpha_{\delta}+a_{t_{l}}(B_{t_{l}}(x_{l},\epsilon)\cap A_{\delta}))\geq\mu(B_{t_{l}}(x_{l},\epsilon)\cap A_{\delta})

for all l∈Lβ€²l\in L^{\prime}. Thus, for each cover Ξ“={(xl,tl)}l∈L\Gamma=\{(x_{l},t_{l})\}_{l\in L} of AΞ΄A_{\delta} that ylβ‰₯My_{l}\geq M, where 0<Ξ΄<ϡδ20<\delta<\frac{\epsilon_{\delta}}{2} and Mβ‰₯M​(Ξ΄)M\geq M(\delta). There is the estimate

βˆ‘(x,t)βˆˆΞ“exp(βˆ’Ξ±Ξ΄t+at(Bt(x,Ο΅)∩AΞ΄)\displaystyle\mathop{\sum}\limits_{(x,t)\in\Gamma}\exp(-\alpha_{\delta}t+a_{t}(B_{t}(x,\epsilon)\cap A_{\delta}) β‰₯βˆ‘(x,t)βˆˆΞ“βˆ—exp(βˆ’Ξ±Ξ΄t+at(Bt(x,Ο΅)∩AΞ΄)\displaystyle\geq\mathop{\sum}\limits_{(x,t)\in\Gamma^{*}}\exp(-\alpha_{\delta}t+a_{t}(B_{t}(x,\epsilon)\cap A_{\delta})
β‰₯βˆ‘l∈L′μ​(Btl​(xl,Ο΅)∩AΞ΄)\displaystyle\geq\mathop{\sum}\limits_{l\in L^{\prime}}\mu(B_{t_{l}}(x_{l},\epsilon)\cap A_{\delta})
β‰₯μ​(βˆͺl∈Lβ€²Btl​(xl,Ο΅)∩AΞ΄)\displaystyle\geq\mu(\mathop{\cup}\limits_{l\in L^{\prime}}B_{t_{l}}(x_{l},\epsilon)\cap A_{\delta})
=μ​(AΞ΄).\displaystyle=\mu(A_{\delta}).

This shows M​(AΞ΄,a,Ο΅,Ξ±Ξ΄)β‰₯μ​(AΞ΄)>0M(A_{\delta},\,a,\,\epsilon,\,\alpha_{\delta})\geq\mu(A_{\delta})>0, and hence by lemma 2.5 and lemma 2.3

PB​(a,Ο΅)β‰₯PAδ​(a,Ο΅)β‰₯Ξ±Ξ΄=hμ​(Ξ¦)+bβˆ’2​δP_{B}(a,\epsilon)\geq P_{A_{\delta}}(a,\epsilon)\geq\alpha_{\delta}=h_{\mu}(\Phi)+b-2\delta

for all 0<Ο΅<ϡδ20<\epsilon<\frac{\epsilon_{\delta}}{2}. Now letting Ο΅β†’0\epsilon\to 0 and Ξ΄β†’0\delta\to 0 shows that PB​(Ξ¦)β‰₯hμ​(Ξ¦)+bP_{B}(\Phi)\geq h_{\mu}(\Phi)+b, if hμ​(Ξ¦)h_{\mu}(\Phi) is finite.
If b=∞b=\infty, replace (3.13)(3.13) by 1t​at​(x)β‰₯1Ξ΄\frac{1}{t}a_{t}(x)\geq\frac{1}{\delta} and if hμ​(Ξ¦)=∞h_{\mu}(\Phi)=\infty, replace (3.12)(3.12) by exp⁑(βˆ’tΞ΄)β‰₯μ​(Bt​(x,Ο΅))\exp(-\frac{t}{\delta})\geq\mu(B_{t}(x,\epsilon)) and set GΞ΄,Ο΅:={x∈G:lim inftβ†’βˆžhμ​(x,Ο΅,t)>1Ξ΄}G^{\delta,\epsilon}:=\{x\in G:\mathop{\liminf}\limits_{t\to\infty}h_{\mu}(x,\epsilon,t)>\frac{1}{\delta}\}. Then the proof works in the same way. ∎

Next we proof the theorem 1.1.

Proof.

By theorem 3.3, PA​(a,Ξ»,𝒴)​(a)≀P𝒴​(Ξ»)P_{A(a,\lambda,\mathcal{Y})}(a)\leq P_{\mathcal{Y}}(\lambda). For each ΞΌβˆˆπ’΄\mu\in\mathcal{Y}, there is a Borel set BΞΌβŠ†ZΞΌ={x∈X:Ξ΄t,xβ†’ΞΌ}B_{\mu}\subseteq Z_{\mu}=\{x\in X:\delta_{t,x}\to\mu\} such that μ​(BΞΌ)=1\mu(B_{\mu})=1 and limtβ†’βˆž1t​at​(x)=λ​(ΞΌ)\mathop{\lim}\limits_{t\to\infty}\frac{1}{t}a_{t}(x)=\lambda(\mu) for all x∈BΞΌx\in B_{\mu}. Hence BΞΌβŠ†A​(a,Ξ»,ΞΌ)βŠ†A​(a,Ξ»,𝒴)B_{\mu}\subseteq A(a,\lambda,\ \mu)\subseteq A(a,\lambda,\mathcal{Y}), and this shows by theorem 3.6 and lemma 2.6 that

hμ​(Ξ¦)+λ​(ΞΌ)=P{ΞΌ}​(Ξ»)≀PBμ​(a)≀PA​(a,Ξ»,𝒴)​(a).h_{\mu}(\Phi)+\lambda(\mu)=P_{\{\mu\}}(\lambda)\leq P_{B_{\mu}}(a)\leq P_{A(a,\lambda,\mathcal{Y})}(a).

Taking the supremum on the left side yields the result. ∎

4 Topological pressure based on nested set strings

In this section we will introduce other definition of topology pressure for discontinuous potential (at)t>o(a_{t})_{t>o}. Before that, let’s review the definition of topological pressure for continuous potentials on compact metric space (X,Ξ¦)(X,\Phi).

Let Ξ¦\Phi be a continuous flow on (X,d)(X,d) and a=(at)t>0a=(a_{t})_{t>0} be a family of continuous function ata_{t}: X→ℝX\to\mathbb{R} with tempered variation. Given Ο΅>0\epsilon>0, for each ZβŠ†XZ\subseteq X and Ξ±βˆˆβ„\alpha\in\mathbb{R}, let

M​(Z,a,Ξ±,Ο΅)=limTβ†’+∞infΞ“βˆ‘(x,t)βˆˆΞ“exp⁑(a​(x,t,Ξ΅)βˆ’Ξ±β€‹t)M(Z,a,\alpha,\epsilon)=\mathop{\lim}\limits_{T\to\ +\infty}\mathop{\inf}\limits_{\Gamma}\sum\limits_{\left({x,t}\right)\in\Gamma}{\exp\left({a\left({x,t,\varepsilon}\right)-\alpha t}\right)} (4.1)

with the infimum taken over all countable sets Ξ“βŠ†XΓ—[T,+∞)\Gamma\subseteq X\times[T,+\infty) covering ZZ. and let

M¯​(Z,a,Ξ±,Ο΅)=limΒ―Tβ†’+∞infΞ“βˆ‘(x,t)βˆˆΞ“exp⁑(a​(x,t,Ξ΅)βˆ’Ξ±β€‹t)\underline{M}(Z,a,\alpha,\epsilon)=\mathop{\underline{\lim}}\limits_{T\to\ +\infty}\mathop{\inf}\limits_{\Gamma}\sum\limits_{\left({x,t}\right)\in\Gamma}{\exp\left({a\left({x,t,\varepsilon}\right)-\alpha t}\right)} (4.2)

and

M¯​(Z,a,Ξ±,Ο΅)=limΒ―Tβ†’+∞infΞ“βˆ‘(x,t)βˆˆΞ“exp⁑(a​(x,t,Ξ΅)βˆ’Ξ±β€‹t)\overline{M}(Z,a,\alpha,\epsilon)=\mathop{\overline{\lim}}\limits_{T\to\ +\infty}\mathop{\inf}\limits_{\Gamma}\sum\limits_{\left({x,t}\right)\in\Gamma}{\exp\left({a\left({x,t,\varepsilon}\right)-\alpha t}\right)} (4.3)

with the infimum taken over all countable sets Ξ“βŠ†XΓ—{T}\Gamma\subseteq X\times\{T\} covering ZZ. When Ξ±\alpha does from βˆ’βˆž-\infty to +∞+\infty, the above quantities (4.1),(4.2)(4.1),\,(4.2) and (4.3)(4.3) jump from +∞+\infty to 0 at unique values and so one can define

PZ​(a,Ο΅)=inf{Ξ±βˆˆβ„:M​(Z,a,Ξ±,Ο΅)=0},P_{Z}(a,\epsilon)=\inf\{\alpha\in\mathbb{R}:M(Z,a,\alpha,\epsilon)=0\},
PΒ―Z​(a,Ο΅)=inf{Ξ±βˆˆβ„:M¯​(Z,a,Ξ±,Ο΅)=0},\underline{P}_{Z}(a,\epsilon)=\inf\{\alpha\in\mathbb{R}:\underline{M}(Z,a,\alpha,\epsilon)=0\},
PΒ―Z​(a,Ο΅)=inf{Ξ±βˆˆβ„:M¯​(Z,a,Ξ±,Ο΅)=0}.\overline{P}_{Z}(a,\epsilon)=\inf\{\alpha\in\mathbb{R}:\overline{M}(Z,a,\alpha,\epsilon)=0\}.

Theorem 4.1: For any family of continuous functions aa with tempered variation and any set ZβŠ†XZ\subseteq X, the limits

PZ​(a)=limΟ΅β†’ 0PZ​(a,Ο΅),P_{Z}(a)=\mathop{\lim}\limits_{\epsilon\to\ 0}P_{Z}(a,\epsilon), (4.4)
PΒ―Z​(a)=limΟ΅β†’ 0PΒ―Z​(a,Ο΅)\underline{P}_{Z}(a)=\mathop{\lim}\limits_{\epsilon\to\ 0}\underline{P}_{Z}(a,\epsilon)

and

PΒ―Z​(a)=limΟ΅β†’ 0PΒ―Z​(a,Ο΅)\overline{P}_{Z}(a)=\mathop{\lim}\limits_{\epsilon\to\ 0}\overline{P}_{Z}(a,\epsilon)

exists.

Proof.

Take δ∈(0,Ο΅)\delta\in(0,\epsilon) and Ξ“βŠ†X×ℝ0+\Gamma\subseteq X\times\mathbb{R}_{0}^{+} with ZβŠ†β‹ƒ(x,t)βˆˆΞ“Bt​(x,Ξ΄)Z\subseteq\mathop{\bigcup}\limits_{(x,t)\in\Gamma}B_{t}(x,\delta). Since Bt​(x,Ξ΄)βŠ†Bt​(x,Ο΅)B_{t}(x,\delta)\subseteq B_{t}(x,\epsilon), one has ZβŠ†β‹ƒ(x,t)βˆˆΞ“Bt​(x,Ο΅)Z\subseteq\mathop{\bigcup}\limits_{(x,t)\in\Gamma}B_{t}(x,\epsilon). Let

γ​(Ο΅)=limtβ†’βˆžΒ―β€‹Ξ³t​(a,Ο΅)t.\gamma(\epsilon)=\overline{\mathop{\lim}\limits_{t\to\infty}}\frac{\gamma_{t}(a,\epsilon)}{t}.

Given Ξ·>0,Z∈Bt​(x,Ο΅)\eta>0,\,Z\in B_{t}(x,\epsilon), we have

at​(y)βˆ’at​(z)≀|at​(y)βˆ’at​(z)|≀γt​(a,Ο΅)≀t​(γ​(Ο΅)+Ξ·)a_{t}(y)-a_{t}(z)\leq|a_{t}(y)-a_{t}(z)|\leq\gamma_{t}(a,\epsilon)\leq t(\gamma(\epsilon)+\eta)

for any large tt. Thus,

at​(y)≀sup(x,y)∈Bt​(x,Ξ΄)[at​(z)+t​(γ​(Ο΅)+Ξ·)]≀a​(x,t,Ξ΄)+t​(γ​(Ο΅)+Ξ·).a_{t}(y)\leq\mathop{\sup}\limits_{(x,y)\in B_{t}(x,\delta)}[a_{t}(z)+t(\gamma(\epsilon)+\eta)]\leq a(x,t,\delta)+t(\gamma(\epsilon)+\eta).

and

a​(x,t,Ο΅)≀a​(x,t,Ξ΄)+t​(γ​(Ο΅)+Ξ·)a(x,t,\epsilon)\leq a(x,t,\delta)+t(\gamma(\epsilon)+\eta)

for any large tt. Therefore,

M​(Z,a,Ξ±,Ο΅)≀M​(Z,a,Ξ±βˆ’Ξ³β€‹(Ο΅)βˆ’t,Ξ΄),M(Z,a,\alpha,\epsilon)\leq M(Z,a,\alpha-\gamma(\epsilon)-t,\delta),

and so

Pz​(a,Ο΅)≀inf{Ξ±βˆˆβ„:M​(Z,a,Ξ±βˆ’Ξ³β€‹(Ο΅)βˆ’t,Ξ΄)=0}=Pz​(a,Ξ΄)+γ​(Ο΅)+Ξ·.P_{z}(a,\epsilon)\leq\inf\{\alpha\in\mathbb{R}:M(Z,a,\alpha-\gamma(\epsilon)-t,\delta)=0\}=P_{z}(a,\delta)+\gamma(\epsilon)+\eta.

Letting Ξ΄β†’0\delta\to 0 we have

PZ​(a,Ο΅)βˆ’Ξ³β€‹(Ο΅)βˆ’Ξ·β‰€limΒ―Ξ΄β†’0PZ​(a,Ξ΄).P_{Z}(a,\epsilon)-\gamma(\epsilon)-\eta\leq\mathop{\underline{\lim}}\limits_{\delta\to 0}P_{Z}(a,\delta).

Since aa is tempered variational we have γ​(Ο΅)β†’0\gamma(\epsilon)\to 0 when Ο΅β†’0\epsilon\to 0, which together with the arbitrariness of Ξ·\eta yields the inequality

limΒ―Ξ΄β†’0PZ​(a,Ο΅)≀limΒ―Ξ΄β†’0PZ​(a,Ξ΄).\mathop{\overline{\lim}}\limits_{\delta\to 0}P_{Z}(a,\epsilon)\leq\mathop{\underline{\lim}}\limits_{\delta\to 0}P_{Z}(a,\delta).

This shows that PZ​(a)P_{Z}(a) is well-defined. The existence of the other two limits can be established in a similar way. ∎

The number PZ​(a)P_{Z}(a) is called non-additive topological pressure of the family aa on ZZ, while PΒ―Z​(a)\underline{P}_{Z}(a) and PΒ―Z​(a)\overline{P}_{Z}(a) are called: respectively, the non-additive lower and upper capacity topological pressure of aa on ZZ. Clearly:

PZ​(a)≀PΒ―Z​(a)≀PΒ―Z​(a).{P_{Z}}(a)\leq\underline{P}_{Z}(a)\leq\overline{P}_{Z}(a).

If Z1βŠ†Z2Z_{1}\subseteq Z_{2}, then: PZ1​(a)≀PZ2​(a),PΒ―Z1​(a)≀PΒ―Z2​(a),PΒ―Z1​(a)≀PΒ―Z2​(a)P_{Z_{1}}(a)\leq P_{Z_{2}}(a),\,\overline{P}_{Z_{1}}(a)\leq\overline{P}_{Z_{2}}(a),\,\underline{P}_{Z_{1}}(a)\leq\underline{P}_{Z_{2}}(a)

Next we introduce the topological pressure of discontinuous potentials.

Let XX be a compact metric space, and Ξ¦:Xβ†’X\Phi:X\to X a continuous flow. Consider any Ξ¦βˆ’\Phi-invariant subset ZβŠ†XZ\subseteq X possessing a nested family of subsets {Zl}l≀1\{Z_{l}\}_{l\leq 1}. The ZZ and the ZlZ_{l} are not required to be compact; the ZlZ_{l} are not required to be Ξ¦\Phi-invariant. Consider a family of measurable functions a=(at)t>0:X→ℝa=(a_{t})_{t>0}:X\to\mathbb{R}, we say that aa is continuous with respected to the family of subsets {Zl}\{Z_{l}\} if ata_{t} is continuous on the closure of each ZlZ_{l} for all t>0t>0. The potential function aa is not necessarily continuous on ZZ. we define the topological pressure of aa on ZZ, with respect to Ξ¦\Phi as:

PZ​(a)=suplβ‰₯1PZl​(a),P_{Z}(a)=\mathop{\sup}\limits_{l\geq 1}P_{Z_{l}}(a),

where PZl​(a)P_{Z_{l}}(a) is the topological pressure of aa on ZlZ_{l} as defined above. We show that the topological pressure does not depend on the choice of the family of sets {Zl}\{Z_{l}\}.

Theorem 4.2: Assume that an Ξ¦βˆ’\Phi-invariant subset ZβŠ†XZ\subseteq X has two nested families of subsets {Al}\{A_{l}\} and {Bl}\{B_{l}\} which exhaust ZZ, let {at:X→ℝ}t>0\{a_{t}:X\to\mathbb{R}\}_{t>0} be continuous with respect to both {Al}\{A_{l}\} and {Bl}\{B_{l}\}. Then

PZ​(a)=suplβ‰₯1PAl​(a)=suplβ‰₯1PBl​(a).P_{Z}(a)=\mathop{\sup}\limits_{l\geq 1}P_{A_{l}}(a)=\mathop{\sup}\limits_{l\geq 1}P_{B_{l}}(a).
Proof.

Set PZ′​(a)=suplβ‰₯1PAl​(a)P_{Z}^{\prime}(a)=\mathop{\sup}\limits_{l\geq 1}P_{A_{l}}(a), and PZ′′​(a)=suplβ‰₯1PBl​(a)P_{Z}^{\prime\prime}(a)=\mathop{\sup}\limits_{l\geq 1}P_{B_{l}}(a). For every Ο΅>0\epsilon>0, there exists an nn such that P(An)β‰₯PZβ€²(a)βˆ’Ο΅P_{(}A_{n})\geq P_{Z}^{\prime}(a)-\epsilon, as the BlB_{l} exhaust ZZ, we can write An=⋃mβ‰₯1(An∩Bm)A_{n}=\mathop{\bigcup}\limits_{m\geq 1}(A_{n}\cap B_{m}). As aa is continuous on the closure of AnA_{n} and each BmB_{m},we have

PAn​(a)=supmβ‰₯1PAn∩Bm​(a)≀suplβ‰₯1PBm​(a)=PZ′′​(a).P_{A_{n}}(a)=\mathop{\sup}\limits_{m\geq 1}P_{A_{n}\cap B_{m}}(a)\leq\mathop{\sup}\limits_{l\geq 1}P_{B_{m}}(a)=P_{Z}^{\prime\prime}(a).

Thus PZ′′​(a)β‰₯PZ′​(a)βˆ’Ο΅P_{Z}^{\prime\prime}(a)\geq P_{Z}^{\prime}(a)-\epsilon for every Ο΅\epsilon. Reversing the roles of PZ′​(a)P_{Z}^{\prime}(a) and PZ′′​(a)P_{Z}^{\prime\prime}(a) gives the result. ∎

We continue to assume that Ξ¦\Phi is a continuous flow on a compact metric space XX. Let ℳΦ​(X)\mathcal{M}_{\Phi}(X) be the set of Ξ¦βˆ’\Phi-invariant probability measures on XX and ℰΦ​(X)\mathcal{E}_{\Phi}(X) be the set of ergodic probability measures on xx. Given a Borel Ξ¦βˆ’\Phi-invariant set ZβŠ†XZ\subseteq X, For convenience, let β„³Z:=ℳΦ​(Z)\mathcal{M}_{Z}:=\mathcal{M}_{\Phi}(Z). Given x∈Xx\in X and t>0t>0, consider the Borel Ξ¦βˆ’\Phi-invariant set

ℒ​(Z)={x∈Z:VΦ​(x)∩MZβ‰ βˆ…}\mathcal{L}(Z)=\{x\in Z:V_{\Phi}(x)\cap M_{Z}\neq\emptyset\}

and

ZΞΌ={x∈Z:VΦ​(x)={ΞΌ}}.Z_{\mu}=\{x\in Z:V_{\Phi}(x)=\{\mu\}\}.

For each μ∈MΦ​(X)\mu\in M_{\Phi}(X), let hμ​(Ξ¦)=hμ​(Ο†1)h_{\mu}(\Phi)=h_{\mu}(\varphi_{1}).

Now we proof theorem 1.2.

Proof.

We will divide the proof process into three steps.

Step 1:Some auxiliary content.

Take xβˆˆβ„’β€‹(Z)x\in\mathcal{L}(Z) and μ∈VΦ​(X)∩MZ\mu\in V_{\Phi}(X)\cap M_{Z}, given Ξ΄>0\delta>0, there exists an increasing sequence {tj}jβˆˆβ„•\{t_{j}\}_{j\in\mathbb{N}} in ℝ0+\mathbb{R}_{0}^{+} such that

|1tjβ€‹βˆ«0tjb​(Ο†s​(x))​𝑑sβˆ’βˆ«Zb​𝑑μ|<Ξ΄\left|\frac{1}{t_{j}}\int_{0}^{t_{j}}b(\varphi_{s}(x))\,ds-\int_{Z}b\,d\mu\right|<\delta

for all jβˆˆβ„•j\in\mathbb{N}. This implies that

|atj​(x)tjβˆ’βˆ«Zb​𝑑μ|≀|atj​(x)tjβˆ’1tjβ€‹βˆ«0tjb​(Ο†s​(x))​𝑑s|+Ξ΄\left|\frac{a_{t_{j}}(x)}{t_{j}}-\int_{Z}b\,d\mu\right|\leq\left|\frac{a_{t_{j}}(x)}{t_{j}}-\frac{1}{t_{j}}\int_{0}^{t_{j}}b(\varphi_{s}(x))\,ds\right|+\delta (4.5)

Moreover, let bt=at+sβˆ’atβˆ˜Ο†sβˆ’βˆ«os(bβˆ˜Ο†u)​𝑑ub_{t}=a_{t+s}-a_{t}\circ\varphi_{s}-\int_{o}^{s}(b\circ\varphi_{u})\,du.

For each nβˆˆβ„•n\in\mathbb{N} with tβˆ’n​sβ‰₯0t-ns\geq 0 we have

atβˆ’βˆ«0t(bβˆ˜Ο†u)​𝑑u\displaystyle a_{t}-\int_{0}^{t}(b\circ\varphi_{u})\,du =atβˆ’atβˆ’sβˆ˜Ο†sβˆ’βˆ«0s(bβˆ˜Ο†u)​𝑑u+atβˆ’sβˆ˜Ο†sβˆ’βˆ«ts(bβˆ˜Ο†u)​𝑑u\displaystyle=a_{t}-a_{t-s}\circ\varphi_{s}-\int_{0}^{s}(b\circ\varphi_{u})\,du+a_{t-s}\circ\varphi_{s}-\int_{t}^{s}(b\circ\varphi_{u})\,du
=btβˆ’s+[atβˆ’sβˆ’βˆ«0tβˆ’s(bβˆ˜Ο†u)​𝑑u]βˆ˜Ο†s\displaystyle=b_{t-s}+[a_{t-s}-\int_{0}^{t-s}(b\circ\varphi_{u})\,du]\circ\varphi_{s}
=btβˆ’s+btβˆ’2​sβˆ˜Ο†s+[atβˆ’2​sβˆ’βˆ«0tβˆ’2​s(bβˆ˜Ο†u)​𝑑u]βˆ˜Ο†2​s.\displaystyle=b_{t-s}+b_{t-2s}\circ\varphi_{s}+[a_{t-2s}-\int_{0}^{t-2s}(b\circ\varphi_{u})\,du]\circ\varphi_{2s}.

and so, proceeding inductively,

atβˆ’βˆ«0t(bβˆ˜Ο†u)du=βˆ‘k=0nbtβˆ’k​sβˆ˜Ο†(kβˆ’1)​s+atβˆ’n​sβˆ˜Ο†βˆ’n​s∫0tβˆ’n​s(bβˆ˜Ο†u)du.a_{t}-\int_{0}^{t}(b\circ\varphi_{u})\,du=\sum\limits_{k=0}^{n}{{b_{t-ks}}\circ{\varphi_{\left({k-1}\right)s}}+{a_{t-ns}}\circ\varphi{}_{ns}-\int_{0}^{t-ns}{\left({b\circ{\varphi_{u}}}\right)du}}. (4.6)

Hence, it follows from (4.5)(4.5) that

|atj​(x)tjβˆ’βˆ«Zb​𝑑μ|\displaystyle\left|\frac{a_{t_{j}}(x)}{t_{j}}-\int_{Z}b\,d\mu\right| ≀|atj​(x)tjβˆ’1tjβ€‹βˆ«0tjb​(Ο†s​(x))​𝑑s|+Ξ΄\displaystyle\leq\left|\frac{a_{t_{j}}(x)}{t_{j}}-\frac{1}{t_{j}}\int_{0}^{t_{j}}b(\varphi_{s}(x))\,ds\right|+\delta
≀1tjβ€‹βˆ‘k=1nβ€–btjβˆ’k​sβ€–βˆž+β€–atjβˆ’n​sβ€–βˆž+(tjβˆ’n​s)​‖bβ€–βˆžtj+Ξ΄.\displaystyle\leq\frac{1}{t_{j}}\sum\limits_{k=1}^{n}\|b_{t_{j}-ks}\|_{\infty}+\frac{\|a_{t_{j}-ns}\|_{\infty}+(t_{j}-ns)\|b\|_{\infty}}{t_{j}}+\delta.

Now let nj=[tjs]n_{j}=[\frac{t_{j}}{s}], then tjβˆ’nj​s≀st_{j}-n_{j}s\leq s and since supt∈[0,s]β€–atβ€–βˆžβ‰€+∞\mathop{\sup}\limits_{t\in[0,s]}\|a_{t}\|_{\infty}\leq+\infty, we have

β€–atjβˆ’nj​sβ€–βˆž+(tjβˆ’nj​s)​‖bβ€–βˆžtj<Ξ΄\frac{\|a_{t_{j}-n_{j}s}\|_{\infty}+(t_{j}-n_{j}s)\|b\|_{\infty}}{t_{j}}<\delta

for any sufficiently large jj. Hence, by (1.1)(1.1) and since supt∈[0,T]β€–atβ€–βˆžβ‰€+∞\mathop{\sup}\limits_{t\in[0,T]}\|a_{t}\|_{\infty}\leq+\infty for all T>0T>0, taking n=njn=n_{j}, we obtain

|atj​(x)tjβˆ’βˆ«Zb​𝑑μ|≀1tjβ€‹βˆ‘k=1njβ€–btjβˆ’k​sβ€–βˆž+2​δ≀3​δ\left|\frac{a_{t_{j}}(x)}{t_{j}}-\int_{Z}b\,d\mu\right|\leq\frac{1}{t_{j}}\sum\limits_{k=1}^{n_{j}}\|b_{t_{j}-ks}\|_{\infty}+2\delta\leq 3\delta

again for any sufficiently large jj.

Now let EE be a finite set. Given kβˆˆβ„•k\in\mathbb{N} and c=(c1,c2,…,ck)∈Ekc=(c_{1},\,c_{2},\,...,\,c_{k})\in E^{k}, we define a probability measure ΞΌ\mu on EE by

ΞΌc​(e)=1k​#​{j:cj=e}\mu_{c}(e)=\frac{1}{k}\#\{j:c_{j}=e\}

for e∈Ee\in E. moreover, let: H​(c)=βˆ’βˆ‘e∈EΞΌc​(e)​log⁑μc​(e)H(c)=-\mathop{\sum}\limits_{e\in E}\mu_{c}(e)\log\mu_{c}(e).

Step 2: proof that Pℒ​(Z)​(a)≀sup{hμ​(Ξ¦)+∫Zb​𝑑μ:μ∈MZ}P_{\mathcal{L}(Z)}(a)\leq\sup\{h_{\mu}(\Phi)+\int_{Z}b\,d\mu:\mu\in M_{Z}\}.

As ℒ​(Z)=⋃lβ‰₯1(ℒ​(Z))∩Zl\mathcal{L}(Z)=\mathop{\bigcup}\limits_{l\geq 1}(\mathcal{L}(Z))\cap Z_{l}, we have that

Pℒ​(Z)​(a)=suplβ‰₯1Pβ„’(Z))∩Zl​(a).P_{\mathcal{L}(Z)}(a)=\mathop{\sup}\limits_{l\geq 1}P_{\mathcal{L}(Z))\cap Z_{l}}(a).

We show that for every lβ‰₯1l\geq 1, Pℒ​(Z)​(a)≀sup{hμ​(Ξ¦)+∫Zb​𝑑μ:μ∈MZ}P_{\mathcal{L}(Z)}(a)\leq\sup\left\{h_{\mu}(\Phi)+\int_{Z}b\,d\mu:\mu\in M_{Z}\right\}.

let the λ​(ΞΌ)\lambda(\mu) in lemma 3.5 be ∫Zb​𝑑μ\int_{Z}b\,d\mu, then we obtain following lemma.

Lemma 4.4: Given xβˆˆβ„’β€‹(Z)∩Zlx\in\mathcal{L}(Z)\cap Z_{l}, and μ∈VΦ​(X)∩MZ\mu\in V_{\Phi}(X)\cap M_{Z}, let Ξ“βŠ†XΓ—{1}\Gamma\subseteq X\times\{1\} be a finite cover of XX for the open cover 𝒱={V1,V2,…,Vr}\mathcal{V}=\{V_{1},\,V_{2},\,...,\,V_{r}\} of XX, where Vj=B1​(xj,Ο΅2)V_{j}=B_{1}(x_{j},\frac{\epsilon}{2}) with (xj,1)βˆˆΞ“(x_{j},1)\in\Gamma, there exists m,pβˆˆβ„•m,\,p\in\mathbb{N} with pp arbitrary large, and a sequence U=Vi1​Vi2​…​VipU=V_{i_{1}}V_{i_{2}}...V_{i_{p}} such that
(a): x∈∩r=1pΟ†βˆ’r+1​Virx\in\mathop{\cap}\limits_{r=1}^{p}\varphi_{-r+1}V_{i_{r}} and ap​(x)≀p​(∫Zb​𝑑μ+3​δ)a_{p}(x)\leq p(\int_{Z}b\,d\mu+3\delta).
(b): there exists a subset V∈(𝒱m)kV\in(\mathcal{V}^{m})^{k} of UU of length k​mβ‰₯pβˆ’mkm\geq p-m satisfying the inequality

H​(V)≀m​(hμ​(Ξ¦)+Ξ΄).H(V)\leq m(h_{\mu}(\Phi)+\delta).

Given mβˆˆβ„•m\in\mathbb{N} and uβˆˆβ„u\in\mathbb{R}, let Zm,uZ_{m,u} be the set of points xβˆˆβ„’β€‹(Z)∩Zlx\in\mathcal{L}(Z)\cap Z_{l} such that the two properties in lemma 4.4 hold for some μ∈VΦ​(X)∩MZ\mu\in V_{\Phi}(X)\cap M_{Z} with: ∫Zbβ€‹π‘‘ΞΌβˆˆ[uβˆ’Ξ΄,u+Ξ΄]\int_{Z}b\,d\mu\in[u-\delta,\,u+\delta]. Moreover, let npn_{p} be the number of all sequences Uβˆˆπ’±pU\in\mathcal{V}^{p} satisfying the same two properties for some x∈Zm,ux\in Z_{m,u}. this means that

np=#​⋃x∈Zm,u{Uβˆˆπ’±p:U​s​a​t​i​s​f​i​e​s​(a),(b)}.n_{p}=\#\mathop{\bigcup}\limits_{x\in Z_{m,u}}\{U\in\mathcal{V}^{p}:U\,satisfies\,(a),(b)\}.

Proceeding as lemma 5.3 in [3] one can show that

np≀exp⁑[p​(hμ​(Ξ¦|Z)+2​δ)]=exp⁑[p​(hμ​(Ξ¦)+2​δ)]n_{p}\leq\exp[p(h_{\mu}(\Phi|_{Z})+2\delta)]=\exp[p(h_{\mu}(\Phi)+2\delta)]

for any sufficiently large pp (since μ​(Z)=1\mu(Z)=1).

For each Ο„βˆˆβ„•\tau\in\mathbb{N}, the collection of all sequences Uβˆˆπ’±pU\in\mathcal{V}^{p} satisfying the two properties in lemma 4.4 for some x∈Zm,ux\in Z_{m,u} and pβ‰₯Ο„p\geq\tau cover the set Zm,uZ_{m,u}, therefore,

M​(zm,u,a,Ξ±,Ο΅)\displaystyle M(z_{m,u},a,\alpha,\epsilon) =limTβ†’+∞infΞ“βˆ‘(x,t)βˆˆΞ“exp⁑(at​(x,t,Ο΅)βˆ’Ξ±β€‹t)\displaystyle=\mathop{\lim}\limits_{T\to+\infty}\mathop{\inf}\limits_{\Gamma}\mathop{\sum}\limits_{(x,t)\in\Gamma}\exp(a_{t}(x,t,\epsilon)-\alpha t)
≀limΒ―Ο„β†’+βˆžβˆ‘p=Ο„+∞nP​exp⁑[βˆ’Ξ±β€‹p+p​(∫Zb​𝑑μ+3​δ)+Ξ³P​(a,Ο΅)]\displaystyle\leq\mathop{\overline{\lim}}\limits_{\tau\to+\infty}\sum\limits_{p=\tau}^{+\infty}n_{P}\exp[-\alpha p+p(\int_{Z}b\,d\mu+3\delta)+\gamma_{P}(a,\epsilon)]
≀limΒ―Ο„β†’+βˆžβˆ‘p=Ο„+∞exp⁑[p​(hμ​(Ξ¦)+∫Zb​𝑑μ+5β€‹Ξ΄βˆ’Ξ±+limΒ―tβ†’+∞γt​(a,Ο΅)t)]\displaystyle\leq\mathop{\overline{\lim}}\limits_{\tau\to+\infty}\sum\limits_{p=\tau}^{+\infty}\exp[p(h_{\mu}(\Phi)+\int_{Z}b\,d\mu+5\delta-\alpha+\mathop{\overline{\lim}}\limits_{t\to+\infty}\frac{\gamma_{t}(a,\epsilon)}{t})]
≀limΒ―Ο„β†’+βˆžβˆ‘p=Ο„+∞βp\displaystyle\leq\mathop{\overline{\lim}}\limits_{\tau\to+\infty}\sum\limits_{p=\tau}^{+\infty}\beta^{p}

where Ξ²=exp⁑(βˆ’Ξ±+c+5​δ+limΒ―tβ†’+∞γt​(a,Ο΅)t)\beta=\exp(-\alpha+c+5\delta+\mathop{\overline{\lim}}\limits_{t\to+\infty}\frac{\gamma_{t}(a,\epsilon)}{t}) and c=sup{hμ​(Ξ¦)+∫Zb​𝑑μ:μ∈MZ}c=\sup\{h_{\mu}(\Phi)+\int_{Z}b\,d\mu:\mu\in M_{Z}\}.
thus, we obtain

M​(zm,u,a,Ξ±,Ο΅)≀limΒ―Ο„β†’+βˆžβˆ‘p=Ο„+∞βp.M(z_{m,u},a,\alpha,\epsilon)\leq\mathop{\overline{\lim}}\limits_{\tau\to+\infty}\sum\limits_{p=\tau}^{+\infty}\beta^{p}. (4.7)

For

Ξ±>c+5​δ+limΒ―tβ†’+∞γt​(a,Ο΅)t.\alpha>c+5\delta+\mathop{\overline{\lim}}\limits_{t\to+\infty}\frac{\gamma_{t}(a,\epsilon)}{t}. (4.8)

we have Ξ²<1\beta<1 and so it from (4.7)(4.7) that

M​(zm,u,a,Ξ±,Ο΅)≀limΒ―Ο„β†’+βˆžβˆ‘p=Ο„+∞βp=0​a​n​d​α>PZm,u​(a,Ο΅).M(z_{m,u},a,\alpha,\epsilon)\leq\mathop{\overline{\lim}}\limits_{\tau\to+\infty}\sum\limits_{p=\tau}^{+\infty}\beta^{p}=0\,\,\,and\,\,\alpha>P_{Z_{m,u}}(a,\epsilon). (4.9)

Now take points u1,u2,…,uru_{1},u_{2},...,u_{r}, such that for each u∈[m​i​n​b,m​a​x​a]u\in[min\,b,max\,a] there exists j∈{1,2,…,r}j\in\{1,2,...,r\} with |uβˆ’uj|<Ξ΄|u-u_{j}|<\delta. Then: ℒ​(Z)∩Zl=⋃mβˆˆβ„•β‹ƒi=1rZm,ui\mathcal{L}(Z)\cap Z_{l}=\mathop{\bigcup}\limits_{m\in\mathbb{N}}\mathop{\bigcup}\limits_{i=1}^{r}Z_{m,u_{i}} and so it follows from (4.9)(4.9) and (4.10)(4.10) together with the lemma 2.6 that

c+5​δ+limΒ―Ο΅β†’0limΒ―tβ†’+∞γt​(a,Ο΅)t\displaystyle c+5\delta+\mathop{\overline{\lim}}\limits_{\epsilon\to 0}\mathop{\overline{\lim}}\limits_{t\to+\infty}\frac{\gamma_{t}(a,\epsilon)}{t} β‰₯limΒ―Ο΅β†’0supm,uiPZm,u​(a,Ο΅)\displaystyle\geq\mathop{\overline{\lim}}\limits_{\epsilon\to 0}\mathop{\sup}\limits_{m,u_{i}}P_{Z_{m,u}}(a,\epsilon)
=limΒ―Ο΅β†’0Pℒ​(Z)∩Zl​(a,Ο΅)\displaystyle=\mathop{\overline{\lim}}\limits_{\epsilon\to 0}P_{\mathcal{L}(Z)\cap Z_{l}}(a,\epsilon)
=Pℒ​(Z)∩Zl​(a).\displaystyle=P_{\mathcal{L}(Z)\cap Z_{l}}(a).

Since the arbitrariness of Ξ΄\delta and ll and aa has tempered variation, we find that

Pℒ​(Z)​(a)≀c=sup{hμ​(Ξ¦)+∫Zb​𝑑μ:μ∈MZ}.P_{\mathcal{L}(Z)}(a)\leq c=\sup\{h_{\mu}(\Phi)+\int_{Z}b\,d\mu:\mu\in M_{Z}\}.

Step 3: proof Pℒ​(Z)​(a)β‰₯sup{hμ​(Ξ¦)+∫Zb​𝑑μ:μ∈MZ}P_{\mathcal{L}(Z)}(a)\geq\sup\{h_{\mu}(\Phi)+\int_{Z}b\,d\mu:\mu\in M_{Z}\}.

Lemma 4.5: For each μ∈MZ\mu\in M_{Z} there exists a Ξ¦βˆ’\Phi-invariant function bΒ―βˆˆπ‹1​(x,ΞΌ)\overline{b}\in\mathbf{L}^{1}(x,\mu) such that

limtβ†’βˆžatt=limtβ†’βˆž1tβ€‹βˆ«0t(bβˆ˜Ο†u)​𝑑u=bΒ―.\mathop{\lim}\limits_{t\to\infty}\frac{a_{t}}{t}=\mathop{\lim}\limits_{t\to\infty}\frac{1}{t}\int_{0}^{t}(b\circ\varphi_{u})\,du=\overline{b}.
Proof.

it follows from (4.6)(4.6) that

|at​(x)tβˆ’1tβ€‹βˆ«0tb​(Ο†u​(x))​𝑑u|≀1tβ€‹βˆ‘k=1nβ€–btβˆ’k​sβ€–βˆž+β€–atβˆ’n​sβ€–βˆž+(tβˆ’n​s)​‖bβ€–βˆžt.\left|\frac{a_{t}(x)}{t}-\frac{1}{t}\int_{0}^{t}b(\varphi_{u}(x))\,du\right|\leq\frac{1}{t}\sum\limits_{k=1}^{n}\|b_{t-ks}\|_{\infty}+\frac{\|a_{t-ns}\|_{\infty}+(t-ns)\|b\|_{\infty}}{t}.

Let n=[ts]n=[\frac{t}{s}], then tβˆ’n​s≀st-ns\leq s and since supt∈[0,s]β€–atβ€–βˆž<+∞\sup\limits_{t\in[0,s]}\|a_{t}\|_{\infty}<+\infty, we have

suptβ‰₯0(β€–atβˆ’n​sβ€–βˆž+(tβˆ’n​s)​‖bβ€–βˆž)<∞.\sup\limits_{t\geq 0}(\|a_{t-ns}\|_{\infty}+(t-ns)\|b\|_{\infty})<\infty.

Since supt∈[0,t]β€–atβ€–βˆž<+∞\sup\limits_{t\in[0,t]}\|a_{t}\|_{\infty}<+\infty for all T>0T>0, it follows from (1.1)(1.1) that 1t​(atβˆ’βˆ«0tbβˆ˜Ο†u​𝑑u)β†’0\frac{1}{t}(a_{t}-\int_{0}^{t}b\circ\varphi_{u}\,du)\to 0 uniformly on ZZ when tβ†’βˆžt\to\infty. On the other hand, since bβˆˆπ‹1​(x,ΞΌ)b\in\mathbf{L}^{1}(x,\mu), by Birkhoff’s ergodic theorem for flows there exists a Ξ¦\Phi-invariant function bΒ―βˆˆπ‹1​(x,ΞΌ)\overline{b}\in\mathbf{L}^{1}(x,\mu) such that

limtβ†’βˆž1tβ€‹βˆ«0tbβˆ˜Ο†u​𝑑u=bΒ―\lim\limits_{t\to\infty}\frac{1}{t}\int_{0}^{t}b\circ\varphi_{u}\,du=\overline{b}

ΞΌβˆ’\mu-almost everywhere and in 𝐋1​(x,ΞΌ)\mathbf{L}^{1}(x,\mu). This yields the desired statement. ∎

Lemma 4.6: For each ergodic measure μ∈MZ\mu\in M_{Z}, we have

PZ​(a)β‰₯hμ​(Ξ¦)+∫Zb​𝑑μ.P_{Z}(a)\geq h_{\mu}(\Phi)+\int_{Z}b\,d\mu.
Proof.

we will show that there exists an ll so that: PZl​(a)β‰₯hμ​(Ξ¦)+∫Zb​𝑑μP_{Z_{l}}(a)\geq h_{\mu}(\Phi)+\int_{Z}b\,d\mu. Given Ο΅>0\epsilon>0, there exists δ∈(0,Ο΅)\delta\in(0,\epsilon), a measurable partition ΞΎ={c1,c2,…,cm}\xi=\{c_{1},c_{2},...,c_{m}\} of XX and an open cover 𝒱={v1,v2,…,vk}\mathcal{V}=\{v_{1},v_{2},...,v_{k}\} of XX for some kβ‰₯mk\geq m such that:
(a): d​i​a​m​cj≀ϡ,viΒ―βŠ†cidiam\,c_{j}\leq\epsilon,\overline{v_{i}}\subseteq c_{i} and μ​(ci\vi)<Ξ΄2\mu(c_{i}\backslash v_{i})<\delta^{2} for i=1,2,…,mi=1,2,...,m.
(b): The set E=⋃i=m+1kviE=\bigcup\limits_{i=m+1}^{k}v_{i} has measure μ​(E)<Ξ΄2\mu(E)<\delta^{2}.
Now we consider a measure Ξ½\nu in the ergodic decomposition of ΞΌ\mu with respect to the time-1 map Ο†1\varphi_{1}. The later is described by a measure Ο„βˆ’\tau-in the space β„³β€²\mathcal{M}^{\prime} of Ο†1\varphi_{1}-invariant probability measure that is concentrated on the ergodic measure (with respect to Ο†1\varphi_{1}). Note that ν​(E)<Ξ΄\nu(E)<\delta for Ξ½\nu in a set β„³Ξ΄βŠ†β„³β€²\mathcal{M}_{\delta}\subseteq\mathcal{M}^{\prime} of positive Ο„βˆ’\tau-measure such that τ​(β„³Ξ΄)β†’1\tau(\mathcal{M}_{\delta})\to 1 when Ξ΄β†’0\delta\to 0 since

Ξ΄2>μ​(E)=βˆ«β„³β€²Ξ½β€‹(E)​𝑑τ​(Ξ½)β‰₯βˆ«β„³β€²|ℳδν​(E)​𝑑τ​(Ξ½)β‰₯δ​τ​(β„³β€²\β„³Ξ΄).\delta^{2}>\mu(E)=\int_{\mathcal{M}^{\prime}}\nu(E)\,d\tau(\nu)\geq\int_{\mathcal{M}^{\prime}|_{\mathcal{M}_{\delta}}}\nu(E)\,d\tau(\nu)\geq\delta\tau(\mathcal{M}^{\prime}\backslash\mathcal{M}_{\delta}).

For each x∈Zx\in Z and nβˆˆβ„•n\in\mathbb{N}, let tn​(x)t_{n}(x) be the number of integers l∈[0,n)l\in[0,n) such that Ο†1l​(x)∈E\varphi_{1}^{l}(x)\in E. By Birkhoff’s ergodic theorem, since Ξ½\nu is ergodic for Ο†1\varphi_{1} we have

limnβ†’βˆžtn​(x)n=limnβ†’βˆž1nβ€‹βˆ‘j=0nβˆ’1Ο‡E​(Ο†1j​(x))=∫X𝑑ν=ν​(E)\lim\limits_{n\to\infty}\frac{t_{n}(x)}{n}=\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{j=0}^{n-1}\chi_{E}(\varphi_{1}^{j}(x))=\int_{X}\,d\nu=\nu(E) (4.10)

for Ξ½βˆ’\nu-almost every x∈Xx\in X. On the other hand, by lemma 4.5 and Birkhoff’s ergodic theorem we have

limtβ†’+∞at​(x)t=limtβ†’+∞1tβ€‹βˆ«ot(bβˆ˜Ο†u)​𝑑u=∫Zb​𝑑μ\lim\limits_{t\to+\infty}\frac{a_{t}(x)}{t}=\lim\limits_{t\to+\infty}\frac{1}{t}\int_{o}^{t}(b\circ\varphi_{u})\,du=\int_{Z}b\,d\mu (4.11)

for ΞΌβˆ’\mu-almost every x∈Xx\in X. By (4.10)(4.10) and (4.11)(4.11) and Egrov’s theorem, there exists Ξ½βˆˆβ„³Ξ΄\nu\in\mathcal{M}_{\delta}, n1βˆˆβ„•n_{1}\in\mathbb{N} and a measurable set A1βŠ†ZA_{1}\subseteq Z with ν​(A1)β‰₯1βˆ’Ξ΄\nu(A_{1})\geq 1-\delta such that

tn​(x)n<2​δ​a​n​d​|an​(x)nβˆ’βˆ«Zb​𝑑μ|<Ξ΄\frac{t_{n}(x)}{n}<2\delta\,\,and\,\,\left|\frac{a_{n}(x)}{n}-\int_{Z}b\,d\mu\right|<\delta (4.12)

for every x∈A1x\in A_{1} and n>n1n>n_{1}.
Moreover, let ΞΎn=β‹‚j=0nΟ†1βˆ’j​(ΞΎ|Zl)\xi_{n}=\bigcap\limits_{j=0}^{n}\varphi_{1}^{-j}(\xi|_{Z_{l}}) where ΞΎ|Zl\xi|_{Z_{l}} is the partition induced by ΞΎ\xi on ZlZ_{l}. It from the Shannon-Mcmillian-Breiman theorem and Egorov’s theorem that there exists n2βˆˆβ„•n_{2}\in\mathbb{N} and a measurable set A2βŠ†ZA_{2}\subseteq Z with ν​(A2)β‰₯1βˆ’Ξ΄\nu(A_{2})\geq 1-\delta such that

ν​(ΞΎn​(x))β‰₯exp⁑[(βˆ’hν​(Ο†1,ΞΎ)+Ξ΄)​n]\nu(\xi_{n}(x))\geq\exp[(-h_{\nu}(\varphi_{1},\xi)+\delta)n] (4.13)

for every x∈A2x\in A_{2} and n>n2n>n_{2}. Take p=m​a​x​{n1,n2}p=max\{n_{1},n_{2}\}, and A=A1∩A2A=A_{1}\cap A_{2}. Note that ν​(A)β‰₯1βˆ’2​δ\nu(A)\geq 1-2\delta. By construction,properties (4.12)(4.12) and (4.13)(4.13) holds for every x∈Ax\in A and n>pn>p.

Since the {Zi}\{Z_{i}\} are nested and exhaust ZZ, we can choose ll so that ν​(Zl)>1βˆ’Ξ΄\nu(Z_{l})>1-\delta. We have that:ν​(Zl)∩A>1βˆ’3​δ\nu(Z_{l})\cap A>1-3\delta. Now let Ξ”\Delta be a Lebesgue number of of the cover 𝒱\mathcal{V} and ϡ¯>0\overline{\epsilon}>0 such that 2​ϡ¯<Ξ”2\overline{\epsilon}<\Delta. Given Ξ±βˆˆβ„\alpha\in\mathbb{R}, take qβ‰₯pq\geq p such that for each nβ‰₯qn\geq q there exists a set Ξ“βŠ†XΓ—[n,+∞)\Gamma\subseteq X\times[n,+\infty) covering zz with

|βˆ‘(x,t)∈γexp(a(x,t.ϡ¯)βˆ’Ξ±t)βˆ’M(Zl,a,Ξ±,ϡ¯)|<Ξ΄\left|\sum\limits_{(x,t)\in\gamma}\exp(a(x,t.\overline{\epsilon})-\alpha t)-M(Z_{l},a,\alpha,\overline{\epsilon})\right|<\delta (4.14)

Given bβˆˆβ„•b\in\mathbb{N}, let Ξ“b={(x,b)βˆˆΞ“:Bb​(x,ϡ¯)∩Aβ‰ βˆ…}\Gamma_{b}=\{(x,b)\in\Gamma:B_{b}(x,\overline{\epsilon})\cap A\neq\emptyset\} and define Bb=⋃(x,t)βˆˆΞ“bBt​(x,ϡ¯)B_{b}=\bigcup\limits_{(x,t)\in\Gamma_{b}}B_{t}(x,\overline{\epsilon}). One can proceed as in the proof of lemma 2 in [17] to show that

#​Γbβ‰₯ν​(Bb∩A)​exp⁑[hν​(Ο†1,ΞΎ)​lβˆ’(1+2​log⁑#​ξ)​l​δ]\#\,\Gamma_{b}\geq\nu(B_{b}\cap A)\exp[h_{\nu}(\varphi_{1},\xi)l-(1+2\log\#\,\xi)l\delta] (4.15)

for each bβˆˆβ„•b\in\mathbb{N}. Indeed, let Lb\textit{L}_{b} be the number of elements cc of ΞΎb\xi_{b} such that c∩Bb∩Aβ‰ βˆ…c\cap B_{b}\cap A\neq\emptyset. It follows from (4.13)(4.13) that

ν​(Bb∩A)β‰€βˆ‘c∩Bb∩Aβ‰ βˆ…Ξ½β€‹(c)≀Lb​exp⁑[(βˆ’hν​(Ο†1,ΞΎ)+Ξ΄)​b].\nu(B_{b}\cap A)\leq\sum\limits_{c\cap B_{b}\cap A\neq\emptyset}\nu(c)\leq\textit{L}_{b}\exp[(-h_{\nu}(\varphi_{1},\xi)+\delta)b]. (4.16)

Note that by eventually making ϡ¯\overline{\epsilon} sufficiently small, for each x∈Zx\in Z there exists i1,i2,…,ib∈{1,2,…,k}i_{1},i_{2},...,i_{b}\in\{1,2,...,k\} such that Bb​(x,ϡ¯)βŠ†VB_{b}(x,\overline{\epsilon})\subseteq V, where V=β‹‚j=1bΟ†1βˆ’b+1​vijV=\bigcap\limits_{j=1}^{b}\varphi_{1}^{-b+1}v_{i_{j}}(this follows readily from the uniform continuity of the map (t,x)↦φt​(x)(t,x)\mapsto\varphi_{t}(x) on the compact set [0,1]Γ—X[0,1]\times X). Given (x,b)βˆˆΞ“b(x,b)\in\Gamma_{b}, we have Bb(x,(Β―Ο΅))∩A1β‰ βˆ…B_{b}(x,\overline{(}\epsilon))\cap A_{1}\neq\emptyset. Hence, it follows from the first inequality in (4.12)(4.12) that the number S(x,b)S_{(x,b)} of elements cc of the partition ΞΎb\xi_{b} such that c∩Bb​(x,ϡ¯)∩Aβ‰ βˆ…c\cap B_{b}(x,\overline{\epsilon})\cap A\neq\emptyset satisfies S(x,b)≀m2​δ​b=exp⁑(2​δ​b​log⁑m)S_{(x,b)}\leq m^{2\delta b}=\exp(2\delta b\log m). Therefore,

Lbβ‰€βˆ‘(x,b)βˆˆΞ“bS(x,b)≀#​Γb​exp⁑(2​δ​b​log⁑m).\textit{L}_{b}\leq\sum\limits_{(x,b)\in\Gamma_{b}}S_{(x,b)}\leq\#\,\Gamma_{b}\exp(2\delta b\log m). (4.17)

Inequality (4.15)(4.15) follows readily from (4.16)(4.16) and (4.17)(4.17).

Observe that by the second inequality in (4.12)(4.12) we have

supBb​(x,ϡ¯)abβ‰₯b​(∫Zbβ€‹π‘‘ΞΌβˆ’Ξ΄)βˆ’Ξ³b​(a,ϡ¯)\sup\limits_{B_{b}(x,\overline{\epsilon})}a_{b}\geq b(\int_{Z}b\,d\mu-\delta)-\gamma_{b}(a,\overline{\epsilon})

for all bβ‰₯qb\geq q and (x,b)∈γb​(a,ϡ¯)(x,b)\in\gamma_{b}(a,\overline{\epsilon}). Therefore,

βˆ‘(x,t)βˆˆΞ“exp⁑(a​(x,t,ϡ¯)βˆ’Ξ±β€‹t)β‰₯βˆ‘b=q+βˆžβˆ‘(x,t)βˆˆΞ“bexp⁑(supBb​(x,ϡ¯)abβˆ’Ξ±β€‹b)\displaystyle\sum\limits_{(x,t)\in\Gamma}\exp(a(x,t,\overline{\epsilon})-\alpha t)\geq\sum\limits_{b=q}^{+\infty}\sum\limits_{(x,t)\in\Gamma_{b}}\exp(\sup\limits_{B_{b}(x,\overline{\epsilon})}a_{b}-\alpha b)
β‰₯βˆ‘b=q+∞#​Γb​exp⁑[(βˆ’Ξ±+∫Zbβ€‹π‘‘ΞΌβˆ’Ξ΄)​bβˆ’Ξ³b​(a,ϡ¯)]\displaystyle\geq\sum\limits_{b=q}^{+\infty}\#\,\Gamma_{b}\exp[(-\alpha+\int_{Z}b\,d\mu-\delta)b-\gamma_{b}(a,\overline{\epsilon})]
β‰₯βˆ‘b=q+βˆžΞ½β€‹(Bb∩A)​exp⁑[(hν​(Ο†1,ΞΎ)+∫Zbβ€‹π‘‘ΞΌβˆ’Ξ³b​(a,ϡ¯)bβˆ’Ξ±)​bβˆ’2​(1+log⁑#​ξ)​b​δ].\displaystyle\geq\sum\limits_{b=q}^{+\infty}\nu(B_{b}\cap A)\exp[(h_{\nu}(\varphi_{1},\xi)+\int_{Z}b\,d\mu-\frac{\gamma_{b}(a,\overline{\epsilon})}{b}-\alpha)b-2(1+\log\#\,\xi)b\delta].

Without loss of generality one can also assume that Ξ΄\delta is sufficiently small such that

Ξ±<hν​(Ο†1,ΞΎ)+∫Zbβ€‹π‘‘ΞΌβˆ’limΒ―tβ†’+∞γt​(a,ϡ¯)tβˆ’2​(1+log⁑#​ξ)β€‹Ξ΄βˆ’Ξ΄,\alpha<h_{\nu}(\varphi_{1},\xi)+\int_{Z}b\,d\mu-\mathop{\overline{\lim}}\limits_{t\to+\infty}\frac{\gamma_{t}(a,\overline{\epsilon})}{t}-2(1+\log\#\,\xi)\delta-\delta,

then

βˆ‘(x,t)βˆˆΞ“exp⁑(a​(x,t,ϡ¯)βˆ’Ξ±β€‹t)β‰₯βˆ‘b=t+βˆžΞ½β€‹(Bb∩A)β‰₯1βˆ’2​δ,\mathop{\sum}\limits_{(x,t)\in\Gamma}\exp(a(x,t,\overline{\epsilon})-\alpha t)\geq\mathop{\sum}\limits_{b=t}^{+\infty}\nu(B_{b}\cap A)\geq 1-2\delta,

and so it follows from (4.14)(4.14) that M​(Zl,a,Ξ±,ϡ¯)β‰₯1βˆ’3​δ>0M(Z_{l},a,\alpha,\overline{\epsilon})\geq 1-3\delta>0. Therefore, PZl​(a,Ο΅)β‰₯Ξ±P_{Z_{l}}(a,\epsilon)\geq\alpha, which implies that

PZl​(a,Ο΅)β‰₯hν​(Ο†1,ΞΎ)+∫Zbβ€‹π‘‘ΞΌβˆ’limΒ―tβ†’+∞γt​(a,ϡ¯)t.P_{Z_{l}}(a,\epsilon)\geq h_{\nu}(\varphi_{1},\xi)+\int_{Z}b\,d\mu-\mathop{\overline{\lim}}\limits_{t\to+\infty}\frac{\gamma_{t}(a,\overline{\epsilon})}{t}.

Finally, we consider measurable partition ΞΎb\xi_{b} and open covers 𝒱b\mathcal{V}_{b} as before with Ο΅=1b\epsilon=\frac{1}{b}. For each bb take Ο΅bΒ―>0\overline{\epsilon_{b}}>0 such that 2​ϡbΒ―<1b2\overline{\epsilon_{b}}<\frac{1}{b} is a Lebesgue number of the cover Ξ½b\nu_{b}. Since diamΞΎbβ†’0\xi_{b}\to 0 when bβ†’+∞b\to+\infty, it follows that

l​i​mbβ†’+∞hν​(Ο†1,ΞΎb)=hν​(Ο†1).\mathop{lim}\limits_{b\to+\infty}h_{\nu}(\varphi_{1},\xi_{b})=h_{\nu}(\varphi_{1}).

Moreover, since the family aa has tempered variation property, we obtain

PZl​(a)=limbβ†’+∞PZl​(a,Ο΅bΒ―)\displaystyle P_{Z_{l}}(a)=\mathop{\lim}\limits_{b\to+\infty}P_{Z_{l}}(a,\overline{\epsilon_{b}}) β‰₯limbβ†’+∞hν​(Ο†1,ΞΎb)+∫Zbβ€‹π‘‘ΞΌβˆ’limbβ†’+∞limΒ―tβ†’+∞γt​(a,Ο΅bΒ―)t\displaystyle\geq\mathop{\lim}\limits_{b\to+\infty}h_{\nu}(\varphi_{1},\xi_{b})+\int_{Z}b\,d\mu-\mathop{\lim}\limits_{b\to+\infty}\mathop{\overline{\lim}}\limits_{t\to+\infty}\frac{\gamma_{t}(a,\overline{\epsilon_{b}})}{t}
=hν​(Ο†1)+∫Zb​𝑑μ.\displaystyle=h_{\nu}(\varphi_{1})+\int_{Z}b\,d\mu.

Integrating with respect to Ξ½\nu gives

PZl​(a)β‰₯βˆ«β„³Ξ΄hν​(Ο†1)​𝑑τ​(Ξ½)+∫Zb​𝑑ν.P_{Z_{l}}(a)\geq\int_{\mathcal{M}_{\delta}}h_{\nu}(\varphi_{1})\,d\tau(\nu)+\int_{Z}b\,d\nu.

and letting Ξ΄β†’0\delta\to 0 yields the inequality:

PZl​(a)β‰₯βˆ«β„³β€²hν​(Ο†1)​𝑑τ​(Ξ½)+∫Zb​𝑑ν=hν​(Ξ¦)+∫Zb​𝑑ν.P_{Z_{l}}(a)\geq\int_{\mathcal{M}^{\prime}}h_{\nu}(\varphi_{1})\,d\tau(\nu)+\int_{Z}b\,d\nu=h_{\nu}(\Phi)+\int_{Z}b\,d\nu.

This completes the proof of the lemma. ∎

When ΞΌβˆˆβ„³Z\mu\in\mathcal{M}_{Z} is ergodic, ZΞΌZ_{\mu} is a nonempty Ξ¦βˆ’\Phi-invariant subset of ℒ​(𝒡)\mathcal{L(Z)} with μ​(ZΞΌ)=1\mu(Z_{\mu})=1. Hence, it follows from lemma 4.6 that

Pℒ​(Z)​(a)β‰₯hμ​(Ξ¦)+∫ZΞΌb​𝑑μ=hμ​(Ξ¦)+∫Zb​𝑑μ.P_{\mathcal{L}(Z)}(a)\geq h_{\mu}(\Phi)+\int_{Z_{\mu}}b\,d\mu=h_{\mu}(\Phi)+\int_{Z}b\,d\mu.

When ΞΌβˆˆβ„³Z\mu\in\mathcal{M}_{Z} is arbitrary, one can decompose XX into ergodic components and the previous argument shows that

Pℒ​(Z)​(a)β‰₯supΞΌβˆˆβ„³Z{hμ​(Ξ¦)+∫Zb​𝑑μ}.P_{\mathcal{L}(Z)}(a)\geq\mathop{\sup}\limits_{\mu\in\mathcal{M}_{Z}}\{h_{\mu}(\Phi)+\int_{Z}b\,d\mu\}.

This completes the proof of the theorem. ∎

It follows from theorem 4.3 that if VΦ​(X)∩MZβ‰ βˆ…V_{\Phi}(X)\cap M_{Z}\neq\emptyset for each x∈Zx\in Z, and so in particular if ZZ is compact and Ξ¦βˆ’\Phi-invariant, then

PZ​(a)=supΞΌβˆˆβ„³Z{hμ​(Ξ¦)+∫Zb​𝑑μ}.P_{Z}(a)=\mathop{\sup}\limits_{\mu\in\mathcal{M}_{Z}}\{h_{\mu}(\Phi)+\int_{Z}b\,d\mu\}.

References

  • [1] L. Backes and F. Rodrigues, Topological pressure for discontinuous semiflows and a variational principle for impulsive dynamical systems, Topol. Methods Nonlinear Anal. 59:303–330, 2022
  • [2] J. Barral and D. Feng, Weighted thermodynamic formalism on subshifts and applications, Asian J. Math. 16: 319–352, 2012
  • [3] L. Barreira, Thermodynamic formalism and applications to dimension theory, Progress in Mathematics. 294:xii+297, 2011
  • [4] L. Barreira and C. Holanda, Nonadditive topological pressure for flows, Nonlinearity. 33: 3370–3394, 2020
  • [5] L. M. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergodic Theory Dynam. Systems. 16: 871–927, 1996
  • [6] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics. 470:viii+75, 2008
  • [7] Y. Cao, D. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials, Discrete Contin. Dyn. Syst. 20:639–657, 2008
  • [8] Y. Cao, H. Hu and Y. Zhao, Nonadditive measure-theoretic pressure and applications to dimensions of an ergodic measure, Ergodic Theory Dynam. Systems. 33:831–850, 2013
  • [9] W. Cheng, Y. Zhao and Y. Cao, Pressures for asymptotically sub-additive potentials under a mistake function, Discrete Contin. Dyn. Syst. 32:487–497, 2012
  • [10] K. J. Falconer, A subadditive thermodynamic formalism for mixing repellers, J. Phys. A. 21: L737–L742, 1988
  • [11] D. Feng, and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials, Comm. Math. Phys. 297: 1–43, 2010
  • [12] D. Feng, and W. Huang, Variational principle for weighted topological pressure, J. Math. Pures Appl. (9). 106:411–452, 2016
  • [13] L. He, J. Lv and L. Zhou, Definition of measure-theoretic pressure using spanning sets, Acta Math. Sin. (Engl. Ser.). 20:709–718, 2004
  • [14] J. F. C. Kingman, The ergodic theory of subadditive stochastic processes, J. Roy. Statist. Soc. Ser. B. 30:499–510, 1968
  • [15] X. Ma, E. Chen and Y. Pei, Thermodynamic formalism for subadditive sequence of discontinuous functions, Anal. Theory Appl. 26: 174–185, 2010
  • [16] A. Mummert, A variational principle for discontinuous potentials, Ergodic Theory Dynam. Systems. 27: 583–594, 2007
  • [17] Y. B. Pesin and B. S. Pitskel , Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen. 18: 50–63, 96, 1984
  • [18] Y. B. Pesin, Dimension theory in dynamical systems, Chicago Lectures in Mathematics: Contemporary views and applications. xii+304, 1997
  • [19] M. Rauch, Variational principles for the topological pressure of measurable potentials, Discrete Contin. Dyn. Syst. Ser. S. 10: 367–394, 2017
  • [20] M. Rauch, Variational principles for topological pressure, issertation, Jena, Friedrich-Schiller-University Jena, 2018
  • [21] D. Ruelle, Statistical mechanics on a compact set with ZvZ^{v} action satisfying expansiveness and specification, Trans. Amer. Math. Soc. 187: 237–251, 1973
  • [22] Y. Wang, E. Chen, Z. Lin, and T. Wu, Bowen entropy of sets of generic points for fixed-point free flows, J. Differ. Equations. 269:9846–9867, 2020
  • [23] Y. Zhao and Y. Cao, On the topological pressure of random bundle transformations in sub-additive case, J. Math. Anal. Appl. 342:715–725, 2008
  • [24] Y. Zhao and Y. Cao, Measure-theoretic pressure for subadditive potentials, Nonlinear Anal. 70:2237–2247, 2009