This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Timelike minimal surfaces in the three-dimensional Heisenberg group

Hirotaka Kiyohara Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan [email protected]  and  Shimpei Kobayashi Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan [email protected]
Abstract.

Timelike surfaces in the three-dimensional Heisenberg group with left invariant semi-Riemannian metric are studied. In particular, non-vertical timelike minimal surfaces are characterized by the non-conformal Lorentz harmonic maps into the de Sitter two sphere. On the basis of the characterization, the generalized Weierstrass type representation will be established through the loop group decompositions.

Key words and phrases:
Minimal surfaces; Heisenberg group; timelike surfaces; loop groups; the generalized Weierstrass type representation
2020 Mathematics Subject Classification:
Primary 53A10, 58E20, Secondary 53C42
The first named author is supported by JST SPRING, Grant Number JPMJSP2119.
The second named author is partially supported by Kakenhi 18K03265.

1. Introduction

Constant mean curvature surfaces in three-dimensional homogeneous spaces, specifically Thurston’s eight model spaces [27], have been intensively studied in recent years. One of the reasons is a seminal paper by Abresch-Rosenberg [1], where they introduced a quadratic differential, the so-called the Abresch-Rosenberg differential, analogous to the Hopf differential for surfaces in the space forms and showed that it was holomorphic for a constant mean curvature surface in various classes of three-dimensional homogeneous spaces, such as the Heisenberg group Nil3{\rm Nil}_{3}, the product spaces 𝕊2×\mathbb{S}^{2}\times\mathbb{R} and 2×\mathbb{H}^{2}\times\mathbb{R} etc, see [2] in detail. It is evident that holomorphic quadratic differentials are fundamental for study of global geometry of surfaces, [15]. On the one hand, Berdinsky-Taimanov developed integral representations of surfaces in three-dimensional homogeneous spaces by using the generating spinors and the nonlinear Dirac type equations, [3, 4]. They were natural generalizations of the classical Kenmotsu-Weierstrass representation for surfaces in the Euclidean three-space.

Combining the Abresch-Rosenberg differential and the nonlinear Dirac equation with generating spinors, in [12, 13], Dorfmeister, Inoguchi and the second named author of this paper have established the loop group method for minimal surfaces in Nil3{\rm Nil}_{3}, where the following left-invariant Riemannian metric has been considered on Nil3{\rm Nil}_{3}:

ds2=dx12+dx22+(dx3+12(x2dx1x1dx2))2,ds^{2}=dx_{1}^{2}+dx_{2}^{2}+\left(dx_{3}+\frac{1}{2}(x_{2}dx_{1}-x_{1}dx_{2})\right)^{2},

In particular, all non-vertical minimal surfaces in Nil3{\rm Nil}_{3} have been constructed from holomorphic data, which have been called the holomorphic potentials, through the loop group decomposition, the so-called Iwasawa decomposition, and the construction has been commonly called the generalized Weierstrass type representation. In this loop group method, the Lie group structure of Nil3{\rm Nil}_{3} and harmonicity of the left-translated normal Gauss map of a non-vertical surface, which obviously took values in a hemisphere in the Lie algebra of Nil3{\rm Nil}_{3}, were essential tools. To be more precise, a surface in Nil3{\rm Nil}_{3} is minimal if and only if the left-translated normal Gauss map is a non-conformal harmonic map with respect to the hyperbolic metric on the hemisphere, that is, one considers the hemisphere as the hyperbolic two space not the two sphere with standard metric. Since the hyperbolic two space is one of the standard symmetric spaces and the loop group method of harmonic maps from a Riemann surface into a symmetric space have been developed very well [14], thus we have obtained the generalized Weierstrass type representation.

On the one had, it is easy to see that the three-dimensional Heisenberg group Nil3{\rm Nil}_{3} can have the following left-invariant semi-Riemannian metrics:

ds±2=±dx12+dx22(dx3+12(x2dx1x1dx2))2.ds^{2}_{\pm}=\pm dx_{1}^{2}+dx_{2}^{2}\mp\left(dx_{3}+\frac{1}{2}(x_{2}dx_{1}-x_{1}dx_{2})\right)^{2}.

Moreover in [25], it has been shown that the left-invariant semi-Riemannian metrics on Nil3{\rm Nil}_{3} with 44-dimensional isometry group only are the metrics ds2ds^{2}_{\mp}. Therefore a natural problem is study of spacelike/timelike, minimal/maximal surfaces in Nil3{\rm Nil}_{3} with the above semi-Riemannian metrics in terms of the generalized Weierstrass type representations.

In this paper we will consider timelike surfaces in Nil3{\rm Nil}_{3} with the semi-Riemannian metric ds2ds^{2}_{-}. For defining the Abresch-Rosenberg differential and the nonlinear Dirac equations with generating spinors, the para-complex structure on a timelike surface is essential, and we will systematically develop theory of timelike surfaces using the para-complex structure, the Abresch-Rosenberg differential and the nonlinear Dirac equations with generating spinors in Section 2. Then the first of the main results in this paper is Theorem 3.2, where non-vertical timelike minimal surfaces in Nil3{\rm Nil}_{3} will be characterized in terms of harmonicity of the left-translated normal Gauss map. To be more precise, the left-translated normal Gauss map of a timelike surface takes values in the lower half part of the de Sitter two sphere 𝕊~12={(x1,x2,x3)𝔫𝔦𝔩3=𝕃3x12+x22+x32=1,x3<0}\widetilde{\mathbb{S}}^{2}_{1-}=\{(x_{1},x_{2},x_{3})\in\mathfrak{nil}_{3}=\mathbb{L}^{3}\mid-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1,x_{3}<0\}, but it is not a Lorentz harmonic map into 𝕊~12\widetilde{\mathbb{S}}^{2}_{1-} with respect to the standard metric on the de Sitter sphere. It will be shown that by combining two stereographic projections, the left-translated normal Gauss map can take values in the upper half part of the de Sitter two sphere with interchanging x1x_{1} and x2x_{2}, that is, 𝕊1+2={(x1,x2,x3)𝕃3x12x22+x32=1,x3>0}\mathbb{S}^{2}_{1+}=\{(x_{1},x_{2},x_{3})\in\mathbb{L}^{3}\mid x_{1}^{2}-x_{2}^{2}+x_{3}^{2}=1,x_{3}>0\}, see Figure 1, and it is a non-conformal Lorentz harmonic into 𝕊1+2\mathbb{S}^{2}_{1+} if and only if the timelike surface is minimal, see Section 3.1 in details. Note that timelike minimal surfaces in (Nil3,ds2)({\rm Nil}_{3},ds^{2}_{-}) have been studied through the Weierstrass-Enneper type representation and the Björing problem in [17, 21, 7, 8, 26, 9, 10, 22, 19].

It has been known that timelike constant mean curvature surfaces in the three-dimensional Minkowski space 𝕃3\mathbb{L}^{3} could be characterized by a Lorentz harmonic map into the de Sitter two space, [16, 18, 11, 5, 6]. In fact the Lorentz harmonicity of the unit normal of a timelike surface in 𝕃3\mathbb{L}^{3} is equivalent to constancy of the mean curvature. Furthermore, the generalized Weierstrass type representation for timelike non-zero constant mean curvature surfaces has been established in [11]. In Theorem 4.1, we will show that two maps, which are given by the logarithmic derivative of one parameter family of moving frames of a non-conformal Lorentz harmonic map (the so-called extended frame) into 𝕊1+2\mathbb{S}^{2}_{1+} with respect to an additional parameter (the so-called spectral parameter), define a timelike non-zero constant mean curvature surface in 𝕃3\mathbb{L}^{3} and a non-vertical timelike minimal surface in Nil3{\rm Nil}_{3}, respectively.

From the view point of the loop group construction of Lorentz harmonic maps, the construction in [11] is sufficient, however, it is not enough for our study of timelike minimal surfaces in (Nil3,ds2)({\rm Nil}_{3},ds_{-}^{2}). As we have mentioned above, for defining the Abresch-Rosenberg differential and the nonlinear Dirac equation with generating spinors the para-complex structure is essential. Note that the para-complex structure has been used for study of timelike surface [28, 20]. We can then show that the Abresch-Rosenberg differential is para-holomorphic if a timelike surface has constant mean curvature, Theorem 2.6, which is analogous to the fundamental result of Abresch-Rosenberg.

As a by-product of utilizing the para-complex structure, it is easy to compare our construction with minimal surface in (Nil3,ds2)({\rm Nil}_{3},ds^{2}), where the complex structure has been used, and moreover, the generalized Weierstrass type representation can be understood in a unified way, that is, the Weierstrass data is just a 22 by 22 matrix-valued para-holomorphic function and a loop group decomposition of the solution of a para-holomorphic differential equation gives the extended frame of a non-conformal Lorentz harmonic map in 𝕊1+2\mathbb{S}^{2}_{1+}, Theorem 5.4. One of difficulties is that one needs to have appropriate loop group decompositions in the para-complex setting, that is, Birkhoff and Iwasawa decompositions. In Theorem 5.1, by identifying the double loop groups of SL2\mathrm{SL}_{2}\mathbb{R}, that is ΛSL2σ×ΛSL2σ\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma}\times\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma} and the loop group of SL2{\rm SL}_{2}\mathbb{C}^{\prime}, that is, ΛSL2σ\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma} (where \mathbb{C}^{\prime} denotes the para-complex number) by a natural isomorphism, we will obtain such decompositions. Finally in Section 6, several examples will be shown by our loop group construction. In particular B-scroll type minimal surfaces in Nil3{\rm Nil}_{3} will be established in Section 6.4. In Appendix A, we will discuss timelike constant mean curvature surfaces in 𝕃3\mathbb{L}^{3}, and in Appendix B, we will see the correspondence between our construction and the construction without the para-complex structure in [11].

2. Timelike surfaces in Nil3{\rm Nil}_{3}

In this section we will consider timelike surfaces in Nil3{\rm Nil}_{3}. In particular we will use the para-complex structure and the nonlinear Dirac equation for timelike surfaces. Finally the Lax pair type system for timelike surface will be shown.

2.1. Nil3{\rm Nil}_{3} with indefinite metrics

The Heisenberg group is a 33-dimensional Lie group

Nil3(τ)=(3(x1,x2,x3),){\rm Nil}_{3}(\tau)=(\mathbb{R}^{3}(x_{1},x_{2},x_{3}),\cdot)

for τ0\tau\neq 0 with the multiplication

(x1,x2,x3)(y1,y2,y3)=(x1+y1,x2+y2,x3+y3+τ(x1y2y1x2)).(x_{1},x_{2},x_{3})\cdot(y_{1},y_{2},y_{3})=(x_{1}+y_{1},x_{2}+y_{2},x_{3}+y_{3}+\tau(x_{1}y_{2}-y_{1}x_{2})).

The unit element of Nil3(τ){\rm Nil}_{3}(\tau) is (0,0,0)(0,0,0). The inverse element of (x1,x2,x3)(x_{1},x_{2},x_{3}) is (x1,x2,x3)(-x_{1},-x_{2},-x_{3}). The groups Nil3(τ){\rm Nil}_{3}(\tau) and Nil3(τ){\rm Nil}_{3}(\tau^{\prime}) are isomorphic if ττ0\tau\tau^{\prime}\neq 0. The Lie algebra 𝔫𝔦𝔩3\mathfrak{nil}_{3} of Nil3(τ){\rm Nil}_{3}(\tau) is 3\mathbb{R}^{3} with the relations:

[e1,e2]=2τe3,[e2,e3]=[e3,e1]=0[e_{1},e_{2}]=2\tau e_{3},\quad[e_{2},e_{3}]=[e_{3},e_{1}]=0

with respect to the normal basis e1=(1,0,0),e2=(0,1,0),e3=(0,0,1)e_{1}=(1,0,0),e_{2}=(0,1,0),e_{3}=(0,0,1). In this paper we consider the left invariant indefinite metric ds2ds_{-}^{2} for Nil3{\rm Nil}_{3} as follows:

(2.1) ds2=(dx1)2+(dx2)2+ωτωτ,ds_{-}^{2}=-(dx_{1})^{2}+(dx_{2})^{2}+\omega_{\tau}\otimes\omega_{\tau},

where ωτ=dx3+τ(x2dx1x1dx2)\omega_{\tau}=dx_{3}+\tau(x_{2}dx_{1}-x_{1}dx_{2}). Moreover, we fix the real parameter τ\tau as τ=1/2\tau=1/2 for simplicity. The vector fields Ek(k=1,2,3)E_{k}\,(k=1,2,3) defined by

E1=x1x22x3,E2=x2+x12x3andE3=x3E_{1}=\partial_{x_{1}}-\frac{x_{2}}{2}\partial_{x_{3}},\quad E_{2}=\partial_{x_{2}}+\frac{x_{1}}{2}\partial_{x_{3}}\quad{\rm and}\quad E_{3}=\partial_{x_{3}}

are left invariant corresponding to e1,e2,e3e_{1},e_{2},e_{3} and orthonormal to each other with the timelike vector E1E_{1} with respect to the metric ds2ds_{-}^{2}. The Levi-Civita connection \nabla of ds2ds_{-}^{2} is given by

E1E1=0,E1E2=12E3,E1E3=12E2,E2E1=12E3,E2E2=0,E2E3=12E1,E3E1=12E2,E3E2=12E1,E3E3=0.\begin{matrix}\vspace{2pt}\nabla_{E_{1}}E_{1}=0,&\nabla_{E_{1}}E_{2}=\frac{1}{2}E_{3},&\nabla_{E_{1}}E_{3}=-\frac{1}{2}E_{2},\\ \vspace{2pt}\nabla_{E_{2}}E_{1}=-\frac{1}{2}E_{3},&\nabla_{E_{2}}E_{2}=0,&\nabla_{E_{2}}E_{3}=-\frac{1}{2}E_{1},\\ \nabla_{E_{3}}E_{1}=-\frac{1}{2}E_{2},&\nabla_{E_{3}}E_{2}=-\frac{1}{2}E_{1},&\nabla_{E_{3}}E_{3}=0.\\ \end{matrix}

2.2. Para-complex structure

Let \mathbb{C}^{\prime} be a real algebra spanned by 11 and ii^{\prime} with following multiplication:

(i)2=1,1i=i1=i.(i^{\prime})^{2}=1,\quad 1\cdot i^{\prime}=i^{\prime}\cdot 1=i^{\prime}.

An element of the algebra =1i\mathbb{C}^{\prime}=\mathbb{R}1\oplus\mathbb{R}i^{\prime} is called a para-complex number. For a para-complex number zz we can uniquely express z=x+yiz=x+yi^{\prime} with some x,yx,y\in\mathbb{R}. Similar to complex numbers, the real part Rez\operatorname{Re}z, the imaginary part Imz\operatorname{Im}z and the conjugate z¯\bar{z} of zz are defined by

Rez=x,Imz=yandz¯=xyi.\operatorname{Re}z=x,\quad\operatorname{Im}z=y\quad{\rm and}\quad\bar{z}=x-yi^{\prime}.

For a para-complex number z=x+yiz=x+yi^{\prime}\in\mathbb{C}^{\prime} there exists a para-complex number ww\in\mathbb{C}^{\prime} with z1/2=wz^{1/2}=w if and only if

(2.2) x+y0andxy0.x+y\geq 0\quad{\rm and}\quad x-y\geq 0.

In particular i1/2{i^{\prime}}^{1/2} does not exist. Moreover, for a para-complex number z=x+yiz=x+yi^{\prime}\in\mathbb{C}^{\prime}, there exists a para-complex number ww\in\mathbb{C}^{\prime} such that z=ewz=e^{w} if and only if

(2.3) x+y>0andxy>0.x+y>0\quad{\rm and}\quad x-y>0.

Let MM be an orientable connected 2-manifold, GG a Lorentzian manifold and f:MGf:M\to G a timelike immersion, that is, the induced metric on MM is Lorentzian. The induced Lorentzian metric defines a Lorentz conformal structure on MM: for a timelike surface there exists a local para-complex coordinate system z=x+yiz=x+yi^{\prime} such that the induced metric II is given by I=eudzdz¯=eu((dx)2(dy)2)I=e^{u}dzd\bar{z}=e^{u}\left((dx)^{2}-(dy)^{2}\right). Then we can regard MM and ff as a Lorentz surface and a conformal immersion, respectively. The coordinate system zz is called the conformal coordinate system and the function eue^{u} the conformal factor of the metric with respect to zz. For a para-complex coordinate system z=x+yiz=x+yi^{\prime}, the partial differentiations are defined by

z=12(x+iy)andz¯=12(xiy).\partial_{z}=\frac{1}{2}(\partial_{x}+i^{\prime}\partial_{y})\quad{\rm and}\quad\partial_{\bar{z}}=\frac{1}{2}(\partial_{x}-i^{\prime}\partial_{y}).

2.3. Structure equations

Let f:MNil3f:M\to{\rm Nil}_{3} be a conformal immersion from a Lorentz surface MM into Nil3{\rm Nil}_{3}. Let us denote the inverse element of ff by f1f^{-1}. Then the 11-form α=f1df\alpha=f^{-1}df satisfies the Maurer-Cartan equation:

(2.4) dα+12[αα]=0.d\alpha+\frac{1}{2}[\alpha\wedge\alpha]=0.

For a conformal coordinate z=x+yiz=x+yi^{\prime} defined on a simply connected domain 𝔻M\mathbb{D}\subset M, set Φ\Phi as

Φ=f1fz.\Phi=f^{-1}f_{z}.

The function Φ\Phi takes values in the para-complexification 𝔫𝔦𝔩3\mathfrak{nil}_{3}^{\mathbb{C}^{\prime}} of 𝔫𝔦𝔩3\mathfrak{nil}_{3}. Then α\alpha is expressed as

α=Φdz+Φ¯dz¯\alpha=\Phi dz+\overline{\Phi}d\bar{z}

and the Maurer-Cartan equation (2.4) as

(2.5) Φz¯Φ¯z+[Φ¯,Φ]=0.\Phi_{\bar{z}}-\overline{\Phi}_{z}+[\overline{\Phi},\Phi]=0.

Denote the para-complex extension of ds2=g=i,jgijdxidxjds_{-}^{2}=g=\sum_{i,j}g_{ij}dx_{i}dx_{j} to 𝔫𝔦𝔩3\mathfrak{nil}_{3}^{\mathbb{C}^{\prime}} by the same letter. Then the conformality of ff is equivalent to

g(Φ,Φ)=0,g(Φ,Φ¯)>0.g(\Phi,\Phi)=0,\quad g(\Phi,\overline{\Phi})>0.

For the orthonormal basis {e1,e2,e3}\{e_{1},e_{2},e_{3}\} of 𝔫𝔦𝔩3\mathfrak{nil}_{3} we can expand Φ\Phi as Φ=ϕ1e1+ϕ2e2+ϕ3e3\Phi=\phi_{1}e_{1}+\phi_{2}e_{2}+\phi_{3}e_{3}. Then the conformality of ff can be represented as

(2.6) (ϕ1)2+(ϕ2)2+(ϕ3)2=0,ϕ1ϕ1¯+ϕ2ϕ2¯+ϕ3ϕ3¯=12eu,-(\phi_{1})^{2}+(\phi_{2})^{2}+(\phi_{3})^{2}=0,\quad-\phi_{1}\overline{\phi_{1}}+\phi_{2}\overline{\phi_{2}}+\phi_{3}\overline{\phi_{3}}=\frac{1}{2}e^{u},

for some function uu. The conformal factor is given by eue^{u}. Conversely, for a 𝔫𝔦𝔩3\mathfrak{nil}_{3}^{\mathbb{C}^{\prime}}-valued function Φ=k=13ϕkek\Phi=\sum_{k=1}^{3}\phi_{k}e_{k} on a simply connected domain 𝔻M\mathbb{D}\subset M satisfying (2.5) and (2.6), there exists an unique conformal immersion f:𝔻Nil3f:\mathbb{D}\to{\rm Nil}_{3} with the conformal factor eue^{u} satisfying f1df=Φdz+Φ¯dz¯f^{-1}df=\Phi dz+\overline{\Phi}d\bar{z} for any initial condition in Nil3{\rm Nil}_{3} given at some base point in 𝔻\mathbb{D}.

Next we consider the equation for a timelike surface ff with constant mean curvature 0. For ff denote the unit normal vector field by NN and the mean curvature by HH. The tension field τ(f)\tau(f) for ff is given by τ(f)\tau(f) = tr(df)(\nabla df) where df\nabla df is the second fundamental form for (f,N)(f,N). As well known the tension field of ff is related to the mean curvature and the unit normal by

(2.7) τ(f)=2HN.\tau(f)=2HN.

By left translating to (0,0,0)(0,0,0), we can see this equation rephrased as

(2.8) Φz¯+Φ¯z+{Φ,Φ¯}=euHf1N\Phi_{\bar{z}}+\overline{\Phi}_{z}+\left\{\Phi,\overline{\Phi}\right\}=e^{u}Hf^{-1}N

where {,}\{\cdot,\cdot\} is the bilinear symmetric map defined by

{X,Y}=XY+YX\left\{X,Y\right\}=\nabla_{X}Y+\nabla_{Y}X

for X,Y𝔫𝔦𝔩3X,Y\in\mathfrak{nil}_{3}. In particular for a surface with the mean curvature 0, we have

(2.9) Φz¯+Φ¯z+{Φ,Φ¯}=0.\Phi_{\bar{z}}+\overline{\Phi}_{z}+\left\{\Phi,\overline{\Phi}\right\}=0.

Conversely, for a 𝔫𝔦𝔩3\mathfrak{nil}_{3}-valued function Φ=k=13ϕkek\Phi=\sum_{k=1}^{3}\phi_{k}e_{k} satisfying (2.5), (2.6) and (2.9) on a simply connected domain 𝔻\mathbb{D}, there exists a conformal timelike surface f:𝔻Nil3f:\mathbb{D}\to{\rm Nil}_{3} with the mean curvature 0 and the conformal factor eue^{u} satisfying f1df=Φdz+Φ¯dz¯f^{-1}df=\Phi dz+\overline{\Phi}d\bar{z} for any initial condition in Nil3{\rm Nil}_{3} given at some base point in 𝔻\mathbb{D}.

2.4. Nonlinear Dirac equation for timelike surfaces

Let us consider the conformality condition of an immersion ff. We first prove the following lemma:

Lemma 2.1.

If a product xyxy of two para-complex numbers x,yx,y\in\mathbb{C}^{\prime} has the square root, then there exists ϵ{±1,±i}\epsilon\in\{\pm 1,\pm i^{\prime}\} such that ϵx\epsilon x and ϵy\epsilon y have the square roots.

Proof.

By the assumption,

Re(xy)±Im(xy)0\operatorname{Re}(xy)\pm\operatorname{Im}(xy)\geq 0

holds, and a simple computation shows that it is equivalent to

(Re(x)±Im(x))(Re(y)±Im(y))0.(\operatorname{Re}(x)\pm\operatorname{Im}(x))(\operatorname{Re}(y)\pm\operatorname{Im}(y))\geq 0.

Then the claim follows. ∎

Since the first condition in (2.6) can be rephrased as

(2.10) ϕ32=(ϕ1+iϕ2)(ϕ1iϕ2),\phi_{3}^{2}=(\phi_{1}+i\phi_{2})(\phi_{1}-i\phi_{2}),

and by Lemma 2.1, there exists ϵ{±1,±i}\epsilon\in\{\pm 1,\pm i^{\prime}\} such that ϵ(ϕ1+iϕ2)\epsilon(\phi_{1}+i\phi_{2}) and ϵ(ϕ1iϕ2)\epsilon(\phi_{1}-i\phi_{2}) have the square roots. Therefore there exist para-complex functions ψ2¯\overline{\psi_{2}} and ψ1\psi_{1} such that

ϕ1+iϕ2=2ϵψ2¯2,ϕ1iϕ2=2ϵψ12\phi_{1}+i\phi_{2}=2\epsilon\overline{\psi_{2}}^{2},\quad\phi_{1}-i\phi_{2}=2\epsilon{\psi_{1}}^{2}

hold. Then ϕ3\phi_{3} can be rephrased as ϕ3=2ψ1ψ2¯\phi_{3}=2\psi_{1}\overline{\psi_{2}}. Let us compute the second condition in (2.6) by using {ψ1,ψ2¯}\{\psi_{1},\overline{\psi_{2}}\} as

ϕ1ϕ1¯+ϕ2ϕ2¯+ϕ3ϕ3¯=2ϵϵ¯(ψ1ψ1¯ϵϵ¯ψ2ψ2¯)2.-\phi_{1}\overline{\phi_{1}}+\phi_{2}\overline{\phi_{2}}+\phi_{3}\overline{\phi_{3}}=-2\epsilon\bar{\epsilon}(\psi_{1}\overline{\psi_{1}}-\epsilon\bar{\epsilon}\psi_{2}\overline{\psi_{2}})^{2}.

Since we have assumed that the left hand side is positive, ϵ\epsilon takes values in

ϵ{±i}.\epsilon\in\{\pm i^{\prime}\}.

Therefore without loss of generality, we have

(2.11) ϕ1=ϵ((ψ2¯)2+(ψ1)2),ϕ2=ϵi((ψ2¯)2(ψ1)2),ϕ3=2ψ1ψ2¯.\phi_{1}=\epsilon\left((\overline{\psi_{2}})^{2}+(\psi_{1})^{2}\right),\>\phi_{2}=\epsilon i^{\prime}\left((\overline{\psi_{2}})^{2}-(\psi_{1})^{2}\right),\>\phi_{3}=2\psi_{1}\overline{\psi_{2}}.

Then the normal Gauss map f1Nf^{-1}N can be represented in terms of the functions ψ1\psi_{1} and ψ2\psi_{2}:

(2.12) f1N=2eu/2(ϵ(ψ1ψ2ψ1¯ψ2¯)e1+ϵi(ψ1ψ2+ψ1¯ψ2¯)e2(ψ2ψ2¯ψ1ψ1¯)e3),f^{-1}N=2e^{-u/2}\left(-\epsilon\left(\psi_{1}\psi_{2}-\overline{\psi_{1}}\overline{\psi_{2}}\right)e_{1}+\epsilon i^{\prime}\left(\psi_{1}\psi_{2}+\overline{\psi_{1}}\overline{\psi_{2}}\right)e_{2}-\left(\psi_{2}\overline{\psi_{2}}-\psi_{1}\overline{\psi_{1}}\right)e_{3}\right),

where eu/2=2(ψ2ψ2¯+ψ1ψ1¯)e^{u/2}=2(\psi_{2}\overline{\psi_{2}}+\psi_{1}\overline{\psi_{1}}). We can see that, using the functions (ψ1,ψ2)(\psi_{1},\psi_{2}), the structure equations (2.5) and (2.8) are equivalent to the following nonlinear Dirac equation:

(2.13) (zψ2+𝒰ψ1z¯ψ1+𝒱ψ2)=(00).\left(\begin{array}[]{ll}\partial_{z}\psi_{2}+\mathcal{U}\psi_{1}\\ -\partial_{\overline{z}}\psi_{1}+\mathcal{V}\psi_{2}\end{array}\right)=\left(\begin{array}[]{ll}0\\ 0\end{array}\right).

Here the Dirac potential 𝒰\mathcal{U} and 𝒱\mathcal{V} are given by

(2.14) 𝒰=𝒱=H2eu/2+i4h\mathcal{U}=\mathcal{V}=-\frac{H}{2}e^{u/2}+\frac{i^{\prime}}{4}h

where

eu/2=2(ψ2ψ2¯+ψ1ψ1¯)andh=2(ψ2ψ2¯ψ1ψ1¯).e^{u/2}=2\left(\psi_{2}\overline{\psi_{2}}+\psi_{1}\overline{\psi_{1}}\right)\quad{\rm and}\quad h=2\left(\psi_{2}\overline{\psi_{2}}-\psi_{1}\overline{\psi_{1}}\right).
Remark 2.2.

  1. (1)

    Without loss of generality, we can take ψ2ψ2¯+ψ1ψ1¯\psi_{2}\overline{\psi_{2}}+\psi_{1}\overline{\psi_{1}} as positive value, if necessary, by replacing (ψ1,ψ2)(\psi_{1},\psi_{2}) into (iψ1,iψ2)(-i^{\prime}\psi_{1},i^{\prime}\psi_{2}).

  2. (2)

    To prove the equations (2.5) and (2.8) from the nonlinear Dirac equation (2.13) with (2.14), the functions eu/2e^{u/2} and hh in (2.14) and solutions ψk(k=1,2)\psi_{k}\>(k=1,2) have to satisfy the relations

    eu/2=2(ψ2ψ2¯+ψ1ψ1¯),h=2(ψ2ψ2¯ψ1ψ1¯).e^{u/2}=2(\psi_{2}\overline{\psi_{2}}+\psi_{1}\overline{\psi_{1}}),\quad h=2(\psi_{2}\overline{\psi_{2}}-\psi_{1}\overline{\psi_{1}}).

For a timelike surface with the constant mean curvature H=0H=0, the Dirac potential takes purely imaginary values. Then, by using (2.12), we have the following lemma.

Lemma 2.3.

Let f:𝔻(Nil3,ds2)f:\mathbb{D}\to({\rm Nil}_{3},ds_{-}^{2}) be a timelike surface with constant mean curvature H=0H=0. Then the following statements are equivalent:

  1. (1)

    The Dirac potential 𝒰\mathcal{U} is not invertible at p𝔻p\in\mathbb{D}.

  2. (2)

    The function hh is equal to zero at p𝔻p\in\mathbb{D}.

  3. (3)

    E3E_{3} is tangent to ff at p𝔻p\in\mathbb{D}.

Remark 2.4.

The equivalence between (2)(2) and (3)(3) holds regardless of the value of HH. In general, 𝒰\mathcal{U} is invertible if and only if (Re𝒰)2(Im𝒰)20(\operatorname{Re}\mathcal{U})^{2}-(\operatorname{Im}\mathcal{U})^{2}\neq 0.

Hereafter we will exclude the points where 𝒰\mathcal{U} is not invertible, that is, we will restrict ourselves to the case of

(2.15) (Re𝒰)2(Im𝒰)20.\left({\rm Re}\,\mathcal{U}\right)^{2}-\left({\rm Im}\,\mathcal{U}\right)^{2}\neq 0.

Then, by using (2.3), the Dirac potentials can be written as

(2.16) 𝒰=𝒱=ϵ~ew/2\mathcal{U}=\mathcal{V}=\tilde{\epsilon}e^{w/2}

for some \mathbb{C}^{\prime}-valued function ww and ϵ~{±1,±i}\tilde{\epsilon}\in\{\pm 1,\pm i^{\prime}\}. In particular, if the mean curvature is zero and the function hh has positive values, then ϵ~=i\tilde{\epsilon}=i^{\prime}.

2.5. Hopf differential and an associated quadratic differential

The Hopf differential Adz2Adz^{2} is the (2,0)(2,0)-part of the second fundamental form for ff, that is,

A=g(zfz,N).A=g(\nabla_{\partial_{z}}f_{z},N).

A straightforward computation shows that the coefficient function AA is rephrased in terms of ψk\psi_{k} as follows:

A=2{ψ1(ψ2¯)zψ2¯(ψ1)z}4iψ12(ψ2¯)2.A=2\{\psi_{1}(\overline{\psi_{2}})_{z}-\overline{\psi_{2}}(\psi_{1})_{z}\}-4i^{\prime}\psi_{1}^{2}(\overline{\psi_{2}})^{2}.

Next we define a para-complex valued function BB by

(2.17) B=14(2Hi)A~,whereA~=Aϕ322Hi.B=\frac{1}{4}(2H-i^{\prime})\tilde{A},\quad\mbox{where}\quad\tilde{A}=A-\frac{\phi_{3}^{2}}{2H-i^{\prime}}.

Here AA and ϕ3\phi_{3} are the Hopf differential and the e3e_{3}-component of f1fzf^{-1}f_{z} for ff. It is easy to check the quadratic differential Bdz2Bdz^{2} is defined entirely and it will be called the Abresch-Rosenberg differential.

2.6. Lax pair for timelike surfaces

The nonlinear Dirac equation can be represented in terms of the Lax pair type system.

Theorem 2.5.

Let 𝔻\mathbb{D} be a simply connected domain in \mathbb{C}^{\prime} and f:𝔻Nil3f:\mathbb{D}\to{\rm Nil}_{3} a conformal timelike immersion for which the Dirac potential 𝒰\mathcal{U} satisfies (2.15). Then the vector ψ~=(ψ1,ψ2)\widetilde{\psi}=(\psi_{1},\psi_{2}) satisfies the system of equations

(2.18) ψ~z=ψ~U~,ψ~z¯=ψ~V~,\widetilde{\psi}_{z}=\widetilde{\psi}\widetilde{U},\quad\widetilde{\psi}_{\bar{z}}=\widetilde{\psi}\widetilde{V},

where

(2.19) U~\displaystyle\widetilde{U} =(12wz+12Hzϵ~ew/2eu/2ϵ~ew/2Bϵ~ew/20),\displaystyle=\begin{pmatrix}\frac{1}{2}w_{z}+\frac{1}{2}H_{z}\tilde{\epsilon}e^{-w/2}e^{u/2}&-\tilde{\epsilon}e^{w/2}\\ B\tilde{\epsilon}e^{-w/2}&0\end{pmatrix},
(2.20) V~\displaystyle\widetilde{V} =(0B¯ϵ~ew/2ϵ~ew/212wz¯+12Hz¯ϵ~ew/2eu/2).\displaystyle=\begin{pmatrix}0&-\overline{B}\tilde{\epsilon}e^{-w/2}\\ \tilde{\epsilon}e^{w/2}&\frac{1}{2}w_{\bar{z}}+\frac{1}{2}H_{\bar{z}}\tilde{\epsilon}e^{-w/2}e^{u/2}\end{pmatrix}.

Here, ϵ~{±1,±i}\tilde{\epsilon}\in\{\pm 1,\pm i^{\prime}\} is the number decided by (2.16). Conversely, every solution ψ~\widetilde{\psi} to (2.18) with (2.16) and (2.14) is a solution of the nonlinear Dirac equation (2.13) with (2.14).

Proof.

By computing the derivative of the Dirac potential ϵ~ew/2\tilde{\epsilon}e^{w/2} with respect to zz, we have

12wzϵ~ew/2=12Hzeu/2+2iHψ1ψ2(ψ¯2)22Hi2ψ2(ψ¯2)z2H+i2ψ1¯(ψ1)z.\frac{1}{2}w_{z}\tilde{\epsilon}e^{w/2}=-\frac{1}{2}H_{z}e^{u/2}+2i^{\prime}H\psi_{1}\psi_{2}(\overline{\psi}_{2})^{2}-\frac{2H-i^{\prime}}{2}\psi_{2}(\overline{\psi}_{2})_{z}-\frac{2H+i^{\prime}}{2}\overline{\psi_{1}}(\psi_{1})_{z}.

Multiplying the equation above by ψ1\psi_{1} and using the function BB defined in (2.17), we derive

(ψ1)z=(12wz+12Hzϵ~ew/2eu/2)ψ1+Bϵ~ew/2ψ2.(\psi_{1})_{z}=\left(\frac{1}{2}w_{z}+\frac{1}{2}H_{z}\tilde{\epsilon}e^{-w/2}e^{u/2}\right)\psi_{1}+B\tilde{\epsilon}e^{-w/2}\psi_{2}.

The derivative of ψ2\psi_{2} with respect to zz is given by the nonlinear Dirac equation. Thus we obtain the first equation of (2.18). We can derive the second equation of (2.18) in a similar way by differentiating the potential with respect to z¯\bar{z}.

Conversely, if the vector ψ~=(ψ1,ψ2)\widetilde{\psi}=(\psi_{1},\psi_{2}) is a solution of (2.18), the terms of (ψ1)z¯(\psi_{1})_{\bar{z}} and (ψ2)z(\psi_{2})_{z} of (2.18) are the equations just we want. ∎

The compatibility condition of the above system is

(2.21) 12wzz¯+ewBB¯ew+12(Hzz¯+p)ϵ~ew/2eu/2=0,\displaystyle\frac{1}{2}w_{z\bar{z}}+e^{w}-B\overline{B}e^{-w}+\frac{1}{2}(H_{z\bar{z}}+p)\tilde{\epsilon}e^{-w/2}e^{u/2}=0,
(2.22) B¯zϵ~ew/2=12B¯Hzeweu/212Hz¯eu/2,\displaystyle\overline{B}_{z}\tilde{\epsilon}e^{-w/2}=-\frac{1}{2}\overline{B}H_{z}e^{-w}e^{u/2}-\frac{1}{2}H_{\bar{z}}e^{u/2},
(2.23) Bz¯ϵ~ew/2=12BHz¯eweu/212Hzeu/2,\displaystyle B_{\bar{z}}\tilde{\epsilon}e^{-w/2}=-\frac{1}{2}BH_{\bar{z}}e^{-w}e^{u/2}-\frac{1}{2}H_{z}e^{u/2},

where p=Hz(w/2+u/2)z¯p=H_{z}(-w/2+u/2)_{\bar{z}} for the (1,1)-entry and p=Hz¯(w/2+u/2)zp=H_{\bar{z}}(-w/2+u/2)_{z} for the (2,2)-entry. From the above compatibility conditions we have the following:

Theorem 2.6.

For a constant mean curvature timelike surface in Nil3{\rm Nil}_{3} which has the Dirac potential invertible anywhere, the Abresch-Rosenberg differential is para-holomorphic.

Remark 2.7.

To obtain a timelike immersion for solutions w,Bw,B and HH of the compatibility condition (2.21), (2.22) and (2.23), a solution ψ~=(ψ1,ψ2)\widetilde{\psi}=(\psi_{1},\psi_{2}) of (2.18) has to satisfy

ϵ~ew/2=H(ψ2ψ2¯+ψ1ψ1¯)+i2(ψ2ψ2¯ψ1ψ1¯).\tilde{\epsilon}e^{w/2}=-H(\psi_{2}\overline{\psi_{2}}+\psi_{1}\overline{\psi_{1}})+\frac{i^{\prime}}{2}(\psi_{2}\overline{\psi_{2}}-\psi_{1}\overline{\psi_{1}}).

This gives an overdetermined system and it seems not easy to find a general solution for arbitrary HH, but for minimal surfaces we will show that it will be automatically satisfied.

3. Timelike minimal surfaces in Nil3{\rm Nil}_{3}

A timelike surface in Nil3{\rm Nil}_{3} with the constant mean curvature H=0H=0 is called a timelike minimal surface. By Theorem 2.6, the Abresch-Rosenberg differential for a timelike minimal surface is para-holomorphic. For example the triple B=0,H=0B=0,H=0 and ew=16/(1+16zz¯)2e^{w}=16/(1+16z\bar{z})^{2} is a solution of the compatibility condition (2.21), (2.22) and (2.23). In fact these are derived from a horizontal plane

(3.1) f(z)=(2i(zz¯)1+zz¯,2(z+z¯)1+zz¯,0).f(z)=\left(\frac{2i^{\prime}(z-\bar{z})}{1+z\bar{z}},\frac{2(z+\bar{z})}{1+z\bar{z}},0\right).

Thus the horizontal plane (3.1) is a timelike minimal surface in Nil3{\rm Nil}_{3}. We will give examples of timelike minimal surfaces in Section 6. In this section we characterize timelike minimal surfaces in terms of the normal Gauss map.

3.1. The normal Gauss map

For a timelike surface in Nil3{\rm Nil}_{3}, the normal Gauss map is given by (2.12). Clearly it takes values in de Sitter two sphere 𝕊~12𝔫𝔦𝔩3\widetilde{\mathbb{S}}^{2}_{1}\subset\mathfrak{nil}_{3}:

𝕊~12={x1e1+x2e2+x3e3𝔫𝔦𝔩3x12+x22+x32=1}.\widetilde{\mathbb{S}}^{2}_{1}=\left\{x_{1}e_{1}+x_{2}e_{2}+x_{3}e_{3}\in\mathfrak{nil}_{3}\mid-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}.

From now on we will assume that the function hh takes positive values, that is, the image of the normal Gauss map is in lower half part of the de Sitter two sphere. Moreover, we assume that the timelike surface has the pair of functions (ψ1,ψ2)(\psi_{1},\psi_{2}) of the formula (2.11) with ϵ=i\epsilon=i^{\prime}. If the function hh takes negative values, or if the functions (ψ1,ψ2)(\psi_{1},\psi_{2}) are given with ϵ=i\epsilon=-i^{\prime}, by a similar to the case of h>0h>0 and ϵ=i\epsilon=i^{\prime}, we can get same results.

The normal Gauss map f1Nf^{-1}N can be considered as a map into another de Sitter two sphere in the Minkowski space

𝕊12={(x1,x2,x3)𝕃3x12x22+x32=1}𝕃(+,,+)3\mathbb{S}^{2}_{1}=\left\{(x_{1},x_{2},x_{3})\in\mathbb{L}^{3}\mid x_{1}^{2}-x_{2}^{2}+x_{3}^{2}=1\right\}\subset\mathbb{L}^{3}_{(+,-,+)}

through the stereographic projections from (0,0,1)𝕊~12𝔫𝔦𝔩3(0,0,1)\in\widetilde{\mathbb{S}}^{2}_{1}\subset\mathfrak{nil}_{3}:

π𝔫𝔦𝔩+:𝔫𝔦𝔩3𝕊~12x1e1+x2e2+x3e3(x11x3,x21x3,0)=x11x3+ix21x3\pi_{\mathfrak{nil}}^{+}:\mathfrak{nil}_{3}\supset\widetilde{\mathbb{S}}^{2}_{1}\ni x_{1}e_{1}+x_{2}e_{2}+x_{3}e_{3}\mapsto\left(\frac{x_{1}}{1-x_{3}},\frac{x_{2}}{1-x_{3}},0\right)=\frac{x_{1}}{1-x_{3}}+i^{\prime}\frac{x_{2}}{1-x_{3}}\in\mathbb{C}^{\prime}

and from (0,0,1)𝕊12𝕃(+,,+)3(0,0,-1)\in\mathbb{S}^{2}_{1}\subset\mathbb{L}^{3}_{(+,-,+)}:

π𝕃3:𝕃(+,,+)3𝕊12(x1,x2,x3)(x11+x3,x21+x3,0)=x11+x3+ix21+x3.\pi_{\mathbb{L}^{3}}^{-}:\mathbb{L}^{3}_{(+,-,+)}\supset\mathbb{S}^{2}_{1}\ni(x_{1},x_{2},x_{3})\mapsto\left(\frac{x_{1}}{1+x_{3}},\frac{x_{2}}{1+x_{3}},0\right)=\frac{x_{1}}{1+x_{3}}+i^{\prime}\frac{x_{2}}{1+x_{3}}\in\mathbb{C}^{\prime}.

In particular, the inverse map (π𝕃3)1(\pi_{\mathbb{L}^{3}}^{-})^{-1} is given by

(π𝕃3)1(g)=(2Reg1+gg¯,2Img1+gg¯,1gg¯1+gg¯)(\pi_{\mathbb{L}^{3}}^{-})^{-1}(g)=\left(\frac{2\operatorname{Re}g}{1+g\overline{g}},\frac{2\operatorname{Im}g}{1+g\overline{g}},\frac{1-g\overline{g}}{1+g\overline{g}}\right)

for g=(Reg,Img,0)g=\left(\operatorname{Re}g,\operatorname{Im}g,0\right)\in\mathbb{C}^{\prime}. Since the normal Gauss map takes values in the lower half of the de Sitter two sphere in 𝔫𝔦𝔩3\mathfrak{nil}_{3}, the image under the projection π𝔫𝔦𝔩+\pi_{\mathfrak{nil}}^{+} is in the region enclosed by four hyperbolas, see Figure 1. Two of the four hyperbolas correspond to the vertical points, that is, the points where hh vanishes, and the others correspond to the infinite-points, that is, the points where the first fundamental form degenerates. Since first and second sign of metrics of Nil3{\rm Nil}_{3} and 𝕃(+,,+)3\mathbb{L}^{3}_{(+,-,+)} are interchanged, the image of each hyperbola under the inverse map (π𝕃3)1(\pi^{-}_{\mathbb{L}^{3}})^{-1} plays the other role.

Refer to caption
Refer to caption
Refer to caption
Figure 1. The upper half part of the de Sitter two sphere 𝕊12\mathbb{S}^{2}_{1} (left) and its stereographic projection (middle), and the stereographic projection of the lower half part of 𝕊12~\tilde{\mathbb{S}^{2}_{1}} (right).

Define a map gg by the composition of the stereographic projection π𝔫𝔦𝔩+\pi_{\mathfrak{nil}}^{+} with f1Nf^{-1}N, and then we obtain

g=iψ1¯ψ2.g=i^{\prime}\frac{\overline{\psi_{1}}}{\psi_{2}}\in\mathbb{C}^{\prime}.

Thus the normal Gauss map can be represented as

f1N=11gg¯(2Re(g)e1+2Im(g)e2(1+gg¯)e3)f^{-1}N=\frac{1}{1-g\overline{g}}\left(2\operatorname{Re}(g)e_{1}+2\operatorname{Im}(g)e_{2}-(1+g\overline{g})e_{3}\right)

and

(3.2) (π𝕃3)1π𝔫𝔦𝔩+f1N=1ψ2ψ2¯ψ1ψ1¯(2Im(ψ1ψ2),2Re(ψ1ψ2),ψ2ψ2¯+ψ1ψ1¯).(\pi_{\mathbb{L}^{3}}^{-})^{-1}\circ\pi_{\mathfrak{nil}}^{+}\circ f^{-1}N=\frac{1}{\psi_{2}\overline{\psi_{2}}-\psi_{1}\overline{\psi_{1}}}\left(-2\operatorname{Im}(\psi_{1}\psi_{2}),2\operatorname{Re}(\psi_{1}\psi_{2}),\psi_{2}\overline{\psi_{2}}+\psi_{1}\overline{\psi_{1}}\right).

Let 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime} be the special para-unitary Lie algebra defined by

𝔰𝔲1,1={(aib¯bai)a,b}\mathfrak{su}_{1,1}^{\prime}=\left\{\begin{pmatrix}ai^{\prime}&\bar{b}\\ b&-ai^{\prime}\end{pmatrix}\mid a\in\mathbb{R},b\in\mathbb{C}^{\prime}\right\}

with the usual commutator of the matrices. We assign the following indefinite product on 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime}:

X,Y:=2tr(XY).\langle X,Y\rangle:=2{\rm tr}(XY).

Then we can identify the Lie algebra 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime} with 𝕃(+,,+)3\mathbb{L}^{3}_{(+,-,+)} isometrically by

(3.3) 𝔰𝔲1,112(ripqip+qiri)(p,q,r)𝕃(+,,+)3.\mathfrak{su}_{1,1}^{\prime}\ni\frac{1}{2}\begin{pmatrix}ri^{\prime}&-p-qi^{\prime}\\ -p+qi^{\prime}&-ri^{\prime}\end{pmatrix}\longleftrightarrow(p,q,r)\in\mathbb{L}^{3}_{(+,-,+)}.

Let SU1,1{\rm SU}_{1,1}^{\prime} be the special para-unitary group of degree two corresponding to 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime}:

SU1,1={(αββ¯α¯)α,β,αα¯ββ¯=1}.{\rm SU}_{1,1}^{\prime}=\left\{\begin{pmatrix}\alpha&\beta\\ \bar{\beta}&\bar{\alpha}\end{pmatrix}\mid\alpha,\beta\in\mathbb{C}^{\prime},\alpha\bar{\alpha}-\beta\bar{\beta}=1\right\}.

By the identification (3.3), the represented normal Gauss map (3.2) is equal to

(π𝕃3)1π𝔫𝔦𝔩+f1N=i2Ad(F)(1001),(\pi_{\mathbb{L}^{3}}^{-})^{-1}\circ\pi_{\mathfrak{nil}}^{+}\circ f^{-1}N=\frac{i^{\prime}}{2}\operatorname{Ad}(F)\begin{pmatrix}1&0\\ 0&-1\end{pmatrix},

where FF is a SU1,1{\rm SU}_{1,1}^{\prime}-valued map defined by

(3.4) F=1ψ2ψ2¯ψ1ψ1¯(ψ2¯ψ1¯ψ1ψ2).F=\frac{1}{\sqrt{\psi_{2}\overline{\psi_{2}}-\psi_{1}\overline{\psi_{1}}}}\begin{pmatrix}\overline{\psi_{2}}&\overline{\psi_{1}}\\ \psi_{1}&\psi_{2}\end{pmatrix}.

The SU1,1{\rm SU}_{1,1}^{\prime}-valued function FF defined as above is called a frame of the normal Gauss map f1Nf^{-1}N.

Remark 3.1.

In general a frame of the normal Gauss map f1Nf^{-1}N is not unique, that is, for some frame FF, there is a freedom of SU1,1{\rm SU}_{1,1}^{\prime}-valued initial condition F0F_{0} and U1{\rm U}_{1}^{\prime}-valued map kk such that F0FkF_{0}Fk is an another frame. In this paper we use the particular frame in (3.4), since arbitrary choice of initial condition does not correspond to a given timelike surface ff.

3.2. Characterization of timelike minimal surfaces

Let FF be the frame defined in (3.4) of the normal Gauss map f1Nf^{-1}N. By taking the gauge transformation

FF(ew/400ew/4),F\mapsto F\begin{pmatrix}e^{-w/4}&0\\ 0&e^{-w/4}\end{pmatrix},

we can see the system (2.18) is equivalent to the matrix differential equations

(3.5) Fz=FU,Fz¯=FV,F_{z}=FU,\quad F_{\bar{z}}=FV,

where

U\displaystyle U =(14wz+12Hzϵ~ew/2eu/2ϵ~ew/2Bϵ~ew/214wz),\displaystyle=\begin{pmatrix}\frac{1}{4}w_{z}+\frac{1}{2}H_{z}\tilde{\epsilon}e^{-w/2}e^{u/2}&-\tilde{\epsilon}e^{w/2}\\ B\tilde{\epsilon}e^{-w/2}&-\frac{1}{4}w_{z}\end{pmatrix},
V\displaystyle V =(14wz¯B¯ϵ~ew/2ϵ~ew/214wz¯+12Hz¯ϵ~ew/2eu/2).\displaystyle=\begin{pmatrix}-\frac{1}{4}w_{\bar{z}}&-\bar{B}\tilde{\epsilon}e^{-w/2}\\ \tilde{\epsilon}e^{w/2}&\frac{1}{4}w_{\bar{z}}+\frac{1}{2}H_{\bar{z}}\tilde{\epsilon}e^{-w/2}e^{u/2}\end{pmatrix}.

We define a family of Maurer-Cartan forms αμ\alpha^{\mu} parameterized by μ{eit|t}\mu\in\left\{e^{i^{\prime}t}\,|\,t\in\mathbb{R}\right\} as follows:

(3.6) αμ:=Uμdz+Vμdz¯,\alpha^{\mu}:=U^{\mu}dz+V^{\mu}d\bar{z},

where

(3.7) Uμ\displaystyle U^{\mu} =(14wz+12Hzϵ~ew/2eu/2μ1ϵ~ew/2μ1Bϵ~ew/214wz),\displaystyle=\begin{pmatrix}\frac{1}{4}w_{z}+\frac{1}{2}H_{z}\tilde{\epsilon}e^{-w/2}e^{u/2}&-\mu^{-1}\tilde{\epsilon}e^{w/2}\\ \mu^{-1}B\tilde{\epsilon}e^{-w/2}&-\frac{1}{4}w_{z}\end{pmatrix},
(3.8) Vμ\displaystyle V^{\mu} =(14wz¯μB¯ϵ~ew/2μϵ~ew/214wz¯+12Hz¯ϵ~ew/2eu/2).\displaystyle=\begin{pmatrix}-\frac{1}{4}w_{\bar{z}}&-\mu\bar{B}\tilde{\epsilon}e^{-w/2}\\ \mu\tilde{\epsilon}e^{w/2}&\frac{1}{4}w_{\bar{z}}+\frac{1}{2}H_{\bar{z}}\tilde{\epsilon}e^{-w/2}e^{u/2}\end{pmatrix}.
Theorem 3.2.

Let ff be a conformal timelike immersion from a simply connected domain 𝔻\mathbb{D}\subset\mathbb{C}^{\prime} into Nil3{\rm Nil}_{3} satisfying (2.15). Then the following conditions are mutually equivalent::

  1. (1)

    ff is a timelike minimal surface.

  2. (2)

    The Dirac potential 𝒰=ϵ~ew/2=H2eu/2+i4h\mathcal{U}=\tilde{\epsilon}e^{w/2}=-\frac{H}{2}e^{u/2}+\frac{i^{\prime}}{4}h takes purely imaginary values.

  3. (3)

    d+αμd+\alpha^{\mu} defines a family of flat connections on 𝔻×SU1,1\mathbb{D}\times{\rm SU}_{1,1}^{\prime}.

  4. (4)

    The normal Gauss map f1Nf^{-1}N is a Lorentz harmonic map into de Sitter two sphere 𝕊12𝕃(+,,+)3\mathbb{S}^{2}_{1}\subset\mathbb{L}^{3}_{(+,-,+)}.

Proof.

The statement (3) holds if and only if

(3.9) (Uμ)z¯(Vμ)z+[Vμ,Uμ]=0(U^{\mu})_{\bar{z}}-(V^{\mu})_{z}+[V^{\mu},U^{\mu}]=0

for all μ{eit|t}\mu\in\left\{e^{i^{\prime}t}\,|\,t\in\mathbb{R}\right\}. The coefficients of μ1,μ0{\mu}^{-1},{\mu}^{0} and μ\mu of (3.9) are as follows:

(3.10) μ1-part:12Hz¯eu/2=0,Bz¯+12BHz¯ϵ~ew/2eu/2=0,\displaystyle\mbox{$\mu^{-1}$-part:}\;\;\frac{1}{2}H_{\bar{z}}e^{u/2}=0,\;\;B_{\bar{z}}+\frac{1}{2}BH_{\bar{z}}\tilde{\epsilon}e^{-w/2}e^{u/2}=0,
(3.11) μ0-part:12wzz¯+ewBB¯ew+12(Hzz¯+p)ϵ~ew/2eu/2=0,\displaystyle\mbox{$\mu^{0}$-part:}\;\;\frac{1}{2}w_{z\bar{z}}+e^{w}-B\overline{B}e^{-w}+\frac{1}{2}(H_{z\bar{z}}+p)\tilde{\epsilon}e^{-w/2}e^{u/2}=0,
(3.12) μ-part:B¯z+12B¯Hzϵ~ew/2eu/2=0,12Hzeu/2=0,\displaystyle\mbox{$\mu$-part:}\;\;\overline{B}_{z}+\frac{1}{2}\overline{B}H_{z}\tilde{\epsilon}e^{-w/2}e^{u/2}=0,\;\;\frac{1}{2}H_{z}e^{u/2}=0,

where pp is Hz(w/2+u/2)z¯H_{z}(-w/2+u/2)_{\bar{z}} for the (1,1)(1,1)-entry and Hz¯(w/2+u/2)zH_{\bar{z}}(-w/2+u/2)_{z} for the (2,2)(2,2)-entry, respectively. Since the equation in (3.11) is a structure equation for the immersion ff, these are always satisfied, which in fact is equivalent to (2.21).

The equivalence of (1) and (2) is obvious.
We consider (1)(3)(1)\Rightarrow(3). Since ff is timelike minimal, by Theorem 2.6, the Abresch-Rosenberg differential Bdz2Bdz^{2} is para-holomorphic. Hence, the equations (3.10), (3.11) and (3.12) hold. Consequently, the statement (3)(3) holds.

Next we show (3)(1)(3)\Rightarrow(1). Assume that d+αλd+\alpha^{\lambda} is flat, that is, (3.10), (3.11) and (3.12) are satisfied. Then it is easy to see that HH is constant. Furthermore, since αμ\alpha^{\mu} is valued in 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime}, we can derive that the mean curvature HH is 0 by comparing (2,1)-entry with (1,2)-entry of αμ\alpha^{\mu}.
Finally we consider the equivalence between (3) and (4). The condition (3) is (3.9) and it can be rephrased as

(3.13) d(α1)+[α0α1]=0,d(*\alpha_{1})+[\alpha_{0}\wedge*\alpha_{1}]=0,

where α0=α𝔨dz+α𝔨′′dz¯\alpha_{0}=\alpha^{\prime}_{\mathfrak{k}}dz+\alpha^{\prime\prime}_{\mathfrak{k}}d\bar{z} and α1=α𝔪dz+α𝔪′′dz¯\alpha_{1}=\alpha^{\prime}_{\mathfrak{m}}dz+\alpha^{\prime\prime}_{\mathfrak{m}}d\bar{z} and 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime} has been decomposed as 𝔰𝔲1,1=𝔨+𝔪\mathfrak{su}_{1,1}^{\prime}=\mathfrak{k}+\mathfrak{m} with

𝔨={(ir00ir)r},𝔪={(0pqip+qi0)p,q}.\mathfrak{k}=\left\{\begin{pmatrix}i^{\prime}r&0\\ 0&-i^{\prime}r\end{pmatrix}\mid r\in\mathbb{R}\right\},\quad\mathfrak{m}=\left\{\begin{pmatrix}0&-p-qi^{\prime}\\ -p+qi^{\prime}&0\end{pmatrix}\mid p,q\in\mathbb{R}\right\}.

Moreover * denotes the Hodge star operator defined by

dz=idz,dz¯=idz¯.*dz=i^{\prime}dz,\quad*d\bar{z}=-i^{\prime}d\bar{z}.

It is known that by [23, Section 2.1], the harmonicity condition (3.13) is equivalent to the Lorentz harmonicity of the normal Gauss map f1N=i2Fσ3F1f^{-1}N=\tfrac{i^{\prime}}{2}F\sigma_{3}F^{-1} into the symmetric space 𝕊12\mathbb{S}^{2}_{1}. Thus the equivalence between (3) and (4) follows. ∎

From Theorem 3.2, we define the followings::

Definition 3.3.

  1. (1)

    For a timelike minimal surface ff in Nil3{\rm Nil}_{3} with the frame FF in (3.4) of the normal Gauss map, let FμF^{\mu} be a SU1,1{\rm SU}_{1,1}^{\prime}-valued solution of the matrix differential equation (Fμ)1dFμ=αμ(F^{\mu})^{-1}dF^{\mu}=\alpha^{\mu} with Fμ|μ=1=FF^{\mu}|_{\mu=1}=F. Then FμF^{\mu} is called an extended frame of the timelike minimal surface ff.

  2. (2)

    Let F~μ\tilde{F}^{\mu} be a SU1,1{\rm SU}_{1,1}^{\prime}-valued solution of (F~μ)1dF~μ=αμ(\tilde{F}^{\mu})^{-1}d\tilde{F}^{\mu}=\alpha^{\mu}. Then F~μ\tilde{F}^{\mu} is called a general extended frame.

Note that an extended frame FμF^{\mu} and a general extended frame F~μ\tilde{F}^{\mu} are differ by an initial condition F0F_{0}, F~μ=F0Fμ\tilde{F}^{\mu}=F_{0}F^{\mu}, and FμF^{\mu} can be explicitly written as

(3.14) Fμ=1ψ2(μ)ψ2(μ)¯ψ1(μ)ψ1(μ)¯(ψ2(μ)¯ψ1(μ)¯ψ1(μ)ψ2(μ)),F^{\mu}=\frac{1}{\sqrt{\psi_{2}(\mu)\overline{\psi_{2}(\mu)}-\psi_{1}(\mu)\overline{\psi_{1}(\mu)}}}\begin{pmatrix}\overline{\psi_{2}(\mu)}&\overline{\psi_{1}(\mu)}\\ \psi_{1}(\mu)&\psi_{2}(\mu)\end{pmatrix},\quad

where ψj(μ=1)=ψj(j=1,2)\psi_{j}(\mu=1)=\psi_{j}\;(j=1,2) are the original generating spinors of a timelike minimal surface ff. For a timelike minimal surface, the Maurer-Cartan form αμ=Uμdz+Vμdz¯\alpha^{\mu}=U^{\mu}dz+V^{\mu}d\bar{z} of a general extended frame F~μ\tilde{F}^{\mu} can be written explicitly as follows:

(3.15) Uμ=(12(logh)zi4hμ14iBh1μ112(logh)z),Vμ=(12(logh)z¯4iB¯h1μi4hμ12(logh)z¯).U^{\mu}=\begin{pmatrix}\frac{1}{2}(\log h)_{z}&-\frac{i^{\prime}}{4}h\mu^{-1}\\ 4{i^{\prime}}Bh^{-1}\mu^{-1}&-\frac{1}{2}(\log h)_{z}\end{pmatrix},\quad V^{\mu}=\begin{pmatrix}-\frac{1}{2}(\log h)_{\bar{z}}&-4{i^{\prime}}\bar{B}h^{-1}\mu\\ \frac{i^{\prime}}{4}h\mu&\frac{1}{2}(\log h)_{\bar{z}}\end{pmatrix}.

4. Sym formula and duality between timelike minimal surfaces in three-dimensional Heisenberg group and timelike CMC surfaces in Minkowski space

In this section we will derive an immersion formula for timelike minimal surfaces in Nil3{\rm Nil}_{3} in terms of the extended frame, the so-called Sym formula. Unlike the integral represetnation formula, the so-called Weierstrass type representation [21, 26, 10, 19], the Sym-formula will be given by the derivative of the extended frame with respect to the spectral parameter.

We define a map Ξ:𝔰𝔲1,1𝔫𝔦𝔩3\Xi:\mathfrak{su}_{1,1}^{\prime}\to\mathfrak{nil}_{3} by

(4.1) Ξ(x11+x22+x33):=x1e1+x2e2+x3e3\Xi\left(x_{1}\mathcal{E}_{1}+x_{2}\mathcal{E}_{2}+x_{3}\mathcal{E}_{3}\right):=x_{1}e_{1}+x_{2}e_{2}+x_{3}e_{3}

where

(4.2) 1=12(0ii0),2=12(0110),3=12(i00i).\mathcal{E}_{1}=\frac{1}{2}\begin{pmatrix}0&-i^{\prime}\\ i^{\prime}&0\end{pmatrix},\quad\mathcal{E}_{2}=\frac{1}{2}\begin{pmatrix}0&-1\\ -1&0\end{pmatrix},\quad\mathcal{E}_{3}=\frac{1}{2}\begin{pmatrix}i^{\prime}&0\\ 0&-i^{\prime}\end{pmatrix}.

Clearly, Ξ\Xi is a linear isomorphism but not a Lie algebra isomorphism. Moreover, define a map Ξ𝔫𝔦𝔩:𝔰𝔲1,1Nil3\Xi_{\mathfrak{nil}}:\mathfrak{su}_{1,1}^{\prime}\to{\rm Nil}_{3} as Ξ𝔫𝔦𝔩=expΞ\Xi_{\mathfrak{nil}}=\exp\circ\Xi, explicitly

(4.3) Ξ𝔫𝔦𝔩(12(x3ix2x1ix2+x1ix3i))=(x1,x2,x3).\Xi_{\mathfrak{nil}}\left(\frac{1}{2}\begin{pmatrix}x_{3}i^{\prime}&-x_{2}-x_{1}i^{\prime}\\ -x_{2}+x_{1}i^{\prime}&-x_{3}i^{\prime}\end{pmatrix}\right)=(x_{1},x_{2},x_{3}).

Then we can obtain a family of timelike minimal surfaces in Nil3{\rm Nil}_{3} from an extended frame of a timelike minimal surface.

Theorem 4.1.

Let 𝔻\mathbb{D} be a simply connected domain in \mathbb{C}^{\prime} and FμF^{\mu} be an extended frame defined in (3.14) for some conformal timelike minimal surface on 𝔻\mathbb{D} for which the functions ψ1,ψ2\psi_{1},\psi_{2} are given by the formula (2.11) with ϵ=i\epsilon=i^{\prime} and the function hh defined by (2.14) has positive values on 𝔻\mathbb{D}.

Define maps f𝕃3f_{\mathbb{L}^{3}} and N𝕃3N_{\mathbb{L}^{3}} respectively by

(4.4) f𝕃3=iμ(μFμ)(Fμ)1i2Ad(Fμ)σ3andN𝕃3=i2Ad(Fμ)σ3,f_{\mathbb{L}^{3}}=-i^{\prime}\mu(\partial_{\mu}F^{\mu})(F^{\mu})^{-1}-\frac{i^{\prime}}{2}\operatorname{Ad}(F^{\mu})\sigma_{3}\quad\mbox{and}\quad N_{\mathbb{L}^{3}}=\frac{i^{\prime}}{2}\operatorname{Ad}(F^{\mu})\sigma_{3},

where σ3=(1001)\sigma_{3}=\left(\begin{smallmatrix}1&0\\ 0&-1\end{smallmatrix}\right). Moreover, define a map fμ:𝔻Nil3f^{\mu}:\mathbb{D}\to\mathrm{Nil}_{3} by

(4.5) fμ:=Ξnilf^withf^=(f𝕃3)oi2μ(μf𝕃3)d,f^{\mu}:=\Xi_{\mathrm{nil}}\circ\hat{f}\quad\mbox{with}\quad\hat{f}=(f_{\mathbb{L}^{3}})^{o}-\frac{i^{\prime}}{2}\mu(\partial_{\mu}f_{\mathbb{L}^{3}})^{d},

where the superscripts “oo” and “dd” denote the off-diagonal and diagonal part, respectively. Then, for each μ𝕊11={eitt}\mu\in\mathbb{S}^{1}_{1}=\{e^{i^{\prime}t}\in\mathbb{C}^{\prime}\mid t\in\mathbb{R}\} the following statements hold::

  1. (1)

    The map fμf^{\mu} is a timelike minimal surface (possibly singular) in Nil3{\rm Nil}_{3} and N𝕃3N_{\mathbb{L}^{3}} is the isometric image of the normal Gauss map of fμf^{\mu}. Moreover, fμ|μ=1f^{\mu}|_{\mu=1} and the original surface are same up to a translation.

  2. (2)

    The map f𝕃3f_{\mathbb{L}^{3}} is a timelike constant mean curvature surface with mean curvature H=1/2H=1/2 in 𝕃3\mathbb{L}^{3} and N𝕃3N_{\mathbb{L}^{3}} is the spacelike unit normal vector of f𝕃3f_{\mathbb{L}^{3}}.

Proof.

Because of the continuity of the extended frame with respect to the parameter μ\mu, FμF^{\mu} can be represented in the form of

Fμ=1ψ2(μ)ψ2(μ)¯ψ1(μ)ψ1(μ)¯(ψ2(μ)¯ψ1(μ)¯ψ1(μ)ψ2(μ))F^{\mu}=\frac{1}{\sqrt{\psi_{2}(\mu)\overline{\psi_{2}(\mu)}-\psi_{1}(\mu)\overline{\psi_{1}(\mu)}}}\begin{pmatrix}\overline{\psi_{2}(\mu)}&\overline{\psi_{1}(\mu)}\\ \psi_{1}(\mu)&\psi_{2}(\mu)\end{pmatrix}

for some \mathbb{C}^{\prime}-valued functions ψ1(μ)\psi_{1}(\mu) and ψ2(μ)\psi_{2}(\mu) with ψk(1)=ψk\psi_{k}(1)=\psi_{k} for k=1,2k=1,2. Since FμF^{\mu} satisfies the equations

Fzμ=FμUμ,Fz¯μ=FμVμ,F^{\mu}_{z}=F^{\mu}U^{\mu},\quad F^{\mu}_{\bar{z}}=F^{\mu}V^{\mu},

with (3.7), (3.8) and H=0H=0, by considering the gauge transformation

FμFμ(μ1/200μ1/2),F^{\mu}\mapsto F^{\mu}\begin{pmatrix}\mu^{-1/2}&0\\ 0&\mu^{1/2}\end{pmatrix},

it can be shown that the deformation with respect to parameter μ\mu does not change the Dirac potential, that is, ψ2(μ)ψ2(μ)¯ψ1(μ)ψ1(μ)¯\psi_{2}(\mu)\overline{\psi_{2}(\mu)}-\psi_{1}(\mu)\overline{\psi_{1}(\mu)} is independent of μ\mu.

Since FμF^{\mu} is SU1,1{\rm SU}_{1,1}^{\prime}-valued, a straightforward computation shows that iμ(μFμ)(Fμ)1i^{\prime}\mu(\partial_{\mu}F^{\mu})(F^{\mu})^{-1} and N𝕃3N_{\mathbb{L}^{3}} take values in 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime}. Hence f𝕃3f_{\mathbb{L}^{3}} is a 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime}-valued map. Therefore, the diagonal entries of iμ(μf𝕃3)i^{\prime}\mu(\partial_{\mu}f_{\mathbb{L}^{3}}) take purely imaginary values and the trace of iμ(μf𝕃3)i^{\prime}\mu(\partial_{\mu}f_{\mathbb{L}^{3}}) vanishes. Thus iμ(μf𝕃3)di^{\prime}\mu(\partial_{\mu}f_{\mathbb{L}^{3}})^{d} takes 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime} values.

Next we compute zf^\partial_{z}\hat{f}. By the usual computations we obtain

zf𝕃3\displaystyle\partial_{z}f_{\mathbb{L}^{3}} =\displaystyle= z(iμ(μFμ)(Fμ)1)i2Ad(Fμ)σ3)\displaystyle\partial_{z}\left(-i^{\prime}\mu(\partial_{\mu}F^{\mu})(F^{\mu})^{-1})-\frac{i^{\prime}}{2}\operatorname{Ad}(F^{\mu})\sigma_{3}\right)
=\displaystyle= Ad(Fμ)(iμ(μUμ)i2[Uμ,σ3])\displaystyle\operatorname{Ad}(F^{\mu})\left(-i^{\prime}\mu(\partial_{\mu}U^{\mu})-\frac{i^{\prime}}{2}\left[U^{\mu},\sigma_{3}\right]\right)
=\displaystyle= 2μ1ew/2Ad(Fμ)σ3\displaystyle-2\mu^{-1}e^{w/2}\operatorname{Ad}(F^{\mu})\sigma_{3}
=\displaystyle= μ1(ψ1(μ)ψ2(μ)¯(ψ2(μ)¯)2(ψ1(μ))2ψ1(μ)ψ2(μ)¯).\displaystyle\mu^{-1}\begin{pmatrix}\psi_{1}(\mu)\overline{\psi_{2}(\mu)}&-(\overline{\psi_{2}(\mu)})^{2}\\ (\psi_{1}(\mu))^{2}&-\psi_{1}(\mu)\overline{\psi_{2}(\mu)}\end{pmatrix}.

Then we have

(4.7) zf𝕃3\displaystyle\partial_{z}f_{\mathbb{L}^{3}} =\displaystyle= 12(ϕ3(μ)ϕ2(μ)iϕ1(μ)ϕ2(μ)+iϕ1(μ)ϕ3(μ))\displaystyle\frac{1}{2}\begin{pmatrix}\phi_{3}(\mu)&-\phi_{2}(\mu)-i^{\prime}\phi_{1}(\mu)\\ -\phi_{2}(\mu)+i^{\prime}\phi_{1}(\mu)&-\phi_{3}(\mu)\end{pmatrix}
=\displaystyle= ϕ1(μ)1+ϕ2(μ)2+iϕ3(μ)3\displaystyle\phi_{1}(\mu)\mathcal{E}_{1}+\phi_{2}(\mu)\mathcal{E}_{2}+i^{\prime}\phi_{3}(\mu)\mathcal{E}_{3}

with

ϕ1(μ)=μ1i((ψ2(μ)¯)2+(ψ1(μ)2)),ϕ2(μ)=μ1((ψ2(μ)¯)2(ψ1(μ)2))\phi_{1}(\mu)=\mu^{-1}i^{\prime}\left((\overline{\psi_{2}(\mu)})^{2}+(\psi_{1}(\mu)^{2})\right),\quad\phi_{2}(\mu)=\mu^{-1}\left((\overline{\psi_{2}(\mu)})^{2}-(\psi_{1}(\mu)^{2})\right)

and

ϕ3(μ)=μ12ψ1(μ)ψ2(μ)¯.\phi_{3}(\mu)=\mu^{-1}2\psi_{1}(\mu)\overline{\psi_{2}(\mu)}.

By using (4), we can compute

z(i2μ(μf𝕃3))\displaystyle\partial_{z}\left(-\frac{i^{\prime}}{2}\mu\left(\partial_{\mu}f_{\mathbb{L}^{3}}\right)\right) =\displaystyle= i2μμ(zf𝕃3)\displaystyle-\frac{i^{\prime}}{2}\mu\partial_{\mu}(\partial_{z}f_{\mathbb{L}^{3}})
=\displaystyle= iew/2μ(μ2)Ad(Fμ)(0100)\displaystyle i^{\prime}e^{w/2}\mu(-\mu^{-2})\operatorname{Ad}(F^{\mu})\begin{pmatrix}0&1\\ 0&0\end{pmatrix}
+iew/2[iμ1(f𝕃3N𝕃3),12μew/2zf𝕃3]\displaystyle\,+i^{\prime}e^{w/2}\left[i^{\prime}\mu^{-1}(-f_{\mathbb{L}^{3}}-N_{\mathbb{L}^{3}}),-\frac{1}{2}\mu e^{-w/2}\partial_{z}f_{\mathbb{L}^{3}}\right]
=\displaystyle= i2zf𝕃3+[f𝕃3+N𝕃3,12zf𝕃3].\displaystyle\frac{i^{\prime}}{2}\partial_{z}f_{\mathbb{L}^{3}}+\left[f_{\mathbb{L}^{3}}+N_{\mathbb{L}^{3}},\frac{1}{2}\partial_{z}f_{\mathbb{L}^{3}}\right].

Using (4), we have

[f𝕃3,12zf𝕃3]d=12(ϕ2(μ)ϕ1(μ)𝑑zϕ1(μ)ϕ2(μ)𝑑z)3\left[f_{\mathbb{L}^{3}},\frac{1}{2}\partial_{z}f_{\mathbb{L}^{3}}\right]^{d}=\frac{1}{2}\left(\phi_{2}(\mu)\int\phi_{1}(\mu)dz-\phi_{1}(\mu)\int\phi_{2}(\mu)dz\right)\mathcal{E}_{3}

and

[N𝕃3,12zf𝕃3]=i2zf𝕃3.\left[N_{\mathbb{L}^{3}},\frac{1}{2}\partial_{z}f_{\mathbb{L}^{3}}\right]=\frac{i^{\prime}}{2}\partial_{z}f_{\mathbb{L}^{3}}.

Consequently, we have

z(i2μ(μf𝕃3))d=(ϕ3(μ)+12(ϕ2(μ)ϕ1(μ)𝑑zϕ1(μ)ϕ2(μ)𝑑z))3.\partial_{z}\left(-\frac{i^{\prime}}{2}\mu\left(\partial_{\mu}f_{\mathbb{L}^{3}}\right)\right)^{d}=\left(\phi_{3}(\mu)+\frac{1}{2}\left(\phi_{2}(\mu)\int\phi_{1}(\mu)dz-\phi_{1}(\mu)\int\phi_{2}(\mu)dz\right)\right)\mathcal{E}_{3}.

Thus we obtain

zf^\displaystyle\partial_{z}\hat{f} =\displaystyle= z(f𝕃3)o+z(i2μ(μf𝕃3))d\displaystyle\partial_{z}(f_{\mathbb{L}^{3}})^{o}+\partial_{z}\left(-\frac{i^{\prime}}{2}\mu\left(\partial_{\mu}f_{\mathbb{L}^{3}}\right)\right)^{d}
=\displaystyle= ϕ1(μ)1+ϕ2(μ)2+(ϕ3(μ)+12(ϕ2(μ)ϕ1(μ)𝑑zϕ1(μ)ϕ2(μ)𝑑z))3\displaystyle\phi_{1}(\mu)\mathcal{E}_{1}+\phi_{2}(\mu)\mathcal{E}_{2}+\left(\phi_{3}(\mu)+\frac{1}{2}\left(\phi_{2}(\mu)\int\phi_{1}(\mu)dz-\phi_{1}(\mu)\int\phi_{2}(\mu)dz\right)\right)\mathcal{E}_{3}

and then

(4.8) (fμ)1(zfμ)=ϕ1(μ)e1+ϕ2(μ)e2+ϕ3(μ)e3.(f^{\mu})^{-1}(\partial_{z}f^{\mu})=\phi_{1}(\mu)e_{1}+\phi_{2}(\mu)e_{2}+\phi_{3}(\mu)e_{3}.

The equation (4.8) means that, for μ=eit\mu=e^{i^{\prime}t} with sufficiently small tt\in\mathbb{R}, the map fμf^{\mu} is conformal with the conformal parameter zz and the conformal factor 4(ψ2(μ)ψ2(μ)¯+ψ1(μ)ψ1(μ)¯)24(\psi_{2}(\mu)\overline{\psi_{2}(\mu)}+\psi_{1}(\mu)\overline{\psi_{1}(\mu)})^{2}. To complete the proof of (1)(1) we check the mean curvature and the normal Gauss map of fμf^{\mu}. Since the Dirac potential of fμf^{\mu} is same with the one of the original timelike minimal surface, the mean curvature of fμf^{\mu} is zero for μ\mu with ψ2(μ)ψ2(μ)¯+ψ1(μ)ψ1(μ)¯\psi_{2}(\mu)\overline{\psi_{2}(\mu)}+\psi_{1}(\mu)\overline{\psi_{1}(\mu)} nowhere vanishing on 𝔻\mathbb{D}. Using the map 𝔫𝔦𝔩3𝕊~12𝕊12𝕃(+,,+)3\mathfrak{nil}_{3}\supset\widetilde{\mathbb{S}}^{2}_{1}\to\mathbb{S}^{2}_{1}\subset\mathbb{L}^{3}_{(+,-,+)} defined in Section 3.1, the normal Gauss map of fμf^{\mu} is converted into N𝕃3N_{\mathbb{L}^{3}}. To prove (2)(2), see Appendix A. ∎

Remark 4.2.

In other cases, h<0h<0 or ϵ=i\epsilon=-i^{\prime}, we can get the same result with Theorem 4.1 by adapting the identification (3.3) between 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime} and 𝕃(+,,+)3\mathbb{L}^{3}_{(+,-,+)} and the linear isomorphism (4.1) from 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime} to 𝔫𝔦𝔩3\mathfrak{nil}_{3} precisely. For example, when the original timelike minimal surface has h>0h>0 and ϵ=i\epsilon=-i^{\prime}, we should replace the identification (3.3) and the linear isomorphism (4.1), respectively, into

𝔰𝔲1,112(ri(pqi)(p+qi)ri)(p,q,r)𝕃(+,,+)3\mathfrak{su}_{1,1}^{\prime}\ni\frac{1}{2}\begin{pmatrix}ri^{\prime}&-(-p-qi^{\prime})\\ -(-p+qi^{\prime})&-ri^{\prime}\end{pmatrix}\longleftrightarrow(p,q,r)\in\mathbb{L}^{3}_{(+,-,+)}

and

Ξ(x11+x22+x33):=x1e1x2e2+x3e3\Xi\left(x_{1}\mathcal{E}_{1}+x_{2}\mathcal{E}_{2}+x_{3}\mathcal{E}_{3}\right):=-x_{1}e_{1}-x_{2}e_{2}+x_{3}e_{3}

where j(j=1,2,3)\mathcal{E}_{j}\;(j=1,2,3) is defined in (4.2).

In Theorem 4.1, we recover a given timelike minimal surface in Nil3{\rm Nil}_{3} in terms of generating spinors and Sym formula. More generally, we can construct timelike minimal surfaces using a non-conformal harmonic map into 𝕊12\mathbb{S}^{2}_{1}. As we have seen in the proof of Theorem 4.1 the harmonicity of a map NN into 𝕊12\mathbb{S}^{2}_{1} in terms of

d(α1)+[α0α1]=0,d(*\alpha_{1})+[\alpha_{0}\wedge*\alpha_{1}]=0,

where α\alpha is the Maurer-Cartan form of the frame F~:𝔻SU1,1\tilde{F}:\mathbb{D}\to{\rm SU}_{1,1}^{\prime} of NN and moreover, α=α0+α1\alpha=\alpha_{0}+\alpha_{1} is the representation in accordance with the decomposition 𝔰𝔲1,1=𝔨+𝔪\mathfrak{su}_{1,1}^{\prime}=\mathfrak{k}+\mathfrak{m}. Denote the (1,0)(1,0)-part and (0,1)(0,1)-part of α1\alpha_{1} by α1\alpha_{1}{{}^{\prime}} and α1′′\alpha_{1}{{}^{\prime\prime}}, and define a 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime}-valued 11-form αμ\alpha^{\mu} for each μS11\mu\in S^{1}_{1} by

αμ:=α0+μ1α1+μα1.′′\alpha^{\mu}:=\alpha_{0}+\mu^{-1}\alpha_{1}{{}^{\prime}}+\mu\alpha_{1}{{}^{\prime\prime}}.

Then αμ\alpha^{\mu} satisfies

dαμ+12[αμαμ]=0d\alpha^{\mu}+\frac{1}{2}[\alpha^{\mu}\wedge\alpha^{\mu}]=0

for all μS11\mu\in S^{1}_{1}, and thus there exists F~μ:𝔻SU1,1\tilde{F}^{\mu}:\mathbb{D}\to{\rm SU}_{1,1}^{\prime} which is smooth with respect to the parameter μ\mu and satisfies (F~μ)1dF~μ=αμ(\tilde{F}^{\mu})^{-1}d\tilde{F}^{\mu}=\alpha^{\mu} for each μ\mu. Thus F~μ\tilde{F}^{\mu} is the extended frame of the harmonic map NN. As well as Theorem 4.1 we can show the following theorem:

Theorem 4.3.

Let F~μ:𝔻SU1,1\tilde{F}^{\mu}:\mathbb{D}\to{\rm SU}_{1,1}^{\prime} be the extended frame of a harmonic map NN into the 𝕊12\mathbb{S}^{2}_{1}. Assume that the coefficient function aa of (1,2)(1,2)-entry of α1\alpha_{1}{{}^{\prime}} satisfies aa¯<0a\overline{a}<0 on 𝔻\mathbb{D}. Define the maps f~𝕃3\tilde{f}_{\mathbb{L}^{3}}, N~𝕃3\tilde{N}_{\mathbb{L}^{3}} and f~μ\tilde{f}^{\mu} respectively by the Sym formulas in (4.4) and (4.5) where FμF^{\mu} replaced by F~μ\tilde{F}^{\mu}. Then, under the identification (3.3)of 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime} and 𝕃3\mathbb{L}^{3} and the linear isomorphism (4.1) from 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime} to 𝔫𝔦𝔩3\mathfrak{nil}_{3}, for each μ=eit𝕊11\mu=e^{i^{\prime}t}\in\mathbb{S}^{1}_{1} the following statements hold::

  1. (1)

    The map f~𝕃3\tilde{f}_{\mathbb{L}^{3}} is a timelike constant mean curvature surface with mean curvature H=1/2H=1/2 in 𝕃3\mathbb{L}^{3} with the first fundamental form I=16aa¯dzdz¯I=-16a\overline{a}dzd\bar{z} and N~𝕃3\tilde{N}_{\mathbb{L}^{3}} is the spacelike unit normal vector of f~𝕃3\tilde{f}_{\mathbb{L}^{3}}.

  2. (2)

    The map f~μ\tilde{f}^{\mu} is a timelike minimal surface (possibly singular) in Nil3{\rm Nil}_{3} and N𝕃3N_{\mathbb{L}^{3}} is the isometric image of the normal Gauss map of fμf^{\mu}. In particular, F~μ\tilde{F}^{\mu} is an extended frame of some timelike minimal surface ff.

Proof.

To prove the theorem, one needs to define generating spinors properly: After gauging the extended frame the upper right corner of α1\alpha_{1}^{\prime} takes values in purely imaginary, that is aa can be assumed to be purely imaginary. Define hh by h=4iah=-4i^{\prime}a, and ψ~1\tilde{\psi}_{1} and ψ~2\tilde{\psi}_{2} by putting

F~21=2ψ~1h1/2,F~22=2ψ~2h1/2,\tilde{F}_{21}=\sqrt{2}\tilde{\psi}_{1}h^{-1/2},\quad\tilde{F}_{22}=\sqrt{2}\tilde{\psi}_{2}h^{-1/2},

respectively. Then ψ~1\tilde{\psi}_{1} and ψ~2\tilde{\psi}_{2} are generating spinors of the map f~μ\tilde{f}^{\mu} and its angle function is exactly h=2(ψ~2ψ~2¯ψ~1ψ~1¯)h=2\left(\tilde{\psi}_{2}\overline{\tilde{\psi}_{2}}-\tilde{\psi}_{1}\overline{\tilde{\psi}_{1}}\right). ∎

5. Generalized Weierstrass type representation for timelike minimal surfaces in Nil3{\rm Nil}_{3}

In this section we will give a construction of timelike minimal surfaces in Nil3{\rm Nil}_{3} in terms of the para-holomorphic data, the so-called generalized Weierstrass type representation. The heart of the construction is based on two loop group decompositions, the so-called Birkhoff and Iwasawa decompositions, which are reformulations of [11, Theorem 2.5], see also [24], in terms of the para-complex structure.

5.1. From minimal surfaces to normalized potentials: The Birkhoff decomposition

Let us recall the hyperbola on \mathbb{C}^{\prime}:

(5.1) 𝕊11={μμμ¯=1,Reμ>0}.\mathbb{S}_{1}^{1}=\{\mu\in\mathbb{C}^{\prime}\mid\mu\bar{\mu}=1,\,\operatorname{Re}\mu>0\}.

Since an extended frame FμF^{\mu} is analytic on 𝕊11\mathbb{S}_{1}^{1} (in fact it is analytic on {x(1±i)x}\mathbb{C}^{\prime}\setminus\{x(1\pm i^{\prime})\mid x\in\mathbb{R}\}), it is natural to introduce the following loop groups::

ΛSL2σ\displaystyle\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma} ={g:𝕊11SL2g=+g1μ1+g0+g1μ1+and g(μ)=σ3g(μ)σ3},\displaystyle=\left\{g:\mathbb{S}_{1}^{1}\to{\rm SL}_{2}\mathbb{C}^{\prime}\mid\begin{array}[]{l}g=\cdots+g_{-1}\mu^{-1}+g_{0}+g_{1}\mu^{1}+\cdots\\ \mbox{and $g(-\mu)=\sigma_{3}g(\mu)\sigma_{3}$}\end{array}\right\},
Λ+SL2σ\displaystyle\Lambda^{\prime+}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma} ={gΛSL2σg=g0+g1μ1+}.\displaystyle=\left\{g\in\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}\mid g=g_{0}+g_{1}\mu^{1}+\cdots\right\}.

On the one hand, we define

ΛSL2σ={gΛSL2σg=g0+g1μ1+}.\Lambda^{\prime-}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}=\left\{g\in\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}\mid g=g_{0}+g_{-1}\mu^{-1}+\cdots\right\}.

We now use the lower subscript * for normalization at μ=0\mu=0 or μ=\mu=\infty by identity, that is

Λ±SL2σ={gΛ±SL2σg(0)=id for Λ+SL2σ or g()=id for ΛSL2σ}.\Lambda^{\prime\pm}_{*}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}=\left\{g\in\Lambda^{\prime\pm}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}\mid\mbox{$g(0)=\operatorname{id}$ for $\Lambda^{\prime+}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}$ or $g(\infty)=\operatorname{id}$ for $\Lambda^{\prime-}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}$}\right\}.

Moreover, we define the loop group of the special para-unitary group SU1,1:{\rm SU}_{1,1}^{\prime}:

ΛSU1,1σ={gΛSL2σσ3(g(1/μ¯)¯T)1σ3=g(μ)}.\Lambda^{\prime}{\rm SU}_{1,1\sigma}^{\prime}=\left\{g\in\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}\mid\sigma_{3}\left(\overline{g(1/\bar{\mu})}^{T}\right)^{-1}\sigma_{3}=g(\mu)\right\}.

Further, let us introduce the following subgroup

U1={diag(eiθ,eiθ)θ}.{\rm U}_{1}^{\prime}=\left\{\operatorname{diag}(e^{i^{\prime}\theta},e^{-i^{\prime}\theta})\mid\theta\in\mathbb{R}\right\}.

The fundamental decompositions for the above loop groups are Birkhoff and Iwasawa decompositions as follows::

Theorem 5.1 (Birkhoff and Iwasawa decompositions).

The loop group ΛSL2σ\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma} can be decomposed as follows::

  1. (1)

    Birkhoff decomposition:: The multiplication maps

    (5.2) ΛSL2σ×Λ+SL2σΛSL2σandΛ+SL2σ×ΛSL2σΛSL2σ\Lambda^{\prime-}_{*}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}\times\Lambda^{\prime+}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}\to\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}\quad\mbox{and}\quad\Lambda^{\prime+}_{*}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}\times\Lambda^{\prime-}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}\to\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}

    are diffeomorphism onto the open dense subsets of ΛSL2σ\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}, which will be called the big cells of ΛSL2σ\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}.

  2. (2)

    Iwasawa decomposition:: The multiplication map

    (5.3) ΛSU1,1σ×Λ+SL2σΛSL2σ\Lambda^{\prime}{\rm SU}_{1,1\sigma}^{\prime}\times\Lambda^{\prime+}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}\to\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}

    is an diffeomorphism onto the open dense subset of ΛSL2σ\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}, which will be called the big cell of ΛSL2σ\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}.

Proof.

We first note that a given real Lie algebra 𝔤\mathfrak{g}, the para-complexification 𝔤\mathfrak{g}\otimes\mathbb{C}^{\prime} of 𝔤\mathfrak{g} is isomorphic to 𝔤𝔤\mathfrak{g}\oplus\mathfrak{g} as a real Lie algebra, that is, the isomorphism is given explicitly as

(5.4) 𝔤𝔤(X,Y)12(X+Y)+12(XY)i𝔤.\mathfrak{g}\oplus\mathfrak{g}\ni(X,Y)\mapsto\frac{1}{2}(X+Y)+\frac{1}{2}(X-Y)i^{\prime}\in\mathfrak{g}\otimes\mathbb{C}^{\prime}.

Accordingly an isomorphism between SL2×SL2\mathrm{SL}_{2}\mathbb{R}\times\mathrm{SL}_{2}\mathbb{R} and SL2{\rm SL}_{2}\mathbb{C}^{\prime} follows. In particular we have an isomorphism between {diag(a,a1)a×}×{diag(a,a1)a×}\{\operatorname{diag}(a,a^{-1})\mid a\in\mathbb{R}^{\times}\}\times\{\operatorname{diag}(a,a^{-1})\mid a\in\mathbb{R}^{\times}\} and {diag(reiθ,r1eiθ)r0,θ}\{\operatorname{diag}(re^{i^{\prime}\theta},r^{-1}e^{-i^{\prime}\theta})\mid r\neq 0,\;\theta\in\mathbb{R}\} follows. Let us consider two real Lie algebras 𝔰𝔩2\mathfrak{sl}_{2}\mathbb{R} and 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime}:

𝔰𝔩2={(abca)a,b,c},𝔰𝔲1,1={(cibaib+aici)a,b,c}.\mathfrak{sl}_{2}\mathbb{R}=\left\{\begin{pmatrix}a&b\\ c&-a\end{pmatrix}\mid a,b,c\in\mathbb{R}\right\},\quad\mathfrak{su}_{1,1}^{\prime}=\left\{\begin{pmatrix}ci^{\prime}&b-ai^{\prime}\\ b+ai^{\prime}&-ci^{\prime}\end{pmatrix}\mid a,b,c\in\mathbb{R}\right\}.

Then an explicit map

(5.5) X12(X+X)+12(XX)i,X=σ3X¯Tσ3X\mapsto\frac{1}{2}(X+X^{*})+\frac{1}{2}(X-X^{*})i^{\prime},\quad X^{*}=-\sigma_{3}\overline{X}^{T}\sigma_{3}

induces an isomorphism between 𝔰𝔩2\mathfrak{sl}_{2}\mathbb{R} and 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime}. Note that X=σ3Xσ3X^{*}=-\sigma_{3}X\sigma_{3} for X𝔰𝔩2X\in\mathfrak{sl}_{2}\mathbb{R}. Then accordingly an isomorphism between SL2\mathrm{SL}_{2}\mathbb{R} and SU1,1{\rm SU}_{1,1}^{\prime} follows.

Let us now define the loop algebras of 𝔰𝔩2\mathfrak{sl}_{2}\mathbb{R} by

Λ𝔰𝔩2σ\displaystyle\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma} ={ξ:+𝔰𝔩2ξ=+ξ1λ1+ξ0+ξ1λ+ and ξ(λ)=σ3ξ(λ)σ3},\displaystyle=\left\{\xi:\mathbb{R}^{+}\to\mathfrak{sl}_{2}\mathbb{R}\mid\mbox{$\xi=\cdots+\xi_{-1}\lambda^{-1}+\xi_{0}+\xi_{1}\lambda+\cdots$ and $\xi(-\lambda)=\sigma_{3}\xi(\lambda)\sigma_{3}$}\right\},
Λ±𝔰𝔩2σ\displaystyle\Lambda^{\pm}\mathfrak{sl}_{2}\mathbb{R}_{\sigma} ={ξΛ𝔰𝔩2σξ=ξ0+ξ±1λ±1+}.\displaystyle=\left\{\xi\in\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma}\mid\xi=\xi_{0}+\xi_{\pm 1}\lambda^{\pm 1}+\cdots\right\}.

Moreover, the lower subscript * denotes normalization at λ=0\lambda=0 and λ=\lambda=\infty, that is, ξ0=0\xi_{0}=0 in Λ±𝔰𝔩2\Lambda^{\pm}\mathfrak{sl}_{2}\mathbb{R}. On the one hand the loop algebra of 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime} is defined by

Λ𝔰𝔲1,1σ={τ:𝕊11𝔰𝔲1,1τ(μ)=σ3τ(μ)σ3}.\Lambda^{\prime}\mathfrak{su}^{\prime}_{1,1\sigma}=\left\{\tau:\mathbb{S}^{1}_{1}\to\mathfrak{su}_{1,1}^{\prime}\mid\tau(-\mu)=\sigma_{3}\tau(\mu)\sigma_{3}\right\}.

The Lie algebra of ΛSL2σ\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma} is defined by

Λ𝔰𝔩2σ={τ:𝕊11𝔰𝔩2τ=+τ1μ1+τ0+τ1μ+ and τ(μ)=σ3τ(μ)σ3},\displaystyle\Lambda^{\prime}\mathfrak{sl}_{2}\mathbb{C}^{\prime}_{\sigma}=\left\{\tau:\mathbb{S}^{1}_{1}\to\mathfrak{sl}_{2}\mathbb{C}^{\prime}\mid\mbox{$\tau=\cdots+\tau_{-1}\mu^{-1}+\tau_{0}+\tau_{1}\mu+\cdots$ and $\tau(-\mu)=\sigma_{3}\tau(\mu)\sigma_{3}$}\right\},

and it is easy to see that the loop algebra Λ𝔰𝔲1,1σ\Lambda^{\prime}\mathfrak{su}^{\prime}_{1,1\sigma} can be extended to the following fixed point set of an anti-linear involution of Λ𝔰𝔩2σ\Lambda^{\prime}\mathfrak{sl}_{2}\mathbb{C}^{\prime}_{\sigma}:

Λ𝔰𝔲1,1σ={τΛ𝔰𝔩2στ(1/μ¯)=τ(μ)}.\Lambda^{\prime}\mathfrak{su}^{\prime}_{1,1\sigma}=\left\{\tau\in\Lambda^{\prime}\mathfrak{sl}_{2}\mathbb{C}^{\prime}_{\sigma}\mid\tau^{*}(1/\bar{\mu})=\tau(\mu)\right\}.

We now identify the two loop algebras Λ𝔰𝔩2σ\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma} and Λ𝔰𝔲1,1σ\Lambda^{\prime}\mathfrak{su}^{\prime}_{1,1\sigma} as follows: Let ξ=+ξ1λ1+ξ0+ξ1λ+\xi=\cdots+\xi_{-1}\lambda^{-1}+\xi_{0}+\xi_{1}\lambda+\cdots with ξi𝔰𝔩2\xi_{i}\in\mathfrak{sl}_{2}\mathbb{R} be an element in Λ𝔰𝔩2σ\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma} and consider the isomorphism (5.5):

ξξ~\displaystyle\xi\mapsto\tilde{\xi} =ξ+ξ¯\displaystyle=\xi\ell+\xi^{*}\bar{\ell}
=+(ξ1+ξ1¯)λ1+ξ0+ξ0¯+(ξ1+ξ1¯)λ+,\displaystyle=\cdots+(\xi_{-1}\ell+\xi_{-1}^{*}\bar{\ell})\lambda^{-1}+\xi_{0}\ell+\xi_{0}^{*}\bar{\ell}+(\xi_{1}\ell+\xi_{1}^{*}\bar{\ell})\lambda+\cdots,

where we set

=12(1+i).\ell=\frac{1}{2}(1+i^{\prime}).

Since λ+\lambda\in\mathbb{R}^{+} corresponds to λ=μ+μ1¯\lambda=\mu\ell+\mu^{-1}\bar{\ell} with μ𝕊11(μ¯=μ1)\mu\in\mathbb{S}^{1}_{1}\;(\bar{\mu}=\mu^{-1}) and the properties of null basis {,¯}\{\ell,\bar{\ell}\}, that is, ¯=0\ell\bar{\ell}=0 and 2=\ell^{2}=\ell, ¯2=¯\bar{\ell}\,^{2}=\bar{\ell}, we have

ξ~=+(ξ1+ξ1¯)μ1+(ξ0+ξ0¯)+(ξ1+ξ1¯)μ+.\tilde{\xi}=\cdots+(\xi_{-1}\ell+\xi_{1}^{*}\bar{\ell})\mu^{-1}+(\xi_{0}\ell+\xi_{0}^{*}\bar{\ell})+(\xi_{1}\ell+\xi_{-1}^{*}\bar{\ell})\mu+\cdots.

Thus the following map is an isomorphism between Λ𝔰𝔩2σ\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma} and Λ𝔰𝔲1,1σ\Lambda^{\prime}\mathfrak{su}^{\prime}_{1,1\sigma}

(5.6) Λ𝔰𝔩2σξ(λ)ξ(μ)+ξ(1/μ¯)¯Λ𝔰𝔲1,1σ,\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma}\ni\xi(\lambda)\mapsto\xi(\mu)\ell+\xi^{*}(1/\bar{\mu})\bar{\ell}\in\Lambda^{\prime}\mathfrak{su}^{\prime}_{1,1\sigma},

where μ=λ+λ1¯\mu=\lambda\ell+\lambda^{-1}\bar{\ell}.

Then combining two isomorphisms (5.4) and (5.6), we have isomorphisms

Λ𝔰𝔩2σΛ𝔰𝔩2σΛ𝔰𝔲1,1σΛ𝔰𝔲1,1σΛ𝔰𝔩2σ,\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma}\oplus\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma}\cong\Lambda^{\prime}\mathfrak{su}^{\prime}_{1,1\sigma}\oplus\Lambda^{\prime}\mathfrak{su}^{\prime}_{1,1\sigma}\cong\Lambda^{\prime}\mathfrak{sl}_{2}\mathbb{C}^{\prime}_{\sigma},

where the maps are explicitly given by

(5.7) (ξ(λ),η(λ))(ξ(μ)+ξ(1/μ¯)¯,η(λ)+η(1/μ¯)¯)(\xi(\lambda),\eta(\lambda))\mapsto\left(\xi(\mu)\ell+\xi^{*}(1/\bar{\mu})\bar{\ell},\,\eta(\lambda)\ell+\eta^{*}(1/\bar{\mu})\bar{\ell}\right)

for Λ𝔰𝔩2σΛ𝔰𝔩2σΛ𝔰𝔲1,1σΛ𝔰𝔲1,1σ\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma}\oplus\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma}\cong\Lambda^{\prime}\mathfrak{su}^{\prime}_{1,1\sigma}\oplus\Lambda^{\prime}\mathfrak{su}^{\prime}_{1,1\sigma}, and

(5.8) (ξ(λ),η(λ))ξ(μ)+η(1/μ¯)¯(\xi(\lambda),\eta(\lambda))\mapsto\xi(\mu)\ell+\eta^{*}(1/\bar{\mu})\bar{\ell}

for Λ𝔰𝔩2σΛ𝔰𝔩2σΛ𝔰𝔩2σ\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma}\oplus\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma}\cong\Lambda^{\prime}\mathfrak{sl}_{2}\mathbb{C}^{\prime}_{\sigma}. Moreover, by the map (5.8), the following isomorphisms follow:

Λ+𝔰𝔩2Λ𝔰𝔩2Λ+𝔰𝔩2σ,Λ𝔰𝔩2Λ+𝔰𝔩2Λ𝔰𝔩2σ.\Lambda^{+}\mathfrak{sl}_{2}\mathbb{R}\oplus\Lambda^{-}\mathfrak{sl}_{2}\mathbb{R}\cong\Lambda^{\prime+}\mathfrak{sl}_{2}\mathbb{C}^{\prime}_{\sigma},\quad\Lambda^{-}\mathfrak{sl}_{2}\mathbb{R}\oplus\Lambda^{+}\mathfrak{sl}_{2}\mathbb{R}\cong\Lambda^{\prime-}\mathfrak{sl}_{2}\mathbb{C}^{\prime}_{\sigma}.

It is well known that [11, Section 2.1] the loop algebra Λ𝔰𝔩2σ\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma} is a Banach Lie algebra and thus Λ𝔰𝔩2σ(Λ𝔰𝔩2σ×Λ𝔰𝔩2σ)\Lambda^{\prime}\mathfrak{sl}_{2}\mathbb{C}^{\prime}_{\sigma}(\cong\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma}\times\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma}) is also a Banach Lie algebra, and the corresponding loop groups ΛSL2σ\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma} and ΛSL2σ(ΛSL2σ×ΛSL2σ)\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}(\cong\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma}\times\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma}) become Banach Lie groups, respectively.

Then the Birkhoff and Iwasawa decompositions of ΛSL2σ\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma} and ΛSL2σ×ΛSL2σ\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma}\times\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma} were proved in Theorem 2.2 and Theorem 2.5 in [11]: The following multiplication maps

ΛSL2σ×Λ+SL2σΛSL2σ,Λ+SL2σ×ΛSL2σΛSL2σ,\Lambda^{-}{\rm SL}_{2}\mathbb{R}_{\sigma}\times\Lambda^{+}{\rm SL}_{2}\mathbb{R}_{\sigma}\rightarrow\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma},\quad\Lambda^{+}{\rm SL}_{2}\mathbb{R}_{\sigma}\times\Lambda^{-}{\rm SL}_{2}\mathbb{R}_{\sigma}\rightarrow\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma},

and

Δ(ΛSL2σ×ΛSL2σ)×Λ+SL2σ×ΛSL2σΛSL2σ×ΛSL2σ\Delta(\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma}\times\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma})\times\Lambda^{+}{\rm SL}_{2}\mathbb{R}_{\sigma}\times\Lambda^{-}{\rm SL}_{2}\mathbb{R}_{\sigma}\rightarrow\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma}\times\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma}

are diffeomorphisms onto the open dense subsets of ΛSL2σ\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma} and ΛSL2σ×ΛSL2σ\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma}\times\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma}, respectively. Then these decomposition theorems can be translated to the Birkhoff and Iwasawa decompositions for ΛSL2σ\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}. This completes the proof. ∎

Remark 5.2.

In this paper, we consider only the loop group of a Lie group GG which is defined on the hyperbola 𝕊11\mathbb{S}^{1}_{1} and has the power series expansion. We have denoted such loop group by the symbol ΛGσ\Lambda G_{\sigma}. However in [11], the authors considered the loop group Λ~Gσ\tilde{\Lambda}G_{\sigma} which was a space of continuous maps from +\mathbb{R}^{+} and it can be analytically continued to ×\mathbb{C}^{\times}, that is, an element of Λ~Gσ\tilde{\Lambda}G_{\sigma} has the power series expansion. If an element of Λ~Gσ\tilde{\Lambda}G_{\sigma} is restricted to +\mathbb{R}^{+}, then it corresponds to an element of ΛGσ\Lambda G_{\sigma} as discussed above.

In the following, we assume that an extended frame FμF^{\mu} is in the big cell of ΛSL2σ\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}. Using the Birkhoff decomposition in Theorem 5.1, we have the para-holomorphic data from a timelike minimal surface.

Theorem 5.3 (The normalized potential).

Let FμF^{\mu} be an extended frame of a timelike minimal surface ff in Nil3{\rm Nil}_{3}, and apply the Birkhoff decomposition in Theorem 5.1 as Fμ=FμF+μF^{\mu}=F_{-}^{\mu}F_{+}^{\mu} with FμΛSL2σF_{-}^{\mu}\in\Lambda^{\prime-}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma} and F+μΛ+SL2σF_{+}^{\mu}\in\Lambda^{\prime+}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}. Then the Maurer-Cartan form of FμF_{-}^{\mu}, that is, ξ=(Fμ)1dFμ\xi=(F_{-}^{\mu})^{-1}dF_{-}^{\mu}, is para-holomorphic with respect to zz. Moreover, ξ\xi has the following explicit form::

(5.9) ξ=μ1(0b(z)B(z)b(z)0)dz,\xi=\mu^{-1}\begin{pmatrix}0&b(z)\\ -\frac{B(z)}{b(z)}&0\end{pmatrix}dz,

where

b(z)=i4h2(z,0)h(0,0).b(z)=-\frac{i^{\prime}}{4}\frac{h^{2}(z,0)}{h(0,0)}.

The data ξ\xi is called the normalized potential of a timelike minimal surface ff.

Proof.

Let FμF^{\mu} be an extended frame of a timelike minimal surface ff in Nil3{\rm Nil}_{3}. Applying the Birkhoff decomposition (5.2) in Theorem 5.1:

Fμ=FμF+μΛSL2σ×Λ+SL2σ.F^{\mu}=F^{\mu}_{-}F^{\mu}_{+}\in\Lambda^{-}_{*}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}\times\Lambda^{\prime+}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}.

Then the Maurer-Cartan form of FμF^{\mu}_{-} can be computed as

(5.10) ξ\displaystyle\xi =(Fμ)1dFμ\displaystyle=(F^{\mu}_{-})^{-1}dF^{\mu}_{-}
=F+μ(Fμ)1d{Fμ(F+μ)1}\displaystyle=F_{+}^{\mu}(F^{\mu})^{-1}d\left\{F^{\mu}(F_{+}^{\mu})^{-1}\right\}
=F+μα(F+μ)1dF+μ(F+μ)1.\displaystyle=F_{+}^{\mu}\alpha(F_{+}^{\mu})^{-1}-dF_{+}^{\mu}(F_{+}^{\mu})^{-1}.

Since ξ\xi takes values in Λ𝔰𝔩2σ\Lambda^{\prime}\mathfrak{sl}_{2}\mathbb{C}^{\prime}_{\sigma} and does not have μ0\mu^{0}-term, thus

ξ=μ1F+0(0i4h4iBh0)F+01|z¯=0dz,\xi=\mu^{-1}F_{+0}\begin{pmatrix}0&-\frac{i^{\prime}}{4}h\\ \frac{4i^{\prime}B}{h}&0\end{pmatrix}F_{+0}^{-1}\Big{|}_{\bar{z}=0}dz,

where F+0μF_{+0}^{\mu} denotes the first coefficient of F+μF_{+}^{\mu} expansion with respect to μ\mu, that is, F+μ=F+0+F+1μ+F+2μ2+F_{+}^{\mu}=F_{+0}+F_{+1}\mu+F_{+2}\mu^{2}+\cdots. Therefore FμF_{-}^{\mu} is para-holomorphic with respect to zz and moreover, ξ\xi can be computed as

ξ(z,μ)=μ1(0i4h(z,0)f02(z,0)4iB(z)h(z,0)f02(z,0)0)dz,\xi(z,\mu)=\mu^{-1}\begin{pmatrix}0&-\frac{i^{\prime}}{4}h(z,0)f_{0}^{2}(z,0)\\ \frac{4i^{\prime}B(z)}{h(z,0)}f_{0}^{-2}(z,0)&0\end{pmatrix}dz,

where F+0(z,0)=diag(f0(z,0),f01(z,0))F_{+0}(z,0)=\operatorname{diag}(f_{0}(z,0),f_{0}^{-1}(z,0)). We now look at the μ0\mu^{0}-terms of both sides of (5.10): Then

0=(F+0α0F+01dF+0F+01)|z¯=0,0=(F_{+0}\alpha_{0}^{\prime}F_{+0}^{-1}-dF_{+0}F_{+0}^{-1})|_{\bar{z}=0},

where α0\alpha_{0}^{\prime} is α0=(12loghz(z,0))σ3dz\alpha_{0}^{\prime}=(\frac{1}{2}\log h_{z}(z,0))\sigma_{3}dz. It is equivalent to dF+0=F+0α0dF_{+0}=F_{+0}\alpha_{0}^{\prime}, and therefore

f0(z,0)=h1/2(z,0)c,f_{0}(z,0)=h^{1/2}(z,0)c,

where cc is some constant, follows. Since F+0(0,0)=idF_{+0}(0,0)=\operatorname{id}, thus c=h1/2(0,0)c=h^{-1/2}(0,0). This completes the proof. ∎

5.2. From para-holomorphic potentials to minimal surface: The Iwasawa decomposition

Conversely, in the following theorem we will show a construction of timelike minimal surface from normalized potentials as defined in (5.9), the so-called generalized Weierstrass type representation.

Theorem 5.4 (The generalized Weierstrass type representation ).

Let ξ\xi be a normalized potential defined in (5.9), and let FF_{-} be the solution of

zF=Fξ,F(z=0)=id.\partial_{z}F_{-}=F_{-}\xi,\quad F_{-}(z=0)=\operatorname{id}.

Then applying the Iwasawa decomposition in Theorem 5.1 to FF_{-}, that is F=FμV+F_{-}=F^{\mu}V_{+} with FλΛSU1,1σF^{\lambda}\in\Lambda^{\prime}{\rm SU}_{1,1\sigma}^{\prime} and V+Λ+SL2σV_{+}\in\Lambda^{\prime+}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}, and choosing a proper diagonal U1{\rm U}_{1}^{\prime}-element kk, FμkF^{\mu}k is an extended frame of the normal Gauss map f1Nf^{-1}N of a timelike minimal surface ff in Nil3{\rm Nil}_{3} up to the change of coordinates.

Proof.

It is easy to see that the solution FF_{-} takes values in ΛSL2σ\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}. Then apply the Iwasawa decomposition to FF_{-} (on the big cell), that is,

F=FμV+ΛSU1,1σ×Λ+SL2σ.F_{-}=F^{\mu}V_{+}\in\Lambda^{\prime}{\rm SU}_{1,1\sigma}^{\prime}\times\Lambda^{\prime+}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma}.

We now compute the Maurer-Cartan form of FμF^{\mu} as (Fμ)1dFμ(F^{\mu})^{-1}dF^{\mu},

(5.11) αμ\displaystyle\alpha^{\mu} =(Fμ)1dFμ\displaystyle=(F^{\mu})^{-1}dF^{\mu}
(5.12) =V+F1d(FV+1)\displaystyle=V_{+}F_{-}^{-1}d(F_{-}V_{+}^{-1})
=V+ξV+1dV+V+1.\displaystyle=V_{+}\xi V_{+}^{-1}-dV_{+}V_{+}^{-1}.

From the right-hand side of the above equation, it is easy to see αμ=μ1α1+α0+μ1α1+\alpha^{\mu}=\mu^{-1}\alpha_{-1}+\alpha_{0}+\mu^{1}\alpha_{1}+\cdots. Since FμF^{\mu} takes values in ΛSU1,1σ\Lambda^{\prime}{\rm SU}_{1,1\sigma}^{\prime}, thus

αμ=μ1α1+α0+μ1α1,\alpha^{\mu}=\mu^{-1}\alpha_{-1}+\alpha_{0}+\mu^{1}\alpha_{1},

and αj=αj\alpha_{j}^{*}=\alpha_{-j} holds. From the form of ξ\xi and the right-hand side of (5.11), the Maurer-Cartan form αμ\alpha^{\mu} almost has the form in (3.6). Finally a proper choice of a diagonal U1{\rm U}_{1}^{\prime}-element kk and a change of coordinates imply that αμ\alpha^{\mu} is exactly the same form in (3.6). This completes the proof. ∎

Remark 5.5.

Taking an extended frame F~μ\tilde{F}^{\mu} given by Theorem 5.4 with a ΛSU1,1σ\Lambda^{\prime}{\rm SU}_{1,1\sigma}^{\prime}-valued initial condition : F(z=0)=A(AΛSU1,1σ)F_{-}(z=0)=A\>\>(A\in\Lambda^{\prime}{\rm SU}_{1,1\sigma}^{\prime}), extended frames F~μ\tilde{F}^{\mu} and FμF^{\mu} differ by AA, that is, F~μ=AFμ\tilde{F}^{\mu}=AF^{\mu}. In general, timelike minimal surfaces in Nil3{\rm Nil}_{3} corresponding to extended frames for different initial conditions are not isometric.

6. Examples

In this section we will give some examples of timelike minimal surfaces in Nil3{\rm Nil}_{3} in terms of para-holomorphic potentials and the generalized Weierstrass type representation as explained in the previous section.

6.1. Hyperbolic paraboloids corresponding to circular cylinders

Let ξ\xi be the normalized potential defined as

ξ=μ1(0i4i40)dz.\xi=\mu^{-1}\begin{pmatrix}0&-\frac{i^{\prime}}{4}\\ \frac{i^{\prime}}{4}&0\end{pmatrix}dz.

The solution of the equation dF=FξdF_{-}=F_{-}\xi with the initial condition F(z=0)=idF_{-}(z=0)=\operatorname{id} is given by

F=(cosμ1z4isinμ1z4isinμ1z4cosμ1z4).F_{-}=\begin{pmatrix}\cos\frac{\mu^{-1}z}{4}&-i^{\prime}\sin\frac{\mu^{-1}z}{4}\\ i^{\prime}\sin\frac{\mu^{-1}z}{4}&\cos\frac{\mu^{-1}z}{4}\end{pmatrix}.

Applying the Iwasawa decomposition to the solution FF_{-}:

F=FμV+,F_{-}=F^{\mu}V_{+},

we obtain an extended frame Fμ:ΛSU1,1σF^{\mu}:\mathbb{C}^{\prime}\to\Lambda^{\prime}{\rm SU}_{1,1\sigma}^{\prime}:

Fμ=(cosμ1z+μz¯4isinμ1z+μz¯4isinμ1z+μz¯4cosμ1z+μz¯4).F^{\mu}=\begin{pmatrix}\cos\frac{{\mu}^{-1}z+\mu\bar{z}}{4}&-i^{\prime}\sin\frac{{\mu}^{-1}z+\mu\bar{z}}{4}\\ i^{\prime}\sin\frac{{\mu}^{-1}z+\mu\bar{z}}{4}&\cos\frac{{\mu}^{-1}z+\mu\bar{z}}{4}\end{pmatrix}.

Then, by Theorem 4.3, we have the map f𝕃3f_{\mathbb{L}^{3}} explicitly

f𝕃3=12(icosμ1z+μz¯2sinμ1z+μz¯2μ1zμz¯2sinμ1z+μz¯2+μ1zμz¯2icosμ1z+μz¯2),f_{\mathbb{L}^{3}}=\frac{1}{2}\begin{pmatrix}-i^{\prime}\cos\frac{\mu^{-1}z+\mu\bar{z}}{2}&-\sin\frac{\mu^{-1}z+\mu\bar{z}}{2}-\frac{\mu^{-1}z-\mu\bar{z}}{2}\\ -\sin\frac{\mu^{-1}z+\mu\bar{z}}{2}+\frac{\mu^{-1}z-\mu\bar{z}}{2}&i^{\prime}\cos\frac{\mu^{-1}z+\mu\bar{z}}{2}\end{pmatrix},

and

f^=12(μ1z+μz¯4sinμ1z+μz¯2sinμ1z+μz¯2μ1zμz¯2sinμ1z+μz¯2+μ1zμz¯2μ1z+μz¯4sinμ1z+μz¯2).\hat{f}=\frac{1}{2}\begin{pmatrix}-\frac{-\mu^{-1}z+\mu\bar{z}}{4}\sin\frac{\mu^{-1}z+\mu\bar{z}}{2}&-\sin\frac{\mu^{-1}z+\mu\bar{z}}{2}-\frac{\mu^{-1}z-\mu\bar{z}}{2}\\ -\sin\frac{\mu^{-1}z+\mu\bar{z}}{2}+\frac{\mu^{-1}z-\mu\bar{z}}{2}&\frac{-\mu^{-1}z+\mu\bar{z}}{4}\sin\frac{\mu^{-1}z+\mu\bar{z}}{2}\end{pmatrix}.

Thus we obtain timelike surfaces f𝕃3f_{\mathbb{L}^{3}} with the constant mean curvature 1/21/2 in 𝕃3\mathbb{L}^{3} and timelike minimal surfaces fμf^{\mu} in Nil3{\rm Nil}_{3}:

f𝕃3=(sinμ1z+μz¯2,iμ1zμz¯2,cosμ1z+μz¯2)f_{\mathbb{L}^{3}}=\left(\sin\frac{\mu^{-1}z+\mu\bar{z}}{2},i^{\prime}\frac{\mu^{-1}z-\mu\bar{z}}{2},-\cos\frac{\mu^{-1}z+\mu\bar{z}}{2}\right)

and

fμ=(iμ1zμz¯2,sinμ1z+μz¯2,iμ1zμz¯4sinμ1z+μz¯2)f^{\mu}=\left(i^{\prime}\frac{\mu^{-1}z-\mu\bar{z}}{2},\sin\frac{\mu^{-1}z+\mu\bar{z}}{2},i^{\prime}\frac{\mu^{-1}z-\mu\bar{z}}{4}\sin\frac{\mu^{-1}z+\mu\bar{z}}{2}\right)

for μ=eit\mu=e^{i^{\prime}t} with sufficiently small tt on some simply connected domain 𝔻\mathbb{D}. Each surface fμf^{\mu} describes a part of a hyperbolic paraboloid x3=x1x2/2x_{3}=x_{1}x_{2}/2. Furthermore fμf^{\mu} has the function h=1h=1, the Abresch-Rosenberg differential Bμdz2=μ2/16dz2B^{\mu}dz^{2}=\mu^{-2}/16dz^{2} on 𝔻\mathbb{D} and the first fundamental form II of fμf^{\mu} is I=cos2(μ1z+μz¯)/2dzdz¯I=\cos^{2}(\mu^{-1}z+\mu\bar{z})/2dzd\bar{z}. The corresponding timelike CMC 1/21/2 surfaces f𝕃3f_{\mathbb{L}^{3}} are called circular cylinders.

Refer to caption
Refer to caption
Figure 2. Hyperbolic paraboloids corresponding to a cylinder (left) and a hyperbolic cylinder (right).

6.2. Hyperbolic paraboloids corresponding to hyperbolic cylinders

Define the normalized potential ξ\xi as

ξ=μ1(0i4i40)dz.\xi=\mu^{-1}\begin{pmatrix}0&-\frac{i^{\prime}}{4}\\ -\frac{i^{\prime}}{4}&0\end{pmatrix}dz.

The solution of the equation dF=FξdF_{-}=F_{-}\xi with the initial condition F(z=0)=idF_{-}(z=0)=\operatorname{id} is given by

F=(coshμ1z4isinhμ1z4isinhμ1z4coshμ1z4).F_{-}=\begin{pmatrix}\cosh\frac{\mu^{-1}z}{4}&-i^{\prime}\sinh\frac{\mu^{-1}z}{4}\\ -i^{\prime}\sinh\frac{\mu^{-1}z}{4}&\cosh\frac{\mu^{-1}z}{4}\end{pmatrix}.

Applying the Iwasawa decomposition to the solution FF_{-}:

F=FμV+,F_{-}=F^{\mu}V_{+},

we obtain an extended frame Fμ:ΛSU1,1σF^{\mu}:\mathbb{C}^{\prime}\to\Lambda^{\prime}{\rm SU}_{1,1\sigma}^{\prime}:

Fμ=(coshμ1z+μz¯4isinhμ1z+μz¯4isinhμ1z+μz¯4coshμ1z+μz¯4).F^{\mu}=\begin{pmatrix}\cosh\frac{-{\mu}^{-1}z+\mu\bar{z}}{4}&i^{\prime}\sinh\frac{-{\mu}^{-1}z+\mu\bar{z}}{4}\\ i^{\prime}\sinh\frac{-{\mu}^{-1}z+\mu\bar{z}}{4}&\cosh\frac{-{\mu}^{-1}z+\mu\bar{z}}{4}\end{pmatrix}.

Then, by Theorem 4.3, we have the map f𝕃3f_{\mathbb{L}^{3}} for FμF^{\mu} explicitly

f𝕃3=12(icoshμ1z+μz¯2μ1z+μz¯2+isinhiμ1z+μz¯2μ1z+μz¯2isinhiμ1z+μz¯2icoshμ1z+μz¯2),f_{\mathbb{L}^{3}}=\frac{1}{2}\begin{pmatrix}-i^{\prime}\cosh\frac{-\mu^{-1}z+\mu\bar{z}}{2}&-\frac{\mu^{-1}z+\mu\bar{z}}{2}+i^{\prime}\sinh i^{\prime}\frac{-\mu^{-1}z+\mu\bar{z}}{2}\\ -\frac{\mu^{-1}z+\mu\bar{z}}{2}-i^{\prime}\sinh i^{\prime}\frac{-\mu^{-1}z+\mu\bar{z}}{2}&i^{\prime}\cosh\frac{-\mu^{-1}z+\mu\bar{z}}{2}\end{pmatrix},

and thus we obtain timelike surfaces f𝕃3f_{\mathbb{L}^{3}} with the constant mean curvature 1/21/2 in 𝕃3\mathbb{L}^{3} and timelike minimal surfaces fμf^{\mu} in Nil3{\rm Nil}_{3}:

f𝕃3=(μ1z+μz¯2,sinhiμ1z+μz¯2,coshμ1z+μz¯2)f_{\mathbb{L}^{3}}=\left(\frac{\mu^{-1}z+\mu\bar{z}}{2},-\sinh i^{\prime}\frac{-\mu^{-1}z+\mu\bar{z}}{2},-\cosh\frac{-\mu^{-1}z+\mu\bar{z}}{2}\right)

and

fμ=(sinhiμ1z+μz¯2,μ1z+μz¯2,μ1z+μz¯4sinhiμ1z+μz¯2)f^{\mu}=\left(-\sinh i^{\prime}\frac{-\mu^{-1}z+\mu\bar{z}}{2},\frac{\mu^{-1}z+\mu\bar{z}}{2},\frac{\mu^{-1}z+\mu\bar{z}}{4}\sinh i^{\prime}\frac{-\mu^{-1}z+\mu\bar{z}}{2}\right)

for any μ\mu on \mathbb{C}^{\prime}. Each timelike minimal surface fμf^{\mu} describes the hyperbolic paraboloid x3=x1x2/2x_{3}=-x_{1}x_{2}/2 and has the function h=1h=1, the Abresch-Rosenberg differential Bμdz2=μ2/16dz2B^{\mu}dz^{2}=-\mu^{-2}/16dz^{2} and the first fundamental form I(μ)={coshi2(μ1z+μz¯)}2dzdz¯I(\mu)=\left\{\cosh\tfrac{i^{\prime}}{2}(-\mu^{-1}z+\mu\bar{z})\right\}^{2}dzd\bar{z}. The corresponding timelike CMC 1/21/2 surfaces f𝕃3f_{\mathbb{L}^{3}} are called hyperbolic cylinders.

6.3. Horizontal plane

Let ξ\xi be the normalized potential defined by

ξ=μ1(0i00)dz.\xi=\mu^{-1}\begin{pmatrix}0&-i^{\prime}\\ 0&0\end{pmatrix}dz.

The solution of the equation dF=FξdF_{-}=F_{-}\xi under the initial condition F(z=0)=idF_{-}(z=0)=\operatorname{id} is given by

F=(1iμ1z01).F_{-}=\begin{pmatrix}1&-i^{\prime}\mu^{-1}z\\ 0&1\end{pmatrix}.

Then by the Iwasawa decomposition of the solution F=FμV+F_{-}=F^{\mu}V_{+}, we have an extended frame Fμ:𝔻~ΛSU1,1σF^{\mu}:\tilde{\mathbb{D}}\to\Lambda^{\prime}{\rm SU}_{1,1\sigma}^{\prime}:

(6.1) Fμ=1(1+zz¯)1/2(1iμ1ziμz¯1),F^{\mu}=\frac{1}{(1+z\bar{z})^{1/2}}\begin{pmatrix}1&-i^{\prime}\mu^{-1}z\\ i^{\prime}\mu\bar{z}&1\end{pmatrix},

where 𝔻~\tilde{\mathbb{D}} is a simply connected domain defined as 𝔻~={z|zz¯>1}\tilde{\mathbb{D}}=\left\{z\in\mathbb{C}^{\prime}|z\bar{z}>-1\right\}. Then f𝕃3f_{\mathbb{L}^{3}} is given by

f𝕃3=11+zz¯(i(3zz¯1)22μ1z2μz¯i(3zz¯1)2).f_{\mathbb{L}^{3}}=\frac{1}{1+z\bar{z}}\begin{pmatrix}\frac{i^{\prime}(3z\bar{z}-1)}{2}&-2\mu^{-1}z\\ -2\mu\bar{z}&-\frac{i^{\prime}(3z\bar{z}-1)}{2}\end{pmatrix}.

Hence the timelike surfaces f𝕃3f_{\mathbb{L}^{3}} with the constant mean curvature 1/21/2 in 𝕃3\mathbb{L}^{3} and the timelike minimal surfaces fμf^{\mu} in Nil3{\rm Nil}_{3} are computed as

f𝕃3=(2(μ1z+μz¯)1+zz¯,2i(μ1zμz¯)1+zz¯,3zz¯11+zz¯)f_{\mathbb{L}^{3}}=\left(\frac{2(\mu^{-1}z+\mu\bar{z})}{1+z\bar{z}},\frac{2i^{\prime}(\mu^{-1}z-\mu\bar{z})}{1+z\bar{z}},\frac{3z\bar{z}-1}{1+z\bar{z}}\right)

and

fμ=(2i(μ1zμz¯)1+zz¯,2(μ1z+μz¯)1+zz¯, 0).f^{\mu}=\left(\frac{2i^{\prime}(\mu^{-1}z-\mu\bar{z})}{1+z\bar{z}},\>\frac{2(\mu^{-1}z+\mu\bar{z})}{1+z\bar{z}},\>0\right).

The surfaces fμf^{\mu} are defined on D={z|1<zz¯<1}D=\left\{z\in\mathbb{C}^{\prime}|-1<z\bar{z}<1\right\}. In fact the first fundamental form II of fμf^{\mu} is computed as

I=16(1zz¯)2(1+zz¯)4dzdz¯.I=16\frac{(1-z\bar{z})^{2}}{(1+z\bar{z})^{4}}dzd\bar{z}.

Moreover the Abresch-Rosenberg differential Bμdz2B^{\mu}dz^{2} vanishes on DD.

In general the graph of the function F(x1,x2)=ax1+bx2+cF(x_{1},x_{2})=ax_{1}+bx_{2}+c for a,b,ca,b,c\in\mathbb{R} describes a timelike minimal surface on 𝔻={(x1,x2)(a+x2/2)2+(bx1/2)2+1>0}\mathbb{D}=\left\{(x_{1},x_{2})\mid-(a+x_{2}/2)^{2}+(b-x_{1}/2)^{2}+1>0\right\}. This plane has positive Gaussian curvature KK:

K=2((a+12x2)2+(b12x1)2+1)+14((a+12x2)2+(b12x1)2+1)2,K=\frac{2(-(a+\tfrac{1}{2}x_{2})^{2}+(b-\tfrac{1}{2}x_{1})^{2}+1)+1}{4(-(a+\tfrac{1}{2}x_{2})^{2}+(b-\tfrac{1}{2}x_{1})^{2}+1)^{2}},

and it will be called the horizontal umbrellas. The horizontal umbrellas are obtained by different choices of initial conditions of the extended frame of FμF^{\mu} in (6.1). For examples the extended frame F0FμF_{0}F^{\mu} with

F0=(coshaμ3sinhaμ3sinhacosha)ΛSU1,1σ,F_{0}=\begin{pmatrix}\cosh a&\mu^{-3}\sinh a\\ \mu^{3}\sinh a&\cosh a\end{pmatrix}\in\Lambda^{\prime}{\rm SU}_{1,1\sigma}^{\prime},

where aa\in\mathbb{R} gives a horizontal umbrella which is not a horizontal plane.

6.4. B-scroll type minimal surfaces

Let ξ\xi be a normalized potential defined as

ξ=μ1(0i4S(z)¯0)dz,\xi=\mu^{-1}\begin{pmatrix}0&-\frac{i^{\prime}}{4}\\ -S(z)\bar{\ell}&0\end{pmatrix}dz,

where ¯=12(1i)\bar{\ell}=\frac{1}{2}(1-i^{\prime}) and S(z)S(z) is a para-holomorphic function. The solution Φ\Phi of dΦ=Φξd\Phi=\Phi\xi with Φ(z=0)=id\Phi(z=0)=\operatorname{id} cannot be computed explicitly, but it can be partially computed as follows: It is known that a para-holomorphic function S(z)S(z) can be expanded as

S(z)=Q(s)+R(t)¯S(z)=Q(s)\ell+R(t)\bar{\ell}

with s=x+ys=x+y and t=xyt=x-y for para-complex coordinates z=x+iyz=x+i^{\prime}y, Q=ReS+ImSQ=\operatorname{Re}S+\operatorname{Im}S and R=ReSImSR=\operatorname{Re}S-\operatorname{Im}S. Note that 2=,¯2=,¯=0\ell^{2}=\ell,\bar{\ell}^{2}=\ell,\ell\bar{\ell}=0. Moreover, from the definition of ss and tt, dz=ds+¯dtdz=\ell ds+\bar{\ell}dt follows. Then the para-holomorphic potential ξ\xi can be decomposed by

ξ=ξs+ξt¯,\xi=\xi^{s}\ell+{\xi^{t}}^{*}\bar{\ell},

with ξt=σ3(ξt(1/μ¯)¯)Tσ3{\xi^{t}}^{*}=-\sigma_{3}\left(\overline{\xi^{t}(1/\bar{\mu})}\right)^{T}\sigma_{3} and

(6.2) ξs=λ1(01400)ds,ξt=λ(0R(t)140)dt.\xi^{s}=\lambda^{-1}\begin{pmatrix}0&-\frac{1}{4}\\ 0&0\end{pmatrix}ds,\quad\xi^{t}=\lambda\begin{pmatrix}0&-R(t)\\ \frac{1}{4}&0\end{pmatrix}dt.

Then by the isomorphism in (5.6), the pair (ξs(λ),ξt(λ))(\xi^{s}(\lambda),\xi^{t}(\lambda)) is the normalized potential in [11, Section 6.2] for a timelike CMC surface in 𝕃3\mathbb{L}^{3} B-scroll. Then the solution of dΦ=Φξd\Phi=\Phi\xi can be computed by

dΦs=Φsξs,dΦt=ΦtξtwithΦs(0)=Φt(0)=idd\Phi^{s}=\Phi^{s}\xi^{s},\quad d\Phi^{t}=\Phi^{t}\xi^{t}\quad\mbox{with}\quad\Phi^{s}(0)=\Phi^{t}(0)=\operatorname{id}

and Φ\Phi is given by Φ=Φs+Φt¯\Phi=\Phi^{s}\ell+{\Phi^{t}}^{*}\bar{\ell}, where Φs=Φs(μ)\Phi^{s}=\Phi^{s}(\mu) and Φt=σ3Φt(1/μ¯)¯T1σ3{\Phi^{t}}^{*}=\sigma_{3}\overline{\Phi^{t}(1/\bar{\mu})}^{T-1}\sigma_{3} for Φs,ΦtΛSL2σ\Phi^{s},\Phi^{t}\in\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma}. Then Φs\Phi^{s} can be explicitly integrated as

Φs=(114λ1s01),\Phi^{s}=\begin{pmatrix}1&-\frac{1}{4}\lambda^{-1}s\\ 0&1\end{pmatrix},

while Φt\Phi^{t} cannot be explicitly integrated. Set

(6.3) Φt=id+k1λk(akbkckdk),\Phi^{t}=\operatorname{id}+\sum_{k\geq 1}\lambda^{k}\begin{pmatrix}a_{k}&b_{k}\\ c_{k}&d_{k}\end{pmatrix},

where a2k+1=d2k+1=b2k=c2k=0a_{2k+1}=d_{2k+1}=b_{2k}=c_{2k}=0 for all k1k\geq 1. Then applying the Iwasawa decomposition in Theorem 5.1 to Φ\Phi, that is, Φ=FμV+\Phi=F^{\mu}V_{+}, one can compute

Φ=Φs+Φt¯=(F^+F^¯)(V^++V^¯),\Phi=\Phi^{s}\ell+{\Phi^{t}}^{*}\bar{\ell}=(\hat{F}\ell+\hat{F}^{*}\bar{\ell})(\hat{V}_{+}\ell+\hat{V}_{-}^{*}\bar{\ell}),

where Fμ=F^+F^¯F^{\mu}=\hat{F}\ell+\hat{F}^{*}\bar{\ell} and V+=V^++V^¯V_{+}=\hat{V}_{+}\ell+\hat{V}_{-}^{*}\bar{\ell} and F^ΛSL2σ\hat{F}\in\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma}, V^+Λ+SL2σ\hat{V}_{+}\in\Lambda^{+}{\rm SL}_{2}\mathbb{R}_{\sigma} and V^ΛSL2σ\hat{V}_{-}\in\Lambda^{-}{\rm SL}_{2}\mathbb{R}_{\sigma}. Note that it is equivalent to the Iwasawa decomposition of ΛSL2σ×ΛSL2σ\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma}\times\Lambda{\rm SL}_{2}\mathbb{R}_{\sigma}, that is,

(6.4) (Φs,Φt)=(F^,F^)(V^+,V^).(\Phi^{s},\Phi^{t})=(\hat{F},\hat{F})(\hat{V}_{+},\hat{V}_{-}).
Proposition 6.1.

The map F^\hat{F} can be computed as follows:

(6.5) F^=ΦtΦ,withΦ=((1+14sc1)114λ1s01+14sc1),\hat{F}=\Phi^{t}\Phi_{-},\quad\mbox{with}\quad\Phi_{-}=\begin{pmatrix}\left(1+\frac{1}{4}sc_{1}\right)^{-1}&-\frac{1}{4}\lambda^{-1}s\\ 0&1+\frac{1}{4}sc_{1}\end{pmatrix},

where c1=c1(s,t)c_{1}=c_{1}(s,t) is the function defined in (6.3).

Proof.

From (6.4), the map F^\hat{F} can be computed as

Φs1Φt=V^+1V^{\Phi^{s}}^{-1}\Phi^{t}=\hat{V}_{+}^{-1}\hat{V}_{-}

by the Birkhoff decomposition of Φs1Φt\Phi_{s}^{-1}\Phi^{t} and set F^=ΦtV^1=ΦsV^+1\hat{F}=\Phi^{t}\hat{V}_{-}^{-1}=\Phi^{s}\hat{V}_{+}^{-1}. We then multiply Φ\Phi_{-} on Φs1Φt{\Phi^{s}}^{-1}\Phi^{t} by right, and a straightforward computation shows that

Φs1ΦtΦ\displaystyle{\Phi^{s}}^{-1}\Phi^{t}\Phi_{-} =(114λ1s01)(id+k1λk(akbkckdk))Φ\displaystyle=\begin{pmatrix}1&\frac{1}{4}\lambda^{-1}s\\ 0&1\\ \end{pmatrix}\left(\operatorname{id}+\sum_{k\geq 1}\lambda^{k}\begin{pmatrix}a_{k}&b_{k}\\ c_{k}&d_{k}\end{pmatrix}\right)\Phi_{-}
={(1+14sc114λ1s01)+O(λ)}(11+14sc114λ1s01+14sc1)\displaystyle=\left\{\begin{pmatrix}1+\frac{1}{4}sc_{1}&\frac{1}{4}\lambda^{-1}s\\ 0&1\end{pmatrix}+O(\lambda)\right\}\begin{pmatrix}\frac{1}{1+\frac{1}{4}sc_{1}}&-\frac{1}{4}\lambda^{-1}s\\ 0&1+\frac{1}{4}sc_{1}\end{pmatrix}
=id+O(λ)\displaystyle=\operatorname{id}+O(\lambda)

holds. Therefore Φs1ΦtΦΛ+SL2σ{\Phi^{s}}^{-1}\Phi^{t}\Phi_{-}\in\Lambda^{+}{\rm SL}_{2}\mathbb{R}_{\sigma} with identity at λ=0\lambda=0, and Φs1Φt=V^+1Φ1{\Phi^{s}}^{-1}\Phi^{t}=\hat{V}_{+}^{-1}\Phi_{-}^{-1} is the Birkhoff decomposition. This completes the proof. ∎

Plugging the FμF^{\mu} into f𝕃3f_{\mathbb{L}^{3}} in (4.4), we obtain

f𝕃3={γ(t)+q(s,t)B(t)}+{γ(t)+q(s,t)B(t)}¯,f_{\mathbb{L}^{3}}=\left\{\gamma(t)+q(s,t)B(t)\right\}\ell+\left\{\gamma(t)+q(s,t)B(t)\right\}^{*}\bar{\ell},

where A=σ3A(1/μ¯)¯Tσ3A^{*}=-\sigma_{3}\overline{A(1/\bar{\mu})}^{T}\sigma_{3} for AΛ𝔰𝔩2σA\in\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma} and

γ(t)\displaystyle\gamma(t) =iμ(μΦt)(Φt)1i2Ad(Φt)σ3,\displaystyle=-i^{\prime}\mu(\partial_{\mu}\Phi^{t})(\Phi^{t})^{-1}-\frac{i^{\prime}}{2}\operatorname{Ad}(\Phi^{t})\sigma_{3},
B(t)\displaystyle B(t) =iμAdΦt(0100),\displaystyle=-i^{\prime}\mu\operatorname{Ad}\Phi^{t}\begin{pmatrix}0&1\\ 0&0\end{pmatrix},
q(s,t)\displaystyle q(s,t) =s2(1+116st).\displaystyle=\frac{s}{2(1+\frac{1}{16}st)}.

Under the new coordinates (q,t)(q,t), f𝕃3f_{\mathbb{L}^{3}} is a so-called B-scroll, that is, γ\gamma is null curve in 𝕃3\mathbb{L}^{3} and BB is the bi-normal null vector of γ\gamma, see in detail [11, Section 6.2].

Further plugging the FμF^{\mu} into f^\hat{f} in (4.5), we obtain

f^={γ^(t)+q(s,t)B^(t)}+{γ^(t)+q(s,t)B^(t)}¯,\hat{f}=\left\{\hat{\gamma}(t)+q(s,t)\hat{B}(t)\right\}\ell+\left\{\hat{\gamma}(t)+q(s,t)\hat{B}(t)\right\}^{*}\bar{\ell},

where

γ^(t)=γ(t)oi2μμγ(t)d,andB^(t)=B(t)oi2μμB(t)d.\hat{\gamma}(t)=\gamma(t)^{o}-\frac{i^{\prime}}{2}\mu\partial_{\mu}\gamma(t)^{d},\quad\mbox{and}\quad\hat{B}(t)=B(t)^{o}-\frac{i^{\prime}}{2}\mu\partial_{\mu}B(t)^{d}.

A straightforward computation shows that exp(γ^(t)+γ^(t)¯)\exp(\hat{\gamma}(t)\ell+\hat{\gamma}(t)^{*}\bar{\ell}) is null curve in Nil3{\rm Nil}_{3} and B^(t)+B^(t)¯\hat{B}(t)\ell+\hat{B}(t)^{*}\bar{\ell} is a bi-normal vector of exp(γ^(t)+γ^(t)¯)\exp(\hat{\gamma}(t)\ell+\hat{\gamma}(t)^{*}\bar{\ell}) analogous to the Minkowski case. Therefore we call fμf^{\mu} is the B-scroll type minimal surface in Nil3{\rm Nil}_{3}. We will investigate property of the B-scroll type minimal surface in a separate publication.

Appendix A Timelike constant mean curvature surfaces in 𝔼13\mathbb{E}^{3}_{1}

We recall the geometry of timelike surfaces in Minkowski 3-space. Let 𝕃3\mathbb{L}^{3} be the Minkowski 3-space with the Lorentzian metric

,=dx12dx22+dx32,\langle\cdot,\cdot\rangle=dx_{1}^{2}-dx_{2}^{2}+dx_{3}^{2},

where (x1,x2,x3)(x_{1},x_{2},x_{3}) is the canonical coordinate of 3\mathbb{R}^{3}. We consider a conformal immersion φ:M𝕃3\varphi:M\to\mathbb{L}^{3} of a Lorentz surface MM into 𝕃3\mathbb{L}^{3}. Take a para-complex coordinate z=x+iyz=x+i^{\prime}y and represent the induced metric by eudzdz¯e^{u}dzd\bar{z}.

Let NN be the unit normal vector field of φ\varphi. The second fundamental form IIII of φ\varphi derived from NN is defined by

II=dφ,dN.II=-\langle d\varphi,dN\rangle.

The mean curvature HH of φ\varphi is defined by

H=12tr(III1).H=\frac{1}{2}{\rm tr}(II\cdot I^{-1}).

For a conformal immersion φ:𝔻𝕃3\varphi:\mathbb{D}\to\mathbb{L}^{3}, define para-complex valued functions ϕ1,ϕ2,ϕ3\phi_{1},\phi_{2},\phi_{3} by

φz=(ϕ2,ϕ1,ϕ3).\varphi_{z}=(\phi_{2},\phi_{1},\phi_{3}).

The analogy of the discussion in Section 2.4 shows that there exists ϵ{±i}\epsilon\in\{\pm i^{\prime}\} and a pair of para-complex functions (ψ1,ψ2)(\psi_{1},\psi_{2}) such that

ϕ1=ϵ((ψ2¯)2+(ψ1)2),ϕ2=ϵi((ψ2¯)2(ψ1)2),ϕ3=2iψ1ψ2¯.\phi_{1}=\epsilon\left((\overline{\psi_{2}})^{2}+(\psi_{1})^{2}\right),\quad\phi_{2}=\epsilon i^{\prime}\left((\overline{\psi_{2}})^{2}-(\psi_{1})^{2}\right),\quad\phi_{3}=2i^{\prime}\psi_{1}\overline{\psi_{2}}.

Then the conformal factor eue^{u} and the unit normal vector field NN of φ\varphi can be represented as

eu=4(ψ2ψ2¯ψ1ψ1¯)2,e^{u}=4(\psi_{2}\overline{\psi_{2}}-\psi_{1}\overline{\psi_{1}})^{2},
(A.1) N=1ψ2ψ2¯ψ1ψ1¯(ϵ(ψ1ψ2ψ1¯ψ2¯),ϵi(ψ1ψ2+ψ1¯ψ2¯),ψ2ψ2¯+ψ1ψ1¯).N=\frac{1}{\psi_{2}\overline{\psi_{2}}-\psi_{1}\overline{\psi_{1}}}\left(-\epsilon(\psi_{1}\psi_{2}-\overline{\psi_{1}}\overline{\psi_{2}}),\,\epsilon i^{\prime}(\psi_{1}\psi_{2}+\overline{\psi_{1}}\overline{\psi_{2}}),\,\psi_{2}\overline{\psi_{2}}+\psi_{1}\overline{\psi_{1}}\right).

As well as timelike surfaces in Nil3{\rm Nil}_{3}, we can show that (ψ1,ψ2)(\psi_{1},\psi_{2}) is a solution of the nonlinear Dirac equation for a timelike surface in 𝕃3\mathbb{L}^{3}:

(A.2) ((ψ2)z+𝒰ψ1(ψ1)z¯+𝒱ψ2)=(00)\left(\begin{array}[]{ll}(\psi_{2})_{z}+\mathcal{U}\psi_{1}\\ -(\psi_{1})_{\bar{z}}+\mathcal{V}\psi_{2}\end{array}\right)=\left(\begin{array}[]{ll}0\\ 0\end{array}\right)

where 𝒰=𝒱=iHϵ^eu/2/2\mathcal{U}=\mathcal{V}=i^{\prime}H\hat{\epsilon}e^{u/2}/2 and ϵ^\hat{\epsilon} is the sign of ψ2ψ2¯ψ1ψ1¯\psi_{2}\overline{\psi_{2}}-\psi_{1}\overline{\psi_{1}}. Conversely, if a pair of para-complex functions (ψ1,ψ2)(\psi_{1},\psi_{2}) satisfying the nonlinear Dirac equation (A.2) and ψ2ψ2¯ψ1ψ1¯0\psi_{2}\overline{\psi_{2}}-\psi_{1}\overline{\psi_{1}}\neq 0 is given, there exists a conformal timelike surface in 𝕃3\mathbb{L}^{3} with the conformal factor eu=4(ψ2ψ2¯ψ1ψ1¯)2e^{u}=4(\psi_{2}\overline{\psi_{2}}-\psi_{1}\overline{\psi_{1}})^{2}.

Theorem A.1.

Let 𝔻\mathbb{D} be a simply connected domain in \mathbb{C}^{\prime}, 𝒰\mathcal{U} a purely imaginary valued function and the vector (ψ1,ψ2)(\psi_{1},\psi_{2}) a solution of the nonlinear Dirac equation (A.2) satisfying ψ2ψ2¯ψ1ψ1¯0\psi_{2}\overline{\psi_{2}}-\psi_{1}\overline{\psi_{1}}\neq 0. Take points z0𝔻z_{0}\in\mathbb{D} and f(z0)𝕃3f(z_{0})\in\mathbb{L}^{3}, set ϵ\epsilon as either ii^{\prime} or i-i^{\prime} and define a map Φ\Phi by

Φ=(ϵi((ψ2¯)2(ψ1)2),ϵ((ψ2¯)2+(ψ1)2), 2iψ1ψ2¯).\Phi=\left(\epsilon i^{\prime}\left((\overline{\psi_{2}})^{2}-(\psi_{1})^{2}\right),\,\epsilon\left((\overline{\psi_{2}})^{2}+(\psi_{1})^{2}\right),\,2i^{\prime}\psi_{1}\overline{\psi_{2}}\right).

Then the map f:𝔻𝕃3f:\mathbb{D}\to\mathbb{L}^{3} defined by

(A.3) f(z):=f(z0)+Re(z0zΦ𝑑z)f(z):=f(z_{0})+\operatorname{Re}\left(\int_{z_{0}}^{z}\Phi dz\right)

describes a timelike surface in 𝕃3\mathbb{L}^{3}.

Proof.

A straightforward computation shows that the 11-form Φdz+Φ¯dz¯\Phi dz+\overline{\Phi}d\bar{z} is a closed form. Then Green’s theorem implies that f(z)f(z) is well-defined. Thus we have fz=Φf_{z}=\Phi. By setting ϕk(k=1,2,3)\phi_{k}\>(k=1,2,3) as Φ=(ϕ2,ϕ1,ϕ3)\Phi=(\phi_{2},\phi_{1},\phi_{3}), we derive ϕ22ϕ12+ϕ32=0\phi_{2}^{2}-\phi_{1}^{2}+\phi_{3}^{2}=0 and ϕ2ϕ2¯ϕ1ϕ1¯+ϕ3ϕ3¯=2(ψ2ψ2¯ψ1ψ1¯)2\phi_{2}\overline{\phi_{2}}-\phi_{1}\overline{\phi_{1}}+\phi_{3}\overline{\phi_{3}}=2(\psi_{2}\overline{\psi_{2}}-\psi_{1}\overline{\psi_{1}})^{2}. This means that ff is conformal, and then timelike. ∎

Remark A.2.

The timelike surface defined in TheoremA.1 is conformal with respect to the coordinate zz. Denoting the mean curvature by HH and the conformal factor by eue^{u} then we have 𝒰=iHϵ^eu/2/2\mathcal{U}=i^{\prime}H\hat{\epsilon}e^{u/2}/2 where ϵ^\hat{\epsilon} is the sign of ψ2ψ2¯ψ1ψ1¯\psi_{2}\overline{\psi_{2}}-\psi_{1}\overline{\psi_{1}}.

Obviously, the Dirac equation for timelike minimal surfaces in (Nil3,ds2)({\rm Nil}_{3},ds_{-}^{2}) coincides the one for timelike constant mean curvature H=1/2H=1/2 surfaces in 𝕃3\mathbb{L}^{3}. Combining the identification of 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime} with 𝕃3\mathbb{L}^{3} and (4.7), we can show that the corresponding timelike constant mean curvature 1/21/2 surfaces for timelike minimal surfaces fμf^{\mu} in (Nil3,ds2)({\rm Nil}_{3},ds_{-}^{2}) are given by f𝕃3f_{\mathbb{L}^{3}} up to translations and represented in the form of (A.3). It is easy to see that the unit normal vector field (A.1) of the timelike surface f𝕃3f_{\mathbb{L}^{3}} can be written as N𝕃3N_{\mathbb{L}^{3}} by the identification of 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime} and 𝕃3\mathbb{L}^{3}.

Appendix B Without para-complex coordinates

As we have explained in Example 6.4, the normalized potential ξ\xi which is a 11-form taking values in Λ𝔰𝔩2σ\Lambda^{\prime}\mathfrak{sl}_{2}\mathbb{C}^{\prime}_{\sigma} can be translated to the pair of two real potentials which is a pair of 11-forms taking values in Λ𝔰𝔩2σ×Λ𝔰𝔩2σ\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma}\times\Lambda\mathfrak{sl}_{2}\mathbb{R}_{\sigma}. It can be generalized to any normalized potential ξ\xi any pair of two real potentials (ξs,ξt)(\xi^{s},\xi^{t}) as follows: For a normalized potential

ξ=μ1(0i4b(z)4iB(z)b(z)0)dz,\xi=\mu^{-1}\begin{pmatrix}0&-\frac{i^{\prime}}{4}b(z)\\ 4i^{\prime}\frac{B(z)}{b(z)}&0\end{pmatrix}dz,

where b(z)=h2(z,0)h1(0,0)b(z)=h^{2}(z,0)h^{-1}(0,0), one can define a pair of 11-forms by ξ=ξs+ξt¯\xi=\xi^{s}\ell+{\xi^{t}}^{*}\bar{\ell} such that

ξs=λ1(014f(s)Q(s)/f(s)0)ds,ξt=λ(0R(t)/g(t)14g(t)0)dt,\xi^{s}=\lambda^{-1}\begin{pmatrix}0&-\frac{1}{4}f(s)\\ Q(s)/f(s)&0\end{pmatrix}ds,\quad\xi^{t}=\lambda\begin{pmatrix}0&-R(t)/g(t)\\ \frac{1}{4}g(t)&0\end{pmatrix}dt,

where para-complex coordinates z=x+iyz=x+i^{\prime}y define null coordinates (s,t)(s,t) by x=s+tx=s+t and y=sty=s-t, and the functions f(s)f(s) and g(t)g(t) are given by

f(s)=Reb(s)+Imb(s),g(t)=Reb(t)Imb(t),f(s)=\operatorname{Re}b(s)+\operatorname{Im}b(s),\quad g(t)=\operatorname{Re}b(t)-\operatorname{Im}b(t),

and the functions Q(s)Q(s) and R(t)R(t) are given by

(B.1) Q(s)=4(ReB(s)+ImB(s)),R(t)=4(ReB(t)ImB(t)).Q(s)=4(\operatorname{Re}B(s)+\operatorname{Im}B(s)),\quad R(t)=4(\operatorname{Re}B(t)-\operatorname{Im}B(t)).

Note that we use relations b(z)=f(s)+g(t)¯b(z)=f(s)\ell+g(t)\bar{\ell}, and 4B(z)=Q(s)+R(t)¯4B(z)=Q(s)\ell+R(t)\bar{\ell} with =1+i2\ell=\frac{1+i^{\prime}}{2} and 1/(f(s)+g(t)¯)=/f(s)+¯/g(t)1/(f(s)\ell+g(t)\bar{\ell})=\ell/f(s)+\bar{\ell}/g(t).

Again that the para-holomorphic solution Φ\Phi taking values in ΛSL2σ\Lambda^{\prime}{\rm SL}_{2}\mathbb{C}^{\prime}_{\sigma} of dΦ=Φξd\Phi=\Phi\xi with Φ(0)=id\Phi(0)=\operatorname{id} can be identified with the pair (Φs,Φt)(\Phi^{s},\Phi^{t}) by

Φ=Φs+Φt¯,\Phi=\Phi^{s}\ell+{\Phi^{t}}^{*}\bar{\ell},

where Φs=Φs(μ)\Phi^{s}=\Phi^{s}(\mu) and Φt=σ3Φt(1/μ¯)¯T1σ3{\Phi^{t}}^{*}=\sigma_{3}\overline{\Phi^{t}(1/\bar{\mu})}^{T-1}\sigma_{3}. Thus using the partial differentiations with respect to ss and tt by

s=z+¯z¯andt=¯z+z¯,\partial_{s}=\ell\partial_{z}+\bar{\ell}\partial_{\bar{z}}\quad{\rm and}\quad\partial_{t}=\bar{\ell}\partial_{z}+\ell\partial_{\bar{z}},

we need to consider the pair of ODEs

sΦs=Φsξs,tΦt=Φtξt,\partial_{s}\Phi^{s}=\Phi^{s}\xi^{s},\quad\partial_{t}\Phi^{t}=\Phi^{t}\xi^{t},

with the initial condition (Φs(0),Φt(0))=(id,id)(\Phi^{s}(0),\Phi^{t}(0))=(\operatorname{id},\operatorname{id}). The Iwasawa decomposition of Φ\Phi, that is Φ=FμV+\Phi=F^{\mu}V_{+}, can be again translated to

(Φs,Φt)=(F^,F^)(V^+,V^).(\Phi^{s},\Phi^{t})=(\hat{F},\hat{F})(\hat{V}_{+},\hat{V}_{-}).

Again note that Fμ=F^+F^¯F^{\mu}=\hat{F}\ell+{\hat{F}}^{*}\bar{\ell} and accordingly the Maurer-Cartan form αμ\alpha^{\mu} of FμF^{\mu} taking values in Λ𝔰𝔲1,1σ\Lambda^{\prime}\mathfrak{su}^{\prime}_{1,1\sigma} can be translated to αμ=α^+α^¯\alpha^{\mu}=\hat{\alpha}\ell+\hat{\alpha}^{*}\bar{\ell}, where

(B.2) α^=U^ds+V^dtwithsF^=F^U^,tF^=F^V^.\hat{\alpha}=\hat{U}ds+\hat{V}dt\quad\mbox{with}\quad\partial_{s}\hat{F}=\hat{F}\hat{U},\quad\partial_{t}\hat{F}=\hat{F}\hat{V}.

Note that α^=α^(μ)\hat{\alpha}=\hat{\alpha}(\mu) and α^=σ3α^(1/μ¯)¯Tσ3\hat{\alpha}^{*}=-\sigma_{3}\overline{\hat{\alpha}(1/\bar{\mu})}^{T}\sigma_{3}. Then a straightforward computation shows that

(B.3) U^=(12(logh^)s14λ1h^λ1Q(s)h^112(logh^)s),V^=(12(logh^)tλR(t)h^114λh^12(logh^)t)\displaystyle\hat{U}=\begin{pmatrix}\frac{1}{2}(\log\hat{h})_{s}&-\frac{1}{4}\lambda^{-1}\hat{h}\\ \lambda^{-1}Q(s)\hat{h}^{-1}&-\frac{1}{2}(\log\hat{h})_{s}\end{pmatrix},\quad\hat{V}=\begin{pmatrix}-\frac{1}{2}(\log\hat{h})_{t}&-\lambda R(t)\hat{h}^{-1}\\ \frac{1}{4}\lambda\hat{h}&\frac{1}{2}(\log\hat{h})_{t}\end{pmatrix}

hold, where for a angle function h=h(z,z¯)h=h(z,\bar{z}), h^\hat{h} is defined by h^(s,t)=Reh(s,t)+Imh(s,t)\hat{h}(s,t)=\operatorname{Re}h(s,t)+\operatorname{Im}h(s,t), and FμF^{\mu} has the Maurer-Caran form in (3.15).

Note that when we consider that α\alpha takes values in 𝔰𝔲1,1\mathfrak{su}_{1,1}^{\prime}, the spectral parameter takes

μ=eiθ=cosh(θ)+isinh(θ)𝕊11(θ).\mu=e^{i^{\prime}\theta}=\cosh(\theta)+i^{\prime}\sinh(\theta)\in\mathbb{S}_{1}^{1}\quad(\theta\in\mathbb{R}).

Then the corresponding spectral parameter λ\lambda is given by

λ=eθ=cosh(θ)+sinh(θ)+.\lambda=e^{\theta}=\cosh(\theta)+\sinh(\theta)\in\mathbb{R}^{+}.

We would like to note that, in [11], the null coordinate is used. Moreover, the spectral parameter λ\lambda is replaced by λ1\lambda^{-1}, and then U^\hat{U} (resp. V^\hat{V}) in this paper plays a role of U(λ1)U(\lambda^{-1}) (resp. V(λ1)V(\lambda^{-1})) in [11, Section 5].

Acknowledgement: We would like to thank the anonymous referee for carefully reading the manuscript and for pointing out to us a number of typographical errors and for giving good suggestions.

References

  • [1] U. Abresch, H. Rosenberg. A Hopf differential for constant mean curvature surfaces in 𝐒2×𝐑{\bf S}^{2}\times{\bf R} and 𝐇2×𝐑{\bf H}^{2}\times{\bf R}. Acta Math. 193(2): 141–174, 2004.
  • [2] U. Abresch, H. Rosenberg. Generalized Hopf differentials. Mat. Contemp. 28: 1–28, 2005.
  • [3] D. A. Berdinskiĭ. Surfaces of constant mean curvature in the Heisenberg group (Russian). Mat. Tr. 13(2): 3–9, 2010. English translation: Siberian Adv. Math. 22(2): 75–79, 2012.
  • [4] D. A. Berdinskiĭ, I. A. Taĭmanov. Surfaces in three-dimensional Lie groups (Russian). Sibirsk. Mat. Zh. 46(6): 1248–1264, 2005. English translation: Siberian Math. J. 46(6): 1005–1019, 2005.
  • [5] D. Brander, M. Svensson. Timelike constant mean curvature surfaces with singularities. J. Geom. Anal. 24(3): 1641–1672, 2014.
  • [6] D. Brander, M. Svensson. The geometric Cauchy problem for surfaces with Lorentzian harmonic Gauss maps. J. Differential Geom. 93(1): 37–66, 2013.
  • [7] R. M. B. Chaves, M. P. Dussan, M. Magid. Björling problem for timelike surfaces in the Lorentz-Minkowski space. J. Math. Anal. Appl. 377(2): 481–494, 2011.
  • [8] A. A. Cintra, F. Mercuri, I. I. Onnis. The Bjorling problem for minimal surfaces in a Lorentzian three-dimensional Lie group. Ann. Mat. Pura Appl. 195(1): 95–110, 2016.
  • [9] A. A. Cintra, F. Mercuri, I. I. Onnis. Minimal surfaces in Lorentzian Heisenberg group and Damek-Ricci spaces via the Weierstrass representation. J. Geom. Phys. 121: 396–412, 2017.
  • [10] A. A. Cintra, I. I. Onnis. Enneper representation of minimal surfaces in the three-dimensional Lorentz-Minkowski space. Ann. Mat. Pura Appl. 197(1): 21–39, 2018.
  • [11] J. Dorfmeister, J. Inoguchi, M. Toda. Weierstraß-type representation of timelike surfaces with constant mean curvature. in: Differential geometry and integrable systems (Tokyo, 2000), Contemp. Math. 308: 77–99, 2002.
  • [12] J. F. Dorfmeister, J. Inoguchi, S.-P. Kobayashi. A loop group method for minimal surfaces in the three-dimensional Heisenberg group. Asian J. Math. 20(3): 409–448, 2016.
  • [13] J. F. Dorfmeister, J. Inoguchi, S.-P. Kobayashi. Minimal surfaces with non-trivial topology in the three-dimensional Heisenberg group. Arxiv:1903.00795, 2019.
  • [14] J. Dorfmeister, F. Pedit, H. Wu. Weierstrass type representation of harmonic maps into symmetric spaces. Comm. Anal. Geom. 6(4): 633–668, 1998.
  • [15] I. Fernandez, P. Mira. Holomorphic quadratic differentials and the Bernstein problem in Heisenberg space. Trans. Amer. Math. Soc. 361(11): 5737–5752, 2009.
  • [16] J. Inoguchi. Timelike surfaces of constant mean curvature in Minkowski 3-space. Tokyo J. Math. 21(1): 141–152, 1998.
  • [17] J. Inoguchi, T. Kumamoto, N. Ohsugi, Y. Suyama. Differential geometry of curves and surfaces in 3-dimensional homogeneous spaces I, II. Fukuoka Univ. Sci. Rep. 29(2): 155–182, 1999, 30(1): 17–47, 2000.
  • [18] J. Inoguchi, M. Toda. Timelike minimal surfaces via loop groups. Acta Appl. Math. 83(3): 313–355, 2004.
  • [19] J. J. Konderak. A Weierstrass representation theorem for Lorentz surfaces. Complex Var. Theory Appl. 50(5):319–332, 2005.
  • [20] M. A. Lawn. Immersions of Lorentzian surfaces in 2,1\mathbb{R}^{2,1}. J. Geom. Physc. 58(6): 683–700, 2008.
  • [21] J. H. Lira, M. Melo, F. Mercuri. A Weierstrass representation for minimal surfaces in 3-dimensional manifolds. Results Math. 60(1): 311–323, 2011.
  • [22] M. A. Magid. Timelike surfaces in Lorentz 3-space with prescribed mean curvature and Gauss map. Hokkaido Math. J. 20(3): 447–464, 1991.
  • [23] M. Melko, I. Sterling. Application of soliton theory to the construction of pseudospherical surfaces in 𝐑𝟑{\bf R^{3}}. Ann. Global Anal. Geom. 11(1): 65–107, 1993.
  • [24] A. Pressley, G. Segal. Loop groups. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1986. Oxford Science Publications.
  • [25] S. Rahmani, Métriques de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, [Lorentz metrics on three-dimensional unimodular Lie groups]. J. Geom. Phys. 9(3): 295–302, 1992.
  • [26] B. A. Shipman, P. D. Shipman, D. Packard. Generalized Weierstrass-Enneper representations of Euclidean, spacelike, and timelike surfaces: a unified Lie-algebraic formulation. J. Geom. 108(2): 545–563, 2017.
  • [27] W. M. Thurston (S. Levy ed.). Three-dimensional geometry and topology. Vol. 1, Princeton Math. Series, Vol. 35, Princeton Univ. Press, 1997.
  • [28] T. Weinstein. An introduction to Lorentz surfaces. De Gruyter Expositions in Mathematics, 22. Walter de Gruyter & Co., Berlin, 1996.