This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\UseRawInputEncoding

Time-asymptotic stability of composite waves of viscous shock and rarefaction for barotropic Navier-Stokes equations

Moon-Jin Kang
Department of Mathematical Sciences,
Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
[email protected]
Alexis F. Vasseur
Department of Mathematics,
The University of Texas at Austin, Austin, TX 78712, USA
[email protected]
 and  Yi Wang
Institute of Applied Mathematics, AMSS, CAS, Beijing 100190, P. R. China
and School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, P. R. China
[email protected]
Abstract.

We prove the time-asymptotic stability of composite waves consisting of the superposition of a viscous shock and a rarefaction for the one-dimensional compressible barotropic Navier-Stokes equations. Our result solves a long-standing problem first mentioned in 1986 by Matsumura and Nishihara in [26]. The same authors introduced it officially as an open problem in 1992 in [27] and it was again described as very challenging open problem in 2018 in the survey paper [24]. The main difficulty is due to the incompatibility of the standard anti-derivative method, used to study the stability of viscous shocks, and the energy method used for the stability of rarefactions. Instead of the anti-derivative method, our proof uses the aa-contraction with shifts theory recently developed by two of the authors. This method is energy based, and can seamlessly handle the superposition of waves of different kinds.

Key words and phrases:
compressible Navier-Stokes equations, viscous shock wave, rarefaction wave, shift, aa-contraction, stability
Acknowledgment. M.-J. Kang was partially supported by the NRF-2019R1C1C1009355. A. Vasseur was partially supported by the NSF grant: DMS 1614918. Y. Wang is supported by NSFC grants No. 12090014 and 11688101.

1. Introduction

Consider the one-dimensional compressible barotropic Navier-Stokes equations. In the Lagrangian mass coordinates, the system is described as

(1.1) {vtux=0,x,t0,ut+p(v)x=(μuxv)x,\displaystyle\begin{aligned} \left\{\begin{array}[]{ll}v_{t}-u_{x}=0,\qquad\quad\quad x\in\mathbb{R},\ t\geq 0,\\ u_{t}+p(v)_{x}=(\mu\frac{u_{x}}{v})_{x},\\ \end{array}\right.\end{aligned}

where the unknown functions v=v(t,x)>0v=v(t,x)>0, and u(t,x)u(t,x) represent respectively the specific volume, and the velocity of the gas. The pressure function pp is given by the well-known γ\gamma-law

p(v)=bvγ,p(v)=bv^{-\gamma},

where b>0,γ>1b>0,\gamma>1 are both constants depending on the fluid, and the constant μ>0\mu>0 corresponds to the viscosity coefficient. Without loss of generality, we normalize two of the constants as μ=1\mu=1 and b=1b=1. The system is then endowed with initial values:

(v,u)(t=0,x)=(v0(x),u0(x)),x.(v,u)(t=0,x)=(v_{0}(x),u_{0}(x)),\qquad x\in\mathbb{R}.

We consider initial values with fixed end states (v±,u±)+×(v_{\pm},u_{\pm})\in\mathbb{R}^{+}\times\mathbb{R}, that is such that

(1.2) (v0(x),u0(x))(v±,u±),asx±.(v_{0}(x),u_{0}(x))\rightarrow(v_{\pm},u_{\pm}),\quad{\rm as}\quad x\rightarrow\pm\infty.

On top of its physical relevance, system (1.1) can be seen as the typical example of viscous conservation laws involving a physical viscosity. The large-time behavior of solutions to (1.1), with initial values verifying (1.2), is closely related to the Riemann problem of the associated Euler equations:

(1.3) {vtux=0,ut+p(v)x=0,\displaystyle\begin{aligned} \left\{\begin{array}[]{ll}v_{t}-u_{x}=0,\\ u_{t}+p(v)_{x}=0,\\ \end{array}\right.\end{aligned}

with the Riemann initial data

(1.4) (v,u)(t=0,x)={(v,u),x<0,(v+,u+),x>0,\displaystyle\begin{aligned} (v,u)(t=0,x)=\left\{\begin{array}[]{ll}(v_{-},u_{-}),\quad x<0,\\ (v_{+},u_{+}),\quad x>0,\\ \end{array}\right.\end{aligned}

corresponding to the end states (1.2). In the scalar case (where the system (1.1) is replaced by a single viscous equation), the time-asymptotic stability of the viscous waves, and their link to the inviscid problem was first proved in 1960 by Il™in-Oleinik [9] (see also Sattinger [32]). The case for systems as (1.1) is far more difficult (see [24]). One of the motivation for the study of large-time behavior of solutions to compressible Navier-Stokes equation for Riemann initial data was to obtain insights about inviscid limit to the Euler equation. In 2005 [1] , Bianchini-Bressan showed, for small BV initial values, the convergence at the inviscid limit of solution to parabolic system with “artificial viscosity” to the unique solution of the associated hyperbolic system. However, to this day, the result is still unknown for the physical Navier-Stokes system, even in the barotropic case (1.1).

Riemann problem for the inviscid model: Let us first describe the well-known solution of the Riemann problem for the inviscid model (1.3)-(1.4), first proposed and solved by Riemann [31] in 1860s. This system of conservation laws is strictly hyperbolic. This means that the derivative of the flux function (u,p(v))(-u,p(v)) with respect to the conserved variables, about a fixed state (v,u)+×(v,u)\in\mathbb{R}^{+}\times\mathbb{R}:

(01p(v)0)\left(\begin{array}[]{cr}0&-1\\ p^{\prime}(v)&0\end{array}\right)

is diagonalizable with real distinct eigenvalues. Note that this matrix defined the waves generated by the linearization of the system (1.3) about this fixed state (v,u)+×(v,u)\in\mathbb{R}^{+}\times\mathbb{R}. Its eigenvalues λ1=p(v)<0\lambda_{1}=-\sqrt{-p^{\prime}(v)}<0 and λ2=p(v)>0\lambda_{2}=\sqrt{-p^{\prime}(v)}>0 generate both characteristic fields which are genuinely nonlinear. Therefore, the self-similar solution, so called Riemann solution, of the Riemann problem is determined by a combination of at most two elementary solutions from the following four families: 1-rarefaction; 2-rarefaction; 1-shock and 2-shock (see for instance [4]). These families are completely defined through their associated curves in the states plane +×\mathbb{R}^{+}\times\mathbb{R}. For any (vR,uR)+×(v_{R},u_{R})\in\mathbb{R}^{+}\times\mathbb{R}, the 1-rarefaction curve R1(vR,uR)R_{1}(v_{R},u_{R}) corresponds to the integral curve of the first eigenvalue λ1\lambda_{1}, and is defined by

(1.5) R1(vR,uR):={(v,u)|v<vR,u=uRvRvλ1(s)𝑑s}.R_{1}(v_{R},u_{R}):=\Bigg{\{}(v,u)\Bigg{|}v<v_{R},~{}u=u_{R}-\int^{v}_{v_{R}}\lambda_{1}(s)ds\Bigg{\}}.

The 2-rarefaction curve R2R_{2} can be defined in the same way from the second eigenvalue λ2\lambda_{2}. For any initial values of the Riemann problem (1.4) with (v,u)=(vL,uL)(v_{-},u_{-})=(v_{L},u_{L}), (v+,u+)=(vR,uR)(v_{+},u_{+})=(v_{R},u_{R}), such that (vL,uL)R1(vR,uR)(v_{L},u_{L})\in R_{1}(v_{R},u_{R}), the solution (vr,ur)(v^{r},u^{r}) of (1.3) is the 1-rarefaction wave defined as

(1.6) λ1(vr(t,x))={λ1(vL),x<λ1(vL)t,xt,λ1(vL)txλ1(vR)t,λ1(vR),x>λ1(vR)t,\lambda_{1}(v^{r}(t,x))=\begin{cases}\lambda_{1}(v_{L}),\qquad x<\lambda_{1}(v_{L})t,\\ \frac{x}{t},\qquad\lambda_{1}(v_{L})t\leq x\leq\lambda_{1}(v_{R})t,\\ \lambda_{1}(v_{R}),\qquad x>\lambda_{1}(v_{R})t,\end{cases}

together with

(1.7) z1(vr(t,x),ur(t,x))=z1(vL,uL)=z1(vR,uR),\begin{array}[]{ll}&z_{1}(v^{r}(t,x),u^{r}(t,x))=z_{1}(v_{L},u_{L})=z_{1}(v_{R},u_{R}),\end{array}

where z1(v,u)=u+vλ1(s)𝑑sz_{1}(v,u)=u+\int^{v}\lambda_{1}(s)ds is called the 1-Riemann invariant to the Euler equation (1.3). The case of 2-rarefaction wave is treated similarly from the second eigenvalue λ2\lambda_{2}. We can now define the shock curves using the Rankine-Hugoniot condition, as the one-parameter family of all the (v,u)(v,u) such that there exists σ\sigma with:

(1.8) σ(vRv)(uRu)=0,σ(uRu)+(p(vR)p(v))=0.\begin{array}[]{l}-\sigma(v_{R}-v)-(u_{R}-u)=0,\\[5.69054pt] \displaystyle-\sigma(u_{R}-u)+(p(v_{R})-p(v))=0.\end{array}

The general theory shows that this condition defines actually 2 curves that meet at the point (vR,uR)(v_{R},u_{R}), one for the value σ=p(vR)p(v)vRv\sigma=-\sqrt{-\frac{p(v_{R})-p(v)}{v_{R}-v}} (the 1-shock curve S1(vR,uR)S_{1}(v_{R},u_{R}) which corresponds to admissible shocks for v>vRv>v_{R}), and one for the value σ=p(vR)p(v)vRv\sigma=\sqrt{-\frac{p(v_{R})-p(v)}{v_{R}-v}} (the 2-shock curve S2(vR,uR)S_{2}(v_{R},u_{R}) with admissible shocks for v<vRv<v_{R}). Whenever (vL,uL)S1(vR,uR)S2(vR,uR)(v_{L},u_{L})\in S_{1}(v_{R},u_{R})\cup S_{2}(v_{R},u_{R}), the solution (vs,us)(v^{s},u^{s}) to (1.3)-(1.4) with (v,u)=(vL,uL)(v_{-},u_{-})=(v_{L},u_{L}), (v+,u+)=(vR,uR)(v_{+},u_{+})=(v_{R},u_{R}), is given by the discontinuous traveling wave defined as

(1.9) (vs,us)(t,x)={(vL,uL),x<σt,(vR,uR),x>σt.(v^{s},u^{s})(t,x)=\begin{cases}(v_{L},u_{L}),\qquad x<\sigma t,\\ (v_{R},u_{R}),\qquad x>\sigma t.\end{cases}

For the general case of any states (v,u),(v+,u+)+×(v_{-},u_{-}),(v_{+},u_{+})\in\mathbb{R}^{+}\times\mathbb{R}, it can be shown that there exists a (unique) intermediate state (vm,um)+×(v_{m},u_{m})\in\mathbb{R}^{+}\times\mathbb{R} such that (vm,um)(v_{m},u_{m}) is on a curve of the second families from (v+,u+)(v_{+},u_{+}) (either R2(v+,u+)R_{2}(v_{+},u_{+}) or S2(v+,u+)S_{2}(v_{+},u_{+})), and (v,u)(v_{-},u_{-}) is on a curve of the first families from (vm,um)(v_{m},u_{m}) (either R1(vm,um)R_{1}(v_{m},u_{m}) or S1(vm,um)S_{1}(v_{m},u_{m})). The solution (v,u)(v,u) of (1.3)-(1.4) is then obtained by the juxtaposition of the two associated waves

(v,u)(t,x)=(v1,u1)(t,x)+(v2,u2)(t,x)(vm,um).(v,u)(t,x)=(v_{1},u_{1})(t,x)+(v_{2},u_{2})(t,x)-(v_{m},u_{m}).

The wave (v1,u1)(v_{1},u_{1}) is 1-rarefaction fan solution to (1.6)-(1.7) if (v,u)R1(vm,um)(v_{-},u_{-})\in R_{1}(v_{m},u_{m}), or 1-shock solution to (1.9) if (v,u)S1(vm,um)(v_{-},u_{-})\in S_{1}(v_{m},u_{m}), with (vL,uL)=(v,u)(v_{L},u_{L})=(v_{-},u_{-}), (vR,uR)=(vm,um)(v_{R},u_{R})=(v_{m},u_{m}). The wave (v2,u2)(v_{2},u_{2}) is 2-shock solution to (1.9) if (vm,um)S2(v+,u+)(v_{m},u_{m})\in S_{2}(v_{+},u_{+}), or, 2-rarefaction fan solution if (vm,um)R2(v+,u+)(v_{m},u_{m})\in R_{2}(v_{+},u_{+}), both with the end states (vL,uL)=(vm,um)(v_{L},u_{L})=(v_{m},u_{m}), (vR,uR)=(v+,u+)(v_{R},u_{R})=(v_{+},u_{+}). Note that the cases of single wave are included as degenerate cases when (v,u)=(vm,um)(v_{-},u_{-})=(v_{m},u_{m}), or (v+,u+)=(vm,um)(v_{+},u_{+})=(v_{m},u_{m}). Previous time-asymptotic results for the viscous model: The time-asymptotic behavior of the viscous solution to (1.1) depends on whether the associated Riemann solution to the associated inviscid model (1.3)-(1.4) involves shock waves or rarefaction waves. In the case where (1.4) is a shock, the viscous counterpart for (1.1), called viscous shock, is the traveling wave (v~S(xσt),u~S(xσt))(\widetilde{v}^{S}(x-\sigma t),\widetilde{u}^{S}(x-\sigma t)) defined by the following ODE:

(1.10) {σ(v~S)(u~S)=0,σ(u~S)+(p(v~S))=((u~S)v~S),(v~S,u~S)()=(vL,uL),(v~S,u~S)(+)=(vR,uR).\left\{\begin{array}[]{ll}\displaystyle-\sigma(\widetilde{v}^{S})^{\prime}-(\widetilde{u}^{S})^{\prime}=0,\\[8.53581pt] \displaystyle-\sigma(\widetilde{u}^{S})^{\prime}+(p(\widetilde{v}^{S}))^{\prime}=\Big{(}\frac{(\widetilde{u}^{S})^{\prime}}{\widetilde{v}^{S}}\Big{)}^{\prime},\\[8.53581pt] \displaystyle(\widetilde{v}^{S},\widetilde{u}^{S})(-\infty)=(v_{L},u_{L}),\qquad(\widetilde{v}^{S},\widetilde{u}^{S})(+\infty)=(v_{R},u_{R}).\end{array}\right.

Matsumura-Nishihara [25] proved the stability of the viscous shock waves (1.10) for the compressible Navier-Stokes equations (1.1). Independently, Goodman showed in [7] the same result of a general system with artificial diffusion. This corresponds to the case where diffusion is added to all the equations of the system. In both papers, the proof were done under the zero mass condition which is crucial for using the so called anti-derivative method. Then Liu [20], Szepessy-Xin [36] and Liu-Zeng [22] removed the crucial zero mass condition in [25, 7] by introducing the constant shift on the viscous shock and the diffusion waves and the coupled diffusion waves in the transverse characteristic fields. Masica-Zumbrun [23] proved the spectral stability of viscous shock to 1D compressible Navier-Stokes system under a spectral condition, which is slightly weaker than the zero mass condition. The case of the superposition of two shocks for the Navier-Stokes-Fourier system was treated by Huang-Matsumura in [8]. Finally, the asymptotic stability of viscous shocks for Navier-stokes systems with degenerated viscosities was studied in Matsumura-Wang [28], and generalized to a larger class of viscosity in [39] using the BD entropy introduced by Bresch-Desjardins in [2]. The treatment of stability of rarefactions is performed with very different techniques based on direct energy methods. Matsumura-Nishihara [26, 27] first proved the time-asymptotic stability of the rarefaction waves for the compressible and isentropic Navier-Stokes equations (1.1). It was later generalized to the Navier-Stokes-Fourier system by Liu-Xin [21] and Nishihara-Yang-Zhao [30]. The case of the juxtaposition of a shock and a rarefaction: However, the time-asymptotic stability of the superposition of a viscous shock wave and a rarefaction wave has been an open problem up to now. The main difficulty is that the classical anti-derivative method used for the stability of shocks does not match well with the energy method classically used for the stability of rarefactions. The problem of the stability of such a superposition of a rarefaction and a viscous shock was first mentioned in 1986 by Matsumura and Nishihara in [26]. The same authors introduced it officially as an open problem in 1992 in [27] and Matsumura described it again as very challenging open problem in 2018 in the survey paper [24]. Our main theorem is proving this conjecture.

Theorem 1.1.

For a given constant state (v+,u+)+×(v_{+},u_{+})\in\mathbb{R}_{+}\times\mathbb{R}, there exist constants δ0,ε0>0\delta_{0},\varepsilon_{0}>0 such that the following holds true.
For any (vm,um)S2(v+,u+)(v_{m},u_{m})\in S_{2}(v_{+},u_{+}) and (v,u)R1(vm,um)(v_{-},u_{-})\in R_{1}(v_{m},u_{m}) such that

|v+vm|+|vmv|δ0,|v_{+}-v_{m}|+|v_{m}-v_{-}|\leq\delta_{0},

denote (vr,ur)(xt)(v^{r},u^{r})(\frac{x}{t}) the 1-rarefaction solution to (1.3) with end states (v,u)(v_{-},u_{-}) and (vm,um)(v_{m},u_{m}), and (v~S,u~S)(xσt)(\tilde{v}^{S},\tilde{u}^{S})(x-\sigma t) the 2-viscous shock solution of (1.10) with end states (vm,um)(v_{m},u_{m}) and (v+,u+)(v_{+},u_{+}). Let (v0,u0)(v_{0},u_{0}) be any initial data such that

(1.11) ±(v0v±L2(±)+u0u±L2(±))+v0xL2()+u0xL2()<ε0,\sum_{\pm}\Big{(}\|v_{0}-v_{\pm}\|_{L^{2}(\mathbb{R}_{\pm})}+\|u_{0}-u_{\pm}\|_{L^{2}(\mathbb{R}_{\pm})}\Big{)}+\|v_{0x}\|_{L^{2}(\mathbb{R})}+\|u_{0x}\|_{L^{2}(\mathbb{R})}<\varepsilon_{0},

where :=+=(,0)\mathbb{R}_{-}:=-\mathbb{R}_{+}=(-\infty,0).
Then, the compressible Navier-Stokes system (1.1) admits a unique global-in-time solution (v,u)(v,u). Moreover, there exists an absolutely continuous shift 𝐗(t)\mathbf{X}(t) such that

(1.12) v(t,x)(vr(xt)+v~S(xσt𝐗(t))vm)C(0,+;H1()),u(t,x)(ur(xt)+u~S(xσt𝐗(t))um)C(0,+;H1()),uxx(t,x)u~xxS(xσt𝐗(t))L2(0,+;L2()).\displaystyle\begin{aligned} &v(t,x)-\Big{(}v^{r}(\frac{x}{t})+\widetilde{v}^{S}(x-\sigma t-\mathbf{X}(t))-v_{m}\Big{)}\in C(0,+\infty;H^{1}(\mathbb{R})),\\ &u(t,x)-\Big{(}u^{r}(\frac{x}{t})+\widetilde{u}^{S}(x-\sigma t-\mathbf{X}(t))-u_{m}\Big{)}\in C(0,+\infty;H^{1}(\mathbb{R})),\\ &u_{xx}(t,x)-\widetilde{u}^{S}_{xx}(x-\sigma t-\mathbf{X}(t))\in L^{2}(0,+\infty;L^{2}(\mathbb{R})).\end{aligned}

In addition, as t+t\to+\infty,

(1.13) supx|(v,u)(t,x)(vr(xt)+v~S(xσt𝐗(t))vm,ur(xt)+u~S(xσt𝐗(t))um)|0,\sup_{x\in\mathbb{R}}\Big{|}(v,u)(t,x)-\Big{(}v^{r}(\frac{x}{t})+\widetilde{v}^{S}(x-\sigma t-\mathbf{X}(t))-v_{m},u^{r}(\frac{x}{t})+\widetilde{u}^{S}(x-\sigma t-\mathbf{X}(t))-u_{m}\Big{)}\Big{|}\to 0,

and

(1.14) limt+|𝐗˙(t)|=0.\lim_{t\rightarrow+\infty}|\dot{\mathbf{X}}(t)|=0.
Remark 1.1.

Theorem 1.1 states that if the two far-field states (v±,u±)(v_{\pm},u_{\pm}) in (1.2) are connected by the superposition of shock and rarefaction waves, then the solution to the compressible Navier-Stokes equations (1.1) tends to the composition wave of the self-similar rarefaction wave and the viscous shock wave with the shift 𝐗(t)\mathbf{X}(t), which solves the open problem proposed by Matsumura-Nishihara [27] since 1992.

Remark 1.2.

The shift function 𝐗(t)\mathbf{X}(t) (defined in (3.8)) is proved to satisfy the time-asymptotic behavior (1.14), which implies that

limt+𝐗(t)t=0,\lim_{t\rightarrow+\infty}\frac{{\mathbf{X}}(t)}{t}=0,

that is, the shift function 𝐗(t){\mathbf{X}}(t) grows at most sub-linearly w.r.t. the time tt and the shifted viscous shock wave still keeps the original traveling wave profile time-asymptotically.

Remark 1.3.

Note that our result in Theorem 1.1 also holds true in the case of a single viscous shock, that is, δR0\delta_{R}\equiv 0. In this case, Theorem 1.1 provides an alternative proof for stability of a single viscous shock. Our proof is far simpler than the ones of Masica-Zumbrun [23], or Liu-Zeng [22]. Moreover, our approach does not have the disadvantages of the anti-derivative method, as the necessity to consider zero mass initial perturbations for instance. This simplification is what allows us to consider the combination of waves of different kinds. Therefore, our approach follows exactly the suggestion of Matsumura in [24, Section 4.2, page 2540] to find a simpler proof, for the stability of viscous shock, than the ones in [23] or [22], in order to attack many other open problems. Note however, that our simplification comes at the cost of less precise information, especially on the shift 𝐗(t){\mathbf{X}}(t).

Remark 1.4.

The extension of Theorem 1.1 to general smooth viscosity function μ=μ(v)>0\mu=\mu(v)>0 and general pressure function p(v)>0p(v)>0 satisfying p(v)<0,p′′(v)>0p^{\prime}(v)<0,p^{\prime\prime}(v)>0 follows without meaningful added difficulties, since we consider small H1H^{1}-perturbations. For the sake of clarity, and to simplify slightly the arguments, we made the choice to write the paper in the physical relevant context of constant viscosities and power pressure laws.

The main new ingredient of our proof is the use of the method of aa-contraction with shifts [15] to track the stability of the viscous shock. The method is based on the relative entropy introduced by Dafermos [5] and DiPerna [6]. It is energy based, and so meshes seamlessly with the treatment of the rarefaction. The method of aa-contraction with shifts: The method of aa-contraction with shifts was developed in [12] (see also [19]) to study the stability of extremal shocks for inviscid system of conservation laws, as for example, the Euler system (1.3). Consider the entropy of the system (which is actually the physical energy) defined for any state U=(v,u)U=(v,u) as:

η(U)=u22+Q(v),Q(v)=1(γ1)vγ1.\eta(U)=\frac{u^{2}}{2}+Q(v),\qquad Q(v)=\frac{1}{(\gamma-1)v^{\gamma-1}}.

We then consider the relative entropy defined in [5] for any two states U=(v,u)U=(v,u), U¯=(v¯,u¯)\overline{U}=(\bar{v},\bar{u}):

η(U|U¯)=|uu¯|22+Q(v|v¯),Q(v|v¯)=Q(v)Q(v¯)Q(v¯)(vv¯).\eta(U|\overline{U})=\frac{|u-\overline{u}|^{2}}{2}+Q(v|\bar{v}),\qquad Q(v|\bar{v})=Q(v)-Q(\bar{v})-Q^{\prime}(\bar{v})(v-\bar{v}).

Note that QQ is convex, and so η(U|U¯)\eta(U|\overline{U}) is nonnegative and equal to zero if and only if U=U¯U=\overline{U}. Therefore η(U|U¯)\eta(U|\overline{U}) can be used as a pseudo-distance between UU and U¯\overline{U}. It can be shown that rarefactions U¯\overline{U} (that is solutions to (1.6)-(1.7)) have a contraction property for this pseudo-metric (see for instance [37]). Indeed, for any weak entropic solution UU to (1.3), it can be shown that

ddtη(U|U¯)𝑑x0.\frac{d}{dt}\int_{\mathbb{R}}\eta(U|\overline{U})\,dx\leq 0.

The contraction property is not true if U¯\overline{U} is a shock (that is traveling waves (1.9) verifying the Rankine-Hugoniot conditions (1.8)). However, the contraction property can be recovered up to a shift, after weighting the relative entropy (see [12]). Indeed, there exists weights a,a+>0a_{-},a_{+}>0 (depending only on the shock U¯\overline{U}) such that for any weak entropic solution UU of (1.3) (verifying a mild condition called strong trace property) there exists a Lipschitz shift function tX(t)t\to X(t) such that

ddt{aX(t)η(U|U¯)𝑑x+a+X(t)η(U|U¯)𝑑x}0.\frac{d}{dt}\left\{a_{-}\int_{-\infty}^{X(t)}\eta(U|\bar{U})\,dx+a_{+}\int_{X(t)}^{\infty}\eta(U|\bar{U})\,dx\right\}\leq 0.

This was first proved in the scalar case by Leger [18] for a=a+a_{-}=a_{+}. It has been shown in [33] that the contraction with a=a+a_{-}=a_{+} is usually false for most systems. Therefore the weighting via the coefficients a,a+a_{-},a_{+} is essential. Note that in the case of the full Euler system, the a-contraction property up to shifts is true for all the single wave patterns, including the 1-shocks, 3-shocks (see [38]), and the 2-contact discontinuities (see [34]). Although the aa-contraction property with shifts holds for general extremal shocks, it is not always true for intermediate shocks (see [10] for instance). The first extension of the method to viscous models was done in the 1D scalar case [13] (see also [11]) and then in the multi-D case [17]. The case of the barotropic Navier-Stokes equation (1.1) was treated in [15]. The aa-contraction property takes place in variables associated to the BD entropy (see [2]): U=(v,h)U=(v,h), where hh is the effective velocity defined as h=u(lnv)xh=u-(\mathrm{ln}\ v)_{x}. In these variables, system (1.1) with μ=1\mu=1 is transformed as

(1.15) {vthx=(lnv)xx,ht+p(v)x=0.\displaystyle\begin{aligned} \left\{\begin{array}[]{ll}v_{t}-h_{x}=(\ln v)_{xx},\\ h_{t}+p(v)_{x}=0.\end{array}\right.\end{aligned}

The only nonlinear term of the hyperbolic system (1.3) is the pressure which is a function of vv. The system (1.15) is then better than (1.1) since the diffusion is in the variable vv corresponding to the nonlinear term p(v)p(v). It was shown in [15] that there exists a monotonic function xa(x)x\to a(x) (with limits a±a_{\pm} at ±\pm\infty), depending only on the viscous shock U¯=(v¯,h¯)\bar{U}=(\bar{v},\bar{h}) solution to (1.10) (in the (v,u)(v,u) variables), such that for any solution UU to (1.15), there exists a shift function t𝐗(t)t\to\mathbf{X}(t) with

ddta(x𝐗(t))η(U(t,x)|U¯(x𝐗(t)))𝑑x0.\frac{d}{dt}\int_{\mathbb{R}}a(x-\mathbf{X}(t))\eta(U(t,x)|\bar{U}(x-\mathbf{X}(t)))\,dx\leq 0.

The strategy of this paper is to apply the aa-contraction method to the composite wave made of a shock wave and a rarefaction wave. The weight function aa and the shift 𝐗(t)\mathbf{X}(t) is applied only on the shock wave. The combination of the viscous shock and the rarefaction is not an exact solution to (1.1). This introduces some errors that can be controlled thanks to the separation of the waves. Because of the shift, the separation of the waves is not automatic. We show, however, that it is still true, and that the shock cannot artificially stick to the rarefaction. This provides an ”almost” aa-contraction in the effective variables (v,h)(v,h). We then recover the classical control on the H1H^{1} norm of the perturbation in the classical variables (v,u)(v,u).

The aa-contraction with shift theory for a small viscous shock: Note that the aa-contraction result of [15] provides a uniform stability for viscous shocks with respect to the strength of the viscosity. This is used in [16] to obtain the stability of inviscid shocks of (1.3) among any inviscid limits of (1.1). Since the conjecture of Matsumura [24] does not mention the uniform stability with respect to the viscosity, we choose in this paper to restrict ourselves to the classical framework and show the stability with μ=1\mu=1 fixed. This allows us to simplify some of the arguments of [15] in this context. The method is even more powerful in this restricted framework and should be developed in the foreseeable future to a large family of problems. Let us describe the fundamental ideas in this context. A Poincaré type inequality and the scalar case: At its core, the method of aa-contraction with shift in the viscous cases relies on the following Poincaré type inequality (see [15, Lemma 2.9]).

Lemma 1.1.

For any f:[0,1]f:[0,1]\to\mathbb{R} satisfying 01y(1y)|f|2𝑑y<\int_{0}^{1}y(1-y)|f^{\prime}|^{2}dy<\infty,

(1.16) 01|f01f𝑑y|2𝑑y1201y(1y)|f|2𝑑y.\int_{0}^{1}\Big{|}f-\int_{0}^{1}fdy\Big{|}^{2}dy\leq\frac{1}{2}\int_{0}^{1}y(1-y)|f^{\prime}|^{2}dy.

The eigenfunctions of the associated Euler-Lagrange equation to this minimization problem are the Legendre polynomials, and their eigenvalues are given explicitly. As a consequence, the inequality is sharp. The weighted H1H^{1} norm of this inequality comes naturally when considering the following Burgers equation (see [13]):

(1.17) tu+x(u(1u))=x2u,\partial_{t}u+\partial_{x}(u(1-u))=\partial_{x}^{2}u,

and its viscous shock profile u~\tilde{u} defined as

x(u~(1u~))=x2u~,limxu~(x)=0,limx+u~(x)=1.\partial_{x}(\tilde{u}(1-\tilde{u}))=\partial_{x}^{2}\tilde{u},\qquad\lim_{x\to-\infty}\tilde{u}(x)=0,\qquad\lim_{x\to+\infty}\tilde{u}(x)=1.

This shock does not depend on time (it is a stationary wave). Integrating in xx, and denoting u~=xu~\tilde{u}^{\prime}=\partial_{x}\tilde{u} gives

(1.18) u~(x)=u~(x)(1u~(x)).\tilde{u}^{\prime}(x)=\tilde{u}(x)(1-\tilde{u}(x)).

Consider now the relative entropy associated to the entropy η(u)=u2/2\eta(u)=u^{2}/2 between a generic solution uu of (1.17) and the shifted shock u~𝐗(t,x)=u~(x𝐗(t))\tilde{u}^{-\mathbf{X}}(t,x)=\tilde{u}(x-\mathbf{X}(t)) for an arbitrary shift 𝐗(t)\mathbf{X}(t):

η(u|u~𝐗)(t,x)=|u(t,x)u~(x𝐗(t))|22.\eta(u|\tilde{u}^{-\mathbf{X}})(t,x)=\frac{|u(t,x)-\tilde{u}(x-\mathbf{X}(t))|^{2}}{2}.

The shifted shock verifies the equation

t[u~𝐗]+𝐗˙(u~)𝐗+x(u~𝐗(1u~𝐗))=x2[u~𝐗].\partial_{t}[\tilde{u}^{-\mathbf{X}}]+\dot{\mathbf{X}}(\tilde{u}^{\prime})^{-\mathbf{X}}+\partial_{x}(\tilde{u}^{-\mathbf{X}}(1-\tilde{u}^{-\mathbf{X}}))=\partial_{x}^{2}[\tilde{u}^{-\mathbf{X}}].

Multiplying the difference of (1.17) and the shifted shock equation by (uu~𝐗)(u-\tilde{u}^{-\mathbf{X}}), we can show that

(1.19) ddtη(u|u~𝐗)(t,x)𝑑x=𝐗˙(t)u~(u𝐗u~)𝑑x+u~|u𝐗u~|2|x(u𝐗u~)|2𝑑x.\frac{d}{dt}\int_{\mathbb{R}}\eta(u|\tilde{u}^{-\mathbf{X}})(t,x)\,dx=\dot{\mathbf{X}}(t)\int_{\mathbb{R}}\tilde{u}^{\prime}(u^{\mathbf{X}}-\tilde{u})\,dx+\int_{\mathbb{R}}\tilde{u}^{\prime}|u^{\mathbf{X}}-\tilde{u}|^{2}-\int_{\mathbb{R}}|\partial_{x}(u^{\mathbf{X}}-\tilde{u})|^{2}\,dx.

Note that, at the final step, we made the change of variable xx+𝐗(t)x\to x+\mathbf{X}(t) flipping the shift from the shock u~\tilde{u} to the function u𝐗(t,x)=u(t,x+𝐗(t))u^{\mathbf{X}}(t,x)=u(t,x+\mathbf{X}(t)). We now fix the speed of the shift as

𝐗˙(t)=u~(u𝐗u~)𝑑x,\dot{\mathbf{X}}(t)=-\int_{\mathbb{R}}\tilde{u}^{\prime}(u^{\mathbf{X}}-\tilde{u})\,dx,

which defines the shift t𝐗(t)t\mapsto\mathbf{X}(t) thanks to the Cauchy-Lipschitz theorem. We claim that, for this shift, η(u|u~𝐗)(t,x)𝑑x\int_{\mathbb{R}}\eta(u|\tilde{u}^{-\mathbf{X}})(t,x)\,dx is non-increasing in time. This statement will be proved, if we can show that for any function gH1()g\in H^{1}(\mathbb{R}):

(1.20) g¯2+u~(x)|g(x)|2𝑑x|g(x)|2𝑑x0,-\bar{g}^{2}+\int_{\mathbb{R}}\tilde{u}^{\prime}(x)|g(x)|^{2}\,dx-\int_{\mathbb{R}}|g^{\prime}(x)|^{2}\,dx\leq 0,

where g¯=u~(x)g(x)𝑑x\bar{g}=\int_{\mathbb{R}}\tilde{u}^{\prime}(x)g(x)\,dx. Indeed, for any fixed time t>0t>0, denote g(x)=(u𝐗u~)(t,x)g(x)=(u^{\mathbf{X}}-\tilde{u})(t,x). The inequality (1.20) for this specific function gg applied to (1.19) shows that at all these times:

ddtη(u|u~𝐗)(t,x)𝑑x0.\frac{d}{dt}\int_{\mathbb{R}}\eta(u|\tilde{u}^{-\mathbf{X}})(t,x)\,dx\leq 0.

Therefore, the contraction up to a shift is reduced to the Poincaré type inequality (1.20). Because u~𝑑x=1\int_{\mathbb{R}}\tilde{u}^{\prime}\,dx=1, it is equivalent to

u~(x)|g(x)g¯|2𝑑x|g(x)|2𝑑x0.\int_{\mathbb{R}}\tilde{u}^{\prime}(x)|g(x)-\bar{g}|^{2}\,dx-\int_{\mathbb{R}}|g^{\prime}(x)|^{2}\,dx\leq 0.

Let us rewrite this inequality in the natural variable associated to the shock:

y=u~(x),dy=u~(x)dx,f(y)=g(x).y=\tilde{u}(x),\qquad dy=\tilde{u}^{\prime}(x)\,dx,\qquad f(y)=g(x).

This change of variable is possible since u~\tilde{u} is an increasing function from 0 to 1. We have also

g(x)=u~(x)f(y),g¯=01f(y)𝑑y,g^{\prime}(x)=\tilde{u}^{\prime}(x)f^{\prime}(y),\qquad\bar{g}=\int_{0}^{1}f(y)\,dy,

and so (1.20) is equivalent to

01|f01f𝑑y|2𝑑y01u~(x)|f|2𝑑y.\int_{0}^{1}\Big{|}f-\int_{0}^{1}fdy\Big{|}^{2}dy\leq\int_{0}^{1}\tilde{u}^{\prime}(x)|f^{\prime}|^{2}dy.

But thanks to (1.18), u~(x)=u~(x)(1u~(x))=y(1y)\tilde{u}^{\prime}(x)=\tilde{u}(x)(1-\tilde{u}(x))=y(1-y). Hence (1.16) implies (1.20) since 1/2<11/2<1. The case of the Navier-Stokes system: If we perform the same idea on the Navier-Stokes system (1.15) in the BD effective variables U=(v,h)U=(v,h), but without weight function aa, we are obtaining (after Taylor expansion, using the smallness of the shock and of the perturbation) the inequality

ddtη(U|U~𝐗)𝑑x𝐗˙(t)𝐘(U)+x[p(v~)]|v𝐗v~|2dx1v|x(v𝐗v~)|2𝑑x,\frac{d}{dt}\int_{\mathbb{R}}\eta(U|\tilde{U}^{-\mathbf{X}})\,dx\approx\dot{\mathbf{X}}(t)\mathbf{Y}(U)+\int_{\mathbb{R}}\partial_{x}[p^{\prime}(\tilde{v})]|v^{\mathbf{X}}-\tilde{v}|^{2}\,dx-\int_{\mathbb{R}}\frac{1}{v}|\partial_{x}(v^{\mathbf{X}}-\tilde{v})|^{2}\,dx,

with

𝐘(t)x(η(U~))(U𝐗U~)dx.\mathbf{Y}(t)\approx\int_{\mathbb{R}}\partial_{x}(\nabla\eta(\tilde{U}))\cdot(U^{\mathbf{X}}-\tilde{U})\,dx.

Thanks to the BD effective variables, the first equality is very similar to the scalar case. Especially, the dissipation is in the vv variable only, as the “bad” quadratic term. However, the 𝐘\mathbf{Y} term involves now a linear combination of v𝐗v~v^{\mathbf{X}}-\tilde{v} and h𝐗h~h^{\mathbf{X}}-\tilde{h}. Therefore, whatever the choice of 𝐗˙\dot{\mathbf{X}}, we cannot control any weighted mean value of v𝐗v~v^{\mathbf{X}}-\tilde{v} from this term as in the scalar case. The point of the method is that the flux of the relative entropy (which disappears when integrating in xx) is better behaved. On top of a “bad” quadratic term in |v𝐗v~|2|v^{\mathbf{X}}-\tilde{v}|^{2}, it involves a “good” (meaning with a good sign) quadratic term involving a linear combination of v𝐗v~v^{\mathbf{X}}-\tilde{v} and h𝐗h~h^{\mathbf{X}}-\tilde{h}. The weight function aa is used to activate those flux terms. Note that the linear combination involved in the flux terms is independent of the linear combination involved in the 𝐘(t)\mathbf{Y}(t) term. Therefore the use of both the weight and the shift allows to control the weighted mean value of v𝐗v~v^{\mathbf{X}}-\tilde{v} needed to use the Poincaré Lemma 1.1. The weight function aa is chosen such that xa\partial_{x}a is proportional to x[p(v~)]\partial_{x}[p^{\prime}(\tilde{v})] which is the analogue of u~\tilde{u}^{\prime} for the scalar case, and is a natural weight associated to the shock layer. Its strength, however, is enhanced by a factor bigger than the size of the shock λδ\lambda\gg\delta, in order to make the relative entropy flux term dominant.

The rest of the paper is organized as follows. We begin with preliminaries in Section 2. It includes known properties on the rarefaction and on the viscous shock, together with simple properties on the behavior of the pressure functional and the relative entropy. The general set up is laid out in Section 3. We introduce an a priori estimates result in Proposition 3.2. Then we show by a continuing argument how this proposition implies Theorem 1.1. The last two sections are dedicated to the proof of Proposition 3.2. The aa-contraction argument is set up in Section 4 where global a priori estimates are proved in the variables (v,h)(v,h). From these global estimates, we deduce global a priori estimates in the variables (v,u)(v,u) in Section 5, concluding the proof of Proposition 3.2.

2. Preliminaries

We gather in this section some well-known results which will be useful in the rest of the paper.

2.1. Relative quantities

As explained in the introduction, the aa-contraction with shifts theory is based on the relative entropy, and the specific volume variable v+v\in\mathbb{R}^{+} is of particular importance. For any function FF defined on +\mathbb{R}^{+}, we define the associated relative quantity defined for v,w+v,w\in\mathbb{R}^{+} as

F(v|w)=F(v)F(w)F(w)(vw).F(v|w)=F(v)-F(w)-F^{\prime}(w)(v-w).

We gather, in the following lemma, useful explicit inequalities on the relative quantities associated to the pressure p(v)=vγp(v)=v^{-\gamma}, and the internal energy Q(v)=v1γ/(1γ)Q(v)=v^{1-\gamma}/(1-\gamma). The proofs are simply based on Taylor expansions, and can be found in [15, Lemmas 2.4, 2.5 and 2.6].

Lemma 2.1.

For given constants γ>1\gamma>1, and v>0v_{-}>0, their exist constants C,δ>0C,\delta_{*}>0, such that the following holds true.
1) For any v,wv,w such that 0<w<2v,0<v3v0<w<2v_{-},0<v\leq 3v_{-},

(2.1) |vw|2CQ(v|w),|v-w|^{2}\leq CQ(v|w),
(2.2) |vw|2Cp(v|w).|v-w|^{2}\leq Cp(v|w).

2) For any v,w>v/2v,w>v_{-}/2,

(2.3) |p(v)p(w)|C|vw|.|p(v)-p(w)|\leq C|v-w|.

3) For any 0<δ<δ0<\delta<\delta_{*}, and for any (v,w)+2(v,w)\in\mathbb{R}_{+}^{2} satisfying |p(v)p(w)|<δ|p(v)-p(w)|<\delta, and |p(w)p(v)|<δ|p(w)-p(v_{-})|<\delta, the following holds true:

(2.4) p(v|w)(γ+12γ1p(w)+Cδ)|p(v)p(w)|2,\displaystyle\begin{aligned} p(v|w)&\leq\bigg{(}\frac{\gamma+1}{2\gamma}\frac{1}{p(w)}+C\delta\bigg{)}|p(v)-p(w)|^{2},\end{aligned}
(2.5) Q(v|w)p(w)1γ12γ|p(v)p(w)|21+γ3γ2p(w)1γ2(p(v)p(w))3,Q(v|w)\geq\frac{p(w)^{-\frac{1}{\gamma}-1}}{2\gamma}|p(v)-p(w)|^{2}-\frac{1+\gamma}{3\gamma^{2}}p(w)^{-\frac{1}{\gamma}-2}(p(v)-p(w))^{3},
(2.6) Q(v|w)(p(w)1γ12γ+Cδ)|p(v)p(w)|2.Q(v|w)\leq\bigg{(}\frac{p(w)^{-\frac{1}{\gamma}-1}}{2\gamma}+C\delta\bigg{)}|p(v)-p(w)|^{2}.

2.2. Rarefaction wave

We now recall important properties of the 1-rarefaction waves. Consider a (vm,um)(v_{m},u_{m}) in (1.2), and (v,u)R1(vm,um)(v_{-},u_{-})\in R_{1}(v_{m},u_{m}). Set w=λ1(v),wm=λ1(vm)w_{-}=\lambda_{1}(v_{-}),w_{m}=\lambda_{1}(v_{m}), and consider the Riemann problem for the inviscid Burgers equation:

(2.7) {wt+wwx=0,w(0,x)=w0r(x)={w,x<0,wm,x>0.\begin{cases}\displaystyle w_{t}+ww_{x}=0,\\ \displaystyle w(0,x)=w_{0}^{r}(x)=\begin{cases}w_{-},\quad x<0,\\ w_{m},\quad x>0.\end{cases}\end{cases}

If w<wmw_{-}<w_{m}, then (2.7) has the rarefaction wave fan wr(t,x)=wr(x/t)w^{r}(t,x)=w^{r}(x/t) given by

(2.8) wr(t,x)=wr(xt)={w,x<wt,xt,wtxwmt,wm,x>wmt.w^{r}(t,x)=w^{r}(\frac{x}{t})=\begin{cases}w_{-},\qquad x<w_{-}t,\\ \frac{x}{t},\qquad w_{-}t\leq x\leq w_{m}t,\\ w_{m},\qquad x>w_{m}t.\end{cases}

It is easy to check that the 1-rarefaction wave (vr,ur)(t,x)=(vr,ur)(x/t)(v^{r},u^{r})(t,x)=(v^{r},u^{r})(x/t) to the Riemann problem (1.3)-(1.4), defined in (1.6)-(1.7), is given explicitly by

(2.9) λ1(vr(xt))=wr(xt),z1(vr(xt),ur(xt))=z1(v,u)=z1(vm,um).\begin{array}[]{ll}&\lambda_{1}(v^{r}(\frac{x}{t}))=w^{r}(\frac{x}{t}),\\[2.84526pt] &z_{1}(v^{r}(\frac{x}{t}),u^{r}(\frac{x}{t}))=z_{1}(v_{-},u_{-})=z_{1}(v_{m},u_{m}).\end{array}

The self-similar 1-rarefaction wave (vr,ur)(x/t)(v^{r},u^{r})(x/t) is Lipschitz continuous and satisfies the Euler system a.e. for t>0t>0,

(2.10) {vtruxr=0,utr+p(vr)x=0.\displaystyle\begin{aligned} \left\{\begin{array}[]{ll}v^{r}_{t}-u^{r}_{x}=0,\\[2.84526pt] u^{r}_{t}+p(v^{r})_{x}=0.\end{array}\right.\end{aligned}

Let δR:=|vmv|\delta_{R}:=|v_{m}-v_{-}| denote the strength of the rarefaction wave. Notice that δR|umu|\delta_{R}\sim|u_{m}-u_{-}| by (2.9)2\eqref{rare}_{2}.

2.3. Viscous shock wave

We turn to the 2-viscous shock wave connecting (vm,um)(v_{m},u_{m}) and (v+,u+)(v_{+},u_{+}) such that (vm,um)S2(v+,u+)(v_{m},u_{m})\in S_{2}(v_{+},u_{+}). Recall the Rankine-Hugoniot condition (1.8) and the Lax entropy condition

(2.11) λ2(v+)<σ<λ2(vm).\lambda_{2}(v_{+})<\sigma<\lambda_{2}(v_{m}).

The Riemann problem (1.3)-(1.4) admits a unique 2-shock solution

(2.12) (vs,us)(t,x)={(vm,um),x<σt,(v+,u+),x>σt.\displaystyle\begin{aligned} (v^{s},u^{s})(t,x)=\left\{\begin{array}[]{ll}(v_{m},u_{m}),\quad x<\sigma t,\\[5.69054pt] (v_{+},u_{+}),\quad x>\sigma t.\\ \end{array}\right.\end{aligned}

By (1.8), it holds that

(2.13) σ=p(v+)p(vm)v+vm.\sigma=\sqrt{-\frac{p(v_{+})-p(v_{m})}{v_{+}-v_{m}}}.

By introducing a new variable ξ=xσt\xi=x-\sigma t, the the 2-viscous shock wave (v~S,u~S)(ξ)(\widetilde{v}^{S},\widetilde{u}^{S})(\xi) satisfies the ODE

(2.14) {σ(v~S)(u~S)=0,=ddξ,σ(u~S)+(p(v~S))=((u~S)v~S),(v~S,u~S)()=(vm,um),(v~S,u~S)(+)=(v+,u+).\left\{\begin{array}[]{ll}\displaystyle-\sigma(\widetilde{v}^{S})^{\prime}-(\widetilde{u}^{S})^{\prime}=0,\qquad\qquad^{\prime}=\frac{d}{d\xi},\\[8.53581pt] \displaystyle-\sigma(\widetilde{u}^{S})^{\prime}+(p(\widetilde{v}^{S}))^{\prime}=\Big{(}\frac{(\widetilde{u}^{S})^{\prime}}{\widetilde{v}^{S}}\Big{)}^{\prime},\\[8.53581pt] \displaystyle(\widetilde{v}^{S},\widetilde{u}^{S})(-\infty)=(v_{m},u_{m}),\qquad(\widetilde{v}^{S},\widetilde{u}^{S})(+\infty)=(v_{+},u_{+}).\end{array}\right.

The properties of the 2-viscous shock wave (v~S,u~S)(ξ)(\widetilde{v}^{S},\widetilde{u}^{S})(\xi) can be listed as follows. The proof of this lemma can be found in [25] or [7] (see also [15]).

Lemma 2.2.

For any state (v+,u+)(v_{+},u_{+}), there exists a constant C>0C>0 such that the following is true. For any end state such that (vm,um)R2(v+,u+)(v_{m},u_{m})\in R_{2}(v_{+},u_{+}), there exists a unique solution (v~S,u~S)(ξ)(\widetilde{v}^{S},\widetilde{u}^{S})(\xi) to (2.14). Let δS\delta_{S} denote the strength of the shock as δS:=|p(v+)p(vm)||v+vm||u+um|\delta_{S}:=|p(v_{+})-p(v_{m})|\sim|v_{+}-v_{m}|\sim|u_{+}-u_{m}|. It holds that

u~ξS<0,v~ξS>0,\widetilde{u}^{S}_{\xi}<0,\qquad\widetilde{v}^{S}_{\xi}>0,

and

|v~S(ξ)vm|CδSeCδS|ξ|,ξ<0,\displaystyle|\widetilde{v}^{S}(\xi)-v_{m}|\leq C\delta_{S}\ e^{-C\delta_{S}|\xi|},\quad\xi<0,
|v~S(ξ)v+|CδSeCδS|ξ|,ξ>0,\displaystyle|\widetilde{v}^{S}(\xi)-v_{+}|\leq C\delta_{S}\ e^{-C\delta_{S}|\xi|},\quad\xi>0,
|(v~ξS,u~ξS)|CδS2eCδS|ξ|,ξ,\displaystyle|(\widetilde{v}^{S}_{\xi},\widetilde{u}^{S}_{\xi})|\leq C\delta_{S}^{2}\ e^{-C\delta_{S}|\xi|},\quad\forall\xi\in\mathbb{R},
|(v~ξξS,u~ξξS)|CδS|(v~ξS,u~ξS)|,ξ.\displaystyle|(\widetilde{v}^{S}_{\xi\xi},\widetilde{u}^{S}_{\xi\xi})|\leq C\delta_{S}|(\widetilde{v}^{S}_{\xi},\widetilde{u}^{S}_{\xi})|,\quad\forall\xi\in\mathbb{R}.

2.4. Composite waves of viscous shock and rarefaction

Given the end states (v±,u±)+×(v_{\pm},u_{\pm})\in\mathbb{R}^{+}\times\mathbb{R} in (1.2), we consider the case that there exists a unique intermediate state (vm,um)(v_{m},u_{m}) such that

(2.15) (v,u)R1(vm,um),(vm,um)S2(v+,u+).(v_{-},u_{-})\in R_{1}(v_{m},u_{m}),\qquad(v_{m},u_{m})\in S_{2}(v_{+},u_{+}).

We will consider a superposition wave:

(2.16) (vr(xt)+v~S(xσt)vm,ur(xt)+u~S(xσt)um),\left(v^{r}(\frac{x}{t})+\widetilde{v}^{S}(x-\sigma t)-v_{m},u^{r}(\frac{x}{t})+\widetilde{u}^{S}(x-\sigma t)-u_{m}\right),

where (vr,ur)(xt)(v^{r},u^{r})(\frac{x}{t}) is the 1-rarefaction wave defined in (2.9) and (v~S,u~S)(ξ)(\widetilde{v}^{S},\widetilde{u}^{S})(\xi) is the 2-viscous shock wave defined in Lemma 2.2.

3. Set-up of the problem, and proof of Theorem 1.1

3.1. Construction of approximate rarefaction wave

As in [26], we will consider a smooth approximate solution of the 1-rarefaction wave, by using the smooth solution to the Burgers equation:

(3.1) {wt+wwx=0,w(0,x)=w0(x)=wm+w2+wmw2tanhx.\begin{cases}\displaystyle w_{t}+ww_{x}=0,\\ \displaystyle w(0,x)=w_{0}(x)=\frac{w_{m}+w_{-}}{2}+\frac{w_{m}-w_{-}}{2}\tanh x.\end{cases}

Then, by the characteristic methods, the solution w(t,x)w(t,x) of the problem (3.1) has the following properties and their proofs can be found in [26].

Lemma 3.1.

Suppose wm>ww_{m}>w_{-} and set w~=wmw\tilde{w}=w_{m}-w_{-}. Then the problem (3.1) has a unique smooth global solution w(t,x)w(t,x) such that

(1) w<w(t,x)<wm,wx>0w_{-}<w(t,x)<w_{m},~{}w_{x}>0 for xx\in\mathbb{R} and t0t\geq 0.

(2) The following estimates hold for all t>0t>0 and p[1,+]p\in[1,+\infty]:

wx(t,)LpCmin(|w~|,|w~|1/pt1+1/p),\displaystyle\|w_{x}(t,\cdot)\|_{L^{p}}\leq C\min(|\tilde{w}|,|\tilde{w}|^{1/p}t^{-1+1/p}),
wxx(t,)LpCmin(|w~|,t1).\displaystyle\|w_{xx}(t,\cdot)\|_{L^{p}}\leq C\min(|\tilde{w}|,t^{-1}).

(3)  If wm<0,w_{m}<0, then it holds that x0,t0\forall x\geq 0,\forall t\geq 0,

|w(t,x)wm|w~e2(|x|+|wm|t),\displaystyle|w(t,x)-w_{m}|\leq\tilde{w}e^{-2(|x|+|w_{m}|t)},
|(wx,wxx)(t,x)|Cw~e2(|x|+|wm|t).\displaystyle|(w_{x},w_{xx})(t,x)|\leq C\tilde{w}e^{-2(|x|+|w_{m}|t)}.

(4)  It holds that xwt,t0\forall x\leq w_{-}t,\,\forall t\geq 0,

|w(t,x)w|w~e2|xwt|,\displaystyle|w(t,x)-w_{-}|\leq\tilde{w}e^{-2|x-w_{-}t|},
|(wx,wxx)(t,x)|Cw~e2|xwt|.\displaystyle|(w_{x},w_{xx})(t,x)|\leq C\tilde{w}e^{-2|x-w_{-}t|}.

(5) limt+supx|w(t,x)wr(xt)|=0\displaystyle\lim_{t\to+\infty}\sup_{x\in\mathbb{R}}|w(t,x)-w^{r}(\frac{x}{t})|=0.

We now construct the smooth approximate 1-rarefaction wave (v~R,u~R)(t,x)(\widetilde{v}^{R},\widetilde{u}^{R})(t,x) of the 1-rarefaction wave fan (vr,ur)(xt)(v^{r},u^{r})(\frac{x}{t}) by

(3.2) λ1(v)=w,λ1(vm)=wm,λ1(v~R)(t,x)=w(1+t,x),z1(v~R,u~R)(t,x)=z1(v,u)=z1(vm,um),\displaystyle\begin{aligned} &\lambda_{1}(v_{-})=w_{-},\ \lambda_{1}(v_{m})=w_{m},\\ &\lambda_{1}(\widetilde{v}^{R})(t,x)=w(1+t,x),\\ &z_{1}(\widetilde{v}^{R},\widetilde{u}^{R})(t,x)=z_{1}(v_{-},u_{-})=z_{1}(v_{m},u_{m}),\end{aligned}

where w(t,x)w(t,x) is the smooth solution to the Burgers equation in (3.1). One can easily check that the above approximate rarefaction wave (v~R,u~R)(\widetilde{v}^{R},\widetilde{u}^{R}) satisfies the system:

(3.3) {v~tRu~xR=0,u~tR+p(v~R)x=0.\begin{cases}\displaystyle\widetilde{v}^{R}_{t}-\widetilde{u}^{R}_{x}=0,\\ \displaystyle\widetilde{u}^{R}_{t}+p(\widetilde{v}^{R})_{x}=0.\\ \end{cases}

The following lemma comes from Lemma 3.1 (cf. [26]).

Lemma 3.2.

The smooth approximate 1-rarefaction wave (v~R,u~R)(t,x)(\widetilde{v}^{R},\widetilde{u}^{R})(t,x) defined in (LABEL:AR) satisfies the following properties. Let δR\delta_{R} denote the rarefaction wave strength as δR:=|vmv||umu|\delta_{R}:=|v_{m}-v_{-}|\sim|u_{m}-u_{-}|.

(1) u~xR=2(γ+1)v~Rwx>0\widetilde{u}^{R}_{x}=\frac{2}{(\gamma+1)\widetilde{v}^{R}}w_{x}>0 and v~xR=(v~R)γ+12γu~xR>0,\widetilde{v}^{R}_{x}=\frac{(\widetilde{v}^{R})^{\frac{\gamma+1}{2}}}{\sqrt{\gamma}}\widetilde{u}^{R}_{x}>0, for all xx\in\mathbb{R} and t0t\geq 0.

(2) The following estimates hold for all t0t\geq 0 and p[1,+]p\in[1,+\infty]:

(v~xR,u~xR)LpCmin{δR,δR1/p(1+t)1+1/p},\displaystyle\|(\widetilde{v}^{R}_{x},\widetilde{u}^{R}_{x})\|_{L^{p}}\leq C\min\{\delta_{R},\delta_{R}^{1/p}(1+t)^{-1+1/p}\},
(v~xxR,u~xxR)LpCmin{δR,(1+t)1},\displaystyle\|(\widetilde{v}^{R}_{xx},\widetilde{u}^{R}_{xx})\|_{L^{p}}\leq C\min\{\delta_{R},(1+t)^{-1}\},
|u~xxR|C|u~xR|,x.\displaystyle|\widetilde{u}^{R}_{xx}|\leq C|\widetilde{u}^{R}_{x}|,\quad\forall x\in\mathbb{R}.

(3)  For x0,t0,x\geq 0,t\geq 0, it holds that

|(v~R,u~R)(t,x)(vm,um)|CδRe2(|x|+|λ1(vm)|t),\displaystyle|(\widetilde{v}^{R},\widetilde{u}^{R})(t,x)-(v_{m},u_{m})|\leq C\delta_{R}\ e^{-2(|x|+|\lambda_{1}(v_{m})|t)},
|(v~xR,u~xR)(t,x)|CδRe2(|x|+|λ1(vm)|t).\displaystyle|(\widetilde{v}^{R}_{x},\widetilde{u}^{R}_{x})(t,x)|\leq C\delta_{R}\ e^{-2(|x|+|\lambda_{1}(v_{m})|t)}.

(4)  For xλ1(v)tx\leq\lambda_{1}(v_{-})t and t0,t\geq 0, it holds that

|(v~R,u~R)(t,x)(v,u)|CδRe2|xλ1(v)t|,\displaystyle|(\widetilde{v}^{R},\widetilde{u}^{R})(t,x)-(v_{-},u_{-})|\leq C\delta_{R}\ e^{-2|x-\lambda_{1}(v_{-})t|},
|(v~xR,u~xR)(t,x)|CδRe2|xλ1(v)t|.\displaystyle|(\widetilde{v}^{R}_{x},\widetilde{u}^{R}_{x})(t,x)|\leq C\delta_{R}\ e^{-2|x-\lambda_{1}(v_{-})t|}.

(5) limt+supx|(v~R,u~R)(t,x)(vr,ur)(xt)|=0\displaystyle\lim_{t\to+\infty}\sup_{x\in\mathbb{R}}|(\widetilde{v}^{R},\widetilde{u}^{R})(t,x)-(v^{r},u^{r})(\frac{x}{t})|=0.

3.2. Local in time estimates on the solution

For simplification of our analysis, we rewrite the compressible Navier-Stokes system (1.1) into the following system, based on the change of variable associated to the speed of propagation of the shock (t,x)(t,ξ=xσt)(t,x)\mapsto(t,\xi=x-\sigma t):

(3.4) {vtσvξuξ=0,utσuξ+p(v)ξ=(uξv)ξ.\displaystyle\begin{aligned} \left\{\begin{array}[]{ll}v_{t}-\sigma v_{\xi}-u_{\xi}=0,\\ u_{t}-\sigma u_{\xi}+p(v)_{\xi}=(\frac{u_{\xi}}{v})_{\xi}.\\ \end{array}\right.\end{aligned}

We will consider stability of the solution to (3.4) around the superposition wave of the approximate rarefaction wave and the viscous shock wave shifted by 𝐗(t)\mathbf{X}(t) (to be defined in (3.8)) :

(3.5) (v~𝐗,u~𝐗)(t,ξ):=(v~R(t,ξ+σt)+v~S(ξ𝐗(t))vm,u~R(t,ξ+σt)+u~S(ξ𝐗(t))um).(\widetilde{v}_{-\mathbf{X}},\widetilde{u}_{-\mathbf{X}})(t,\xi):=\left(\widetilde{v}^{R}(t,\xi+\sigma t)+\widetilde{v}^{S}(\xi-\mathbf{X}(t))-v_{m},\widetilde{u}^{R}(t,\xi+\sigma t)+\widetilde{u}^{S}(\xi-\mathbf{X}(t))-u_{m}\right).

For any initial H1H^{1} perturbation of the superposition of waves (3.5), there exists a global strong solution to (3.4) (see for instance [29]). We will use a standard method of continuation to show the global in time control of this perturbation. For that, we first recall local in time estimates for strong solutions to (1.1) (and so also for (3.4)). They can be found in [35] (see also [29, Proposition 2.2]).

Proposition 3.1.

Let v¯\underline{v} and u¯\underline{u} be smooth monotone functions such that

(3.6) v¯(x)=v±andu¯(x)=u±for ±x1.\underline{v}(x)=v_{\pm}\quad\mbox{and}\quad\underline{u}(x)=u_{\pm}\quad\mbox{for }\pm x\geq 1.

For any constants M0,M1,κ¯0,κ¯0,κ¯1,κ¯1M_{0},M_{1},\underline{\kappa}_{0},\overline{\kappa}_{0},\underline{\kappa}_{1},\overline{\kappa}_{1} with M1>M0>0M_{1}>M_{0}>0 and κ¯1>κ¯0>κ¯0>κ¯1>0\overline{\kappa}_{1}>\overline{\kappa}_{0}>\underline{\kappa}_{0}>\underline{\kappa}_{1}>0, there exists a constant T0>0T_{0}>0 such that if

v0v¯H1()+u0u¯H1()M0,0<κ¯0v0(x)κ¯0,x,\displaystyle\begin{aligned} &\|v_{0}-\underline{v}\|_{H^{1}(\mathbb{R})}+\|u_{0}-\underline{u}\|_{H^{1}(\mathbb{R})}\leq M_{0},\\ &0<\underline{\kappa}_{0}\leq v_{0}(x)\leq\overline{\kappa}_{0},\qquad\forall x\in\mathbb{R},\\ \end{aligned}

then (3.4) has a unique solution (v,u)(v,u) on [0,T0][0,T_{0}] such that

vv¯C([0,T0];H1()),uu¯C([0,T0];H1())L2(0,T0;H2()).\displaystyle\begin{aligned} &v-\underline{v}\in C([0,T_{0}];H^{1}(\mathbb{R})),\\ &u-\underline{u}\in C([0,T_{0}];H^{1}(\mathbb{R}))\cap L^{2}(0,T_{0};H^{2}(\mathbb{R})).\end{aligned}

and

vv¯L(0,T0;H1())+uu¯L(0,T0;H1())M1.\|v-\underline{v}\|_{L^{\infty}(0,T_{0};H^{1}(\mathbb{R}))}+\|u-\underline{u}\|_{L^{\infty}(0,T_{0};H^{1}(\mathbb{R}))}\leq M_{1}.

Moreover:

(3.7) κ¯1v(t,x)κ¯1,(t,x)[0,T0]×.\underline{\kappa}_{1}\leq v(t,x)\leq\overline{\kappa}_{1},\qquad\forall(t,x)\in[0,T_{0}]\times\mathbb{R}.

3.3. Construction of shift

For the continuation argument, the main tool is the a priori estimates of Proposition 3.2. These estimates depend on the shift function, and for this reason, we are giving its definition right now. The definition depends on the weight function a:a:\mathbb{R}\to\mathbb{R} defined in (4.11). For now, we will only use the fact that aC1()2\|a\|_{C^{1}(\mathbb{R})}\leq 2. We then define the shift 𝐗\mathbf{X} as a solution to the ODE:

(3.8) {𝐗˙(t)=MδS[a(ξ𝐗)σξh~S(ξ𝐗)(p(v)p(v~𝐗))dξa(ξ𝐗)ξp(v~S(ξ𝐗))(vv~𝐗)dξ],𝐗(0)=0,\left\{\begin{array}[]{ll}\displaystyle\dot{\mathbf{X}}(t)=-\frac{M}{\delta_{S}}\Big{[}\int_{\mathbb{R}}\frac{a(\xi-\mathbf{X})}{\sigma}\partial_{\xi}\widetilde{h}^{S}(\xi-\mathbf{X})(p(v)-p(\widetilde{v}_{-\mathbf{X}}))d\xi\\[11.38109pt] \displaystyle\qquad\qquad\qquad-\int_{\mathbb{R}}a(\xi-\mathbf{X})\partial_{\xi}p(\widetilde{v}^{S}(\xi-\mathbf{X}))(v-\widetilde{v}_{-\mathbf{X}})d\xi\Big{]},\\ \displaystyle\mathbf{X}(0)=0,\end{array}\right.

where MM is the specific constant chosen as M:=5(γ+1)σm38γp(vm)M:=\frac{5(\gamma+1)\sigma_{m}^{3}}{8\gamma p(v_{m})} with σm:=p(vm)\sigma_{m}:=\sqrt{-p^{\prime}(v_{m})}, which will be used in the proof of Lemma 4.5 (see (4.49)).

The following lemma ensures that (3.8) has a unique absolutely continuous solution defined on any interval in time [0,T][0,T] for which (3.7) is verified.

Lemma 3.3.

For any c1,c2>0c_{1},c_{2}>0, there exists a constant C>0C>0 such that the following is true. For any T>0T>0, and any function vL((0,T)×)v\in L^{\infty}((0,T)\times\mathbb{R}) verifying

(3.9) c1v(t,x)c2,(t,x)[0,T]×,c_{1}\leq v(t,x)\leq c_{2},\qquad\forall(t,x)\in[0,T]\times\mathbb{R},

the ODE (3.8) has a unique absolutely continuous solution 𝐗\mathbf{X} on [0,T][0,T]. Moreover,

(3.10) |𝐗(t)|Ct,tT.|{\mathbf{X}}(t)|\leq Ct,\quad\forall t\leq T.
Proof.

We will use the following lemma as a simple adaptation of the well-known Cauchy-Lipschitz theorem.

Lemma 3.4.

[3, Lemma A.1] Let p>1p>1 and T>0T>0. Suppose that a function F:[0,T]×F:[0,T]\times\mathbb{R}\rightarrow\mathbb{R} satisfies

supx|F(t,x)|f(t)andsupx,y,xy|F(t,x)F(t,y)xy|g(t)for t[0,T]\sup_{x\in\mathbb{R}}|F(t,x)|\leq f(t)\quad\mbox{and}\quad\sup_{x,y\in\mathbb{R},x\neq y}\Big{|}\frac{F(t,x)-F(t,y)}{x-y}\Big{|}\leq g(t)\quad\mbox{for }t\in[0,T]

for some functions fL1(0,T)f\in L^{1}(0,T) and gLp(0,T)\,g\in L^{p}(0,T). Then for any x0x_{0}\in\mathbb{R}, there exists a unique absolutely continuous function 𝐗:[0,T]\mathbf{X}:[0,T]\rightarrow\mathbb{R} satisfying

(3.11) {𝐗˙(t)=F(t,𝐗(t))for a.e. t[0,T],𝐗(0)=x0.\left\{\begin{array}[]{ll}\dot{\mathbf{X}}(t)=F(t,\mathbf{X}(t))\quad\mbox{for {a.e.} }t\in[0,T],\\ \mathbf{X}(0)=x_{0}.\end{array}\right.

To apply the above lemma, let F(t,𝐗)F(t,\mathbf{X}) denote the right-hand side of the ODE (3.8).
Then the sufficient conditions of the above lemma are verified thanks to the facts that aC1()2\|a\|_{C^{1}(\mathbb{R})}\leq 2, v~SC2()max{1,v+}\|\widetilde{v}^{S}\|_{C^{2}(\mathbb{R})}\leq\max\{1,v_{+}\}, and v~ξSL1CδS\|\tilde{v}^{S}_{\xi}\|_{L^{1}}\leq C\delta_{S}. Indeed, using (3.9), we find that for some constant C>0C>0,

(3.12) sup𝐗|F(t,𝐗)|CδS|p(v)|+|p(v~𝐗)|+|v|+|v~𝐗|L()|v~ξS|𝑑ξC,\sup_{\mathbf{X}\in\mathbb{R}}|F(t,\mathbf{X})|\leq\frac{C}{\delta_{S}}\||p(v)|+|p(\widetilde{v}_{-\mathbf{X}})|+|v|+|\widetilde{v}_{-\mathbf{X}}|\|_{L^{\infty}(\mathbb{R})}\int_{\mathbb{R}}|\widetilde{v}^{S}_{\xi}|d\xi\leq C,

and

sup𝐗|𝐗F(t,𝐗)|CδSaC1|p(v)|+|p(v~𝐗)|+|v|+|v~𝐗|L()|v~ξS|𝑑ξC.\displaystyle\begin{aligned} \sup_{\mathbf{X}\in\mathbb{R}}|\partial_{\mathbf{X}}F(t,\mathbf{X})|&\leq\frac{C}{\delta_{S}}\|a\|_{C^{1}}\||p(v)|+|p(\widetilde{v}_{-\mathbf{X}})|+|v|+|\widetilde{v}_{-\mathbf{X}}|\|_{L^{\infty}(\mathbb{R})}\int_{\mathbb{R}}|\widetilde{v}^{S}_{\xi}|d\xi\leq C.\end{aligned}

Especially, since |𝐗˙(t)|C|\dot{\mathbf{X}}(t)|\leq C by (3.12), we have (3.10). ∎

3.4. A priori estimates

First, it follows from (3.3) that (v,u)(t,ξ):=(v~R(t,ξ+σt),u~R(t,ξ+σt))(v,u)(t,\xi):=(\widetilde{v}^{R}(t,\xi+\sigma t),\widetilde{u}^{R}(t,\xi+\sigma t)) verifies

(3.13) {vtσvξuξ=0,utσuξ+p(v)ξ=0.\begin{cases}\displaystyle v_{t}-\sigma v_{\xi}-u_{\xi}=0,\\ \displaystyle u_{t}-\sigma u_{\xi}+p(v)_{\xi}=0.\end{cases}

Therefore, using (2.14) and (3.13) we find that the approximated combination of waves (v~𝐗,u~𝐗)(\widetilde{v}_{-\mathbf{X}},\widetilde{u}_{-\mathbf{X}}) defined in (3.5) solves the system:

(3.14) {(v~𝐗)tσ(v~𝐗)ξ+𝐗˙(t)(v~S)ξ𝐗(u~𝐗)ξ=0,(u~𝐗)tσ(u~𝐗)ξ+𝐗˙(t)(u~S)ξ𝐗+(p(v~𝐗))ξ=((u~𝐗)ξv~𝐗)ξ+F1+F2,\displaystyle\begin{aligned} \left\{\begin{array}[]{ll}\displaystyle(\widetilde{v}_{-\mathbf{X}})_{t}-\sigma(\widetilde{v}_{-\mathbf{X}})_{\xi}+\dot{\mathbf{X}}(t)(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}-(\widetilde{u}_{-\mathbf{X}})_{\xi}=0,\\[5.69054pt] \displaystyle(\widetilde{u}_{-\mathbf{X}})_{t}-\sigma(\widetilde{u}_{-\mathbf{X}})_{\xi}+\dot{\mathbf{X}}(t)(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi}+(p(\widetilde{v}_{-\mathbf{X}}))_{\xi}=\left(\frac{(\widetilde{u}_{-\mathbf{X}})_{\xi}}{\widetilde{v}_{-\mathbf{X}}}\right)_{\xi}+F_{1}+F_{2},\end{array}\right.\end{aligned}

where (v~S)ξ𝐗:=v~ξS(ξ𝐗(t))(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}:=\widetilde{v}^{S}_{\xi}(\xi-\mathbf{X}(t)), (u~S)ξ𝐗:=u~ξS(ξ𝐗(t))(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi}:=\widetilde{u}^{S}_{\xi}(\xi-\mathbf{X}(t)) and

(3.15) F1=((u~ξS)𝐗(v~S)𝐗)ξ((u~𝐗)ξv~𝐗)ξ,F2=[p(v~𝐗)p(v~R)p((v~S)𝐗)]ξ.F_{1}=\left(\frac{({\widetilde{u}}^{S}_{\xi})^{-\mathbf{X}}}{({\widetilde{v}}^{S})^{-\mathbf{X}}}\right)_{\xi}-\left(\frac{(\widetilde{u}_{-\mathbf{X}})_{\xi}}{\widetilde{v}_{-\mathbf{X}}}\right)_{\xi},\quad F_{2}=\big{[}p(\widetilde{v}_{-\mathbf{X}})-p(\widetilde{v}^{R})-p\big{(}(\widetilde{v}^{S})^{-\mathbf{X}}\big{)}\big{]}_{\xi}.

Note that the shift 𝐗(t)\mathbf{X}(t) is performed only in the shock layer. The terms F1F_{1} and F2F_{2} are the wave interactions due to nonlinearity of the viscosity and the pressure and error terms due to the inviscid rarefaction.

We now state the key step for the proof of Theorem 1.1.

Proposition 3.2.

For a given point (v+,u+)+×(v_{+},u_{+})\in\mathbb{R}^{+}\times\mathbb{R}, there exist positive constants C0,δ0,ε1C_{0},\delta_{0},\varepsilon_{1} such that the following holds.
Suppose that (v,u)(v,u) is the solution to (3.4) on [0,T][0,T] for some T>0T>0, and (v~𝐗,u~𝐗)(\widetilde{v}_{-\mathbf{X}},\widetilde{u}_{-\mathbf{X}}) is defined in (3.5) with 𝐗\mathbf{X} being the absolutely continuous solution to (3.8) with weight function aa defined in (4.11). Assume that both the rarefaction and shock waves strength satisfy δR,δS<δ0\delta_{R},\delta_{S}<\delta_{0} and that

vv~𝐗C([0,T];H1()),uu~𝐗C([0,T];H1())L2(0,T;H2()),\displaystyle\begin{aligned} &v-\widetilde{v}_{-\mathbf{X}}\in C([0,T];H^{1}(\mathbb{R})),\\ &u-\widetilde{u}_{-\mathbf{X}}\in C([0,T];H^{1}(\mathbb{R}))\cap L^{2}(0,T;H^{2}(\mathbb{R})),\end{aligned}

and

(3.16) vv~𝐗L(0,T;H1())+uu~𝐗L(0,T;H1())ε1.\|v-\widetilde{v}_{-\mathbf{X}}\|_{L^{\infty}(0,T;H^{1}(\mathbb{R}))}+\|u-\widetilde{u}_{-\mathbf{X}}\|_{L^{\infty}(0,T;H^{1}(\mathbb{R}))}\leq\varepsilon_{1}.

Then, for all tTt\leq T,

(3.17) supt[0,T][vv~𝐗H1()+uu~𝐗H1()]+δS0t|𝐗˙|2𝑑s+0t(𝒢S(U)+𝒢R(U)+D(U)+D1(U)+D2(U))𝑑sC0(v0v~(0,)H1()+u0u~(0,)H1())+C0δR1/6,\displaystyle\begin{aligned} &\sup_{t\in[0,T]}\Big{[}\|v-\widetilde{v}_{-\mathbf{X}}\|_{H^{1}(\mathbb{R})}+\|u-\widetilde{u}_{-\mathbf{X}}\|_{H^{1}(\mathbb{R})}\Big{]}+\sqrt{\delta_{S}\int_{0}^{t}|\dot{\mathbf{X}}|^{2}ds}\\ &\qquad\quad+\sqrt{\int_{0}^{t}\big{(}\mathcal{G}^{S}(U)+\mathcal{G}^{R}(U)+D(U)+D_{1}(U)+D_{2}(U)\big{)}ds}\\ &\quad\leq C_{0}\left(\|v_{0}-\widetilde{v}(0,\cdot)\|_{H^{1}(\mathbb{R})}+\|u_{0}-\widetilde{u}(0,\cdot)\|_{H^{1}(\mathbb{R})}\right)+C_{0}\delta_{R}^{1/6},\end{aligned}

where C0C_{0} is independent of TT and

(3.18) 𝒢S(U):=|vξS(ξ𝐗(t))||vv~𝐗|2𝑑ξ,𝒢R(U):=|u~ξR||vv~𝐗|2𝑑ξ,D(U):=|ξ(p(v)p(v~𝐗))|2𝑑ξ,D1(U):=|(uu~𝐗)ξ|2𝑑ξ,D2(U):=|(uu~𝐗)ξξ|2𝑑ξ.\displaystyle\begin{aligned} &\mathcal{G}^{S}(U):=\int_{\mathbb{R}}|v^{S}_{\xi}(\xi-\mathbf{X}(t))||v-\widetilde{v}_{-\mathbf{X}}|^{2}d\xi,\\ &\mathcal{G}^{R}(U):=\int_{\mathbb{R}}|\widetilde{u}^{R}_{\xi}||v-\widetilde{v}_{-\mathbf{X}}|^{2}d\xi,\\ &D(U):=\int_{\mathbb{R}}|\partial_{\xi}\big{(}p(v)-p(\widetilde{v}_{-\mathbf{X}})\big{)}|^{2}d\xi,\\ &D_{1}(U):=\int_{\mathbb{R}}\big{|}(u-\widetilde{u}_{-\mathbf{X}})_{\xi}\big{|}^{2}d\xi,\\ &D_{2}(U):=\int_{\mathbb{R}}\big{|}(u-\widetilde{u}_{-\mathbf{X}})_{\xi\xi}\big{|}^{2}d\xi.\end{aligned}

In addition, by (3.8),

(3.19) |𝐗˙(t)|C0(vv~𝐗)(t,)L(),tT.|\dot{\mathbf{X}}(t)|\leq C_{0}\|(v-\widetilde{v}_{-\mathbf{X}})(t,\cdot)\|_{L^{\infty}(\mathbb{R})},\qquad t\leq T.

We postpone the proof of this key proposition to Sections 4 and 5. We are proving in the rest of this section how Proposition 3.2 implies Theorem 1.1.

3.5. Global in time estimates on the perturbations

We first prove (LABEL:ext-main) from Theorem 1.1 by using Proposition 3.1 and Proposition 3.2 and a continuation argument.
Let us consider the positive constants δ0,ε1,C0\delta_{0},\varepsilon_{1},C_{0} of Proposition 3.2. The constant δ0\delta_{0} control the maximum size of the shock and the rarefaction, and can be chosen even smaller if needed. First, by (3.6) in Proposition 3.1, the smooth and monotone functions v¯(x),u¯(x)\underline{v}(x),\underline{u}(x) especially satisfy for some C>0C_{*}>0,

(3.20) ±(v¯v±L2(±)+u¯u±L2(±))+xv¯L2()+xu¯L2()C(|v+v|+|u+u|)C(δR+δS)(2Cδ0).\displaystyle\begin{aligned} &\sum_{\pm}\Big{(}\|\underline{v}-v_{\pm}\|_{L^{2}(\mathbb{R}_{\pm})}+\|\underline{u}-u_{\pm}\|_{L^{2}(\mathbb{R}_{\pm})}\Big{)}+\|\partial_{x}\underline{v}\|_{L^{2}(\mathbb{R})}+\|\partial_{x}\underline{u}\|_{L^{2}(\mathbb{R})}\\ &\qquad\qquad\leq C(|v_{+}-v_{-}|+|u_{+}-u_{-}|)\leq C_{*}(\delta_{R}+\delta_{S})(\leq 2C_{*}\delta_{0}).\end{aligned}

This together with Lemmas 2.2 and 3.2 then implies that for some C1>0C_{1}>0,

(3.21) v¯()v~(0,)H1()+u¯()u~(0,)H1()±(v¯v±L2(±)+u¯u±L2(±))+v~R(0)vmL2(+)+v~Sv+L2(+)+v~R(0)vL2()+v~SvmL2()+xv¯L2()+xv~R(0)L2()+v~ξSL2()+u~R(0)umL2(+)+u~Su+L2(+)+u~R(0)uL2()+u~SumL2()+xu¯L2()+xu~R(0)L2()+u~ξSL2()C1(δR+δS).\displaystyle\begin{aligned} &\|\underline{v}(\cdot)-\widetilde{v}(0,\cdot)\|_{H^{1}(\mathbb{R})}+\|\underline{u}(\cdot)-\widetilde{u}(0,\cdot)\|_{H^{1}(\mathbb{R})}\\ &\leq\sum_{\pm}\Big{(}\|\underline{v}-v_{\pm}\|_{L^{2}(\mathbb{R}_{\pm})}+\|\underline{u}-u_{\pm}\|_{L^{2}(\mathbb{R}_{\pm})}\Big{)}+\|\widetilde{v}^{R}(0)-v_{m}\|_{L^{2}(\mathbb{R}_{+})}\\ &\quad+\|\widetilde{v}^{S}-v_{+}\|_{L^{2}(\mathbb{R}_{+})}+\|\widetilde{v}^{R}(0)-v_{-}\|_{L^{2}(\mathbb{R}_{-})}+\|\widetilde{v}^{S}-v_{m}\|_{L^{2}(\mathbb{R}_{-})}\\ &\quad+\|\partial_{x}\underline{v}\|_{L^{2}(\mathbb{R})}+\|\partial_{x}\widetilde{v}^{R}(0)\|_{L^{2}(\mathbb{R})}+\|\widetilde{v}^{S}_{\xi}\|_{L^{2}(\mathbb{R})}\\ &\quad+\|\widetilde{u}^{R}(0)-u_{m}\|_{L^{2}(\mathbb{R}_{+})}+\|\widetilde{u}^{S}-u_{+}\|_{L^{2}(\mathbb{R}_{+})}+\|\widetilde{u}^{R}(0)-u_{-}\|_{L^{2}(\mathbb{R}_{-})}\\ &\quad+\|\widetilde{u}^{S}-u_{m}\|_{L^{2}(\mathbb{R}_{-})}+\|\partial_{x}\underline{u}\|_{L^{2}(\mathbb{R})}+\|\partial_{x}\widetilde{u}^{R}(0)\|_{L^{2}(\mathbb{R})}+\|\widetilde{u}^{S}_{\xi}\|_{L^{2}(\mathbb{R})}\\ &\leq C_{1}(\delta_{R}+\sqrt{\delta_{S}}).\end{aligned}

By smallness of δ0\delta_{0}, we observe that for any δS,δR(0,δ0)\delta_{S},\delta_{R}\in(0,\delta_{0}),

(3.22) ε12C0δR1/6C0+1C1(δR+δS)C(δR+δS)>0.\frac{\frac{\varepsilon_{1}}{2}-C_{0}\delta_{R}^{1/6}}{C_{0}+1}-C_{1}(\delta_{R}+\sqrt{\delta_{S}})-C_{*}(\delta_{R}+\delta_{S})>0.

Let ε0\varepsilon_{0} be the above positive constant:

ε0:=εC(δR+δS),andε:=ε12C0δR1/6C0+1C1(δR+δS),\varepsilon_{0}:=\varepsilon_{*}-C_{*}(\delta_{R}+\delta_{S}),\quad{\rm and}\ \ \varepsilon_{*}:=\frac{\frac{\varepsilon_{1}}{2}-C_{0}\delta_{R}^{1/6}}{C_{0}+1}-C_{1}(\delta_{R}+\sqrt{\delta_{S}}),

where note that ε0\varepsilon_{0} can be chosen independently on δS,δR\delta_{S},\delta_{R}, for example, as ε0=ε14(C0+1)\varepsilon_{0}=\frac{\varepsilon_{1}}{4(C_{0}+1)}.
The specific constants ε0,ε\varepsilon_{0},\varepsilon_{*} will be used to apply Propositions 3.1 and 3.2 as below.
Consider any initial data (v0,u0)(v_{0},u_{0}) verifying the hypothesis (1.11) of Theorem 1.1, that is,

(3.23) ±(v0v±L2(±)+u0u±L2(±))+v0xL2()+u0xL2()<ε0,\sum_{\pm}\Big{(}\|v_{0}-v_{\pm}\|_{L^{2}(\mathbb{R}_{\pm})}+\|u_{0}-u_{\pm}\|_{L^{2}(\mathbb{R}_{\pm})}\Big{)}+\|v_{0x}\|_{L^{2}(\mathbb{R})}+\|u_{0x}\|_{L^{2}(\mathbb{R})}<\varepsilon_{0},

which together with (LABEL:underini) yields

(3.24) v0v¯H1()+u0u¯H1()±(v0v±L2(±)+u0u±L2(±)+v¯v±L2(±)+u¯u±L2(±))+v0xL2()+u0xL2()+v¯xL2()+u¯xL2()ε0+C(δR+δS)=ε.\displaystyle\begin{aligned} &\|v_{0}-\underline{v}\|_{H^{1}(\mathbb{R})}+\|u_{0}-\underline{u}\|_{H^{1}(\mathbb{R})}\\ &\quad\leq\sum_{\pm}\Big{(}\|v_{0}-v_{\pm}\|_{L^{2}(\mathbb{R}_{\pm})}+\|u_{0}-u_{\pm}\|_{L^{2}(\mathbb{R}_{\pm})}+\|\underline{v}-v_{\pm}\|_{L^{2}(\mathbb{R}_{\pm})}+\|\underline{u}-u_{\pm}\|_{L^{2}(\mathbb{R}_{\pm})}\Big{)}\\ &\qquad+\|v_{0x}\|_{L^{2}(\mathbb{R})}+\|u_{0x}\|_{L^{2}(\mathbb{R})}+\|\underline{v}_{x}\|_{L^{2}(\mathbb{R})}+\|\underline{u}_{x}\|_{L^{2}(\mathbb{R})}\\ &\quad\leq\varepsilon_{0}+C_{*}(\delta_{R}+\delta_{S})=\varepsilon_{*}.\end{aligned}

Especially, this together with Sobolev embedding implies that

(3.25) v0v¯L()Cε,\|v_{0}-\underline{v}\|_{L^{\infty}(\mathbb{R})}\leq C\varepsilon_{*},

which together with smallness of ε\varepsilon_{*} implies that

v2<v0(ξ)<2v+,ξ.\frac{v_{-}}{2}<v_{0}(\xi)<2v_{+},\quad\forall\xi\in\mathbb{R}.

Since ε\varepsilon_{*} satisfies 0<ε<ε120<\varepsilon_{*}<\frac{\varepsilon_{1}}{2} by (3.22), Proposition 3.1 with (LABEL:inie) and (3.25) implies that there exists T0>0T_{0}>0 such that (3.4) has a unique solution (v,u)(v,u) on [0,T0][0,T_{0}] satisfying

(3.26) vv¯L(0,T0;H1())+uu¯L(0,T0;H1())ε12,\|v-\underline{v}\|_{L^{\infty}(0,T_{0};H^{1}(\mathbb{R}))}+\|u-\underline{u}\|_{L^{\infty}(0,T_{0};H^{1}(\mathbb{R}))}\leq\frac{\varepsilon_{1}}{2},

and

v3<v(t,ξ)<3v+,(t,ξ)[0,T0]×.\frac{v_{-}}{3}<v(t,\xi)<3v_{+},\quad\forall(t,\xi)\in[0,T_{0}]\times\mathbb{R}.

Then, using the same argument as in (LABEL:fffest), and then using Lemmas 3.2 and 3.3, we find that for all t[0,T0]t\in[0,T_{0}],

v¯v~𝐗(t,)L2()+u¯u~𝐗(t,)L2()±(v¯v±L2(±)+u¯u±L2(±))+v~R(t,+σt)vmL2(+)+(v~S)𝐗v+L2(+)+v~R(t,+σt)vL2()+(v~S)𝐗vmL2()+u~R(t,+σt)umL2(+)+xv¯L2()+xv~R(t)L2()+(v~S)ξ𝐗L2()+(u~S)𝐗u+L2(+)+u~R(t,+σt)uL2()+(u~S)𝐗umL2()+xu¯L2()+xu~R(t)L2()+(u~S)ξ𝐗L2()CδR1+(σλ1(v))t+CδS(1+|𝐗(t)|)Cδ0(1+t).\displaystyle\begin{aligned} &\|\underline{v}-\widetilde{v}_{-\mathbf{X}}(t,\cdot)\|_{L^{2}(\mathbb{R})}+\|\underline{u}-\widetilde{u}_{-\mathbf{X}}(t,\cdot)\|_{L^{2}(\mathbb{R})}\\ &\leq\sum_{\pm}\Big{(}\|\underline{v}-v_{\pm}\|_{L^{2}(\mathbb{R}_{\pm})}+\|\underline{u}-u_{\pm}\|_{L^{2}(\mathbb{R}_{\pm})}\Big{)}+\|\widetilde{v}^{R}(t,\cdot+\sigma t)-v_{m}\|_{L^{2}(\mathbb{R}_{+})}+\|(\widetilde{v}^{S})^{-\mathbf{X}}-v_{+}\|_{L^{2}(\mathbb{R}_{+})}\\ &\quad+\|\widetilde{v}^{R}(t,\cdot+\sigma t)-v_{-}\|_{L^{2}(\mathbb{R}_{-})}+\|(\widetilde{v}^{S})^{-\mathbf{X}}-v_{m}\|_{L^{2}(\mathbb{R}_{-})}+\|\widetilde{u}^{R}(t,\cdot+\sigma t)-u_{m}\|_{L^{2}(\mathbb{R}_{+})}\\ &\quad+\|\partial_{x}\underline{v}\|_{L^{2}(\mathbb{R})}+\|\partial_{x}\widetilde{v}^{R}(t)\|_{L^{2}(\mathbb{R})}+\|(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}\|_{L^{2}(\mathbb{R})}\\ &\quad+\|(\widetilde{u}^{S})^{-\mathbf{X}}-u_{+}\|_{L^{2}(\mathbb{R}_{+})}+\|\widetilde{u}^{R}(t,\cdot+\sigma t)-u_{-}\|_{L^{2}(\mathbb{R}_{-})}+\|(\widetilde{u}^{S})^{-\mathbf{X}}-u_{m}\|_{L^{2}(\mathbb{R}_{-})}\\ &\quad+\|\partial_{x}\underline{u}\|_{L^{2}(\mathbb{R})}+\|\partial_{x}\widetilde{u}^{R}(t)\|_{L^{2}(\mathbb{R})}+\|(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi}\|_{L^{2}(\mathbb{R})}\\ &\leq C\delta_{R}\sqrt{1+(\sigma-\lambda_{1}(v_{-}))t}+C\sqrt{\delta_{S}}(1+\sqrt{|\mathbf{X}(t)|})\\ &\leq C\sqrt{\delta_{0}}(1+\sqrt{t}).\end{aligned}

Indeed, some estimates above are computed as follows:

0|v~S(ξ𝐗(t))v+|2𝑑ξ=𝐗(t)|v~S(ξ)v+|2𝑑ξ0CδS2eCδS|ξ|𝑑ξ+0|𝐗(t)||v~S(ξ)v+|2𝑑ξCδS(1+|𝐗(t)|),0|v~R(t,ξ+σt)v|2𝑑ξ=σt|v~R(t,x)v|2𝑑x=λ1(v)tσt|v~R(t,x)v|2𝑑x+λ1(v)t|v~R(t,x)v|2𝑑xδR2(σλ1(v))t+CδR2λ1(v)te4|xλ1(v)t|𝑑xCδR2(1+(σλ1(v))t),0|v~R(t,ξ+σt)vm|2𝑑ξCδR2σte4|x|𝑑xCδR2.\displaystyle\begin{aligned} &\int_{0}^{\infty}|\widetilde{v}^{S}(\xi-\mathbf{X}(t))-v_{+}|^{2}d\xi=\int_{-\mathbf{X}(t)}^{\infty}|\widetilde{v}^{S}(\xi)-v_{+}|^{2}d\xi\\ &\quad\leq\int_{0}^{\infty}C\delta_{S}^{2}e^{-C\delta_{S}|\xi|}d\xi+\int_{0}^{|\mathbf{X}(t)|}|\widetilde{v}^{S}(\xi)-v_{+}|^{2}d\xi\leq C\delta_{S}(1+|\mathbf{X}(t)|),\\ &\int_{-\infty}^{0}|\widetilde{v}^{R}(t,\xi+\sigma t)-v_{-}|^{2}d\xi=\int_{-\infty}^{\sigma t}|\widetilde{v}^{R}(t,x)-v_{-}|^{2}dx\\ &\quad=\int_{\lambda_{1}(v_{-})t}^{\sigma t}|\widetilde{v}^{R}(t,x)-v_{-}|^{2}dx+\int_{-\infty}^{\lambda_{1}(v_{-})t}|\widetilde{v}^{R}(t,x)-v_{-}|^{2}dx\\ &\quad\leq\delta_{R}^{2}(\sigma-\lambda_{1}(v_{-}))t+C\delta_{R}^{2}\int_{-\infty}^{\lambda_{1}(v_{-})t}e^{-4|x-\lambda_{1}(v_{-})t|}dx\leq C\delta_{R}^{2}\big{(}1+(\sigma-\lambda_{1}(v_{-}))t\big{)},\\ &\int_{0}^{\infty}|\widetilde{v}^{R}(t,\xi+\sigma t)-v_{m}|^{2}d\xi\leq C\delta_{R}^{2}\int_{\sigma t}^{\infty}e^{-4|x|}dx\leq C\delta_{R}^{2}.\\ \end{aligned}

Using smallness of δ0\delta_{0}, and choosing T1(0,T0)T_{1}\in(0,T_{0}) small enough such that Cδ0(1+T1)ε12C\sqrt{\delta_{0}}(1+\sqrt{T_{1}})\leq\frac{\varepsilon_{1}}{2}, we have

(3.27) v¯v~𝐗L(0,T1;H1())+u¯u~𝐗L(0,T1;H1())ε12.\|\underline{v}-\widetilde{v}_{-\mathbf{X}}\|_{L^{\infty}(0,T_{1};H^{1}(\mathbb{R}))}+\|\underline{u}-\widetilde{u}_{-\mathbf{X}}\|_{L^{\infty}(0,T_{1};H^{1}(\mathbb{R}))}\leq\frac{\varepsilon_{1}}{2}.

Therefore, (3.26) and (3.27) imply that

vv~𝐗L(0,T1;H1())+uu~𝐗L(0,T1;H1())ε1.\|v-\widetilde{v}_{-\mathbf{X}}\|_{L^{\infty}(0,T_{1};H^{1}(\mathbb{R}))}+\|u-\widetilde{u}_{-\mathbf{X}}\|_{L^{\infty}(0,T_{1};H^{1}(\mathbb{R}))}\leq\varepsilon_{1}.

Especially, since 𝐗\mathbf{X} is absolutely continuous, and

vv¯,uu¯C([0,T1];H1()),v-\underline{v},u-\underline{u}\in C([0,T_{1}];H^{1}(\mathbb{R})),

we have

vv~𝐗,uu~𝐗C([0,T1];H1()).v-\widetilde{v}_{-\mathbf{X}},u-\widetilde{u}_{-\mathbf{X}}\in C([0,T_{1}];H^{1}(\mathbb{R})).

We now consider the maximal existence time:

TM:=sup{t>0|sup[0,t](vv~𝐗H1()+uu~𝐗H1())ε1}.T_{M}:=\sup\left\{t>0~{}\Big{|}~{}\sup_{[0,t]}\left(\|v-\widetilde{v}_{-\mathbf{X}}\|_{H^{1}(\mathbb{R})}+\|u-\widetilde{u}_{-\mathbf{X}}\|_{H^{1}(\mathbb{R})}\right)\leq\varepsilon_{1}\right\}.

If TM<T_{M}<\infty, then the continuation argument implies that

(3.28) sup[0,TM](vv~𝐗H1()+uu~𝐗H1())=ε1.\sup_{[0,T_{M}]}\left(\|v-\widetilde{v}_{-\mathbf{X}}\|_{H^{1}(\mathbb{R})}+\|u-\widetilde{u}_{-\mathbf{X}}\|_{H^{1}(\mathbb{R})}\right)=\varepsilon_{1}.

But, since it follows from (LABEL:fffest) and (LABEL:inie) that

v0v~(0,)H1()+u0u~(0,)H1()<ε12C0δR1/6C0+1,\|v_{0}-\widetilde{v}(0,\cdot)\|_{H^{1}(\mathbb{R})}+\|u_{0}-\widetilde{u}(0,\cdot)\|_{H^{1}(\mathbb{R})}<\frac{\frac{\varepsilon_{1}}{2}-C_{0}\delta_{R}^{1/6}}{C_{0}+1},

it holds from Proposition 3.2 that

sup[0,TM](vv~𝐗H1()+uu~𝐗H1())C0ε12C0δR1/6C0+1+C0δR1/6ε12,\sup_{[0,T_{M}]}\left(\|v-\widetilde{v}_{-\mathbf{X}}\|_{H^{1}(\mathbb{R})}+\|u-\widetilde{u}_{-\mathbf{X}}\|_{H^{1}(\mathbb{R})}\right)\leq C_{0}\frac{\frac{\varepsilon_{1}}{2}-C_{0}\delta_{R}^{1/6}}{C_{0}+1}+C_{0}\delta_{R}^{1/6}\leq\frac{\varepsilon_{1}}{2},

which contradicts the above equality (3.28).
Therefore, TM=T_{M}=\infty, which together with Proposition 3.2 implies

(3.29) supt>0(vv~𝐗H1()+uu~𝐗H1())+δS0|𝐗˙|2𝑑s+0(𝒢S(U)+𝒢R(U)+D(U)+D1(U)+D2(U))𝑑sC0(v0v~(0,)H1()+u0u~(0,)H1())+C0δR1/6<,\displaystyle\begin{aligned} &\sup_{t>0}\big{(}\|v-\widetilde{v}_{-\mathbf{X}}\|_{H^{1}(\mathbb{R})}+\|u-\widetilde{u}_{-\mathbf{X}}\|_{H^{1}(\mathbb{R})}\big{)}+\sqrt{\delta_{S}\int_{0}^{\infty}|\dot{\mathbf{X}}|^{2}ds}\\ &\qquad\quad+\sqrt{\int_{0}^{\infty}\big{(}\mathcal{G}^{S}(U)+\mathcal{G}^{R}(U)+D(U)+D_{1}(U)+D_{2}(U)\big{)}ds}\\ &\quad\leq C_{0}\left(\|v_{0}-\widetilde{v}(0,\cdot)\|_{H^{1}(\mathbb{R})}+\|u_{0}-\widetilde{u}(0,\cdot)\|_{H^{1}(\mathbb{R})}\right)+C_{0}\delta_{R}^{1/6}<\infty,\end{aligned}

and

(3.30) |𝐗˙(t)|C0(vv~𝐗)(t,)L(),t>0.|\dot{\mathbf{X}}(t)|\leq C_{0}\|(v-\widetilde{v}_{-\mathbf{X}})(t,\cdot)\|_{L^{\infty}(\mathbb{R})},\quad t>0.

In addition, since the rarefaction wave (vr,ur)(v^{r},u^{r}) is Lipschitz continuous in xx for all t>0t>0 and from Lemma 3.2, we have

v(t,x)(vr(xt)+v~S(xσt𝐗(t))vm)C([0,+);H1()),\displaystyle v(t,x)-\Big{(}v^{r}(\frac{x}{t})+\widetilde{v}^{S}(x-\sigma t-\mathbf{X}(t))-v_{m}\Big{)}\in C([0,+\infty);H^{1}(\mathbb{R})),
u(t,x)(ur(xt)+u~S(xσt𝐗(t))um)C([0,+);H1()).\displaystyle u(t,x)-\Big{(}u^{r}(\frac{x}{t})+\widetilde{u}^{S}(x-\sigma t-\mathbf{X}(t))-u_{m}\Big{)}\in C([0,+\infty);H^{1}(\mathbb{R})).

Since (uu~𝐗)ξξL2(0,+;L2())(u-\widetilde{u}_{-\mathbf{X}})_{\xi\xi}\in L^{2}(0,+\infty;L^{2}(\mathbb{R})) by (LABEL:fcru), and (u~R)ξξL2(0,+;L2())(\widetilde{u}^{R})_{\xi\xi}\in L^{2}(0,+\infty;L^{2}(\mathbb{R})) by Lemma 3.2, we have

uxx(t,x)u~xxS(xσt𝐗(t))L2(0,+;L2()),u_{xx}(t,x)-\widetilde{u}^{S}_{xx}(x-\sigma t-\mathbf{X}(t))\in L^{2}(0,+\infty;L^{2}(\mathbb{R})),

which implies the desired result (LABEL:ext-main).
Especially, since the right-hand side of (LABEL:fcru) is small enough, we find that (by Sobolev embedding as before)

(3.31) v3<v(t,ξ)<3v+,(t,ξ)[0,)×.\frac{v_{-}}{3}<v(t,\xi)<3v_{+},\quad\forall(t,\xi)\in[0,\infty)\times\mathbb{R}.

These and the above estimates (LABEL:fcru)-(3.30) are useful to prove the long-time behaviors (1.13)-(1.14) as follows.

3.6. Time-asymptotic behavior, and end of the proof of Theorem 1.1

We now want to prove (1.13) and (1.14). Consider a function gg defined on (0,)(0,\infty) by

g(t):=(vv~𝐗)ξL2()2+(uu~𝐗)ξL2()2.g(t):=\|(v-\widetilde{v}_{-\mathbf{X}})_{\xi}\|_{L^{2}(\mathbb{R})}^{2}+\|(u-\widetilde{u}_{-\mathbf{X}})_{\xi}\|_{L^{2}(\mathbb{R})}^{2}.

The aim is to show the classical estimate:

(3.32) 0[|g(t)|+|g(t)|]𝑑t<.\int_{0}^{\infty}\big{[}|g(t)|+|g^{\prime}(t)|\big{]}dt<\infty.

Since

(p(v)p(v~𝐗))ξ=p(v)(vv~𝐗)ξ+(v~𝐗)ξ(p(v)p(v~𝐗))=p(v)(vv~𝐗)ξ+(v~ξR+v~ξS(ξ𝐗(t)))(p(v)p(v~𝐗)),\displaystyle\begin{aligned} (p(v)-p(\widetilde{v}_{-\mathbf{X}}))_{\xi}&=p^{\prime}(v)(v-\widetilde{v}_{-\mathbf{X}})_{\xi}+(\widetilde{v}_{-\mathbf{X}})_{\xi}(p^{\prime}(v)-p^{\prime}(\widetilde{v}_{-\mathbf{X}}))\\ &=p^{\prime}(v)(v-\widetilde{v}_{-\mathbf{X}})_{\xi}+\big{(}\widetilde{v}^{R}_{\xi}+\widetilde{v}^{S}_{\xi}(\xi-\mathbf{X}(t))\big{)}(p^{\prime}(v)-p^{\prime}(\widetilde{v}_{-\mathbf{X}})),\end{aligned}

the uniform bound (3.31) yields

(3.33) |(vv~𝐗)ξ|C|(p(v)p(v~𝐗))ξ|+C(|v~ξR|+|v~ξS(ξ𝐗(t))|)|vv~𝐗|.|(v-\widetilde{v}_{-\mathbf{X}})_{\xi}|\leq C|(p(v)-p(\widetilde{v}_{-\mathbf{X}}))_{\xi}|+C\big{(}|\widetilde{v}^{R}_{\xi}|+|\widetilde{v}^{S}_{\xi}(\xi-\mathbf{X}(t))|\big{)}|v-\widetilde{v}_{-\mathbf{X}}|.

Thus, it follows from (LABEL:fcru), (3.33) and |u~ξR||v~ξR||\widetilde{u}^{R}_{\xi}|\sim|\widetilde{v}^{R}_{\xi}| that

0|g(t)|𝑑tC0(𝒢S(U)+𝒢R(U)+D(U)+D1(U))𝑑t<,\int_{0}^{\infty}|g(t)|dt\leq C\int_{0}^{\infty}\big{(}\mathcal{G}^{S}(U)+\mathcal{G}^{R}(U)+D(U)+D_{1}(U)\big{)}dt<\infty,

which proves the first part of (3.32).
To show the second part of (3.32), we combine the systems (3.4) and (3.14) as follows:

(3.34) (vv~𝐗)tσ(vv~𝐗)ξ𝐗˙(t)(v~S)ξ𝐗(uu~𝐗)ξ=0,(uu~𝐗)tσ(uu~𝐗)ξ𝐗˙(t)(u~S)ξ𝐗+(p(v)p(v~𝐗))ξ=(uξv(u~𝐗)ξv~𝐗)ξF1F2.\displaystyle\begin{aligned} &(v-\widetilde{v}_{-\mathbf{X}})_{t}-\sigma(v-\widetilde{v}_{-\mathbf{X}})_{\xi}-\dot{\mathbf{X}}(t)(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}-(u-\widetilde{u}_{-\mathbf{X}})_{\xi}=0,\\ &\displaystyle(u-\widetilde{u}_{-\mathbf{X}})_{t}-\sigma(u-\widetilde{u}_{-\mathbf{X}})_{\xi}-\dot{\mathbf{X}}(t)(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi}+(p(v)-p(\widetilde{v}_{-\mathbf{X}}))_{\xi}\\ &\qquad\qquad=\left(\frac{u_{\xi}}{v}-\frac{(\widetilde{u}_{-\mathbf{X}})_{\xi}}{\widetilde{v}_{-\mathbf{X}}}\right)_{\xi}-F_{1}-F_{2}.\end{aligned}

Using (LABEL:combt) and the integration by parts, we have

(3.35) 0|g(t)|𝑑t=02|(vv~𝐗)ξ(vv~𝐗)ξt𝑑ξ+(uu~𝐗)ξ(uu~𝐗)ξt𝑑ξ|𝑑t0|σξ((vv~𝐗)ξ2)dξ+2(vv~𝐗)ξ[𝐗˙(t)(v~S)ξξ𝐗+(uu~𝐗)ξξ]𝑑ξ|𝑑t+0|σξ((uu~𝐗)ξ2)dξ+2(uu~𝐗)ξ𝐗˙(t)(u~S)ξξ𝐗𝑑ξ+2(uu~𝐗)ξξ[(p(v)p(v~𝐗))ξ+(uξv(u~𝐗)ξv~𝐗)ξF1F2]𝑑ξ|dt20(|(vv~𝐗)ξ|[|𝐗˙(t)||(v~S)ξξ𝐗|+|(uu~𝐗)ξξ|]+|(uu~𝐗)ξ||𝐗˙(t)||(u~S)ξξ𝐗|+|(uu~𝐗)ξξ|[|(p(v)p(v~𝐗))ξ|+|(uξv(u~𝐗)ξv~𝐗)ξ|+|F1|+|F2|])dξdtC0(|𝐗˙(t)|2+𝒢S(U)+𝒢R(U)+D(U)+D1(U)+D2(U))𝑑t+C0[|(uξv(u~𝐗)ξv~𝐗)ξ|2+|F1|2+|F2|2]𝑑ξ𝑑t.\begin{array}[]{ll}\displaystyle\int_{0}^{\infty}|g^{\prime}(t)|dt=\int_{0}^{\infty}2\left|\int(v-\widetilde{v}_{-\mathbf{X}})_{\xi}(v-\widetilde{v}_{-\mathbf{X}})_{\xi t}d\xi+\int(u-\widetilde{u}_{-\mathbf{X}})_{\xi}(u-\widetilde{u}_{-\mathbf{X}})_{\xi t}d\xi\right|dt\\[11.38109pt] \displaystyle\leq\int_{0}^{\infty}\left|\sigma\int\partial_{\xi}((v-\widetilde{v}_{-\mathbf{X}})^{2}_{\xi})d\xi+2\int(v-\widetilde{v}_{-\mathbf{X}})_{\xi}\left[\dot{\mathbf{X}}(t)(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi\xi}+(u-\widetilde{u}_{-\mathbf{X}})_{\xi\xi}\right]d\xi\right|dt\\[11.38109pt] \displaystyle\quad+\int_{0}^{\infty}\bigg{|}\sigma\int\partial_{\xi}((u-\widetilde{u}_{-\mathbf{X}})^{2}_{\xi})d\xi+2\int(u-\widetilde{u}_{-\mathbf{X}})_{\xi}\dot{\mathbf{X}}(t)(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi\xi}d\xi\\[11.38109pt] \displaystyle\qquad\qquad+2\int(u-\widetilde{u}_{-\mathbf{X}})_{\xi\xi}\bigg{[}-(p(v)-p(\widetilde{v}_{-\mathbf{X}}))_{\xi}+\left(\frac{u_{\xi}}{v}-\frac{(\widetilde{u}_{-\mathbf{X}})_{\xi}}{\widetilde{v}_{-\mathbf{X}}}\right)_{\xi}-F_{1}-F_{2}\bigg{]}d\xi\bigg{|}dt\\[11.38109pt] \displaystyle\leq 2\int_{0}^{\infty}\int\bigg{(}|(v-\widetilde{v}_{-\mathbf{X}})_{\xi}|\left[|\dot{\mathbf{X}}(t)||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi\xi}|+|(u-\widetilde{u}_{-\mathbf{X}})_{\xi\xi}|\right]+|(u-\widetilde{u}_{-\mathbf{X}})_{\xi}||\dot{\mathbf{X}}(t)||(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi\xi}|\\[11.38109pt] \displaystyle\qquad\qquad+|(u-\widetilde{u}_{-\mathbf{X}})_{\xi\xi}|\bigg{[}|(p(v)-p(\widetilde{v}_{-\mathbf{X}}))_{\xi}|+\Big{|}\left(\frac{u_{\xi}}{v}-\frac{(\widetilde{u}_{-\mathbf{X}})_{\xi}}{\widetilde{v}_{-\mathbf{X}}}\right)_{\xi}\Big{|}+|F_{1}|+|F_{2}|\bigg{]}\bigg{)}d\xi dt\\[14.22636pt] \displaystyle\leq C\int_{0}^{\infty}\big{(}|\dot{\mathbf{X}}(t)|^{2}+\mathcal{G}^{S}(U)+\mathcal{G}^{R}(U)+D(U)+D_{1}(U)+D_{2}(U)\big{)}dt\\[11.38109pt] \displaystyle\quad+C\int_{0}^{\infty}\int\Big{[}\Big{|}\Big{(}\frac{u_{\xi}}{v}-\frac{(\widetilde{u}_{-\mathbf{X}})_{\xi}}{\widetilde{v}_{-\mathbf{X}}}\Big{)}_{\xi}\Big{|}^{2}+|F_{1}|^{2}+|F_{2}|^{2}\Big{]}d\xi dt.\end{array}

For the last three terms above, we get further estimates as follows.
Using (3.31) with Lemmas 2.2 and 3.2, one has

0|(uξv(u~𝐗)ξv~𝐗)ξ|2𝑑ξ𝑑t\displaystyle\int_{0}^{\infty}\int\Big{|}\Big{(}\frac{u_{\xi}}{v}-\frac{(\widetilde{u}_{-\mathbf{X}})_{\xi}}{\widetilde{v}_{-\mathbf{X}}}\Big{)}_{\xi}\Big{|}^{2}d\xi dt
=0|1v(uu~𝐗)ξξ+(u~𝐗)ξξ(1v1v~𝐗)uξv2(vv~𝐗)ξ\displaystyle=\int_{0}^{\infty}\int\bigg{|}\frac{1}{v}\left(u-\widetilde{u}_{-\mathbf{X}}\right)_{\xi\xi}+(\widetilde{u}_{-\mathbf{X}})_{\xi\xi}\left(\frac{1}{v}-\frac{1}{\widetilde{v}_{-\mathbf{X}}}\right)-\frac{u_{\xi}}{v^{2}}\left(v-\widetilde{v}_{-\mathbf{X}}\right)_{\xi}
(v~𝐗)ξv2(uu~𝐗)ξ+(v~𝐗)ξ(u~𝐗)ξ(1v21(v~𝐗)2)|2dξdt\displaystyle\qquad-\frac{(\widetilde{v}_{-\mathbf{X}})_{\xi}}{v^{2}}\left(u-\widetilde{u}_{-\mathbf{X}}\right)_{\xi}+(\widetilde{v}_{-\mathbf{X}})_{\xi}(\widetilde{u}_{-\mathbf{X}})_{\xi}\left(\frac{1}{v^{2}}-\frac{1}{(\widetilde{v}_{-\mathbf{X}})^{2}}\right)\bigg{|}^{2}d\xi dt
C0[|(uu~𝐗)ξξ|2+(|(u~R)ξ|2+|(u~S)ξ𝐗|2)|vv~𝐗|2\displaystyle\leq C\int_{0}^{\infty}\int\Big{[}|\left(u-\widetilde{u}_{-\mathbf{X}}\right)_{\xi\xi}|^{2}+(|(\widetilde{u}^{R})_{\xi}|^{2}+|(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi}|^{2})|v-\widetilde{v}_{-\mathbf{X}}|^{2}
+|(uu~𝐗)ξ|2|(vv~𝐗)ξ|2+(|(v~R)ξ|2+|(v~S)ξ𝐗|2)|(uu~𝐗)ξ|2\displaystyle\qquad+|(u-\widetilde{u}_{-\mathbf{X}})_{\xi}|^{2}|\left(v-\widetilde{v}_{-\mathbf{X}}\right)_{\xi}|^{2}+(|(\widetilde{v}^{R})_{\xi}|^{2}+|(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}|^{2})|\left(u-\widetilde{u}_{-\mathbf{X}}\right)_{\xi}|^{2}
+(|(u~R)ξ|2+|(u~S)ξ𝐗|2)|(vv~𝐗)ξ|2]dξdt.\displaystyle\qquad+(|(\widetilde{u}^{R})_{\xi}|^{2}+|(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi}|^{2})|\left(v-\widetilde{v}_{-\mathbf{X}}\right)_{\xi}|^{2}\Big{]}d\xi dt.

Then, using (LABEL:maingood), we have

0|(uξv(u~𝐗)ξv~𝐗)ξ|2𝑑ξ𝑑t\displaystyle\int_{0}^{\infty}\int\Big{|}\Big{(}\frac{u_{\xi}}{v}-\frac{(\widetilde{u}_{-\mathbf{X}})_{\xi}}{\widetilde{v}_{-\mathbf{X}}}\Big{)}_{\xi}\Big{|}^{2}d\xi dt
C0(𝒢S(U)+𝒢R(U)+D(U)+D1(U)+D2(U))𝑑t\displaystyle\leq C\int_{0}^{\infty}\Big{(}\mathcal{G}^{S}(U)+\mathcal{G}^{R}(U)+D(U)+D_{1}(U)+D_{2}(U)\Big{)}dt
+C0(uu~𝐗)ξL()2|(vv~𝐗)ξ|2𝑑ξ𝑑t.\displaystyle\qquad+C\int_{0}^{\infty}\|\left(u-\widetilde{u}_{-\mathbf{X}}\right)_{\xi}\|_{L^{\infty}(\mathbb{R})}^{2}\int|(v-\widetilde{v}_{-\mathbf{X}})_{\xi}|^{2}d\xi dt.

Using the interpolation inequality and (LABEL:fcru), the last term above is estimated as

C0(uu~𝐗)ξL()2|(vv~𝐗)ξ|2𝑑ξ𝑑tC0(uu~𝐗)ξL2()(uu~𝐗)ξξL2()(vv~𝐗)ξL2()2𝑑tC0[(uu~𝐗)ξξL2()2+(uu~𝐗)ξL2()2(vv~𝐗)ξL2()4]𝑑tC0[(uu~𝐗)ξξL2()2+(uu~𝐗)ξL2()2]𝑑tC0(𝒢S(U)+𝒢R(U)+D(U)+D2(U))𝑑t<.\begin{array}[]{ll}\displaystyle C\int_{0}^{\infty}\|\left(u-\widetilde{u}_{-\mathbf{X}}\right)_{\xi}\|_{L^{\infty}(\mathbb{R})}^{2}\int|(v-\widetilde{v}_{-\mathbf{X}})_{\xi}|^{2}d\xi dt\\[11.38109pt] \displaystyle\leq C\int_{0}^{\infty}\|\left(u-\widetilde{u}_{-\mathbf{X}}\right)_{\xi}\|_{L^{2}(\mathbb{R})}\|\left(u-\widetilde{u}_{-\mathbf{X}}\right)_{\xi\xi}\|_{L^{2}(\mathbb{R})}\|(v-\widetilde{v}_{-\mathbf{X}})_{\xi}\|_{L^{2}(\mathbb{R})}^{2}dt\\[11.38109pt] \displaystyle\leq C\int_{0}^{\infty}\Big{[}\|\left(u-\widetilde{u}_{-\mathbf{X}}\right)_{\xi\xi}\|_{L^{2}(\mathbb{R})}^{2}+\|\left(u-\widetilde{u}_{-\mathbf{X}}\right)_{\xi}\|_{L^{2}(\mathbb{R})}^{2}\|\left(v-\widetilde{v}_{-\mathbf{X}}\right)_{\xi}\|_{L^{2}(\mathbb{R})}^{4}\Big{]}dt\\[11.38109pt] \displaystyle\leq C\int_{0}^{\infty}\Big{[}\|\left(u-\widetilde{u}_{-\mathbf{X}}\right)_{\xi\xi}\|_{L^{2}(\mathbb{R})}^{2}+\|\left(u-\widetilde{u}_{-\mathbf{X}}\right)_{\xi}\|_{L^{2}(\mathbb{R})}^{2}\Big{]}dt\\[11.38109pt] \displaystyle\leq C\int_{0}^{\infty}\Big{(}\mathcal{G}^{S}(U)+\mathcal{G}^{R}(U)+D(U)+D_{2}(U)\Big{)}dt<\infty.\end{array}

Similarly, using Lemmas 2.2 and 3.2 with recalling v~𝐗=v~R+(v~S)𝐗vm\widetilde{v}_{-\mathbf{X}}=\widetilde{v}^{R}+(\widetilde{v}^{S})^{-\mathbf{X}}-v_{m}, we have

0|F1|2𝑑ξ𝑑t=0|((u~ξS)𝐗(v~S)𝐗)ξ((u~𝐗)ξv~𝐗)ξ|2𝑑ξ𝑑tC0(|(u~R)ξξ|+|(u~R)ξ||(v~R)ξ|+(|(u~S)ξξ𝐗|+|(u~S)ξ𝐗||(v~S)ξ𝐗|)|v~Rvm|+|(u~R)ξ||(v~S)ξ𝐗|+|(v~R)ξ||(u~S)ξ𝐗|)2dξdtC0((u~R)ξξL2()2+(u~R)ξL4()4+|(v~S)ξ𝐗||v~Rvm|+|(v~R)ξ||(u~S)ξ𝐗|L2()2)𝑑t,\displaystyle\begin{aligned} &\int_{0}^{\infty}\int|F_{1}|^{2}d\xi dt=\int_{0}^{\infty}\int\Big{|}\Big{(}\frac{({\widetilde{u}}^{S}_{\xi})^{-\mathbf{X}}}{({\widetilde{v}}^{S})^{-\mathbf{X}}}\Big{)}_{\xi}-\left(\frac{(\widetilde{u}_{-\mathbf{X}})_{\xi}}{\widetilde{v}_{-\mathbf{X}}}\right)_{\xi}\Big{|}^{2}d\xi dt\\ &\quad\leq C\int_{0}^{\infty}\int\bigg{(}|(\widetilde{u}^{R})_{\xi\xi}|+|(\widetilde{u}^{R})_{\xi}||(\widetilde{v}^{R})_{\xi}|+(|(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi\xi}|+|(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}|)|\widetilde{v}^{R}-v_{m}|\\ &\quad\qquad\qquad\qquad+|(\widetilde{u}^{R})_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}|+|(\widetilde{v}^{R})_{\xi}||(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi}|\bigg{)}^{2}d\xi dt\\ &\quad\leq C\int_{0}^{\infty}\left(\|(\widetilde{u}^{R})_{\xi\xi}\|_{L^{2}(\mathbb{R})}^{2}+\|(\widetilde{u}^{R})_{\xi}\|_{L^{4}(\mathbb{R})}^{4}+\||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}||\widetilde{v}^{R}-v_{m}|+|(\widetilde{v}^{R})_{\xi}||(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi}|\|_{L^{2}(\mathbb{R})}^{2}\right)dt,\\ \end{aligned}

and

0|F2|2𝑑ξ𝑑t\displaystyle\int_{0}^{\infty}\int|F_{2}|^{2}d\xi dt =0|[p(v~𝐗)p(v~R)p((v~S)𝐗)]ξ|2𝑑ξ𝑑t\displaystyle=\int_{0}^{\infty}\int\left|\big{[}p(\widetilde{v}_{-\mathbf{X}})-p(\widetilde{v}^{R})-p\big{(}(\widetilde{v}^{S})^{-\mathbf{X}}\big{)}\big{]}_{\xi}\right|^{2}d\xi dt
C0|v~ξR||(v~S)𝐗vm|+|(v~S)ξ𝐗||v~Rvm|L2()2𝑑t.\displaystyle\leq C\int_{0}^{\infty}\||\widetilde{v}^{R}_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}-v_{m}|+|(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}||\widetilde{v}^{R}-v_{m}|\|_{L^{2}(\mathbb{R})}^{2}dt.

Notice that the right-hand sides above are finite by Lemma 3.2 and Lemma 4.2. Thus, the above estimates with (LABEL:fcru) imply the proof of the second part of (3.32).
Therefore, we have (3.32), which implies

limt+((vv~𝐗)ξL2()2+(uu~𝐗)ξL2()2)=0.\lim_{t\rightarrow+\infty}\big{(}\|(v-\widetilde{v}_{-\mathbf{X}})_{\xi}\|_{L^{2}(\mathbb{R})}^{2}+\|(u-\widetilde{u}_{-\mathbf{X}})_{\xi}\|_{L^{2}(\mathbb{R})}^{2}\big{)}=0.

This together with the interpolation inequality and (LABEL:fcru) implies

(3.36) limt+(vv~𝐗L()+uu~𝐗L())=0,\lim_{t\rightarrow+\infty}\big{(}\|v-\widetilde{v}_{-\mathbf{X}}\|_{L^{\infty}(\mathbb{R})}+\|u-\widetilde{u}_{-\mathbf{X}}\|_{L^{\infty}(\mathbb{R})}\big{)}=0,

which together with Lemma 3.2 (5) implies (1.13). In addition, by (3.30) and (3.36), it holds that

(3.37) |𝐗˙(t)|C0(vv~𝐗)(t,)L()0ast+,|\dot{\mathbf{X}}(t)|\leq C_{0}\|(v-\widetilde{v}_{-\mathbf{X}})(t,\cdot)\|_{L^{\infty}(\mathbb{R})}\rightarrow 0\quad{\rm as}\quad t\rightarrow+\infty,

which proves (1.14). Thus we complete the proof of Theorem 1.1.

Hence, the remaining part of this paper is dedicated to the proof of Proposition 3.2.

\bullet Notations: In what follows, we use the following notations for notational simplicity.
1. CC denotes a positive O(1)O(1)-constant which may change from line to line, but which is independent of the small constants δ0,ε1,δS,δR\delta_{0},\varepsilon_{1},\delta_{S},\delta_{R}, λ\lambda (to appear in (4.11)) and the time TT.
2. For any function f:+×f:\mathbb{R}^{+}\times\mathbb{R}\to\mathbb{R} and any time-dependent shift 𝐗(t)\mathbf{X}(t),

f±𝐗(t,ξ):=f(t,ξ±𝐗(t)).f^{\pm\mathbf{X}}(t,\xi):=f(t,\xi\pm\mathbf{X}(t)).

3. We omit the dependence on 𝐗\mathbf{X} for (3.5) as follows:

(v~,u~)(t,ξ):=(v~R(t,ξ+σt)+v~S(ξ𝐗(t))vm,u~R(t,ξ+σt)+u~S(ξ𝐗(t))um).(\widetilde{v},\widetilde{u})(t,\xi):=\Big{(}\widetilde{v}^{R}(t,\xi+\sigma t)+\widetilde{v}^{S}(\xi-\mathbf{X}(t))-v_{m},\widetilde{u}^{R}(t,\xi+\sigma t)+\widetilde{u}^{S}(\xi-\mathbf{X}(t))-u_{m}\Big{)}.

For simplicity, we also omit the arguments of the waves without confusion: for example,

v~R:=v~R(t,ξ+σt),(v~R)𝐗:=v~R(t,ξ+σt+𝐗(t)),v~𝐗:=v~R(t,ξ+σt+𝐗(t))+v~S(ξ)vm.\displaystyle\begin{aligned} &\widetilde{v}^{R}:=\widetilde{v}^{R}(t,\xi+\sigma t),\quad(\widetilde{v}^{R})^{\mathbf{X}}:=\widetilde{v}^{R}(t,\xi+\sigma t+\mathbf{X}(t)),\\ &\widetilde{v}^{\mathbf{X}}:=\widetilde{v}^{R}(t,\xi+\sigma t+\mathbf{X}(t))+\widetilde{v}^{S}(\xi)-v_{m}.\end{aligned}

4. Energy estimates for the system of (v,h)(v,h)-variables

We introduce a new effective velocity

(4.1) h:=u(lnv)ξ.h:=u-(\ln v)_{\xi}.

Then, the system (3.4) is transformed into

(4.2) {vtσvξhξ=(lnv)ξξ,htσhξ+p(v)ξ=0.\displaystyle\begin{aligned} \left\{\begin{array}[]{ll}v_{t}-\sigma v_{\xi}-h_{\xi}=(\ln v)_{\xi\xi},\\ h_{t}-\sigma h_{\xi}+p(v)_{\xi}=0.\\ \end{array}\right.\end{aligned}

We set h~S:=u~S(lnv~S)ξ\widetilde{h}^{S}:=\widetilde{u}^{S}-(\ln\widetilde{v}^{S})_{\xi}. Then, it follows from (2.14) that

(4.3) {σ(v~S)(h~S)=(lnv~S)′′,σ(h~S)+(p(v~S))=0,(v~S,h~S)()=(vm,um),(v~S,h~S)(+)=(v+,u+).\left\{\begin{array}[]{ll}\displaystyle-\sigma(\widetilde{v}^{S})^{\prime}-(\widetilde{h}^{S})^{\prime}=(\ln\widetilde{v}^{S})^{\prime\prime},\\[8.53581pt] \displaystyle-\sigma(\widetilde{h}^{S})^{\prime}+(p(\widetilde{v}^{S}))^{\prime}=0,\\[8.53581pt] \displaystyle(\widetilde{v}^{S},\widetilde{h}^{S})(-\infty)=(v_{m},u_{m}),\qquad(\widetilde{v}^{S},\widetilde{h}^{S})(+\infty)=(v_{+},u_{+}).\end{array}\right.

Set

(4.4) h~(t,ξ):=u~R(t,ξ)+(h~S)𝐗(ξ)um,for t[0,T].\widetilde{h}(t,\xi):=\widetilde{u}^{R}(t,\xi)+(\widetilde{h}^{S})^{-\mathbf{X}}(\xi)-u_{m},\quad\mbox{for }t\in[0,T].

Then, it holds from (3.13) and (4.3) that

(4.5) {v~tσv~ξ+𝐗˙(t)(v~S)ξ𝐗h~ξ=(lnv~)ξξ+F3,h~tσh~ξ+𝐗˙(t)(h~S)ξ𝐗+(p(v~))ξ=F2,\displaystyle\begin{aligned} \left\{\begin{array}[]{ll}\displaystyle\widetilde{v}_{t}-\sigma\widetilde{v}_{\xi}+\dot{\mathbf{X}}(t)(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}-\widetilde{h}_{\xi}=(\ln\widetilde{v})_{\xi\xi}+F_{3},\\[8.53581pt] \displaystyle\widetilde{h}_{t}-\sigma\widetilde{h}_{\xi}+\dot{\mathbf{X}}(t)(\widetilde{h}^{S})^{-\mathbf{X}}_{\xi}+(p(\widetilde{v}))_{\xi}=F_{2},\\[8.53581pt] \end{array}\right.\end{aligned}

where F2F_{2} is defined in (3.15)

(4.6) F3=(ln(v~S)𝐗lnv~)ξξ.F_{3}=\big{(}\ln(\widetilde{v}^{S})^{-\mathbf{X}}-\ln\widetilde{v}\big{)}_{\xi\xi}.

This section is dedicated to the proof of the following lemma.

Lemma 4.1.

Under the hypotheses of Proposition 3.2, there exists C>0C>0 (independent of δ0,ε1,T\delta_{0},\varepsilon_{1},T) such that for all t(0,T]t\in(0,T],

(4.7) (|hh~|22+Q(v|v~))𝑑ξ+δS0t|𝐗˙|2𝑑s+0t(G1(U)+GS(U)+D(U))𝑑sC(|h(0,ξ)h~(0,ξ)|22+Q(v0|v~(0,ξ)))𝑑ξ+CδR1/3,\displaystyle\begin{aligned} &\int_{\mathbb{R}}\left(\frac{|h-\widetilde{h}|^{2}}{2}+Q(v|\widetilde{v})\right)d\xi+\delta_{S}\int_{0}^{t}|\dot{\mathbf{X}}|^{2}ds+\int_{0}^{t}\left(G_{1}(U)+G^{S}(U)+D(U)\right)ds\\ &\quad\leq C\int_{\mathbb{R}}\left(\frac{|h(0,\xi)-\widetilde{h}(0,\xi)|^{2}}{2}+Q(v_{0}|\widetilde{v}(0,\xi))\right)d\xi+C\delta_{R}^{1/3},\end{aligned}

where h(0,ξ):=u0(ξ)(lnv0)ξ(ξ)h(0,\xi):=u_{0}(\xi)-(\ln v_{0})_{\xi}(\xi), and

(4.8) G1(U):=λδS|(v~S)ξ𝐗||hh~p(v)p(v~)σ|2𝑑ξ,GS(U):=|(v~S)ξ𝐗||p(v)p(v~)|2𝑑ξ,D(U):=|ξ(p(v)p(v~))|2𝑑ξ.\displaystyle\begin{aligned} &G_{1}(U):=\frac{\lambda}{\delta_{S}}\int_{\mathbb{R}}|(\widetilde{v}^{S})_{\xi}^{-\mathbf{X}}|\left|h-\widetilde{h}-\frac{p(v)-p(\widetilde{v})}{\sigma}\right|^{2}d\xi,\\ &G^{S}(U):=\int_{\mathbb{R}}|(\widetilde{v}^{S})_{\xi}^{-\mathbf{X}}||p(v)-p(\widetilde{v})|^{2}d\xi,\\ &D(U):=\int_{\mathbb{R}}|\partial_{\xi}\big{(}p(v)-p(\widetilde{v})\big{)}|^{2}d\xi.\end{aligned}

4.1. Wave interaction estimates

We here present useful estimates for the error terms F1,F2,F3F_{1},F_{2},F_{3} introduced in (3.15) and (4.6). First, we notice that the a priori assumption (3.16) with the Sobolev embedding and (2.3) implies

(4.9) p(v)p(v~)L((0,T)×)Cvv~L((0,T)×)Cε1.\|p(v)-p(\widetilde{v})\|_{L^{\infty}((0,T)\times\mathbb{R})}\leq C\|v-\widetilde{v}\|_{L^{\infty}((0,T)\times\mathbb{R})}\leq C\varepsilon_{1}.

This smallness together with (3.8), (3.16) and (2.3) yields that

(4.10) |𝐗˙(t)|CδS|p(v)p(v~)|+|vv~|L()(v~S)ξ𝐗𝑑ξCvv~L().|\dot{\mathbf{X}}(t)|\leq\frac{C}{\delta_{S}}\||p(v)-p(\widetilde{v})|+|v-\widetilde{v}|\|_{L^{\infty}(\mathbb{R})}\int_{\mathbb{R}}(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}d\xi\leq C\|v-\widetilde{v}\|_{L^{\infty}(\mathbb{R})}.

This especially proves (3.19), and will be used to get the wave interaction estimates in Lemma 4.2.

Lemma 4.2.

Let 𝐗\mathbf{X} be the shift defined by (3.8). Under the same hypotheses as in Proposition 3.2, the following holds: tT\forall t\leq T,

(v~S)ξ𝐗(v~Rvm)L1()+(v~R)ξ(v~S)ξ𝐗L1()CδRδSeCδSt,\displaystyle\|(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}(\widetilde{v}^{R}-v_{m})\|_{L^{1}(\mathbb{R})}+\|(\widetilde{v}^{R})_{\xi}(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}\|_{L^{1}(\mathbb{R})}\leq C\delta_{R}\delta_{S}e^{-C\delta_{S}t},
(v~S)ξ𝐗(v~Rvm)L2()+(v~R)ξ(v~S)ξ𝐗L2()CδRδS3/2eCδSt,\displaystyle\|(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}(\widetilde{v}^{R}-v_{m})\|_{L^{2}(\mathbb{R})}+\|(\widetilde{v}^{R})_{\xi}(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}\|_{L^{2}(\mathbb{R})}\leq C\delta_{R}\delta_{S}^{3/2}e^{-C\delta_{S}t},
(v~R)ξ((v~S)𝐗vm)L2()CδRδSeCδSt.\displaystyle\|(\widetilde{v}^{R})_{\xi}((\widetilde{v}^{S})^{-\mathbf{X}}-v_{m})\|_{L^{2}(\mathbb{R})}\leq C\delta_{R}\delta_{S}e^{-C\delta_{S}t}.
Proof.

First, by (4.10) with (4.9), it holds that

|𝐗˙(t)|Cε1,0tT,|\dot{\mathbf{X}}(t)|\leq C\varepsilon_{1},\qquad 0\leq t\leq T,

which together with 𝐗(0)=0\mathbf{X}(0)=0 yields

|𝐗(t)|Cε1t,0tT.|\mathbf{X}(t)|\leq C\varepsilon_{1}t,\qquad 0\leq t\leq T.

Let us take ε1\varepsilon_{1} so small such that the above bound is less than σt4\frac{\sigma t}{4}, that is,

Cε1t<σt4.C\varepsilon_{1}t<\frac{\sigma t}{4}.

Then, since

ξ<σt2,\displaystyle\forall\xi<-\frac{\sigma t}{2},\quad ξ𝐗(t)<σt2+Cε1t<σt4<0and\displaystyle\xi-\mathbf{X}(t)<-\frac{\sigma t}{2}+C\varepsilon_{1}t<-\frac{\sigma t}{4}<0\quad\mbox{and}
|ξ𝐗(t)||ξ||𝐗(t)|>σt2Cε1t>σt4,\displaystyle|\xi-\mathbf{X}(t)|\geq|\xi|-|\mathbf{X}(t)|>\frac{\sigma t}{2}-C\varepsilon_{1}t>\frac{\sigma t}{4},

it holds from Lemma 2.2 that

ξ<σt2,|v~S(ξ𝐗(t))vm|\displaystyle\forall\xi<-\frac{\sigma t}{2},\quad|\widetilde{v}^{S}(\xi-\mathbf{X}(t))-v_{m}| CδSeCδS|ξ𝐗(t)|\displaystyle\leq C\delta_{S}e^{-C\delta_{S}|\xi-\mathbf{X}(t)|}
CδSexp(CδS|ξ𝐗(t)|2)exp(CδSσt8).\displaystyle\leq C\delta_{S}\exp\left(-\frac{C\delta_{S}|\xi-\mathbf{X}(t)|}{2}\right)\exp\left(-\frac{C\delta_{S}\sigma t}{8}\right).

Likewise, by Lemma 2.2,

ξ<σt2,|ξv~S(ξ𝐗(t))|\displaystyle\forall\xi<-\frac{\sigma t}{2},\quad|\partial_{\xi}\widetilde{v}^{S}(\xi-\mathbf{X}(t))| CδS2eCδS|ξ𝐗(t)|\displaystyle\leq C\delta_{S}^{2}e^{-C\delta_{S}|\xi-\mathbf{X}(t)|}
CδS2exp(CδS|ξ𝐗(t)|2)exp(CδSσt8).\displaystyle\leq C\delta_{S}^{2}\exp\left(-\frac{C\delta_{S}|\xi-\mathbf{X}(t)|}{2}\right)\exp\left(-\frac{C\delta_{S}\sigma t}{8}\right).

On the other hand, since

ξσt2,x=ξ+σtσt20,\forall\xi\geq-\frac{\sigma t}{2},\quad x=\xi+\sigma t\geq\frac{\sigma t}{2}\geq 0,

it holds from Lemma 3.2 that

ξσt2,|v~R(t,ξ+σt)vm|+|ξv~R(t,ξ+σt)|CδRe2(|ξ+σt|+|λ1(vm)|t),\forall\xi\geq-\frac{\sigma t}{2},\quad|\widetilde{v}^{R}(t,\xi+\sigma t)-v_{m}|+|\partial_{\xi}\widetilde{v}^{R}(t,\xi+\sigma t)|\leq C\delta_{R}e^{-2(|\xi+\sigma t|+|\lambda_{1}(v_{m})|t)},

where note that |λ1(vm)|>0|\lambda_{1}(v_{m})|>0 is O(1)O(1)-constant, since v+2vmv+\frac{v_{+}}{2}\leq v_{m}\leq v_{+}.
Therefore, using the above estimates together with the bounds: (by Lemmas 2.2 and 3.2)

ξ,\displaystyle\forall\xi,\quad |v~R(t,ξ+σt)vm|+|ξv~R(t,ξ+σt)|CδR,\displaystyle|\widetilde{v}^{R}(t,\xi+\sigma t)-v_{m}|+|\partial_{\xi}\widetilde{v}^{R}(t,\xi+\sigma t)|\leq C\delta_{R},
|v~S(ξ𝐗(t))vm|CδS,|ξv~S(ξ𝐗(t))|CδS2,\displaystyle|\widetilde{v}^{S}(\xi-\mathbf{X}(t))-v_{m}|\leq C\delta_{S},\qquad|\partial_{\xi}\widetilde{v}^{S}(\xi-\mathbf{X}(t))|\leq C\delta_{S}^{2},
ξv~R(t,+σt)L1()CδR,t,\displaystyle\|\partial_{\xi}\widetilde{v}^{R}(t,\cdot+\sigma t)\|_{L^{1}(\mathbb{R})}\leq C\delta_{R},\quad\forall t,

we have

|(v~S)ξ𝐗|(|v~Rvm|+|(v~R)ξ|){CδRδS2eCδS|ξ𝐗(t)|eCδSt,if ξ<σt2,CδRδS2eC|ξ+σt|eCt,if ξσt2,\displaystyle\big{|}(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}\big{|}\big{(}|\widetilde{v}^{R}-v_{m}|+|(\widetilde{v}^{R})_{\xi}|\big{)}\leq\begin{cases}\displaystyle C\delta_{R}\delta_{S}^{2}e^{-C\delta_{S}|\xi-\mathbf{X}(t)|}e^{-C\delta_{S}t},\quad\mbox{if }\xi<-\frac{\sigma t}{2},\\ \displaystyle C\delta_{R}\delta_{S}^{2}e^{-C|\xi+\sigma t|}e^{-Ct},\qquad\mbox{if }\xi\geq-\frac{\sigma t}{2},\end{cases}

and

|(v~R)ξ||(v~S)𝐗vm|{C|(v~R)ξ|δSeCδS|ξ𝐗(t)|eCδSt,if ξ<σt2,CδRδSeC|ξ+σt|eCt,if ξσt2.\displaystyle|(\widetilde{v}^{R})_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}-v_{m}|\leq\begin{cases}\displaystyle C|(\widetilde{v}^{R})_{\xi}|\delta_{S}e^{-C\delta_{S}|\xi-\mathbf{X}(t)|}e^{-C\delta_{S}t},\quad\mbox{if }\xi<-\frac{\sigma t}{2},\\ \displaystyle C\delta_{R}\delta_{S}e^{-C|\xi+\sigma t|}e^{-Ct},\qquad\mbox{if }\xi\geq-\frac{\sigma t}{2}.\end{cases}

Hence, this with the smallness of δS\delta_{S} implies that

||(v~S)ξ𝐗|(|v~Rvm|+|(v~R)ξ|)|𝑑ξ\displaystyle\int_{\mathbb{R}}\Big{|}\big{|}(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}\big{|}\big{(}|\widetilde{v}^{R}-v_{m}|+|(\widetilde{v}^{R})_{\xi}|\big{)}\Big{|}d\xi CδRδSeCδStδS(eCδS|ξ𝐗(t)|+eC|ξ+σt|)𝑑ξ\displaystyle\leq C\delta_{R}\delta_{S}e^{-C\delta_{S}t}\int_{\mathbb{R}}\delta_{S}\left(e^{-C\delta_{S}|\xi-\mathbf{X}(t)|}+e^{-C|\xi+\sigma t|}\right)d\xi
CδRδSeCδSt,\displaystyle\leq C\delta_{R}\delta_{S}e^{-C\delta_{S}t},
||(v~S)ξ𝐗|(|v~Rvm|+|(v~R)ξ|)|2𝑑ξ\displaystyle\int_{\mathbb{R}}\Big{|}\big{|}(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}\big{|}\big{(}|\widetilde{v}^{R}-v_{m}|+|(\widetilde{v}^{R})_{\xi}|\big{)}\Big{|}^{2}d\xi CδR2δS3eCδStδS(eCδS|ξ𝐗(t)|+eC|ξ+σt|)𝑑ξ\displaystyle\leq C\delta_{R}^{2}\delta_{S}^{3}e^{-C\delta_{S}t}\int_{\mathbb{R}}\delta_{S}\left(e^{-C\delta_{S}|\xi-\mathbf{X}(t)|}+e^{-C|\xi+\sigma t|}\right)d\xi
CδR2δS3eCδSt,\displaystyle\leq C\delta_{R}^{2}\delta_{S}^{3}e^{-C\delta_{S}t},

and

|(v~R)ξ|2|(v~S)𝐗vm|2𝑑ξ\displaystyle\int_{\mathbb{R}}|(\widetilde{v}^{R})_{\xi}|^{2}|(\widetilde{v}^{S})^{-\mathbf{X}}-v_{m}|^{2}d\xi CδRδS2eCδSt|(v~R)ξ|𝑑ξ+CδR2δS2eCteC|ξ+σt|𝑑ξ\displaystyle\leq C\delta_{R}\delta_{S}^{2}e^{-C\delta_{S}t}\int_{\mathbb{R}}|(\widetilde{v}^{R})_{\xi}|d\xi+C\delta_{R}^{2}\delta_{S}^{2}e^{-Ct}\int_{\mathbb{R}}e^{-C|\xi+\sigma t|}d\xi
CδR2δS2eCδSt.\displaystyle\leq C\delta_{R}^{2}\delta_{S}^{2}e^{-C\delta_{S}t}.

4.2. Construction of weight function

We define the weight function aa by

(4.11) a(ξ):=1+λδS(p(vm)p(v~S(ξ))),a(\xi):=1+\frac{\lambda}{\delta_{S}}(p(v_{m})-p(\widetilde{v}^{S}(\xi))),

where the constant λ\lambda is chosen to be so small but far bigger than δS\delta_{S} such that

(4.12) δSλCδS.\delta_{S}\ll\lambda\leq C\sqrt{\delta_{S}}.

Notice that

(4.13) 1<a(ξ)<1+λ,1<a(\xi)<1+\lambda,

and

(4.14) a(ξ)=λδSp(v~S)v~ξS>0,a^{\prime}(\xi)=-\frac{\lambda}{\delta_{S}}p^{\prime}(\widetilde{v}^{S})\widetilde{v}^{S}_{\xi}>0,

and so,

(4.15) |a|λδS|v~ξS|.|a^{\prime}|\sim\frac{\lambda}{\delta_{S}}|\widetilde{v}^{S}_{\xi}|.

4.3. Relative entropy method

We rewrite (4.2) into the viscous hyperbolic system of conservation laws:

(4.16) tU+ξA(U)=((lnv)ξξ0),\partial_{t}U+\partial_{\xi}A(U)={\big{(}\ln v\big{)}_{\xi\xi}\choose 0},

where

U:=(vh),A(U):=(σvhσh+p(v)).U:={v\choose h},\quad A(U):={-\sigma v-h\choose-\sigma h+p(v)}.

Consider the entropy η(U):=h22+Q(v)\eta(U):=\frac{h^{2}}{2}+Q(v) of (4.16), where Q(v)=vγ+1γ1Q(v)=\frac{v^{-\gamma+1}}{\gamma-1}, i.e., Q(v)=p(v)Q^{\prime}(v)=-p(v).
To write the above viscous term in terms of the derivative of the entropy:

(4.17) η(U)=(p(v)h),\nabla\eta(U)={-p(v)\choose h},

we observe that

(lnv)ξξ=((p(v))ξp(v)v)ξ,\big{(}\ln v\big{)}_{\xi\xi}=\left(\frac{(-p(v))_{\xi}}{-p^{\prime}(v)v}\right)_{\xi},

especially, by p(v)v=γp(v)-p^{\prime}(v)v=\gamma p(v),

(lnv)ξξ=((p(v))ξγp(v))ξ.\big{(}\ln v\big{)}_{\xi\xi}=\left(\frac{(-p(v))_{\xi}}{\gamma p(v)}\right)_{\xi}.

Thus, using the nonnegative matrix

M(U):=(1γp(v)0 0 0),M(U):={\frac{1}{\gamma p(v)}\quad 0\choose\quad\ 0\quad\ 0},

the above system (4.16) can be rewritten as

(4.18) tU+ξA(U)=ξ(M(U)ξη(U)).\partial_{t}U+\partial_{\xi}A(U)=\partial_{\xi}\Big{(}M(U)\partial_{\xi}\nabla\eta(U)\Big{)}.

Let

(4.19) U~(t,ξ):=(v~(t,ξ)h~(t,ξ))=(v~R(t,ξ)+(v~S)𝐗(ξ)vmu~R(t,ξ)+(h~S)𝐗(ξ)um).\displaystyle\begin{aligned} \widetilde{U}(t,\xi):={\displaystyle\widetilde{v}(t,\xi)\choose\displaystyle\widetilde{h}(t,\xi)}={\widetilde{v}^{R}(t,\xi)+(\widetilde{v}^{S})^{-\mathbf{X}}(\xi)-v_{m}\choose\widetilde{u}^{R}(t,\xi)+(\widetilde{h}^{S})^{-\mathbf{X}}(\xi)-u_{m}}.\end{aligned}

Note that (4.5) can be written as

(4.20) tU~+ξA(U~)=ξ(M(U~)ξη(U~))𝐗˙ξ((U~S)𝐗)+(F3F2),\partial_{t}\widetilde{U}+\partial_{\xi}A(\widetilde{U})=\partial_{\xi}\Big{(}M(\widetilde{U})\partial_{\xi}\nabla\eta(\widetilde{U})\Big{)}-\dot{\mathbf{X}}\partial_{\xi}\big{(}(\widetilde{U}^{S})^{-\mathbf{X}}\big{)}+\begin{pmatrix}{F_{3}}\\ {F_{2}}\end{pmatrix},

where F2,F3F_{2},F_{3} are defined in (3.15), (4.6) respectively. Consider the relative entropy functional defined by

(4.21) η(U|V)=η(U)η(V)η(V)(UV),\eta(U|V)=\eta(U)-\eta(V)-\nabla\eta(V)(U-V),

and the relative flux defined by

(4.22) A(U|V)=A(U)A(V)A(V)(UV).A(U|V)=A(U)-A(V)-\nabla A(V)(U-V).

Let G(;)G(\cdot;\cdot) be the flux of the relative entropy defined by

(4.23) G(U;V)=G(U)G(V)η(V)(A(U)A(V)),G(U;V)=G(U)-G(V)-\nabla\eta(V)(A(U)-A(V)),

where GG is the entropy flux of η\eta, i.e., iG(U)=k=12kη(U)iAk(U),1i2\partial_{i}G(U)=\sum_{k=1}^{2}\partial_{k}\eta(U)\partial_{i}A_{k}(U),\quad 1\leq i\leq 2.
By a straightforward computation, for the system (4.16), we have

(4.24) η(U|U~)=|hh~|22+Q(v|v~),A(U|U~)=(0p(v|v~)),G(U;U~)=(p(v)p(v~))(hh~)ση(U|U~),\displaystyle\begin{aligned} &\eta(U|\widetilde{U})=\frac{|h-\widetilde{h}|^{2}}{2}+Q(v|\widetilde{v}),\\ &A(U|\widetilde{U})={0\choose p(v|\widetilde{v})},\\ &G(U;\widetilde{U})=(p(v)-p(\widetilde{v}))(h-\widetilde{h})-\sigma\eta(U|\widetilde{U}),\end{aligned}

where the relative pressure is defined as

(4.25) p(v|w)=p(v)p(w)p(w)(vw).p(v|w)=p(v)-p(w)-p^{\prime}(w)(v-w).

Below, we will estimate the relative entropy (weighted by a(ξ)a(\xi) defined in (4.11)) of the solution UU of (4.18) w.r.t. the shifted wave (4.19) as follows:

a𝐗(ξ)η(U(t,ξ)|U~(t,ξ)).a^{-\mathbf{X}}(\xi)\eta\big{(}U(t,\xi)|\widetilde{U}(t,\xi)\big{)}.
Lemma 4.3.

Let aa be the weight function defined by (4.11). Let UU be a solution to (4.18), and U~\widetilde{U} the shifted wave satisfying (4.19). Then,

(4.26) ddta𝐗(ξ)η(U(t,ξ)|U~(t,ξ))𝑑ξ=𝐗˙(t)𝐘(U)+𝒥bad(U)𝒥good(U),\displaystyle\begin{aligned} \frac{d}{dt}\int_{\mathbb{R}}a^{-\mathbf{X}}(\xi)\eta\big{(}U(t,\xi)|\widetilde{U}(t,\xi)\big{)}d\xi=\dot{\mathbf{X}}(t)\mathbf{Y}(U)+\mathcal{J}^{bad}(U)-\mathcal{J}^{good}(U),\end{aligned}

where

(4.27) 𝐘(U):=aξ𝐗η(U|U~)𝑑ξ+a𝐗2η(U~)(U~S)ξ𝐗(UU~)𝑑ξ,𝒥bad(U):=aξ𝐗(p(v)p(v~))(hh~)𝑑ξ+σa𝐗(v~S)ξ𝐗p(v|v~)𝑑ξaξ𝐗p(v)p(v~)γp(v)ξ(p(v)p(v~))dξ+aξ𝐗(p(v)p(v~))2ξp(v~)γp(v)p(v~)𝑑ξa𝐗ξ(p(v)p(v~))p(v~)p(v)γp(v)p(v~)ξp(v~)dξ+a𝐗(p(v)p(v~))F3𝑑ξa𝐗(hh~)F2𝑑ξ,𝒥good(U):=σ2aξ𝐗|hh~|2𝑑ξ+σaξ𝐗Q(v|v~)𝑑ξ+a𝐗u~ξRp(v|v~)𝑑ξ+a𝐗γp(v)|ξ(p(v)p(v~))|2𝑑ξ.\displaystyle\begin{aligned} &\mathbf{Y}(U):=-\int_{\mathbb{R}}\!a_{\xi}^{-\mathbf{X}}\eta(U|\widetilde{U})d\xi+\int_{\mathbb{R}}a^{-\mathbf{X}}\nabla^{2}\eta(\widetilde{U})(\widetilde{U}^{S})_{\xi}^{-\mathbf{X}}(U-\widetilde{U})d\xi,\\ &\mathcal{J}^{bad}(U):=\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\big{(}p(v)-p(\widetilde{v})\big{)}\big{(}h-\widetilde{h}\big{)}d\xi+\sigma\int_{\mathbb{R}}a^{-\mathbf{X}}(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}p(v|\widetilde{v})d\xi\\ &\qquad\quad-\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\frac{p(v)-p(\widetilde{v})}{\gamma p(v)}\partial_{\xi}\big{(}p(v)-p(\widetilde{v})\big{)}d\xi+\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\big{(}p(v)-p(\widetilde{v})\big{)}^{2}\frac{\partial_{\xi}p(\widetilde{v})}{\gamma p(v)p(\widetilde{v})}d\xi\\ &\qquad\quad-\int_{\mathbb{R}}a^{-\mathbf{X}}\partial_{\xi}\big{(}p(v)-p(\widetilde{v})\big{)}\frac{p(\widetilde{v})-p(v)}{\gamma p(v)p(\widetilde{v})}\partial_{\xi}p(\widetilde{v})d\xi+\int_{\mathbb{R}}a^{-\mathbf{X}}(p(v)-p(\widetilde{v}))F_{3}d\xi\\ &\qquad\quad-\int_{\mathbb{R}}a^{-\mathbf{X}}(h-\widetilde{h})F_{2}d\xi,\\ &\mathcal{J}^{good}(U):=\frac{\sigma}{2}\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\left|h-\widetilde{h}\right|^{2}d\xi+\sigma\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}Q(v|\widetilde{v})d\xi+\int_{\mathbb{R}}a^{-\mathbf{X}}\widetilde{u}^{R}_{\xi}p(v|\widetilde{v})d\xi\\ &\qquad\quad+\int_{\mathbb{R}}\frac{a^{-\mathbf{X}}}{\gamma p(v)}|\partial_{\xi}\big{(}p(v)-p(\widetilde{v})\big{)}|^{2}d\xi.\end{aligned}
Remark 4.1.

Since a(ξ)>0a^{\prime}(\xi)>0 and uξR>0u^{R}_{\xi}>0 by Lemma 3.2, 𝒥good-\mathcal{J}^{good} consists of good terms, while 𝒥bad\mathcal{J}^{bad} consists of bad terms.

Proof.

By the definition of the relative entropy with (4.18) and (4.21), we first have

ddta𝐗(ξ)η(U(t,ξ)|U~(t,ξ))𝑑ξ=𝐗˙(t)aξ𝐗η(U|U~)𝑑ξ\displaystyle\frac{d}{dt}\int_{\mathbb{R}}a^{-\mathbf{X}}(\xi)\eta\big{(}U(t,\xi)|\widetilde{U}(t,\xi)\big{)}d\xi=-\dot{\mathbf{X}}(t)\int_{\mathbb{R}}\!a_{\xi}^{-\mathbf{X}}\eta(U|\widetilde{U})d\xi
+a𝐗[(η(U)η(U~))tU2η(U~)(UU~)tU~]𝑑ξ\displaystyle\quad+\int_{\mathbb{R}}\!\!a^{-\mathbf{X}}\bigg{[}\Big{(}\nabla\eta(U)-\nabla\eta(\widetilde{U})\Big{)}\partial_{t}U-\nabla^{2}\eta(\widetilde{U})(U-\widetilde{U})\partial_{t}\tilde{U}\bigg{]}d\xi
=𝐗˙(t)aξ𝐗η(U|U~)dξ+a𝐗[(η(U)η(U~))(ξA(U)+ξ(M(U)ξη(U)))\displaystyle=-\dot{\mathbf{X}}(t)\int_{\mathbb{R}}\!a_{\xi}^{-\mathbf{X}}\eta(U|\widetilde{U})d\xi+\int_{\mathbb{R}}\!\!a^{-\mathbf{X}}\bigg{[}\Big{(}\nabla\eta(U)-\nabla\eta(\widetilde{U})\Big{)}\!\Big{(}\!\!\!-\partial_{\xi}A(U)+\partial_{\xi}\Big{(}M(U)\partial_{\xi}\nabla\eta(U)\Big{)}\Big{)}
2η(U~)(UU~)(ξA(U~)+ξ(M(U~)ξη(U~))𝐗˙ξ((U~S)𝐗)+(F3F2))]dξ.\displaystyle\qquad-\nabla^{2}\eta(\widetilde{U})(U-\widetilde{U})\left(-\partial_{\xi}A(\widetilde{U})+\partial_{\xi}\Big{(}M(\widetilde{U})\partial_{\xi}\nabla\eta(\widetilde{U})\Big{)}-\dot{\mathbf{X}}\partial_{\xi}\big{(}(\widetilde{U}^{S})^{-\mathbf{X}}\big{)}+\begin{pmatrix}{F_{3}}\\ {F_{2}}\end{pmatrix}\right)\bigg{]}d\xi.

Using the definitions (4.22) and (4.23) with the same computation as in [37, Lemma 4]) (see also [15, Lemma 2.3]), we have

ddta𝐗(ξ)η(U(t,ξ)|U~(t,ξ))𝑑ξ=𝐗˙(t)𝐘(U)+i=16Ii,\frac{d}{dt}\int_{\mathbb{R}}a^{-\mathbf{X}}(\xi)\eta\big{(}U(t,\xi)|\widetilde{U}(t,\xi)\big{)}d\xi=\dot{\mathbf{X}}(t)\mathbf{Y}(U)+\sum_{i=1}^{6}I_{i},
(4.28) I1:=a𝐗ξG(U;U~)dξ,I2:=a𝐗ξη(U~)A(U|U~)dξ,I3:=a𝐗(η(U)η(U~))ξ(M(U)ξ(η(U)η(U~)))dξ,I4:=a𝐗(η(U)η(U~))ξ((M(U)M(U~))ξη(U~))dξ,I5:=a𝐗(η)(U|U~)ξ(M(U~)ξη(U~))dξ,I6:=a𝐗2η(U~)(UU~)(F3F2)𝑑ξ.\displaystyle\begin{aligned} &I_{1}:=-\int_{\mathbb{R}}a^{-\mathbf{X}}\partial_{\xi}G(U;\widetilde{U})d\xi,\\ &I_{2}:=-\int_{\mathbb{R}}a^{-\mathbf{X}}\partial_{\xi}\nabla\eta(\widetilde{U})A(U|\widetilde{U})d\xi,\\ &I_{3}:=\int_{\mathbb{R}}a^{-\mathbf{X}}\Big{(}\nabla\eta(U)-\nabla\eta(\widetilde{U})\Big{)}\partial_{\xi}\Big{(}M(U)\partial_{\xi}\big{(}\nabla\eta(U)-\nabla\eta(\widetilde{U})\big{)}\Big{)}d\xi,\\ &I_{4}:=\int_{\mathbb{R}}a^{-\mathbf{X}}\Big{(}\nabla\eta(U)-\nabla\eta(\widetilde{U})\Big{)}\partial_{\xi}\Big{(}\big{(}M(U)-M(\widetilde{U})\big{)}\partial_{\xi}\nabla\eta(\widetilde{U})\Big{)}d\xi,\\ &I_{5}:=\int_{\mathbb{R}}a^{-\mathbf{X}}(\nabla\eta)(U|\widetilde{U})\partial_{\xi}\Big{(}M(\widetilde{U})\partial_{\xi}\nabla\eta(\widetilde{U})\Big{)}d\xi,\\ &I_{6}:=-\int_{\mathbb{R}}a^{-\mathbf{X}}\nabla^{2}\eta(\widetilde{U})(U-\widetilde{U})\begin{pmatrix}{F_{3}}\\ {F_{2}}\end{pmatrix}d\xi.\end{aligned}

Using (LABEL:relative_e) and (4.17), we have

I1=aξ𝐗G(U;U~)𝑑ξ=aξ𝐗((p(v)p(v~))(hh~)ση(U|U~))𝑑ξ=aξ𝐗(p(v)p(v~))(hh~)𝑑ξσ2aξ𝐗|hh~|2𝑑ξσaξ𝐗Q(v|v~)𝑑ξ,I2=a𝐗h~ξp(v|v~)𝑑ξ.\displaystyle\begin{aligned} I_{1}&=\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}G(U;\widetilde{U})d\xi=\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\Big{(}\big{(}p(v)-p(\widetilde{v})\big{)}\big{(}h-\widetilde{h}\big{)}-\sigma\eta(U|\widetilde{U})\Big{)}d\xi\\ &=\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\big{(}p(v)-p(\widetilde{v})\big{)}\big{(}h-\widetilde{h}\big{)}d\xi-\frac{\sigma}{2}\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\left|h-\widetilde{h}\right|^{2}d\xi-\sigma\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}Q(v|\widetilde{v})d\xi,\\ I_{2}&=-\int_{\mathbb{R}}a^{-\mathbf{X}}\widetilde{h}_{\xi}p(v|\widetilde{v})d\xi.\end{aligned}

By integration by parts, we have

I3=a𝐗(p(v)p(v~))ξ(1γp(v)ξ(p(v)p(v~)))dξ=a𝐗γp(v)|ξ(p(v)p(v~))|2𝑑ξaξ𝐗p(v)p(v~)γp(v)ξ(p(v)p(v~))dξ,I4=a𝐗(p(v)p(v~))ξ(p(v~)p(v)γp(v)p(v~)ξp(v~))dξ=aξ𝐗(p(v)p(v~))2ξp(v~)γp(v)p(v~)𝑑ξa𝐗ξ(p(v)p(v~))p(v~)p(v)γp(v)p(v~)ξp(v~)dξ.\displaystyle\begin{aligned} I_{3}&=\int_{\mathbb{R}}a^{-\mathbf{X}}\big{(}p(v)-p(\widetilde{v})\big{)}\partial_{\xi}\Big{(}\frac{1}{\gamma p(v)}\partial_{\xi}\big{(}p(v)-p(\widetilde{v})\big{)}\Big{)}d\xi\\ &=-\int_{\mathbb{R}}\frac{a^{-\mathbf{X}}}{\gamma p(v)}|\partial_{\xi}\big{(}p(v)-p(\widetilde{v})\big{)}|^{2}d\xi-\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\frac{p(v)-p(\widetilde{v})}{\gamma p(v)}\partial_{\xi}\big{(}p(v)-p(\widetilde{v})\big{)}d\xi,\\ I_{4}&=\int_{\mathbb{R}}a^{-\mathbf{X}}\big{(}p(v)-p(\widetilde{v})\big{)}\partial_{\xi}\Big{(}\frac{p(\widetilde{v})-p(v)}{\gamma p(v)p(\widetilde{v})}\partial_{\xi}p(\widetilde{v})\Big{)}d\xi\\ &=\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\big{(}p(v)-p(\widetilde{v})\big{)}^{2}\frac{\partial_{\xi}p(\widetilde{v})}{\gamma p(v)p(\widetilde{v})}d\xi-\int_{\mathbb{R}}a^{-\mathbf{X}}\partial_{\xi}\big{(}p(v)-p(\widetilde{v})\big{)}\frac{p(\widetilde{v})-p(v)}{\gamma p(v)p(\widetilde{v})}\partial_{\xi}p(\widetilde{v})d\xi.\end{aligned}

Using (4.17) and

(4.29) 2η(U)=(p(v)001),\nabla^{2}\eta(U)=\begin{pmatrix}-p^{\prime}(v)&0\\ 0&1\end{pmatrix},

we have

I5=a𝐗p(v|v~)(lnv~)ξξ𝑑ξ,I_{5}=-\int_{\mathbb{R}}a^{-\mathbf{X}}p(v|\widetilde{v})(\ln\widetilde{v})_{\xi\xi}d\xi,

and

I6=a𝐗p(v~)(vv~)F3𝑑ξa𝐗(hh~)F2𝑑ξ.I_{6}=\int_{\mathbb{R}}a^{-\mathbf{X}}p^{\prime}(\widetilde{v})(v-\widetilde{v})F_{3}d\xi-\int_{\mathbb{R}}a^{-\mathbf{X}}(h-\widetilde{h})F_{2}d\xi.

Especially, since

I6=a𝐗p(v|v~)F3𝑑ξ=:I7+a𝐗(p(v)p(v~))F3𝑑ξa𝐗(hh~)F2𝑑ξ,I_{6}=\underbrace{-\int_{\mathbb{R}}a^{-\mathbf{X}}p(v|\widetilde{v})F_{3}d\xi}_{=:I_{7}}+\int_{\mathbb{R}}a^{-\mathbf{X}}(p(v)-p(\widetilde{v}))F_{3}d\xi-\int_{\mathbb{R}}a^{-\mathbf{X}}(h-\widetilde{h})F_{2}d\xi,

we use (4.4) and (4.3) to have

I2+I5+I7=a𝐗(u~ξR+(h~S)ξ𝐗+(lnv~S)ξξ𝐗)p(v|v~)𝑑ξ=a𝐗(u~ξRσ(v~S)ξ𝐗)p(v|v~)𝑑ξ.\displaystyle\begin{aligned} I_{2}+I_{5}+I_{7}&=-\int_{\mathbb{R}}a^{-\mathbf{X}}\left(\widetilde{u}^{R}_{\xi}+(\widetilde{h}^{S})^{-\mathbf{X}}_{\xi}+(\ln\widetilde{v}^{S})^{-\mathbf{X}}_{\xi\xi}\right)p(v|\widetilde{v})d\xi\\ &=-\int_{\mathbb{R}}a^{-\mathbf{X}}\left(\widetilde{u}^{R}_{\xi}-\sigma(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}\right)p(v|\widetilde{v})d\xi.\end{aligned}

Therefore, we have

ddta𝐗(ξ)η(U(t,ξ)|U~(t,ξ))𝑑ξ=𝐗˙(t)𝐘(U)+aξ𝐗(p(v)p(v~))(hh~)𝑑ξσ2aξ𝐗|hh~|2𝑑ξσaξ𝐗Q(v|v~)𝑑ξa𝐗(u~ξRσ(v~S)ξ𝐗)p(v|v~)𝑑ξ+a𝐗(p(v)p(v~))F3𝑑ξa𝐗(hh~)F2𝑑ξa𝐗γp(v)|ξ(p(v)p(v~))|2𝑑ξaξ𝐗p(v)p(v~)γp(v)ξ(p(v)p(v~))dξ+aξ𝐗(p(v)p(v~))2ξp(v~)γp(v)p(v~)𝑑ξa𝐗ξ(p(v)p(v~))p(v~)p(v)γp(v)p(v~)ξp(v~)dξ.\displaystyle\begin{aligned} &\frac{d}{dt}\int_{\mathbb{R}}a^{-\mathbf{X}}(\xi)\eta\big{(}U(t,\xi)|\widetilde{U}(t,\xi)\big{)}d\xi\\ &=\dot{\mathbf{X}}(t)\mathbf{Y}(U)+\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\big{(}p(v)-p(\widetilde{v})\big{)}\big{(}h-\widetilde{h}\big{)}d\xi-\frac{\sigma}{2}\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\left|h-\widetilde{h}\right|^{2}d\xi-\sigma\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}Q(v|\widetilde{v})d\xi\\ &\quad-\int_{\mathbb{R}}a^{-\mathbf{X}}\left(\widetilde{u}^{R}_{\xi}-\sigma(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}\right)p(v|\widetilde{v})d\xi+\int_{\mathbb{R}}a^{-\mathbf{X}}(p(v)-p(\widetilde{v}))F_{3}d\xi-\int_{\mathbb{R}}a^{-\mathbf{X}}(h-\widetilde{h})F_{2}d\xi\\ &\quad-\int_{\mathbb{R}}\frac{a^{-\mathbf{X}}}{\gamma p(v)}|\partial_{\xi}\big{(}p(v)-p(\widetilde{v})\big{)}|^{2}d\xi-\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\frac{p(v)-p(\widetilde{v})}{\gamma p(v)}\partial_{\xi}\big{(}p(v)-p(\widetilde{v})\big{)}d\xi\\ &\quad+\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\big{(}p(v)-p(\widetilde{v})\big{)}^{2}\frac{\partial_{\xi}p(\widetilde{v})}{\gamma p(v)p(\widetilde{v})}d\xi-\int_{\mathbb{R}}a^{-\mathbf{X}}\partial_{\xi}\big{(}p(v)-p(\widetilde{v})\big{)}\frac{p(\widetilde{v})-p(v)}{\gamma p(v)p(\widetilde{v})}\partial_{\xi}p(\widetilde{v})d\xi.\end{aligned}

4.4. Maximization in terms of hh~h-\widetilde{h}

On the right-hand side of (4.26), we will use Lemma 1.1 for the diffusion term in order to control the bad terms only related to the perturbation p(v)p(v~)p(v)-p(\widetilde{v}) (or vv~v-\widetilde{v}). Therefore, we will rewrite 𝒥bad\mathcal{J}^{bad} into the maximized representation in terms of hh~h-\widetilde{h} in the following lemma.

Lemma 4.4.

Let a:+a:\mathbb{R}\to\mathbb{R}^{+} be as in (4.11), and U~\widetilde{U} be the shifted wave as in (4.19). Then, for any U+×U\in\mathbb{R}^{+}\times\mathbb{R},

(4.30) 𝒥bad(U)𝒥good(U)=(U)𝒢(U),\displaystyle\begin{aligned} \mathcal{J}^{bad}(U)-\mathcal{J}^{good}(U)=\mathcal{B}(U)-\mathcal{G}(U),\end{aligned}

where

(4.31) (U):=12σaξ𝐗|p(v)p(v~)|2𝑑ξ+σa𝐗(v~S)ξ𝐗p(v|v~)𝑑ξaξ𝐗p(v)p(v~)γp(v)ξ(p(v)p(v~))dξ+aξ𝐗(p(v)p(v~))2ξp(v~)γp(v)p(v~)𝑑ξa𝐗ξ(p(v)p(v~))p(v~)p(v)γp(v)p(v~)ξp(v~)dξ+a𝐗(p(v)p(v~))F3𝑑ξa𝐗(hh~)F2𝑑ξ,𝒢(U):=σ2aξ𝐗|hh~p(v)p(v~)σ|2𝑑ξ+σaξ𝐗Q(v|v~)𝑑ξ+a𝐗u~ξRp(v|v~)𝑑ξ+a𝐗γp(v)|ξ(p(v)p(v~))|2𝑑ξ.\displaystyle\begin{aligned} &\mathcal{B}(U):=\frac{1}{2\sigma}\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\big{|}p(v)-p(\widetilde{v})\big{|}^{2}d\xi+\sigma\int_{\mathbb{R}}a^{-\mathbf{X}}(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}p(v|\widetilde{v})d\xi\\ &\qquad\quad-\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\frac{p(v)-p(\widetilde{v})}{\gamma p(v)}\partial_{\xi}\big{(}p(v)-p(\widetilde{v})\big{)}d\xi+\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\big{(}p(v)-p(\widetilde{v})\big{)}^{2}\frac{\partial_{\xi}p(\widetilde{v})}{\gamma p(v)p(\widetilde{v})}d\xi\\ &\qquad\quad-\int_{\mathbb{R}}a^{-\mathbf{X}}\partial_{\xi}\big{(}p(v)-p(\widetilde{v})\big{)}\frac{p(\widetilde{v})-p(v)}{\gamma p(v)p(\widetilde{v})}\partial_{\xi}p(\widetilde{v})d\xi+\int_{\mathbb{R}}a^{-\mathbf{X}}(p(v)-p(\widetilde{v}))F_{3}d\xi\\ &\qquad\quad-\int_{\mathbb{R}}a^{-\mathbf{X}}(h-\widetilde{h})F_{2}d\xi,\\ &\mathcal{G}(U):=\frac{\sigma}{2}\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\left|h-\widetilde{h}-\frac{p(v)-p(\widetilde{v})}{\sigma}\right|^{2}d\xi+\sigma\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}Q(v|\widetilde{v})d\xi+\int_{\mathbb{R}}a^{-\mathbf{X}}\widetilde{u}^{R}_{\xi}p(v|\widetilde{v})d\xi\\ &\qquad\quad+\int_{\mathbb{R}}\frac{a^{-\mathbf{X}}}{\gamma p(v)}|\partial_{\xi}\big{(}p(v)-p(\widetilde{v})\big{)}|^{2}d\xi.\end{aligned}
Remark 4.2.

Since σaξ>0\sigma a_{\xi}>0 and a>0a>0, 𝒢-\mathcal{G} consists of four good terms.

Proof.

Let J1J_{1} and J2J_{2} be the first terms of 𝒥bad(U)\mathcal{J}^{bad}(U) and 𝒥good(U)-\mathcal{J}^{good}(U) respectively:

J1:=aξ𝐗(p(v)p(v~))(hh~)𝑑ξ,J2:=σ2aξ𝐗|hh~|2𝑑ξ.\displaystyle\begin{aligned} &J_{1}:=\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\big{(}p(v)-p(\widetilde{v})\big{)}\big{(}h-\widetilde{h}\big{)}d\xi,\\ &J_{2}:=-\frac{\sigma}{2}\int_{\mathbb{R}}a_{\xi}^{-\mathbf{X}}\left|h-\widetilde{h}\right|^{2}d\xi.\end{aligned}

Applying the quadratic identity αz2+βz=α(z+β2α)2β24α\alpha z^{2}+\beta z=\alpha(z+\frac{\beta}{2\alpha})^{2}-\frac{\beta^{2}}{4\alpha} with z:=hh~z:=h-\widetilde{h} to the integrands of J1+J2J_{1}+J_{2}, we have

σ2|hh~|2+(p(v)p(v~))(hh~)=σ2|hh~p(v)p(v~)σ|2+12σ|p(v)p(v~)|2.\displaystyle\begin{aligned} -\frac{\sigma}{2}\left|h-\widetilde{h}\right|^{2}+\big{(}p(v)-p(\widetilde{v})\big{)}(h-\widetilde{h})=-\frac{\sigma}{2}\left|h-\widetilde{h}-\frac{p(v)-p(\widetilde{v})}{\sigma}\right|^{2}+\frac{1}{2\sigma}|p(v)-p(\widetilde{v})|^{2}.\end{aligned}

Therefore, we have the desired representation (4.30)-(LABEL:badgood). ∎

4.5. Proof of Lemma 4.1

First of all, using Lemma 4.3 and Lemma 4.4 together with a change of variable ξξ+𝐗(t)\xi\mapsto\xi+\mathbf{X}(t), we have

(4.32) ddtaη(U𝐗|U~𝐗)𝑑ξ=𝐗˙(t)𝐘(U𝐗)+(U𝐗)𝒢(U𝐗),\frac{d}{dt}\int_{\mathbb{R}}a\eta\big{(}U^{\mathbf{X}}|\widetilde{U}^{\mathbf{X}}\big{)}d\xi=\dot{\mathbf{X}}(t)\mathbf{Y}(U^{\mathbf{X}})+\mathcal{B}(U^{\mathbf{X}})-\mathcal{G}(U^{\mathbf{X}}),

where note from (4.19) that

U~𝐗:=(v~𝐗h~𝐗)=((v~R)𝐗+v~Svm(u~R)𝐗+h~Sum).\widetilde{U}^{\mathbf{X}}:={\widetilde{v}^{\mathbf{X}}\choose\widetilde{h}^{\mathbf{X}}}={(\widetilde{v}^{R})^{\mathbf{X}}+\widetilde{v}^{S}-v_{m}\choose(\widetilde{u}^{R})^{\mathbf{X}}+\widetilde{h}^{S}-u_{m}}.

For the bad terms and good terms, we use the following notations:

(4.33) (U):=i=15𝐁i(U)+𝐒1(U)+𝐒2(U),𝒢(U):=𝐆1(U)+𝐆2(U)+𝐆R(U)+𝐃(U),\displaystyle\begin{aligned} &\mathcal{B}(U):=\sum_{i=1}^{5}\mathbf{B}_{i}(U)+\mathbf{S}_{1}(U)+\mathbf{S}_{2}(U),\\ &\mathcal{G}(U):=\mathbf{G}_{1}(U)+\mathbf{G}_{2}(U)+\mathbf{G}^{R}(U)+\mathbf{D}(U),\end{aligned}

where

𝐁1(U):=12σaξ|p(v)p(v~𝐗)|2𝑑ξ,𝐁2(U):=σa(v~S)ξp(v|v~𝐗)𝑑ξ,𝐁3(U):=aξp(v)p(v~𝐗)γp(v)ξ(p(v)p(v~𝐗))dξ,𝐁4(U):=aξ(p(v)p(v~𝐗))2ξp(v~𝐗)γp(v)p(v~𝐗)𝑑ξ,𝐁5(U):=aξ(p(v)p(v~𝐗))p(v~𝐗)p(v)γp(v)p(v~𝐗)ξp(v~𝐗)dξ,𝐒1(U):=a(p(v)p(v~𝐗))(lnv~Slnv~𝐗)ξξ𝑑ξ,𝐒2(U):=a(hh~𝐗)(p(v~𝐗)p((v~R)𝐗)p(v~S))ξ𝑑ξ,\displaystyle\begin{aligned} &\mathbf{B}_{1}(U):=\frac{1}{2\sigma}\int_{\mathbb{R}}a_{\xi}\big{|}p(v)-p(\widetilde{v}^{\mathbf{X}})\big{|}^{2}d\xi,\\ &\mathbf{B}_{2}(U):=\sigma\int_{\mathbb{R}}a(\widetilde{v}^{S})_{\xi}p(v|\widetilde{v}^{\mathbf{X}})d\xi,\\ &\mathbf{B}_{3}(U):=-\int_{\mathbb{R}}a_{\xi}\frac{p(v)-p(\widetilde{v}^{\mathbf{X}})}{\gamma p(v)}\partial_{\xi}\big{(}p(v)-p(\widetilde{v}^{\mathbf{X}})\big{)}d\xi,\\ &\mathbf{B}_{4}(U):=\int_{\mathbb{R}}a_{\xi}\big{(}p(v)-p(\widetilde{v}^{\mathbf{X}})\big{)}^{2}\frac{\partial_{\xi}p(\widetilde{v}^{\mathbf{X}})}{\gamma p(v)p(\widetilde{v}^{\mathbf{X}})}d\xi,\\ &\mathbf{B}_{5}(U):=-\int_{\mathbb{R}}a\partial_{\xi}\big{(}p(v)-p(\widetilde{v}^{\mathbf{X}})\big{)}\frac{p(\widetilde{v}^{\mathbf{X}})-p(v)}{\gamma p(v)p(\widetilde{v}^{\mathbf{X}})}\partial_{\xi}p(\widetilde{v}^{\mathbf{X}})d\xi,\\ &\mathbf{S}_{1}(U):=\int_{\mathbb{R}}a(p(v)-p(\widetilde{v}^{\mathbf{X}}))\big{(}\ln\widetilde{v}^{S}-\ln\widetilde{v}^{\mathbf{X}}\big{)}_{\xi\xi}d\xi,\\ &\mathbf{S}_{2}(U):=-\int_{\mathbb{R}}a(h-\widetilde{h}^{\mathbf{X}})\big{(}p(\widetilde{v}^{\mathbf{X}})-p((\widetilde{v}^{R})^{\mathbf{X}})-p(\widetilde{v}^{S})\big{)}_{\xi}d\xi,\end{aligned}

and

𝐆1(U):=σ2aξ|hh~𝐗p(v)p(v~𝐗)σ|2𝑑ξ,𝐆2(U):=σaξQ(v|v~𝐗)𝑑ξ,𝐆R(U):=a(u~ξR)𝐗p(v|v~𝐗)𝑑ξ,𝐃(U):=aγp(v)|ξ(p(v)p(v~𝐗))|2𝑑ξ.\displaystyle\begin{aligned} &\mathbf{G}_{1}(U):=\frac{\sigma}{2}\int_{\mathbb{R}}a_{\xi}\left|h-\widetilde{h}^{\mathbf{X}}-\frac{p(v)-p(\widetilde{v}^{\mathbf{X}})}{\sigma}\right|^{2}d\xi,\\ &\mathbf{G}_{2}(U):=\sigma\int_{\mathbb{R}}a_{\xi}Q(v|\widetilde{v}^{\mathbf{X}})d\xi,\\ &\mathbf{G}^{R}(U):=\int_{\mathbb{R}}a(\widetilde{u}^{R}_{\xi})^{\mathbf{X}}p(v|\widetilde{v}^{\mathbf{X}})d\xi,\\ &\mathbf{D}(U):=\int_{\mathbb{R}}\frac{a}{\gamma p(v)}|\partial_{\xi}\big{(}p(v)-p(\widetilde{v}^{\mathbf{X}})\big{)}|^{2}d\xi.\end{aligned}

For notational simplicity in this section, we omit the dependence of the solution on the shift, i.e., (v,h)=(v𝐗,h𝐗)(v,h)=(v^{\mathbf{X}},h^{\mathbf{X}}).
First, note from (3.16) with the change of variable ξξ+𝐗(t)\xi\mapsto\xi+\mathbf{X}(t) that

(4.34) p(v)p(v~𝐗)L((0,T)×)Cvv~𝐗L((0,T)×)Cvv~𝐗L(0,T;H1())Cε1.\|p(v)-p(\widetilde{v}^{\mathbf{X}})\|_{L^{\infty}((0,T)\times\mathbb{R})}\leq C\|v-\widetilde{v}^{\mathbf{X}}\|_{L^{\infty}((0,T)\times\mathbb{R})}\leq C\|v-\widetilde{v}^{\mathbf{X}}\|_{L^{\infty}(0,T;H^{1}(\mathbb{R}))}\leq C\varepsilon_{1}.

Since the diffusion term 𝐃\mathbf{D} is related to the small perturbation of pressure, we will perform the Taylor expansion near p(v~𝐗)p(\widetilde{v}^{\mathbf{X}}) for the leading order terms and then use Lemma 1.1 on the sharp Poincaré inequality in the following lemma.
For 𝐘\mathbf{Y}, we have from (LABEL:relative_e) and (4.29) that

𝐘(U)=aξη(U|U~𝐗)𝑑ξ+a2η(U~𝐗)(U~S)ξ(UU~𝐗)𝑑ξ=aξ(|hh~𝐗|22+Q(v|v~𝐗))𝑑ξ+ah~ξS(hh~𝐗)𝑑ξap(v~𝐗)v~ξS(vv~𝐗)𝑑ξ.\displaystyle\begin{aligned} \mathbf{Y}(U)&=-\int_{\mathbb{R}}\!a_{\xi}\eta(U|\widetilde{U}^{\mathbf{X}})d\xi+\int_{\mathbb{R}}a\nabla^{2}\eta(\widetilde{U}^{\mathbf{X}})(\widetilde{U}^{S})_{\xi}(U-\widetilde{U}^{\mathbf{X}})d\xi\\ &=-\int_{\mathbb{R}}\!a_{\xi}\left(\frac{|h-\widetilde{h}^{\mathbf{X}}|^{2}}{2}+Q(v|\widetilde{v}^{\mathbf{X}})\right)d\xi\\ &\quad+\int_{\mathbb{R}}a{\widetilde{h}}^{S}_{\xi}(h-\widetilde{h}^{\mathbf{X}})d\xi-\int_{\mathbb{R}}ap^{\prime}(\widetilde{v}^{\mathbf{X}}){\widetilde{v}}^{S}_{\xi}(v-\widetilde{v}^{\mathbf{X}})d\xi.\end{aligned}

We decompose the functional 𝐘\mathbf{Y} as follows:

𝐘:=i=16𝐘i,\mathbf{Y}:=\sum_{i=1}^{6}\mathbf{Y}_{i},

where

𝐘1(U):=aσh~ξS(p(v)p(v~𝐗))𝑑ξ,𝐘2(U):=ap(v~S)v~ξS(vv~𝐗)𝑑ξ,𝐘3(U):=ah~ξS(hh~𝐗p(v)p(v~𝐗)σ)𝑑ξ,𝐘4(U):=a(p(v~𝐗)p(v~S))v~ξS(vv~𝐗)𝑑ξ,𝐘5(U):=12aξ(hh~𝐗p(v)p(v~𝐗)σ)(hh~𝐗+p(v)p(v~𝐗)σ)𝑑ξ,𝐘6(U):=aξQ(v|v~𝐗)𝑑ξaξ2σ2(p(v)p(v~𝐗))2𝑑ξ.\displaystyle\begin{aligned} &\mathbf{Y}_{1}(U):=\int\frac{a}{\sigma}\widetilde{h}^{S}_{\xi}(p(v)-p(\widetilde{v}^{\mathbf{X}}))d\xi,\\ &\mathbf{Y}_{2}(U):=-\int ap^{\prime}(\widetilde{v}^{S})\widetilde{v}^{S}_{\xi}(v-\widetilde{v}^{\mathbf{X}})d\xi,\\ &\mathbf{Y}_{3}(U):=\int a\widetilde{h}^{S}_{\xi}\left(h-\widetilde{h}^{\mathbf{X}}-\frac{p(v)-p(\widetilde{v}^{\mathbf{X}})}{\sigma}\right)d\xi,\\ &\mathbf{Y}_{4}(U):=-\int a(p^{\prime}(\widetilde{v}^{\mathbf{X}})-p^{\prime}(\widetilde{v}^{S}))\widetilde{v}^{S}_{\xi}(v-\widetilde{v}^{\mathbf{X}})d\xi,\\ &\mathbf{Y}_{5}(U):=-\frac{1}{2}\int_{\mathbb{R}}\!a_{\xi}\left(h-\widetilde{h}^{\mathbf{X}}-\frac{p(v)-p(\widetilde{v}^{\mathbf{X}})}{\sigma}\right)\left(h-\widetilde{h}^{\mathbf{X}}+\frac{p(v)-p(\widetilde{v}^{\mathbf{X}})}{\sigma}\right)d\xi,\\ &\mathbf{Y}_{6}(U):=-\int a_{\xi}Q(v|\widetilde{v}^{\mathbf{X}})d\xi-\int\frac{a_{\xi}}{2\sigma^{2}}(p(v)-p(\widetilde{v}^{\mathbf{X}}))^{2}d\xi.\end{aligned}

Notice from (3.8) that

(4.35) 𝐗˙(t)=MδS(𝐘1+𝐘2),\dot{\mathbf{X}}(t)=-\frac{M}{\delta_{S}}(\mathbf{Y}_{1}+\mathbf{Y}_{2}),

and so,

(4.36) 𝐗˙(t)𝐘=δSM|𝐗˙(t)|2+𝐗˙(t)i=36𝐘i.\dot{\mathbf{X}}(t)\mathbf{Y}=-\frac{\delta_{S}}{M}|\dot{\mathbf{X}}(t)|^{2}+\dot{\mathbf{X}}(t)\sum_{i=3}^{6}\mathbf{Y}_{i}.

4.5.1. Leading order estimates

Lemma 4.5.

There exists C>0C>0 such that

δS2M|𝐗˙|2+𝐁1+𝐁2𝐆234𝐃C|(v~S)ξ||p(v)p(v~𝐗)|2𝑑ξ+C|aξ||p(v)p(v~𝐗)|3𝑑ξ+C|aξ||(v~R)𝐗vm||p(v)p(v~𝐗)|2𝑑ξ.\displaystyle\begin{aligned} &-\frac{\delta_{S}}{2M}|\dot{\mathbf{X}}|^{2}+\mathbf{B}_{1}+\mathbf{B}_{2}-\mathbf{G}_{2}-\frac{3}{4}\mathbf{D}\\ &\leq-C\int|(\widetilde{v}^{S})_{\xi}||p(v)-p(\widetilde{v}^{\mathbf{X}})|^{2}d\xi+C\int|a_{\xi}||p(v)-p(\widetilde{v}^{\mathbf{X}})|^{3}d\xi\\ &\quad+C\int|a_{\xi}||(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}||p(v)-p(\widetilde{v}^{\mathbf{X}})|^{2}d\xi.\end{aligned}
Proof.

We first rewrite the main terms in terms of the new variables yy and ww:

(4.37) w:=p(v)p(v~𝐗),w:=p(v)-p(\widetilde{v}^{\mathbf{X}}),

and

(4.38) y:=p(vm)p(v~S(ξ))δS.y:=\frac{p(v_{m})-p(\widetilde{v}^{S}(\xi))}{\delta_{S}}.

Note that

(4.39) dydξ=1δSp(v~S)ξ>0,\frac{dy}{d\xi}=-\frac{1}{\delta_{S}}p(\widetilde{v}^{S})_{\xi}>0,

and the change of variable ξy(0,1)\xi\in\mathbb{R}\mapsto y\in(0,1) will be used below.
Note also that a(ξ)=1+λya(\xi)=1+\lambda y and so a(ξ)=λ(dy/dξ)a^{\prime}(\xi)=\lambda(dy/d\xi).
To perform the sharp estimates, we will consider the O(1)O(1)-constants:

σm:=p(vm),αm:=γ+12γσmp(vm),\sigma_{m}:=\sqrt{-p^{\prime}(v_{m})},\qquad\alpha_{m}:=\frac{\gamma+1}{2\gamma\sigma_{m}p(v_{m})},

which are indeed independent of the small constants δS,δR\delta_{S},\delta_{R}, since v+2vmv+\frac{v_{+}}{2}\leq v_{m}\leq v_{+}.
Note that

(4.40) |σσm|CδS,|\sigma-\sigma_{m}|\leq C\delta_{S},

with together with σm2=p(vm)=γp(vm)1γ+1\sigma_{m}^{2}=-p^{\prime}(v_{m})=\gamma p(v_{m})^{\frac{1}{\gamma}+1} implies

(4.41) |σm2|p(v~S)||CδS,|1σm2p(v~S)1γ1γ|CδS,|1σm2p(v~𝐗)1γ1γ|Cδ0.|\sigma_{m}^{2}-|p^{\prime}(\widetilde{v}^{S})||\leq C\delta_{S},\quad\left|\frac{1}{\sigma_{m}^{2}}-\frac{p(\widetilde{v}^{S})^{-\frac{1}{\gamma}-1}}{\gamma}\right|\leq C\delta_{S},\quad\left|\frac{1}{\sigma_{m}^{2}}-\frac{p(\widetilde{v}^{\mathbf{X}})^{-\frac{1}{\gamma}-1}}{\gamma}\right|\leq C\delta_{0}.

\bullet Estimate on δS2M|𝐗˙|2-\frac{\delta_{S}}{2M}|\dot{\mathbf{X}}|^{2} : First, to estimate the term δS2M|𝐗˙|2-\frac{\delta_{S}}{2M}|\dot{\mathbf{X}}|^{2}, we will estimate 𝐘1,𝐘2\mathbf{Y}_{1},\mathbf{Y}_{2} due to (4.35).
By the change of variable, we have

𝐘1=δSσ201aw𝑑y.\mathbf{Y}_{1}=-\frac{\delta_{S}}{\sigma^{2}}\int_{0}^{1}awdy.

Using (4.40) and |a1|λ|a-1|\leq\lambda, we have

(4.42) |𝐘1+δSσm201w𝑑y|CδS(λ+δ0)01|w|𝑑y.\left|\mathbf{Y}_{1}+\frac{\delta_{S}}{\sigma_{m}^{2}}\int_{0}^{1}wdy\right|\leq C\delta_{S}(\lambda+\delta_{0})\int_{0}^{1}|w|dy.

For

𝐘2=ap(v~S)ξ(vv~𝐗)𝑑ξ=δS01a(vv~𝐗)𝑑y,\mathbf{Y}_{2}=-\int ap(\widetilde{v}^{S})_{\xi}(v-\widetilde{v}^{\mathbf{X}})d\xi=\delta_{S}\int_{0}^{1}a(v-\widetilde{v}^{\mathbf{X}})dy,

we observe that since (by considering v=p(v)1γv=p(v)^{-\frac{1}{\gamma}})

|vv~𝐗+p(v~𝐗)1γ1γ(p(v)p(v~𝐗))|C|p(v)p(v~𝐗)|2,\left|v-\widetilde{v}^{\mathbf{X}}+\frac{p(\widetilde{v}^{\mathbf{X}})^{-\frac{1}{\gamma}-1}}{\gamma}(p(v)-p(\widetilde{v}^{\mathbf{X}}))\right|\leq C|p(v)-p(\widetilde{v}^{\mathbf{X}})|^{2},

it follows from (4.41) and (4.34) that

|vv~𝐗+1σm2(p(v)p(v~𝐗))|C(δ0+ε1)|p(v)p(v~𝐗)|.\left|v-\widetilde{v}^{\mathbf{X}}+\frac{1}{\sigma_{m}^{2}}(p(v)-p(\widetilde{v}^{\mathbf{X}}))\right|\leq C(\delta_{0}+\varepsilon_{1})|p(v)-p(\widetilde{v}^{\mathbf{X}})|.

This implies

(4.43) |𝐘2+δSσm201w𝑑y|CδS(λ+δ0+ε1)01|w|𝑑y.\left|\mathbf{Y}_{2}+\frac{\delta_{S}}{\sigma_{m}^{2}}\int_{0}^{1}wdy\right|\leq C\delta_{S}(\lambda+\delta_{0}+\varepsilon_{1})\int_{0}^{1}|w|dy.

Therefore, by (4.35), (4.42) and (4.43), we have

|𝐗˙2Mσm201w𝑑y|=|i=12MδS(𝐘i+δSσm201w𝑑y)|C(λ+δ0+ε1)01|w|𝑑y,\left|\dot{\mathbf{X}}-\frac{2M}{\sigma_{m}^{2}}\int_{0}^{1}wdy\right|=\left|\sum_{i=1}^{2}\frac{M}{\delta_{S}}\left(\mathbf{Y}_{i}+\frac{\delta_{S}}{\sigma_{m}^{2}}\int_{0}^{1}wdy\right)\right|\leq C(\lambda+\delta_{0}+\varepsilon_{1})\int_{0}^{1}|w|dy,

which yields

(|2Mσm201w𝑑y||𝐗˙|)2C(λ+δ0+ε1)201|w|2𝑑y.\left(\left|\frac{2M}{\sigma_{m}^{2}}\int_{0}^{1}wdy\right|-|\dot{\mathbf{X}}|\right)^{2}\leq C(\lambda+\delta_{0}+\varepsilon_{1})^{2}\int_{0}^{1}|w|^{2}dy.

This and the algebraic inequality p22q2(pq)2\frac{p^{2}}{2}-q^{2}\leq(p-q)^{2} for all p,q0p,q\geq 0 imply

2M2σm4(01w𝑑y)2|𝐗˙|2C(λ+δ0+ε1)201|w|2𝑑y.\frac{2M^{2}}{\sigma_{m}^{4}}\left(\int_{0}^{1}wdy\right)^{2}-|\dot{\mathbf{X}}|^{2}\leq C(\lambda+\delta_{0}+\varepsilon_{1})^{2}\int_{0}^{1}|w|^{2}dy.

Thus,

(4.44) δS2M|𝐗˙|2MδSσm4(01w𝑑y)2+CδS(λ+δ0+ε1)201|w|2𝑑y.-\frac{\delta_{S}}{2M}|\dot{\mathbf{X}}|^{2}\leq-\frac{M\delta_{S}}{\sigma_{m}^{4}}\left(\int_{0}^{1}wdy\right)^{2}+C\delta_{S}(\lambda+\delta_{0}+\varepsilon_{1})^{2}\int_{0}^{1}|w|^{2}dy.

\bullet Change of variable for 𝐁1,𝐁2\mathbf{B}_{1},\mathbf{B}_{2} : By the change of variable, we have

𝐁1=λ2σ01w2𝑑y,\mathbf{B}_{1}=\frac{\lambda}{2\sigma}\int_{0}^{1}w^{2}dy,

which together with (4.40) yields

(4.45) 𝐁1λ2σm01w2𝑑y+CλδS01w2𝑑y.\mathbf{B}_{1}\leq\frac{\lambda}{2\sigma_{m}}\int_{0}^{1}w^{2}dy+C\lambda\delta_{S}\int_{0}^{1}w^{2}dy.

For 𝐁2\mathbf{B}_{2}, using (v~S)ξ=p(v~S)ξ/p(v~S)(\widetilde{v}^{S})_{\xi}=p(\widetilde{v}^{S})_{\xi}/p^{\prime}(\widetilde{v}^{S}) and the change of variable, we have

𝐁2=σδS01(1+λy)1|p(v~S)|p(v|v~𝐗)𝑑y.\mathbf{B}_{2}=\sigma\delta_{S}\int_{0}^{1}(1+\lambda y)\frac{1}{|p^{\prime}(\widetilde{v}^{S})|}p(v|\widetilde{v}^{\mathbf{X}})dy.

Using (2.4) with (4.34), we have

(4.46) 𝐁2σδS(1+λ)01(1|p(v~S)|(γ+12γp(v~𝐗)+Cε1)|p(v)p(v~𝐗)|2)𝑑y,\mathbf{B}_{2}\leq\sigma\delta_{S}(1+\lambda)\int_{0}^{1}\left(\frac{1}{|p^{\prime}(\widetilde{v}^{S})|}\left(\frac{\gamma+1}{2\gamma p(\widetilde{v}^{\mathbf{X}})}+C\varepsilon_{1}\right)|p(v)-p(\widetilde{v}^{\mathbf{X}})|^{2}\right)dy,

which together with (4.40)-(4.41) yields

𝐁2δSαm(1+C(δ0+λ+ε1))01w2𝑑y.\mathbf{B}_{2}\leq\delta_{S}\alpha_{m}(1+C(\delta_{0}+\lambda+\varepsilon_{1}))\int_{0}^{1}w^{2}dy.

\bullet Change of variable for 𝐆2\mathbf{G}_{2} : For 𝐆2\mathbf{G}_{2}, we first use (2.5) with (4.34) to split it into two parts:

(4.47) 𝐆2σaξp(v~𝐗)1γ12γ|p(v)p(v~𝐗)|2𝑑ξσaξ1+γ3γ2p(v~𝐗)1γ2(p(v)p(v~𝐗))3𝑑ξ=σaξp(v~S)1γ12γ|p(v)p(v~𝐗)|2𝑑ξ=:𝒢2σaξ1+γ3γ2p(v~𝐗)1γ2(p(v)p(v~𝐗))3𝑑ξ+σ2γaξ(p(v~𝐗)1γ1p(v~S)1γ1)|p(v)p(v~𝐗)|2𝑑ξ.\displaystyle\begin{aligned} \mathbf{G}_{2}&\geq\sigma\int_{\mathbb{R}}a_{\xi}\frac{p(\widetilde{v}^{\mathbf{X}})^{-\frac{1}{\gamma}-1}}{2\gamma}|p(v)-p(\widetilde{v}^{\mathbf{X}})|^{2}d\xi-\sigma\int_{\mathbb{R}}a_{\xi}\frac{1+\gamma}{3\gamma^{2}}p(\widetilde{v}^{\mathbf{X}})^{-\frac{1}{\gamma}-2}(p(v)-p(\widetilde{v}^{\mathbf{X}}))^{3}d\xi\\ &=\underbrace{\sigma\int_{\mathbb{R}}a_{\xi}\frac{p(\widetilde{v}^{S})^{-\frac{1}{\gamma}-1}}{2\gamma}|p(v)-p(\widetilde{v}^{\mathbf{X}})|^{2}d\xi}_{=:\mathcal{G}_{2}}-\sigma\int_{\mathbb{R}}a_{\xi}\frac{1+\gamma}{3\gamma^{2}}p(\widetilde{v}^{\mathbf{X}})^{-\frac{1}{\gamma}-2}(p(v)-p(\widetilde{v}^{\mathbf{X}}))^{3}d\xi\\ &\quad+\frac{\sigma}{2\gamma}\int_{\mathbb{R}}a_{\xi}\left(p(\widetilde{v}^{\mathbf{X}})^{-\frac{1}{\gamma}-1}-p(\widetilde{v}^{S})^{-\frac{1}{\gamma}-1}\right)|p(v)-p(\widetilde{v}^{\mathbf{X}})|^{2}d\xi.\end{aligned}

We only do the change of variable for the good term 𝒢2\mathcal{G}_{2} as follows: by (4.40)-(4.41) and the change of variable,

𝒢212σm(1CδS)aξ|p(v)p(v~𝐗)|2𝑑ξ=λ2σm(1CδS)01w2𝑑y.\mathcal{G}_{2}\geq\frac{1}{2\sigma_{m}}(1-C\delta_{S})\int_{\mathbb{R}}a_{\xi}|p(v)-p(\widetilde{v}^{\mathbf{X}})|^{2}d\xi=\frac{\lambda}{2\sigma_{m}}(1-C\delta_{S})\int_{0}^{1}w^{2}dy.

This and (4.45) yield

(4.48) 𝐁1𝒢2CλδS01w2𝑑y.\mathbf{B}_{1}-\mathcal{G}_{2}\leq C\lambda\delta_{S}\int_{0}^{1}w^{2}dy.

\bullet Change of variable for 𝐃\mathbf{D} : First, using a1a\geq 1 and the change of variable, we have

𝐃1γp(v)|ξ(p(v)p(v~𝐗))|2𝑑ξ=01|yw|21γp(v)(dydξ)𝑑y.\mathbf{D}\geq\int_{\mathbb{R}}\frac{1}{\gamma p(v)}|\partial_{\xi}\big{(}p(v)-p(\widetilde{v}^{\mathbf{X}})\big{)}|^{2}d\xi=\int_{0}^{1}|\partial_{y}w|^{2}\frac{1}{\gamma p(v)}\Big{(}\frac{dy}{d\xi}\Big{)}dy.

Integrating (4.3) over (,ξ](-\infty,\xi] yields

(lnv~S)ξ=σ(v~Svm)p(v~S)p(vm)σ.(\ln\widetilde{v}^{S})_{\xi}=-\sigma(\widetilde{v}^{S}-v_{m})-\frac{p(\widetilde{v}^{S})-p(v_{m})}{\sigma}.

Since

δS1γp(v~S)(dydξ)=p(v~S)ξγp(v~S)=(lnv~S)ξ,\delta_{S}\frac{1}{\gamma p(\widetilde{v}^{S})}\Big{(}\frac{dy}{d\xi}\Big{)}=\frac{-p(\widetilde{v}^{S})_{\xi}}{\gamma p(\widetilde{v}^{S})}=(\ln\widetilde{v}^{S})_{\xi},

we have

δS1γp(v~S)(dydξ)=σ(v~Svm)p(v~S)p(vm)σ=1σ(σ2(v~Svm)+(p(v~S)p(vm))),\displaystyle\begin{aligned} \delta_{S}\frac{1}{\gamma p(\widetilde{v}^{S})}\Big{(}\frac{dy}{d\xi}\Big{)}&=-\sigma(\widetilde{v}^{S}-v_{m})-\frac{p(\widetilde{v}^{S})-p(v_{m})}{\sigma}\\ &=-\frac{1}{\sigma}\left(\sigma^{2}(\widetilde{v}^{S}-v_{m})+(p(\widetilde{v}^{S})-p(v_{m}))\right),\end{aligned}

which together with σ2=p(vm)p(v+)v+vm\sigma^{2}=\frac{p(v_{m})-p(v_{+})}{v_{+}-v_{m}} yields

δS1γp(v~S)(dydξ)=1σ(v+vm)((p(vm)p(v+))(v~Svm)+(v+vm)(p(v~S)p(vm)))=1σ(v+vm)((p(v~S)p(v+))(v~Svm)+(v~Svm)(p(vm)p(v~S))+(v~Svm)(p(v~S)p(vm))+(v+v~S)(p(v~S)p(vm)))=1σ(v+vm)((p(v~S)p(v+))(v~Svm)+(v+v~S)(p(v~S)p(vm))).\displaystyle\begin{aligned} \delta_{S}\frac{1}{\gamma p(\widetilde{v}^{S})}\Big{(}\frac{dy}{d\xi}\Big{)}&=-\frac{1}{\sigma(v_{+}-v_{m})}\left((p(v_{m})-p(v_{+}))(\widetilde{v}^{S}-v_{m})+(v_{+}-v_{m})(p(\widetilde{v}^{S})-p(v_{m}))\right)\\ &=-\frac{1}{\sigma(v_{+}-v_{m})}\bigg{(}(p(\widetilde{v}^{S})-p(v_{+}))(\widetilde{v}^{S}-v_{m})+(\widetilde{v}^{S}-v_{m})(p(v_{m})-p(\widetilde{v}^{S}))\\ &\qquad+(\widetilde{v}^{S}-v_{m})(p(\widetilde{v}^{S})-p(v_{m}))+(v_{+}-\widetilde{v}^{S})(p(\widetilde{v}^{S})-p(v_{m}))\bigg{)}\\ &=-\frac{1}{\sigma(v_{+}-v_{m})}\left((p(\widetilde{v}^{S})-p(v_{+}))(\widetilde{v}^{S}-v_{m})+(v_{+}-\widetilde{v}^{S})(p(\widetilde{v}^{S})-p(v_{m}))\right).\end{aligned}

Since y=p(vm)p(v~S)δSy=\frac{p(v_{m})-p(\widetilde{v}^{S})}{\delta_{S}} and 1y=p(v~S)p(v+)δS1-y=\frac{p(\widetilde{v}^{S})-p(v_{+})}{\delta_{S}},

1y(1y)1γp(v~S)(dydξ)=δSσ(v+vm)(vmv~Sp(vm)p(v~S)v+v~Sp(v+)p(v~S)).\frac{1}{y(1-y)}\frac{1}{\gamma p(\widetilde{v}^{S})}\Big{(}\frac{dy}{d\xi}\Big{)}=\frac{\delta_{S}}{\sigma(v_{+}-v_{m})}\left(\frac{v_{m}-\widetilde{v}^{S}}{p(v_{m})-p(\widetilde{v}^{S})}-\frac{v_{+}-\widetilde{v}^{S}}{p(v_{+})-p(\widetilde{v}^{S})}\right).

Since the right-hand side above is the same as the one in the proofs of [14, Appendix B] and [15, Lemma 3.1]), we have

|1y(1y)1γp(v~S)(dydξ)δSp′′(vm)2|p(vm)|2σm|CδS2.\left|\frac{1}{y(1-y)}\frac{1}{\gamma p(\widetilde{v}^{S})}\Big{(}\frac{dy}{d\xi}\Big{)}-\frac{\delta_{S}p^{\prime\prime}(v_{m})}{2|p^{\prime}(v_{m})|^{2}\sigma_{m}}\right|\leq C\delta_{S}^{2}.

In addition, since (4.34) yields C1p(v)CC^{-1}\leq p(v)\leq C and

|p(v~S)p(v)1|C|v~Sv|C(|v~Sv~|+|v~v|)C(δ0+ε1),\left|\frac{p(\widetilde{v}^{S})}{p(v)}-1\right|\leq C|\widetilde{v}^{S}-v|\leq C(|\widetilde{v}^{S}-\widetilde{v}|+|\widetilde{v}-v|)\leq C(\delta_{0}+\varepsilon_{1}),

we have

𝐃\displaystyle\mathbf{D} \displaystyle\geq 01|yw|2p(v~S)p(v)1γp(v~S)(dydξ)𝑑y\displaystyle\int_{0}^{1}|\partial_{y}w|^{2}\frac{p(\widetilde{v}^{S})}{p(v)}\frac{1}{\gamma p(\widetilde{v}^{S})}\Big{(}\frac{dy}{d\xi}\Big{)}dy
\displaystyle\geq (1Cδ0Cε1)(δSp′′(vm)2|p(vm)|2σmCδS2)01y(1y)|yw|2𝑑y.\displaystyle(1-C\delta_{0}-C\varepsilon_{1})\left(\frac{\delta_{S}p^{\prime\prime}(v_{m})}{2|p^{\prime}(v_{m})|^{2}\sigma_{m}}-C\delta_{S}^{2}\right)\int_{0}^{1}y(1-y)|\partial_{y}w|^{2}\,dy.

Since

p′′(vm)2|p(vm)|2σm=γ+12γσmp(vm)=αm,\frac{p^{\prime\prime}(v_{m})}{2|p^{\prime}(v_{m})|^{2}\sigma_{m}}=\frac{\gamma+1}{2\gamma\sigma_{m}p(v_{m})}=\alpha_{m},

we have

𝐃δSαm(1C(δ0+ε1))01y(1y)|yw|2𝑑y.\mathbf{D}\geq\delta_{S}\alpha_{m}(1-C(\delta_{0}+\varepsilon_{1}))\int_{0}^{1}y(1-y)|\partial_{y}w|^{2}dy.

\bullet Conclusion : First, by (4.46), (4.48) and the above estimates, we have

𝐁1+𝐁2𝒢234𝐃δSαm((1+C(δ0+λ+ε1))01w2𝑑y34(1C(δ0+ε1))01y(1y)|yw|2𝑑y),\begin{array}[]{ll}\displaystyle\mathbf{B}_{1}+\mathbf{B}_{2}-\mathcal{G}_{2}-\frac{3}{4}\mathbf{D}\\ \displaystyle\leq\delta_{S}\alpha_{m}\left((1+C(\delta_{0}+\lambda+\varepsilon_{1}))\int_{0}^{1}w^{2}dy-\frac{3}{4}(1-C(\delta_{0}+\varepsilon_{1}))\int_{0}^{1}y(1-y)|\partial_{y}w|^{2}dy\right),\end{array}

which together with the smallness of λ,δ0,ε1\lambda,\delta_{0},\varepsilon_{1} yields

𝐁1+𝐁2𝒢234𝐃δSαm(9801w2𝑑y5801y(1y)|yw|2𝑑y).\mathbf{B}_{1}+\mathbf{B}_{2}-\mathcal{G}_{2}-\frac{3}{4}\mathbf{D}\leq\delta_{S}\alpha_{m}\left(\frac{9}{8}\int_{0}^{1}w^{2}dy-\frac{5}{8}\int_{0}^{1}y(1-y)|\partial_{y}w|^{2}dy\right).

Using Lemma 1.1 and the fact that for w¯:=01w𝑑y\bar{w}:=\int_{0}^{1}wdy,

01|ww¯|2𝑑y=01w2𝑑yw¯2,\int_{0}^{1}|w-\bar{w}|^{2}dy=\int_{0}^{1}w^{2}dy-{\bar{w}}^{2},

we have

𝐁1+𝐁2𝒢234𝐃δSαm801w2𝑑y+5δSαm4(01w𝑑y)2.\mathbf{B}_{1}+\mathbf{B}_{2}-\mathcal{G}_{2}-\frac{3}{4}\mathbf{D}\leq-\frac{\delta_{S}\alpha_{m}}{8}\int_{0}^{1}w^{2}dy+\frac{5\delta_{S}\alpha_{m}}{4}\left(\int_{0}^{1}wdy\right)^{2}.

Since the specific O(1)O(1)-constant MM satisfies

(4.49) M=54σm4αm,M=\frac{5}{4}\sigma_{m}^{4}\alpha_{m},

it holds from (4.44) and (4.47) that

δS2M|𝐗˙|2+𝐁1+𝐁2𝐆234𝐃αm1601w2δS𝑑y+σaξ1+γ3γ2p(v~𝐗)1γ2(p(v)p(v~𝐗))3𝑑ξσ2γaξ(p(v~𝐗)1γ1p(v~S)1γ1)|p(v)p(v~𝐗)|2𝑑ξ,\displaystyle\begin{aligned} &-\frac{\delta_{S}}{2M}|\dot{\mathbf{X}}|^{2}+\mathbf{B}_{1}+\mathbf{B}_{2}-\mathbf{G}_{2}-\frac{3}{4}\mathbf{D}\\ &\quad\leq-\frac{\alpha_{m}}{16}\int_{0}^{1}w^{2}\delta_{S}dy+\sigma\int_{\mathbb{R}}a_{\xi}\frac{1+\gamma}{3\gamma^{2}}p(\widetilde{v}^{\mathbf{X}})^{-\frac{1}{\gamma}-2}(p(v)-p(\widetilde{v}^{\mathbf{X}}))^{3}d\xi\\ &\qquad-\frac{\sigma}{2\gamma}\int_{\mathbb{R}}a_{\xi}\left(p(\widetilde{v}^{\mathbf{X}})^{-\frac{1}{\gamma}-1}-p(\widetilde{v}^{S})^{-\frac{1}{\gamma}-1}\right)|p(v)-p(\widetilde{v}^{\mathbf{X}})|^{2}d\xi,\end{aligned}

which implies the desired estimate. ∎

4.5.2. Proof of Lemma 4.1

First of all, we use (4.32), (LABEL:sbg), (4.36) to have

ddtaη(U|U~𝐗)𝑑ξ=δS2M|𝐗˙|2+𝐁1+𝐁2𝐆234𝐃δS2M|𝐗˙|2+𝐗˙i=36𝐘i+i=35𝐁i+𝐒1+𝐒2𝐆1𝐆R14𝐃.\displaystyle\begin{aligned} \frac{d}{dt}\int_{\mathbb{R}}a\eta\big{(}U|\widetilde{U}^{\mathbf{X}}\big{)}d\xi&=-\frac{\delta_{S}}{2M}|\dot{\mathbf{X}}|^{2}+\mathbf{B}_{1}+\mathbf{B}_{2}-\mathbf{G}_{2}-\frac{3}{4}\mathbf{D}\\ &\quad-\frac{\delta_{S}}{2M}|\dot{\mathbf{X}}|^{2}+\dot{\mathbf{X}}\sum_{i=3}^{6}\mathbf{Y}_{i}+\sum_{i=3}^{5}\mathbf{B}_{i}+\mathbf{S}_{1}+\mathbf{S}_{2}-\mathbf{G}_{1}-\mathbf{G}^{R}-\frac{1}{4}\mathbf{D}.\end{aligned}

Using Lemma 4.5 and the Young’s inequality, we find that there exist C1,C>0C_{1},C>0 such that

ddtaη(U|U~𝐗)𝑑ξC1|(v~S)ξ||p(v)p(v~𝐗)|2𝑑ξ+C|aξ||p(v)p(v~𝐗)|3𝑑ξ=:K1+C|aξ||(v~R)𝐗vm||p(v)p(v~𝐗)|2𝑑ξ=:K2δS4M|𝐗˙|2+CδSi=36|𝐘i|2+i=35𝐁i+𝐒1+𝐒2𝐆1𝐆R14𝐃.\displaystyle\begin{aligned} \frac{d}{dt}\int_{\mathbb{R}}a\eta\big{(}U|\widetilde{U}^{\mathbf{X}}\big{)}d\xi&\leq-C_{1}\int|(\widetilde{v}^{S})_{\xi}||p(v)-p(\widetilde{v}^{\mathbf{X}})|^{2}d\xi+\underbrace{C\int|a_{\xi}||p(v)-p(\widetilde{v}^{\mathbf{X}})|^{3}d\xi}_{=:K_{1}}\\ &\quad+\underbrace{C\int|a_{\xi}||(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}||p(v)-p(\widetilde{v}^{\mathbf{X}})|^{2}d\xi}_{=:K_{2}}\\ &\quad-\frac{\delta_{S}}{4M}|\dot{\mathbf{X}}|^{2}+\frac{C}{\delta_{S}}\sum_{i=3}^{6}|\mathbf{Y}_{i}|^{2}+\sum_{i=3}^{5}\mathbf{B}_{i}+\mathbf{S}_{1}+\mathbf{S}_{2}-\mathbf{G}_{1}-\mathbf{G}^{R}-\frac{1}{4}\mathbf{D}.\end{aligned}

In what follows, to control the above bad terms, we will use the above good terms 𝐆1,𝐆R,𝐃\mathbf{G}_{1},\mathbf{G}^{R},\mathbf{D} and

(4.50) 𝐆S:=|(v~S)ξ||p(v)p(v~𝐗)|2𝑑ξ.\mathbf{G}^{S}:=\int|(\widetilde{v}^{S})_{\xi}||p(v)-p(\widetilde{v}^{\mathbf{X}})|^{2}d\xi.

Note that from (LABEL:good1) and (4.50), it is obvious that 𝐆S=GS\mathbf{G}^{S}=G^{S} with the change of variables ξξ+𝐗(t)\xi\mapsto\xi+\mathbf{X}(t).

\bullet Estimate on the cubic term K1K_{1} : For simplicity, we use the notation w=p(v)p(v~𝐗)w=p(v)-p(\widetilde{v}^{\mathbf{X}}) as in (4.37). We first use (4.15) and the interpolation inequality to have

K1CλδSwL()2|(v~S)ξ||w|𝑑ξCλδSwL()2|(v~S)ξ|w2𝑑ξ|(v~S)ξ|𝑑ξCλδSwξL2()wL2()|(v~S)ξ|w2𝑑ξ.\displaystyle\begin{aligned} K_{1}&\leq C\frac{\lambda}{\delta_{S}}\int\|w\|_{L^{\infty}(\mathbb{R})}^{2}|(\widetilde{v}^{S})_{\xi}||w|d\xi\\ &\leq C\frac{\lambda}{\delta_{S}}\|w\|_{L^{\infty}(\mathbb{R})}^{2}\sqrt{\int|(\widetilde{v}^{S})_{\xi}|w^{2}d\xi}\sqrt{\int|(\widetilde{v}^{S})_{\xi}|d\xi}\\ &\leq C\frac{\lambda}{\sqrt{\delta_{S}}}\|w_{\xi}\|_{L^{2}(\mathbb{R})}\|w\|_{L^{2}(\mathbb{R})}\sqrt{\int|(\widetilde{v}^{S})_{\xi}|w^{2}d\xi}.\end{aligned}

Using (4.12), (3.16) with (2.3), we have

K1Cε1wξL2()|(v~S)ξ|w2𝑑ξCε1wξL2()2+Cε1|(v~S)ξ|w2𝑑ξ140(𝐃+C1𝐆S).\displaystyle\begin{aligned} K_{1}&\leq C\varepsilon_{1}\|w_{\xi}\|_{L^{2}(\mathbb{R})}\sqrt{\int|(\widetilde{v}^{S})_{\xi}|w^{2}d\xi}\\ &\leq C\varepsilon_{1}\|w_{\xi}\|_{L^{2}(\mathbb{R})}^{2}+C\varepsilon_{1}\int|(\widetilde{v}^{S})_{\xi}|w^{2}d\xi\leq\frac{1}{40}(\mathbf{D}+C_{1}\mathbf{G}^{S}).\end{aligned}

\bullet Estimate on the term K2K_{2} : Likewise, using (4.15) and the interpolation inequality,

K2CλδSwL4()2|(v~S)ξ||(v~R)𝐗vm|L2()CλδSwξL2()1/2wL2()3/2|(v~S)ξ||(v~R)𝐗vm|L2().\displaystyle\begin{aligned} K_{2}&\leq C\frac{\lambda}{\delta_{S}}\|w\|_{L^{4}(\mathbb{R})}^{2}\||(\widetilde{v}^{S})_{\xi}||(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}|\|_{L^{2}(\mathbb{R})}\\ &\leq C\frac{\lambda}{\delta_{S}}\|w_{\xi}\|_{L^{2}(\mathbb{R})}^{1/2}\|w\|_{L^{2}(\mathbb{R})}^{3/2}\||(\widetilde{v}^{S})_{\xi}||(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}|\|_{L^{2}(\mathbb{R})}.\end{aligned}

Using (3.16), Lemma 4.2, (4.12) and Young’s inequality, it holds that

K2Cε1wξL2()1/2λδSδS3/2δReCδStCε1wξL2()1/2δSδReCδStCε1wξL2()2+Cε1δS4/3δR4/3eCδSt140𝐃+Cε1δS4/3δR4/3eCδSt.\displaystyle\begin{aligned} K_{2}&\leq C\varepsilon_{1}\|w_{\xi}\|_{L^{2}(\mathbb{R})}^{1/2}\frac{\lambda}{\delta_{S}}\delta_{S}^{3/2}\delta_{R}e^{-C\delta_{S}t}\leq C\varepsilon_{1}\|w_{\xi}\|_{L^{2}(\mathbb{R})}^{1/2}\delta_{S}\delta_{R}e^{-C\delta_{S}t}\\ &\leq C\varepsilon_{1}\|w_{\xi}\|_{L^{2}(\mathbb{R})}^{2}+C\varepsilon_{1}\delta_{S}^{4/3}\delta_{R}^{4/3}e^{-C\delta_{S}t}\leq\frac{1}{40}\mathbf{D}+C\varepsilon_{1}\delta_{S}^{4/3}\delta_{R}^{4/3}e^{-C\delta_{S}t}.\end{aligned}

\bullet Estimates on the terms 𝐘i\mathbf{Y}_{i} : Since

|𝐘3|CδSλ|aξ||hh~𝐗p(v)p(v~𝐗)σ|𝑑ξCδSλ𝐆1,|\mathbf{Y}_{3}|\leq C\frac{\delta_{S}}{\lambda}\int|a_{\xi}|\left|h-\widetilde{h}^{\mathbf{X}}-\frac{p(v)-p(\widetilde{v}^{\mathbf{X}})}{\sigma}\right|d\xi\leq C\frac{\delta_{S}}{\sqrt{\lambda}}\sqrt{\mathbf{G}_{1}},

we have

CδS|𝐘3|2CδSλ𝐆114𝐆1.\frac{C}{\delta_{S}}|\mathbf{Y}_{3}|^{2}\leq C\frac{\delta_{S}}{\lambda}\mathbf{G}_{1}\leq\frac{1}{4}\mathbf{G}_{1}.

Using (2.1) and (2.6), we have

|𝐘4|C|(v~R)𝐗vm||v~ξS||vv~𝐗|𝑑ξCδR|v~ξS|w𝑑ξCδRδS|v~ξS|w2𝑑ξ,|\mathbf{Y}_{4}|\leq C\int|(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}||\widetilde{v}^{S}_{\xi}||v-\widetilde{v}^{\mathbf{X}}|d\xi\leq C\delta_{R}\int|\widetilde{v}^{S}_{\xi}|wd\xi\leq C\delta_{R}\sqrt{\delta_{S}}\sqrt{\int|\widetilde{v}^{S}_{\xi}|w^{2}d\xi},

and so

CδS|𝐘4|2CδR2𝐆SC140𝐆S.\frac{C}{\delta_{S}}|\mathbf{Y}_{4}|^{2}\leq C\delta_{R}^{2}\mathbf{G}^{S}\leq\frac{C_{1}}{40}\mathbf{G}^{S}.

For 𝐘5\mathbf{Y}_{5}, we first estimate hh~𝐗h-\widetilde{h}^{\mathbf{X}} in terms of uu~𝐗u-\widetilde{u}^{\mathbf{X}} and vv~𝐗v-\widetilde{v}^{\mathbf{X}} (using the definition of hh in (4.1) and h~\widetilde{h} in (4.4)) as follows. Observe that

(4.51) |hh~𝐗||uu~𝐗|+|(lnv)ξ(lnv~S)ξ||uu~𝐗|+C(|(vv~𝐗)ξ|+|v~ξ𝐗||vv~S|+|(v~ξR)𝐗|)|uu~𝐗|+C(|(vv~𝐗)ξ|+|v~ξ𝐗||vv~𝐗|+|v~ξS||(v~R)𝐗vm|+|(v~ξR)𝐗|),\displaystyle\begin{aligned} |h-\widetilde{h}^{\mathbf{X}}|&\leq|u-\widetilde{u}^{\mathbf{X}}|+|(\ln v)_{\xi}-(\ln\widetilde{v}^{S})_{\xi}|\\ &\leq|u-\widetilde{u}^{\mathbf{X}}|+C(|(v-\widetilde{v}^{\mathbf{X}})_{\xi}|+|\widetilde{v}^{\mathbf{X}}_{\xi}||v-\widetilde{v}^{S}|+|(\widetilde{v}^{R}_{\xi})^{\mathbf{X}}|)\\ &\leq|u-\widetilde{u}^{\mathbf{X}}|+C(|(v-\widetilde{v}^{\mathbf{X}})_{\xi}|+|\widetilde{v}^{\mathbf{X}}_{\xi}||v-\widetilde{v}^{\mathbf{X}}|+|\widetilde{v}^{S}_{\xi}||(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}|+|(\widetilde{v}^{R}_{\xi})^{\mathbf{X}}|),\end{aligned}

which together with the wave interaction estimates in Lemma 4.2 and Lemma 3.2 implies

hh~𝐗L2()C[uu~𝐗L2()+vv~𝐗H1()+δR].\|h-\widetilde{h}^{\mathbf{X}}\|_{L^{2}(\mathbb{R})}\leq C\Big{[}\|u-\widetilde{u}^{\mathbf{X}}\|_{L^{2}(\mathbb{R})}+\|v-\widetilde{v}^{\mathbf{X}}\|_{H^{1}(\mathbb{R})}+\delta_{R}\Big{]}.

Then, by using (3.16),

(4.52) hh~𝐗L(0,T;L2())C(ε1+δR).\|h-\widetilde{h}^{\mathbf{X}}\|_{L^{\infty}(0,T;L^{2}(\mathbb{R}))}\leq C(\varepsilon_{1}+\delta_{R}).

This together with (3.16) and aξLCλδS\|a_{\xi}\|_{L^{\infty}}\leq C\lambda\delta_{S} yields

|𝐘5|C|𝐆1|12aξL12[hh~𝐗L(0,T;L2())+vv~𝐗L(0,T;L2())]C(ε1+δR)(λδS)12𝐆112,\begin{array}[]{ll}\displaystyle|\mathbf{Y}_{5}|\leq C|\mathbf{G}_{1}|^{\frac{1}{2}}\|a_{\xi}\|^{\frac{1}{2}}_{L^{\infty}}\big{[}\|h-\widetilde{h}^{\mathbf{X}}\|_{L^{\infty}(0,T;L^{2}(\mathbb{R}))}+\|v-\widetilde{v}^{\mathbf{X}}\|_{L^{\infty}(0,T;L^{2}(\mathbb{R}))}\big{]}\\[5.69054pt] \displaystyle\qquad\leq C(\varepsilon_{1}+\delta_{R})(\lambda\delta_{S})^{\frac{1}{2}}\mathbf{G}_{1}^{\frac{1}{2}},\end{array}

and so

CδS|𝐘5|2Cλ(ε1+δR)2𝐆114𝐆1.\frac{C}{\delta_{S}}|\mathbf{Y}_{5}|^{2}\leq C\lambda(\varepsilon_{1}+\delta_{R})^{2}\mathbf{G}_{1}\leq\frac{1}{4}\mathbf{G}_{1}.

Using (2.6) with (4.34), we have

CδS|𝐘6|2CδS(|aξ|w2𝑑ξ)2Cλ2δS3(|(v~S)ξ|w2𝑑ξ)2.\frac{C}{\delta_{S}}|\mathbf{Y}_{6}|^{2}\leq\frac{C}{\delta_{S}}\left(\int|a_{\xi}|w^{2}d\xi\right)^{2}\leq\frac{C\lambda^{2}}{\delta_{S}^{3}}\left(\int|(\widetilde{v}^{S})_{\xi}|w^{2}d\xi\right)^{2}.

Thus, by (3.16) with (2.3), we have

CδS|𝐘6|2Cλ2δSwL2()2|(v~S)ξ|w2𝑑ξCε12|(v~S)ξ|w2𝑑ξC140𝐆S.\frac{C}{\delta_{S}}|\mathbf{Y}_{6}|^{2}\leq\frac{C\lambda^{2}}{\delta_{S}}\|w\|_{L^{2}(\mathbb{R})}^{2}\int|(\widetilde{v}^{S})_{\xi}|w^{2}d\xi\leq C\varepsilon_{1}^{2}\int|(\widetilde{v}^{S})_{\xi}|w^{2}d\xi\leq\frac{C_{1}}{40}\mathbf{G}^{S}.

\bullet Estimates on the terms 𝐁i\mathbf{B}_{i} : Using the Young’s inequality, we have

|𝐁3(U)|132𝐃+C|aξ|2w2𝑑ξ132𝐃+λ2|(v~S)ξ|w2𝑑ξ140(𝐃+C1𝐆S).|\mathbf{B}_{3}(U)|\leq\frac{1}{32}\mathbf{D}+C\int_{\mathbb{R}}|a_{\xi}|^{2}w^{2}d\xi\leq\frac{1}{32}\mathbf{D}+\lambda^{2}\int_{\mathbb{R}}|(\widetilde{v}^{S})_{\xi}|w^{2}d\xi\leq\frac{1}{40}(\mathbf{D}+C_{1}\mathbf{G}^{S}).

For 𝐁4,𝐁5\mathbf{B}_{4},\mathbf{B}_{5}, we use the facts that

|ξp(v~𝐗)|C(|v~ξS|+|(u~ξR)𝐗|)by Lemma 3.2,|\partial_{\xi}p(\widetilde{v}^{\mathbf{X}})|\leq C(|\widetilde{v}^{S}_{\xi}|+|(\widetilde{u}^{R}_{\xi})^{\mathbf{X}}|)\quad\mbox{by Lemma \ref{lemma1.2}},

and

|p(v)p(v~𝐗)|2Cp(v|v~𝐗)by (2.2) and (2.3).|p(v)-p(\widetilde{v}^{\mathbf{X}})|^{2}\leq Cp(v|\widetilde{v}^{\mathbf{X}})\quad\mbox{by \eqref{rel_p} and \eqref{pressure2}}.

Then,

|𝐁4(U)|CλδS(|v~ξS|+|(u~ξR)𝐗|)(p(v)p(v~𝐗))2𝑑ξ18(C1𝐆S+𝐆R).|\mathbf{B}_{4}(U)|\leq C\lambda\delta_{S}\int_{\mathbb{R}}(|\widetilde{v}^{S}_{\xi}|+|(\widetilde{u}^{R}_{\xi})^{\mathbf{X}}|)\big{(}p(v)-p(\widetilde{v}^{\mathbf{X}})\big{)}^{2}d\xi\leq\frac{1}{8}(C_{1}\mathbf{G}^{S}+\mathbf{G}^{R}).

In addition, using Young’s inequality and (u~ξR)𝐗LCδR\|(\widetilde{u}^{R}_{\xi})^{\mathbf{X}}\|_{L^{\infty}}\leq C\delta_{R} by Lemma 3.2, we have

|𝐁5(U)|140𝐃+Cδ0(|v~ξS|+|(u~ξR)𝐗|)(p(v)p(v~𝐗))2𝑑ξ140𝐃+18(C1𝐆S+𝐆R).|\mathbf{B}_{5}(U)|\leq\frac{1}{40}\mathbf{D}+C\delta_{0}\int_{\mathbb{R}}(|\widetilde{v}^{S}_{\xi}|+|(\widetilde{u}^{R}_{\xi})^{\mathbf{X}}|)\big{(}p(v)-p(\widetilde{v}^{\mathbf{X}})\big{)}^{2}d\xi\leq\frac{1}{40}\mathbf{D}+\frac{1}{8}(C_{1}\mathbf{G}^{S}+\mathbf{G}^{R}).

\bullet Estimates on the terms 𝐒i\mathbf{S}_{i} : We first compute that (using v~S,v~𝐗,(v~R)𝐗(v+/2,2v+)\widetilde{v}^{S},\widetilde{v}^{\mathbf{X}},(\widetilde{v}^{R})^{\mathbf{X}}\in(v_{+}/2,2v_{+}), v~𝐗=(v~R)𝐗+v~Svm\widetilde{v}^{\mathbf{X}}=(\widetilde{v}^{R})^{\mathbf{X}}+\widetilde{v}^{S}-v_{m}, and Lemmas (3.2)-(2.2))

(4.53) |(lnv~Slnv~𝐗)ξξ|=|v~ξξS(1v~S1v~𝐗)+1v~𝐗(v~ξξSv~ξξ𝐗)1(v~S)2((v~ξS)2(v~ξ𝐗)2)(v~ξ𝐗)2(1(v~S)21(v~𝐗)2)|C(|v~ξξS||(v~R)𝐗vm|+|(v~R)ξξ𝐗|+|(v~R)ξ𝐗||v~ξS|+|(v~R)ξ𝐗|2+|v~ξS|2||(v~R)𝐗vm|)C(|(v~R)ξξ𝐗|+|(v~R)ξ𝐗|2+(|v~ξξS|+|v~ξS|2)|(v~R)𝐗vm|+|(v~R)ξ𝐗||v~ξS|),\displaystyle\begin{aligned} &|\big{(}\ln\widetilde{v}^{S}-\ln\widetilde{v}^{\mathbf{X}}\big{)}_{\xi\xi}|\\ &=\left|\widetilde{v}^{S}_{\xi\xi}\left(\frac{1}{\widetilde{v}^{S}}-\frac{1}{\widetilde{v}^{\mathbf{X}}}\right)+\frac{1}{\widetilde{v}^{\mathbf{X}}}\left(\widetilde{v}^{S}_{\xi\xi}-\widetilde{v}^{\mathbf{X}}_{\xi\xi}\right)-\frac{1}{(\widetilde{v}^{S})^{2}}\left((\widetilde{v}^{S}_{\xi})^{2}-(\widetilde{v}^{\mathbf{X}}_{\xi})^{2}\right)-(\widetilde{v}^{\mathbf{X}}_{\xi})^{2}\left(\frac{1}{(\widetilde{v}^{S})^{2}}-\frac{1}{(\widetilde{v}^{\mathbf{X}})^{2}}\right)\right|\\ &\leq C\Big{(}|\widetilde{v}^{S}_{\xi\xi}||(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi\xi}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}_{\xi}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}|^{2}\\ &\qquad\ +|\widetilde{v}^{S}_{\xi}|^{2}\big{|}|(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}|\Big{)}\\ &\leq C\big{(}|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi\xi}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}|^{2}+(|\widetilde{v}^{S}_{\xi\xi}|+|\widetilde{v}^{S}_{\xi}|^{2})|(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}_{\xi}|\big{)},\end{aligned}

and

(4.54) |(p(v~𝐗)p((v~R)𝐗)p(v~S))ξ|C(|(v~R)ξ𝐗||v~Svm|+|v~ξS||(v~R)𝐗vm|).|\big{(}p(\widetilde{v}^{\mathbf{X}})-p((\widetilde{v}^{R})^{\mathbf{X}})-p(\widetilde{v}^{S})\big{)}_{\xi}|\leq C\big{(}|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}-v_{m}|+|\widetilde{v}^{S}_{\xi}||(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}|\big{)}.

Then,

|𝐒1|+|𝐒2|C|w|(|(v~R)ξξ𝐗|+|(v~R)ξ𝐗|2)𝑑ξ+C(|w|+|hh~𝐗|)(|v~ξS||(v~R)𝐗vm|+|(v~R)ξ𝐗||v~Svm|+|(v~R)ξ𝐗||v~ξS|)𝑑ξ=:J1+J2.\displaystyle\begin{aligned} &|\mathbf{S}_{1}|+|\mathbf{S}_{2}|\\ &\leq C\int_{\mathbb{R}}|w|\big{(}|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi\xi}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}|^{2}\big{)}d\xi\\ &\quad+C\int_{\mathbb{R}}(|w|+|h-\widetilde{h}^{\mathbf{X}}|)\big{(}|\widetilde{v}^{S}_{\xi}||(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}-v_{m}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}_{\xi}|\big{)}d\xi\\ &=:J_{1}+J_{2}.\end{aligned}

Using the interpolation inequality and (3.16) with Young’s inequality,

(4.55) J1CwL(v~R)ξξ𝐗L1+CwL2(v~R)ξ𝐗L42CwL21/2wξL21/2(v~R)ξξ𝐗L1+CwL2(v~R)ξ𝐗L42Cε1𝐃4(v~R)ξξ𝐗L1+Cε1(v~R)ξ𝐗L42140𝐃+Cε12/3(v~R)ξξ𝐗L14/3+Cε1(v~R)ξ𝐗L42.\displaystyle\begin{aligned} J_{1}&\leq C\|w\|_{L^{\infty}}\|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi\xi}\|_{L^{1}}+C\|w\|_{L^{2}}\|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}\|_{L^{4}}^{2}\\ &\leq C\|w\|_{L^{2}}^{1/2}\|w_{\xi}\|_{L^{2}}^{1/2}\|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi\xi}\|_{L^{1}}+C\|w\|_{L^{2}}\|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}\|_{L^{4}}^{2}\\ &\leq C\sqrt{\varepsilon_{1}}\sqrt[4]{\mathbf{D}}\|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi\xi}\|_{L^{1}}+C\varepsilon_{1}\|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}\|_{L^{4}}^{2}\\ &\leq\frac{1}{40}\mathbf{D}+C\varepsilon_{1}^{2/3}\|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi\xi}\|_{L^{1}}^{4/3}+C\varepsilon_{1}\|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}\|_{L^{4}}^{2}.\end{aligned}

For J2J_{2}, using (2.3), (4.52) and (3.16),

wL2+hh~𝐗L2C(ε1+δR).\|w\|_{L^{2}}+\|h-\widetilde{h}^{\mathbf{X}}\|_{L^{2}}\leq C(\varepsilon_{1}+\delta_{R}).

Thus,

J2C(ε1+δR)|v~ξS||(v~R)𝐗vm|+|(v~R)ξ𝐗||v~Svm|+|(v~R)ξ𝐗||v~ξS|L2.J_{2}\leq C(\varepsilon_{1}+\delta_{R})\big{\|}|\widetilde{v}^{S}_{\xi}||(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}-v_{m}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}_{\xi}|\big{\|}_{L^{2}}.

\bullet Conclusion : From the above estimates, we have

ddtaη(U|U~𝐗)𝑑ξδS4M|𝐗˙|212𝐆1C12𝐆S18𝐃+Cε1δS4/3δR4/3eCδSt+Cε12/3(v~R)ξξ𝐗L14/3+Cε1(v~R)ξ𝐗L42+C(ε1+δR)|v~ξS||(v~R)𝐗vm|+|(v~R)ξ𝐗||v~Svm|+|(v~R)ξ𝐗||v~ξS|L2.\displaystyle\begin{aligned} &\frac{d}{dt}\int_{\mathbb{R}}a\eta\big{(}U|\widetilde{U}^{\mathbf{X}}\big{)}d\xi\leq-\frac{\delta_{S}}{4M}|\dot{\mathbf{X}}|^{2}-\frac{1}{2}\mathbf{G}_{1}-\frac{C_{1}}{2}\mathbf{G}^{S}-\frac{1}{8}\mathbf{D}\\ &\quad+C\varepsilon_{1}\delta_{S}^{4/3}\delta_{R}^{4/3}e^{-C\delta_{S}t}+C\varepsilon_{1}^{2/3}\|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi\xi}\|_{L^{1}}^{4/3}\\ &\quad+C\varepsilon_{1}\|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}\|_{L^{4}}^{2}+C(\varepsilon_{1}+\delta_{R})\big{\|}|\widetilde{v}^{S}_{\xi}||(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}-v_{m}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}_{\xi}|\big{\|}_{L^{2}}.\end{aligned}

Integrating the above inequality over [0,t][0,t] for any tTt\leq T, we have

supt[0,T]η(U|U~𝐗)𝑑ξ+δS0t|𝐗˙|2𝑑s+0t(𝐆1+𝐆S+𝐃)𝑑sCη(U0|U~(0,ξ))𝑑ξ+Cε1δR4/3+Cε12/30t(v~R)ξξ𝐗L14/3𝑑s+Cε10t(v~R)ξ𝐗L42𝑑s+C(ε1+δR)0t|v~ξS||(v~R)𝐗vm|+|(v~R)ξ𝐗||v~Svm|+|(v~R)ξ𝐗||v~ξS|L2𝑑s.\displaystyle\begin{aligned} &\sup_{t\in[0,T]}\int_{\mathbb{R}}\eta\big{(}U|\widetilde{U}^{\mathbf{X}}\big{)}d\xi+\delta_{S}\int_{0}^{t}|\dot{\mathbf{X}}|^{2}ds+\int_{0}^{t}(\mathbf{G}_{1}+\mathbf{G}^{S}+\mathbf{D})ds\\ &\quad\leq C\int_{\mathbb{R}}\eta\big{(}U_{0}|\widetilde{U}(0,\xi)\big{)}d\xi+C\varepsilon_{1}\delta_{R}^{4/3}+C\varepsilon_{1}^{2/3}\int_{0}^{t}\|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi\xi}\|_{L^{1}}^{4/3}ds+C\varepsilon_{1}\int_{0}^{t}\|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}\|_{L^{4}}^{2}ds\\ &\qquad+C(\varepsilon_{1}+\delta_{R})\int_{0}^{t}\big{\|}|\widetilde{v}^{S}_{\xi}||(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}-v_{m}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}_{\xi}|\big{\|}_{L^{2}}ds.\end{aligned}

Notice that by Lemma 3.2,

(v~R)ξξL1{δRif 1+tδR111+tif 1+tδR1,\|(\widetilde{v}^{R})_{\xi\xi}\|_{L^{1}}\leq\left\{\begin{array}[]{ll}\delta_{R}&\quad\mbox{if }1+t\leq\delta_{R}^{-1}\\ \frac{1}{1+t}&\quad\mbox{if }1+t\geq\delta_{R}^{-1},\\ \end{array}\right.

and

(v~R)ξL4{δRif 1+tδR1δR1/41(1+t)3/4if 1+tδR1,\|(\widetilde{v}^{R})_{\xi}\|_{L^{4}}\leq\left\{\begin{array}[]{ll}\delta_{R}&\quad\mbox{if }1+t\leq\delta_{R}^{-1}\\ \delta_{R}^{1/4}\frac{1}{(1+t)^{3/4}}&\quad\mbox{if }1+t\geq\delta_{R}^{-1},\\ \end{array}\right.

Thus,

(4.56) 0(v~R)ξξ𝐗L14/3𝑑sCδR1/3,0(v~R)ξ𝐗L42𝑑sCδR.\int_{0}^{\infty}\|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi\xi}\|_{L^{1}}^{4/3}ds\leq C\delta_{R}^{1/3},\qquad\int_{0}^{\infty}\|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}\|_{L^{4}}^{2}ds\leq C\delta_{R}.

In addition, since it follows from Lemma 4.2 that

(4.57) |v~ξS||(v~R)𝐗vm|+|(v~R)ξ𝐗||v~Svm|+|(v~R)ξ𝐗||v~ξS|L2CδRδSeCδSt,\big{\|}|\widetilde{v}^{S}_{\xi}||(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}-v_{m}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}_{\xi}|\big{\|}_{L^{2}}\leq C\delta_{R}\delta_{S}e^{-C\delta_{S}t},

and so,

(4.58) 0|v~ξS||(v~R)𝐗vm|+|(v~R)ξ𝐗||v~Svm|+|(v~R)ξ𝐗||v~ξS|L2𝑑sCδR,\int_{0}^{\infty}\big{\|}|\widetilde{v}^{S}_{\xi}||(\widetilde{v}^{R})^{\mathbf{X}}-v_{m}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}-v_{m}|+|(\widetilde{v}^{R})^{\mathbf{X}}_{\xi}||\widetilde{v}^{S}_{\xi}|\big{\|}_{L^{2}}ds\leq C\delta_{R},

we have

supt[0,T]η(U|U~𝐗)𝑑ξ+δS0t|𝐗˙|2𝑑s+0t(𝐆1+𝐆S+𝐃)𝑑sCη(U0|U~(0,ξ))𝑑ξ+CδR1/3.\displaystyle\begin{aligned} &\sup_{t\in[0,T]}\int_{\mathbb{R}}\eta\big{(}U|\widetilde{U}^{\mathbf{X}}\big{)}d\xi+\delta_{S}\int_{0}^{t}|\dot{\mathbf{X}}|^{2}ds+\int_{0}^{t}(\mathbf{G}_{1}+\mathbf{G}^{S}+\mathbf{D})ds\\ &\quad\leq C\int_{\mathbb{R}}\eta\big{(}U_{0}|\widetilde{U}(0,\xi)\big{)}d\xi+C\delta_{R}^{1/3}.\end{aligned}

This implies the desired estimate (LABEL:esthv) together with the new notations (LABEL:good1), where note that

G1(U)𝐆1(U),GS(U)=𝐆S(U),D(U)𝐃(U).G_{1}(U)\sim\mathbf{G}_{1}(U),\quad G^{S}(U)=\mathbf{G}^{S}(U),\quad D(U)\sim\mathbf{D}(U).

5. Proof of Proposition 3.2

In this section, we use the original system (3.4) to estimate uu~L(0,T;H1())\|u-\tilde{u}\|_{L^{\infty}(0,T;H^{1}(\mathbb{R}))}, and then we complete the proof of Proposition 3.2.

5.1. Estimates for uu~L2()\|u-\tilde{u}\|_{L^{2}(\mathbb{R})}

We first present the zeroth-order energy estimates for the system (3.4).

Lemma 5.1.

Under the hypotheses of Proposition 3.2, there exists C>0C>0 (independent of δ0,ε1,T\delta_{0},\varepsilon_{1},T) such that for all t(0,T]t\in(0,T],

(5.1) vv~H1()2+uu~L2()2+δS0t|𝐗˙|2𝑑s+0t(GS(U)+GR(U)+D(U)+D1(U))𝑑sC(v0v~(0,)H1()2+u0u~(0,)L2()2)+CδR1/3,\displaystyle\begin{aligned} &\|v-\widetilde{v}\|_{H^{1}(\mathbb{R})}^{2}+\|u-\widetilde{u}\|_{L^{2}(\mathbb{R})}^{2}+\delta_{S}\int_{0}^{t}|\dot{\mathbf{X}}|^{2}ds\\ &\qquad+\int_{0}^{t}\left(G^{S}(U)+G^{R}(U)+D(U)+D_{1}(U)\right)ds\\ &\quad\leq C\left(\|v_{0}-\widetilde{v}(0,\cdot)\|_{H^{1}(\mathbb{R})}^{2}+\|u_{0}-\widetilde{u}(0,\cdot)\|_{L^{2}(\mathbb{R})}^{2}\right)+C\delta_{R}^{1/3},\end{aligned}

where GS,DG^{S},D are as in (LABEL:good1), and

(5.2) GR(U):=u~ξRp(v|v~)𝑑ξ,D1(U):=|(uu~)ξ|2𝑑ξ.\displaystyle\begin{aligned} &G^{R}(U):=\int_{\mathbb{R}}\widetilde{u}^{R}_{\xi}p(v|\widetilde{v})d\xi,\\ &D_{1}(U):=\int_{\mathbb{R}}\big{|}(u-\widetilde{u})_{\xi}\big{|}^{2}d\xi.\end{aligned}
Proof.

First of all, as in Section 4.3, we first rewrite (3.4) into the form:

(5.3) tU+ξA(U)=ξ(M(U)ξη(U)),\partial_{t}U+\partial_{\xi}A(U)=\partial_{\xi}\Big{(}M(U)\partial_{\xi}\nabla\eta(U)\Big{)},

where

U:=(vu),A(U):=(σvuσu+p(v)),M(U):=(0001v),U:={v\choose u},\quad A(U):={-\sigma v-u\choose-\sigma u+p(v)},\quad M(U):={0\quad 0\choose 0\quad\frac{1}{v}},

and note that by the entropy η(U):=u22+Q(v)\eta(U):=\frac{u^{2}}{2}+Q(v) of (3.4),

η(U)=(p(v)u).\nabla\eta(U)={-p(v)\choose u}.

By the above representation, the system (3.14) can be written as

(5.4) tU~+ξA(U~)=ξ(M(U~)ξη(U~))𝐗˙ξ((U~S)𝐗)+(0F1+F2),\partial_{t}\widetilde{U}+\partial_{\xi}A(\widetilde{U})=\partial_{\xi}\Big{(}M(\widetilde{U})\partial_{\xi}\nabla\eta(\widetilde{U})\Big{)}-\dot{\mathbf{X}}\partial_{\xi}\big{(}(\widetilde{U}^{S})^{-\mathbf{X}}\big{)}+\begin{pmatrix}{0}\\ {F_{1}+F_{2}}\end{pmatrix},

where F1,F2F_{1},F_{2} are as in (3.15).

Then, applying the equality (LABEL:genrhs) with a1a\equiv 1 to the system (5.3), we have

ddtη(U(t,ξ)|U~(t,ξ))𝑑ξ=𝐗˙𝒴(U)+i=16i(U),\frac{d}{dt}\int_{\mathbb{R}}\eta\big{(}U(t,\xi)|\widetilde{U}(t,\xi)\big{)}d\xi=\dot{\mathbf{X}}\mathcal{Y}(U)+\sum_{i=1}^{6}\mathcal{I}_{i}(U),
𝒴(U):=2η(U~)(U~S)ξ𝐗(UU~)𝑑ξ,\displaystyle\mathcal{Y}(U):=\int_{\mathbb{R}}\nabla^{2}\eta(\widetilde{U})(\widetilde{U}^{S})_{\xi}^{-\mathbf{X}}(U-\widetilde{U})d\xi,
1(U):=ξG(U;U~)dξ,\displaystyle\mathcal{I}_{1}(U):=-\int_{\mathbb{R}}\partial_{\xi}G(U;\widetilde{U})d\xi,
2(U):=ξη(U~)A(U|U~)dξ,\displaystyle\mathcal{I}_{2}(U):=-\int_{\mathbb{R}}\partial_{\xi}\nabla\eta(\widetilde{U})A(U|\widetilde{U})d\xi,
3(U):=(η(U)η(U~))ξ(M(U)ξ(η(U)η(U~)))dξ,\displaystyle\mathcal{I}_{3}(U):=\int_{\mathbb{R}}\Big{(}\nabla\eta(U)-\nabla\eta(\widetilde{U})\Big{)}\partial_{\xi}\Big{(}M(U)\partial_{\xi}\big{(}\nabla\eta(U)-\nabla\eta(\widetilde{U})\big{)}\Big{)}d\xi,
4(U):=(η(U)η(U~))ξ((M(U)M(U~))ξη(U~))dξ,\displaystyle\mathcal{I}_{4}(U):=\int_{\mathbb{R}}\Big{(}\nabla\eta(U)-\nabla\eta(\widetilde{U})\Big{)}\partial_{\xi}\Big{(}\big{(}M(U)-M(\widetilde{U})\big{)}\partial_{\xi}\nabla\eta(\widetilde{U})\Big{)}d\xi,
5(U):=(η)(U|U~)ξ(M(U~)ξη(U~))dξ,\displaystyle\mathcal{I}_{5}(U):=\int_{\mathbb{R}}(\nabla\eta)(U|\widetilde{U})\partial_{\xi}\Big{(}M(\widetilde{U})\partial_{\xi}\nabla\eta(\widetilde{U})\Big{)}d\xi,
6(U):=2η(U~)(UU~)(0F1+F2)𝑑ξ.\displaystyle\mathcal{I}_{6}(U):=-\int_{\mathbb{R}}\nabla^{2}\eta(\widetilde{U})(U-\widetilde{U})\begin{pmatrix}{0}\\ {F_{1}+F_{2}}\end{pmatrix}d\xi.

It follows from the above system that

𝒴=p(v~)(v~ξS)𝐗(vv~)dξ+(u~ξS)𝐗(uu~)dξ=:𝒴1+𝒴2,\displaystyle\mathcal{Y}=-\int p^{\prime}(\widetilde{v})({\widetilde{v}}^{S}_{\xi})^{-\mathbf{X}}(v-\widetilde{v})d\xi+\int({\widetilde{u}}^{S}_{\xi})^{-\mathbf{X}}(u-\widetilde{u})d\xi=:\mathcal{Y}_{1}+\mathcal{Y}_{2},
1=ξ((p(v)p(v~))(uu~)ση(U|U~))dξ=0,\displaystyle\mathcal{I}_{1}=-\int_{\mathbb{R}}\partial_{\xi}\big{(}(p(v)-p(\widetilde{v}))(u-\widetilde{u})-\sigma\eta(U|\widetilde{U})\big{)}d\xi=0,
2=u~ξp(v|v~)𝑑ξ=u~ξRp(v|v~)𝑑ξ=:GR(u~ξS)𝐗p(v|v~)𝑑ξ=:21,\displaystyle\mathcal{I}_{2}=-\int_{\mathbb{R}}\widetilde{u}_{\xi}p(v|\widetilde{v})d\xi=-\underbrace{\int_{\mathbb{R}}\widetilde{u}^{R}_{\xi}p(v|\widetilde{v})d\xi}_{=:G^{R}}\underbrace{-\int_{\mathbb{R}}({\widetilde{u}}^{S}_{\xi})^{-\mathbf{X}}p(v|\widetilde{v})d\xi}_{=:\mathcal{I}_{21}},
3=(uu~)(1v(uu~)ξ)ξ𝑑ξ=1v|(uu~)ξ|2𝑑ξ=:𝐃1,\displaystyle\mathcal{I}_{3}=\int_{\mathbb{R}}(u-\widetilde{u})\Big{(}\frac{1}{v}(u-\widetilde{u})_{\xi}\Big{)}_{\xi}d\xi=-\underbrace{\int_{\mathbb{R}}\frac{1}{v}\big{|}(u-\widetilde{u})_{\xi}\big{|}^{2}d\xi}_{=:\mathbf{D}_{1}},
4=(uu~)((1v1v~)u~ξ)ξ𝑑ξ,\displaystyle\mathcal{I}_{4}=\int_{\mathbb{R}}(u-\widetilde{u})\left(\left(\frac{1}{v}-\frac{1}{\widetilde{v}}\right)\widetilde{u}_{\xi}\right)_{\xi}d\xi,
6=(uu~)(((u~ξS)𝐗(v~S)𝐗u~ξv~)ξ+(p(v~)p(v~R)p((v~S)𝐗))ξ)𝑑ξ.\displaystyle\mathcal{I}_{6}=-\int_{\mathbb{R}}(u-\widetilde{u})\left(\left(\frac{({\widetilde{u}}^{S}_{\xi})^{-\mathbf{X}}}{({\widetilde{v}}^{S})^{-\mathbf{X}}}-\frac{\widetilde{u}_{\xi}}{\widetilde{v}}\right)_{\xi}+\big{(}p(\widetilde{v})-p(\widetilde{v}^{R})-p((\widetilde{v}^{S})^{-\mathbf{X}})\big{)}_{\xi}\right)d\xi.

In addition, since (η)(U|U~)=(p(v|v~)0)(\nabla\eta)(U|\widetilde{U})={-p(v|\widetilde{v})\choose 0}, we have 5=0\mathcal{I}_{5}=0.
Since (2.2) and (2.4) yields

|𝒴1||(v~ξS)𝐗|𝑑ξ|(v~ξS)𝐗||vv~|2𝑑ξδSGS,|\mathcal{Y}_{1}|\leq\sqrt{\int|({\widetilde{v}}^{S}_{\xi})^{-\mathbf{X}}|d\xi}\sqrt{\int|({\widetilde{v}}^{S}_{\xi})^{-\mathbf{X}}||v-\widetilde{v}|^{2}d\xi}\leq\sqrt{\delta_{S}}\sqrt{G^{S}},

we have

|𝐗˙||𝒴1|δS4|𝐗˙|2+CGS.|\dot{\mathbf{X}}||\mathcal{Y}_{1}|\leq\frac{\delta_{S}}{4}|\dot{\mathbf{X}}|^{2}+CG^{S}.

To control 𝒴2\mathcal{Y}_{2}, we will use the follows estimate: as done in (4.51),

|uu~||hh~|+C(|(vv~)ξ|+|v~ξ||vv~|+|(v~ξS)𝐗||v~Rvm|+|v~ξR|).|u-\widetilde{u}|\leq|h-\widetilde{h}|+C(|(v-\widetilde{v})_{\xi}|+|\widetilde{v}_{\xi}||v-\widetilde{v}|+|(\widetilde{v}_{\xi}^{S})^{-\mathbf{X}}||\widetilde{v}^{R}-v_{m}|+|\widetilde{v}^{R}_{\xi}|).

In addition, using the fact that

(p(v)p(v~))ξ=p(v)(vv~)ξ+v~ξ(p(v)p(v~)),(p(v)-p(\widetilde{v}))_{\xi}=p^{\prime}(v)(v-\widetilde{v})_{\xi}+\widetilde{v}_{\xi}(p^{\prime}(v)-p^{\prime}(\widetilde{v})),

and so,

|(vv~)ξ|C|(p(v)p(v~))ξ|+C|v~ξ||vv~|,|(v-\widetilde{v})_{\xi}|\leq C|(p(v)-p(\widetilde{v}))_{\xi}|+C|\widetilde{v}_{\xi}||v-\widetilde{v}|,

we have

|𝒴2|\displaystyle|\mathcal{Y}_{2}| C|(v~ξS)𝐗|(|hh~p(v)p(v~)σ|+|p(v)p(v~)|\displaystyle\leq C\int|({\widetilde{v}}^{S}_{\xi})^{-\mathbf{X}}|\Big{(}\Big{|}h-\widetilde{h}-\frac{p(v)-p(\widetilde{v})}{\sigma}\Big{|}+|p(v)-p(\widetilde{v})|
+|(p(v)p(v~))ξ|+|v~ξ||vv~|+|(v~ξS)𝐗||v~Rvm|+|v~ξR|)dξ.\displaystyle\quad+|(p(v)-p(\widetilde{v}))_{\xi}|+|\widetilde{v}_{\xi}||v-\widetilde{v}|+|(\widetilde{v}_{\xi}^{S})^{-\mathbf{X}}||\widetilde{v}^{R}-v_{m}|+|\widetilde{v}^{R}_{\xi}|\Big{)}d\xi.

Then, using Lemma 4.2 to have

|𝒴2|\displaystyle|\mathcal{Y}_{2}| C|(v~ξS)𝐗|(|hh~p(v)p(v~)σ|+|p(v)p(v~)|\displaystyle\leq C\int|({\widetilde{v}}^{S}_{\xi})^{-\mathbf{X}}|\Big{(}\Big{|}h-\widetilde{h}-\frac{p(v)-p(\widetilde{v})}{\sigma}\Big{|}+|p(v)-p(\widetilde{v})|
+|(p(v)p(v~))ξ|+|v~ξ||vv~|+|(v~ξS)𝐗||v~Rvm|+|v~ξR|)dξ\displaystyle\quad+|(p(v)-p(\widetilde{v}))_{\xi}|+|\widetilde{v}_{\xi}||v-\widetilde{v}|+|(\widetilde{v}_{\xi}^{S})^{-\mathbf{X}}||\widetilde{v}^{R}-v_{m}|+|\widetilde{v}^{R}_{\xi}|\Big{)}d\xi
C(δSλG1+δSGS+δSD+δSδReCδSt).\displaystyle\leq C\big{(}\frac{\delta_{S}}{\sqrt{\lambda}}\sqrt{G_{1}}+\sqrt{\delta_{S}}\sqrt{G^{S}}+\delta_{S}\sqrt{D}+\delta_{S}\delta_{R}e^{-C\delta_{S}t}\big{)}.

Thus,

|𝐗˙||𝒴2|δS4|𝐗˙|2+CδSλG1+CGS+CδSD+CδSδR2eCδSt.|\dot{\mathbf{X}}||\mathcal{Y}_{2}|\leq\frac{\delta_{S}}{4}|\dot{\mathbf{X}}|^{2}+C\frac{\delta_{S}}{\lambda}G_{1}+CG^{S}+C\delta_{S}D+C\delta_{S}\delta_{R}^{2}e^{-C\delta_{S}t}.

For 2\mathcal{I}_{2}, note first that GR0G^{R}\geq 0 by u~ξR>0\widetilde{u}^{R}_{\xi}>0. Using Lemma 2.1,

|21|CGS.|\mathcal{I}_{21}|\leq CG^{S}.

We will use the good terms GRG^{R} and 𝐃1\mathbf{D}_{1} to control 4,6\mathcal{I}_{4},\mathcal{I}_{6}.
Using |u~ξR|CδR,|(u~ξS)𝐗|δS|\widetilde{u}^{R}_{\xi}|\leq C\delta_{R},|({\widetilde{u}}^{S}_{\xi})^{-\mathbf{X}}|\leq\delta_{S} and Young’s inequality, we have

|4||(uu~)ξ||vv~|(|u~ξR|+|(u~ξS)𝐗|)𝑑ξ14𝐃1+CδRGR+CδSGS.|\mathcal{I}_{4}|\leq\int_{\mathbb{R}}|(u-\widetilde{u})_{\xi}|\left|v-\widetilde{v}\right|\big{(}|\widetilde{u}^{R}_{\xi}|+|({\widetilde{u}}^{S}_{\xi})^{-\mathbf{X}}|\big{)}d\xi\leq\frac{1}{4}\mathbf{D}_{1}+C\delta_{R}G^{R}+C\delta_{S}G^{S}.

For 6\mathcal{I}_{6}, using (4.54) and (as done in (LABEL:ccomp))

(5.5) |((u~Sξ)𝐗(v~S)𝐗)ξ(u~ξv~)ξ|C(|(u~R)ξξ|+|(u~R)ξ||(v~R)ξ|+(|(u~S)𝐗ξξ|+|(u~S)𝐗ξ||(v~S)𝐗ξ|)|v~Rvm|+|(u~R)ξ||(v~S)𝐗ξ|+|(v~R)ξ||(u~S)𝐗ξ|)C(|(u~R)ξξ|+|(u~R)ξ|2+(|(v~S)𝐗ξξ|+|(v~S)𝐗ξ|2)|v~Rvm|+|(v~R)ξ||(v~S)𝐗ξ|),\displaystyle\begin{aligned} &\left|\left(\frac{({\widetilde{u}}^{S}_{\xi})^{-\mathbf{X}}}{({\widetilde{v}}^{S})^{-\mathbf{X}}}\right)_{\xi}-\left(\frac{\widetilde{u}_{\xi}}{\widetilde{v}}\right)_{\xi}\right|\\ &\quad\leq C\bigg{(}|(\widetilde{u}^{R})_{\xi\xi}|+|(\widetilde{u}^{R})_{\xi}||(\widetilde{v}^{R})_{\xi}|+(|(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi\xi}|+|(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}|)|\widetilde{v}^{R}-v_{m}|\\ &\quad\qquad+|(\widetilde{u}^{R})_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}|+|(\widetilde{v}^{R})_{\xi}||(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi}|\bigg{)}\\ &\quad\leq C\big{(}|(\widetilde{u}^{R})_{\xi\xi}|+|(\widetilde{u}^{R})_{\xi}|^{2}+(|(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi\xi}|+|(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}|^{2})|\widetilde{v}^{R}-v_{m}|+|(\widetilde{v}^{R})_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}|\big{)},\end{aligned}

we have

6C|uu~|(|(u~R)ξξ|+|(u~R)ξ|2)dξ+C|uu~|(|(v~S)𝐗ξ||v~Rvm|+|(v~R)ξ||(v~S)𝐗vm|+|(v~R)ξ||(v~S)𝐗ξ|)dξ=:Q1+Q2.\displaystyle\begin{aligned} \mathcal{I}_{6}&\leq C\int_{\mathbb{R}}|u-\widetilde{u}|\big{(}|(\widetilde{u}^{R})_{\xi\xi}|+|(\widetilde{u}^{R})_{\xi}|^{2}\big{)}d\xi\\ &\quad+C\int_{\mathbb{R}}|u-\widetilde{u}|\big{(}|(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}||\widetilde{v}^{R}-v_{m}|+|(\widetilde{v}^{R})_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}-v_{m}|+|(\widetilde{v}^{R})_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}|\big{)}d\xi\\ &=:Q_{1}+Q_{2}.\end{aligned}

Using the same estimates as in (4.55) with (3.16), we have

Q1\displaystyle Q_{1} Cuu~L21/2(uu~)ξL21/2(u~R)ξξL1+Cuu~L2(u~R)ξL42\displaystyle\leq C\|u-\widetilde{u}\|_{L^{2}}^{1/2}\|(u-\widetilde{u})_{\xi}\|_{L^{2}}^{1/2}\|(\widetilde{u}^{R})_{\xi\xi}\|_{L^{1}}+C\|u-\widetilde{u}\|_{L^{2}}\|(\widetilde{u}^{R})_{\xi}\|_{L^{4}}^{2}
Cε1𝐃14(u~R)ξξL1+Cε1(u~R)ξL42\displaystyle\leq C\sqrt{\varepsilon_{1}}\sqrt[4]{\mathbf{D}_{1}}\|(\widetilde{u}^{R})_{\xi\xi}\|_{L^{1}}+C\varepsilon_{1}\|(\widetilde{u}^{R})_{\xi}\|_{L^{4}}^{2}
14𝐃1+Cε12/3(u~R)ξξL14/3+Cε1(u~R)ξL42.\displaystyle\leq\frac{1}{4}\mathbf{D}_{1}+C\varepsilon_{1}^{2/3}\|(\widetilde{u}^{R})_{\xi\xi}\|_{L^{1}}^{4/3}+C\varepsilon_{1}\|(\widetilde{u}^{R})_{\xi}\|_{L^{4}}^{2}.

Using (3.16), we have

Q2Cε1|(v~S)𝐗ξ||v~Rvm|+|(v~R)ξ||(v~S)𝐗vm|+|(v~R)ξ||(v~S)𝐗ξ|L2.Q_{2}\leq C\varepsilon_{1}\big{\|}|(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}||\widetilde{v}^{R}-v_{m}|+|(\widetilde{v}^{R})_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}-v_{m}|+|(\widetilde{v}^{R})_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}|\big{\|}_{L^{2}}.

Therefore, from the above estimates, we find that for some constant c1>0c_{1}>0,

ddtη(U(t,ξ)|U~(t,ξ))dξ+12GR+12𝐃1\displaystyle\frac{d}{dt}\int_{\mathbb{R}}\eta\big{(}U(t,\xi)|\widetilde{U}(t,\xi)\big{)}d\xi+\frac{1}{2}G^{R}+\frac{1}{2}\mathbf{D}_{1}
δS2|𝐗˙|2+CδSλG1+c1GS+CδSD+Cε12/3(v~R)ξξL14/3+Cε1(v~R)ξL42\displaystyle\quad\leq\frac{\delta_{S}}{2}|\dot{\mathbf{X}}|^{2}+C\frac{\delta_{S}}{\lambda}G_{1}+c_{1}G^{S}+C\delta_{S}D+C\varepsilon_{1}^{2/3}\|(\widetilde{v}^{R})_{\xi\xi}\|_{L^{1}}^{4/3}+C\varepsilon_{1}\|(\widetilde{v}^{R})_{\xi}\|_{L^{4}}^{2}
+Cε1|(v~S)𝐗ξ||v~Rvm|+|(v~R)ξ||(v~S)𝐗vm|+|(v~R)ξ||(v~S)𝐗ξ|L2\displaystyle\qquad+C\varepsilon_{1}\big{\|}|(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}||\widetilde{v}^{R}-v_{m}|+|(\widetilde{v}^{R})_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}-v_{m}|+|(\widetilde{v}^{R})_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}|\big{\|}_{L^{2}}
+CδSδR2eCδSt.\displaystyle\qquad+C\delta_{S}\delta_{R}^{2}e^{-C\delta_{S}t}.

Integrating the above inequality over [0,t][0,t] for any tTt\leq T, and using (4.56)-(4.58), we have

(5.6) (|uu~|22+Q(v|v~))dξ+120t(GR(U)+𝐃1(U))ds(|u0u~(0,ξ)|22+Q(v0|v~(0,ξ)))dξ+0t(δS2|𝐗˙|2+CδSλG1+c1GS+CδSD)ds+CδR1/3.\displaystyle\begin{aligned} &\int_{\mathbb{R}}\left(\frac{|u-\widetilde{u}|^{2}}{2}+Q(v|\widetilde{v})\right)d\xi+\frac{1}{2}\int_{0}^{t}\left(G^{R}(U)+\mathbf{D}_{1}(U)\right)ds\\ &\quad\leq\int_{\mathbb{R}}\left(\frac{|u_{0}-\widetilde{u}(0,\xi)|^{2}}{2}+Q(v_{0}|\widetilde{v}(0,\xi))\right)d\xi\\ &\quad\quad+\int_{0}^{t}\left(\frac{\delta_{S}}{2}|\dot{\mathbf{X}}|^{2}+C\frac{\delta_{S}}{\lambda}G_{1}+c_{1}G^{S}+C\delta_{S}D\right)ds+C\delta_{R}^{1/3}.\end{aligned}

Therefore, multiplying (LABEL:f00) by the constant 12max(1,c1)\frac{1}{2\max(1,c_{1})}, and then adding the result to (LABEL:esthv), together with the smallness of δS/λ,δS,ε1\delta_{S}/\lambda,\delta_{S},\varepsilon_{1}, we have

vv~L2()2+hh~L2()2+uu~L2()2+δS0t|𝐗˙|2ds\displaystyle\|v-\widetilde{v}\|_{L^{2}(\mathbb{R})}^{2}+\|h-\widetilde{h}\|_{L^{2}(\mathbb{R})}^{2}+\|u-\widetilde{u}\|_{L^{2}(\mathbb{R})}^{2}+\delta_{S}\int_{0}^{t}|\dot{\mathbf{X}}|^{2}ds
(5.7) +0t(GR+GS+D+𝐃1)ds\displaystyle+\int_{0}^{t}\left(G^{R}+G^{S}+D+\mathbf{D}_{1}\right)ds
C(v0v~(0,)L2()2+(hh~)(0,)L2()2+u0u~(0,)L2()2)+CδR1/3,\displaystyle\leq C\big{(}\|v_{0}-\widetilde{v}(0,\cdot)\|_{L^{2}(\mathbb{R})}^{2}+\|(h-\widetilde{h})(0,\cdot)\|_{L^{2}(\mathbb{R})}^{2}+\|u_{0}-\widetilde{u}(0,\cdot)\|_{L^{2}(\mathbb{R})}^{2}\big{)}+C\delta_{R}^{1/3},

where we have used that (by Lemma 2.1 and (4.34))

C1|vv~|2Q(v|v~)C|vv~|2.C^{-1}\big{|}v-\widetilde{v}\big{|}^{2}\leq Q(v|\widetilde{v})\leq C\big{|}v-\widetilde{v}\big{|}^{2}.

Finally, to complete the proof, we will show that

(5.8) (vv~)ξL2()2C[hh~L2()2+uu~L2()2+vv~L2()2+δR2],\|(v-\widetilde{v})_{\xi}\|_{L^{2}(\mathbb{R})}^{2}\leq C\Big{[}\|h-\widetilde{h}\|_{L^{2}(\mathbb{R})}^{2}+\|u-\widetilde{u}\|_{L^{2}(\mathbb{R})}^{2}+\|v-\widetilde{v}\|_{L^{2}(\mathbb{R})}^{2}+\delta_{R}^{2}\Big{]},

and

(5.9) (hh~)(0,)L2()2C[v0v~(0,)H1()2+u0u~(0,)L2()2+δR2].\|(h-\widetilde{h})(0,\cdot)\|_{L^{2}(\mathbb{R})}^{2}\leq C\Big{[}\|v_{0}-\widetilde{v}(0,\cdot)\|_{H^{1}(\mathbb{R})}^{2}+\|u_{0}-\widetilde{u}(0,\cdot)\|_{L^{2}(\mathbb{R})}^{2}+\delta_{R}^{2}\Big{]}.

Using the definition of hh in (4.1) and h~\widetilde{h} in (4.4), we observe that

(uu~)(hh~)=(lnvln(v~S)𝐗)ξ=(v(v~S)𝐗)ξv+(v~S)𝐗ξ((v~S)𝐗v)v(v~S)𝐗,(u-\widetilde{u})-(h-\widetilde{h})=\big{(}\ln v-\ln(\widetilde{v}^{S})^{-\mathbf{X}}\big{)}_{\xi}=\frac{\big{(}v-(\widetilde{v}^{S})^{-\mathbf{X}}\big{)}_{\xi}}{v}+\frac{(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}\big{(}(\widetilde{v}^{S})^{-\mathbf{X}}-v\big{)}}{v(\widetilde{v}^{S})^{-\mathbf{X}}},

which yields

(vv~)ξ\displaystyle(v-\widetilde{v})_{\xi} =(v(v~S)𝐗)ξ(v~(v~S)𝐗)ξ\displaystyle=\big{(}v-(\widetilde{v}^{S})^{-\mathbf{X}}\big{)}_{\xi}-\big{(}\widetilde{v}-(\widetilde{v}^{S})^{-\mathbf{X}}\big{)}_{\xi}
=v(uu~)v(hh~)+(v~S)𝐗ξ((vv~)+(v~Rvm))(v~S)𝐗v~Rξ.\displaystyle=v(u-\widetilde{u})-v(h-\widetilde{h})+\frac{(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}\big{(}(v-\widetilde{v})+(\widetilde{v}^{R}-v_{m})\big{)}}{(\widetilde{v}^{S})^{-\mathbf{X}}}-\widetilde{v}^{R}_{\xi}.

This with Lemma 3.2 and Lemma 4.2 implies (5.8).
As in (4.51), we have

(hh~)(0,)L2()2C[v0v~(0,)H1()2+u0u~(0,)L2()2+δR2v~SξL2()2+v~Rξ(0)L2()2],\|(h-\widetilde{h})(0,\cdot)\|_{L^{2}(\mathbb{R})}^{2}\leq C\Big{[}\|v_{0}-\widetilde{v}(0,\cdot)\|_{H^{1}(\mathbb{R})}^{2}+\|u_{0}-\widetilde{u}(0,\cdot)\|_{L^{2}(\mathbb{R})}^{2}+\delta_{R}^{2}\|\widetilde{v}^{S}_{\xi}\|_{L^{2}(\mathbb{R})}^{2}+\|\widetilde{v}^{R}_{\xi}(0)\|_{L^{2}(\mathbb{R})}^{2}\Big{]},

which together with Lemmas 2.2 and 3.2 implies (5.9).
Hence, the combination of (5.1),(5.8) and (5.9) implies the desired estimate.

5.2. Estimates for ξ(uu~)L2()\|\partial_{\xi}(u-\tilde{u})\|_{L^{2}(\mathbb{R})}

We here complete the proof of Proposition 3.2, by using the following lemma together with the following two estimates (by using Lemma 2.1) :

𝒢S(U)=|(v~S)ξ𝐗||vv~|2dξCGS(U),𝒢R(U)=|u~Rξ||vv~|2dξCGR(U).\displaystyle\begin{aligned} &\mathcal{G}^{S}(U)=\int_{\mathbb{R}}|(\widetilde{v}^{S})_{\xi}^{-\mathbf{X}}||v-\widetilde{v}|^{2}d\xi\leq CG^{S}(U),\\ &\mathcal{G}^{R}(U)=\int_{\mathbb{R}}|\widetilde{u}^{R}_{\xi}|\big{|}v-\widetilde{v}\big{|}^{2}d\xi\leq CG^{R}(U).\end{aligned}
Lemma 5.2.

Under the hypotheses of Proposition 3.2, there exist C1,C>0C_{1},C>0 (independent of δ0,ε1,T\delta_{0},\varepsilon_{1},T) such that for all t(0,T]t\in(0,T],

vv~H1()2+uu~H1()2+δS0t|𝐗˙|2ds+0t(GS(U)+GR(U)+D(U)+D1(U)+D2(U))dsC(v0v~(0,)H1()2+u0u~(0,)H1()2)+CδR1/3,\displaystyle\begin{aligned} &\|v-\widetilde{v}\|_{H^{1}(\mathbb{R})}^{2}+\|u-\widetilde{u}\|_{H^{1}(\mathbb{R})}^{2}+\delta_{S}\int_{0}^{t}|\dot{\mathbf{X}}|^{2}ds\\ &+\int_{0}^{t}\left(G^{S}(U)+G^{R}(U)+D(U)+D_{1}(U)+D_{2}(U)\right)ds\\ &\leq C\left(\|v_{0}-\widetilde{v}(0,\cdot)\|_{H^{1}(\mathbb{R})}^{2}+\|u_{0}-\widetilde{u}(0,\cdot)\|_{H^{1}(\mathbb{R})}^{2}\right)+C\delta_{R}^{1/3},\end{aligned}

where GS,DG^{S},D are as in (LABEL:good1), and GR,D1G^{R},D_{1} are as in (LABEL:good2), and

D2(U):=|(uu~)ξξ|2dξ.D_{2}(U):=\int_{\mathbb{R}}\big{|}(u-\widetilde{u})_{\xi\xi}\big{|}^{2}d\xi.
Proof.

For notational simplicity, we set ψ:=uu~\psi:=u-\widetilde{u}. Then, it follows from the second equations of (3.4) and (3.14) that

ψtσψξ𝐗˙(u~S)𝐗ξ+(p(v)p(v~))ξ=(uξvu~ξv~)ξF1F2.\psi_{t}-\sigma\psi_{\xi}-\dot{\mathbf{X}}(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi}+(p(v)-p(\widetilde{v}))_{\xi}=\left(\frac{u_{\xi}}{v}-\frac{\widetilde{u}_{\xi}}{\widetilde{v}}\right)_{\xi}-F_{1}-F_{2}.

Multiplying the above equation by ψξξ-\psi_{\xi\xi} and integrating the result w.r.t. ξ\xi, we have

ddt|ψξ|22dξ+σ(|ψξ|22)ξdξ=0\displaystyle\frac{d}{dt}\int_{\mathbb{R}}\frac{|\psi_{\xi}|^{2}}{2}d\xi+\sigma\underbrace{\int_{\mathbb{R}}\left(\frac{|\psi_{\xi}|^{2}}{2}\right)_{\xi}d\xi}_{=0}
=𝐗˙(u~S)𝐗ξψξξdξ+(p(v)p(v~))ξψξξdξ\displaystyle\quad=-\dot{\mathbf{X}}\int_{\mathbb{R}}(\widetilde{u}^{S})^{-\mathbf{X}}_{\xi}\psi_{\xi\xi}d\xi+\int_{\mathbb{R}}(p(v)-p(\widetilde{v}))_{\xi}\psi_{\xi\xi}d\xi
(uξvu~ξv~)ξψξξdξ+(F1+F2)ψξξdξ\displaystyle\qquad-\int_{\mathbb{R}}\left(\frac{u_{\xi}}{v}-\frac{\widetilde{u}_{\xi}}{\widetilde{v}}\right)_{\xi}\psi_{\xi\xi}d\xi+\int_{\mathbb{R}}(F_{1}+F_{2})\psi_{\xi\xi}d\xi
=:J1+J2+J3+J4.\displaystyle\quad=:J_{1}+J_{2}+J_{3}+J_{4}.

First, we get a good term

𝐃2:=1v|ψξξ|2dξ\mathbf{D}_{2}:=\int_{\mathbb{R}}\frac{1}{v}|\psi_{\xi\xi}|^{2}d\xi

from J3J_{3} as follows:

J3\displaystyle J_{3} =1v|ψξξ|2dξ(1v)ξψξψξξdξu~ξξ(1v1v~)ψξξdξ\displaystyle=-\int_{\mathbb{R}}\frac{1}{v}|\psi_{\xi\xi}|^{2}d\xi-\int_{\mathbb{R}}\left(\frac{1}{v}\right)_{\xi}\psi_{\xi}\psi_{\xi\xi}d\xi-\int_{\mathbb{R}}\widetilde{u}_{\xi\xi}\left(\frac{1}{v}-\frac{1}{\widetilde{v}}\right)\psi_{\xi\xi}d\xi
u~ξ(1v1v~)ξψξξdξ\displaystyle\quad-\int_{\mathbb{R}}\widetilde{u}_{\xi}\left(\frac{1}{v}-\frac{1}{\widetilde{v}}\right)_{\xi}\psi_{\xi\xi}d\xi
=:𝐃2+J31+J32+J33.\displaystyle=:-\mathbf{D}_{2}+J_{31}+J_{32}+J_{33}.

We use the good terms 𝐃2,D,D2,GS\mathbf{D}_{2},D,D_{2},G^{S} and GRG^{R} to control the remaining terms as follows.
Using Young’s inequality,

|J1||𝐗˙|δS2|ψξξ|dξδS2|𝐗˙|2+CδS3𝐃2δS2|𝐗˙|2+18𝐃2,|J_{1}|\leq|\dot{\mathbf{X}}|\delta_{S}^{2}\int_{\mathbb{R}}|\psi_{\xi\xi}|d\xi\leq\frac{\delta_{S}}{2}|\dot{\mathbf{X}}|^{2}+C\delta_{S}^{3}\mathbf{D}_{2}\leq\frac{\delta_{S}}{2}|\dot{\mathbf{X}}|^{2}+\frac{1}{8}\mathbf{D}_{2},
|J2|18𝐃2+CD.|J_{2}|\leq\frac{1}{8}\mathbf{D}_{2}+CD.

Using (1v)ξC|vξ|C(|(vv~)ξ|+|v~ξ|)\left(\frac{1}{v}\right)_{\xi}\leq C|v_{\xi}|\leq C(|(v-\widetilde{v})_{\xi}|+|\widetilde{v}_{\xi}|), and the interpolation inequality and (3.16), we have

|J31|\displaystyle|J_{31}| (vv~)ξL2ψξLψξξL2+v~ξLψξL2ψξξL2\displaystyle\leq\|(v-\widetilde{v})_{\xi}\|_{L^{2}}\|\psi_{\xi}\|_{L^{\infty}}\|\psi_{\xi\xi}\|_{L^{2}}+\|\widetilde{v}_{\xi}\|_{L^{\infty}}\|\psi_{\xi}\|_{L^{2}}\|\psi_{\xi\xi}\|_{L^{2}}
Cε1ψξL21/2ψξξL21/2ψξξL2+C(δS+δR)ψξL2ψξξL2\displaystyle\leq C\varepsilon_{1}\|\psi_{\xi}\|_{L^{2}}^{1/2}\|\psi_{\xi\xi}\|_{L^{2}}^{1/2}\|\psi_{\xi\xi}\|_{L^{2}}+C(\delta_{S}+\delta_{R})\|\psi_{\xi}\|_{L^{2}}\|\psi_{\xi\xi}\|_{L^{2}}
C(ε1+δS+δR)(ψξL22+ψξξL22)18𝐃2+C(ε1+δS+δR)D1.\displaystyle\leq C(\varepsilon_{1}+\delta_{S}+\delta_{R})\big{(}\|\psi_{\xi}\|_{L^{2}}^{2}+\|\psi_{\xi\xi}\|_{L^{2}}^{2}\big{)}\leq\frac{1}{8}\mathbf{D}_{2}+C(\varepsilon_{1}+\delta_{S}+\delta_{R})D_{1}.

Using |(u~Rξξ)|C|(u~Rξ)||(\widetilde{u}^{R}_{\xi\xi})|\leq C|(\widetilde{u}^{R}_{\xi})| (by Lemma 3.2),

|J32|C(|(u~Sξ)|+|(u~Rξ)|)|vv~||ψξξ|dξ18𝐃2+CδSGS+CδRGR,|J_{32}|\leq C\int_{\mathbb{R}}(|(\widetilde{u}^{S}_{\xi})|+|(\widetilde{u}^{R}_{\xi})|)|v-\widetilde{v}||\psi_{\xi\xi}|d\xi\leq\frac{1}{8}\mathbf{D}_{2}+C\delta_{S}G^{S}+C\delta_{R}G^{R},
|J33|\displaystyle|J_{33}| C(|(u~Sξ)|+|(u~Rξ)|)(|vv~|+|(vv~)ξ|)|ψξξ|dξ\displaystyle\leq C\int_{\mathbb{R}}(|(\widetilde{u}^{S}_{\xi})|+|(\widetilde{u}^{R}_{\xi})|)\big{(}|v-\widetilde{v}|+|(v-\widetilde{v})_{\xi}|\big{)}|\psi_{\xi\xi}|d\xi
18𝐃2+C(δS+δR)(GS+GR+D).\displaystyle\leq\frac{1}{8}\mathbf{D}_{2}+C(\delta_{S}+\delta_{R})(G^{S}+G^{R}+D).

Using (LABEL:f_3),

|J4|\displaystyle|J_{4}| CψξξL2|(u~R)ξξ|+|(u~R)ξ|2+(|(v~S)𝐗ξξ|+|(v~S)𝐗ξ|2)|v~Rvm|+|(v~R)ξ||(v~S)𝐗ξ|L2\displaystyle\leq C\|\psi_{\xi\xi}\|_{L^{2}}\big{\|}|(\widetilde{u}^{R})_{\xi\xi}|+|(\widetilde{u}^{R})_{\xi}|^{2}+(|(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi\xi}|+|(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}|^{2})|\widetilde{v}^{R}-v_{m}|+|(\widetilde{v}^{R})_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}|\big{\|}_{L^{2}}
18𝐃2+C(u~R)ξξL22+C(u~R)ξL44+C|(v~S)𝐗ξ||v~Rvm|+C|(v~R)ξ||(v~S)𝐗ξ|L22.\displaystyle\leq\frac{1}{8}\mathbf{D}_{2}+C\|(\widetilde{u}^{R})_{\xi\xi}\|_{L^{2}}^{2}+C\|(\widetilde{u}^{R})_{\xi}\|_{L^{4}}^{4}+C\||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}||\widetilde{v}^{R}-v_{m}|+C|(\widetilde{v}^{R})_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}|\|_{L^{2}}^{2}.

Therefore, we find that for some c2>0c_{2}>0,

ddt|ψξ|22dξ\displaystyle\frac{d}{dt}\int_{\mathbb{R}}\frac{|\psi_{\xi}|^{2}}{2}d\xi =14𝐃2+δS2|𝐗˙|2+c2D+C(ε1+δS+δR)(GS+GR+D1)\displaystyle=-\frac{1}{4}\mathbf{D}_{2}+\frac{\delta_{S}}{2}|\dot{\mathbf{X}}|^{2}+c_{2}D+C(\varepsilon_{1}+\delta_{S}+\delta_{R})(G^{S}+G^{R}+D_{1})
+C(u~R)ξξL22+C(u~R)ξL44+C|(v~S)𝐗ξ||v~Rvm|+|(v~R)ξ||(v~S)𝐗ξ|L22.\displaystyle\quad+C\|(\widetilde{u}^{R})_{\xi\xi}\|_{L^{2}}^{2}+C\|(\widetilde{u}^{R})_{\xi}\|_{L^{4}}^{4}+C\||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}||\widetilde{v}^{R}-v_{m}|+|(\widetilde{v}^{R})_{\xi}||(\widetilde{v}^{S})^{-\mathbf{X}}_{\xi}|\|_{L^{2}}^{2}.

Integrating the above estimate over [0,t][0,t] for any tTt\leq T, and using (4.57) and the fact that (by Lemma 3.2)

0(u~R)ξξL22dsCδR,0(u~R)ξL44dsCδR3,\int_{0}^{\infty}\|(\widetilde{u}^{R})_{\xi\xi}\|_{L^{2}}^{2}ds\leq C\delta_{R},\qquad\int_{0}^{\infty}\|(\widetilde{u}^{R})_{\xi}\|_{L^{4}}^{4}ds\leq C\delta_{R}^{3},

we have

|(uu~)ξ|22dξ\displaystyle\int_{\mathbb{R}}\frac{|(u-\widetilde{u})_{\xi}|^{2}}{2}d\xi |(u0u~(0,ξ))ξ|22dξ+0t[14𝐃2+δS2|𝐗˙|2\displaystyle\leq\int_{\mathbb{R}}\frac{|(u_{0}-\widetilde{u}(0,\xi))_{\xi}|^{2}}{2}d\xi+\int_{0}^{t}\big{[}-\frac{1}{4}\mathbf{D}_{2}+\frac{\delta_{S}}{2}|\dot{\mathbf{X}}|^{2}
+c2D+C(ε1+δS+δR)(GS+GR+D1)]ds+CδR.\displaystyle\quad+c_{2}D+C(\varepsilon_{1}+\delta_{S}+\delta_{R})(G^{S}+G^{R}+D_{1})\big{]}ds+C\delta_{R}.

Multiplying the above inequality by the constant 12max(1,c2)\frac{1}{2\max(1,c_{2})}, and then adding the result to (LABEL:estu0), together with the smallness of ε1,δS,δR\varepsilon_{1},\delta_{S},\delta_{R}, we have

vv~H1()2+uu~H1()2+δS0t|𝐗˙|2ds+0t(GR+GS+D+D1+𝐃2)ds\displaystyle\|v-\widetilde{v}\|_{H^{1}(\mathbb{R})}^{2}+\|u-\widetilde{u}\|_{H^{1}(\mathbb{R})}^{2}+\delta_{S}\int_{0}^{t}|\dot{\mathbf{X}}|^{2}ds+\int_{0}^{t}\left(G^{R}+G^{S}+D+D_{1}+\mathbf{D}_{2}\right)ds
C(v0v~(0,)H1()2+u0u~(0,)H1()2)+CδR1/3.\displaystyle\quad\leq C\big{(}\|v_{0}-\widetilde{v}(0,\cdot)\|_{H^{1}(\mathbb{R})}^{2}+\|u_{0}-\widetilde{u}(0,\cdot)\|_{H^{1}(\mathbb{R})}^{2}\big{)}+C\delta_{R}^{1/3}.

This implies the desired result in Lemma 5.2. ∎

Conflict of Interest: The authors declared that they have no conflicts of interest to this work.

References

  • [1] S. Bianchini and A. Bressan. Vanishing viscosity solutions to nolinear hyperbolic systems. Ann. of Math., 166:223–342, 2005.
  • [2] D. Bresch and B. Desjardins. On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models. J. Math. Pures Appl., 86(9):362–368, 2006.
  • [3] K. Choi, M.-J. Kang, Y. Kwon, and A. Vasseur. Contraction for large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model. Math. Models Methods Appl. Sci., 30(2):387–437, 2020.
  • [4] C. M. Dafermos. The second law of thermodynamics and stability. Arch. Rational Mech. Anal., 70(2):167–179, 1979.
  • [5] C. M. Dafermos. Entropy and the stability of classical solutions of hyperbolic systems of conservation laws. In Recent mathematical methods in nonlinear wave propagation (Montecatini Terme, 1994), volume 1640 of Lecture Notes in Math., pages 48–69. Springer, Berlin, 1996.
  • [6] R. J. DiPerna. Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J., 28(1):137–188, 1979.
  • [7] J. Goodman. Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal., 95(4):325–344, 1986.
  • [8] F. Huang and A. Matsumura. Stability of a composite wave of two viscous shock waves for the full compressible Navier-Stokes equation. Comm. Math. Phys., 289(3):841–861, 2009.
  • [9] A. M. Ilin and O. A. Oleĭnik. Asymptotic behavior of solutions of the Cauchy problem for some quasi-linear equations for large values of the time. Mat. Sb. (N.S.), 51 (93):191–216, 1960.
  • [10] M.-J. Kang. Non-contraction of intermediate admissible discontinuities for 3-D planar isentropic magnetohydrodynamics. Kinet. Relat. Models, 11(1):107–118, 2018.
  • [11] M.-J. Kang. L2L^{2}-type contraction for shocks of scalar viscous conservation laws with strictly convex flux. J. Math. Pures Appl. (9), 145:1–43, 2021.
  • [12] M.-J. Kang and A. Vasseur. Criteria on contractions for entropic discontinuities of systems of conservation laws. Arch. Ration. Mech. Anal., 222(1):343–391, 2016.
  • [13] M.-J. Kang and A. Vasseur. L2L^{2}-contraction for shock waves of scalar viscous conservation laws. Annales de l’Institut Henri Poincaré (C) : Analyse non linéaire, 34(1):139Ð156, 2017.
  • [14] M.-J. Kang and A. Vasseur. Well-posedness of the Riemann problem with two shocks for the isentropic euler system in a class of vanishing physical viscosity limits. arXiv:2010.16090, 2020.
  • [15] M.-J. Kang and A. Vasseur. Contraction property for large perturbations of shocks of the barotropic Navier-Stokes system. J. Eur. Math. Soc. (JEMS), 23(2):585–638, 2021.
  • [16] M.-J. Kang and A. Vasseur. Uniqueness and stability of entropy shocks to the isentropic Euler system in a class of inviscid limits from a large family of Navier-Stokes systems. Invent. Math., 224(1):55–146, 2021.
  • [17] M.-J. Kang, A. Vasseur, and Y. Wang. L2L^{2}-contraction for planar shock waves of multi-dimensional scalar viscous conservation laws. J. Differential Equations, 267(5):2737–2791, 2019.
  • [18] N. Leger. L2L^{2} stability estimates for shock solutions of scalar conservation laws using the relative entropy method. Arch. Ration. Mech. Anal., 199(3):761–778, 2011.
  • [19] N. Leger and A. Vasseur. Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations. Arch. Ration. Mech. Anal., 201(1):271–302, 2011.
  • [20] T.-P. Liu. Nonlinear stability of shock waves for viscous conservation laws. Mem. Amer. Math. Soc., 56(328):v+108, 1985.
  • [21] T.-P. Liu and Z. P. Xin. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm. Math. Phys., 118(3):451–465, 1988.
  • [22] T.-P. Liu and Y. Zeng. Shock waves in conservation laws with physical viscosity. Mem. Amer. Math. Soc., 234(1105):vi+168, 2015.
  • [23] C. Mascia and K. Zumbrun. Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic systems. Comm. Pure Appl. Math., 57:841–876, 2004.
  • [24] A. Matsumura. Waves in compressible fluids: viscous shock, rarefaction, and contact waves. In Handbook of mathematical analysis in mechanics of viscous fluids, pages 2495–2548. Springer, Cham, 2018.
  • [25] A. Matsumura and K. Nishihara. On the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math., 2:17–25, 1985.
  • [26] A. Matsumura and K. Nishihara. Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math., 3:1–13, 1986.
  • [27] A. Matsumura and K. Nishihara. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Comm. Math. Phys., 144:325–335, 1992.
  • [28] A. Matsumura and Yang Wang. Asymptotic stability of viscous shock wave for a one-dimensional isentropic model of viscous gas with density dependent viscosity. Methods Appl. Anal., 17(3):279–290, 2010.
  • [29] A. Mellet and A. Vasseur. Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations. SIAM J. Math. Anal., 39(4):1344–1365, 2007/08.
  • [30] K. Nishihara, T. Yang, and H. Zhao. Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations. SIAM J. Math. Anal., 35(6):1561–1597, 2004.
  • [31] B. Riemann. Uberdie fortpflanzung ebener luftwellen von endlicher schwingungsweite. Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu Gottingen, 8:43–65, 1860.
  • [32] D. H. Sattinger. On the stability of waves of nonlinear parabolic systems. Advances in Math., 22(3):312–355, 1976.
  • [33] D. Serre and A. Vasseur. L2L^{2}-type contraction for systems of conservation laws. J. Éc. polytech. Math., 1:1–28, 2014.
  • [34] D. Serre and A. Vasseur. About the relative entropy method for hyperbolic systems of conservation laws. Contemp. Math. AMS, 658:237–248, 2016.
  • [35] V. A. Solonnikov. The solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid. Zap. Naucˇ\check{c}n. Sem. Leningrad. Otdel. Mat. Inst. Steklov., 59:128–142, 1976.
  • [36] A. Szepessy and Z. P. Xin. Nonlinear stability of viscous shock waves. Arch. Rational Mech. Anal., 122(1):53–103, 1993.
  • [37] A. Vasseur. Recent results on hydrodynamic limits. Handb. Differ. Equ. Elsevier/North-Holland, Amsterdam, 2008.
  • [38] A. Vasseur. Relative entropy and contraction for extremal shocks of conservation laws up to a shift. In Recent advances in partial differential equations and applications, volume 666 of Contemp. Math., pages 385–404. Amer. Math. Soc., Providence, RI, 2016.
  • [39] A. Vasseur and L. Yao. Nonlinear stability of viscous shock wave to one-dimensional compressible isentropic Navier-Stokes equations with density dependent viscous coefficient. Commun. Math. Sci., 14(8):2215–2228, 2016.