This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Time-reversal symmetry adaptation in relativistic density matrix renormalization group algorithm

Zhendong Li [email protected] Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
Abstract

In the nonrelativistic Schrödinger equation, the total spin SS and spin projection MM are good quantum numbers. In contrast, spin symmetry is lost in the presence of spin-dependent interactions such as spin-orbit couplings in relativistic Hamiltonians. Previous implementations of relativistic density matrix renormalization group algorithm (R-DMRG) only employing particle number symmetry are much more expensive than nonrelativistic DMRG. Besides, artificial breaking of Kramers degeneracy can happen in the treatment of systems with odd number of electrons. To overcome these issues, we introduce time-reversal symmetry adaptation for R-DMRG. Since the time-reversal operator is antiunitary, this cannot be simply achieved in the usual way. We define a time-reversal symmetry-adapted renormalized basis and present strategies to maintain the structure of basis functions during the sweep optimization. With time-reversal symmetry adaptation, only half of the renormalized operators are needed and the computational costs of Hamiltonian-wavefunction multiplication and renormalization are reduced by half. The present construction of time-reversal symmetry-adapted basis also directly applies to other tensor network states without loops.

I Introduction

Relativistic quantum mechanics are more accurate description of the real world than the nonrelativistic quantum mechanics1. Phosphorescence, intersystem crossings, and zero-field splittings cannot be described by the Schrödinger equation due to the lack of spin-dependent interactions such as spin-orbit couplings (SOC) and spin-spin interactions. Unfortunately, it is known that relativistic calculations are much more expensive that nonrelativistic calculations either at the mean-field or correlated level. Depending on the level of theories, this can be attributed to several factors, such as the presence of negative energy states in the four-component Dirac equation, the loss of spin symmetry, and the use of complex algebra, etc. At the correlated level, adopting the no-pair approximation in four-component theories or using a two-component relativistic Hamiltonian such as the exact two-component (X2C) Hamiltonian2, 3, 4 from the start will make the dimension of the one-electron basis identical to that in the nonrelativistic unrestricted case5. The loss of spin symmetry is a more challenging issue. Since the time-reversal operator 𝒯\mathcal{T} commutes with relativistic Hamiltonians H^\hat{H} in the absence of magnetic field, the time-reversal symmetry can be used to ameliorate the situation. However, its adaptation in correlated methods is nontrivial 6, 7, 8, 9, 10.

In this work, we consider the time-reversal symmetry adaptation in relativistic density matrix renormalization group (R-DMRG) algorithm. The DMRG algorithm11 has become a powerful tool for treating strongly correlated molecules12, 13, 14, 15, 16, 17, 18, 19, 20, 21. Thus, it will be of great interest to apply it to challenging systems involving heavy elements. In fact, including scalar relativistic effects into DMRG was carried out long time ago22, 23, and state interaction schemes for treating SOC based on matrix product states (MPS) obtained from spin-free DMRG calculations has been put forward24, 25, 26. However, including SOC variationally within DMRG27, 28, 29, 30 has only been achieved without time-reversal symmetry adaptation. Such R-DMRG implementation is much more expensive than nonrelativistic non-spin-adapted DMRG. While in the nonrelativistic case, a renormalized state can be labeled by |N,M|N,M\rangle (point group symmetry is not discussed here), where NN is the particle number and MM is the spin projection, only NN is a good quantum number in the relativistic case. Another problem for lacking time-reversal adaptation is that artificial breaking of Kramers degeneracy can happen in the treatment of systems with odd number of electrons. These drawbacks motivate us to introduce time-reversal symmetry adaptation for R-DMRG.

Conceptually, the fundamental difficulty of time-reversal symmetry adaptation is that the time-reversal operator 𝒯\mathcal{T} is an anti-unitary operator31, unlike other symmetry operations employed in DMRG. In simple words, it cannot be simply achieved by associating a ’quantum number’ for an irreducible representation to renormalized states32, 33, 34, 35, 36, 37, 38, 39. In principle, one can add time-reversal operation into a symmetry group to form an enlarged group (called magnetic group40), and use Wigner’s corepresentation theory31, which is a generalization of the standard representation theory for groups of unitary operators to groups including anti-unitary elements. Without going into such mathematical complication, we will show that introducing a concept of time-reversal symmetry-adapted renormalized basis is already sufficient for our purpose. The proposed usage of time-reversal symmetry-adapted basis also directly applies to other tensor network states (TNS) without loops, such as the general tree TNS41, 42, 43, 44 or the simpler comb TNS45, 46.

The remainder of this paper is organized as follows. In Sec. II, we introduce the definition of time-reversal symmetry-adapted basis. In Sec. III, we present strategies to maintain such structure during the sweep optimization in DMRG, and demonstrate that a reduction of the computational costs of matrix-vector multiplication and renormalization by half can be achieved by using time-reversal symmetry. Conclusion and outlook is given in the last section.

II Time reversal symmetry-adapted basis

II.1 Definition

To utilize the time-reversal symmetry, we introduce the following time-reversal symmetry-adapted orthonormal basis for a subspace VlV_{l} of the Fock space

Vl\displaystyle V_{l} =\displaystyle= VleVlo,\displaystyle V_{l}^{\mathrm{e}}\oplus V_{l}^{\mathrm{o}},
Vle\displaystyle V_{l}^{\mathrm{e}} =\displaystyle= span{|le},𝒯|le=|le,\displaystyle\mathrm{span}\{|l_{\mathrm{e}}\rangle\},\quad\mathcal{T}|l_{\mathrm{e}}\rangle=|l_{\mathrm{e}}\rangle,
Vlo\displaystyle V_{l}^{\mathrm{o}} =\displaystyle= span{|lo,|lo¯},|lo¯𝒯|lo,\displaystyle\mathrm{span}\{|l_{\mathrm{o}}\rangle,\;|l_{\bar{\mathrm{o}}}\rangle\},\quad|l_{\bar{\mathrm{o}}}\rangle\triangleq\mathcal{T}|l_{\mathrm{o}}\rangle, (1)

where the superscript/subscript e (or o) represents even (or odd) number of electrons. Here, the notation Vle=span{|le}V_{l}^{\mathrm{e}}=\mathrm{span}\{|l_{\mathrm{e}}\rangle\} needs to be understood as Vle=span{|le1,|le2,,|lem}V_{l}^{\mathrm{e}}=\mathrm{span}\{|l_{\mathrm{e}}^{1}\rangle,|l_{\mathrm{e}}^{2}\rangle,\cdots,|l_{\mathrm{e}}^{m}\rangle\}, and we only show one of the basis functions for brevity. For later convenience, we will refer to the structure of basis for VleV_{l}^{\mathrm{e}} as time-reversal invariant, and that for VloV_{l}^{\mathrm{o}} as time-reversal paired. Note that the orthogonality between |lo|l_{\mathrm{o}}\rangle and its time-reversal partner |lo¯|l_{\bar{\mathrm{o}}}\rangle is automatically guaranteed by the Kramers’ theorem. An arbitrary basis for VlV_{l} does not necessarily takes this form (1). However, as long as VlV_{l} is invariant under the action of 𝒯\mathcal{T}, we can always construct basis functions with such structure based on the following observations:

(i) For the even-electron case, an arbitrary state |le|l_{\mathrm{e}}\rangle and its time-reversal partner |le¯=𝒯|le|l_{\bar{\mathrm{e}}}\rangle=\mathcal{T}|l_{\mathrm{e}}\rangle is not necessarily orthogonal, because the time-reversal operation does not impose any constraint on the overlap le|le¯\langle l_{\mathrm{e}}|l_{\bar{\mathrm{e}}}\rangle. Suppose |le|l_{\mathrm{e}}\rangle is normalized, then |le|le¯|1|\langle l_{\mathrm{e}}|l_{\bar{\mathrm{e}}}\rangle|\leq 1 by the Cauchy-Schwarz inequality. There can be two cases:

  1. 1.

    If |le|le¯|=1|\langle l_{\mathrm{e}}|l_{\bar{\mathrm{e}}}\rangle|=1, which means that these two states are parallel and simply differ by a phase |le¯=e𝕚ϕ|le|l_{\bar{\mathrm{e}}}\rangle=e^{\mathbbm{i}\phi}|l_{\mathrm{e}}\rangle, then the new state |ee𝕚ϕ/2|le|\mathcal{L}_{\mathrm{e}}\rangle\triangleq e^{\mathbbm{i}\phi/2}|l_{\mathrm{e}}\rangle will satisfy the condition in Eq. (1), i.e., |e¯𝒯|e=|e|\mathcal{L}_{\bar{\mathrm{e}}}\rangle\triangleq\mathcal{T}|\mathcal{L}_{\mathrm{e}}\rangle=|\mathcal{L}_{\mathrm{e}}\rangle. This derivation also shows that in this case the eigenvalue of 𝒯\mathcal{T} is arbitrary, since 𝒯e𝕚θ|le=e𝕚θ|le¯=e𝕚(2θϕ)(e𝕚θ|le)\mathcal{T}e^{\mathbbm{i}\theta}|l_{\mathrm{e}}\rangle=e^{-\mathbbm{i}\theta}|l_{\bar{\mathrm{e}}}\rangle=e^{-\mathbbm{i}(2\theta-\phi)}(e^{\mathbbm{i}\theta}|l_{\mathrm{e}}\rangle) for an arbitrary θ\theta. Our choice θ=ϕ/2\theta=\phi/2 will make the later discussion of matrix representation of operators very compact.

  2. 2.

    If |le|le¯|<1|\langle l_{\mathrm{e}}|l_{\bar{\mathrm{e}}}\rangle|<1, then the linear combinations

    {|e+=12(|le+|le¯),|e=𝕚2(|le|le¯),\displaystyle\left\{\begin{array}[]{ccc}|\mathcal{L}_{\mathrm{e}}^{+}\rangle&=&\frac{1}{\sqrt{2}}(|l_{\mathrm{e}}\rangle+|l_{\bar{\mathrm{e}}}\rangle),\\ |\mathcal{L}_{\mathrm{e}}^{-}\rangle&=&\frac{\mathbbm{i}}{\sqrt{2}}(|l_{\mathrm{e}}\rangle-|l_{\bar{\mathrm{e}}}\rangle),\end{array}\right. (4)

    yield two linear independent functions satisfying Eq. (1). They are not orthonormal as the overlap metric depends on the overlap between |le|l_{\mathrm{e}}\rangle and |le¯|l_{\bar{\mathrm{e}}}\rangle,

    [e+|e+e+|ee|e+e|e]=[1+le|le¯le|le¯le|le¯1le|le¯].\displaystyle\begin{bmatrix}\langle\mathcal{L}_{\mathrm{e}}^{+}|\mathcal{L}_{\mathrm{e}}^{+}\rangle&\langle\mathcal{L}_{\mathrm{e}}^{+}|\mathcal{L}_{\mathrm{e}}^{-}\rangle\\ \langle\mathcal{L}_{\mathrm{e}}^{-}|\mathcal{L}_{\mathrm{e}}^{+}\rangle&\langle\mathcal{L}_{\mathrm{e}}^{-}|\mathcal{L}_{\mathrm{e}}^{-}\rangle\\ \end{bmatrix}=\begin{bmatrix}1+\Re\langle l_{\mathrm{e}}|l_{\bar{\mathrm{e}}}\rangle&\Im\langle l_{\mathrm{e}}|l_{\bar{\mathrm{e}}}\rangle\\ \Im\langle l_{\mathrm{e}}|l_{\bar{\mathrm{e}}}\rangle&1-\Re\langle l_{\mathrm{e}}|l_{\bar{\mathrm{e}}}\rangle\end{bmatrix}. (5)

    This real overlap matrix can be utilized to produce a time-reversal invariant orthonormal basis.

(ii) For the odd-electron case, an orthonormal set of {|lo}\{|l_{\mathrm{o}}\rangle\} will not be automatically orthogonal to {|lo¯}\{|l_{\bar{\mathrm{o}}}\rangle\}, except for lo|lo¯=0\langle l_{\mathrm{o}}|l_{\bar{\mathrm{o}}}\rangle=0. This is different from the nonrelativistic or spin-free relativistic case with SzS_{z} symmetry, where the two parts are of different spin projections and hence are orthogonal automatically. In general, the overlap metric for {|lo,|lo¯}\{|l_{\mathrm{o}}\rangle,\;|l_{\bar{\mathrm{o}}}\rangle\} has a quaternion structure

𝐒=[𝐀𝐁𝐁𝐀],𝐀=𝐀,𝐁T=𝐁.\displaystyle\mathbf{S}=\begin{bmatrix}\mathbf{A}&\mathbf{B}\\ -\mathbf{B}^{*}&\mathbf{A}^{*}\end{bmatrix},\quad\mathbf{A}^{\dagger}=\mathbf{A},\quad\mathbf{B}^{T}=-\mathbf{B}. (6)

Diagonalizing it with an algorithm preserving the quaternion structure47, 48, 49, 50, 51, 52, 53 produce the following structured eigenvectors

𝐙=[𝐗𝐘𝐘𝐗],𝐙𝐙=𝐈,𝐙𝐒𝐙=[𝚲𝟎𝟎𝚲],\displaystyle\mathbf{Z}=\begin{bmatrix}\mathbf{X}&-\mathbf{Y}^{*}\\ \mathbf{Y}&\mathbf{X}^{*}\\ \end{bmatrix},\quad\mathbf{Z}^{\dagger}\mathbf{Z}=\mathbf{I},\quad\mathbf{Z}^{\dagger}\mathbf{S}\mathbf{Z}=\begin{bmatrix}\mathbf{\Lambda}&\mathbf{0}\\ \mathbf{0}&\mathbf{\Lambda}\\ \end{bmatrix}, (7)

where 𝚲\mathbf{\Lambda} is a positive semidefinite diagonal matrix. The matrix 𝐙\mathbf{Z} is also symplectic

𝐙T𝐉𝐙=𝐉,𝐉=[𝟎𝐈𝐈𝟎].\displaystyle\mathbf{Z}^{T}\mathbf{J}\mathbf{Z}=\mathbf{J},\quad\mathbf{J}=\begin{bmatrix}\mathbf{0}&\mathbf{I}\\ -\mathbf{I}&\mathbf{0}\end{bmatrix}. (8)

It can be used to construct a time-reversal paired orthonormal basis, e.g., using canonical orthonormalization54.

Therefore, we demonstrate that the basis with the structure (1) does exist for a time-reversal invariant subspace VlV_{l}. In fact, Eq. (1) corresponds to the only two classes of irreducible projective representations of U(1)Z2TU(1)\rtimes Z_{2}^{T} for systems with particle number U(1)U(1) and time-reversal symmetry Z2TZ_{2}^{T}55. Here, \rtimes represents a semidirect product, because for any element eiN^ϕe^{i\hat{N}\phi} in U(1)U(1) with N^\hat{N} being the particle number operator, we have 𝒯eiN^ϕ=eiN^ϕ𝒯\mathcal{T}e^{i\hat{N}\phi}=e^{-i\hat{N}\phi}\mathcal{T} instead of a commuting relation. If VlV_{l} is not invariant under the action of 𝒯\mathcal{T}, we will refer it as time-reversal incomplete. Calculations performed within such space (e.g., configuration interaction) can be called Kramers symmetry contaminated, in analogy to spin contamination in the nonrelativistic case.

II.2 Direct product space

Having defined the time-reversal symmetry adapted basis, we consider its construction in a direct product space, which is relevant for constructing a configuration interaction space in DMRG. The direct product space of VlV_{l} and another subspace VrV_{r} with the structure (1) can be decomposed as

VlVr\displaystyle V_{l}\otimes V_{r} =\displaystyle= (VleVlo)(VreVro),\displaystyle(V_{l}^{\mathrm{e}}\oplus V_{l}^{\mathrm{o}})\otimes(V_{r}^{\mathrm{e}}\oplus V_{r}^{\mathrm{o}}),
(VlVr)e\displaystyle(V_{l}\otimes V_{r})^{\mathrm{e}} =\displaystyle= (VleVre)(VloVro)\displaystyle(V_{l}^{\mathrm{e}}\otimes V_{r}^{\mathrm{e}})\oplus(V_{l}^{\mathrm{o}}\otimes V_{r}^{\mathrm{o}})
=\displaystyle= span{|lere,|loro,|loro¯,|lo¯ro¯,|lo¯ro},\displaystyle\mathrm{span}\{|l_{\mathrm{e}}r_{\mathrm{e}}\rangle,\;|l_{\mathrm{o}}r_{\mathrm{o}}\rangle,\;|l_{\mathrm{o}}r_{\bar{\mathrm{o}}}\rangle,\;|l_{\bar{\mathrm{o}}}r_{\bar{\mathrm{o}}}\rangle,\;|l_{\bar{\mathrm{o}}}r_{\mathrm{o}}\rangle\},
(VlVr)o\displaystyle(V_{l}\otimes V_{r})^{\mathrm{o}} =\displaystyle= (VleVro)(VloVre)\displaystyle(V_{l}^{\mathrm{e}}\otimes V_{r}^{\mathrm{o}})\oplus(V_{l}^{\mathrm{o}}\otimes V_{r}^{\mathrm{e}}) (9)
=\displaystyle= span{|lero,|lore,|lero¯,|lo¯re}.\displaystyle\mathrm{span}\{|l_{\mathrm{e}}r_{\mathrm{o}}\rangle,\;|l_{\mathrm{o}}r_{\mathrm{e}}\rangle,\;|l_{\mathrm{e}}r_{\bar{\mathrm{o}}}\rangle,\;|l_{\bar{\mathrm{o}}}r_{\mathrm{e}}\rangle\}.

The pair structure for basis functions of (VlVr)o(V_{l}\otimes V_{r})^{\mathrm{o}} is clear, following from the structures of VlV_{l} and VrV_{r}. For the even-electron subspace (VlVr)e(V_{l}\otimes V_{r})^{\mathrm{e}}, by noting that

𝒯|loro=|lo¯ro¯,𝒯|loro¯=|lo¯ro,\displaystyle\mathcal{T}|l_{\mathrm{o}}r_{\mathrm{o}}\rangle=|l_{\bar{\mathrm{o}}}r_{\bar{\mathrm{o}}}\rangle,\quad\mathcal{T}|l_{\mathrm{o}}r_{\bar{\mathrm{o}}}\rangle=-|l_{\bar{\mathrm{o}}}r_{\mathrm{o}}\rangle, (10)

we can define the following time-reversal invariant basis

{|Φlere=|lere,|Φloro+=12(|loro+|lo¯ro¯),|Φloro=𝕚2(|loro|lo¯ro¯),|Φloro¯+=𝕚2(|loro¯+|lo¯ro),|Φloro¯=12(|loro¯|lo¯ro).\left\{\begin{array}[]{lll}|\Phi_{l_{\mathrm{e}}r_{\mathrm{e}}}\rangle&=&|l_{\mathrm{e}}r_{\mathrm{e}}\rangle,\\ |\Phi_{l_{\mathrm{o}}r_{\mathrm{o}}}^{+}\rangle&=&\frac{1}{\sqrt{2}}(|l_{\mathrm{o}}r_{\mathrm{o}}\rangle+|l_{\bar{\mathrm{o}}}r_{\bar{\mathrm{o}}}\rangle),\\ |\Phi_{l_{\mathrm{o}}r_{\mathrm{o}}}^{-}\rangle&=&\frac{\mathbbm{i}}{\sqrt{2}}(|l_{\mathrm{o}}r_{\mathrm{o}}\rangle-|l_{\bar{\mathrm{o}}}r_{\bar{\mathrm{o}}}\rangle),\\ |\Phi_{l_{\mathrm{o}}r_{\bar{\mathrm{o}}}}^{+}\rangle&=&\frac{\mathbbm{i}}{\sqrt{2}}(|l_{\mathrm{o}}r_{\bar{\mathrm{o}}}\rangle+|l_{\bar{\mathrm{o}}}r_{\mathrm{o}}\rangle),\\ |\Phi_{l_{\mathrm{o}}r_{\bar{\mathrm{o}}}}^{-}\rangle&=&\frac{1}{\sqrt{2}}(|l_{\mathrm{o}}r_{\bar{\mathrm{o}}}\rangle-|l_{\bar{\mathrm{o}}}r_{\mathrm{o}}\rangle).\end{array}\right. (11)

Consider the example that both |lo|l_{\mathrm{o}}\rangle and |ro|r_{\mathrm{o}}\rangle are one-electron spin states, then {|Φloro+,|Φloro,|Φloro¯+}\{|\Phi_{l_{\mathrm{o}}r_{\mathrm{o}}}^{+}\rangle,|\Phi_{l_{\mathrm{o}}r_{\mathrm{o}}}^{-}\rangle,|\Phi_{l_{\mathrm{o}}r_{\bar{\mathrm{o}}}}^{+}\rangle\} are triplets in a Cartesian representation1, while |Φloro¯|\Phi_{l_{\mathrm{o}}r_{\bar{\mathrm{o}}}}^{-}\rangle is singlet, viz.,

{S1x=12(αα+ββ),S1y=𝕚2(ααββ),𝕚S1z=𝕚2(αβ+βα),S0=12(αββα),\displaystyle\left\{\begin{array}[]{lll}S_{1x}&=&\frac{1}{\sqrt{2}}(\alpha\alpha+\beta\beta),\\ S_{1y}&=&\frac{\mathbbm{i}}{\sqrt{2}}(\alpha\alpha-\beta\beta),\\ \mathbbm{i}S_{1z}&=&\frac{\mathbbm{i}}{\sqrt{2}}(\alpha\beta+\beta\alpha),\\ S_{0}&=&\frac{1}{\sqrt{2}}(\alpha\beta-\beta\alpha),\\ \end{array}\right. (16)

Suppose a wavefunction |Ψ|\Psi\rangle is expanded in this direct product basis is VlVr={|lr}V_{l}\otimes V_{r}=\{|lr\rangle\}, the coefficients of |Ψ|\Psi\rangle and its time-reversal partner |Ψ¯𝒯|Ψ|\bar{\Psi}\rangle\triangleq\mathcal{T}|\Psi\rangle are related by

lr|Ψ¯=(𝒯lr|Ψ¯)=l¯r¯|Ψ¯¯=±l¯r¯|Ψ,\displaystyle\langle lr|\bar{\Psi}\rangle=(\mathcal{T}\langle lr|\bar{\Psi}\rangle)^{*}=\langle\bar{l}\bar{r}|\bar{\bar{\Psi}}\rangle^{*}=\pm\langle\bar{l}\bar{r}|\Psi\rangle^{*}, (17)

where the positive sign is for even-electron systems and the minus sign is for odd-electron systems as 𝒯2|Ψ=|Ψ\mathcal{T}^{2}|\Psi\rangle=-|\Psi\rangle. We can write the wavefunction coefficient Ψlr=lr|Ψ\Psi_{lr}=\langle lr|\Psi\rangle in the direct product space as a matrix

𝚿=[ΨeeΨeoΨeo¯ΨoeΨooΨoo¯Ψo¯eΨo¯oΨo¯o¯],\displaystyle\mathbf{\Psi}=\begin{bmatrix}\Psi_{\mathrm{e}\mathrm{e}}&\Psi_{\mathrm{e}\mathrm{o}}&\Psi_{\mathrm{e}\bar{\mathrm{o}}}\\ \Psi_{\mathrm{o}\mathrm{e}}&\Psi_{\mathrm{o}\mathrm{o}}&\Psi_{\mathrm{o}\bar{\mathrm{o}}}\\ \Psi_{\bar{\mathrm{o}}\mathrm{e}}&\Psi_{\bar{\mathrm{o}}\mathrm{o}}&\Psi_{\bar{\mathrm{o}}\bar{\mathrm{o}}}\\ \end{bmatrix}, (18)

such that for odd-electron systems

𝚿o=[0ΨeoΨeo¯Ψoe00Ψo¯e00],𝚿o¯=[0Ψeo¯ΨeoΨo¯e00Ψoe00],\displaystyle\mathbf{\Psi}_{\mathrm{o}}=\begin{bmatrix}0&\Psi_{\mathrm{e}\mathrm{o}}&\Psi_{\mathrm{e}\bar{\mathrm{o}}}\\ \Psi_{\mathrm{o}\mathrm{e}}&0&0\\ \Psi_{\bar{\mathrm{o}}\mathrm{e}}&0&0\\ \end{bmatrix},\;\;\mathbf{\Psi}_{\bar{\mathrm{o}}}=\begin{bmatrix}0&-\Psi^{*}_{\mathrm{e}\bar{\mathrm{o}}}&\Psi^{*}_{\mathrm{e}\mathrm{o}}\\ -\Psi^{*}_{\bar{\mathrm{o}}\mathrm{e}}&0&0\\ \Psi^{*}_{\mathrm{o}\mathrm{e}}&0&0\\ \end{bmatrix}, (19)

and for even-electron systems

𝚿e=[Ψee000ΨooΨoo¯0Ψo¯oΨo¯o¯],𝚿e¯=[Ψee000Ψo¯o¯Ψo¯o0Ψoo¯Ψoo].\displaystyle\mathbf{\Psi}_{\mathrm{e}}=\begin{bmatrix}\Psi_{\mathrm{e}\mathrm{e}}&0&0\\ 0&\Psi_{\mathrm{o}\mathrm{o}}&\Psi_{\mathrm{o}\bar{\mathrm{o}}}\\ 0&\Psi_{\bar{\mathrm{o}}\mathrm{o}}&\Psi_{\bar{\mathrm{o}}\bar{\mathrm{o}}}\\ \end{bmatrix},\;\;\mathbf{\Psi}_{\bar{\mathrm{e}}}=\begin{bmatrix}\Psi^{*}_{\mathrm{e}\mathrm{e}}&0&0\\ 0&\Psi^{*}_{\bar{\mathrm{o}}\bar{\mathrm{o}}}&-\Psi^{*}_{\bar{\mathrm{o}}\mathrm{o}}\\ 0&-\Psi^{*}_{\mathrm{o}\bar{\mathrm{o}}}&\Psi^{*}_{\mathrm{o}\mathrm{o}}\\ \end{bmatrix}. (20)

Similar to Eq. (1), we can require the many-electron wavefunction of even electron system to be time-reversal invariant. Consequently, the wavefunction coefficient matrix is simplified as

𝚿e=[Ψee000ΨooΨoo¯0Ψoo¯Ψoo]=𝚿e¯,\displaystyle\mathbf{\Psi}_{\mathrm{e}}=\begin{bmatrix}\Psi_{\mathrm{e}\mathrm{e}}&0&0\\ 0&\Psi_{\mathrm{o}\mathrm{o}}&\Psi_{\mathrm{o}\bar{\mathrm{o}}}\\ 0&-\Psi_{\mathrm{o}\bar{\mathrm{o}}}^{*}&\Psi_{\mathrm{o}\mathrm{o}}^{*}\\ \end{bmatrix}=\mathbf{\Psi}_{\bar{\mathrm{e}}}, (21)

with the submatrix Ψee\Psi_{\mathrm{e}\mathrm{e}} being real.

III Time reversal symmetry-adapted DMRG

We will show how the structure (1) can be maintained during the sweep optimization in DMRG, and used to reduce memory and computational cost. For this purpose, it suffices to discuss the local optimization problem in the sweep optimization, which amounts to first solve a configuration interaction problem in the direct product space VlVrV_{l}\otimes V_{r},

H^|Ψ=E|Ψ,|ΨVlVr,\displaystyle\hat{H}|\Psi\rangle=E|\Psi\rangle,\quad|\Psi\rangle\in V_{l}\otimes V_{r}, (22)

and then produce an optimized basis for VlV_{l} or VrV_{r} (so-called decimation). We refer the readers to Refs. 13 for a detailed description of the entire sweep optimization.

III.0.1 Hamiltonian

We assume the one-electron basis has a Kramers paired structure {ψp,ψp¯}\{\psi_{p},\psi_{\bar{p}}\}, which can either be spin-orbitals or spinors computed from spin-restricted or Kramers-restricted self-consistent field calculations, respectively. The action of the time-reversal symmetry operator 𝒯\mathcal{T} on spin-orbitals/spinors reads

𝒯|ψp=|ψp¯,𝒯|ψp¯=|ψp.\displaystyle\mathcal{T}|\psi_{p}\rangle=|\psi_{\bar{p}}\rangle,\quad\mathcal{T}|\psi_{\bar{p}}\rangle=-|\psi_{p}\rangle. (23)

In the absence of magnetic field, 𝒯\mathcal{T} commutes with the Hamiltonian H^\hat{H}, which is written in a second quantized form as

H^=pqhpqapaq+14pqrspqsrapaqaras.\displaystyle\hat{H}=\sum_{pq}h_{pq}a_{p}^{\dagger}a_{q}+\frac{1}{4}\sum_{pqrs}\langle pq\|sr\rangle a_{p}^{\dagger}a_{q}^{\dagger}a_{r}a_{s}. (24)

To get the representation of HH in the direct product space VlVrV_{l}\otimes V_{r}, H^\hat{H} is usually rewritten as

H^=H^L+H^R+pL(apLLSpLR+h.c.)+qR(aqRRSqRL+h.c.)+pL<qL(ApLqLLPpLqLR+h.c.)+pLsLwpLsL(BpLsLLQpLsLR+h.c.),\begin{array}[]{rcl}\hat{H}&=&\hat{H}^{\mathrm{L}}+\hat{H}^{\mathrm{R}}\\ &+&\sum_{p_{\mathrm{L}}}(a_{p_{\mathrm{L}}}^{\mathrm{L}\dagger}S_{p_{\mathrm{L}}}^{\mathrm{R}}+\mathrm{h.c.})+\sum_{q_{\mathrm{R}}}(a_{q_{\mathrm{R}}}^{\mathrm{R}\dagger}S_{q_{\mathrm{R}}}^{\mathrm{L}}+\mathrm{h.c.})\\ &+&\sum_{p_{\mathrm{L}}<q_{\mathrm{L}}}(A_{p_{\mathrm{L}}q_{\mathrm{L}}}^{\mathrm{L}}P_{p_{\mathrm{L}}q_{\mathrm{L}}}^{\mathrm{R}}+\mathrm{h.c.})\\ &+&\sum_{p_{\mathrm{L}}\leq s_{\mathrm{L}}}w_{p_{\mathrm{L}}s_{\mathrm{L}}}(B_{p_{\mathrm{L}}s_{\mathrm{L}}}^{\mathrm{L}}Q_{p_{\mathrm{L}}s_{\mathrm{L}}}^{\mathrm{R}}+\mathrm{h.c.}),\end{array} (25)

where wpq=112δpq=wqpw_{pq}=1-\frac{1}{2}\delta_{pq}=w_{qp}, pLp_{\mathrm{L}} (pRp_{\mathrm{R}}) represents the index of one-electron basis for the subspace VlV_{l} (VrV_{r}), and the introduced intermediates (normal and complementary operators56, 13) are

Apqapaq,Bpsapas,Ppqs<rpqsraras,Qpsqrpqsraqar,Spq12hpqaq+q,s<rpqsraqaras.\begin{array}[]{rcl}A_{pq}&\triangleq&a_{p}^{\dagger}a_{q}^{\dagger},\\ B_{ps}&\triangleq&a_{p}^{\dagger}a_{s},\\ P_{pq}&\triangleq&\sum_{s<r}\langle pq\|sr\rangle a_{r}a_{s},\\ Q_{ps}&\triangleq&\sum_{qr}\langle pq\|sr\rangle a_{q}^{\dagger}a_{r},\\ S_{p}&\triangleq&\sum_{q}\frac{1}{2}h_{pq}a_{q}+\sum_{q,s<r}\langle pq\|sr\rangle a_{q}^{\dagger}a_{r}a_{s}.\end{array} (26)

The time-reversal invariance of the Hamiltonian H^=𝒯H^𝒯1\hat{H}=\mathcal{T}\hat{H}\mathcal{T}^{-1} is not obvious in this form. Since the integrals satisfy time-reversal symmetry, viz., hpq=hp¯q¯h_{pq}^{*}=h_{\bar{p}\bar{q}} and hpq¯=hp¯qh_{p\bar{q}}^{*}=-h_{\bar{p}q}, we can rewrite Eq. (25) as

H^=H~+𝒯H~𝒯1,H~12(H^L+H^R)+(HaS+HAP+HBQ),HaSpLapLLSpLR+pRapRRSpRL+h.c.,HAPpL<qLApLqLLPpLqLR+pLqLwpLqLApLq¯LLPpLq¯LR+h.c.,HBQpLsLwpLsLBpLsLLQpLsLR+pLsLwpLsLBpLs¯LLQpLs¯LR+h.c.,\displaystyle\begin{array}[]{rcl}\hat{H}&=&\tilde{H}+\mathcal{T}\tilde{H}\mathcal{T}^{-1},\\ \tilde{H}&\triangleq&\frac{1}{2}(\hat{H}^{\mathrm{L}}+\hat{H}^{\mathrm{R}})+(H_{aS}+H_{AP}+H_{BQ}),\\ H_{aS}&\triangleq&\sum_{p_{\mathrm{L}}}a_{p_{\mathrm{L}}}^{\mathrm{L}\dagger}S_{p_{\mathrm{L}}}^{\mathrm{R}}+\sum_{p_{\mathrm{R}}}a_{p_{\mathrm{R}}}^{\mathrm{R}\dagger}S_{p_{\mathrm{R}}}^{\mathrm{L}}+\mathrm{h.c.},\\ H_{AP}&\triangleq&\sum_{p_{\mathrm{L}}<q_{\mathrm{L}}}A^{\mathrm{L}}_{p_{\mathrm{L}}q_{\mathrm{L}}}P^{\mathrm{R}}_{p_{\mathrm{L}}q_{\mathrm{L}}}\\ &&+\sum_{p_{\mathrm{L}}\leq q_{\mathrm{L}}}w_{p_{\mathrm{L}}q_{\mathrm{L}}}A^{\mathrm{L}}_{p_{\mathrm{L}}\bar{q}_{\mathrm{L}}}P^{\mathrm{R}}_{p_{\mathrm{L}}\bar{q}_{\mathrm{L}}}+\mathrm{h.c.},\\ H_{BQ}&\triangleq&\sum_{p_{\mathrm{L}}\leq s_{\mathrm{L}}}w_{p_{\mathrm{L}}s_{\mathrm{L}}}B^{\mathrm{L}}_{p_{\mathrm{L}}s_{\mathrm{L}}}Q^{\mathrm{R}}_{p_{\mathrm{L}}s_{\mathrm{L}}}\\ &&+\sum_{p_{\mathrm{L}}\leq s_{\mathrm{L}}}w_{p_{\mathrm{L}}s_{\mathrm{L}}}B^{\mathrm{L}}_{p_{\mathrm{L}}\bar{s}_{\mathrm{L}}}Q^{\mathrm{R}}_{p_{\mathrm{L}}\bar{s}_{\mathrm{L}}}+\mathrm{h.c.},\end{array} (34)

using the derived time-reversal symmetry properties of intermediates such as

𝒯Apq𝒯1\displaystyle\mathcal{T}A_{pq}\mathcal{T}^{-1} =\displaystyle= 𝒯(pq)𝒯1=p¯q¯=Ap¯q¯,\displaystyle\mathcal{T}(p^{\dagger}q^{\dagger})\mathcal{T}^{-1}=\bar{p}^{\dagger}\bar{q}^{\dagger}=A_{\bar{p}\bar{q}}, (35)
𝒯Apq¯𝒯1\displaystyle\mathcal{T}A_{p\bar{q}}\mathcal{T}^{-1} =\displaystyle= 𝒯(pq¯)𝒯1=p¯q=Ap¯q.\displaystyle\mathcal{T}(p^{\dagger}\bar{q}^{\dagger})\mathcal{T}^{-1}=-\bar{p}^{\dagger}q^{\dagger}=-A_{\bar{p}q}. (36)

The obtained ’skeleton’ operator H~\tilde{H} is Hermitian but not time-reversal invariant, but the number of operators in H~\tilde{H} is roughly half of that in H^\hat{H}. This form will be used later to reduce the computational cost of R-DMRG.

III.0.2 Diagonalization

To solve Eq. (22) in VlVrV_{l}\otimes V_{r} with H^\hat{H} in Eq. (34), we can use the iterative Davidson algorithm, where in each step the so-called σ\sigma vector needs to be formed |σ=H^|Ψ|\sigma\rangle=\hat{H}|\Psi\rangle. For the even-electron case, the coefficients of σ\sigma are

σlre\displaystyle\sigma_{lr}^{\mathrm{e}} \displaystyle\triangleq lr|H~+𝒯H~𝒯1|Ψe\displaystyle\langle lr|\tilde{H}+\mathcal{T}\tilde{H}\mathcal{T}^{-1}|\Psi_{\mathrm{e}}\rangle (37)
=\displaystyle= lr|H~|Ψe+l¯r¯|H~|Ψe¯.\displaystyle\langle lr|\tilde{H}|\Psi_{\mathrm{e}}\rangle+\langle\bar{l}\bar{r}|\tilde{H}|\Psi_{\bar{\mathrm{e}}}\rangle^{*}.

Since we require |Ψe=|Ψe¯|\Psi_{\mathrm{e}}\rangle=|\Psi_{\bar{\mathrm{e}}}\rangle, it simply becomes

σlre=σ~lre+σ~l¯r¯e,\displaystyle\sigma_{lr}^{\mathrm{e}}=\tilde{\sigma}_{lr}^{\mathrm{e}}+\tilde{\sigma}_{\bar{l}\bar{r}}^{\mathrm{e}*}, (38)

with σ~lrelr|H~|Ψe\tilde{\sigma}_{lr}^{\mathrm{e}}\triangleq\langle lr|\tilde{H}|\Psi_{\mathrm{e}}\rangle This shows that only σ~lre\tilde{\sigma}_{lr}^{\mathrm{e}} needs to be constructed, whose computational cost is roughly half of that for constructing σlre\sigma_{lr}^{\mathrm{e}}. Similarly, for odd-electron systems, we can find

σlro\displaystyle\sigma_{lr}^{\mathrm{o}} \displaystyle\triangleq lr|H~+𝒯H~𝒯1|Ψo\displaystyle\langle lr|\tilde{H}+\mathcal{T}\tilde{H}\mathcal{T}^{-1}|\Psi_{\mathrm{o}}\rangle (39)
=\displaystyle= lr|H~|Ψo+l¯r¯|H~|Ψo¯=σ~lro+σ~l¯r¯o¯,\displaystyle\langle lr|\tilde{H}|\Psi^{\mathrm{o}}\rangle+\langle\bar{l}\bar{r}|\tilde{H}|\Psi_{\bar{\mathrm{o}}}\rangle^{*}=\tilde{\sigma}_{lr}^{\mathrm{o}}+\tilde{\sigma}_{\bar{l}\bar{r}}^{\bar{\mathrm{o}}*},
σlro¯\displaystyle\sigma_{lr}^{\bar{\mathrm{o}}} \displaystyle\triangleq lr|H~+𝒯H~𝒯1|Ψo¯\displaystyle\langle lr|\tilde{H}+\mathcal{T}\tilde{H}\mathcal{T}^{-1}|\Psi_{\bar{\mathrm{o}}}\rangle (40)
=\displaystyle= lr|H~|Ψo¯l¯r¯|H~|Ψo=σ~lro¯σ~l¯r¯o.\displaystyle\langle lr|\tilde{H}|\Psi_{\bar{\mathrm{o}}}\rangle-\langle\bar{l}\bar{r}|\tilde{H}|\Psi_{\mathrm{o}}\rangle^{*}=\tilde{\sigma}_{lr}^{\bar{\mathrm{o}}}-\tilde{\sigma}_{\bar{l}\bar{r}}^{\mathrm{o}*}.

Thus, it suffices to construct σ~lro\tilde{\sigma}_{lr}^{\mathrm{o}} and σ~lro¯\tilde{\sigma}_{lr}^{\bar{\mathrm{o}}}, which reduces the computational cost for constructing σlro\sigma_{lr}^{\mathrm{o}} and σlro¯\sigma_{lr}^{\bar{\mathrm{o}}} roughly by half.

In summary, the full σ\sigma can be recovered from the skeleton one σ~\tilde{\sigma} by a ’time-reversal symmetrization’ in both even- and odd-electron cases. This is in a similar spirit to the construction of Fock matrix using the skeleton-matrix algorithm57, 58, 59. Expressions for H~\tilde{H} in Eq. (34) immediately show that only half of the intermediate operators are necessary for constructing H~\tilde{H}, which reduces the memory and computational cost for renormalized operators by half compared with an implementation without using time-reversal symmetry.

To use such reduction, we need to maintain the structure (1) for basis vectors of the subspace in Davidson algorithm. For the even-electron case, suppose the current subspace V=span{|bk}V=\mathrm{span}\{|b_{k}\rangle\} in Davidson algorithm is spanned by time-reversal invariant basis, then the representation of H^\hat{H} is a real matrix,

bk|H|bl=(𝒯bk|H|bl)=b¯k|H|b¯l=bk|H|bl.\displaystyle\langle b_{k}|H|b_{l}\rangle=(\mathcal{T}\langle b_{k}|H|b_{l}\rangle)^{*}=\langle\bar{b}_{k}|H|\bar{b}_{l}\rangle=\langle b_{k}|H|b_{l}\rangle. (41)

Consequently, the eigenvectors 𝐗\mathbf{X} of 𝐇\mathbf{H} are real and the states |xi=k|bkXki|x_{i}\rangle=\sum_{k}|b_{k}\rangle X_{ki} are time-reversal invariant. It can be verified that the residual |ri=H^|xi|xiEi|r_{i}\rangle=\hat{H}|x_{i}\rangle-|x_{i}\rangle E_{i} is also time-reversal invariant, so does the precondition residual as lr|H|lr=l¯r¯|H|l¯r¯\langle lr|H|lr\rangle=\langle\bar{l}\bar{r}|H|\bar{l}\bar{r}\rangle.

For the odd-electron case, suppose the current subspace V=span{|bk}span{|b¯k}V=\mathrm{span}\{|b_{k}\rangle\}\oplus\mathrm{span}\{|\bar{b}_{k}\rangle\} is spanned by a Kramers paired basis, i.e., |b¯k=𝒯|bk|\bar{b}_{k}\rangle=\mathcal{T}|b_{k}\rangle, then the representation of Hamiltonian has a quaternion structure (6). Diagonalizing it with a structure-preserving algorithm will produced Kramers paired eigenvectors {|xi,|x¯i}\{|x_{i}\rangle,|\bar{x}_{i}\rangle\}. Similarly, one can show that the residuals also form a Kramers pair, |r¯i=𝒯|ri|\bar{r}_{i}\rangle=\mathcal{T}|r_{i}\rangle. An important point for constructing new Kramers paired orthonormal basis is that if |ri|r_{i}\rangle is already orthonormalized against V=span{|bk}span{|b¯k}V=\mathrm{span}\{|b_{k}\rangle\}\oplus\mathrm{span}\{|\bar{b}_{k}\rangle\}, then |r¯i|\bar{r}_{i}\rangle will be automatically orthogonal to the basis vectors in VV, such that the pair (|ri,|r¯i)(|r_{i}\rangle,|\bar{r}_{i}\rangle) can be added simultaneously. This property can be seen from

r¯i|bk\displaystyle\langle\bar{r}_{i}|b_{k}\rangle =\displaystyle= (𝒯r¯i|bk)=ri|b¯k=0,\displaystyle(\mathcal{T}\langle\bar{r}_{i}|b_{k}\rangle)^{*}=-\langle r_{i}|\bar{b}_{k}\rangle=0, (42)
r¯i|b¯k\displaystyle\langle\bar{r}_{i}|\bar{b}_{k}\rangle =\displaystyle= (𝒯r¯i|b¯k)=ri|bk=0,\displaystyle(\mathcal{T}\langle\bar{r}_{i}|\bar{b}_{k}\rangle)^{*}=\langle r_{i}|b_{k}\rangle=0, (43)

and r¯i|ri=0\langle\bar{r}_{i}|r_{i}\rangle=0 due to Kramers’ theorem. In this way, we can maintain the structure (1) for the basis vectors of the subspace in the Davidson diagonalization algorithm.

III.0.3 Decimation

Once the eigenvectors |Ψ|\Psi\rangle (18) of H^\hat{H} have been found in the direct product space VlVrV_{l}\otimes V_{r}, we need to perform decimation to obtain an optimized basis for VlV_{l} or VrV_{r}. This is done by diagonalizing the reduced density matrix ρl\rho_{l} or ρr\rho_{r}. In the sweep optimization of DMRG, VlV_{l} (or VrV_{r}) is also a direct product space denoted by VDV_{D}. It is formed by a direct product between the left environment and the left dot, referred as superblock. Simply diagonalizing the reduced density matrix will not yield a basis with the structure (1). We will show how to perform decimation in such space to produce time-reversal symmetry-adapted renormalized states.

For the even-electron subspace VDeV_{D}^{\mathrm{e}}, we assume it is spanned by the following direct product basis

VDe=span{|De,|De¯,|D0},\displaystyle V_{D}^{\mathrm{e}}=\mathrm{span}\{|D_{\mathrm{e}}\rangle,|D_{\bar{\mathrm{e}}}\rangle,|D_{0}\rangle\}, (44)

with |De¯=𝒯|De|D_{\bar{\mathrm{e}}}\rangle=\mathcal{T}|D_{\mathrm{e}}\rangle and |D0=𝒯|D0|D_{0}\rangle=\mathcal{T}|D_{0}\rangle. Here, |D0|D_{0}\rangle represents the part of direct product basis which is already time-reversal invariant such as |lere|l_{\mathrm{e}}r_{\mathrm{e}}\rangle in Eq. (9). The pair |De|D_{\mathrm{e}}\rangle and |De¯|D_{\bar{\mathrm{e}}}\rangle represent those parts which can be related by 𝒯\mathcal{T} such as |loro|l_{\mathrm{o}}r_{\mathrm{o}}\rangle and |lo¯r¯o|l_{\bar{\mathrm{o}}}\bar{r}_{\mathrm{o}}\rangle. Suppose the reduced density matrix obtained from |Ψ|\Psi\rangle in VDV_{D} is

𝝆Ψ=[ρeeρee¯ρe0ρe¯eρe¯e¯ρe¯0ρ0eρ0e¯ρ00],\displaystyle\bm{\rho}^{\Psi}=\left[\begin{array}[]{ccc}\rho_{\mathrm{e}\mathrm{e}}&\rho_{e\bar{\mathrm{e}}}&\rho_{e0}\\ \rho_{\bar{\mathrm{e}}e}&\rho_{\bar{\mathrm{e}}\bar{\mathrm{e}}}&\rho_{\bar{\mathrm{e}}0}\\ \rho_{0e}&\rho_{0\bar{\mathrm{e}}}&\rho_{00}\\ \end{array}\right], (48)

then that obtained from |Ψ¯=𝒯|Ψ|\bar{\Psi}\rangle=\mathcal{T}|\Psi\rangle is

𝝆Ψ¯=[ρe¯e¯ρe¯eρe¯0ρee¯ρeeρe0ρ0e¯ρ0eρ00].\displaystyle\bm{\rho}^{\bar{\Psi}}=\left[\begin{array}[]{ccc}\rho^{*}_{\bar{\mathrm{e}}\bar{\mathrm{e}}}&\rho^{*}_{\bar{\mathrm{e}}e}&\rho^{*}_{\bar{\mathrm{e}}0}\\ \rho^{*}_{e\bar{\mathrm{e}}}&\rho^{*}_{\mathrm{e}\mathrm{e}}&\rho^{*}_{e0}\\ \rho^{*}_{0\bar{\mathrm{e}}}&\rho^{*}_{0e}&\rho^{*}_{00}\\ \end{array}\right]. (52)

The average 𝝆=12(𝝆Ψ+𝝆Ψ¯)\bm{\rho}=\frac{1}{2}(\bm{\rho}^{\Psi}+\bm{\rho}^{\bar{\Psi}}) is time-reversal invariant

𝝆=12[ρee+ρe¯e¯ρee¯+ρe¯eρe0+ρe¯0ρe¯e+ρee¯ρe¯e¯+ρeeρe¯0+ρe0ρ0e+ρ0e¯ρ0e¯+ρ0eρ00+ρ00][𝒜𝒞𝒜𝒞𝒞𝒞T],\displaystyle\bm{\rho}=\frac{1}{2}\left[\begin{array}[]{ccc}\rho_{\mathrm{e}\mathrm{e}}+\rho^{*}_{\bar{\mathrm{e}}\bar{\mathrm{e}}}&\rho_{e\bar{\mathrm{e}}}+\rho^{*}_{\bar{\mathrm{e}}e}&\rho_{e0}+\rho^{*}_{\bar{\mathrm{e}}0}\\ \rho_{\bar{\mathrm{e}}e}+\rho^{*}_{e\bar{\mathrm{e}}}&\rho_{\bar{\mathrm{e}}\bar{\mathrm{e}}}+\rho^{*}_{\mathrm{e}\mathrm{e}}&\rho_{\bar{\mathrm{e}}0}+\rho^{*}_{e0}\\ \rho_{0e}+\rho^{*}_{0\bar{\mathrm{e}}}&\rho_{0\bar{\mathrm{e}}}+\rho^{*}_{0e}&\rho_{00}+\rho^{*}_{00}\\ \end{array}\right]\triangleq\left[\begin{array}[]{ccc}\mathcal{A}&\mathcal{B}&\mathcal{C}\\ \mathcal{B}^{*}&\mathcal{A}^{*}&\mathcal{C}^{*}\\ \mathcal{C}^{\dagger}&\mathcal{C}^{T}&\mathcal{E}\\ \end{array}\right], (59)

where 𝒜=𝒜\mathcal{A}=\mathcal{A}^{\dagger}, =T\mathcal{B}=\mathcal{B}^{T}, and \mathcal{E} is real symmetric. However, simply diagonalizing it with a complex eigensolver will not produce time-reversal invariant basis function (1) due to the arbitrariness of the phase factor. To fix this problem, we can introduce a time-reversal invariant basis similar to Eq. (11),

(|R,|R+,|R0)(|Re,|Re¯,|R0)𝐔\displaystyle(|R_{-}\rangle,|R_{+}\rangle,|R_{0}\rangle)\triangleq(|R_{\mathrm{e}}\rangle,|R_{\bar{\mathrm{e}}}\rangle,|R_{0}\rangle)\mathbf{U} (60)

with 𝐔\mathbf{U} being

𝐔=[𝕚2I12I0𝕚2I12I000I],\displaystyle\mathbf{U}=\left[\begin{array}[]{ccc}\frac{\mathbbm{i}}{\sqrt{2}}I&\frac{1}{\sqrt{2}}I&0\\ -\frac{\mathbbm{i}}{\sqrt{2}}I&\frac{1}{\sqrt{2}}I&0\\ 0&0&I\\ \end{array}\right], (64)

and transform 𝝆\bm{\rho} into this basis, which leads to a real symmetric reduced density matrix

𝝆~=𝐔𝝆𝐔=[(𝒜)R(𝒜+)I2𝒞I(𝒜)I(𝒜+)R2𝒞R2𝒞IT2𝒞RT],\displaystyle\tilde{\bm{\rho}}=\mathbf{U}^{\dagger}\bm{\rho}\mathbf{U}=\left[\begin{array}[]{ccc}(\mathcal{A}-\mathcal{B})_{\mathrm{R}}&(\mathcal{A}+\mathcal{B})_{\mathrm{I}}&\sqrt{2}\mathcal{C}_{\mathrm{I}}\\ -(\mathcal{A}-\mathcal{B})_{\mathrm{I}}&(\mathcal{A}+\mathcal{B})_{\mathrm{R}}&\sqrt{2}\mathcal{C}_{\mathrm{R}}\\ \sqrt{2}\mathcal{C}_{\mathrm{I}}^{T}&\sqrt{2}\mathcal{C}_{\mathrm{R}}^{T}&\mathcal{E}\\ \end{array}\right], (68)

where 𝒜R\mathcal{A}_{\mathrm{R}} (or 𝒜I\mathcal{A}_{\mathrm{I}}) represents the real (or imaginary) part. Diagonalizing 𝝆~𝐗=𝐗𝚲\tilde{\bm{\rho}}\mathbf{X}=\mathbf{X}\mathbf{\Lambda} yields a set of real vectors 𝐗\mathbf{X} in the time-reversal invariant basis, which can be back transformed to the original direct product basis (44) by

𝐔𝐗=[𝕚2I12I0𝕚2I12I0001][𝐗𝐗+𝐗0][𝐗e𝐗e𝐗0],\displaystyle\mathbf{UX}=\left[\begin{array}[]{ccc}\frac{\mathbbm{i}}{\sqrt{2}}I&\frac{1}{\sqrt{2}}I&0\\ -\frac{\mathbbm{i}}{\sqrt{2}}I&\frac{1}{\sqrt{2}}I&0\\ 0&0&1\\ \end{array}\right]\left[\begin{array}[]{c}\mathbf{X}_{-}\\ \mathbf{X}_{+}\\ \mathbf{X}_{0}\\ \end{array}\right]\equiv\left[\begin{array}[]{c}\mathbf{X}_{\mathrm{e}}\\ \mathbf{X}^{*}_{\mathrm{e}}\\ \mathbf{X}_{0}\\ \end{array}\right], (78)

with 𝐗e=(𝐗++𝕚𝐗)/2\mathbf{X}_{\mathrm{e}}=(\mathbf{X}_{+}+\mathbbm{i}\mathbf{X}_{-})/\sqrt{2}.

For the odd-electron subspace VDoV_{D}^{\mathrm{o}}, we assume it is spanned by the following direct product basis

VDo=span{|Do,|Do¯},\displaystyle V_{D}^{\mathrm{o}}=\mathrm{span}\{|D_{\mathrm{o}}\rangle,|D_{\bar{\mathrm{o}}}\rangle\}, (79)

which is already Kramers paired, see Eq. (9). The reduced density matrices are

𝝆Ψ=[ρooρoo¯ρo¯oρo¯o¯],𝝆Ψ¯=[ρo¯o¯ρo¯oρoo¯ρoo],\displaystyle\bm{\rho}^{\Psi}=\left[\begin{array}[]{cc}\rho_{\mathrm{o}\mathrm{o}}&\rho_{\mathrm{o}\bar{\mathrm{o}}}\\ \rho_{\bar{\mathrm{o}}\mathrm{o}}&\rho_{\bar{\mathrm{o}}\bar{\mathrm{o}}}\\ \end{array}\right],\quad\bm{\rho}^{\bar{\Psi}}=\left[\begin{array}[]{cc}\rho^{*}_{\bar{\mathrm{o}}\bar{\mathrm{o}}}&-\rho^{*}_{\bar{\mathrm{o}}\mathrm{o}}\\ -\rho^{*}_{\mathrm{o}\bar{\mathrm{o}}}&\rho^{*}_{\mathrm{o}\mathrm{o}}\\ \end{array}\right], (84)

and the average 𝝆\bm{\rho} has a quaternion structure

𝝆=12[ρoo+ρo¯o¯ρoo¯ρo¯oρo¯oρoo¯ρo¯o¯+ρoo][𝒜𝒜].\displaystyle\bm{\rho}=\frac{1}{2}\left[\begin{array}[]{cc}\rho_{\mathrm{o}\mathrm{o}}+\rho^{*}_{\bar{\mathrm{o}}\bar{\mathrm{o}}}&\rho_{\mathrm{o}\bar{\mathrm{o}}}-\rho^{*}_{\bar{\mathrm{o}}\mathrm{o}}\\ \rho_{\bar{\mathrm{o}}\mathrm{o}}-\rho^{*}_{\mathrm{o}\bar{\mathrm{o}}}&\rho_{\bar{\mathrm{o}}\bar{\mathrm{o}}}+\rho^{*}_{\mathrm{o}\mathrm{o}}\\ \end{array}\right]\triangleq\left[\begin{array}[]{cc}\mathcal{A}&\mathcal{B}\\ -\mathcal{B}^{*}&\mathcal{A}^{*}\\ \end{array}\right]. (89)

Thus, diagonalizing it with a structural preserving algorithm47, 48, 49, 50, 51, 52, 53 will lead to a new set of Kramers paired renormalized states.

The above decimation procedure is quite general. We can even apply the decimation procedure for cases where |Ψ|\Psi\rangle is Kramers symmetry contaminated to produce a time-reversal symmetry-adapted basis. For instance, it can be applied to convert a Kramers symmetry contaminated selected configuration interaction wavefunctions to time-reversal symmetry-adapted MPS as the initial guess for R-DMRG46. Then, by iterating the above diagonalization and decimation procedure, the time-reversal symmetry structure of basis functions (1) can be maintained recursively during the sweep optimization in DMRG. For other tensor network states without loops41, 42, 43, 44, 45, 46, it is clear that the construction of time-reversal symmetry-adapted basis can be directly applied.

IV Conclusion

In this work, we propose the time-reversal symmetry adaption for R-DMRG by introducing a time-reversal symmetry-adapted basis (1) and strategies to maintaining this structure during the sweep optimization in DMRG. It overcomes the artificial symmetry breaking in conventional R-DMRG calculations and leads to a reduction of memory and computational cost. The construction of time-reversal symmetry-adapted basis also directly applies to other tensor network states without loops. This opens up new possibilities of applying R-DMRG for complex heavy-element compounds. Applications of the introduced time-reversal symmetry-adapted R-DMRG will be reported in due time.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 21973003) and the Beijing Normal University Startup Package.

References

  • Dyall and Fægri Jr 2007 K. G. Dyall and K. Fægri Jr, Introduction to relativistic quantum chemistry (Oxford University Press, 2007).
  • Liu 2010 W. Liu, Mol. Phys. 108, 1679 (2010).
  • Saue 2011 T. Saue, ChemPhysChem 12, 3077 (2011).
  • Peng and Reiher 2012 D. Peng and M. Reiher, Theor. Chem. Acc. 131, 1 (2012).
  • Fleig 2012 T. Fleig, Chem. Phys. 395, 2 (2012).
  • Visscher et al. 1995 L. Visscher, K. G. Dyall,  and T. J. Lee, Int. J. Quantum Chem. 56, 411 (1995).
  • Fleig 2008 T. Fleig, Phys. Rev. A 77, 062503 (2008).
  • Tu et al. 2011 Z. Tu, D.-D. Yang, F. Wang,  and J. Guo, J. Chem. Phys. 135, 034115 (2011).
  • Fleig et al. 2001 T. Fleig, J. Olsen,  and C. M. Marian, J. Chem. Phys. 114, 4775 (2001).
  • Zhang et al. 2022 N. Zhang, Y. Xiao,  and W. Liu, J. Phys. Condens. Matter 34, 224007 (2022).
  • White 1992 S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
  • White and Martin 1999 S. R. White and R. L. Martin, J. Chem. Phys. 110, 4127 (1999).
  • Chan and Head-Gordon 2002 G. K.-L. Chan and M. Head-Gordon, J. Chem. Phys. 116, 4462 (2002).
  • Chan and Sharma 2011 G. K.-L. Chan and S. Sharma, Annu. Rev. Phys. Chem. 62, 465 (2011).
  • Marti and Reiher 2011 K. H. Marti and M. Reiher, Phys. Chem. Chem. Phys. 13, 6750 (2011).
  • Wouters and Van Neck 2014 S. Wouters and D. Van Neck, Eur. Phys. J. D 68 (2014).
  • Szalay et al. 2015 S. Szalay, M. Pfeffer, V. Murg, G. Barcza, F. Verstraete, R. Schneider,  and Ö. Legeza, Int. J. Quantum Chem. 115, 1342 (2015).
  • Yanai et al. 2015 T. Yanai, Y. Kurashige, W. Mizukami, J. Chalupský, T. N. Lan,  and M. Saitow, Int. J. Quantum Chem. 115, 283 (2015).
  • Olivares-Amaya et al. 2015 R. Olivares-Amaya, W. Hu, N. Nakatani, S. Sharma, J. Yang,  and G. K.-L. Chan, J. Chem. Phys. 142, 034102 (2015).
  • Baiardi and Reiher 2020 A. Baiardi and M. Reiher, J. Chem. Phys. 152, 040903 (2020).
  • Cheng et al. 2022 Y. Cheng, Z. Xie,  and H. Ma, J. Phys. Chem. Lett. 13, 904 (2022).
  • Moritz et al. 2005 G. Moritz, A. Wolf,  and M. Reiher, J. Chem. Phys. 123, 184105 (2005).
  • Nguyen Lan et al. 2014 T. Nguyen Lan, Y. Kurashige,  and T. Yanai, J. Chem. Theory Comput. 11, 73 (2014).
  • Roemelt 2015 M. Roemelt, J. Chem. Phys. 143, 044112 (2015).
  • Sayfutyarova and Chan 2016 E. R. Sayfutyarova and G. K.-L. Chan, J. Chem. Phys. 144, 234301 (2016).
  • Knecht et al. 2016 S. Knecht, S. Keller, J. Autschbach,  and M. Reiher, J. Chem. Theory Comput. 12, 5881 (2016).
  • Knecht et al. 2014 S. Knecht, Ö. Legeza,  and M. Reiher, J. Chem. Phys. 140, 041101 (2014).
  • Battaglia et al. 2018 S. Battaglia, S. Keller,  and S. Knecht, J. Chem. Theory Comput. 14, 2353 (2018).
  • Zhai and Chan 2022 H. Zhai and G. K. Chan, arXiv preprint arXiv:2207.02435  (2022).
  • Hoyer et al. 2022 C. E. Hoyer, H. Hu, L. Lu, S. Knecht,  and X. Li, J. Phys. Chem. A 126, 5011–5020 (2022).
  • Wigner 1959 E. Wigner, Group theory and its application to the quantum mechanics of atomic spectra (New York: Academic Press, 1959).
  • McCulloch and Gulácsi 2002 I. P. McCulloch and M. Gulácsi, EPL (Europhys. Lett.) 57, 852 (2002).
  • Zgid and Nooijen 2008 D. Zgid and M. Nooijen, J. Chem. Phys. 128, 014107 (2008).
  • Singh et al. 2010 S. Singh, R. N. Pfeifer,  and G. Vidal, Phys. Rev. A 82, 050301 (2010).
  • Singh et al. 2011 S. Singh, R. N. Pfeifer,  and G. Vidal, Phys. Rev. B 83, 115125 (2011).
  • Singh and Vidal 2012 S. Singh and G. Vidal, Phys. Rev. B 86, 195114 (2012).
  • Weichselbaum 2012 A. Weichselbaum, Ann. Phys. 327, 2972 (2012).
  • Sharma and Chan 2012 S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012).
  • Keller and Reiher 2016 S. Keller and M. Reiher, J. Chem. Phys. 144, 134101 (2016).
  • Bradley and Cracknell 2010 C. Bradley and A. Cracknell, The mathematical theory of symmetry in solids: representation theory for point groups and space groups (Oxford University Press, 2010).
  • Shi et al. 2006 Y.-Y. Shi, L.-M. Duan,  and G. Vidal, Phys. Rev. A 74, 022320 (2006).
  • Murg et al. 2010 V. Murg, F. Verstraete, Ö. Legeza,  and R. Noack, Phys. Rev. B 82, 205105 (2010).
  • Nakatani and Chan 2013 N. Nakatani and G. K.-L. Chan, J. Chem. Phys. 138, 134113 (2013).
  • Murg et al. 2015 V. Murg, F. Verstraete, R. Schneider, P. R. Nagy,  and Ö. Legeza, J. Chem. Theory Comput. 11, 1027 (2015).
  • Chepiga and White 2019 N. Chepiga and S. R. White, Phys. Rev. B 99, 235426 (2019).
  • Li 2021a Z. Li, Electron. Struct. 3, 014001 (2021a).
  • Rösch 1983 N. Rösch, Chem. Phys. 80, 1 (1983).
  • Dongarra et al. 1984 J. Dongarra, J. Gabriel, D. Koelling,  and J. Wilkinson, Linear Algebra Appl. 60, 27 (1984).
  • Bunse-Gerstner et al. 1989 A. Bunse-Gerstner, R. Byers,  and V. Mehrmann, Numer. Math. 55, 83 (1989).
  • Saue and Jensen 1999 T. Saue and H. A. Jensen, J. Chem. Phys. 111, 6211 (1999).
  • Peng et al. 2009 D. Peng, J. Ma,  and W. Liu, Int. J. Quantum Chem. 109, 2149 (2009).
  • Shiozaki 2017 T. Shiozaki, Mol. Phys. 115, 5 (2017).
  • Li 2021b Z. Li, Chinese J. Chem. Phys. 34, 525 (2021b).
  • Szabo and Ostlund 2012 A. Szabo and N. S. Ostlund, Modern quantum chemistry: introduction to advanced electronic structure theory (Courier Corporation, 2012).
  • Chen et al. 2012 X. Chen, Z.-C. Gu, Z.-X. Liu,  and X.-G. Wen, Science 338, 1604 (2012).
  • Xiang 1996 T. Xiang, Phys. Rev. B 53, R10445 (1996).
  • Dacre 1970 P. Dacre, Chem. Phys. Lett. 7, 47 (1970).
  • Elder 1973 M. Elder, Int. J. Quantum Chem. 7, 75 (1973).
  • Dupuis and King 1977 M. Dupuis and H. F. King, Int. J. Quantum Chem. 11, 613 (1977).