This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Time-asymptotic stability of composite weak planar waves for a general n×nn\times n multi-D viscous system

Jiayun Meng Department of Mathematics,
The University of Texas at Austin, Austin, TX 78712, USA
[email protected]
Abstract.

We prove the time-asymptotic stability of the superposition of a weak planar viscous 1-shock and either a weak planar n-rarefaction or a weak planar viscous n-shock for a general n×nn\times n multi-D viscous system. In 2023, Kang-Vasseur-Wang [11] showed the stability of the superposition of a viscous shock and a rarefaction for 1-D compressible barotropic Navier-Stokes equations and solved a long-standing open problem officially introduced by Matsumura-Nishihara [23] in 1992. Our work is an extension of [11], where a general n×nn\times n multi-D viscous system is studied. Same as in [11], we apply the aa-contraction method with shifts, an energy based method invented by Kang and Vasseur in [9], for both viscous shock and rarefaction at the level of the solution. In such a way, we can work with general perturbations and compositions of waves. Finally, a technique to classify and control higher-order terms is developed to work in multi-D.

We would like to thank our advisor Alexis Vasseur for suggesting this problem and for valuable discussions and encouragements during the completion of this project.
Acknowledgment.This work was partially funded by NSF-DMS 2306852, NSF-RTG 1840314, and NSF-EPSRC 2219434.

1. Introduction

We consider a general n×nn\times n multi-D viscous system

(1.1) tU+x1f(U)+j=2dxjgj(U)=j=1dxj(Bj(U)xjη(U)),\partial_{t}U+\partial_{x_{1}}f(U)+\sum_{j=2}^{d}\partial_{x_{j}}g_{j}(U)=\sum_{j=1}^{d}\partial_{x_{j}}\bigl{(}B_{j}(U)\partial_{x_{j}}\eta^{\prime}(U)\bigl{)}\,,

where U:0××𝕋d1𝒱nU:\mathbb{R}_{\geq 0}\times\mathbb{R}\times\mathbb{T}^{d-1}\rightarrow\mathcal{V}\subseteq\mathbb{R}^{n} with an open convex phase space 𝒱\mathcal{V}. We assume the periodic boundary condition in the transverse direction 𝕋d1\mathbb{T}^{d-1}. The notation for the physical space is x=(x1,y)x=(x_{1},y) with yy denoting the transverse direction 𝕋d1\mathbb{T}^{d-1}. The flux functions f,gj:𝒱nf,g_{j}:\mathcal{V}\rightarrow\mathbb{R}^{n} are assumed to be smooth. In addition, the flux function ff is assumed to be strictly hyperbolic and genuinely nonlinear. The viscosity coefficient matrix Bj:𝒱n×nB_{j}:\mathcal{V}\rightarrow\mathbb{R}^{n\times n} is assumed to be smooth. For any V𝒱V\in\mathcal{V}, BjB_{j} is assumed to be an n×nn\times n positive definite matrix. We assume that the entropy η:𝒱\eta:\mathcal{V}\rightarrow\mathbb{R} is smooth and strictly convex, and for any 1jd1\leq j\leq d, there exists an entropy flux qj:𝒱q_{j}:\mathcal{V}\rightarrow\mathbb{R} of η\eta such that

(1.2) iqj(U)={l=1nlη(U)i(f)l(U), if j=1,l=1nlη(U)i(gj)l(U), if 2jd,\partial_{i}q_{j}(U)=\begin{cases}\sum_{l=1}^{n}\partial_{l}\eta(U)\partial_{i}(f)_{l}(U)\,,\textup{ if }j=1\,,\\ \sum_{l=1}^{n}\partial_{l}\eta(U)\partial_{i}(g_{j})_{l}(U)\,,\textup{ if }2\leq j\leq d\,,\end{cases}

for any 1in1\leq i\leq n.

Let us endow the system with an initial value

U(0,x)=U0(x),x×𝕋d1,U(0,x)=U_{0}(x)\,,\quad x\in\mathbb{R}\times\mathbb{T}^{d-1}\,,

with fixed end states U±nU_{\pm}\in\mathbb{R}^{n}, i.e.,

(1.3) U0(x)U±,as x1±.U_{0}(x)\rightarrow U_{\pm}\,,\quad\textup{as }x_{1}\rightarrow\pm\infty\,.

This general framework includes the 3-D barotropic Brenner-Navier-Stokes equations:

(1.4) {tρ+div(ρv)=0,tρu+div(ρuv)+ργ=νΔu,\begin{cases}\partial_{t}\rho+div(\rho v)=0\,,\\ \partial_{t}\rho u+div(\rho u\otimes v)+\nabla\rho^{\gamma}=\nu\Delta u\,,\end{cases}

where ν>0\nu>0, γ>1\gamma>1, ρ\rho is the density, uu is the velocity, and vv is the corrected velocity defined by

v=u1ρQ(ρ),where Q(ρ)=ργγ1.\displaystyle v=u-\frac{1}{\rho}\nabla Q^{\prime}(\rho)\,,\quad\textup{where }Q(\rho)=\frac{\rho^{\gamma}}{\gamma-1}\,.

Such a system was introduced by Brenner as a correction of the Navier-Stokes equations. In [1], Brenner mentioned some extreme situations where the Navier-Stokes equations did not describe the compressible fluid well, and based on those results, Brenner proposed that the specific momentum density of the fluid equals the corrected velocity vv (the volume velocity) instead of the velocity uu (the mass velocity).

In this paper, we study the long-time asymptotic behavior of solutions of (1.1) with initial value satisfying (1.3). This long-time asymptotic behavior is closely related to the following 1-D Riemann problem:

(1.5) tU1+x1f(U1)=0,\partial_{t}U_{1}+\partial_{x_{1}}f(U_{1})=0\,,

with an associated initial value

(1.6) U1(0,x1)={U,x1<0,U+,x1>0.U_{1}(0,x_{1})=\begin{cases}U_{-}\,,\quad x_{1}<0\,,\\ U_{+}\,,\quad x_{1}>0\,.\end{cases}

Elementary solutions of the 1-D Riemann problem. Since ff is genuinely nonlinear, (1.5) has two elementary solutions: shock wave and rarefaction wave. We denote the eigenvalues of ff^{\prime} as λ1<<λn\lambda_{1}<...<\lambda_{n} and the corresponding right eigenvectors as r1,,rnr_{1},...,r_{n}. Let UnU_{-}\in\mathbb{R}^{n}.

For any 1in1\leq i\leq n, there exists an integral curve i(U)\mathcal{R}_{i}(U_{-}) such that for any U+i(U)U_{+}\in\mathcal{R}_{i}(U_{-}) that is close enough to UU_{-}, there exists a solution 𝐑i\mathbf{R}_{i} to (1.5) with initial value (1.6) that is defined by

λi(𝐑i(t,x1))={λi(U),x1<λi(U)t,x1t,λi(U)tx1λi(U+)t,λi(U+),x1>λi(U+)t,\lambda_{i}\bigl{(}\mathbf{R}_{i}(t,x_{1})\bigl{)}=\begin{cases}\lambda_{i}(U_{-})\,,\quad x_{1}<\lambda_{i}(U_{-})t\,,\\ \frac{x_{1}}{t}\,,\quad\lambda_{i}(U_{-})t\leq x_{1}\leq\lambda_{i}(U_{+})t\,,\\ \lambda_{i}(U_{+})\,,\quad x_{1}>\lambda_{i}(U_{+})t\,,\end{cases}

with

zi(𝐑i(t,x))=zi(U)=zi(U+),z_{i}\bigl{(}\mathbf{R}_{i}(t,x)\bigl{)}=z_{i}(U_{-})=z_{i}(U_{+})\,,

for any ii-Riemann invariant ziz_{i}. The existence of (n1)(n-1) nn-Riemann invariants can be found in [28]. We call 𝐑i\mathbf{R}_{i} the i-rarefaction wave.

We define the shock set

𝒮(U)={U|σ(UU)+f(U)f(U)=0 for a constant σ}.\mathcal{S}(U_{-})=\{U|-\sigma(U-U_{-})+f(U)-f(U_{-})=0\text{ for a constant }\sigma\}\,.

In a neighborhood of UU_{-}, 𝒮\mathcal{S} consists of n smooth curves 𝒮1(U),,𝒮n(U)\mathcal{S}_{1}(U_{-}),...,\mathcal{S}_{n}(U_{-}) that intersects at UU_{-}. We call 𝒮i(U)\mathcal{S}_{i}(U_{-}) the i-shock curve. For any U+𝒮i(U)U_{+}\in\mathcal{S}_{i}(U_{-}) that is close enough to UU_{-}, there exists a solution 𝐒~i\tilde{\mathbf{S}}_{i} to (1.5) with initial value (1.6) that is defined by

𝐒~i(t,x1)={U,x1<σt,U+,x1>σt.\tilde{\mathbf{S}}_{i}(t,x_{1})=\begin{cases}U_{-}\,,\quad x_{1}<\sigma t\,,\\ U_{+}\,,\quad x_{1}>\sigma t\,.\\ \end{cases}

We call 𝐒~i(U)\tilde{\mathbf{S}}_{i}(U_{-}) the i-shock wave and σ\sigma the speed of the i-shock wave. In particular, σ\sigma is close to λi(U)\lambda_{i}(U_{-}). We denote σ\sigma as σi\sigma_{i}.

Stability of elementary solutions for 1-D viscous systems. If the Riemann solution to an inviscid system is a rarefaction wave (respectively a shock wave), then the asymptotic state of the solution to the corresponding viscous system with a perturbed initial value is the rarefaction wave (respectively the viscous shock wave).

While the rarefaction wave spreads much faster than the diffusion process, the jump of the shock is smoothed by the viscosity and becomes a thin transition layer. The viscous i-shock wave 𝐒i(xσit)\mathbf{S}_{i}(x-\sigma_{i}t) refers to the smoothened i-shock wave, and 𝐒i\mathbf{S}_{i} satisfies

(1.7) σix1𝐒i+x1f(𝐒i)=x1(B(𝐒i)x1η(𝐒i)).-\sigma_{i}\partial_{x_{1}}\mathbf{S}_{i}+\partial_{x_{1}}f(\mathbf{S}_{i})=\partial_{x_{1}}\bigl{(}B(\mathbf{S}_{i})\partial_{x_{1}}\eta^{\prime}(\mathbf{S}_{i})\bigl{)}\,.

Ilin-Oleinik [7] proved the stability of elementary solutions for the scalar case in 1960, but the maximum principle they used did not work for systems (see [20]). Later, the energy method has become the main tool. When studying the stability of rarefaction waves, the energy method can be applied directly at the level of the solutions. We call such a method the direct energy method. The stability of rarefaction waves was first proved by Matsumura-Nishihara [22, 23] for the 1-D compressible Navier-Stokes equations. Later, Liu-Xin [16] and Nishihara-Yang-Zhao [25] pushed the stability result of rarefaction waves to the Navier-Stokes-Fourier system.

However, the direct energy method fails when working with viscous shock waves. The first results were based on the energy method applied at the level of the antiderivative. Matsumura-Nishihara [21] in 1985, and Goodman [4] in 1986 independently proved the stability of viscous shock waves. Matsumura and Nishihara proved the stability for the 1-D compressible barotropic Navier-Stokes system, while Goodman proved the stability for a general 1-D system with a positive definite viscosity. As both papers worked with the antiderivative, they need to assume the zero mass condition, i.e., that the mass of the initial perturbation is zero.

Two very fruitful approaches removed the stringent zero mass condition. The Green’s function method was started by Liu [15] in 1985. It involves a constant shift on the viscous shock and the introduction of a diffusion wave and a coupled diffusion wave in the transverse characteristic fields. Szepessy-Xin [29] showed the stability of viscous shock waves for a 1-D general system with a nondegenerate artificial viscosity, and Liu-Zeng [17] applied the Green’s function method to 1-D systems with degenerate viscosity. Another approach is the Evans function method. In 2004, Mascia-Zumbrun [19] showed the spectral stability of viscous shock waves for the 1-D compressible Navier-Stokes system. The study of spectral stability is very advanced now. In 2017, Humpherys-Lyng-Zumbrun [6] proved the spectral stability of large-amplitude planar viscous shock waves for the compressible Navier-Stokes equations in multi-D by the numerical Evans function method. Although this technique gives stability only for single elementary waves, the stability result works in the whole space d\mathbb{R}^{d}.

Both Green’s function method and Evans function method can deal with more general perturbations and provide pointwise estimates but fail to give global-in-time stability results for composite waves. Assuming the strengths of the two viscous shock waves are suitably small with the same order, Huang-Matsumura [5] showed the stability of two viscous shock waves for the 1-D Navier-Stokes-Fourier equations under a more relaxed condition than the zero mass condition.

Matsumura Conjecture. Even in 1-D, the stability of the composition of a viscous shock wave and a rarefaction wave is very difficult to study. Matsumura-Nishihara [22] mentioned the problem in 1986 and officially introduced it as an open problem in 1992 in [23]. In 2018, Matsumura [20] classified the problem as a very hard open problem. There are two difficulties. First, the direct energy method used to study the stability of rarefaction waves does not match very well with the methods developed for viscous shock waves. At the same time, the rarefaction wave is not an exact solution to the viscous system and any spatial shift of the rarefaction wave has the same asymptotic state. Hence, it is hard to analyze the interaction between the rarefaction wave and the viscous shock wave.

The breakthrough happened in 2023. Using the aa-contraction method with shifts, Kang-Vasseur-Wang proved the stability of the composition of a viscous shock wave and a rarefaction wave for the 1-D compressible barotropic Navier-Stokes equations in [11] and the stability of the generic Riemann solutions for the 1-D compressible Navier-Stokes-Fourier equations in [12]. The aa-contraction method with shifts is an energy method that can be applied at the level of the solution for contact waves, rarefaction waves, and viscous shock waves, so it unifies the methods for elementary waves. This paper is an extension of their work [11], in which the stability of a planar viscous 1-shock wave and either a planar n-rarefaction wave or a planar viscous n-shock wave is proved for a general n×nn\times n multi-D viscous system. Note that we consider here only extremal waves.

Multi-D results. The stability of planar rarefaction waves for the 3-D compressible Navier-Stokes-Fourier system was shown by Li-Wang-Wang [14] in 2018. In 2023, the stability of planar viscous shock waves for the 3-D compressible Navier-Stokes equations was proved by Wang-Wang [30]. Later in 2024, Kang-Lee [8] generalized Wang-Wang’s stability result to the compositions of planar viscous shocks for the same system. Note that all these multi-D results are based on a-contraction method with shifts and work only with periodic transversal variables and weak elementary waves.

Result of the paper. Let mm be the smallest integer that is strictly bigger than d2\frac{d}{2}, i.e.,

(1.8) m={d+12, if d is odd,d+22, if d is even.m=\begin{cases}\frac{d+1}{2}\,,\textup{ if }d\textup{ is odd,}\\ \frac{d+2}{2}\,,\textup{ if }d\textup{ is even.}\end{cases}

The main result of the paper is the following theorem.

Theorem 1.1.

For any UnU_{-}\in\mathbb{R}^{n}, there exist constants δ0,ϵ0>0\delta_{0},\epsilon_{0}>0 such that the following is true.

Let Um𝒮1(U)U_{m}\in\mathcal{S}_{1}(U_{-}) and U+𝒮n(Um)U_{+}\in\mathcal{S}_{n}(U_{m}) or n(Um)\mathcal{R}_{n}(U_{m}) be such that

|UmU|+|U+Um|<δ0.|U_{m}-U_{-}|+|U_{+}-U_{m}|<\delta_{0}\,.

Let 𝐒1\mathbf{S}_{1} be the viscous 1-shock wave solution to (1.7) with end states UU_{-} and UmU_{m}, and 𝐖n\mathbf{W}_{n} be the viscous n-shock wave solution 𝐒n\mathbf{S}_{n} to (1.7) or the n-rarefaction wave solution 𝐑n\mathbf{R}_{n} to (1.5) with end states UmU_{m} and U+U_{+}. Let 𝐖n\mathcal{I}_{\mathbf{W}_{n}} be {1,n}\{1,n\} if 𝐖n=𝐒n\mathbf{W}_{n}=\mathbf{S}_{n} and be {1}\{1\} if 𝐖n=𝐑n\mathbf{W}_{n}=\mathbf{R}_{n}.

Let U0U_{0} be an initial value such that

(1.9) ±U0U±L2(±×𝕋d1)+U0H˙m(×𝕋d1)<ϵ0,\sum_{\pm}\|U_{0}-U_{\pm}\|_{L^{2}(\mathbb{R}_{\pm}\times\mathbb{T}^{d-1})}+\|U_{0}\|_{\dot{H}^{m}(\mathbb{R}\times\mathbb{T}^{d-1})}<\epsilon_{0}\,,

where +==(0,)\mathbb{R}_{+}=-\mathbb{R}_{-}=(0,\infty).

Then the viscous system (1.1) has a unique global-in-time solution UU. Moreover, there exist absolutely continuous shifts 𝐗i(t)\mathbf{X}_{i}(t) for i𝐖ni\in\mathcal{I}_{\mathbf{W}_{n}} such that

(1.10) U(t,x)𝐔~(t,x)C(0,;Hm(×𝕋d1)),\displaystyle U(t,x)-\mathbf{\tilde{U}}(t,x)\in C\bigl{(}0,\infty;H^{m}(\mathbb{R}\times\mathbb{T}^{d-1})\bigl{)}\,,
(1.11) supx×𝕋d1|U(t,x)𝐔~(t,x)|0 as t0,\displaystyle\underset{x\in\mathbb{R}\times\mathbb{T}^{d-1}}{\textup{sup}}\,|U(t,x)-\mathbf{\tilde{U}}(t,x)|\rightarrow 0\;\text{ as }\;t\rightarrow 0\,,

where

𝐔~(t,x)={𝐒1(x1σ1t+𝐗1(t))+𝐒n(x1σnt+𝐗n(t))Um, if 𝐖n=𝐒n,𝐒1(x1σ1t+𝐗1(t))+𝐑n(x1t)Um, if 𝐖n=𝐑n.\mathbf{\tilde{U}}(t,x)=\begin{cases}\mathbf{S}_{1}\bigl{(}x_{1}-{\sigma}_{1}t+\mathbf{X}_{1}(t)\bigl{)}+\mathbf{S}_{n}\bigl{(}x_{1}-\sigma_{n}t+\mathbf{X}_{n}(t)\bigl{)}-U_{m}\,,\textup{ if }\mathbf{W}_{n}=\mathbf{S}_{n}\,,\\ \mathbf{S}_{1}\bigl{(}x_{1}-{\sigma}_{1}t+\mathbf{X}_{1}(t)\bigl{)}+\mathbf{R}_{n}\bigl{(}\frac{x_{1}}{t}\bigl{)}-U_{m}\,,\textup{ if }\mathbf{W}_{n}=\mathbf{R}_{n}\,.\end{cases}

In addition,

(1.12) U𝐔~L2(0,;H˙m+1(×𝕋d1)),\displaystyle U-\mathbf{\tilde{U}}\in L^{2}\bigl{(}0,\infty;\dot{H}^{m+1}(\mathbb{R}\times\mathbb{T}^{d-1})\bigl{)}\,,

and for any i𝐖ni\in\mathcal{I}_{\mathbf{W}_{n}},

(1.13) limt𝐗˙i(t)=0.\underset{t\rightarrow\infty}{\textup{lim}}\dot{\mathbf{X}}_{i}(t)=0\,.

Remark. Theorem 1.1 shows that if UU_{-} and U+U_{+} are connected by a composition of a planar viscous 1-shock wave and either a planar viscous n-shock wave or a planar n-rarefaction wave, then the asymptotic state of the solution to the viscous system (1.1) with a perturbed initial value is the composition with viscous shocks shifted.

Proposition 1.2.

The 3-D barotropic Brenner-Navier-Stokes equations (1.4) can be transformed into the form of the viscous system (1.1).

Remark. The detailed transformation is in the appendix. Proposition 1.2 implies that Theorem 1.1 can be applied to the 3-D barotropic Brenner-Navier-Stokes equations.

Structure of the paper. Section 2 discusses the properties of the viscous shock wave and the approximate rarefaction wave and introduces the weight functions, shift functions, and the superposition wave.

In section 3, we show how Theorem 1.1 is proved by local-in-time estimates and a priori estimates. Proposition 3.1 provides local-in-time estimates which could be shown in the same way as previous work, while a priori estimates are given in Proposition 3.3 which is to be shown in sections 4 and 5.

We get the L2L^{2} estimates by the aa-contraction method with shifts in section 4 and go from the L2L^{2} estimates to the HmH^{m} estimates (a priori estimates) by induction in section 5.

The aa-contraction method with shifts. The method of aa-contraction relies on the ad-hoc construction of the shifts 𝐗i\mathbf{X}_{i} for i𝐖ni\in\mathcal{I}_{\mathbf{W}_{n}} solving special ODEs. For the scalar case, the method can be applied directly on the L2L^{2} norm (see [9]). However, it was shown that the result is not true for systems in [27]. To work on systems, we need to introduce weight functions a𝐒1,a𝐖na_{\mathbf{S}_{1}},a_{\mathbf{W}_{n}}. In this paper, we follow the method of [11] written for the special case of the 1-D compressible barotropic Navier-Stokes equations. Our extension allows to clarify and explain why the method works at a deeper level.

To get the L2L^{2} estimates, we study the evolution of a pseudo-distance given by the physical structure of the problem

ddt(a𝐒1+a𝐖n)η(U|𝐔~)𝑑x,\displaystyle\frac{d}{dt}\int(a_{\mathbf{S}_{1}}+a_{\mathbf{W}_{n}})\,\eta(U|\mathbf{\tilde{U}})\,dx\,,

where the relative entropy η(|)\eta(\cdot|\cdot) is defined by

(1.14) η(U|V)=η(U)η(V)η(V)(UV).\eta(U|V)=\eta(U)-\eta(V)-\eta^{\prime}(V)(U-V)\,.

We define two bases at the beginning of subsection 4.3. The basis (4.3) (respectively (4.8)) is designed for the wave 𝐒1\mathbf{S}_{1} (respectively 𝐖n\mathbf{W}_{n}). It contains the special direction r1(U)r_{1}(U_{-}) (respectively rn(U)r_{n}(U_{-})) of the wave 𝐒1\mathbf{S}_{1} (respectively 𝐖n\mathbf{W}_{n}) and is orthogonal with respect to the viscous matrix B1B_{1} in order to be consistent with the viscosity.

In Lemma 4.3, we apply the relative entropy method introduced by Dafermos [2] and DiPerna [3] and project the perturbation U𝐔~U-\mathbf{\tilde{U}} onto the bases. We get

ddt(a𝐒1+a𝐖n)η(U|U~)𝑑x𝒵(U)𝒟(U)+(U)+(U).\displaystyle\frac{d}{dt}\int(a_{\mathbf{S}_{1}}+a_{\mathbf{W}_{n}})\,\eta(U|\tilde{U})\,dx\leq\mathcal{Z}(U)-\mathcal{D}(U)+\mathcal{H}(U)+\mathcal{E}(U)\,.

The shift term 𝒵\mathcal{Z} represents the new terms induced by the shifts 𝐗i\mathbf{X}_{i} for i𝐖ni\in\mathcal{I}_{\mathbf{W}_{n}}. The viscosity operation (the right-hand side of (1.1)) gives the viscous term 𝒟\mathcal{D}. The hyperbolic term \mathcal{H} comes from the flux functions f,gjf,g_{j}. The interaction between waves 𝐒1\mathbf{S}_{1} and 𝐖n\mathbf{W}_{n} creates the interaction term \mathcal{E}.

Lemma 4.3 discusses the hyperbolic “scalarization”. The weight function a𝐒1a_{\mathbf{S}_{1}} (respectively a𝐖na_{\mathbf{W}_{n}}) activates the spectral gap, creates new negative hyperbolic terms, and initiates cancellation for hyperbolic terms corresponding to the perturbation U𝐔~U-\mathbf{\tilde{U}} in all directions except the special direction r1(U)r_{1}(U_{-}) (respectively rn(U)r_{n}(U_{-})) of the wave 𝐒1\mathbf{S}_{1} (respectively 𝐖n\mathbf{W}_{n}). We get

(U)CaC(U)+C𝐒1(U)+C𝐖n(U),\displaystyle\mathcal{H}(U)\leq-C_{a}\mathcal{H}_{C}(U)+C\mathcal{H}_{\mathbf{S}_{1}}(U)+C\mathcal{H}_{\mathbf{W}_{n}}(U)\,,

where Ca>0C_{a}>0 is a constant that depends on the strengths of a𝐒1,a𝐖na_{\mathbf{S}_{1}},a_{\mathbf{W}_{n}}, and C>0C>0 represents the constants that depend only on Bj,f,η,UB_{j},f,\eta,U_{-}. 𝐒1\mathcal{H}_{\mathbf{S}_{1}} (respectively 𝐖n\mathcal{H}_{\mathbf{W}_{n}}) is the hyperbolic term corresponding to the projection of the perturbation in the special direction r1(U)r_{1}(U_{-}) (respectively rn(U)r_{n}(U_{-})) of the wave 𝐒1\mathbf{S}_{1} (respectively 𝐖n\mathbf{W}_{n}), and C\mathcal{H}_{C} denotes the sum of the absolute value of the hyperbolic terms corresponding to the other orthogonal directions of the perturbation. We see the hyperbolic “scalarization” scalarizes the problem to the special direction r1(U)r_{1}(U_{-}) (respectively rn(U)r_{n}(U_{-})) of the wave 𝐒1\mathbf{S}_{1} (respectively 𝐖n\mathbf{W}_{n}).

The hyperbolic remainder due to the perturbation in the special direction rn(U)r_{n}(U_{-}) of the rarefaction wave 𝐑n\mathbf{R}_{n} is negative, so the rarefaction wave 𝐑n\mathbf{R}_{n} is contractive at the hyperbolic level. However, the hyperbolic remainder due to the perturbation in the special direction of a viscous shock wave is positive and needs to be depleted using the viscous term 𝒟\mathcal{D}. This is done by introducing a Poincaré type inequality in Lemma 4.4. For i𝐖ni\in\mathcal{I}_{\mathbf{W}_{n}}, we show

𝐒i(U)𝒟(U)𝒵(U)+C(U).\displaystyle\mathcal{H}_{\mathbf{S}_{i}}(U)\lesssim\mathcal{D}(U)-\mathcal{Z}(U)+\mathcal{H}_{C}(U)\,.

The viscous term 𝒟\mathcal{D} controls the L2L^{2} norm of the derivative, while the strengths of the shifts 𝐗i\mathbf{X}_{i} for i𝐖ni\in\mathcal{I}_{\mathbf{W}_{n}} are chosen to be big enough that the shift term 𝒵\mathcal{Z} handles the average with the help of C\mathcal{H}_{C}.

In Lemma 4.5, we choose weight functions a𝐒1,a𝐖na_{\mathbf{S}_{1}},a_{\mathbf{W}_{n}} and shift functions 𝐗i\mathbf{X}_{i} for i𝐖ni\in\mathcal{I}_{\mathbf{W}_{n}} that work for both the hyperbolic “scalarization” and the Poincaré type inequality. We get

𝒵(U)𝒟(U)+(U)0.\displaystyle\mathcal{Z}(U)-\mathcal{D}(U)+\mathcal{H}(U)\leq 0\,.

By Lemma 2.2 and Lemma 4.1, we can be bound the interaction term (U)\mathcal{E}(U) by a small and time integrable function depending on the strengths of the waves 𝐒1,𝐖n\mathbf{S}_{1},\mathbf{W}_{n}. In all, we obtain the L2L^{2} estimates at the end of section 4.

Remark. In Lemma 4.4, we reduce the Poincaré type inequality to the following lemma proved in [10].

Lemma 1.3.

For any f:[0,1]f:[0,1]\rightarrow\mathbb{R} satisfying 01y(1y)|f|2𝑑y<\int_{0}^{1}y(1-y)|f^{\prime}|^{2}\,dy<\infty,

(1.15) 01|f01f𝑑y|2𝑑y1201y(1y)|f|2𝑑y.\int_{0}^{1}|f-\int_{0}^{1}f\,dy|^{2}\,dy\leq\frac{1}{2}\int_{0}^{1}y(1-y)|f^{\prime}|^{2}\,dy\,.

Notations and a remark. Before we go to the proofs, let us fix some notations. Let the eigenvalues of f(U)f^{\prime}(U_{-}) be λ1<<λn\lambda_{1}<...<\lambda_{n}. For any 1in1\leq i\leq n, let 𝐫𝐢\mathbf{r_{i}} and 𝐥𝐢\mathbf{l_{i}} be the right and left eigenvectors corresponding to λi\lambda_{i} such that 𝐫𝐢\mathbf{r_{i}} is tangent to 𝒮i(U)\mathcal{S}_{i}(U_{-}), 𝐥𝐢=η′′(U)𝐫𝐢\mathbf{l_{i}}=\eta^{\prime\prime}(U_{-})\mathbf{r_{i}}, and 𝐫𝐢𝐥𝐢=1\mathbf{r_{i}}\cdot\mathbf{l_{i}}=1. We define

(1.16) cf(i):=(f′′(U):𝐫𝐢𝐫𝐢)𝐥𝐢\displaystyle c_{f}^{(i)}:=(f^{\prime\prime}(U_{-}):\mathbf{r_{i}}\otimes\mathbf{r_{i}})\cdot\mathbf{l_{i}} =λi(U)𝐫𝐢<0.\displaystyle=\lambda_{i}^{\prime}(U_{-})\cdot\mathbf{r_{i}}<0\,.

Let CC denote the positive constants that depend only on Bj,f,η,UB_{j},f,\eta,U_{-}. For α=(a1,,ad)d\alpha=(a_{1},...,a_{d})\in\mathbb{N}^{d}, we define

(1.17) (α)j=aj for any  1jd and xα=x1a1xdad.\displaystyle(\alpha)_{j}=a_{j}\,\textup{ for any }\,1\leq j\leq d\;\textup{ and }\;\partial_{x}^{\alpha}=\partial_{x_{1}}^{a_{1}}...\partial_{x_{d}}^{a_{d}}\,.

As η′′f\eta^{\prime\prime}f^{\prime} is symmetry, we know

(1.18) η′′(U)𝐫𝐢𝐫𝐣=0 if ij.\eta^{\prime\prime}(U_{-})\mathbf{r_{i}}\cdot\mathbf{r_{j}}=0\text{ if }i\neq j\,.

2. Preliminaries

2.1. Viscous shock wave

Let i{1,n}i\in\{1,n\}. We examine the viscous i-shock wave 𝐒i\mathbf{S}_{i} satisfying

(2.1) {σix1𝐒i+x1f(𝐒i)=x1(B1(𝐒i)x1η(𝐒i)),𝐒i()=UL,𝐒i(+)=UR.\begin{cases}-{\sigma}_{i}\partial_{x_{1}}\mathbf{S}_{i}+\partial_{x_{1}}f(\mathbf{S}_{i})=\partial_{x_{1}}\bigl{(}B_{1}(\mathbf{S}_{i})\partial_{x_{1}}\eta^{\prime}(\mathbf{S}_{i})\bigl{)}\,,\\ \mathbf{S}_{i}(-\infty)=U_{L}\,,\;\mathbf{S}_{i}(+\infty)=U_{R}\,.\end{cases}

Recall the Rankine-Hugoniot condition and the Lax inequality

λ1(UR)<σi<λ1(UL).\lambda_{1}(U_{R})<{\sigma}_{i}<\lambda_{1}(U_{L})\,.

Let the wave strength of 𝐒i\mathbf{S}_{i} be

δSi=(URUL)𝐥𝐢.\displaystyle\delta_{S_{i}}=(U_{R}-U_{L})\cdot\mathbf{l_{i}}\,.

The proof of the existence of the viscous i-shock wave can be found in [18]. The following results are proved in [13].

Lemma 2.1.

For any ULnU_{L}\in\mathbb{R}^{n}, there exist ϵ,C>0\epsilon,C>0 and Cj>0C_{j}>0 for any j2j\geq 2 such that the following is true.

For any UR𝒮i(UL)U_{R}\in\mathcal{S}_{i}(U_{L}) such that |ULUR|<ϵ|U_{L}-U_{R}|<\epsilon, there exists a unique solution 𝐒i\mathbf{S}_{i} to (2.1) such that

|𝐒i(x1)UL|\displaystyle|\mathbf{S}_{i}({x_{1}})-U_{L}| CδSieCδSi|x1|,x1<0,\displaystyle\leq C\delta_{S_{i}}e^{-C\delta_{S_{i}}|{x_{1}}|},\quad\forall{x_{1}}<0\,,
|𝐒i(x1)UR|\displaystyle|\mathbf{S}_{i}({x_{1}})-U_{R}| CδSieCδSi|x1|,x1>0,\displaystyle\leq C\delta_{S_{i}}e^{-C\delta_{S_{i}}|{x_{1}}|},\quad\forall{x_{1}}>0\,,
|x1𝐒i|\displaystyle|\partial_{x_{1}}\mathbf{S}_{i}| CδSi2eCδSi|x1|,x1,\displaystyle\leq C\delta_{S_{i}}^{2}e^{-C\delta_{S_{i}}|{x_{1}}|},\quad\forall{x_{1}}\in\mathbb{R}\,,
|x1j𝐒i|\displaystyle|\partial_{x_{1}}^{j}\mathbf{S}_{i}| CjδSi|x1𝐒i|,x1,j2.\displaystyle\leq C_{j}\delta_{S_{i}}|\partial_{x_{1}}\mathbf{S}_{i}|,\quad\forall{x_{1}}\in\mathbb{R}\,,\;\forall j\geq 2\,.

We define

Si(t,x)=𝐒i(x1σit),\displaystyle S_{i}(t,x)=\mathbf{S}_{i}(x_{1}-\sigma_{i}t)\,,

and the projection of SiS_{i} onto 𝐥𝐢\mathbf{l_{i}}

(2.2) kSi(t,x)=(Si(t,x)UL)𝐥𝐢δSi.\displaystyle k_{S_{i}}(t,x)=\frac{\bigl{(}S_{i}(t,x)-U_{L}\bigl{)}\cdot\mathbf{l_{i}}}{\delta_{S_{i}}}\,.

From now on, we call SiS_{i} the planar viscous i-shock wave. We know SiS_{i} satisfies

(2.3) tSi+x1f(Si)\displaystyle\partial_{t}S_{i}+\partial_{x_{1}}f(S_{i}) =x1(B1(Si)x1η(Si)).\displaystyle=\partial_{x_{1}}\bigl{(}B_{1}(S_{i})\partial_{x_{1}}\eta^{\prime}(S_{i})\bigl{)}\,.

In [13], we show

(2.4) |x1kSi+cf(1)2B(U)𝐥𝐢𝐥𝐢δSikSi(1kSi)|CδSi2kSi(1kSi),\displaystyle\big{|}\partial_{x_{1}}k_{S_{i}}+\frac{c_{f}^{(1)}}{2B(U_{-})\mathbf{l_{i}}\cdot\mathbf{l_{i}}}\delta_{S_{i}}k_{S_{i}}(1-k_{S_{i}})\big{|}\leq C\delta_{S_{i}}^{2}k_{S_{i}}(1-k_{S_{i}})\,,

and

(2.5) |x1SiδSix1kSi𝐫𝐢|CδSi2x1kSi.\displaystyle|\partial_{x_{1}}S_{i}-\delta_{S_{i}}\partial_{x_{1}}k_{S_{i}}\mathbf{r_{i}}|\leq C\delta_{S_{i}}^{2}\partial_{x_{1}}k_{S_{i}}\,.

In particular, kSik_{S_{i}} is strictly increasing.

2.2. Construction of approximate rarefaction wave

As in [11], we will consider a smooth approximation of the planar n-rarefaction wave with the help of the smooth solution to the Burgers’ equation

(2.6) {wt+wwx1=0,w(0,x1)=w0(x1)=w++wm2+w+wm2tanhx.\begin{cases}w_{t}+ww_{x_{1}}=0\,,\\ w(0,x_{1})=w_{0}(x_{1})=\frac{w_{+}+w_{m}}{2}+\frac{w_{+}-w_{m}}{2}\text{tanh}x\,.\end{cases}

The smooth approximate planar n-rarefaction wave RnR_{n} is defined by

(2.7) λn(Um)=wm,λn(U+)=w+,\displaystyle\lambda_{n}(U_{m})=w_{m}\,,\;\lambda_{n}(U_{+})=w_{+}\,,
λn(Rn(t,x))=w(1+t,x1),\displaystyle\lambda_{n}\bigl{(}R_{n}(t,x)\bigl{)}=w(1+t,x_{1})\,,
zn(Rn(t,x))=zn(Um)=zn(U+),\displaystyle z_{n}\bigl{(}R_{n}(t,x)\bigl{)}=z_{n}(U_{m})=z_{n}(U_{+})\,,

where w(t,x1)w(t,x_{1}) is the smooth solution to the Burgers’ equation (2.6) and znz_{n} is any nn-Riemann invariant to (1.5).

It is easy to check that RnR_{n} is the solution to the inviscid system, i.e.,

(2.8) tRn+x1f(Rn)=0.\partial_{t}R_{n}+\partial_{x_{1}}f(R_{n})=0\,.

We define the wave strength of the rarefaction

δRn=(U+Um)𝐥𝐧,\delta_{R_{n}}=-(U_{+}-U_{m})\cdot\mathbf{l_{n}}\,,

and

(2.9) kRn=(RnUm)𝐥𝐧δRn.\displaystyle k_{R_{n}}=\frac{-(R_{n}-U_{m})\cdot\mathbf{l_{n}}}{\delta_{R_{n}}}\,.

The following properties of the approximate planar n-rarefaction wave RnR_{n} follow from the properties of the smooth solution to the Burgers’ equations proved in [22].

Lemma 2.2.

The smooth approximate n-rarefaction wave RnR_{n} defined in (2.7) satisfies the following properties.

  • 1)

    x1Rn𝐥𝐧>0\partial_{x_{1}}R_{n}\cdot\mathbf{l_{n}}>0 and |x1Rn𝐥𝐢|CδRnx1Rn𝐥𝐧|\partial_{x_{1}}R_{n}\cdot\mathbf{l_{i}}|\leq C\delta_{R_{n}}\partial_{x_{1}}R_{n}\cdot\mathbf{l_{n}} for any 1in11\leq i\leq n-1.

  • 2)

    For any t0t\geq 0 and jj\in\mathbb{N}^{*},

    x1jRnLp(×𝕋d1)\displaystyle\|\partial_{x_{1}}^{j}R_{n}\|_{L^{p}(\mathbb{R}\times\mathbb{T}^{d-1})} Cp,jmin{δRn,δRn1/p(1+t)1+1/p},p[1,],\displaystyle\leq C_{p,j}\,\textup{min}\bigl{\{}\delta_{R_{n}},\delta_{R_{n}}^{1/p}(1+t)^{-1+1/p}\bigl{\}}\,,\;\forall p\in[1,\infty]\,,
    x12jRnLp(×𝕋d1)\displaystyle\|\partial_{x_{1}}^{2j}R_{n}\|_{L^{p}(\mathbb{R}\times\mathbb{T}^{d-1})} Cp,jmin{δRn,(1+t)1},p[1,),\displaystyle\leq C_{p,j}\,\textup{min}\bigl{\{}\delta_{R_{n}},(1+t)^{-1}\bigl{\}}\,,\;\forall p\in[1,\infty)\,,
    |x1jRn|\displaystyle|\partial_{x_{1}}^{j}R_{n}| Cj|x1Rn|,\displaystyle\leq C_{j}|\partial_{x_{1}}R_{n}|\,,

    where Cj>0C_{j}>0 depends on jj and Cp,j>0C_{p,j}>0 depends on p,jp,j.

  • 3)

    For any t0t\geq 0,

    |Rn(t,x)Um|\displaystyle|R_{n}(t,x)-U_{m}| CδRne2|x1λn(Um)t|,x1λn(Um)t,\displaystyle\leq C\delta_{R_{n}}e^{-2|x_{1}-\lambda_{n}(U_{m})t|}\,,\quad\forall x_{1}\leq\lambda_{n}(U_{m})t\,,
    |x1Rn(t,x)|\displaystyle|\partial_{x_{1}}R_{n}(t,x)| CδRne2|x1λn(Um)t|,x1λn(Um)t,\displaystyle\leq C\delta_{R_{n}}e^{-2|x_{1}-\lambda_{n}(U_{m})t|}\,,\quad\forall x_{1}\leq\lambda_{n}(U_{m})t\,,
    |Rn(t,x)U+|\displaystyle|R_{n}(t,x)-U_{+}| CδRne2|x1λn(U+)t|,x1λn(U+)t,\displaystyle\leq C\delta_{R_{n}}e^{-2|x_{1}-\lambda_{n}(U_{+})t|}\,,\quad\forall x_{1}\geq\lambda_{n}(U_{+})t\,,
    |x1Rn(t,x)|\displaystyle|\partial_{x_{1}}R_{n}(t,x)| CδRne2|x1λn(U+)t|,x1λn(U+)t.\displaystyle\leq C\delta_{R_{n}}e^{-2|x_{1}-\lambda_{n}(U_{+})t|}\,,\quad\forall x_{1}\geq\lambda_{n}(U_{+})t\,.
  • 4)

    limtsupx×𝕋d1|Rn(t,x)𝐑n(x1t)|=0.\underset{t\rightarrow\infty}{\textup{lim}}\,\underset{x\in\mathbb{R}\times\mathbb{T}^{d-1}}{\textup{sup}}\,|R_{n}(t,x)-\mathbf{R}_{n}(\frac{x_{1}}{t})|=0\,.

In particular, kRnk_{R_{n}} is strictly increasing,

(2.10) |x1Rn+δRnx1kRn𝐫𝐧|\displaystyle|\partial_{x_{1}}R_{n}+\delta_{R_{n}}\partial_{x_{1}}k_{R_{n}}\mathbf{r_{n}}| CδRn2x1kRn,\displaystyle\leq C\delta_{R_{n}}^{2}\partial_{x_{1}}k_{R_{n}}\,,

and

(2.11) 0x1RnL44𝑑tCδRn3,0x1RnL42𝑑tCδRn,\displaystyle\int_{0}^{\infty}\|\partial_{x_{1}}R_{n}\|_{L^{4}}^{4}\,dt\leq C\delta_{R_{n}}^{3}\,,\;\int_{0}^{\infty}\|\partial_{x_{1}}R_{n}\|_{L^{4}}^{2}\,dt\leq C\delta_{R_{n}}\,,
0x12jRnL22𝑑tCδRn,0x12RnL14/3𝑑tCδRn1/3.\displaystyle\int_{0}^{\infty}\|\partial_{x_{1}}^{2j}R_{n}\|_{L^{2}}^{2}\,dt\leq C\delta_{R_{n}}\,,\;\int_{0}^{\infty}\|\partial_{x_{1}}^{2}R_{n}\|_{L^{1}}^{4/3}\,dt\leq C\delta_{R_{n}}^{1/3}\,.

For convenience, we call RnR_{n} the planar n-rarefaction wave from now on.

2.3. Construction of weight functions, shift functions and the superposition wave

We are ready to introduce the weight functions, the shift functions and the superposition wave.

Let WnW_{n} be either the planar viscous n-shock wave SnS_{n} or the planar n-rarefaction wave RnR_{n}. Recall (2.2) and (2.9). We define the weight functions aS1,aWna_{S_{1}},a_{W_{n}} by

(2.12) aS1(t,x)\displaystyle a_{S_{1}}(t,x) =1ΛS1δS1kS1(t,x),\displaystyle=1-\Lambda_{S_{1}}\delta_{S_{1}}{k_{S_{1}}}(t,x)\,,
aWn(t,x)\displaystyle a_{W_{n}}(t,x) =1+ΛWnδWnkWn(t,x),\displaystyle=1+\Lambda_{W_{n}}\delta_{W_{n}}k_{W_{n}}(t,x)\,,

for large enough constants ΛS1,ΛWn>0\Lambda_{S_{1}},\Lambda_{W_{n}}>0 that depend only on Bj,f,η,UB_{j},f,\eta,U_{-}. As kS1,kWnk_{S_{1}},k_{W_{n}} are increasing, the weight function aS1a_{S_{1}} is decreasing and the weight function aWna_{W_{n}} is increasing. Also, we have aS1C1,aWnC12\|a_{S_{1}}\|_{C^{1}},\|a_{W_{n}}\|_{C^{1}}\leq 2 by taking δS1,δWn\delta_{S_{1}},\delta_{W_{n}} small enough.

For any function h:0××𝕋d1nh:\mathbb{R}_{\geq 0}\times\mathbb{R}\times\mathbb{T}^{d-1}\rightarrow\mathbb{R}^{n} and 𝐗:0\mathbf{X}:\mathbb{R}_{\geq 0}\rightarrow\mathbb{R}, we define

h𝐗(t,(x1,y))=h(t,(x1+𝐗(t),y)).\displaystyle h^{\mathbf{X}}\bigl{(}t,(x_{1},y)\bigl{)}=h\bigl{(}t,(x_{1}+\mathbf{X}(t),y)\bigl{)}\,.

We define the superposition wave

(2.13) U~(t,x)=S1𝐗1(t,x)+Wn𝐗n(t,x)Um,\tilde{U}(t,x)={S}_{1}^{{\mathbf{X}_{1}}}(t,x)+W_{n}^{\mathbf{X}_{n}}(t,x)-U_{m}\,,

and the weight function

(2.14) a(t,x)=aS1𝐗1(t,x)+aWn𝐗n(t,x),\displaystyle a(t,x)=a_{S_{1}}^{\mathbf{X}_{1}}(t,x)+a_{W_{n}}^{\mathbf{X}_{n}}(t,x)\,,

where aS1,aWna_{S_{1}},a_{W_{n}} are defined in (2.12), and the shift 𝐗i\mathbf{X}_{i} is defined as the solution to the ODE

(2.15) {𝐗˙i(t)=C~iδSiaη′′(U~)(UU~)x1Si𝐗idx,𝐗i(0)=0,\begin{cases}\dot{\mathbf{X}}_{i}(t)=\frac{\tilde{C}_{i}}{\delta_{S_{i}}}\int a\,\eta^{\prime\prime}(\tilde{U})(U-\tilde{U})\partial_{x_{1}}S_{i}^{\mathbf{X}_{i}}\,dx\,,\\ \mathbf{X}_{i}(0)=0\,,\end{cases}

for a large enough constant Ci~>0\tilde{C_{i}}>0 that depends only on Bj,f,η,UB_{j},f,\eta,U_{-} for i{1,n}i\in\{1,n\} if Wn=SnW_{n}=S_{n} and for i=1i=1 if Wn=RnW_{n}=R_{n}. As the planar n-rarefaction wave RnR_{n} is not shifted, we define 𝐗n=0\mathbf{X}_{n}=0 if Wn=RnW_{n}=R_{n} for consistency. The existence and uniqueness of shifts 𝐗i\mathbf{X}_{i} are proved in Proposition 3.1.

By (2.3) and (2.8), we have

(2.16) tU~+x1f(U~)=x1(B1(U~)x1η(U~))+Z+E1+E2,\partial_{t}\tilde{U}+\partial_{x_{1}}f(\tilde{U})=\partial_{x_{1}}\bigl{(}B_{1}(\tilde{U})\partial_{x_{1}}\eta^{\prime}(\tilde{U})\bigl{)}+Z+E_{1}+E_{2}\,,

where

E1=x1f(U~)x1f(S1𝐗1)x1f(Wn𝐗n),{E_{1}}=\partial_{x_{1}}f(\tilde{U})-\partial_{x_{1}}f(S_{1}^{\mathbf{X}_{1}})-\partial_{x_{1}}f(W_{n}^{\mathbf{X}_{n}})\,,

if Wn=Sn{W}_{n}=S_{n}, then

Z\displaystyle{Z} =𝐗˙1x1S1𝐗1+𝐗˙nx1Sn𝐗n,\displaystyle=\dot{\mathbf{X}}_{1}\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}+\dot{\mathbf{X}}_{n}\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}\,,
E2\displaystyle{E_{2}} =x1(B1(S1𝐗1)x1η(S1𝐗1))+x1(B1(Sn𝐗n)x1η(Sn𝐗n))\displaystyle=\partial_{x_{1}}\bigl{(}B_{1}(S_{1}^{\mathbf{X}_{1}})\partial_{x_{1}}\eta^{\prime}(S_{1}^{\mathbf{X}_{1}})\bigl{)}+\partial_{x_{1}}\bigl{(}B_{1}(S_{n}^{\mathbf{X}_{n}})\partial_{x_{1}}\eta^{\prime}(S_{n}^{\mathbf{X}_{n}})\bigl{)}
x1(B1(U~)x1η(U~)),\displaystyle\quad-\partial_{x_{1}}\bigl{(}B_{1}(\tilde{U})\partial_{x_{1}}\eta^{\prime}(\tilde{U})\bigl{)}\,,

and if Wn=Rn{W}_{n}={R}_{n}, then

Z\displaystyle{Z} =𝐗˙1x1S1𝐗1,\displaystyle=\dot{\mathbf{X}}_{1}\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}\,,
E2\displaystyle{E_{2}} =x1(B1(S1𝐗1)x1η(S1𝐗1))x1(B1(U~)x1η(U~)).\displaystyle=\partial_{x_{1}}\bigl{(}B_{1}(S_{1}^{\mathbf{X}_{1}})\partial_{x_{1}}\eta^{\prime}(S_{1}^{\mathbf{X}_{1}})\bigl{)}-\partial_{x_{1}}\bigl{(}B_{1}(\tilde{U})\partial_{x_{1}}\eta^{\prime}(\tilde{U})\bigl{)}\,.

The terms E1,E2E_{1},E_{2} are error terms caused by the fact that U~\tilde{U} is not an exact solution of the system (1.1). The term ZZ comes from the shifts. We see Z,E2Z,E_{2} depend on the choice of WnW_{n}, because while the planar viscous shock wave is shifted and is a solution to the viscous system (2.3), the planar rarefaction wave is not shifted and is a solution to the inviscid model (2.8).

As U~\tilde{U} does not depend on the transverse direction yy, (1.1) and (2.16) give

(2.17) t(UU~)+x1(f(U)f(U~))+j=2dxj(gj(U)gj(U~))\displaystyle\partial_{t}(U-\tilde{U})+\partial_{x_{1}}\bigl{(}f(U)-f(\tilde{U})\bigl{)}+\sum_{j=2}^{d}\partial_{x_{j}}\bigl{(}g_{j}(U)-g_{j}(\tilde{U})\bigl{)}
=j=1dxj(Bj(U)xjη(U)Bj(U~)xjη(U~))ZE1E2.\displaystyle=\sum_{j=1}^{d}\partial_{x_{j}}\bigl{(}B_{j}(U)\partial_{x_{j}}\eta^{\prime}(U)-B_{j}(\tilde{U})\partial_{x_{j}}\eta^{\prime}(\tilde{U})\bigl{)}-{Z}-{E_{1}}-{E_{2}}\,.

3. Proof of Theorem 1.1

First, we introduce local-in-time estimates in Proposition 3.1 and a priori estimates in Proposition 3.3. Then we discuss how the two propositions prove the global existence and the asymptotic behavior results stated in Theorem 1.1.

3.1. Local-in-time estimates and a priori estimates

Proposition 3.1.

For any 0<ϵ1<ϵ20<\epsilon_{1}<\epsilon_{2} and any t00t_{0}\geq 0, there exists T0>0T_{0}>0 that depends on ϵ1,ϵ2\epsilon_{1},\epsilon_{2} such that the following is true.

If U(t0,)U~(t0,)Hm(×𝕋d1)ϵ1\|U(t_{0},\cdot)-\tilde{U}(t_{0},\cdot)\|_{H^{m}(\mathbb{R}\times{\mathbb{T}^{d-1}})}\leq\epsilon_{1}, then

  • 1)

    (1.1) has a unique solution UU on [t0,t0+T0][t_{0},t_{0}+T_{0}],

  • 2)

    (2.15) has a unique absolutely continuous solution 𝐗i\mathbf{X}_{i} on [t0,t0+T0][t_{0},t_{0}+T_{0}],

  • 3)

    UU~C([t0,t0+T0];Hm(×𝕋d1))U-\tilde{U}\in C\bigl{(}[t_{0},t_{0}+T_{0}];H^{m}(\mathbb{R}\times{\mathbb{T}^{d-1}})\bigl{)},

  • 4)

    U(t,)U~(t,)Hm(×𝕋d1)ϵ2\|U(t,\cdot)-\tilde{U}(t,\cdot)\|_{H^{m}(\mathbb{R}\times{\mathbb{T}^{d-1}})}\leq\epsilon_{2} for any t0tt0+T0t_{0}\leq t\leq t_{0}+T_{0}.

The local-in-time existence and uniqueness of the solution UU can be done similarly as in Serre’s paper [26]. Since the viscosity matrices of our system (1.1) are positive definite, the proof will be simpler. The existence and uniqueness of shifts 𝐗i\mathbf{X}_{i} can be shown in the same way as in subsection 3.3 of [11].

Before introducing a priori estimates, we first establish the assumption of a priori estimates. Since sections 4 and 5 give the proof of a priori estimates, the following assumption will be the assumption of all lemmas in both sections.

Assumption 3.2.

Let UU be solution to (1.1) on [0,T][0,T] for some T>0T>0. Let U~\tilde{U} be the superposition wave defined in (2.13) with absolutely continuous shifts 𝐗1,𝐗n\mathbf{X}_{1},\mathbf{X}_{n} defined in (2.15) and weight function aa defined in (2.14). Assume δS1,δWn<δ0\delta_{S_{1}},\delta_{W_{n}}<\delta_{0},

UU~C([0,T];Hm(×𝕋d1)),U-\tilde{U}\in C\bigl{(}[0,T];H^{m}(\mathbb{R}\times{\mathbb{T}^{d-1}})\bigl{)}\,,

and

(3.1) UU~L(0,T;Hm(×𝕋d1))ϵ2.\|U-\tilde{U}\|_{L^{\infty}(0,T;\,H^{m}(\mathbb{R}\times{\mathbb{T}^{d-1}}))}\leq\epsilon_{2}\,.

By Sobolev embedding, (3.1) in Assumption 3.2 implies

(3.2) UU~L((0,T)×(×𝕋d1))Cϵ2.\|U-\tilde{U}\|_{L^{\infty}((0,T)\times(\mathbb{R}\times{\mathbb{T}^{d-1}}))}\leq C\epsilon_{2}\,.
Proposition 3.3.

For any UnU_{-}\in\mathbb{R}^{n}, there exist δ0,ϵ2,C0,ΛS1,ΛWn,C~1,C~n>0\delta_{0},\epsilon_{2},C_{0},\Lambda_{S_{1}},\Lambda_{W_{n}},\tilde{C}_{1},\tilde{C}_{n}>0 such that the following is true.

Assume Assumption 3.2. Then

(3.3) supt[0,T]U(t,)U~(t,)Hm(×𝕋d1)+0Tk=0mDk(U)+GS1(U)+GWn(U)+YdtC0U0U~0Hm(×𝕋d1)+C0E,\displaystyle\begin{split}\underset{t\in[0,T]}{\textup{sup}}\|U(t,\cdot)-\tilde{U}(t,\cdot)\|_{H^{m}(\mathbb{R}\times{\mathbb{T}^{d-1}})}\\ +\sqrt{\int_{0}^{T}\sum_{k=0}^{m}D_{k}(U)+G_{S_{1}}(U)+G_{W_{n}}(U)+Ydt}\\ \leq C_{0}\|U_{0}-\tilde{U}_{0}\|_{H^{m}(\mathbb{R}\times{\mathbb{T}^{d-1}})}+C_{0}E\,,\end{split}

and for any βd\beta\in\mathbb{N}^{d} such that 1|β|m1\leq|\beta|\leq m,

(3.4) 0T|ddt|xβ(U(t,)U~(t,))|2dx|dt\displaystyle\int_{0}^{T}\Big{|}\frac{d}{dt}\int\big{|}\partial_{x}^{\beta}\bigl{(}U(t,\cdot)-\tilde{U}(t,\cdot)\bigl{)}\big{|}^{2}\,dx\Big{|}\,dt
C00T(k=0mDk(U)+GS1(U)+GWn(U)+Y)dt+C0E2,\displaystyle\leq C_{0}\int_{0}^{T}\Bigl{(}\sum_{k=0}^{m}D_{k}(U)+G_{S_{1}}(U)+G_{W_{n}}(U)+Y\Bigl{)}\,dt+C_{0}E^{2}\,,

where

(3.5) Dk(U)\displaystyle D_{k}(U) =αd,|α|=k+1|xα(UU~)|2𝑑x,\displaystyle=\sum_{\alpha\in\mathbb{N}^{d},|\alpha|=k+1}\int\big{|}\partial_{x}^{\alpha}(U-\tilde{U})\big{|}^{2}\,dx\,,
GS1(U)\displaystyle G_{S_{1}}(U) =|UU~|2|x1S1𝐗1|𝑑x,\displaystyle=\int|U-\tilde{U}|^{2}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\,dx\,,
GWn(U)\displaystyle G_{W_{n}}(U) =|UU~|2|x1Wn𝐗n|𝑑x,\displaystyle=\int|U-\tilde{U}|^{2}|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\,dx\,,
Y\displaystyle Y ={δS1|𝐗˙1|2+δWn|𝐗˙n|2, if Wn=Sn,δS1|𝐗˙1|2, if Wn=Rn,\displaystyle=\begin{cases}\delta_{S_{1}}|\dot{\mathbf{X}}_{1}|^{2}+\delta_{W_{n}}|\dot{\mathbf{X}}_{n}|^{2}\,,\textup{ if }W_{n}=S_{n}\,,\\ \delta_{S_{1}}|\dot{\mathbf{X}}_{1}|^{2}\,,\textup{ if }W_{n}=R_{n}\,,\end{cases}
E\displaystyle E ={δSn+δS1, if Wn=Sn,δRn1/6, if Wn=Rn.\displaystyle=\begin{cases}\delta_{S_{n}}+\delta_{S_{1}}\,,\textup{ if }W_{n}=S_{n}\,,\\ \delta_{R_{n}}^{1/6}\,,\textup{ if }W_{n}=R_{n}\,.\end{cases}

In addition,

(3.6) |𝐗˙1(t)|+|𝐗˙n(t)|C0U(t,)U~(t,)L(×𝕋d1),t[0,T].|\dot{\mathbf{X}}_{1}(t)|+|\dot{\mathbf{X}}_{n}(t)|\leq C_{0}\|U(t,\cdot)-\tilde{U}(t,\cdot)\|_{L^{\infty}(\mathbb{R}\times{\mathbb{T}^{d-1}})}\,,\quad\forall\,t\in[0,T]\,.

3.2. Global existence and estimates

We define

𝐄(t)=U(t,)U~(t,)Hm(×𝕋d1).\mathbf{E}(t)=\|U(t,\cdot)-\tilde{U}(t,\cdot)\|_{H^{m}(\mathbb{R}\times{\mathbb{T}^{d-1}})}\,.

We fix ϵ2,C0\epsilon_{2},C_{0} as in Proposition 3.3. We take the strength of the initial perturbation ϵ0\epsilon_{0} and the wave strength δ0\delta_{0} in Theorem 1.1 and ϵ1\epsilon_{1} in Proposition 3.1 to be small enough such that

(3.7) 0<C0𝐄(0)+C0E<ϵ1<ϵ22.0<C_{0}\mathbf{E}(0)+C_{0}E<\epsilon_{1}<\frac{\epsilon_{2}}{2}\,.

We define

T=sup{t0:UU~C([0,T];Hm(×𝕋d1)),𝐄(t)<ϵ2}.\displaystyle T=\textup{sup}\Bigl{\{}t\geq 0:U-\tilde{U}\in C\bigl{(}[0,T];H^{m}(\mathbb{R}\times{\mathbb{T}^{d-1}})\bigl{)}\,,\;\mathbf{E}(t)<\epsilon_{2}\Bigl{\}}\,.

Assume T<T<\infty. Then Proposition 3.3 gives

𝐄(T)C0𝐄(0)+C0E<ϵ1.\displaystyle\mathbf{E}(T)\leq C_{0}\mathbf{E}(0)+C_{0}E<\epsilon_{1}\,.

By Proposition 3.1, there exists T0>0T_{0}>0 such that

UU~C([T,T+T0];Hm(×𝕋d1)) and 𝐄(t)ϵ22 for any t[T,T+T0].\displaystyle U-\tilde{U}\in C\bigl{(}[T,T+T_{0}];H^{m}(\mathbb{R}\times{\mathbb{T}^{d-1}})\bigl{)}\,\textup{ and }\,\mathbf{E}(t)\leq\frac{\epsilon_{2}}{2}\textup{ for any }t\in[T,T+T_{0}]\,.

Contradiction! Hence, we get T=T=\infty and (1.10) in Theorem 1.1. Now we can apply Proposition 3.3 on [0,)[0,\infty) and get

(3.8) supt[0,)UU~Hm(×𝕋d1)+0k=0mDk(U)+GS1(U)+GWn(U)+YdtC0U0U~0Hm(×𝕋d1)+C0E<,\displaystyle\begin{split}\underset{t\in[0,\infty)}{\textup{sup}}\|U-\tilde{U}\|_{H^{m}(\mathbb{R}\times{\mathbb{T}^{d-1}})}\\ +\sqrt{\int_{0}^{\infty}\sum_{k=0}^{m}D_{k}(U)+G_{S_{1}}(U)+G_{W_{n}}(U)+Ydt}\\ \leq C_{0}\|U_{0}-\tilde{U}_{0}\|_{H^{m}(\mathbb{R}\times{\mathbb{T}^{d-1}})}+C_{0}E<\infty\,,\end{split}

and for any β=d\beta=\mathbb{N}^{d} such that 1|β|m1\leq|\beta|\leq m,

(3.9) 0|ddt|xβ(U(t,)U~(t,))|2dx|dt\displaystyle\int_{0}^{\infty}\Big{|}\frac{d}{dt}\int\big{|}\partial_{x}^{\beta}\bigl{(}U(t,\cdot)-\tilde{U}(t,\cdot)\bigl{)}\big{|}^{2}\,dx\Big{|}\,dt
C00(k=0mDk(U)+GS1(U)+GWn(U)+Y)dt+C0E2<.\displaystyle\leq C_{0}\int_{0}^{\infty}\Bigl{(}\sum_{k=0}^{m}D_{k}(U)+G_{S_{1}}(U)+G_{W_{n}}(U)+Y\Bigl{)}\,dt+C_{0}E^{2}<\infty\,.

In addition,

(3.10) |𝐗˙1(t)|+|𝐗˙n(t)|C0U(t,)U~(t,)L(×𝕋d1),t0.|\dot{\mathbf{X}}_{1}(t)|+|\dot{\mathbf{X}}_{n}(t)|\leq C_{0}\|U(t,\cdot)-\tilde{U}(t,\cdot)\|_{L^{\infty}(\mathbb{R}\times{\mathbb{T}^{d-1}})}\,,\quad\forall\,t\geq 0\,.

By (3.8), we get (1.12) in Theorem 1.1.

3.3. Time-asymptotic behavior

Let βd\beta\in\mathbb{N}^{d} be such that 1|β|m1\leq|\beta|\leq m. We define

g(t)=xβ(U(t,)U~(t,))L2(×𝕋d1)2.g(t)=\big{\|}\partial_{x}^{\beta}\bigl{(}U(t,\cdot)-\tilde{U}(t,\cdot)\bigl{)}\big{\|}_{L^{2}(\mathbb{R}\times{\mathbb{T}^{d-1}})}^{2}\,.

We show the classical estimate

(3.11) 0|g(t)|+|g(t)|dt<.\int_{0}^{\infty}|g(t)|+|{g}^{\prime}(t)|\,dt<\infty\,.

By (3.8), we get

0|g(t)|𝑑t0k=0m1Dk(U)dt<.\displaystyle\int_{0}^{\infty}|g(t)|\,dt\leq\int_{0}^{\infty}\sum_{k=0}^{m-1}D_{k}(U)\,dt<\infty\,.

By (3.9), we have

0|g(t)|dt=0|ddt|xβ(U(t,)U~(t,))|2dx|dt<.\displaystyle\int_{0}^{\infty}|g^{\prime}(t)|\,dt=\int_{0}^{\infty}\Big{|}\frac{d}{dt}\int\big{|}\partial_{x}^{\beta}\bigl{(}U(t,\cdot)-\tilde{U}(t,\cdot)\bigl{)}\big{|}^{2}\,dx\Big{|}\,dt<\infty.

The classical estimate (3.11) gives

limtxβ(U(t,)U~(t,))L2(×𝕋d1)=0.\underset{t\rightarrow\infty}{\textup{lim}}\big{\|}\partial_{x}^{\beta}\bigl{(}U(t,\cdot)-\tilde{U}(t,\cdot)\bigl{)}\big{\|}_{L^{2}(\mathbb{R}\times{\mathbb{T}^{d-1}})}=0\,.

The Gagliardo–Nirenberg inequality proved in [24], the periodicity in the transverse direction, and (3.8) give

(3.12) limtU(t,)U~(t,)L(×𝕋d1)=0.\underset{t\rightarrow\infty}{\textup{lim}}\|U(t,\cdot)-\tilde{U}(t,\cdot)\|_{L^{\infty}(\mathbb{R}\times{\mathbb{T}^{d-1}})}=0\,.

By (3.12) and Lemma 2.2, we get (1.11) in Theorem 1.1. By (3.10) and (3.12), we get (1.13) in Theorem 1.1.

4. Energy estimate

We show the L2L^{2} estimates by the aa-contraction method with shifts in this section. Later in section 5, induction will help us get the HmH^{m} estimates and finish the proof of Proposition 3.3.

First, we develop tools to handle interaction terms and higher-order terms in subsections 4.1 and 4.2. Then we apply the aa-contraction method with shifts. The hyperbolic “scalarization” is discussed in subsection 4.3. The positive hyperbolic remainder corresponding to the special direction of the planar viscous shock wave motivates the Poincaré type inequality introduced in subsection 4.4. Finally in subsection 4.5, we choose the constants ΛS1,ΛWn,C~1,C~n\Lambda_{S_{1}},\Lambda_{W_{n}},\tilde{C}_{1},\tilde{C}_{n} defining weight functions and shift functions in a way that makes both hyperbolic “scalarization” and Poincaré type inequality work.

4.1. Wave interaction estimates

To control the interaction between waves, the idea is to take the shifts small enough that the main layer regions do not overlap.

Lemma 4.1.

Let 𝐗1,𝐗n\mathbf{X}_{1},\mathbf{X}_{n} be the shifts defined in (2.15). Assume Assumption 3.2. Then for any 0tT0\leq t\leq T,

|x1S1𝐗1||RnUm|L2+|x1Rn||S1𝐗1Um|L2+|x1Rn||x1S1𝐗1|L2\displaystyle\big{\|}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}||R_{n}-U_{m}|\big{\|}_{L^{2}}+\big{\|}|\partial_{x_{1}}R_{n}||S_{1}^{\mathbf{X}_{1}}-U_{m}|\big{\|}_{L^{2}}+\big{\|}|\partial_{x_{1}}R_{n}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\big{\|}_{L^{2}}
CδRnδS1eCδS1t, if Wn=Rn,\displaystyle\leq C\delta_{R_{n}}\delta_{S_{1}}e^{-C\delta_{S_{1}}t}\,,\quad\textup{ if }W_{n}=R_{n}\,,
|x1S1𝐗1||Sn𝐗nUm|2L1+|x1Sn𝐗n||S1𝐗1Um|2L1+|x1Sn𝐗n||x1S1𝐗1|L1\displaystyle\big{\|}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}||S_{n}^{\mathbf{X}_{n}}-U_{m}|^{2}\big{\|}_{L^{1}}+\big{\|}|\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}||S_{1}^{\mathbf{X}_{1}}-U_{m}|^{2}\big{\|}_{L^{1}}+\big{\|}|\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\big{\|}_{L^{1}}
C(δSn2δS1eCδS1t+δSnδS12eCδSnt), if Wn=Sn.\displaystyle\leq C(\delta_{S_{n}}^{2}\delta_{S_{1}}e^{-C\delta_{S_{1}}t}+\delta_{S_{n}}\delta_{S_{1}}^{2}e^{-C\delta_{S_{n}}t})\,,\quad\textup{ if }W_{n}=S_{n}\,.
Proof.

First, we define the spectral gap

Δ=λn(U)λ1(U).\displaystyle\Delta=\lambda_{n}(U_{-})-\lambda_{1}(U_{-})\,.

By (2.15) and (3.2), we take ϵ2\epsilon_{2} small enough such that for any i{1,n}i\in\{1,n\},

|𝐗i(t)|CC~iϵ2t<Δt8.|\mathbf{X}_{i}(t)|\leq C\tilde{C}_{i}\epsilon_{2}t<\frac{\Delta t}{8}\,.

For any x1>(λ1(U)+λn(U))t2x_{1}>\frac{(\lambda_{1}(U_{-})+\lambda_{n}(U_{-}))t}{2}, we have

x1σ1t+𝐗1(t)>Δt4.\displaystyle x_{1}-{\sigma}_{1}t+\mathbf{X}_{1}(t)>\frac{\Delta t}{4}\,.

Lemma 2.1 implies that for any x1>(λ1(U)+λn(U))t2x_{1}>\frac{(\lambda_{1}(U_{-})+\lambda_{n}(U_{-}))t}{2},

|S1𝐗1Um|\displaystyle|S_{1}^{\mathbf{X}_{1}}-U_{m}| CδS1eCδS1|x1σ1t+𝐗1(t)|\displaystyle\leq C\delta_{S_{1}}e^{-C\delta_{S_{1}}|x_{1}-{\sigma}_{1}t+\mathbf{X}_{1}(t)|}
CδS1exp(CδS1|x1σ1t+𝐗1(t)|2)exp(CδS1Δt8),\displaystyle\leq C\delta_{S_{1}}\textup{exp}\bigl{(}\frac{-C\delta_{S_{1}}|x_{1}-{\sigma}_{1}t+\mathbf{X}_{1}(t)|}{2}\bigl{)}\textup{exp}\bigl{(}\frac{-C\delta_{S_{1}}\Delta t}{8}\bigl{)}\,,
|x1S1𝐗1|\displaystyle|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}| CδS12eCδS1|x1σ1t+𝐗1(t)|\displaystyle\leq C\delta_{S_{1}}^{2}e^{-C\delta_{S_{1}}|x_{1}-{\sigma}_{1}t+\mathbf{X}_{1}(t)|}
CδS12exp(CδS1|x1σ1t+𝐗1(t)|2)exp(CδS1Δt8).\displaystyle\leq C\delta_{S_{1}}^{2}\textup{exp}\bigl{(}\frac{-C\delta_{S_{1}}|x_{1}-{\sigma}_{1}t+\mathbf{X}_{1}(t)|}{2}\bigl{)}\textup{exp}\bigl{(}\frac{-C\delta_{S_{1}}\Delta t}{8}\bigl{)}\,.

For any x1(λ1(U)+λn(U))t2x_{1}\leq\frac{(\lambda_{1}(U_{-})+\lambda_{n}(U_{-}))t}{2}, we have

x1λn(Um)t\displaystyle x_{1}-\lambda_{n}(U_{m})t Δt4,\displaystyle\leq-\frac{\Delta t}{4}\,,
x1σnt+𝐗n(t)\displaystyle x_{1}-\sigma_{n}t+\mathbf{X}_{n}(t) Δt4.\displaystyle\leq-\frac{\Delta t}{4}\,.

Lemma 2.2 implies that for any x1(λ1(U)+λn(U))t2x_{1}\leq\frac{(\lambda_{1}(U_{-})+\lambda_{n}(U_{-}))t}{2},

|RnUm|,|x1Rn|\displaystyle|R_{n}-U_{m}|\,,\;|\partial_{x_{1}}R_{n}| CδRne2|x1λn(Um)t|\displaystyle\leq C\delta_{R_{n}}e^{-2|x_{1}-\lambda_{n}(U_{m})t|}
CδRnexp(|x1λn(Um)t|)exp(Δt4),\displaystyle\leq C\delta_{R_{n}}\textup{exp}\bigl{(}-|x_{1}-\lambda_{n}(U_{m})t|\bigl{)}\textup{exp}\bigl{(}-\frac{\Delta t}{4}\bigl{)}\,,

and Lemma 2.1 implies that for any x1(λ1(U)+λn(U))t2x_{1}\leq\frac{(\lambda_{1}(U_{-})+\lambda_{n}(U_{-}))t}{2},

|Sn𝐗nUm|\displaystyle|S_{n}^{\mathbf{X}_{n}}-U_{m}| CδSneCδSn|x1σnt+𝐗n(t)|\displaystyle\leq C\delta_{S_{n}}e^{-C\delta_{S_{n}}|x_{1}-\sigma_{n}t+\mathbf{X}_{n}(t)|}
CδSnexp(CδSn|x1σnt+𝐗n(t)|2)exp(CδSnΔt8),\displaystyle\leq C\delta_{S_{n}}\textup{exp}\bigl{(}\frac{-C\delta_{S_{n}}|x_{1}-\sigma_{n}t+\mathbf{X}_{n}(t)|}{2}\bigl{)}\textup{exp}\bigl{(}\frac{-C\delta_{S_{n}}\Delta t}{8}\bigl{)}\,,
|x1Sn𝐗n|\displaystyle|\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}| CδSn2eCδSn|x1σnt+𝐗n(t)|\displaystyle\leq C\delta_{S_{n}}^{2}e^{-C\delta_{S_{n}}|x_{1}-\sigma_{n}t+\mathbf{X}_{n}(t)|}
CδSn2exp(CδSn|x1σnt+𝐗n(t)|2)exp(CδSnΔt8).\displaystyle\leq C\delta_{S_{n}}^{2}\textup{exp}\bigl{(}\frac{-C\delta_{S_{n}}|x_{1}-\sigma_{n}t+\mathbf{X}_{n}(t)|}{2}\bigl{)}\textup{exp}\bigl{(}\frac{-C\delta_{S_{n}}\Delta t}{8}\bigl{)}\,.

We have

|x1S1𝐗1|(|RnUm|+|x1Rn|)\displaystyle|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\bigl{(}|R_{n}-U_{m}|+|\partial_{x_{1}}R_{n}|\bigl{)}
{CδRnδS12eCδS1|x1σ1t+𝐗1(t)|eCδS1t, if x1>(λ1(U)+λn(U))t2,CδRnδS12e|x1λn(Um)t|eCt, if x1(λ1(U)+λn(U))t2,\displaystyle\leq\begin{cases}C\delta_{R_{n}}\delta_{S_{1}}^{2}e^{-C\delta_{S_{1}}|x_{1}-{\sigma}_{1}t+\mathbf{X}_{1}(t)|}e^{-C\delta_{S_{1}}t}\,,\;\textup{ if }x_{1}>\frac{(\lambda_{1}(U_{-})+\lambda_{n}(U_{-}))t}{2}\,,\\ C\delta_{R_{n}}\delta_{S_{1}}^{2}e^{-|x_{1}-\lambda_{n}(U_{m})t|}e^{-Ct}\,,\;\textup{ if }x_{1}\leq\frac{(\lambda_{1}(U_{-})+\lambda_{n}(U_{-}))t}{2}\,,\end{cases}
|x1Rn||S1𝐗1Um|\displaystyle|\partial_{x_{1}}R_{n}||S_{1}^{\mathbf{X}_{1}}-U_{m}|
{C|x1Rn|δS1eCδS1|x1σ1t+𝐗1(t)|eCδS1t, if x1>(λ1(U)+λn(U))t2,CδRnδS1e|x1λn(Um)t|eCt, if x1(λ1(U)+λn(U))t2.\displaystyle\leq\begin{cases}C|\partial_{x_{1}}R_{n}|\delta_{S_{1}}e^{-C\delta_{S_{1}}|{x_{1}}-{\sigma}_{1}t+\mathbf{X}_{1}(t)|}e^{-C\delta_{S_{1}}t}\,,\;\textup{ if }{x_{1}}>\frac{(\lambda_{1}(U_{-})+\lambda_{n}(U_{-}))t}{2}\,,\\ C\delta_{R_{n}}\delta_{S_{1}}e^{-|{x_{1}}-\lambda_{n}(U_{m})t|}e^{-Ct}\,,\;\textup{ if }{x_{1}}\leq\frac{(\lambda_{1}(U_{-})+\lambda_{n}(U_{-}))t}{2}\,.\end{cases}

Hence, we get

|x1S1𝐗1||RnUm|Lx122+|x1Rn||x1S1𝐗1|Lx122\displaystyle\big{\|}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}||R_{n}-U_{m}|\big{\|}_{L_{x_{1}}^{2}}^{2}+\big{\|}|\partial_{x_{1}}R_{n}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\big{\|}_{L_{x_{1}}^{2}}^{2}
CδRn2δS13eCδS1tδS1(eCδS1|x1|+e|x1|)𝑑x1CδRn2δS13eCδS1t,\displaystyle\leq C\delta_{R_{n}}^{2}\delta_{S_{1}}^{3}e^{-C\delta_{S_{1}}t}\int\delta_{S_{1}}(e^{-C\delta_{S_{1}}|{x_{1}}|}+e^{-|{x_{1}}|})\,d{x_{1}}\leq C\delta_{R_{n}}^{2}\delta_{S_{1}}^{3}e^{-C\delta_{S_{1}}t}\,,
|x1Rn||S1𝐗1Um|Lx122\displaystyle\big{\|}|\partial_{x_{1}}R_{n}||S_{1}^{\mathbf{X}_{1}}-U_{m}|\big{\|}_{L_{x_{1}}^{2}}^{2}
CδRnδS12eCδS1t|x1Rn|𝑑x1+CδRn2δS12eCte|x1|𝑑x1\displaystyle\leq C\delta_{R_{n}}\delta_{S_{1}}^{2}e^{-C\delta_{S_{1}}t}\int|\partial_{x_{1}}R_{n}|\,d{x_{1}}+C\delta_{R_{n}}^{2}\delta_{S_{1}}^{2}e^{-Ct}\int e^{-|{x_{1}}|}\,d{x_{1}}
CδRn2δS12eCδS1t.\displaystyle\leq C\delta_{R_{n}}^{2}\delta_{S_{1}}^{2}e^{-C\delta_{S_{1}}t}\,.

We have

|x1S1𝐗1||Sn𝐗nUm|2+|x1Sn𝐗n||S1𝐗1Um|2+|x1Sn𝐗n||x1S1𝐗1|\displaystyle|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}||S_{n}^{\mathbf{X}_{n}}-U_{m}|^{2}+|\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}||S_{1}^{\mathbf{X}_{1}}-U_{m}|^{2}+|\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|
{CδSn2δS12eCδS1|x1σ1t+𝐗1(t)|eCδS1t, if x1>(λ1(U)+λn(U))t2,CδSn2δS12eCδSn|x1σnt+𝐗n(t)|eCδSnt, if x1(λ1(U)+λn(U))t2.\displaystyle\leq\begin{cases}C\delta_{S_{n}}^{2}\delta_{S_{1}}^{2}e^{-C\delta_{S_{1}}|x_{1}-{\sigma}_{1}t+\mathbf{X}_{1}(t)|}e^{-C\delta_{S_{1}}t}\,,\;\textup{ if }x_{1}>\frac{(\lambda_{1}(U_{-})+\lambda_{n}(U_{-}))t}{2}\,,\\ C\delta_{S_{n}}^{2}\delta_{S_{1}}^{2}e^{-C\delta_{S_{n}}|x_{1}-\sigma_{n}t+\mathbf{X}_{n}(t)|}e^{-C\delta_{S_{n}}t}\,,\;\textup{ if }x_{1}\leq\frac{(\lambda_{1}(U_{-})+\lambda_{n}(U_{-}))t}{2}\,.\end{cases}

Hence, we get

|x1S1𝐗1||Sn𝐗nUm|2Lx11+|x1Sn𝐗n||S1𝐗1Um|2Lx11+|x1Sn𝐗n||x1S1𝐗1|Lx11\displaystyle\big{\|}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}||S_{n}^{\mathbf{X}_{n}}-U_{m}|^{2}\big{\|}_{L_{x_{1}}^{1}}+\big{\|}|\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}||S_{1}^{\mathbf{X}_{1}}-U_{m}|^{2}\big{\|}_{L_{x_{1}}^{1}}+\big{\|}|\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\big{\|}_{L_{x_{1}}^{1}}
CδSn2δS1eCδS1tδS1eCδS1|x1|𝑑x1+CδSnδS12eCδSntδSneCδSn|x1|𝑑x1\displaystyle\leq C\delta_{S_{n}}^{2}\delta_{S_{1}}e^{-C\delta_{S_{1}}t}\int\delta_{S_{1}}e^{-C\delta_{S_{1}}|{x_{1}}|}\,d{x_{1}}+C\delta_{S_{n}}\delta_{S_{1}}^{2}e^{-C\delta_{S_{n}}t}\int\delta_{S_{n}}e^{-C\delta_{S_{n}}|{x_{1}}|}\,d{x_{1}}
C(δSn2δS1eCδS1t+δSnδS12eCδSnt).\displaystyle\leq C(\delta_{S_{n}}^{2}\delta_{S_{1}}e^{-C\delta_{S_{1}}t}+\delta_{S_{n}}\delta_{S_{1}}^{2}e^{-C\delta_{S_{n}}t})\,.

4.2. Higher derivatives estimates

Let

(4.1) ψ=UU~.\psi=U-\tilde{U}\,.

For any kk\in\mathbb{N}^{*}, we define

(4.2) k={Πj=1l|xβjψ|:l,βjd, 1|βj|k,j=1l|βj|k+1}.\displaystyle\mathcal{L}^{k}=\Bigl{\{}\Pi_{j=1}^{l}|\partial_{x}^{\beta_{j}}\psi|:l\in\mathbb{N}^{*}\,,\;\beta_{j}\in\mathbb{N}^{d}\,,\;1\leq|\beta_{j}|\leq k\,,\;\sum_{j=1}^{l}|\beta_{j}|\leq k+1\Bigl{\}}\,.

Lemma 4.2 plays an important role in section 5 when working with higher derivatives. It singles out terms that need to be handled differently and unifies the rest in the same form. The last two inequalities in the lemma will be used in the proof of Lemma 4.3 to evaluate the interaction terms induced by E1,E2E_{1},E_{2}.

Lemma 4.2.

Assume Assumption 3.2. Let 1km1\leq k\leq m where mm is defined in (1.8). Let M:nn×nM:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n\times n} and F:nnF:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} be smooth functions. Then there exists a constant C>0C>0 such that for any αk,α1d\alpha_{k},\alpha_{1}\in\mathbb{N}^{d} such that |αk|=k,|α1|=1|\alpha_{k}|=k\,,\;|\alpha_{1}|=1,

|xαk(M(U)xα1UM(U~)xα1U~)(M(U)xαk+α1UM(U~)xαk+α1U~)|\displaystyle\Big{|}\partial_{x}^{\alpha_{k}}\bigl{(}M(U)\partial_{x}^{\alpha_{1}}U-M(\tilde{U})\partial_{x}^{\alpha_{1}}\tilde{U}\bigl{)}-\bigl{(}M(U)\partial_{x}^{\alpha_{k}+\alpha_{1}}U-M(\tilde{U})\partial_{x}^{\alpha_{k}+\alpha_{1}}\tilde{U}\bigl{)}\Big{|}
C(LkL+|ψ||x1U~|),\displaystyle\leq C\bigl{(}\sum_{L\in\mathcal{L}^{k}}L+|\psi||\partial_{x_{1}}\tilde{U}|\bigl{)}\,,
|xαk(F(U)F(U~))|C(LkL+|ψ||x1U~|),\displaystyle\Big{|}\partial_{x}^{\alpha_{k}}\bigl{(}F(U)-F(\tilde{U})\bigl{)}\Big{|}\leq C\bigl{(}\sum_{L\in\mathcal{L}^{k}}L+|\psi||\partial_{x_{1}}\tilde{U}|\bigl{)}\,,
|xαk(M(U~)x1U~M(S1𝐗1)x1S1𝐗1)|\displaystyle\Big{|}\partial_{x}^{\alpha_{k}}\bigl{(}M(\tilde{U})\partial_{x_{1}}\tilde{U}-M(S_{1}^{\mathbf{X}_{1}})\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}\bigl{)}\Big{|}
C(|x1k+1Wn𝐗n|+|x1Wn𝐗n|2+|x1Wn𝐗n||x1S1𝐗1|+|Wn𝐗nUm||x1S1𝐗1|),\displaystyle\leq C\bigl{(}|\partial_{x_{1}}^{k+1}W_{n}^{\mathbf{X}_{n}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|^{2}+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|W_{n}^{\mathbf{X}_{n}}-U_{m}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\bigl{)}\,,
|xαk(F(U~)F(S1𝐗1)F(Wn𝐗n))|\displaystyle\Big{|}\partial_{x}^{\alpha_{k}}\bigl{(}F(\tilde{U})-F(S_{1}^{\mathbf{X}_{1}})-F(W_{n}^{\mathbf{X}_{n}})\bigl{)}\Big{|}
+|xαk(M(U~)x1U~M(S1𝐗1)x1S1𝐗1M(Wn𝐗n)x1Wn𝐗n)|\displaystyle+\Big{|}\partial_{x}^{\alpha_{k}}\bigl{(}M(\tilde{U})\partial_{x_{1}}\tilde{U}-M(S_{1}^{\mathbf{X}_{1}})\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}-M(W_{n}^{\mathbf{X}_{n}})\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}\bigl{)}\Big{|}
C(|x1Wn𝐗n||x1S1𝐗1|+|Wn𝐗nUm||x1S1𝐗1|+|S1𝐗1Um||x1Wn𝐗n|).\displaystyle\leq C\bigl{(}|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|W_{n}^{\mathbf{X}_{n}}-U_{m}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|S_{1}^{\mathbf{X}_{1}}-U_{m}||\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}\,.
Proof.

For any k1,k2k_{1},k_{2}\in\mathbb{N}^{*} and any function V,V~:0××𝕋d1nV,\tilde{V}:\mathbb{R}_{\geq 0}\times\mathbb{R}\times\mathbb{T}^{d-1}\rightarrow\mathbb{R}^{n}, we define

k1,k2(V,V~)\displaystyle\mathcal{L}^{k_{1},k_{2}}(V,\tilde{V}) ={Πj=1l|xβjV|Πj=1l~|xβj~V~|:l,l~,βj,βj~d,\displaystyle=\Bigl{\{}\Pi_{j=1}^{l}|\partial_{x}^{\beta_{j}}V|\,\Pi_{j=1}^{\tilde{l}}|\partial_{x}^{\tilde{\beta_{j}}}\tilde{V}|:l\in\mathbb{N}^{*},\,\tilde{l}\in\mathbb{N},\,\beta_{j},\tilde{\beta_{j}}\in\mathbb{N}^{d},\,
1|βj|,|βj~|k1,j=1l|βj|+j=1l~|βj~|=k2,j=1l|βj|1}.\displaystyle\quad\quad 1\leq|\beta_{j}|,|\tilde{\beta_{j}}|\leq k_{1},\,\sum_{j=1}^{l}|\beta_{j}|+\sum_{j=1}^{\tilde{l}}|\tilde{\beta_{j}}|=k_{2}\,,\;\sum_{j=1}^{l}|\beta_{j}|\geq 1\Bigl{\}}\,.

We show the first inequality. If we apply the chain rule to

xαk(M()xα1()),\partial_{x}^{\alpha_{k}}\bigl{(}M(\cdot)\partial_{x}^{\alpha_{1}}(\cdot)\bigl{)}\,,

then either all xαk\partial_{x}^{\alpha_{k}} fall on xα1()\partial_{x}^{\alpha_{1}}(\cdot) or some fall on M()M(\cdot). Therefore, we know that

|xαk(M(U)xα1UM(U~)xα1U~)(M(U)xαk+α1xUM(U~)xαk+α1U~)|\displaystyle\Big{|}\partial_{x}^{\alpha_{k}}\bigl{(}M(U)\partial_{x}^{\alpha_{1}}U-M(\tilde{U})\partial_{x}^{\alpha_{1}}\tilde{U}\bigl{)}-\bigl{(}M(U)\partial_{x}^{\alpha_{k}+\alpha_{1}}\partial_{x}U-M(\tilde{U})\partial_{x}^{\alpha_{k}+\alpha_{1}}\tilde{U}\bigl{)}\Big{|}

is bounded by the sum of the absolute value of the terms in the following form

𝐌:=(Mβj(U)j=1l1xβjU)xβlU(Mβj(U~)j=1l1xβjU~)xβlU~,\displaystyle\mathbf{M}:=\bigl{(}M^{\beta_{j}}(U)\otimes_{j=1}^{l-1}\partial_{x}^{\beta_{j}}U\bigl{)}\partial_{x}^{\beta_{l}}U-\bigl{(}M^{\beta_{j}}(\tilde{U})\otimes_{j=1}^{l-1}\partial_{x}^{\beta_{j}}\tilde{U}\bigl{)}\partial_{x}^{\beta_{l}}\tilde{U}\,,

where l2l\geq 2, βjd\beta_{j}\in\mathbb{N}^{d}, 1|βj|k1\leq|\beta_{j}|\leq k, j=1l|βj|=k+1\sum_{j=1}^{l}|\beta_{j}|=k+1, and MβjM^{\beta_{j}} is some derivative of MM. By (3.2), Lemma 2.1, and Lemma 2.2, we have

|𝐌|\displaystyle|\mathbf{M}| =|(Mβj(U)j=1l1xβj(ψ+U~))xβl(ψ+U~)(Mβj(U~)j=1l1xβjU~)xβlU~|\displaystyle=\Big{|}\bigl{(}M^{\beta_{j}}(U)\otimes_{j=1}^{l-1}\partial_{x}^{\beta_{j}}(\psi+\tilde{U})\bigl{)}\partial_{x}^{\beta_{l}}(\psi+\tilde{U})-\bigl{(}M^{\beta_{j}}(\tilde{U})\otimes_{j=1}^{l-1}\partial_{x}^{\beta_{j}}\tilde{U}\bigl{)}\partial_{x}^{\beta_{l}}\tilde{U}\Big{|}
Ck,k+1(ψ,U~)L+|((Mβj(U)Mβj(U~))j=1l1xβjU~)xβlU~|\displaystyle\leq C\sum_{\mathcal{L}^{k,k+1}(\psi,\tilde{U})}L+\Big{|}\Bigl{(}\bigl{(}M^{\beta_{j}}(U)-M^{\beta_{j}}(\tilde{U})\bigl{)}\otimes_{j=1}^{l-1}\partial_{x}^{\beta_{j}}\tilde{U}\Bigl{)}\partial_{x}^{\beta_{l}}\tilde{U}\Big{|}
CkL+C|ψ||x1U~|.\displaystyle\leq C\sum_{\mathcal{L}^{k}}L+C|\psi||\partial_{x_{1}}\tilde{U}|\,.

Note the constants CC in this proof depend on Bj,f,η,U,kB_{j},f,\eta,U_{-},k, but the dependency on kk does not matter as mm is fixed and finite.

Similarly, we can show

|xαk(F(U)F(U~))|C(k,k(ψ,U~)L+|ψ||x1U~|)C(kL+|ψ||x1U~|),\displaystyle\Big{|}\partial_{x}^{\alpha_{k}}\bigl{(}F(U)-F(\tilde{U})\bigl{)}\Big{|}\leq C\bigl{(}\sum_{\mathcal{L}^{k,k}(\psi,\tilde{U})}L+|\psi||\partial_{x_{1}}\tilde{U}|\bigl{)}\leq C\bigl{(}\sum_{\mathcal{L}^{k}}L+|\psi||\partial_{x_{1}}\tilde{U}|\bigl{)}\,,

and

|xαk(M(U~)xU~M(S1𝐗1)xS1𝐗1)|\displaystyle\Big{|}\partial_{x}^{\alpha_{k}}\bigl{(}M(\tilde{U})\partial_{x}\tilde{U}-M(S_{1}^{\mathbf{X}_{1}})\partial_{x}S_{1}^{\mathbf{X}_{1}}\bigl{)}\Big{|}
C(k+1,k+1(Wn𝐗n,S1𝐗1)L+|Wn𝐗nUm||x1S1𝐗1|)\displaystyle\leq C\bigl{(}\sum_{\mathcal{L}^{k+1,k+1}(W_{n}^{\mathbf{X}_{n}},\,S_{1}^{\mathbf{X}_{1}})}L+|W_{n}^{\mathbf{X}_{n}}-U_{m}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\bigl{)}
C(|x1k+1Wn𝐗n|+|x1Wn𝐗n|2+|x1Wn𝐗n||x1S1𝐗1|+|Wn𝐗nUm||x1S1𝐗1|).\displaystyle\leq C\bigl{(}|\partial_{x_{1}}^{k+1}W_{n}^{\mathbf{X}_{n}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|^{2}+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|W_{n}^{\mathbf{X}_{n}}-U_{m}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\bigl{)}\,.

Finally, we show the last inequality. We know

|xαk(F(U~)F(S1𝐗1)F(Wn𝐗n))|\displaystyle\Big{|}\partial_{x}^{\alpha_{k}}\bigl{(}F(\tilde{U})-F(S_{1}^{\mathbf{X}_{1}})-F(W_{n}^{\mathbf{X}_{n}})\bigl{)}\Big{|}

is bounded by the sum of the absolute value of the terms in the following form

𝐅:=\displaystyle\mathbf{F}:= Fβj(U~)j=1lxβjU~Fβj(S1𝐗1)j=1lxβjS1𝐗1Fβj(Wn𝐗n)j=1lxβjWn𝐗n,\displaystyle F^{\beta_{j}}(\tilde{U})\otimes_{j=1}^{l}\partial_{x}^{\beta_{j}}\tilde{U}-F^{\beta_{j}}(S_{1}^{\mathbf{X}_{1}})\otimes_{j=1}^{l}\partial_{x}^{\beta_{j}}S_{1}^{\mathbf{X}_{1}}-F^{\beta_{j}}(W_{n}^{\mathbf{X}_{n}})\otimes_{j=1}^{l}\partial_{x}^{\beta_{j}}W_{n}^{\mathbf{X}_{n}}\,,

where l1l\geq 1, βjd\beta_{j}\in\mathbb{N}^{d}, 1|βj|k1\leq|\beta_{j}|\leq k, j=1l|βj|=k\sum_{j=1}^{l}|\beta_{j}|=k, and FβjF^{\beta_{j}} is some derivative of FF. By Lemma 2.1 and Lemma 2.2, we have

|𝐅|\displaystyle|\mathbf{F}| =|Fβj(U~)j=1lxβj(S1𝐗1+Wn𝐗n)Fβj(S1𝐗1)j=1lxβjS1𝐗1\displaystyle=\Big{|}F^{\beta_{j}}(\tilde{U})\otimes_{j=1}^{l}\partial_{x}^{\beta_{j}}(S_{1}^{\mathbf{X}_{1}}+W_{n}^{\mathbf{X}_{n}})-F^{\beta_{j}}(S_{1}^{\mathbf{X}_{1}})\otimes_{j=1}^{l}\partial_{x}^{\beta_{j}}S_{1}^{\mathbf{X}_{1}}
Fβj(Wn𝐗n)j=1lxβjWn𝐗n|\displaystyle\quad-F^{\beta_{j}}(W_{n}^{\mathbf{X}_{n}})\otimes_{j=1}^{l}\partial_{x}^{\beta_{j}}W_{n}^{\mathbf{X}_{n}}\Big{|}
C(|x1Wn𝐗n||x1S1𝐗1|+|Wn𝐗nUm||x1S1𝐗1|+|S1𝐗1Um||x1Wn𝐗n|).\displaystyle\leq C\bigl{(}|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|W_{n}^{\mathbf{X}_{n}}-U_{m}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|S_{1}^{\mathbf{X}_{1}}-U_{m}||\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}\,.

Similarly, we can bound

|xαk(M(U~)x1U~M(S1𝐗1)x1S1𝐗1M(Wn𝐗n)x1Wn𝐗n)|.\displaystyle\Big{|}\partial_{x}^{\alpha_{k}}\bigl{(}M(\tilde{U})\partial_{x_{1}}\tilde{U}-M(S_{1}^{\mathbf{X}_{1}})\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}-M(W_{n}^{\mathbf{X}_{n}})\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}\bigl{)}\Big{|}\,.

4.3. Relative entropy method

For each layer corresponding to S1𝐗1S_{1}^{\mathbf{X}_{1}} and Wn𝐗nW_{n}^{\mathbf{X}_{n}}, we will construct a basis of the phase space that is well-adapted to both the special direction of the wave 𝐫𝟏\mathbf{r_{1}} (respectively 𝐫𝐧\mathbf{r_{n}}) and the dissipation matrix B1(U)B_{1}(U_{-}). As the dissipation takes place in the so-called entropic variables η(U)η(U~)\eta^{\prime}(U)-\eta^{\prime}(\tilde{U}), we project such quantity onto the bases. Since UU~U-\tilde{U} is small, we know

η(U)η(U~)η(U)(UU~).\displaystyle\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\approx\eta^{\prime\prime}(U_{-})(U-\tilde{U})\,.

Hence, the corresponding natural special direction of the wave for the entropic variables is η(U)𝐫𝟏=𝐥𝟏\eta^{\prime\prime}(U_{-})\mathbf{r_{1}}=\mathbf{l_{1}} (respectively η(U)𝐫𝐧=𝐥𝐧\eta^{\prime\prime}(U_{-})\mathbf{r_{n}}=\mathbf{l_{n}}). The point is to work with a basis that is orthogonal with respect to the dissipation matrix and contains 𝐥𝟏\mathbf{l_{1}} (respectively 𝐥𝐧\mathbf{l_{n}}).

When working with the layer of S1𝐗1S_{1}^{\mathbf{X}_{1}}, we complete 𝐥𝟏\mathbf{l_{1}} into an orthogonal basis of n\mathbb{R}^{n} with respect to the dissipation. In particular, we choose a basis (𝐯𝟏(𝟏)=𝐥𝟏,𝐯𝟐(𝟏),,𝐯𝐧(𝟏))(\mathbf{v_{1}^{(1)}}=\mathbf{l_{1}},\mathbf{v_{2}^{(1)}},...,\mathbf{v_{n}^{(1)}}) such that for any 2in2\leq i\leq n and any 1jn1\leq j\leq n,

B~1(U)𝐯𝐢(𝟏)𝐯𝐣(𝟏)=0,B1(U)𝐯𝐢(𝟏)𝐯𝐢(𝟏)=1,\displaystyle\tilde{B}_{1}(U_{-})\mathbf{v_{i}^{(1)}}\cdot\mathbf{v_{j}^{(1)}}=0\,,\;B_{1}(U_{-})\mathbf{v_{i}^{(1)}}\cdot{\mathbf{v_{i}^{(1)}}}=1\,,

where B~1=B1+B1T\tilde{B}_{1}=B_{1}+B_{1}^{T}. This is always possible thanks to the Gram-Schmidt process. We project the perturbation in entropic variables onto this basis:

(4.3) η(U)(t,x)η(U~)(t,x)=μ1(t,x)𝐥𝟏+i=2nμi(t,x)𝐯𝐢(𝟏).\eta^{\prime}(U)(t,x)-\eta^{\prime}(\tilde{U})(t,x)=\mu_{1}(t,x)\mathbf{l_{1}}+\sum_{i=2}^{n}\mu_{i}(t,x)\mathbf{v_{i}^{(1)}}\,.

When working with the hyperbolic terms, we will work with the conserved quantity UU~U-\tilde{U}. By Taylor expansion and (3.2), we have

(4.4) |(UU~)(μ1𝐫𝟏+i=2nμiη(U)1𝐯𝐢(𝟏))|C(ϵ2+δ0)|UU~|.\displaystyle\big{|}(U-\tilde{U})-\bigl{(}\mu_{1}\mathbf{r_{1}}+\sum_{i=2}^{n}\mu_{i}\,\eta^{\prime\prime}(U_{-})^{-1}\mathbf{v_{i}^{(1)}}\bigl{)}\big{|}\leq C(\epsilon_{2}+\delta_{0})|U-\tilde{U}|\,.

As (𝐫𝟏,η(U)1𝐯𝟐(𝟏),,η(U)1𝐯𝐧(𝟏))(\mathbf{r_{1}},\eta^{\prime\prime}(U_{-})^{-1}\mathbf{v_{2}^{(1)}},...,\eta^{\prime\prime}(U_{-})^{-1}\mathbf{v_{n}^{(1)}}) is a basis, we have

(4.5) ci=2n|μi|2|i=2nμiη(U)1𝐯𝐢(𝟏)|2Ci=2n|μi|2,\displaystyle c\sum_{i=2}^{n}|\mu_{i}|^{2}\leq\bigl{|}\sum_{i=2}^{n}\mu_{i}\,\eta^{\prime\prime}(U_{-})^{-1}\mathbf{v_{i}^{(1)}}\bigl{|}^{2}\leq C\sum_{i=2}^{n}|\mu_{i}|^{2}\,,

for some constants c,C>0c,C>0 that depend only on Bj,f,η,UB_{j},f,\eta,U_{-}.

Let PP be the projection onto span{𝐫𝟐,,𝐫𝐧}\textup{span}\{\mathbf{r_{2}},...,\mathbf{r_{n}}\}, i.e.,

(4.6) P(v)=v(v𝐫𝟏)𝐫𝟏 for any vn.\displaystyle P(v)=v-(v\cdot\mathbf{r_{1}})\mathbf{r_{1}}\textup{ for any }v\in\mathbb{R}^{n}\,.

For any 2in2\leq i\leq n,

η(U)1𝐯𝐢(𝟏){v:B~1(U)η(U)𝐫𝟏η(U)v=0}=:V.\displaystyle\eta^{\prime\prime}(U_{-})^{-1}\mathbf{v_{i}^{(1)}}\in\bigl{\{}v:\tilde{B}_{1}(U_{-})\eta^{\prime\prime}(U_{-})\mathbf{r_{1}}\cdot\eta^{\prime\prime}(U_{-})v=0\bigl{\}}=:V\,.

As 𝐫𝟏V\mathbf{r_{1}}\notin V, there exists C>0C>0 such that

(4.7) |P(v)|2C|v|2 for any vV.\displaystyle|P(v)|^{2}\geq C|v|^{2}\,\textup{ for any }v\in V\,.

When working with the layer of Wn𝐗nW_{n}^{\mathbf{X}_{n}}, we complete 𝐥𝐧\mathbf{l_{n}} into an orthogonal basis of n\mathbb{R}^{n} with respect to the dissipation. In particular, we choose a basis (𝐯𝟏(𝐧),,𝐯𝐧𝟏(𝐧),𝐯𝐧(𝐧)=𝐥𝐧)(\mathbf{v_{1}^{(n)}},...,\mathbf{v_{n-1}^{(n)}},\mathbf{v_{n}^{(n)}}=\mathbf{l_{n}}) such that for any 1in11\leq i\leq n-1 and any 1jn1\leq j\leq n,

B~1(U)𝐯𝐢(𝐧)𝐯𝐣(𝐧)=0,B1(U)𝐯𝐢(𝐧)𝐯𝐢(𝐧)=1.\displaystyle\tilde{B}_{1}(U_{-})\mathbf{v_{i}^{(n)}}\cdot\mathbf{v_{j}^{(n)}}=0\,,\;B_{1}(U_{-})\mathbf{v_{i}^{(n)}}\cdot{\mathbf{v_{i}^{(n)}}}=1\,.

We project the perturbation in entropic variables onto this basis:

(4.8) η(U)(t,x)η(U~)(t,x)=νn(t,x)𝐥𝐧+i=1n1νi(t,x)𝐯𝐢(𝐧).\eta^{\prime}(U)(t,x)-\eta^{\prime}(\tilde{U})(t,x)=\nu_{n}(t,x){\mathbf{l_{n}}}+\sum_{i=1}^{n-1}\nu_{i}(t,x)\mathbf{v_{i}^{(n)}}\,.

Such projection has similar properties as (4.3).

We choose such bases to make the best use of dissipation in the special directions of the planar shock waves. In the case that WnW_{n} is a planar rarefaction wave, we could work with the natural hyperbolic basis (𝐫𝟏,,𝐫𝐧)(\mathbf{r_{1}},...,\mathbf{r_{n}}) since we do not need the Poincaré inequality. However, for the sake of consistency, we will use the basis (𝐯𝟏(𝐧),,𝐯𝐧𝟏(𝐧),𝐥𝐧)(\mathbf{v_{1}^{(n)}},...,\mathbf{v_{n-1}^{(n)}},\mathbf{l_{n}}) in the case Wn=RnW_{n}=R_{n} too.

Relative functions. The relative flux (f,g2,,gn)(f,g_{2},...,g_{n}) is defined by

(4.9) f(U|V)=f(U)f(V)f(V)(UV),\displaystyle f(U|V)=f(U)-f(V)-f^{\prime}(V)(U-V)\,,
gj(U|V)=gj(U)gj(V)gj(V)(UV), for 2jd.\displaystyle g_{j}(U|V)=g_{j}(U)-g_{j}(V)-g_{j}^{\prime}(V)(U-V)\,,\textup{ for }2\leq j\leq d\,.

The flux of the relative entropy q=(q1,,qd)q=(q_{1},...,q_{d}) is defined by

(4.10) qj(U;V)={q1(U)q1(V)η(V)(f(U)f(V)), if j=1,qj(U)qj(V)η(V)(gj(U)gj(V)), if 2jd,q_{j}(U;V)=\begin{cases}q_{1}(U)-q_{1}(V)-\eta^{\prime}(V)\bigl{(}f(U)-f(V)\bigl{)}\,,\textup{ if }j=1\,,\\ q_{j}(U)-q_{j}(V)-\eta^{\prime}(V)\bigl{(}g_{j}(U)-g_{j}(V)\bigl{)}\,,\textup{ if }2\leq j\leq d\,,\end{cases}

where qj()q_{j}(\cdot), the entropy flux of η\eta, is defined in (1.2).

We want to study the evolution of the weighted relative entropy

a(t,x)η(U(t,x)|U~(t,x))dx.\int a(t,x)\,\eta\bigl{(}U(t,x)|\tilde{U}(t,x)\bigl{)}\,dx\,.

It involves controlling layer quantities of the form:

|x1S1𝐗1|F1dx,|x1Wn𝐗n|Fndx.\displaystyle\int|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|F_{1}\,dx\,,\;\int|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|F_{n}\,dx\,.

In each of these layers, a “scalarization” effect takes place. Such effect damps the perturbation UU~U-\tilde{U} in the transverse direction well-adapted to both the special direction of the wave 𝐫𝟏\mathbf{r_{1}} (respectively 𝐫𝐧\mathbf{r_{n}}) and the diffusion eigen-direction.

The main lemma of this section is the following. We postpone our choice of ΛS1,ΛWn,C~1,C~n\Lambda_{S_{1}},\Lambda_{W_{n}},\tilde{C}_{1},\tilde{C}_{n} to subsection 4.5, where we unify the choice of constants for both hyperbolic “scalarization” and Poincaré inequality.

Lemma 4.3.

For any UnU_{-}\in\mathbb{R}^{n}, any 0<δ<10<\delta<1, and any ΛS1,ΛWn,C~1,C~n>0\Lambda_{S_{1}},\Lambda_{W_{n}},\tilde{C}_{1},\tilde{C}_{n}>0, there exist δ0,ϵ2,C>0\delta_{0},\epsilon_{2},C>0 such that the following is true.

Assume Assumption 3.2. Then for any t[0,T]t\in[0,T],

ddta(t,x)η(U(t,x)|U~(t,x))dx𝒵(U)𝒟(U)+(U)+(U),\frac{d}{dt}\int a(t,x)\,\eta\bigl{(}U(t,x)|\tilde{U}(t,x)\bigl{)}\,dx\leq\mathcal{Z}(U)-\mathcal{D}(U)+\mathcal{H}(U)+\mathcal{E}(U)\,,

where

𝒵(U)\displaystyle\mathcal{Z}(U) ={𝐗˙1𝒴1(U)+𝐗˙n𝒴n(U), if Wn=Sn,𝐗˙1𝒴1(U), if Wn=Rn,\displaystyle=\begin{cases}\dot{\mathbf{X}}_{1}\mathcal{Y}_{1}(U)+\dot{\mathbf{X}}_{n}\mathcal{Y}_{n}(U)\,,\textup{ if }W_{n}=S_{n}\,,\\ \dot{\mathbf{X}}_{1}\mathcal{Y}_{1}(U)\,,\textup{ if }W_{n}=R_{n}\,,\end{cases}
𝒟(U)\displaystyle\mathcal{D}(U) =(1+2γ)𝒟x1p(U)+C𝒟x1r(U)+C𝒟y(U),\displaystyle=(1+2\gamma)\mathcal{D}_{x_{1}}^{p}(U)+C\mathcal{D}_{x_{1}}^{r}(U)+C\mathcal{D}_{y}(U)\,,
(U)\displaystyle\mathcal{H}(U) =(𝐂1min{ΛS1,ΛWn}+𝐂2δ)C\displaystyle=\bigl{(}-\mathbf{C}_{1}\textup{min}\{\Lambda_{S_{1}},\Lambda_{W_{n}}\}+\frac{\mathbf{C}_{2}}{\delta}\bigl{)}\mathcal{H}_{C}
+(1+δ)S1{+(1+δ)Sn, if Wn=Sn,(1δ)Rn, if Wn=Rn,\displaystyle\quad+(1+\delta)\mathcal{H}_{S_{1}}\begin{cases}+(1+\delta)\mathcal{H}_{S_{n}}\,,\textup{ if }W_{n}=S_{n}\,,\\ -(1-\delta)\mathcal{H}_{R_{n}}\,,\textup{ if }W_{n}=R_{n}\,,\end{cases}
(U)\displaystyle\mathcal{E}(U) ={Cδ(δSn2δS1eCδS1t+δSnδS12eCδSnt), if Wn=Sn,Cϵ2δRnδS1eCδS1t+Cϵ2x1RnL42+Cγ1/3ϵ22/3x12RnL14/3, if Wn=Rn,\displaystyle=\begin{cases}\frac{C}{\delta}(\delta_{S_{n}}^{2}\delta_{S_{1}}e^{-C\delta_{S_{1}}t}+\delta_{S_{n}}\delta_{S_{1}}^{2}e^{-C\delta_{S_{n}}t})\,,\textup{ if }W_{n}=S_{n}\,,\\ C\epsilon_{2}\delta_{R_{n}}\delta_{S_{1}}e^{-C\delta_{S_{1}}t}+C\epsilon_{2}\|\partial_{x_{1}}R_{n}\|_{L^{4}}^{2}+\frac{C}{\gamma^{1/3}}\epsilon_{2}^{2/3}\|\partial_{x_{1}}^{2}R_{n}\|_{L^{1}}^{4/3}\,,\textup{ if }W_{n}=R_{n}\,,\end{cases}

where γ,𝐂1,𝐂2>0\gamma,\mathbf{C}_{1},\mathbf{C}_{2}>0 are constants that depend only on Bj,f,η,UB_{j},f,\eta,U_{-}, and

𝒴i(U)\displaystyle\mathcal{Y}_{i}(U) =x1aSi𝐗iη(U|U~)dxaη(U~)(UU~)x1Si𝐗idx,\displaystyle=\int\partial_{x_{1}}a_{S_{i}}^{\mathbf{X}_{i}}\,\eta({U|\tilde{U}})\,dx-\int a\eta^{\prime\prime}(\tilde{U})(U-\tilde{U})\partial_{x_{1}}S_{i}^{\mathbf{X}_{i}}\,dx\,,
𝒟x1p(U)\displaystyle\mathcal{D}_{x_{1}}^{p}(U) =B1(U)𝐥𝟏𝐥𝟏|x1μ1|2dx+B1(U)𝐥𝐧𝐥𝐧|x1νn|2dx,\displaystyle={B_{1}(U_{-})\mathbf{l_{1}}\cdot\mathbf{l_{1}}}\int|\partial_{x_{1}}{\mu_{1}}|^{2}\,dx+{B_{1}(U_{-}){\mathbf{l_{n}}}\cdot{\mathbf{l_{n}}}}\int|\partial_{x_{1}}\nu_{n}|^{2}\,dx\,,
𝒟x1r(U)\displaystyle\mathcal{D}_{x_{1}}^{r}(U) =i=2n|x1μi|2dx+i=1n1|x1νi|2dx,\displaystyle=\sum_{i=2}^{n}\int|\partial_{x_{1}}\mu_{i}|^{2}\,dx+\sum_{i=1}^{n-1}\int|\partial_{x_{1}}\nu_{i}|^{2}\,dx\,,
𝒟y(U)\displaystyle\mathcal{D}_{y}(U) =j=2d|xj(UU~)|2dx,\displaystyle=\sum_{j=2}^{d}\int\big{|}\partial_{x_{j}}(U-\tilde{U})\big{|}^{2}\,dx\,,
C(U)\displaystyle\mathcal{H}_{C}(U) =i=2nδS1μi2x1kS1𝐗1dx+i=1n1δWnνi2x1kWn𝐗ndx,\displaystyle=\sum_{i=2}^{n}\delta_{S_{1}}\int\mu_{i}^{2}\;\partial_{x_{1}}{k_{S_{1}}^{\mathbf{X}_{1}}}dx+\sum_{i=1}^{n-1}\delta_{W_{n}}\int\nu_{i}^{2}\;\partial_{x_{1}}{k_{W_{n}}^{\mathbf{X}_{n}}}\,dx\,,
S1(U)\displaystyle\mathcal{H}_{S_{1}}(U) =cf(1)δS1μ12x1kS1𝐗1dx,\displaystyle=-c_{f}^{(1)}\delta_{S_{1}}\int\mu_{1}^{2}\;\partial_{x_{1}}{k_{S_{1}}^{\mathbf{X}_{1}}}\,dx\,,
Wn(U)\displaystyle\mathcal{H}_{W_{n}}(U) =cf(n)δWnνn2x1kWn𝐗ndx.\displaystyle=-c_{f}^{(n)}\delta_{W_{n}}\int\nu_{n}^{2}\;\partial_{x_{1}}{k_{W_{n}}^{\mathbf{X}_{n}}}\,dx\,.

Remark. Recall (1.16). We have

𝒟x1p,𝒟x1r,𝒟y,C,S1,Wn0.\displaystyle\mathcal{D}_{x_{1}}^{p}\,,\;\mathcal{D}_{x_{1}}^{r}\,,\;\mathcal{D}_{y}\,,\;\mathcal{H}_{C}\,,\;\mathcal{H}_{S_{1}}\,,\;\mathcal{H}_{W_{n}}\geq 0\,.

We have four families of terms: the shift family 𝒵\mathcal{Z}, the viscous family 𝒟\mathcal{D}, the hyperbolic family \mathcal{H}, and the interaction family \mathcal{E}.

The shift family 𝒵\mathcal{Z} corresponds to the new terms induced by the shifts. The viscous family 𝒟\mathcal{D} comes from the dissipation. The viscous term 𝒟y\mathcal{D}_{y} corresponds to the transverse direction, and the viscous terms 𝒟x1p,𝒟x1r\mathcal{D}_{x_{1}}^{p},\mathcal{D}_{x_{1}}^{r} correspond to the x1x_{1} direction. If we examine 𝒟x1p,𝒟x1r\mathcal{D}_{x_{1}}^{p},\mathcal{D}_{x_{1}}^{r} in the phase space, 𝒟x1p\mathcal{D}_{x_{1}}^{p} corresponds to the special direction 𝐫𝟏\mathbf{r_{1}} (respectively 𝐫𝐧\mathbf{r_{n}}) of the wave S1S_{1} (respectively WnW_{n}), and Dx1rD_{x_{1}}^{r} corresponds to the other orthogonal directions. In Lemma 4.4 in the next section, we see how Dx1pD_{x_{1}}^{p} helps us get the Poincaré type inequality.

The flux functions give the hyperbolic family \mathcal{H}. The hyperbolic term S1\mathcal{H}_{S_{1}} (respectively Wn\mathcal{H}_{W_{n}}) corresponds to the special direction 𝐫𝟏\mathbf{r_{1}} (respectively 𝐫𝐧\mathbf{r_{n}}) of the wave S1S_{1} (respectively WnW_{n}). The hyperbolic term C\mathcal{H}_{C} corresponds to the other orthogonal directions. The hyperbolic “scalarization” happens in all directions except the special direction 𝐫𝟏\mathbf{r_{1}} (respectively 𝐫𝐧\mathbf{r_{n}}) of the wave S1S_{1} (respectively WnW_{n}). More precisely, the coefficient of C\mathcal{H}_{C} becomes negative if we choose sufficiently large ΛS1,ΛWn\Lambda_{S_{1}},\Lambda_{W_{n}}, while the coefficients of S1,Wn\mathcal{H}_{S_{1}},\mathcal{H}_{W_{n}} are independent of the choice of ΛS1,ΛWn\Lambda_{S_{1}},\Lambda_{W_{n}}. In short, the hyperbolic “scalarization” reduces the problem to the scalar case with hyperbolic remainders in the form of S1,Wn\mathcal{H}_{S_{1}},\mathcal{H}_{W_{n}}.

Such hyperbolic remainder is negative if it corresponds to a planar rarefaction wave, but it is positive if it corresponds to a planar viscous shock wave. In Lemma 4.4 in the next section, we show in detail how the dissipation Dx1pD_{x_{1}}^{p}, the shift family 𝒵\mathcal{Z}, and the hyperbolic terms corresponding to the other orthogonal directions C\mathcal{H}_{C} control the positive hyperbolic remainder by the Poincaré type inequality. While the dissipation Dx1pD_{x_{1}}^{p} dominates the L2L^{2} norm of the derivative, the shifts will be chosen in a way that the shift family 𝒵\mathcal{Z} controls the average with the help of the hyperbolic terms corresponding to the other orthogonal directions C\mathcal{H}_{C}.

Finally, we can bound interaction terms corresponding to E1,E2E_{1},E_{2} in (2.16) in the form of \mathcal{E} by Lemma 4.1.

Proof.

By the definition of relative entropy function (1.14), (1.1), and (2.16), we have

ddta(t,x)η(U(t,x)|U~(t,x))dx\displaystyle\frac{d}{dt}\int a(t,x)\,\eta\bigl{(}U(t,x)|\tilde{U}(t,x)\bigl{)}\,dx
=taη(U|U~)dx+a[(η(U)η(U~))tUη(U~)(UU~)tU~]dx\displaystyle=\int\partial_{t}a\,\eta({U|\tilde{U}})\,dx+\int a\,\Bigr{[}\bigl{(}\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\bigl{)}\partial_{t}U-\eta^{\prime\prime}(\tilde{U})(U-\tilde{U})\partial_{t}\tilde{U}\Bigr{]}dx
=taη(U|U~)dx+a[(η(U)η(U~))(j=1dxj(Bj(U)xjη(U))\displaystyle=\int\partial_{t}a\,\eta({U|\tilde{U}})\,dx+\int a\,\biggr{[}\bigl{(}\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\bigl{)}\Bigl{(}\sum_{j=1}^{d}\partial_{x_{j}}\bigl{(}B_{j}(U)\partial_{x_{j}}\eta^{\prime}(U)\bigl{)}
xf(U)j=2dgj(U))η(U~)(UU~)(x1(B1(U~)x1η(U~))\displaystyle\quad-\partial_{x}f(U)-\sum_{j=2}^{d}g_{j}(U)\Bigl{)}-\eta^{\prime\prime}(\tilde{U})(U-\tilde{U})\Bigl{(}\partial_{x_{1}}\bigl{(}B_{1}(\tilde{U})\partial_{x_{1}}\eta^{\prime}(\tilde{U})\bigl{)}
xf(U~)+Z+E1+E2)]dx.\displaystyle\quad-\partial_{x}f(\tilde{U})+Z+E_{1}+E_{2}\Bigl{)}\biggr{]}\,dx\,.

According to definitions of (4.9) and (4.10), we have

ddta(t,x)η(U(t,x)|U~(t,x))dx=𝒵1+i=14𝒟i+i=12i+i=14i,\frac{d}{dt}\int a(t,x)\,\eta\bigl{(}U(t,x)|\tilde{U}(t,x)\bigl{)}\,dx=\mathcal{Z}_{1}+\sum_{i=1}^{4}\mathcal{D}_{i}+\sum_{i=1}^{2}\mathcal{E}_{i}+\sum_{i=1}^{4}\mathcal{H}_{i}\,,

where the shift term is

𝒵1\displaystyle\mathcal{Z}_{1} =taη(U|U~)dx{i=1,n𝐗˙iaη(U~)(UU~)x1Si𝐗idx, if Wn=Sn,𝐗˙1aη(U~)(UU~)x1S1𝐗1dx, if Wn=Rn,\displaystyle=\int\partial_{t}a\,\eta({U|\tilde{U}})\,dx-\begin{cases}\sum_{i=1,n}\dot{\mathbf{X}}_{i}\int a\,\eta^{\prime\prime}(\tilde{U})(U-\tilde{U})\partial_{x_{1}}S_{i}^{\mathbf{X}_{i}}\,dx\,,\textup{ if }W_{n}=S_{n}\,,\\ \dot{\mathbf{X}}_{1}\int a\,\eta^{\prime\prime}(\tilde{U})(U-\tilde{U})\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}\,dx\,,\textup{ if }W_{n}=R_{n}\,,\end{cases}

the dissipation gives

𝒟1\displaystyle\mathcal{D}_{1} =a(η(U)η(U~))x1(B1(U)x1(η(U)η(U~)))dx,\displaystyle=\int a\,\bigl{(}\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\bigl{)}\partial_{x_{1}}\Bigl{(}B_{1}(U)\partial_{x_{1}}\bigl{(}\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\bigl{)}\Bigl{)}\,dx\,,
𝒟2\displaystyle\mathcal{D}_{2} =a(η(U)η(U~))x1((B1(U)B1(U~))x1η(U~))dx,\displaystyle=\int a\,\bigl{(}\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\bigl{)}\partial_{x_{1}}\Bigl{(}\bigl{(}B_{1}(U)-B_{1}(\tilde{U})\bigl{)}\partial_{x_{1}}\eta^{\prime}(\tilde{U})\Bigl{)}\,dx\,,
𝒟3\displaystyle\mathcal{D}_{3} =aη(U|U~)x1(B1(U~)x1η(U~))dx,\displaystyle=\int a\,\eta^{\prime}(U|\tilde{U})\partial_{x_{1}}\bigl{(}B_{1}(\tilde{U})\partial_{x_{1}}\eta^{\prime}(\tilde{U})\bigl{)}\,dx\,,
𝒟4\displaystyle\mathcal{D}_{4} =j=2da(η(U)η(U~))xj(Bj(U)xjη(U))dx,\displaystyle=\sum_{j=2}^{d}\int a\,\bigl{(}\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\bigl{)}\partial_{x_{j}}\bigl{(}B_{j}(U)\partial_{x_{j}}\eta^{\prime}(U)\bigl{)}\,dx\,,

the wave interaction causes

1\displaystyle\mathcal{E}_{1} =aη(U~)(UU~)E1dx,\displaystyle=-\int a\,\eta^{\prime\prime}(\tilde{U})(U-\tilde{U})E_{1}\,dx\,,
2\displaystyle\mathcal{E}_{2} =aη(U~)(UU~)E2dx,\displaystyle=-\int a\,\eta^{\prime\prime}(\tilde{U})(U-\tilde{U})E_{2}\,dx\,,

and the flux induces

1\displaystyle\mathcal{H}_{1} =x1aq1(U;U~)dx,\displaystyle=\int\partial_{x_{1}}a\,q_{1}(U;\tilde{U})\,dx\,,
2\displaystyle\mathcal{H}_{2} =ax1η(U~)f(U|U~)dx,\displaystyle=-\int a\,\partial_{x_{1}}\eta^{\prime}(\tilde{U})f(U|\tilde{U})\,dx\,,
3\displaystyle\mathcal{H}_{3} =j=2dxjaqj(U;U~)dx,\displaystyle=\sum_{j=2}^{d}\int\partial_{x_{j}}a\,q_{j}(U;\tilde{U})\,dx\,,
4\displaystyle\mathcal{H}_{4} =j=2daxjη(U~)gj(U|U~)dx.\displaystyle=-\sum_{j=2}^{d}\int a\,\partial_{x_{j}}\eta^{\prime}(\tilde{U})g_{j}(U|\tilde{U})\,dx\,.

We are going to analyze those terms and get 𝒵,𝒟,,\mathcal{Z},\mathcal{D},\mathcal{H},\mathcal{E} defined in the lemma.

Hyperbolic parts and dissipation in yy. As S1𝐗1S_{1}^{\mathbf{X}_{1}} and Wn𝐗nW_{n}^{\mathbf{X}_{n}} are planar waves, aa and U~\tilde{U} do not depend on yy. Also, we know BjB_{j} are positive definite and η\eta^{\prime\prime} is strictly convex. Therefore, we have

3\displaystyle\mathcal{H}_{3} =4=0,\displaystyle=\mathcal{H}_{4}=0\,,
𝒟4\displaystyle\mathcal{D}_{4} =j=2daxj(η(U)η(U~))Bj(U)xj(η(U)η(U~))dx\displaystyle=-\sum_{j=2}^{d}\int a\,\partial_{x_{j}}\bigl{(}\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\bigl{)}B_{j}(U)\partial_{x_{j}}\bigl{(}\eta^{\prime}({U})-\eta^{\prime}(\tilde{U})\bigl{)}\,dx
CDy.\displaystyle\leq-CD_{y}\,.

Dissipation in x1x_{1}. By integration by parts, we have

𝒟1=\displaystyle\mathcal{D}_{1}= ax1(η(U)η(U~))B1(U)x1(η(U)η(U~))dx\displaystyle-\int a\,\partial_{x_{1}}\bigl{(}\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\bigl{)}B_{1}(U)\partial_{x_{1}}\bigl{(}\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\bigl{)}\,dx
x1a(η(U)η(U~))B1(U)x1(η(U)η(U~))dx\displaystyle-\int\partial_{x_{1}}a\,\bigl{(}\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\bigl{)}B_{1}(U)\partial_{x_{1}}\bigl{(}\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\bigl{)}\,dx
=\displaystyle= :𝒟11+𝒟12,\displaystyle:\,\mathcal{D}_{11}+\mathcal{D}_{12}\,,
𝒟2=\displaystyle\mathcal{D}_{2}= ax1(η(U)η(U~))(B1(U)B1(U~))x1η(U~)dx\displaystyle-\int a\,\partial_{x_{1}}\bigl{(}\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\bigl{)}\bigl{(}B_{1}(U)-B_{1}(\tilde{U})\bigl{)}\partial_{x_{1}}\eta^{\prime}(\tilde{U})\,dx
x1a(η(U)η(U~))(B1(U)B1(U~))x1η(U~)dx\displaystyle-\int\partial_{x_{1}}a\,\bigl{(}\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\bigl{)}\bigl{(}B_{1}(U)-B_{1}(\tilde{U})\bigl{)}\partial_{x_{1}}\eta^{\prime}(\tilde{U})\,dx
=\displaystyle= :𝒟21+𝒟22.\displaystyle:\,\mathcal{D}_{21}+\mathcal{D}_{22}\,.

We apply projections (4.3) and (4.8) to 𝒟11\mathcal{D}_{11}. By (3.2) and the fact that B1B_{1} is positive definite, we take ϵ2,δ0\epsilon_{2},\delta_{0} small enough and get

𝒟11\displaystyle\mathcal{D}_{11} (1C(ϵ2+δ0)C(ΛS1+ΛWn)δ0)\displaystyle\leq-\bigl{(}1-C(\epsilon_{2}+\delta_{0})-C(\Lambda_{S_{1}}+\Lambda_{W_{n}})\delta_{0}\bigl{)}
((𝐥𝟏x1μ1+i=2n𝐯𝐢(𝟏)x1μi)B1(U)(𝐥𝟏x1μ1+i=2n𝐯𝐢(𝟏)x1μi)dx\displaystyle\quad\Bigl{(}\int\bigl{(}\mathbf{l_{1}}\partial_{x_{1}}\mu_{1}+\sum_{i=2}^{n}\mathbf{v_{i}^{(1)}}\partial_{x_{1}}\mu_{i}\bigl{)}B_{1}(U_{-})\bigl{(}\mathbf{l_{1}}\partial_{x_{1}}\mu_{1}+\sum_{i=2}^{n}\mathbf{v_{i}^{(1)}}\partial_{x_{1}}\mu_{i}\bigl{)}\,dx
+(𝐥𝐧x1νn+i=1n1𝐯𝐢(𝐧)x1νi)B1(U)(𝐥𝐧x1νn+i=1n1𝐯𝐢(𝐧)x1νi)dx)\displaystyle\quad+\int\bigl{(}\mathbf{l_{n}}\partial_{x_{1}}\nu_{n}+\sum_{i=1}^{n-1}\mathbf{v_{i}^{(n)}}\partial_{x_{1}}\nu_{i}\bigl{)}B_{1}(U_{-})\bigl{(}\mathbf{l_{n}}\partial_{x_{1}}\nu_{n}+\sum_{i=1}^{n-1}\mathbf{v_{i}^{(n)}}\partial_{x_{1}}\nu_{i}\bigl{)}\,dx\Bigl{)}
(1C(ϵ2+δ01/2))(𝒟x1p+𝒟x1r).\displaystyle\leq-\bigl{(}1-C(\epsilon_{2}+\delta_{0}^{1/2})\bigl{)}(\mathcal{D}_{x_{1}}^{p}+\mathcal{D}_{x_{1}}^{r})\,.

Compared with 𝒟11\mathcal{D}_{11}, x1a\partial_{x_{1}}a and x1η(U~)\partial_{x_{1}}\eta^{\prime}(\tilde{U}) give extra smallness to 𝒟12,𝒟21,𝒟22\mathcal{D}_{12},\mathcal{D}_{21},\mathcal{D}_{22}.By Young’s inequality, (2.5), and (2.10), we take ϵ2,δ0\epsilon_{2},\delta_{0} small enough and get

𝒟1+𝒟2\displaystyle\mathcal{D}_{1}+\mathcal{D}_{2} (1C(ϵ2+δ01/4))(𝒟x1p+𝒟x1r)\displaystyle\leq-\bigl{(}1-C(\epsilon_{2}+\delta_{0}^{1/4})\bigl{)}(\mathcal{D}_{x_{1}}^{p}+\mathcal{D}_{x_{1}}^{r})
+Cδ01/2(|x1S1𝐗1|+|x1Wn𝐗n|)|UU~|2dx.\displaystyle\quad+C\delta_{0}^{1/2}\int\bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}|U-\tilde{U}|^{2}\,dx\,.

We have

η(U)η(U~)=μ1𝐥𝟏+i=2nμi𝐯𝐢(𝟏)=νn𝐥𝐧+i=1n1νi𝐯𝐢(𝐧),\displaystyle\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})=\mu_{1}\mathbf{l_{1}}+\sum_{i=2}^{n}\mu_{i}\mathbf{v_{i}^{(1)}}=\nu_{n}\mathbf{l_{n}}+\sum_{i=1}^{n-1}\nu_{i}\mathbf{v_{i}^{(n)}}\,,

which implies

μ1𝐥𝟏𝐫𝟏+i=2nμi𝐯𝐢(𝟏)𝐫𝟏=i=1n1νi𝐯𝐢(𝐧)𝐫𝟏,\displaystyle\mu_{1}\mathbf{l_{1}}\cdot\mathbf{r_{1}}+\sum_{i=2}^{n}\mu_{i}\mathbf{v_{i}^{(1)}}\cdot\mathbf{r_{1}}=\sum_{i=1}^{n-1}\nu_{i}\mathbf{v_{i}^{(n)}}\cdot\mathbf{r_{1}}\,,
i=2nμi𝐯𝐢(𝟏)𝐫𝐧=νn𝐥𝐧𝐫𝐧+i=1n1νi𝐯𝐢(𝐧)𝐫𝐧.\displaystyle\sum_{i=2}^{n}\mu_{i}\mathbf{v_{i}^{(1)}}\cdot\mathbf{r_{n}}=\nu_{n}\mathbf{l_{n}}\cdot\mathbf{r_{n}}+\sum_{i=1}^{n-1}\nu_{i}\mathbf{v_{i}^{(n)}}\cdot\mathbf{r_{n}}\,.

As 𝐥𝟏𝐫𝟏,𝐥𝐧𝐫𝐧0\mathbf{l_{1}}\cdot\mathbf{r_{1}},\mathbf{l_{n}}\cdot\mathbf{r_{n}}\neq 0, we get

i=2n|x1μi|2+i=1n1|x1νi|2C(|x1μ1|2+|x1νn|2),\displaystyle\sum_{i=2}^{n}|\partial_{x_{1}}\mu_{i}|^{2}+\sum_{i=1}^{n-1}|\partial_{x_{1}}\nu_{i}|^{2}\geq C\bigl{(}|\partial_{x_{1}}\mu_{1}|^{2}+|\partial_{x_{1}}\nu_{n}|^{2}\bigl{)}\,,

for some C>0C>0. Thus there exists some constant γ>0\gamma>0 that depends only on Bj,f,η,UB_{j},f,\eta,U_{-} such that

12𝒟x1r4γ𝒟x1p.\displaystyle\frac{1}{2}\mathcal{D}_{x_{1}}^{r}\geq 4\gamma\mathcal{D}_{x_{1}}^{p}\,.

Taking ϵ2,δ0\epsilon_{2},\delta_{0} small enough, we get

𝒟1+𝒟2\displaystyle\mathcal{D}_{1}+\mathcal{D}_{2} (1+3γ)𝒟x1p14𝒟x1r\displaystyle\leq-(1+3\gamma)\mathcal{D}_{x_{1}}^{p}-\frac{1}{4}\mathcal{D}_{x_{1}}^{r}
+Cδ01/2(|x1S1𝐗1|+|x1Wn𝐗n|)|UU~|2dx.\displaystyle\quad+C\delta_{0}^{1/2}\int\bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}|U-\tilde{U}|^{2}\,dx\,.

By the chain rule, Lemma 2.1, Lemma 2.2, and (3.2), we have

|𝒟3|Cδ0(|x1S1𝐗1|+|x1Wn𝐗n|)|UU~|2dx+Cϵ2|UU~||x12Rn|dx.\displaystyle|\mathcal{D}_{3}|\leq C\delta_{0}\int\bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}|U-\tilde{U}|^{2}\,dx+C\epsilon_{2}\int|U-\tilde{U}||\partial_{x_{1}}^{2}R_{n}|\,dx\,.

Hyperbolic parts in x1x_{1}. By the definition of the flux of the relative entropy (4.10), (3.2), (2.5), and (2.10), we take ϵ2,δ0\epsilon_{2},\delta_{0} small enough and get

1\displaystyle\mathcal{H}_{1} =x1aq1(U;U~)dx\displaystyle=\int\partial_{x_{1}}a\,q_{1}(U;\tilde{U})\,dx
=12(I1+I2)+C(ϵ21/2+δ01/2)(|x1S1𝐗1|+|x1Wn𝐗n|)|UU~|2dx,\displaystyle=\frac{1}{2}(I_{1}+I_{2})+C(\epsilon_{2}^{1/2}+\delta_{0}^{1/2})\int\bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}|U-\tilde{U}|^{2}\,dx\,,

where

I1=x1aS1𝐗1(UU~)η(U)f(U)(UU~)dx,\displaystyle I_{1}=\int\partial_{x_{1}}a_{S_{1}}^{\mathbf{X}_{1}}(U-\tilde{U})\eta^{\prime\prime}(U_{-})f^{\prime}(U_{-})(U-\tilde{U})\,dx\,,
I2=x1aWn𝐗n(UU~)η(U)f(U)(UU~)dx.\displaystyle I_{2}=\int\partial_{x_{1}}a_{W_{n}}^{\mathbf{X}_{n}}(U-\tilde{U})\eta^{\prime\prime}(U_{-})f^{\prime}(U_{-})(U-\tilde{U})\,dx\,.

We apply (4.4) to I1I_{1}. Recall (4.6). Let

v=i=2nμiη(U)1𝐯𝐢(𝟏)V.\displaystyle v=\sum_{i=2}^{n}\mu_{i}\eta^{\prime\prime}(U_{-})^{-1}\mathbf{v_{i}^{(1)}}\in V\,.

By (1.18), (4.4), (4.5), and (4.7), we take ϵ2,δ0\epsilon_{2},\delta_{0} small enough and get

I1\displaystyle I_{1} =x1aS1𝐗1(UU~)η(U)(f(U)λ1I)(UU~)dx+2𝒵2\displaystyle=\int\partial_{x_{1}}a_{S_{1}}^{\mathbf{X}_{1}}(U-\tilde{U})\eta^{\prime\prime}(U_{-})\bigl{(}f^{\prime}(U_{-})-\lambda_{1}I\bigl{)}(U-\tilde{U})\,dx+2\mathcal{Z}_{2}
ΛS1(λ2λ1)δS1η(U)P(v)P(v)x1kS1𝐗1dx\displaystyle\leq-{\Lambda_{S_{1}}}(\lambda_{2}-\lambda_{1})\delta_{S_{1}}\int\eta^{\prime\prime}(U_{-})P(v)\cdot P(v)\;\partial_{x_{1}}{k_{S_{1}}^{\mathbf{X}_{1}}}\,dx
+C(ϵ21/2+δ01/2)|x1S1𝐗1||UU~|2dx+2𝒵2\displaystyle\quad+C(\epsilon_{2}^{1/2}+\delta_{0}^{1/2})\int|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}||U-\tilde{U}|^{2}\,dx+2\mathcal{Z}_{2}
CΛS1(λ2λ1)i=2nδS1μi2x1kS1𝐗1dx\displaystyle\leq-C{\Lambda_{S_{1}}}(\lambda_{2}-\lambda_{1})\sum_{i=2}^{n}\delta_{S_{1}}\int\mu_{i}^{2}\;\partial_{x_{1}}{k_{S_{1}}^{\mathbf{X}_{1}}}\,dx
+C(ϵ21/2+δ01/2)|x1S1𝐗1||UU~|2dx+2𝒵2,\displaystyle\quad+C(\epsilon_{2}^{1/2}+\delta_{0}^{1/2})\int|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}||U-\tilde{U}|^{2}\,dx+2\mathcal{Z}_{2}\,,

where

𝒵2=λ12x1aS1𝐗1(UU~)η(U)(UU~)dx.\displaystyle\mathcal{Z}_{2}=\frac{\lambda_{1}}{2}\int\partial_{x_{1}}a_{S_{1}}^{\mathbf{X}_{1}}(U-\tilde{U})\eta^{\prime\prime}(U_{-})(U-\tilde{U})\,dx\,.

Similarly, we get

I2\displaystyle I_{2} =x1aWn𝐗n(UU~)η(U)(f(U)λnI)(UU~)dx+2𝒵3\displaystyle=\int\partial_{x_{1}}a_{W_{n}}^{\mathbf{X}_{n}}(U-\tilde{U})\eta^{\prime\prime}(U_{-})\bigl{(}f^{\prime}(U_{-})-\lambda_{n}I\bigl{)}(U-\tilde{U})\,dx+2\mathcal{Z}_{3}
CΛWn(λn1λn)i=1n1δWnνi2x1kWn𝐗ndx\displaystyle\leq C\Lambda_{W_{n}}(\lambda_{n-1}-\lambda_{n})\sum_{i=1}^{n-1}\delta_{W_{n}}\int\nu_{i}^{2}\;\partial_{x_{1}}{k_{W_{n}}^{\mathbf{X}_{n}}}\,dx
+C(ϵ21/2+δ01/2)|x1Wn𝐗n||UU~|2dx+2𝒵3,\displaystyle\quad+C(\epsilon_{2}^{1/2}+\delta_{0}^{1/2})\int|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}||U-\tilde{U}|^{2}\,dx+2\mathcal{Z}_{3}\,,

where

𝒵3=λn2x1aWn𝐗n(UU~)η(U)(UU~)dx.\displaystyle\mathcal{Z}_{3}=\frac{\lambda_{n}}{2}\int\partial_{x_{1}}a_{W_{n}}^{\mathbf{X}_{n}}(U-\tilde{U})\eta^{\prime\prime}(U_{-})(U-\tilde{U})\,dx\,.

As λ2λ1,λnλn1>0\lambda_{2}-\lambda_{1},\lambda_{n}-\lambda_{n-1}>0, we get

1\displaystyle\mathcal{H}_{1} Cmin{ΛS1,ΛWn}C+𝒵2+𝒵3\displaystyle\leq-C\textup{min}\{\Lambda_{S_{1}},\Lambda_{W_{n}}\}\mathcal{H}_{C}+\mathcal{Z}_{2}+\mathcal{Z}_{3}
+C(ϵ21/2+δ01/2)(|x1S1𝐗1|+|x1Wn𝐗n|)|UU~|2dx.\displaystyle\quad+C(\epsilon_{2}^{1/2}+\delta_{0}^{1/2})\int\bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}|U-\tilde{U}|^{2}\,dx\,.

By the definition of the relative flux (4.9) and (3.2), we take ϵ2,δ0\epsilon_{2},\delta_{0} small enough and get

2\displaystyle\mathcal{H}_{2} =ax1η(U~)f(U|U~)dx\displaystyle=-\int a\,\partial_{x_{1}}\eta^{\prime}(\tilde{U})f(U|\tilde{U})\,dx
I3+I4+C(ϵ2+δ01/2)(|x1S1𝐗1|+|x1Wn𝐗n|)|UU~|2dx,\displaystyle\leq I_{3}+I_{4}+C(\epsilon_{2}+\delta_{0}^{1/2})\int\bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}|U-\tilde{U}|^{2}\,dx\,,

where

I3\displaystyle I_{3} =δS1x1kS1𝐗1𝐥𝟏f(U):(UU~)(UU~)dx,\displaystyle=-\delta_{S_{1}}\int\;\partial_{x_{1}}{k_{S_{1}}^{\mathbf{X}_{1}}}\,\mathbf{l_{1}}\cdot f^{\prime\prime}(U_{-}):(U-\tilde{U})\otimes(U-\tilde{U})\,dx\,,
I4\displaystyle I_{4} ={δWnx1kSn𝐗n𝐥𝐧f(U):(UU~)(UU~)dx, if Wn=Sn,δWnx1kRn𝐥𝐧f(U):(UU~)(UU~)dx, if Wn=Rn.\displaystyle=\begin{cases}-\delta_{W_{n}}\int\;\partial_{x_{1}}{k_{S_{n}}^{\mathbf{X}_{n}}}\,\mathbf{l_{n}}\cdot f^{\prime\prime}(U_{-}):(U-\tilde{U})\otimes(U-\tilde{U})\,dx\,,\textup{ if }W_{n}=S_{n}\,,\\ \delta_{W_{n}}\int\;\partial_{x_{1}}{k_{R_{n}}}\,\mathbf{l_{n}}\cdot f^{\prime\prime}(U_{-}):(U-\tilde{U})\otimes(U-\tilde{U})\,dx\,,\textup{ if }W_{n}=R_{n}\,.\end{cases}

We apply (4.4) to I3I_{3}. As the hyperbolic “scalarization” will happen in all the directions except the special direction 𝐫𝟏\mathbf{r_{1}} of the wave S1𝐗1S_{1}^{\mathbf{X}_{1}}, we use Young’s inequality to make the hyperbolic term in the 𝐫𝟏\mathbf{r_{1}} direction as small as possible

I3C(ϵ2+δ0)(|x1S1𝐗1|+|x1Wn𝐗n|)|UU~|2dx\displaystyle I_{3}-C(\epsilon_{2}+\delta_{0})\int\bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}|U-\tilde{U}|^{2}\,dx
(1+δ2)S1+Cδi=2nδS1μi2x1kS1𝐗1dx.\displaystyle\leq(1+\frac{\delta}{2})\mathcal{H}_{S_{1}}+\frac{C}{\delta}\sum_{i=2}^{n}\delta_{S_{1}}\int\mu_{i}^{2}\;\partial_{x_{1}}{k_{S_{1}}^{\mathbf{X}_{1}}}\,dx\,.

Similarly, we get

I4C(ϵ2+δ0)(|x1S1𝐗1|+|x1Wn𝐗n|)|UU~|2dx\displaystyle I_{4}-C(\epsilon_{2}+\delta_{0})\int\bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}|U-\tilde{U}|^{2}\,dx
Cδi=1n1δWnνi2x1kWn𝐗ndx{+(1+δ2)Sn, if Wn=Sn,(1δ2)Rn, if Wn=Rn.\displaystyle\leq\frac{C}{\delta}\sum_{i=1}^{n-1}\delta_{W_{n}}\int\nu_{i}^{2}\;\partial_{x_{1}}{k_{W_{n}}^{\mathbf{X}_{n}}}\,dx\begin{cases}+(1+\frac{\delta}{2})\mathcal{H}_{S_{n}}\,,\textup{ if }W_{n}=S_{n}\,,\\ -(1-\frac{\delta}{2})\mathcal{H}_{R_{n}}\,,\textup{ if }W_{n}=R_{n}\,.\end{cases}

Then we have

2C(ϵ2+δ01/2)(|x1S1𝐗1|+|x1Wn𝐗n|)|UU~|2dx\displaystyle\mathcal{H}_{2}-C(\epsilon_{2}+\delta_{0}^{1/2})\int\bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}|U-\tilde{U}|^{2}\,dx
CδC+(1+δ2)S1{+(1+δ2)Sn, if Wn=Sn,(1δ2)Rn, if Wn=Rn.\displaystyle\leq\frac{C}{\delta}\mathcal{H}_{C}+(1+\frac{\delta}{2})\mathcal{H}_{S_{1}}\begin{cases}+(1+\frac{\delta}{2})\mathcal{H}_{S_{n}}\,,\textup{ if }W_{n}=S_{n}\,,\\ -(1-\frac{\delta}{2})\mathcal{H}_{R_{n}}\,,\textup{ if }W_{n}=R_{n}\,.\end{cases}

In all, we get

1+2C(ϵ21/2+δ01/2)(|x1S1𝐗1|+|x1Wn𝐗n|)|UU~|2dx𝒵2𝒵3\displaystyle\mathcal{H}_{1}+\mathcal{H}_{2}-C(\epsilon_{2}^{1/2}+\delta_{0}^{1/2})\int\bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}|U-\tilde{U}|^{2}\,dx-\mathcal{Z}_{2}-\mathcal{Z}_{3}
(Cmin{ΛS1,ΛWn}+Cδ)C+(1+δ2)S1\displaystyle\leq\bigl{(}-C\textup{min}\{\Lambda_{S_{1}},\Lambda_{W_{n}}\}+\frac{C}{\delta}\bigl{)}\mathcal{H}_{C}+(1+\frac{\delta}{2})\mathcal{H}_{S_{1}}
{+(1+δ2)Sn, if Wn=Sn,(1δ2)Rn, if Wn=Rn.\displaystyle\quad\begin{cases}+(1+\frac{\delta}{2})\mathcal{H}_{S_{n}}\,,\textup{ if }W_{n}=S_{n}\,,\\ -(1-\frac{\delta}{2})\mathcal{H}_{R_{n}}\,,\textup{ if }W_{n}=R_{n}\,.\end{cases}

Shift terms. We have

ta=(𝐗˙1σ1)x1aS1𝐗1+{(𝐗˙nσn)x1aSn𝐗n, if Wn=Sn,ΛRnx1f(Rn)𝐥𝐧, if Wn=Rn.\displaystyle\partial_{t}a=(\dot{\mathbf{X}}_{1}-{\sigma}_{1})\partial_{x_{1}}a_{S_{1}}^{\mathbf{X}_{1}}+\begin{cases}(\dot{\mathbf{X}}_{n}-\sigma_{n})\partial_{x_{1}}a_{S_{n}}^{\mathbf{X}_{n}}\,,\textup{ if }W_{n}=S_{n}\,,\\ \Lambda_{R_{n}}\partial_{x_{1}}f(R_{n})\cdot\mathbf{l_{n}}\,,\textup{ if }W_{n}=R_{n}\,.\end{cases}

By (2.5) and (2.10), we take ϵ2,δ0\epsilon_{2},\delta_{0} small enough and get

𝒵1+𝒵2+𝒵3\displaystyle\mathcal{Z}_{1}+\mathcal{Z}_{2}+\mathcal{Z}_{3} =𝒵+𝒵4+C(ϵ21/2+δ01/2)(|x1S1𝐗1|+|x1Wn𝐗n|)|UU~|2dx,\displaystyle=\mathcal{Z}+\mathcal{Z}_{4}+C(\epsilon_{2}^{1/2}+\delta_{0}^{1/2})\int\bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}|U-\tilde{U}|^{2}\,dx\,,

where

𝒵4={0, if Wn=Sn,ΛRn(x1f(Rn)λnx1Rn)𝐥𝐧η(U|U~)dx, if Wn=Rn..\displaystyle\mathcal{Z}_{4}=\begin{cases}0\,,\textup{ if }W_{n}=S_{n}\,,\\ \Lambda_{R_{n}}\int\bigl{(}\partial_{x_{1}}f(R_{n})-\lambda_{n}\partial_{x_{1}}R_{n}\bigl{)}\cdot\mathbf{l_{n}}\,\eta(U|\tilde{U})\,dx\,,\textup{ if }W_{n}=R_{n}\,.\end{cases}\,.

By Taylor expansion and Lemma 2.2, we take ϵ2,δ0\epsilon_{2},\delta_{0} small enough and get

|𝒵4|\displaystyle|\mathcal{Z}_{4}| CΛRn|(f(U)λnI)x1Rn𝐥𝐧||UU~|2dx\displaystyle\leq C\Lambda_{R_{n}}\int\big{|}\bigl{(}f^{\prime}(U_{-})-{\lambda_{n}}I\bigl{)}\partial_{x_{1}}R_{n}\cdot\mathbf{l_{n}}\big{|}|U-\tilde{U}|^{2}\,dx
+CΛRnδ0|x1Rn||UU~|2dx\displaystyle\quad+C\Lambda_{R_{n}}\delta_{0}\int|\partial_{x_{1}}R_{n}||U-\tilde{U}|^{2}\,dx
Cδ01/2|x1Rn||UU~|2dx.\displaystyle\leq C\delta_{0}^{1/2}\int|\partial_{x_{1}}R_{n}||U-\tilde{U}|^{2}\,dx\,.

In all, we get

𝒵1+𝒵2+𝒵3𝒵+C(ϵ21/2+δ01/2)(|x1S1𝐗1|+|x1Wn𝐗n|)|UU~|2dx.\displaystyle\mathcal{Z}_{1}+\mathcal{Z}_{2}+\mathcal{Z}_{3}\leq\mathcal{Z}+C(\epsilon_{2}^{1/2}+\delta_{0}^{1/2})\int\bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}|U-\tilde{U}|^{2}\,dx\,.

Interaction terms. Note C,S1,Wn0\mathcal{H}_{C},\mathcal{H}_{S_{1}},\mathcal{H}_{W_{n}}\geq 0. We have

(4.11) (|x1S1𝐗1|+|x1Wn𝐗n|)|UU~|2C(C+S1+Wn).\displaystyle\int\bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|\partial_{x_{1}}W_{n}^{\mathbf{X}_{n}}|\bigl{)}|U-\tilde{U}|^{2}\leq C(\mathcal{H}_{C}+\mathcal{H}_{S_{1}}+\mathcal{H}_{W_{n}})\,.

If Wn=SnW_{n}=S_{n}, then Lemma 4.2 and Lemma 4.1 give

|1|+|2|\displaystyle|\mathcal{E}_{1}|+|\mathcal{E}_{2}|
C|UU~|(|x1S1𝐗1||Sn𝐗nUm|+|x1Sn𝐗n||S1𝐗1Um|\displaystyle\leq C\int|U-\tilde{U}|\Bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}||S_{n}^{\mathbf{X}_{n}}-U_{m}|+|\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}||S_{1}^{\mathbf{X}_{1}}-U_{m}|
+|x1Sn𝐗n||x1S1𝐗1|)dx\displaystyle\quad+|\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\Bigl{)}\,dx
C((|x1S1𝐗1|+|x1Sn𝐗n|)|UU~|2dx)1/2(|x1S1𝐗1||Sn𝐗nUm|2L11/2\displaystyle\leq C\Bigl{(}\int\bigl{(}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|+|\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}|\bigl{)}|U-\tilde{U}|^{2}\,dx\Bigl{)}^{1/2}\Bigl{(}\big{\|}|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}||S_{n}^{\mathbf{X}_{n}}-U_{m}|^{2}\big{\|}_{L^{1}}^{1/2}
+|x1Sn𝐗n||S1𝐗1Um|2L11/2+|x1Sn𝐗n||x1S1𝐗1|L11/2)\displaystyle\quad+\big{\|}|\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}||S_{1}^{\mathbf{X}_{1}}-U_{m}|^{2}\big{\|}_{L^{1}}^{1/2}+\big{\|}|\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\big{\|}_{L^{1}}^{1/2}\Bigl{)}
δ4(C+S1+Wn)+Cδ(δSn2δS1eCδS1t+δSnδS12eCδSnt).\displaystyle\leq\frac{\delta}{4}(\mathcal{H}_{C}+\mathcal{H}_{S_{1}}+\mathcal{H}_{W_{n}})+\frac{C}{\delta}(\delta_{S_{n}}^{2}\delta_{S_{1}}e^{-C\delta_{S_{1}}t}+\delta_{S_{n}}\delta_{S_{1}}^{2}e^{-C\delta_{S_{n}}t})\,.

If Wn=RnW_{n}=R_{n}, then (3.1), Lemma 4.2, and Lemma 4.1 give

|1|+|2|\displaystyle|\mathcal{E}_{1}|+|\mathcal{E}_{2}|
C|UU~|(|x12Rn|+|x1Rn|2+|x1Rn||x1S1𝐗1|\displaystyle\leq C\int|U-\tilde{U}|\Bigl{(}|\partial_{x_{1}}^{2}R_{n}|+|\partial_{x_{1}}R_{n}|^{2}+|\partial_{x_{1}}R_{n}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|
+|x1Rn||S1𝐗1Um|+|x1S1𝐗1||RnUm|)dx\displaystyle\quad+|\partial_{x_{1}}R_{n}||S_{1}^{\mathbf{X}_{1}}-U_{m}|+|\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}||R_{n}-U_{m}|\Bigl{)}\,dx
C|UU~||x12Rn|+Cϵ2(x1RnL42+|x1Rn||x1S1𝐗1|L2\displaystyle\leq C\int|U-\tilde{U}||\partial_{x_{1}}^{2}R_{n}|+C\epsilon_{2}\Bigl{(}\|\partial_{x_{1}}R_{n}\|_{L^{4}}^{2}+\big{\|}|\partial_{x_{1}}R_{n}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\big{\|}_{L^{2}}
+|RnUm||x1S1𝐗1|L2+|S1𝐗1Um||x1Rn|L2)\displaystyle\quad+\big{\|}|R_{n}-U_{m}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\big{\|}_{L^{2}}+\big{\|}|S_{1}^{\mathbf{X}_{1}}-U_{m}||\partial_{x_{1}}R_{n}|\big{\|}_{L^{2}}\Bigl{)}
CE|UU~||x12Rn|+Cϵ2x1RnL42+Cϵ2δRnδS1eCδS1t,\displaystyle\leq C_{E}\int|U-\tilde{U}||\partial_{x_{1}}^{2}R_{n}|+C\epsilon_{2}\|\partial_{x_{1}}R_{n}\|_{L^{4}}^{2}+C\epsilon_{2}\delta_{R_{n}}\delta_{S_{1}}e^{-C\delta_{S_{1}}t}\,,

where CE>0C_{E}>0 is a constant that depends only on Bj,f,η,UB_{j},f,\eta,U_{-}.

Some estimates. By Hölder’s inequality and the Gagliardo-Nirenberg inequality proved in [24], we have

|UU~||x12Rn|dxCx1(UU~)L21/2UU~L21/2x12RnL1.\int|U-\tilde{U}||\partial_{x_{1}}^{2}R_{n}|\,dx\leq C\big{\|}\partial_{x_{1}}(U-\tilde{U})\big{\|}_{L^{2}}^{1/2}\|U-\tilde{U}\|_{L^{2}}^{1/2}\|\partial_{x_{1}}^{2}R_{n}\|_{L^{1}}\,.

The Young’s inequality and (3.1) give

2CE|UU~||x12Rn|dxCγ1/3ϵ22/3x12RnL14/3+γDx1p+18Dx1r.2C_{E}\int|U-\tilde{U}||\partial_{x_{1}}^{2}R_{n}|\,dx\leq\frac{C}{\gamma^{1/3}}\epsilon_{2}^{2/3}\|\partial_{x_{1}}^{2}R_{n}\|_{L^{1}}^{4/3}+{\gamma}D_{x_{1}}^{p}+\frac{1}{8}D_{x_{1}}^{r}\,.

Finally, we can take ϵ2,δ0\epsilon_{2},\delta_{0} small enough and prove the lemma because of (4.11). ∎

4.4. Poincaré type inequality

Lemma 4.4.

For any UnU_{-}\in\mathbb{R}^{n}, any 0<γ<10<\gamma<1, and any ΛS1,ΛWn,C~1,C~n>0\Lambda_{S_{1}},\Lambda_{W_{n}},\tilde{C}_{1},\tilde{C}_{n}>0, there exist δ0,ϵ2,C>0\delta_{0},\epsilon_{2},C>0 such that the following is true.

Assume Assumption 3.2. Let μ~i\tilde{\mu}_{i} be μ1\mu_{1} if i=1i=1 and be νn\nu_{n} if i=ni=n. Then for any i{1,n}i\in\{1,n\} and any t[0,T]t\in[0,T],

Si(U)(1+γ)Dx1p,i(U)+𝐗˙i(t)𝒴i(U)\displaystyle\mathcal{H}_{S_{i}}(U)-(1+\gamma)D_{x_{1}}^{p,i}(U)+\dot{\mathbf{X}}_{i}(t)\mathcal{Y}_{i}(U)
Cγ|x1μ~i|2dxCγδSiμ~i2x1kSi𝐗idxδSi2C~i|𝐗˙i(t)|2\displaystyle\leq-C\gamma\int|\partial_{x_{1}}{\tilde{\mu}_{i}}|^{2}\,dx-C\gamma\delta_{S_{i}}\int\tilde{\mu}_{i}^{2}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx-\frac{\delta_{S_{i}}}{2\tilde{C}_{i}}|\dot{\mathbf{X}}_{i}(t)|^{2}
+(𝐂3δSiC~i+𝐂4δSi)(δSiμ~ix1kSi𝐗idx)2+𝐂5C~iC(U)+CδSiDy(U),\displaystyle\quad+\bigl{(}-\frac{\mathbf{C}_{3}}{\delta_{S_{i}}}\tilde{C}_{i}+\frac{\mathbf{C}_{4}}{\delta_{S_{i}}}\bigl{)}\bigl{(}\delta_{S_{i}}\int\tilde{\mu}_{i}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx\bigl{)}^{2}+\mathbf{C}_{5}\tilde{C}_{i}\mathcal{H}_{C}(U)+C\delta_{S_{i}}D_{y}(U)\,,

where 𝐂3,𝐂4,𝐂5>0\mathbf{C}_{3},\mathbf{C}_{4},\mathbf{C}_{5}>0 are constants that depend only on Bj,f,η,UB_{j},f,\eta,U_{-},

Dx1p,i(U)\displaystyle D_{x_{1}}^{p,i}(U) =B1(U)𝐥𝐢𝐥𝐢|x1μ~i|2dx,\displaystyle={B_{1}(U_{-})\mathbf{l_{i}}\cdot\mathbf{l_{i}}}\int|\partial_{x_{1}}{\tilde{\mu}_{i}}|^{2}\,dx\,,

and Si,C,𝒟y,𝒴i\mathcal{H}_{S_{i}},\mathcal{H}_{C},\mathcal{D}_{y},\mathcal{Y}_{i} are defined in Lemma 4.3.

Remark. By taking C~i\tilde{C}_{i} large enough, the positive remainders are 𝐂5C~iC\mathbf{C}_{5}\tilde{C}_{i}\mathcal{H}_{C} and CδSiDy(U)C\delta_{S_{i}}D_{y}(U). We will take ΛS1,ΛWn\Lambda_{S_{1}},\Lambda_{W_{n}} large enough to control 𝐂5C~iC\mathbf{C}_{5}\tilde{C}_{i}\mathcal{H}_{C} and δ0\delta_{0} small enough to control CδSiDy(U)C\delta_{S_{i}}D_{y}(U) in Lemma 4.5 in subsection 4.5.

Proof.

First, we fix the time tt and the transverse direction yy and compactify the problem by changing variables. Let

(Si)t,y\displaystyle(\mathcal{H}_{S_{i}})^{t,y} =cf(i)δSiμ~i(t,(x1,y))2x1kSi𝐗idx1,\displaystyle=-c_{f}^{(i)}\delta_{S_{i}}\int\tilde{\mu}_{i}\bigl{(}t,(x_{1},y)\bigl{)}^{2}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,d{x_{1}}\,,
(Dx1p,i)t,y\displaystyle(D_{x_{1}}^{p,i})^{t,y} =B1(U)𝐥𝐢𝐥𝐢|x1μ~i(t,(x1,y))|2dx1.\displaystyle={B_{1}(U_{-})\mathbf{l_{i}}\cdot\mathbf{l_{i}}}\int\big{|}\partial_{x_{1}}{\tilde{\mu}_{i}}\bigl{(}t,(x_{1},y)\bigl{)}\big{|}^{2}\,dx_{1}\,.

As kSi𝐗i{k_{S_{i}}^{\mathbf{X}_{i}}} is strictly increasing, we define the change of variable

x1z:=kSi𝐗i(t,(x1,y)) and h(z)=μ~i(t,(x1,y)).x_{1}\mapsto z:={k_{S_{i}}^{\mathbf{X}_{i}}}\bigl{(}t,(x_{1},y)\bigl{)}\text{ and }h(z)=\tilde{\mu}_{i}\bigl{(}t,(x_{1},y)\bigl{)}\,.

By (2.4), we can take δ0\delta_{0} small enough and get

(Si)t,y\displaystyle(\mathcal{H}_{S_{i}})^{t,y} =cf(i)δSi01h(z)2dz,\displaystyle=-c_{f}^{(i)}\delta_{S_{i}}\int_{0}^{1}h(z)^{2}\,dz\,,
(1+γ)(Dx1p,i)t,y\displaystyle-(1+\gamma)(D_{x_{1}}^{p,i})^{t,y} (12+γ4)cf(i)δSi01h(z)2z(1z)dz.\displaystyle\leq(\frac{1}{2}+\frac{\gamma}{4})\,c_{f}^{(i)}\delta_{S_{i}}\int_{0}^{1}h^{\prime}(z)^{2}z(1-z)\,dz\,.

Lemma 1.3 gives

01h(z)2dz\displaystyle\int_{0}^{1}h(z)^{2}\,dz =01(h(z)01h(z)dz)2dz+(01h(z)dz)2\displaystyle=\int_{0}^{1}\bigl{(}h(z)-\int_{0}^{1}h(z)\,dz\bigl{)}^{2}\,dz+\bigl{(}\int_{0}^{1}h(z)\,dz\bigl{)}^{2}
1201h(z)2z(1z)dz+(01h(z)dz)2,\displaystyle\leq\frac{1}{2}\int_{0}^{1}h^{\prime}(z)^{2}z(1-z)\,dz+\bigl{(}\int_{0}^{1}h(z)\,dz\bigl{)}^{2}\,,

which implies

(Si)t,y(1+γ)(Dx1p,i)t,y\displaystyle(\mathcal{H}_{S_{i}})^{t,y}-(1+\gamma)(D_{x_{1}}^{p,i})^{t,y}
CγδSiμ~i2x1kSi𝐗idx1Cγ|x1μ~i|2dx1+CδSi(δSiμ~ix1kSi𝐗idx1)2,\displaystyle\leq-C\gamma\delta_{S_{i}}\int\tilde{\mu}_{i}^{2}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx_{1}-C\gamma\int|\partial_{x_{1}}{\tilde{\mu}_{i}}|^{2}\,dx_{1}+\frac{C}{\delta_{S_{i}}}\bigl{(}\delta_{S_{i}}\int\tilde{\mu}_{i}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx_{1}\bigl{)}^{2}\,,

where C>0C>0 is independent of t,yt,y. Therefore, we have

Si(U)(1+γ)Dx1p,i(U)\displaystyle\mathcal{H}_{S_{i}}(U)-(1+\gamma)D_{x_{1}}^{p,i}(U)
CγδSiμ~i2x1kSi𝐗idxCγ|x1μ~i|2dx+CδSi(δSiμ~ix1kSi𝐗idx1)2dy.\displaystyle\leq-C\gamma\delta_{S_{i}}\int\tilde{\mu}_{i}^{2}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx-C\gamma\int|{\partial_{x_{1}}\tilde{\mu}_{i}}|^{2}\,dx+\frac{C}{\delta_{S_{i}}}\int\bigl{(}\delta_{S_{i}}\int\tilde{\mu}_{i}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,d{x_{1}}\bigl{)}^{2}dy\,.

Using the classical Poincaré inequality, we find

(δSiμ~ix1kSi𝐗idx1)2dy\displaystyle\int\bigl{(}\delta_{S_{i}}\int\tilde{\mu}_{i}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx_{1}\bigl{)}^{2}\,dy
C(δSiμ~ix1kSi𝐗idx)2+C|y(δSiμ~ix1kSi𝐗idx1)|2dy\displaystyle\leq C\bigl{(}\delta_{S_{i}}\int\tilde{\mu}_{i}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx\bigl{)}^{2}+C\int\big{|}\nabla_{y}\bigl{(}\delta_{S_{i}}\int\tilde{\mu}_{i}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx_{1}\bigl{)}\big{|}^{2}\,dy
C(δSiμ~ix1kSi𝐗idx)2+CδSi2𝒟y.\displaystyle\leq C\bigl{(}\delta_{S_{i}}\int\tilde{\mu}_{i}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx\bigl{)}^{2}+C{\delta_{S_{i}}^{2}}\mathcal{D}_{y}\,.

By Young’s inequality, Hölder’s inequality, (2.5), and (3.2), we take ϵ2,δ0\epsilon_{2},\delta_{0} small enough and get

(δSiC~i)2|𝐗˙i(t)|2\displaystyle(\frac{\delta_{S_{i}}}{\tilde{C}_{i}})^{2}|\dot{\mathbf{X}}_{i}(t)|^{2} =(aη(U~)(UU~)x1Si𝐗idx)2\displaystyle=\bigl{(}\int a\,\eta^{\prime\prime}(\tilde{U})(U-\tilde{U})\partial_{x_{1}}S_{i}^{\mathbf{X}_{i}}\,dx\bigl{)}^{2}
((η(U)η(U~))x1Si𝐗idx)2\displaystyle\geq\bigl{(}\int\bigl{(}\eta^{\prime}(U)-\eta^{\prime}(\tilde{U})\bigl{)}\partial_{x_{1}}S_{i}^{\mathbf{X}_{i}}\,dx\bigl{)}^{2}
C(ϵ21/2+δ01/2)(|UU~||x1Si𝐗i|dx)2\displaystyle\quad-C(\epsilon_{2}^{1/2}+\delta_{0}^{1/2})\bigl{(}\int|U-\tilde{U}||\partial_{x_{1}}S_{i}^{\mathbf{X}_{i}}|\,dx\bigl{)}^{2}
C(δSiμ~ix1kSi𝐗idx)2Cji(δSiμ~jx1kSi𝐗idx)2\displaystyle\geq C\bigl{(}\delta_{S_{i}}\int\tilde{\mu}_{i}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx\bigl{)}^{2}-C\sum_{j\neq i}\bigl{(}\delta_{S_{i}}\int\tilde{\mu}_{j}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx\bigl{)}^{2}
C(ϵ21/2+δ01/2)δSi2|UU~|2x1kSi𝐗idx\displaystyle\quad-C(\epsilon_{2}^{1/2}+\delta_{0}^{1/2})\,\delta_{S_{i}}^{2}\int|U-\tilde{U}|^{2}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx
C(δSiμ~ix1kSi𝐗idx)2CjiδSi2μ~j2x1kSi𝐗idx\displaystyle\geq C\bigl{(}\delta_{S_{i}}\int\tilde{\mu}_{i}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx\bigl{)}^{2}-C\sum_{j\neq i}\delta_{S_{i}}^{2}\int\tilde{\mu}_{j}^{2}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx
C(ϵ21/2+δ01/2)δSi2μ~i2x1kSi𝐗idx,\displaystyle\quad-C(\epsilon_{2}^{1/2}+\delta_{0}^{1/2})\,\delta_{S_{i}}^{2}\int\tilde{\mu}_{i}^{2}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx\,,

where μ~j=μj\tilde{\mu}_{j}=\mu_{j} if i=1i=1 and μ~j=νj\tilde{\mu}_{j}=\nu_{j} if i=ni=n for any jij\neq i.

By (2.5), (3.2), and Hölder’s inequality, we take ϵ2,δ0\epsilon_{2},\delta_{0} small enough and get

𝐗˙i𝒴i+δSi2C~i|𝐗˙i(t)|2\displaystyle\dot{\mathbf{X}}_{i}\mathcal{Y}_{i}+\frac{\delta_{S_{i}}}{2\tilde{C}_{i}}|\dot{\mathbf{X}}_{i}(t)|^{2}
=δSi2C~i|𝐗˙i(t)|2+𝐗˙i(t)x1aSi𝐗iη(U|U~)dx\displaystyle=-\frac{\delta_{S_{i}}}{2\tilde{C}_{i}}|\dot{\mathbf{X}}_{i}(t)|^{2}+\dot{\mathbf{X}}_{i}(t)\int\partial_{x_{1}}a_{S_{i}}^{\mathbf{X}_{i}}\,\eta({U|\tilde{U}})dx
δSi2C~i|𝐗˙i(t)|2+Cϵ2ΛSiC~iδSi(|UU~||x1Si𝐗i|dx)2\displaystyle\leq-\frac{\delta_{S_{i}}}{2\tilde{C}_{i}}|\dot{\mathbf{X}}_{i}(t)|^{2}+C\epsilon_{2}\Lambda_{S_{i}}\frac{\tilde{C}_{i}}{\delta_{S_{i}}}\bigl{(}\int|U-\tilde{U}||\partial_{x_{1}}S_{i}^{\mathbf{X}_{i}}|\,dx\bigl{)}^{2}
CδSiC~i(δSiμ~ix1kSi𝐗idx)2+CC~ijiδSiμ~j2x1kSi𝐗idx\displaystyle\leq-\frac{C}{\delta_{S_{i}}}\tilde{C}_{i}\bigl{(}\delta_{S_{i}}\int\tilde{\mu}_{i}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx\bigl{)}^{2}+C\tilde{C}_{i}\sum_{j\neq i}\delta_{S_{i}}\int\tilde{\mu}_{j}^{2}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx
+C(ϵ21/4+δ01/4)δSiμ~i2x1kSi𝐗idx.\displaystyle\quad+C(\epsilon_{2}^{1/4}+\delta_{0}^{1/4})\,\delta_{S_{i}}\int\tilde{\mu}_{i}^{2}\;\partial_{x_{1}}{k_{S_{i}}^{\mathbf{X}_{i}}}\,dx\,.

We take ϵ2,δ0\epsilon_{2},\delta_{0} small enough and get the estimate. ∎

4.5. L2L^{2} estimates

Now it is time to choose ΛS1,ΛWn,C~1,C~n\Lambda_{S_{1}},\Lambda_{W_{n}},\tilde{C}_{1},\tilde{C}_{n} that work for both Lemma 4.3 and Lemma 4.4.

Lemma 4.5.

For any UnU_{-}\in\mathbb{R}^{n}, there exist δ0,ϵ2,C,ΛS1,ΛWn,C~1,C~n>0\delta_{0},\epsilon_{2},C,\Lambda_{S_{1}},\Lambda_{W_{n}},\tilde{C}_{1},\tilde{C}_{n}>0 such that the following is true.

Assume Assumption 3.2. Then for any t[0,T]t\in[0,T],

U(t,)U~(t,)L2(×𝕋d1)2+0tD0(U)+GS1(U)+GWn(U)+YdsCU0U~0L2(×𝕋d1)2+CE2,\displaystyle\begin{split}\|U(t,\cdot)-\tilde{U}(t,\cdot)\|_{L^{2}(\mathbb{R}\times{\mathbb{T}^{d-1}})}^{2}+\int_{0}^{t}D_{0}(U)+G_{S_{1}}(U)+G_{W_{n}}(U)+Y\,ds\\ \leq C\|U_{0}-\tilde{U}_{0}\|_{L^{2}(\mathbb{R}\times{\mathbb{T}^{d-1}})}^{2}+CE^{2}\,,\end{split}

where D0,GS1,GWn,Y,ED_{0},G_{S_{1}},G_{W_{n}},Y,E are defined in (3.5).

Proof.

We fix γ\gamma as in Lemma 4.3. We choose δ>0\delta>0 small enough such that

δ<1 and (1+δ)(1+γ)1+32γ.\displaystyle\delta<1\,\text{ and }\,(1+\delta)(1+\gamma)\leq 1+\frac{3}{2}\gamma\,.

We take

C~i=2𝐂4𝐂3.\displaystyle\tilde{C}_{i}=\frac{2\mathbf{C}_{4}}{\mathbf{C}_{3}}\,.

We take ΛS1,ΛWn=Λ\Lambda_{S_{1}},\Lambda_{W_{n}}=\Lambda where

𝐂1Λ+𝐂2δ+(1+δ)𝐂5C~i=1.\displaystyle-\mathbf{C}_{1}\Lambda+\frac{\mathbf{C}_{2}}{\delta}+(1+\delta)\mathbf{C}_{5}\tilde{C}_{i}=-1\,.

Finally, we take ϵ2,δ0\epsilon_{2},\delta_{0} small enough such that Lemma 4.3, Lemma 4.4, and (2.11) give the estimate. ∎

5. Proof of Prop 3.3

5.1. Some estimates

Before proving the HmH^{m} estimates, we bound the higher-order terms evaluated in Lemma 4.2.

Recall mm defined in (1.8). Let ϕ:×𝕋d1n\phi:\mathbb{R}\times{\mathbb{T}^{d-1}}\rightarrow\mathbb{R}^{n} be a function. The Gagliardo-Nirenberg inequality for functions defined on d\mathbb{R}^{d} is proved in [24]. Together with the periodicity in the transverse direction, we get the following two inequalities. If 1qm11\leq q\leq m-1, then for any 2p<2dd2q2\leq p<\frac{2d}{d-2q}, there exists C>0C>0 such that

(5.1) ϕLp(×𝕋d1)CϕHq(×𝕋d1).\displaystyle\|\phi\|_{L^{p}(\mathbb{R}\times{\mathbb{T}^{d-1}})}\leq C\|\phi\|_{H^{q}(\mathbb{R}\times{\mathbb{T}^{d-1}})}\,.

If q=mq=m, then for any 2p<2\leq p<\infty, there exists C>0C>0 such that

(5.2) ϕLp(×𝕋d1)CϕHq(×𝕋d1).\displaystyle\|\phi\|_{L^{p}(\mathbb{R}\times{\mathbb{T}^{d-1}})}\leq C\|\phi\|_{H^{q}(\mathbb{R}\times{\mathbb{T}^{d-1}})}\,.
Lemma 5.1.

Assume Assumption 3.2. Let 1km1\leq k\leq m where mm is defined in (1.8). Then there exists a constant C>0C>0 such that for any t[0,T]t\in[0,T] and any LkL\in\mathcal{L}^{k} where k\mathcal{L}^{k} is defined in (4.2),

LL2(×𝕋d1)2Cϵ2Dk+Cj=0k1Dj,\displaystyle\|L\|_{L^{2}(\mathbb{R}\times{\mathbb{T}^{d-1}})}^{2}\leq C\epsilon_{2}D_{k}+C\sum_{j=0}^{k-1}D_{j}\,,

where DjD_{j} are defined in (3.5).

Proof.

If l=1l=1, then

LL22Cj=0k1Dj.\displaystyle\|L\|_{L^{2}}^{2}\leq C\sum_{j=0}^{k-1}D_{j}\,.

Assume l2l\geq 2. Without loss of generality, assume |β1||βl||\beta_{1}|\leq...\leq|\beta_{l}|. For any 1jl11\leq j\leq l-1, (5.1) and (3.1) give

(5.3) xβjψLpCψHmCϵ2<1,\displaystyle\|\partial_{x}^{\beta_{j}}\psi\|_{L^{p}}\leq C\|\psi\|_{H^{m}}\leq C\epsilon_{2}<1\,,

for any 2p<2dd2m+2|βj|:=pj2\leq p<\frac{2d}{d-2m+2|\beta_{j}|}:=p_{j}. We will consider 3 cases.

1) case k+1|βl|m1k+1-|\beta_{l}|\leq m-1. By (5.1), we have

xβlψLpCψHk+1,\displaystyle\|\partial_{x}^{\beta_{l}}\psi\|_{L^{p}}\leq C\|\psi\|_{H^{k+1}}\,,

for any 2p<2dd2k2+2|βl|:=pl2\leq p<\frac{2d}{d-2k-2+2|\beta_{l}|}:=p_{l}.

Since

j=1l1pj12+(d2m)(l1)2d<12 and l212,\displaystyle\sum_{j=1}^{l}\frac{1}{p_{j}}\leq\frac{1}{2}+\frac{(d-2m)(l-1)}{2d}<\frac{1}{2}\;\text{ and }\;\frac{l}{2}\geq\frac{1}{2}\,,

there exist p1,,plp_{1}^{*},...,p_{l}^{*} such that

2pj<pj and j=1l1pj=12.\displaystyle 2\leq p_{j}^{*}<p_{j}\;\text{ and }\;\sum_{j=1}^{l}\frac{1}{p_{j}^{*}}=\frac{1}{2}\,.

Then Hölder’s inequality and (5.3) give

LL22CΠj=1lxβjψLpj2(Cϵ2)2(l1)ψHk+12Cϵ2j=0kDj.\displaystyle\|L\|_{L^{2}}^{2}\leq C\Pi_{j=1}^{l}\|\partial_{x}^{\beta_{j}}\psi\|_{L^{p_{j}^{*}}}^{2}\leq(C\epsilon_{2})^{2(l-1)}\|\psi\|_{H^{k+1}}^{2}\leq C\epsilon_{2}\sum_{j=0}^{k}D_{j}\,.

2) case k+1|βl|=mk+1-|\beta_{l}|=m and d2d\geq 2. Then k=mk=m and |βj|=1|\beta_{j}|=1 for any 1jl1\leq j\leq l. By (5.2), we have

xβlψLpCψHm+1,\displaystyle\|\partial_{x}^{\beta_{l}}\psi\|_{L^{p}}\leq C\|\psi\|_{H^{m+1}}\,,

for any 2p<:=pl2\leq p<\infty:=p_{l}. Since 1/pl=01/p_{l}=0 and l1ml-1\leq m,

j=1l1pj(d2m+2)m2dd+14d<12 and l212.\displaystyle\sum_{j=1}^{l}\frac{1}{p_{j}}\leq\frac{(d-2m+2)m}{2d}\leq\frac{d+1}{4d}<\frac{1}{2}\;\text{ and }\;\frac{l}{2}\geq\frac{1}{2}\,.

Hence, there exist p1,,plp_{1}^{*},...,p_{l}^{*} such that

2pj<pj and j=1l1pj=12.\displaystyle 2\leq p_{j}^{*}<p_{j}\;\text{ and }\;\sum_{j=1}^{l}\frac{1}{p_{j}^{*}}=\frac{1}{2}\,.

Then Hölder’s inequality and (5.3) give

LL22CΠj=1lxβjψLpj2(Cϵ2)2(l1)ψHm+12Cϵ2j=0mDj.\displaystyle\|L\|_{L^{2}}^{2}\leq C\Pi_{j=1}^{l}\|\partial_{x}^{\beta_{j}}\psi\|_{L^{p_{j}^{*}}}^{2}\leq(C\epsilon_{2})^{2(l-1)}\|\psi\|_{H^{m+1}}^{2}\leq C\epsilon_{2}\sum_{j=0}^{m}D_{j}\,.

3) case k+1|βl|=mk+1-|\beta_{l}|=m and d=1d=1. Then k=m=1k=m=1, l=2l=2, and |β1|=|β2|=1|\beta_{1}|=|\beta_{2}|=1. Hölder’s inequality, Gagliardo-Nirenberg inequality and (3.1) give

LL22\displaystyle\|L\|_{L^{2}}^{2} CxψL22xψL2Cϵ2ψH22Cϵ2(D1+D0).\displaystyle\leq C\|\partial_{x}\psi\|_{L^{2}}^{2}\|\partial_{x}\psi\|_{L^{\infty}}^{2}\leq C\epsilon_{2}\|\psi\|_{H^{2}}^{2}\leq C\epsilon_{2}(D_{1}+D_{0})\,.

5.2. HmH^{m} estimates

We prove the HmH^{m} estimates by induction.

Lemma 5.2.

For any UnU_{-}\in\mathbb{R}^{n}, there exist δ0,ϵ2,C,ΛS1,ΛWn,C~1,C~n>0\delta_{0},\epsilon_{2},C,\Lambda_{S_{1}},\Lambda_{W_{n}},\tilde{C}_{1},\tilde{C}_{n}>0 such that the following is true.

Assume Assumption 3.2. Then for any t[0,T]t\in[0,T],

(5.4) U(t,)U~(t,)Hm(×𝕋d1)2+0t(k=0mDk(U)+GS1(U)+GWn(U)+Y)ds\displaystyle\|U(t,\cdot)-\tilde{U}(t,\cdot)\|_{H^{m}(\mathbb{R}\times{\mathbb{T}^{d-1}})}^{2}+\int_{0}^{t}\Bigl{(}\sum_{k=0}^{m}D_{k}(U)+G_{S_{1}}(U)+G_{W_{n}}(U)+{Y}\Bigl{)}\,ds
CU0U~0Hm(×𝕋d1)2+CE2,\displaystyle\leq C\|U_{0}-\tilde{U}_{0}\|_{H^{m}(\mathbb{R}\times{\mathbb{T}^{d-1}})}^{2}+CE^{2}\,,

and for any t[0,T]t\in[0,T] and any βd\beta\in\mathbb{N}^{d} such that 1|β|m1\leq|\beta|\leq m,

(5.5) 0t|ddt|xβ(UU~)|2dx|ds\displaystyle\int_{0}^{t}\Big{|}\frac{d}{dt}\int\big{|}\partial_{x}^{\beta}(U-\tilde{U})\big{|}^{2}\,dx\Big{|}\,ds
C0t(k=0mDk(U)+GS1(U)+GWn(U)+Y)ds+CE2,\displaystyle\leq C\int_{0}^{t}\Bigl{(}\sum_{k=0}^{m}D_{k}(U)+G_{S_{1}}(U)+G_{W_{n}}(U)+Y\Bigl{)}\,ds+CE^{2}\,,

where mm is defined in (1.8) and Dk,GS1,GWn,Y,ED_{k},G_{S_{1}},G_{W_{n}},Y,E are defined in (3.5).

Proof.

We will prove the lemma by induction. Recall the L2L^{2} estimates shown in Lemma 4.5. Let 1km1\leq k\leq m. We assume the inequality is true for k1k-1, i.e.,

U(t,)U~(t,)Hk1(×𝕋d1)2+0t(j=0k1Dj(U)+GS1(U)+GWn(U)+Y)dsCU0U~0Hk1(×𝕋d1)2+CE2.\displaystyle\begin{split}&\|U(t,\cdot)-\tilde{U}(t,\cdot)\|_{H^{k-1}(\mathbb{R}\times{\mathbb{T}^{d-1}})}^{2}+\int_{0}^{t}\Bigl{(}\sum_{j=0}^{k-1}D_{j}(U)+G_{S_{1}}(U)+G_{W_{n}}(U)+Y\Bigl{)}\,ds\\ &\leq C\|U_{0}-\tilde{U}_{0}\|_{H^{k-1}(\mathbb{R}\times{\mathbb{T}^{d-1}})}^{2}+CE^{2}\,.\end{split}

We want to show the inequality is true for kk, i.e.,

(5.6) U(t,)U~(t,)Hk(×𝕋d1)2+0t(j=0kDj(U)+GS1(U)+GWn(U)+Y)dsCU0U~0Hk(×𝕋d1)2+CE2.\displaystyle\begin{split}&\|U(t,\cdot)-\tilde{U}(t,\cdot)\|_{H^{k}(\mathbb{R}\times{\mathbb{T}^{d-1}})}^{2}+\int_{0}^{t}\Bigl{(}\sum_{j=0}^{k}D_{j}(U)+G_{S_{1}}(U)+G_{W_{n}}(U)+Y\Bigl{)}\,ds\\ &\leq C\|U_{0}-\tilde{U}_{0}\|_{H^{k}(\mathbb{R}\times{\mathbb{T}^{d-1}})}^{2}+CE^{2}\,.\end{split}

Note the constants C>0C>0 in this proof depend on Bj,f,η,U,kB_{j},f,\eta,U_{-},k, but the dependency on kk does not matter as mm is fixed and finite.

Recall the definition of ψ\psi in (4.1). Let αkd\alpha_{k}\in\mathbb{N}^{d} be such that |αk|=k|\alpha_{k}|=k. We take xαk\partial_{x}^{\alpha_{k}} on both sides of (2.17) and get

txαkψ+xαkx1(f(U)f(U~))+j=2dxαkxj(gj(U)gj(U~))\displaystyle\partial_{t}\partial_{x}^{\alpha_{k}}\psi+\partial_{x}^{{\alpha_{k}}}\partial_{x_{1}}\bigl{(}f(U)-f(\tilde{U})\bigl{)}+\sum_{j=2}^{d}\partial_{x}^{{\alpha_{k}}}\partial_{x_{j}}\bigl{(}g_{j}(U)-g_{j}(\tilde{U})\bigl{)}
=j=1dxαkxj(Bj(U)xjη(U)Bj(U~)xjη(U~))xαkZxαkE1xαkE2.\displaystyle=\sum_{j=1}^{d}\partial_{x}^{\alpha_{k}}\partial_{x_{j}}\bigl{(}B_{j}(U)\partial_{x_{j}}\eta^{\prime}(U)-B_{j}(\tilde{U})\partial_{x_{j}}\eta^{\prime}(\tilde{U})\bigl{)}-\partial_{x}^{\alpha_{k}}Z-\partial_{x}^{\alpha_{k}}E_{1}-\partial_{x}^{\alpha_{k}}E_{2}\,.

Then we multiply both sides by xαkψ\partial_{x}^{\alpha_{k}}\psi and take integration w.r.t. xx. Recall (1.17). By integration by parts, we have

ddt|xαkψ|22dx+j=1dxαk(Bj(U)η(U)xjUBj(U~)η(U~)xjU~)xαk+ejψdx\displaystyle\frac{d}{dt}\int\frac{|\partial_{x}^{\alpha_{k}}\psi|^{2}}{2}\,dx+\sum_{j=1}^{d}\int\partial_{x}^{\alpha_{k}}\bigl{(}B_{j}(U)\eta^{\prime\prime}(U)\partial_{x_{j}}U-B_{j}(\tilde{U})\eta^{\prime\prime}(\tilde{U})\partial_{x_{j}}\tilde{U}\bigl{)}\,\partial_{x}^{\alpha_{k}+e_{j}}\psi\,dx
=xαk(f(U)f(U~))xαk+e1ψdx+j=2dxαk(gj(U)gj(U~))xαk+ejψdx\displaystyle=\int\partial_{x}^{\alpha_{k}}\bigl{(}f(U)-f(\tilde{U})\bigl{)}\,\partial_{x}^{\alpha_{k}+e_{1}}\psi\,dx+\sum_{j=2}^{d}\int\partial_{x}^{\alpha_{k}}\bigl{(}g_{j}(U)-g_{j}(\tilde{U})\bigl{)}\,\partial_{x}^{\alpha_{k}+e_{j}}\psi\,dx
xαkZxαkψdxxαkE1xαkψdxxαkE2xαkψdx,\displaystyle\quad-\int\partial_{x}^{\alpha_{k}}Z\,\partial_{x}^{\alpha_{k}}\psi\,dx-\int\partial_{x}^{\alpha_{k}}E_{1}\,\partial_{x}^{\alpha_{k}}\psi\,dx-\int\partial_{x}^{\alpha_{k}}E_{2}\,\partial_{x}^{\alpha_{k}}\psi\,dx\,,

where ejde_{j}\in\mathbb{N}^{d} is the multi-index whose j-th component is 11 and all other components are 0.

Let 0<τ<10<\tau<1 to be chosen later in (5.8). Recall (1.17). By Young’s inequality and integration by parts, we have

ddt|xαkψ|22dx+I1τDk+CDk1+Cτ(I2+I3+I4+I5),\displaystyle\frac{d}{dt}\int\frac{|\partial_{x}^{\alpha_{k}}\psi|^{2}}{2}\,dx+I_{1}\leq\tau D_{k}+CD_{k-1}+\frac{C}{\tau}(I_{2}+I_{3}+I_{4}+I_{5})\,,

where

I1\displaystyle I_{1} =j=1dxαk(Bj(U)η(U)xjUBj(U~)η(U~)xjU~)xαk+ejψdx,\displaystyle=\sum_{j=1}^{d}\int\partial_{x}^{\alpha_{k}}\bigl{(}B_{j}(U)\eta^{\prime\prime}(U)\partial_{x_{j}}U-B_{j}(\tilde{U})\eta^{\prime\prime}(\tilde{U})\partial_{x_{j}}\tilde{U}\bigl{)}\,\partial_{x}^{\alpha_{k}+e_{j}}\psi\,dx\,,
I2\displaystyle I_{2} =|xαk(f(U)f(U~))|2dx+j=2d|xαk(gj(U)gj(U~))|2dx,\displaystyle=\int\big{|}\partial_{x}^{\alpha_{k}}\bigl{(}f(U)-f(\tilde{U})\bigl{)}\big{|}^{2}\,dx+\sum_{j=2}^{d}\int\big{|}\partial_{x}^{\alpha_{k}}\bigl{(}g_{j}(U)-g_{j}(\tilde{U})\bigl{)}\big{|}^{2}\,dx\,,
I3\displaystyle I_{3} =Y,\displaystyle=Y\,,
I4\displaystyle I_{4} =|xαkE1|2dx,\displaystyle=\int|\partial_{x}^{\alpha_{k}}E_{1}|^{2}\,dx\,,
I5\displaystyle I_{5} ={|xαke1E2|2dx,if (αk)1 is odd and Wn=Rn,|xαkE2|2dx,otherwise.\displaystyle=\begin{cases}\int|\partial_{x}^{\alpha_{k}-e_{1}}E_{2}|^{2}\,dx\,,\;\textup{if }(\alpha_{k})_{1}\textup{ is odd and }W_{n}=R_{n}\,,\\ \int|\partial_{x}^{\alpha_{k}}E_{2}|^{2}\,dx\,,\;\textup{otherwise.}\end{cases}

Lemma 4.2 and Lemma 5.1 give

|I1I~1|\displaystyle|I_{1}-\tilde{I}_{1}| (τ+Cτϵ2)Dk+Cτ(GS1+GWn+j=0k1Dj),\displaystyle\leq(\tau+\frac{C}{\tau}\epsilon_{2})D_{k}+\frac{C}{\tau}(G_{S_{1}}+G_{W_{n}}+\sum_{j=0}^{k-1}D_{j})\,,
I2\displaystyle I_{2} Cϵ2Dk+C(GS1+GWn+j=0k1Dj),\displaystyle\leq C\epsilon_{2}D_{k}+C(G_{S_{1}}+G_{W_{n}}+\sum_{j=0}^{k-1}D_{j})\,,

where

I~1=j=1d(Bj(U)η(U)xαk+ejUBj(U~)η(U~)xαk+ejU~)xαk+ejψdx.\displaystyle\tilde{I}_{1}=\sum_{j=1}^{d}\int\bigl{(}B_{j}(U)\eta^{\prime\prime}(U)\partial_{x}^{\alpha_{k}+e_{j}}U-B_{j}(\tilde{U})\eta^{\prime\prime}(\tilde{U})\partial_{x}^{\alpha_{k}+e_{j}}\tilde{U}\bigl{)}\,\partial_{x}^{\alpha_{k}+e_{j}}\psi\,dx\,.

We first evaluate I~1\tilde{I}_{1}. We have

I~1=D~k+I~11+I~12,\tilde{I}_{1}=\tilde{D}_{k}+\tilde{I}_{11}+\tilde{I}_{12}\,,

where

D~k\displaystyle\tilde{D}_{k} =j=1dBj(U)η(U)xαk+ejψxαk+ejψdx,\displaystyle=\sum_{j=1}^{d}\int B_{j}(U_{-})\eta^{\prime\prime}(U_{-})\partial_{x}^{\alpha_{k}+e_{j}}\psi\,\partial_{x}^{\alpha_{k}+e_{j}}\psi\,dx\,,
I~11\displaystyle\tilde{I}_{11} =j=1d(Bj(U)η(U)Bj(U)η(U))xαk+ejψxαk+ejψdx,\displaystyle=\sum_{j=1}^{d}\int\bigl{(}B_{j}(U)\eta^{\prime\prime}(U)-B_{j}(U_{-})\eta^{\prime\prime}(U_{-})\bigl{)}\partial_{x}^{\alpha_{k}+e_{j}}\psi\,\partial_{x}^{\alpha_{k}+e_{j}}\psi\,dx\,,
I~12\displaystyle\tilde{I}_{12} =j=1d(Bj(U)η(U)Bj(U~)η(U~))xαk+ejU~xαk+ejψdx.\displaystyle=\sum_{j=1}^{d}\int\bigl{(}B_{j}(U)\eta^{\prime\prime}(U)-B_{j}(\tilde{U})\eta^{\prime\prime}(\tilde{U})\bigl{)}\partial_{x}^{\alpha_{k}+e_{j}}\tilde{U}\,\partial_{x}^{\alpha_{k}+e_{j}}\psi\,dx\,.

As BjB_{j} are positive definite and η\eta^{\prime\prime} is strictly convex,

D~kCj=1dxαk+ejψL22.\displaystyle\tilde{D}_{k}\geq C\sum_{j=1}^{d}\|\partial_{x}^{\alpha_{k}+e_{j}}\psi\|_{L^{2}}^{2}\,.

By (3.2) and Young’s inequality, we get

|I~11|+|I~12|C(ϵ2+δ0)Dk+C(GS1+GWn).\displaystyle|\tilde{I}_{11}|+|\tilde{I}_{12}|\leq C(\epsilon_{2}+\delta_{0})D_{k}+{C}(G_{S_{1}}+G_{W_{n}})\,.

Therefore, we have

|I1D~k|(τ+Cτ(ϵ2+δ0))Dk+Cτ(GS1+GWn+j=0k1Dj).\displaystyle|I_{1}-\tilde{D}_{k}|\leq\bigl{(}\tau+\frac{C}{\tau}(\epsilon_{2}+\delta_{0})\bigl{)}D_{k}+\frac{C}{\tau}(G_{S_{1}}+G_{W_{n}}+\sum_{j=0}^{k-1}D_{j})\,.

If Wn=SnW_{n}=S_{n}, then Lemma 4.2 gives

I4+I5\displaystyle I_{4}+I_{5} C(|Sn𝐗nUm||x1S1𝐗1|L22+|S1𝐗1Um||x1Sn𝐗n|L22\displaystyle\leq C\Bigl{(}\big{\|}|S_{n}^{\mathbf{X}_{n}}-U_{m}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\big{\|}_{L^{2}}^{2}+\big{\|}|S_{1}^{\mathbf{X}_{1}}-U_{m}||\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}|\big{\|}_{L^{2}}^{2}
+|x1Sn𝐗n||x1S1𝐗1|L22)\displaystyle\quad+\big{\|}|\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}||\partial_{x_{1}}S_{1}^{\mathbf{X}_{1}}|\big{\|}_{L^{2}}^{2}\Bigl{)}
=:Sn.\displaystyle=:\mathcal{E}_{S_{n}}\,.

If Wn=RnW_{n}=R_{n}, then Lemma 4.2 gives

I4+I5\displaystyle I_{4}+I_{5} C(x12jRnL22+x1RnL44+|x1Rn||x1Sn𝐗n|L22\displaystyle\leq C\Bigl{(}\|\partial_{x_{1}}^{2j_{*}}R_{n}\|_{L^{2}}^{2}+\|\partial_{x_{1}}R_{n}\|_{L^{4}}^{4}+\big{\|}|\partial_{x_{1}}R_{n}||\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}|\big{\|}_{L^{2}}^{2}
+|RnUm||x1Sn𝐗n|L22+|Sn𝐗nUm||x1Rn|L22)\displaystyle\quad+\big{\|}|R_{n}-U_{m}||\partial_{x_{1}}S_{n}^{\mathbf{X}_{n}}|\big{\|}_{L^{2}}^{2}+\big{\|}|S_{n}^{\mathbf{X}_{n}}-U_{m}||\partial_{x_{1}}R_{n}|\big{\|}_{L^{2}}^{2}\Bigl{)}
=:Rn,\displaystyle=:\mathcal{E}_{R_{n}}\,,

for some jj_{*}\in\mathbb{N}^{*}.

We get

(5.7) ddt|x1αkψ|22dx+Cj=1dxαk+ejψL22(2τ+Cτ(ϵ2+δ0))Dk\displaystyle\frac{d}{dt}\int\frac{|\partial_{x_{1}}^{\alpha_{k}}\psi|^{2}}{2}\,dx+C\sum_{j=1}^{d}\|\partial_{x}^{\alpha_{k}+e_{j}}\psi\|_{L^{2}}^{2}\leq\bigl{(}2\tau+\frac{C}{\tau}(\epsilon_{2}+\delta_{0})\bigl{)}D_{k}
+Cτ(GS1+GWn+j=0k1Dj+Y+Wn).\displaystyle+\frac{C}{\tau}(G_{S_{1}}+G_{W_{n}}+\sum_{j=0}^{k-1}D_{j}+Y+\mathcal{E}_{W_{n}})\,.

Let

𝒜k={αd:|α|=k}.\displaystyle\mathcal{A}_{k}=\bigl{\{}\alpha\in\mathbb{N}^{d}:|\alpha|=k\bigl{\}}\,.

As αk\alpha_{k} is arbitrary, we get

ddtα𝒜k|x1αψ|22dx+C1Dk(2|𝒜k|τ+C2τ(ϵ2+δ0))Dk\displaystyle\frac{d}{dt}\sum_{\alpha\in\mathcal{A}_{k}}\int\frac{|\partial_{x_{1}}^{\alpha}\psi|^{2}}{2}\,dx+C_{1}D_{k}\leq\bigl{(}2|\mathcal{A}_{k}|\tau+\frac{C_{2}}{\tau}(\epsilon_{2}+\delta_{0})\bigl{)}D_{k}
+Cτ(GS1+GWn+j=0k1Dj+Y+Wn),\displaystyle+\frac{C}{\tau}(G_{S_{1}}+G_{W_{n}}+\sum_{j=0}^{k-1}D_{j}+Y+\mathcal{E}_{W_{n}})\,,

where C1,C2>0C_{1},C_{2}>0 are constants that depend only on Bj,f,η,U,kB_{j},f,\eta,U_{-},k. We take

(5.8) τ=min{C16|𝒜k|,1} and ϵ2,δ0C1τ6C2.\tau=\textup{min}\bigl{\{}\frac{C_{1}}{6|\mathcal{A}_{k}|},1\bigl{\}}\,\textup{ and }\,\epsilon_{2},\delta_{0}\leq\frac{C_{1}\tau}{6C_{2}}\,.

Finally, we take integration over time. By (2.11) and Lemma 4.1, we get the estimates (5.6). Hence, we prove (5.4). The inequality (5.7) also gives

|ddt|x1αkψ|2dx|C(GS1+GWn+j=0kDj+Y+Wn).\displaystyle\big{|}\frac{d}{dt}\int{|\partial_{x_{1}}^{\alpha_{k}}\psi|^{2}}\,dx\big{|}\leq{C}(G_{S_{1}}+G_{W_{n}}+\sum_{j=0}^{k}D_{j}+Y+\mathcal{E}_{W_{n}})\,.

By taking integration over time, (2.11) and Lemma 4.1 give (5.5). ∎

6. Appendix

6.1. Proof of Proposition 1.2

The entropy of the 3-D barotropic Brenner-Navier-Stokes equations is

η=ρ|u|22+Q.\displaystyle\eta=\rho\frac{|u|^{2}}{2}+Q\,.

We let

U=(ρρu).\displaystyle U=\begin{pmatrix}\rho\\ \rho u\end{pmatrix}\,.

We rewrite the 3-D barotropic Brenner-Navier-Stokes equations (1.4) w.r.t. UU:

{tρ+div(ρu)=ΔQ,tρu+div(ρuu)+ργ=νΔu+div(uQ).\begin{cases}\partial_{t}\rho+div(\rho u)=\Delta Q^{\prime}\,,\\ \partial_{t}\rho u+div(\rho u\otimes u)+\nabla\rho^{\gamma}=\nu\Delta u+div(u\otimes\nabla Q^{\prime})\,.\end{cases}

As

η(U)=(Q|u|22u),\displaystyle\eta^{\prime}(U)=\begin{pmatrix}Q^{\prime}-\frac{|u|^{2}}{2}\\ u\end{pmatrix}\,,

we get

ΔQ=Δη1+Δ|u|22,\displaystyle\Delta Q^{\prime}=\Delta\eta_{1}^{\prime}+\Delta\frac{|u|^{2}}{2}\,,

and for any 1j31\leq j\leq 3,

div(ujQ)\displaystyle div(u_{j}\otimes\nabla Q^{\prime}) =k=13k(ujkQ)\displaystyle=\sum_{k=1}^{3}\partial_{k}(u_{j}\partial_{k}Q^{\prime})
=k=13k(ujkη1)+k(ujk|u|22).\displaystyle=\sum_{k=1}^{3}\partial_{k}(u_{j}\partial_{k}\eta_{1}^{\prime})+\partial_{k}(u_{j}\partial_{k}\frac{|u|^{2}}{2})\,.

Hence, for any 1j31\leq j\leq 3,

Bj(U)=(1u1u2u3u1u12+νu1u2u1u3u2u1u2u22+νu2u3u3u1u3u2u3u32+ν).\displaystyle B_{j}(U)=\begin{pmatrix}1&u_{1}&u_{2}&u_{3}\\ u_{1}&u_{1}^{2}+\nu&u_{1}u_{2}&u_{1}u_{3}\\ u_{2}&u_{1}u_{2}&u_{2}^{2}+\nu&u_{2}u_{3}\\ u_{3}&u_{1}u_{3}&u_{2}u_{3}&u_{3}^{2}+\nu\end{pmatrix}\,.

Since the determinant of BjB_{j} is ν3\nu^{3}, BjB_{j} is positive definite.

References

  • [1] H. Brenner. Fluid mechanics revisited. Physica A: Statistical Mechanics and its Applications, 370(2):190–224, 2006.
  • [2] C. M. Dafermos. Entropy and the stability of classical solutions of hyperbolic systems of conservation laws. In Recent mathematical methods in nonlinear wave propagation (Montecatini Terme, 1994), volume 1640 of Lecture Notes in Math., pages 48–69. Springer, Berlin, 1996.
  • [3] R. J. DiPerna. Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J., 28(1):137–188, 1979.
  • [4] J. Goodman. Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal., 95(4):325–344, 1986.
  • [5] F. Huang and A. Matsumura. Stability of a composite wave of two viscous shock waves for the full compressible Navier-Stokes equation. Comm. Math. Phys., 289(3):841–861, 2009.
  • [6] J. Humpherys, G. Lyng, and K. Zumbrun. Multidimensional stability of large-amplitude Navier-Stokes shocks. Arch. Ration. Mech. Anal., 226(3):923–973, 2017.
  • [7] A. M. Ilin and O. A. Oleinik. Asymptotic behavior of solutions of the Cauchy problem for some quasi-linear equations for large values of the time. Mat. Sb. (N.S.), 51(93):191–216, 1960.
  • [8] M.-J. Kang and H. Lee. Long-time behavior toward composite wave of shocks for 3D barotropic Navier-Stokes system. arXiv 2406.11215, 2024.
  • [9] M.-J. Kang and A. Vasseur. Criteria on contractions for entropic discontinuities of systems of conservation laws. Arch. Ration. Mech. Anal., 222(1):343–391, 2016.
  • [10] M.-J. Kang and A. Vasseur. Contraction property for large perturbations of shocks of the barotropic Navier-Stokes system. J. Eur. Math. Soc. (JEMS), 23(2):585–638, 2021.
  • [11] M.-J. Kang, A. Vasseur, and Y. Wang. Time-asymptotic stability of composite waves of viscous shock and rarefaction for barotropic Navier-Stokes equations. Adv. Math., 419:Paper No. 108963, 66, 2023.
  • [12] M.-J. Kang, A. Vasseur, and Y. Wang. Time-asymptotic stability of generic Riemann solutions for compressible Navier-Stokes-Fourier equations, 2023.
  • [13] Y.-S. Kwon, J. Meng, and A. Vasseur. aa-contraction applied to the time-asymptotic stability of weak shocks for a general 1-d viscous system. In preparation, 2024.
  • [14] L.-A. Li, T. Wang, and Y. Wang. Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations. Arch. Ration. Mech. Anal., 230(3):911–937, 2018.
  • [15] T.-P. Liu. Nonlinear stability of shock waves for viscous conservation laws. Mem. Amer. Math. Soc., 56(328):v+108, 1985.
  • [16] T.-P. Liu and Z. P. Xin. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm. Math. Phys., 118(3):451–465, 1988.
  • [17] T.-P. Liu and Y. Zeng. Shock waves in conservation laws with physical viscosity. Mem. Amer. Math. Soc., 234(1105):vi+168, 2015.
  • [18] A. Majda and R. L. Pego. Stable viscosity matrices for systems of conservation laws. J. Differential Equations, 56(2):229–262, 1985.
  • [19] C. Mascia and K. Zumbrun. Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic systems. Comm. Pure Appl. Math., 57(7):841–876, 2004.
  • [20] A. Matsumura. Waves in compressible fluids: viscous shock, rarefaction, and contact waves. In Handbook of mathematical analysis in mechanics of viscous fluids, pages 2495–2548. Springer, Cham, 2018.
  • [21] A. Matsumura and K. Nishihara. On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math., 2(1):17–25, 1985.
  • [22] A. Matsumura and K. Nishihara. Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math., 3(1):1–13, 1986.
  • [23] A. Matsumura and K. Nishihara. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Comm. Math. Phys., 144(2):325–335, 1992.
  • [24] L. Nirenberg. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 13:115–162, 1959.
  • [25] K. Nishihara, T. Yang, and H. Zhao. Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations. SIAM J. Math. Anal., 35(6):1561–1597, 2004.
  • [26] D. Serre. Local existence for viscous system of conservation laws: HsH^{s}-data with s>1+d/2s>1+d/2. In Nonlinear partial differential equations and hyperbolic wave phenomena, volume 526 of Contemp. Math., pages 339–358. Amer. Math. Soc., Providence, RI, 2010.
  • [27] D. Serre and A. Vasseur. L2L^{2}-type contraction for systems of conservation laws. J. Éc. polytech. Math., 1:1–28, 2014.
  • [28] J. Smoller. Shock waves and reaction-diffusion equations, volume 258 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, second edition, 1994.
  • [29] A. Szepessy and Z. P. Xin. Nonlinear stability of viscous shock waves. Arch. Rational Mech. Anal., 122(1):53–103, 1993.
  • [30] T. Wang and Y. Wang. Nonlinear stability of planar viscous shock wave to three-dimensional compressible Navier-Stokes equations. arXiv 2204.09428, To appear in JEMS, 2022.