This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Tighter uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson skew information of quantum channels

Cong Xu1, Zhaoqi Wu1, Shao-Ming Fei2,3
1. Department of Mathematics, Nanchang University, Nanchang 330031, P R China
2. School of Mathematical Sciences, Capital Normal University, Beijing 100048, P R China
3. Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
Corresponding author. E-mail: [email protected]

Abstract
We use a novel formation to illustrate the (α,β,γ\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson ((α,β,γ\alpha,\beta,\gamma) MWWYD) skew information of quantum channels. By using operator norm inequalities, we explore the sum uncertainty relations for arbitrary NN quantum channels and for unitary channels. These uncertainty inequalities are shown to be tighter than the existing ones by a detailed example. Our results are also applicable to the modified weighted Wigner-Yanase-Dyson (MWWYD) skew information and the (α,γ\alpha,\gamma) modified weighted Wigner-Yanase-Dyson ((α,γ\alpha,\gamma) MWWYD) skew information of quantum channels as special cases.

Keywords: Uncertainty relation; (α,β,γ\alpha,\beta,\gamma) MWWYD skew information; Quantum channel

1. Introduction

As an extremely important issue in quantum physics, the uncertainty principle has been widespread concerned since Heisenberg [1] proposed the notions of uncertainties in measuring non-commuting observables. Based on the variance of measurement outcomes the well-known Heisenberg-Robertson uncertainty relation [2] says that for arbitrary two observables AA and BB with respect to a quantum state |ψ|\psi\rangle, one has

ΔAΔB12|ψ|[A,B]|ψ|,\Delta A\Delta B\geq\frac{1}{2}|\langle\psi|[A,B]|\psi\rangle|, (1)

where [A,B]=ABBA[A,B]=AB-BA and ΔM=ψ|M2|ψψ|M|ψ2\Delta M=\sqrt{\langle\psi|{M}^{2}|\psi\rangle-{\langle\psi|M|\psi\rangle}^{2}} is the standard deviation of an observable MM.

There are also many ways to describe uncertainty relations, such as entropy [3, 4, 5, 6, 7], variance [8, 9, 10, 11] and majorization techniques [13, 12, 14, 15]. In particular, the quantum uncertainty can also be characterized by skew information. The skew information has been initially proposed by Wigner and Yanase [16], termed as Wigner-Yanase (WY) skew information. Then a more general quantity has been suggested by Dyson, called the Wigner-Yanase-Dyson (WYD) skew information [16]. This quantity has been further generalized in [17] and termed as generalized Wigner-Yanase-Dyson (GWYD) skew information. The uncertainty relations based on WY skew information, WYD skew information and GWYD skew information have been studied extensively [18, 20, 21, 19, 22, 23].

For a quantum state ρ\rho and an observable AA, Furuichi, Yanagi and Kuriyama [24] defined another generalized Wigner-Yanase skew information,

Kρα(A)=12Tr([ρα+ρ1α2,A]2)=12[ρα+ρ1α2,A]2,  0α1,\displaystyle\mathrm{K}_{\rho}^{\alpha}(A)=-\frac{1}{2}\mathrm{Tr}\left(\left[\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2},A\right]^{2}\right)=\frac{1}{2}\left\|\left[\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2},A\right]\right\|^{2}~{},\,\,0\leq\alpha\leq 1, (2)

which, called as the weighted Wigner-Yanase-Dyson (WWYD) skew information in [23], is different from WYD skew information. Chen, Liang, Li and Wang [25] proposed then a generalized Wigner-Yanase skew information for arbitrary operator EE (not necessarily Hermitian),

Kρα(E)=12Tr([ρα+ρ1α2,E][ρα+ρ1α2,E])=12[ρα+ρ1α2,E]2,  0α1,\displaystyle\mathrm{K}_{\rho}^{\alpha}(E)=-\frac{1}{2}\mathrm{Tr}\left(\left[\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2},E^{{\dagger}}\right]\left[\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2},E\right]\right)=\frac{1}{2}\left\|\left[\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2},E\right]\right\|^{2}~{},\,\,0\leq\alpha\leq 1, (3)

which is termed as the modified weighted Wigner-Yanase-Dyson (MWWYD) skew information in [23]. By replacing the arithmetic mean of ρα\rho^{\alpha} and ρ1α\rho^{1-\alpha} with their convex combination, the two-parameter extension of the Wigner-Yanase skew information is introduced in [26],

Kρ,γα(A)=\displaystyle\mathrm{K}_{\rho,\gamma}^{\alpha}(A)= 12Tr([(1γ)ρα+γρ1α,A]2)\displaystyle-\frac{1}{2}\mathrm{Tr}\left([(1-\gamma)\rho^{\alpha}+\gamma\rho^{1-\alpha},A]^{2}\right)
=\displaystyle= 12[(1γ)ρα+γρ1α,A]2,  0α1,  0γ1,\displaystyle\frac{1}{2}\left\|\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{1-\alpha},A\right]\right\|^{2}~{},~{}\,\,0\leq\alpha\leq 1~{},\,\,0\leq\gamma\leq 1, (4)

which is called the (α,γ)(\alpha,\gamma) weighted Wigner-Yanase-Dyson ((α,γ)(\alpha,\gamma) WWYD) skew information in [27]. Note that Eq. (Tighter uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson skew information of quantum channels) reduces to Eq. (2) when γ=12\gamma=\frac{1}{2}.

We defined the (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson ((α,β,γ)(\alpha,\beta,\gamma) WWYD) skew information as [27],

Kρ,γα,β(A)=\displaystyle\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A)= 12Tr([(1γ)ρα+γρβ,A]2ρ1αβ)\displaystyle-\frac{1}{2}\mathrm{Tr}([(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A]^{2}\rho^{1-\alpha-\beta})
=\displaystyle= 12[(1γ)ρα+γρβ,A]ρ1αβ22,α,β0,α+β1,0γ1,\displaystyle\frac{1}{2}\left\|\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A\right]\rho^{\frac{1-\alpha-\beta}{2}}\right\|^{2},~{}~{}\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,0\leq\gamma\leq 1, (5)

which reduces to Eq. (Tighter uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson skew information of quantum channels) when β=1α\beta=1-\alpha. We also defined the (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson ((α,β,γ)(\alpha,\beta,\gamma) MWWYD) skew information with respect to a quantum state ρ\rho and an arbitrary operator EE (not necessarily Hermitian) in [27] as

Kρ,γα,β(E)=\displaystyle\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E)= 12Tr([(1γ)ρα+γρβ,E][(1γ)ρα+γρβ,E]ρ1αβ)\displaystyle-\frac{1}{2}\mathrm{Tr}([(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},E^{{\dagger}}][(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},E]\rho^{1-\alpha-\beta})
=\displaystyle= 12[(1γ)ρα+γρβ,E]ρ1αβ22,α,β0,α+β1,0γ1,\displaystyle\frac{1}{2}\left\|\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},E\right]\rho^{\frac{1-\alpha-\beta}{2}}\right\|^{2},~{}~{}~{}\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,0\leq\gamma\leq 1, (6)

which is the non-Hermitian extension of the (α,β,γ)(\alpha,\beta,\gamma) WWYD skew information. Eq. (Tighter uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson skew information of quantum channels) reduces to Eq. (Tighter uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson skew information of quantum channels) in [23] when γ=12\gamma=\frac{1}{2}. When β=1α\beta=1-\alpha, we obtain the (α,γ)(\alpha,\gamma) modified weighted Wigner-Yanase-Dyson ((α,γ)(\alpha,\gamma) MWWYD) skew information,

Kρ,γα(E)=\displaystyle\mathrm{K}_{\rho,\gamma}^{\alpha}(E)= 12Tr([(1γ)ρα+γρ1α,E][(1γ)ρα+γρ1α,E])\displaystyle-\frac{1}{2}\mathrm{Tr}([(1-\gamma)\rho^{\alpha}+\gamma\rho^{1-\alpha},E^{{\dagger}}][(1-\gamma)\rho^{\alpha}+\gamma\rho^{1-\alpha},E])
=\displaystyle= 12[(1γ)ρα+γρ1α,E]2,  0α1,  0γ1,\displaystyle\frac{1}{2}\left\|\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{1-\alpha},E\right]\right\|^{2},~{}~{}\,\,0\leq\alpha\leq 1~{},\,\,0\leq\gamma\leq 1, (7)

which is the non-Hermitian extension of the (α,γ)(\alpha,\gamma) WWYD skew information. It reduces to Eq. (3) when γ=12\gamma=\frac{1}{2}.

Quantum channels characterize the general evolutions of quantum systems [29, 28], which play an essential role in quantum information processing. The uncertainty relations for quantum channels have been investigated from both the variance-based and entropic-based uncertainty measure [30, 31]. Specifically, the unitary channels are useful and commonly encountered in both quantum information theory and quantum computation [28]. Uncertainty relations for general unitary channels have been investigated both theoretically and experimentally [32, 33, 34]. Recently, the sum uncertainty relations for quantum channels have attracted considerable attention [35, 36, 37, 38, 27]. Fu, Sun and Luo [35] investigated the uncertainty relations for two quantum channels based on WY skew information for arbitrary operators. Afterwards, Zhang, Gao and Yan [36] generalized the uncertainty relations for two quantum channels to arbitrary NN quantum channels and proposed tighter lower bounds than the ones in [35] for two quantum channels. Zhang, Wu and Fei [37] proposed new bounds which are tighter than the results in [36]. Cai [38] confirmed that the results in [35] also hold for all metric-adjusted skew information. By employing the norm inequalities proposed in [37], we have established sum uncertainty relations for arbitrary NN quantum channels based on (α,β,γ\alpha,\beta,\gamma) MWWYD skew information [27] .

Following the idea in [39], the (α,β,γ)(\alpha,\beta,\gamma) MWWYD skew information of a state ρ\rho with respect to a channel Φ\Phi has been defined as [27],

Kρ,γα,β(Φ)=i=1nKρ,γα,β(Ei),\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi)=\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{i}), (8)

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,0\leq\gamma\leq 1, and Ei(i=1,2,,n)E_{i}(i=1,2,\cdots,n) are Kraus operators of the channel Φ\Phi, i.e., Φ(ρ)=i=1nEiρEi\Phi(\rho)=\sum_{i=1}^{n}E_{i}\rho E_{i}^{{\dagger}}. Very recently, we provided the following uncertainty relations for arbitrary NN quantum channels {Φt}t=1N\{\Phi_{t}\}_{t=1}^{N} with Φt(ρ)=i=1nEitρ(Eit),t=1,2,,N\Phi_{t}(\rho)=\sum_{i=1}^{n}E_{i}^{t}\rho(E_{i}^{t})^{\dagger},~{}t=1,2,\cdots,N (N>2N>2) [27],

t=1NKρ,γα,β(Φt)\displaystyle\sum_{t=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi_{t})\geq maxπt,πsSn1N2{1t<sNi=1nKρ,γα,β(Eπt(i)t+Eπs(i)s)\displaystyle\mathop{\mathrm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{N-2}\left\{\sum_{1\leq t<s\leq N}\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}+E_{\pi_{s}(i)}^{s})\right.
1(N1)2[i=1n(1t<sNKρ,γα,β(Eπt(i)t+Eπs(i)s))2]},\displaystyle\left.-\frac{1}{(N-1)^{2}}\left[\sum_{i=1}^{n}\left(\sum_{1\leq t<s\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}+E_{\pi_{s}(i)}^{s})}\right)^{2}\right]\right\}, (9)
t=1NKρ,γα,β(Φt)\displaystyle\sum_{t=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi_{t})\geq maxπt,πsSn{1Ni=1nKρ,γα,β(t=1NEπt(i)t)\displaystyle\mathop{\mathrm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\left\{\frac{1}{N}\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{t=1}^{N}E_{\pi_{t}(i)}^{t}\right)\right.
+2N2(N1)[i=1n(1t<sNKρ,γα,β(Eπt(i)tEπs(i)s))2]},\displaystyle\left.+\frac{2}{N^{2}(N-1)}\left[\sum_{i=1}^{n}\left(\sum_{1\leq t<s\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}-E_{\pi_{s}(i)}^{s})}\right)^{2}\right]\right\}, (10)
t=1NKρ,γα,β(Φt)\displaystyle\sum_{t=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi_{t})\geq maxπt,πsSn12(N1){2N(N1)[i=1n(1t<sNKρ,γα,β(Eπt(i)t±Eπs(i)s))2]\displaystyle\mathop{\mathrm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{2(N-1)}\left\{\frac{2}{N(N-1)}\left[\sum_{i=1}^{n}\left(\sum_{1\leq t<s\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}\pm E_{\pi_{s}(i)}^{s})}\right)^{2}\right]\right.
+1t<sNi=1nKρ,γα,β(Eπt(i)tEπs(i)s)},\displaystyle\left.+\sum_{1\leq t<s\leq N}\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}\mp E_{\pi_{s}(i)}^{s})\right\}, (11)

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1, SnS_{n} is the nn-element permutation group and πt,πsSn\pi_{t},\pi_{s}\in S_{n} are arbitrary nn-element permutations.

The remainder of this paper is structured as follows. In Section 2, we explore the (α,β,γ)(\alpha,\beta,\gamma) MWWYD skew information-based sum uncertainty relations for arbitrary NN quantum channels. Especially, we show that when β=1α\beta=1-\alpha, i.e., when the (α,β,γ)(\alpha,\beta,\gamma) MWWYD skew information becomes the (α,γ)(\alpha,\gamma) MWWYD skew information, our new bounds are tighter than the existing ones by a detailed example. The uncertainty relations based on the (α,β,γ)(\alpha,\beta,\gamma) MWWYD skew information for unitary channels are discussed in Section 3. We conclude with a summary in Section 4.

2. Sum uncertainty relations for arbitrary NN quantum channels in terms of (α,β,γ\alpha,\beta,\gamma) MWWYD skew information

In this section, by using a new formation we explore the uncertainty relations for arbitrary NN quantum channels in terms of the (α,β,γ\alpha,\beta,\gamma) MWWYD skew information Kρ,γα,β(Φ)\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi).

Let Φ\Phi be a quantum channel with Kraus representation, Φ(ρ)=i=1nEiρEi\Phi(\rho)=\sum_{i=1}^{n}E_{i}\rho E_{i}^{{\dagger}}. Following the idea in [37], we define the (α,β,γ\alpha,\beta,\gamma) MWWYD skew information of the channel as,

Kρ,γα,β(Φ)=12Tr(uu)=12u2,\displaystyle\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi)=\frac{1}{2}\mathrm{Tr}(u^{\dagger}u)=\frac{1}{2}\|u\|^{2}, (12)

where α,β0\alpha,\beta\geq 0, α+β1\alpha+\beta\leq 1, 0γ10\leq\gamma\leq 1, u=([(1γ)ρα+γρβ,E1]ρ1αβ2,[(1γ)ρα+γρβu=(\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},E_{1}\right]\rho^{\frac{1-\alpha-\beta}{2}},\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta}\right.
,E2]ρ1αβ2,,[(1γ)ρα+γρβ,En]ρ1αβ2)\left.,E_{2}\right]\rho^{\frac{1-\alpha-\beta}{2}},\cdots,\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},E_{n}\right]\rho^{\frac{1-\alpha-\beta}{2}}) characterizes some intrinsic features of both the quantum state and the quantum channel. By employing operator norm inequalities and Eq. (12), we have the following theorem for arbitrary NN quantum channels.

Theorem 1 Let Φ1,,ΦN\Phi_{1},\cdots,\Phi_{N} be NN quantum channels with Kraus representations Φt(ρ)=i=1nEitρ(Eit),t=1,2,,N\Phi_{t}(\rho)=\sum_{i=1}^{n}E_{i}^{t}\rho(E_{i}^{t})^{\dagger},~{}t=1,2,\cdots,N (N>2N>2). We have

t=1NKρ,γα,β(Φt)max{LB1,LB2,LB3},\displaystyle\sum_{t=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi_{t})\geq\mathop{\mathrm{max}}\{LB1,LB2,LB3\}, (13)

where

LB1\displaystyle LB1 =maxπt,πsSn1N2{1t<sNi=1nKρ,γα,β(Eπt(i)t+Eπs(i)s)\displaystyle=\mathop{\mathrm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{N-2}\left\{\sum_{1\leq t<s\leq N}\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}+E_{\pi_{s}(i)}^{s})\right.
1(N1)2[1t<sNi=1nKρ,γα,β(Eπt(i)t+Eπs(i)s)]2},\displaystyle\left.-\frac{1}{(N-1)^{2}}\left[\sum_{1\leq t<s\leq N}\sqrt{\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}+E_{\pi_{s}(i)}^{s})}\right]^{2}\right\}, (14)
LB2\displaystyle LB2 =maxπt,πsSn{1Ni=1nKρ,γα,β(t=1NEπt(i)t)\displaystyle=\mathop{\mathrm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\left\{\frac{1}{N}\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{t=1}^{N}E_{\pi_{t}(i)}^{t}\right)\right.
+2N2(N1)[1t<sNi=1nKρ,γα,β(Eπt(i)tEπs(i)s)]2},\displaystyle\left.+\frac{2}{N^{2}(N-1)}\left[\sum_{1\leq t<s\leq N}\sqrt{\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}-E_{\pi_{s}(i)}^{s})}\right]^{2}\right\}, (15)
LB3\displaystyle LB3 =maxπt,πsSn12(N1){1t<sNi=1nKρ,γα,β(Eπt(i)t±Eπs(i)s)\displaystyle=\mathop{\mathrm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{2(N-1)}\left\{\sum_{1\leq t<s\leq N}\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}\pm E_{\pi_{s}(i)}^{s})\right.
+2N(N1)[1t<sNi=1nKρ,γα,β(Eπt(i)tEπs(i)s)]2},\displaystyle\left.+\frac{2}{N(N-1)}\left[\sum_{1\leq t<s\leq N}\sqrt{\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}\mp E_{\pi_{s}(i)}^{s})}\right]^{2}\right\}, (16)

α,β0\alpha,\beta\geq 0, α+β1\alpha+\beta\leq 1, 0γ10\leq\gamma\leq 1, SnS_{n} is the n-element permutation group and πt,πsSn\pi_{t},\pi_{s}\in S_{n} are arbitrary nn-element permutations.

Proof The proof is completed directly by using the following inequalities [40, 36, 37],

t=1Nut2\displaystyle\sum_{t=1}^{N}\|u_{t}\|^{2}\geq 1N2[1t<sNut+us21(N1)2(1t<sNut+us)2],\displaystyle\frac{1}{N-2}\left[\sum_{1\leq t<s\leq N}\|u_{t}+u_{s}\|^{2}-\frac{1}{(N-1)^{2}}\left(\sum_{1\leq t<s\leq N}\|u_{t}+u_{s}\|\right)^{2}\right],
t=1Nut2\displaystyle\sum_{t=1}^{N}\|u_{t}\|^{2}\geq 1Nt=1Nut2+2N2(N1)(1t<sNutus)2,\displaystyle\frac{1}{N}\left\|\sum_{t=1}^{N}u_{t}\right\|^{2}+\frac{2}{N^{2}(N-1)}\left(\sum_{1\leq t<s\leq N}\|u_{t}-u_{s}\|\right)^{2},
t=1Nut2\displaystyle\sum_{t=1}^{N}\|u_{t}\|^{2}\geq 12(N1)[2N(N1)(1t<sNut±us)2+1t<sNutus2],\displaystyle\frac{1}{2(N-1)}\left[\frac{2}{N(N-1)}\left(\sum_{1\leq t<s\leq N}\|u_{t}\pm u_{s}\|\right)^{2}+\sum_{1\leq t<s\leq N}\|u_{t}\mp u_{s}\|^{2}\right],

with ut2=2Kρ,γα,β(Φt)\|u_{t}\|^{2}=2\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi_{t}), ut+us2=2i=1nKρ,γα,β(Eπt(i)t+Eπs(i)s)\|u_{t}+u_{s}\|^{2}=2\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}+E_{\pi_{s}(i)}^{s}) and utus2=2i=1nKρ,γα,β(Eπt(i)tEπs(i)s)\|u_{t}-u_{s}\|^{2}=2\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}-E_{\pi_{s}(i)}^{s}). \Box

Note that when α=β=12\alpha=\beta=\frac{1}{2}, Theorem 1 reduce to Theorem 1 in [37]. As a special case, we use the (α,γ)(\alpha,\gamma) MWWYD skew information to compare our lower bounds with the existing ones. For convenience, we denote by LB¯1\overline{LB}1, LB¯2\overline{LB}2, LB¯3\overline{LB}3 the right hand sides of (Tighter uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson skew information of quantum channels), (Tighter uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson skew information of quantum channels) and (Tighter uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson skew information of quantum channels), respectively. The following example shows that our results give tighter lower bounds than LB¯1\overline{LB}1, LB¯2\overline{LB}2 and LB¯3\overline{LB}3, see Figure 1.

Example 1 Given a qubit state ρ=12(𝟏+𝐫𝝈)\rho=\frac{1}{2}(\mathbf{1}+\mathbf{r}\cdot\bm{\sigma}), where 𝟏\mathbf{1} is the 2×22\times 2 identity matrix, 𝐫=(32cosθ,32sinθ,0)\mathbf{r}=(\frac{\sqrt{3}}{2}\cos\theta,\frac{\sqrt{3}}{2}\sin\theta,0), 𝝈=(σ1,σ2,σ3)\bm{\sigma}=(\sigma_{1},\sigma_{2},\sigma_{3}) with σj\sigma_{j} (j=1,2,3)(j=1,2,3) the Pauli matrices, and 𝐫𝝈=j=13rjσj\mathbf{r}\cdot\bm{\sigma}=\sum^{3}_{j=1}r_{j}\sigma_{j}. We consider the following three quantum channels:
(i) the amplitude damping channel ΦAD\Phi_{AD},

ΦAD(ρ)=i=12AiρAi,A1=|00|+1q|11|,A2=q|11|;\displaystyle\Phi_{AD}(\rho)=\sum_{i=1}^{2}A_{i}\rho A_{i}^{\dagger},\quad A_{1}=|0\rangle\langle 0|+\sqrt{1-q}|1\rangle\langle 1|,\quad A_{2}=\sqrt{q}|1\rangle\langle 1|;

(ii) the phase damping channel ΦPD\Phi_{PD},

ΦPD(ρ)=i=12BiρBi,B1=|00|+1q|11|,B2=q|01|;\displaystyle\Phi_{PD}(\rho)=\sum_{i=1}^{2}B_{i}\rho B_{i}^{\dagger},\quad B_{1}=|0\rangle\langle 0|+\sqrt{1-q}|1\rangle\langle 1|,\quad B_{2}=\sqrt{q}|0\rangle\langle 1|;

(iii) the bit flip channel ΦBF\Phi_{BF},

ΦBF(ρ)=i=12CiρCi,C1=q|00|+q|11|,C2=1q(|01|+|10|)\displaystyle\Phi_{BF}(\rho)=\sum_{i=1}^{2}C_{i}\rho C_{i}^{\dagger},\quad C_{1}=\sqrt{q}|0\rangle\langle 0|+\sqrt{q}|1\rangle\langle 1|,\quad C_{2}=\sqrt{1-q}(|0\rangle\langle 1|+|1\rangle\langle 0|)

with 0q<10\leq q<1, respectively.

For the case α=γ=14\alpha=\gamma=\frac{1}{4}, q=0.2q=0.2 and θ=π2\theta=\frac{\pi}{2}, we have Kρ,1414(ΦAD)+Kρ,1414(ΦPD)+Kρ,1414(ΦBF)=0.283955\mathrm{K}_{\rho,\frac{1}{4}}^{\frac{1}{4}}(\Phi_{AD})+\mathrm{K}_{\rho,\frac{1}{4}}^{\frac{1}{4}}(\Phi_{PD})+\mathrm{K}_{\rho,\frac{1}{4}}^{\frac{1}{4}}(\Phi_{BF})=0.283955. The lower bounds LB¯1\overline{LB}1, LB¯2\overline{LB}2 and LB¯3\overline{LB}3 are 0.275596, 0.2644 and 0.256419, respectively, and the lower bounds LB1LB1, LB2LB2 and LB3LB3 are 0.260707, 0.26726 and 0.265758, respectively. Obviously, LB2LB2 is tightest among LB1LB1, LB2LB2 and LB3LB3, which is also greater than LB¯2\overline{LB}2 and LB¯3\overline{LB}3 given in [27].

We also consider the case α=γ=14\alpha=\gamma=\frac{1}{4}. For q=0.4q=0.4 and q=0.9q=0.9, the sum and the lower bounds LB¯1\overline{LB}1, LB¯2\overline{LB}2, LB¯3\overline{LB}3, LB1LB1, LB2LB2 and LB3LB3 are shown in Figure 1, respectively. Especially, for q=0.4q=0.4, the sum and the lower bounds are calculated for some special θ\theta, as listed in Table 1. It can be seen that for q=0.4q=0.4, our lower bounds LB2LB2 and LB3LB3 are tighter than LB¯1\overline{LB}1, LB¯2\overline{LB}2 and LB¯3\overline{LB}3. While for q=0.9q=0.9, our lower bounds LB2LB2 and LB3LB3 are tighter than LB¯1\overline{LB}1, LB¯2\overline{LB}2 and LB¯3\overline{LB}3.

Refer to caption
Refer to caption
Figure 1: The solid black line represents the sum =Kρ,1414(ΦAD)+Kρ,1414(ΦPD)+Kρ,1414(ΦBF)=\mathrm{K}_{\rho,\frac{1}{4}}^{\frac{1}{4}}(\Phi_{AD})+\mathrm{K}_{\rho,\frac{1}{4}}^{\frac{1}{4}}(\Phi_{PD})+\mathrm{K}_{\rho,\frac{1}{4}}^{\frac{1}{4}}(\Phi_{BF}). The solid blue, green and the red lines represent the lower bounds LB1LB1, LB2LB2 and LB3LB3 in Theorem 1, respectively. The dotted magenta, dashed blue and green lines are for the lower bounds LB¯1\overline{LB}1, LB¯2\overline{LB}2 and LB¯3\overline{LB}3, respectively. (a) q=0.4q=0.4; (b) q=0.9q=0.9.

Table 1. Comparison among the uncertainty lower bounds q=0.4 LB¯1\overline{LB}1 LB¯2\overline{LB}2 LB¯3\overline{LB}3 LB1LB1 LB2LB2 LB3LB3 sum θ=π/2\theta=\pi/2 0.234918 0.247658 0.241686 0.222065 0.252565 0.252654 0.258817 θ=π/3\theta=\pi/3 0.17968 0.204421 0.20082 0.168362 0.208841 0.208534 0.211782 θ=π/5\theta=\pi/5 0.0954994 0.13303 0.132687 0.0879256 0.135648 0.135459 0.135679 θ=π/7\theta=\pi/7 0.066361 0.104405 0.104922 0.0632504 0.106043 0.106062 0.106096

The above results show that Theorem 1 in this paper improve the existing results ones given in [27].

3. Sum uncertainty relations for NN unitary channels in terms of (α,β,γ\alpha,\beta,\gamma) MWWYD skew information

In this section, we consider sum uncertainty relations for arbitrary NN unitary channels. For a unitary channel ΦU\Phi_{U}, we have ΦU(ρ)=UρU\Phi_{U}(\rho)=U\rho U^{{\dagger}}. According to Eq. (Tighter uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson skew information of quantum channels), the (α,β,γ\alpha,\beta,\gamma) MWWYD skew information of an unitary operator UU is given by

Kρ,γα,β(U)=\displaystyle\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(U)= 12Tr([(1γ)ρα+γρβ,U][(1γ)ρα+γρβ,U]ρ1αβ)\displaystyle-\frac{1}{2}\mathrm{Tr}([(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},U^{{\dagger}}][(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},U]\rho^{1-\alpha-\beta})
=\displaystyle= 12[(1γ)ρα+γρβ,U]ρ1αβ22,α,β0,α+β1,0γ1.\displaystyle\frac{1}{2}\left\|\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},U\right]\rho^{\frac{1-\alpha-\beta}{2}}\right\|^{2},~{}~{}~{}\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,0\leq\gamma\leq 1. (17)

The (α,β,γ\alpha,\beta,\gamma) MWWYD skew information of a unitary channel ΦU\Phi_{U} is defined as Kρ,γα,β(ΦU)=Kρ,γα,β(U)\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi_{U})=\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(U). For simplicity, in the following, we use Kρ,γα,β(U)\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(U) to denote the quantity of the unitary channel ΦU\Phi_{U} determined by UU. Similar to the proof of Theorem 1, we can prove the following theorem.

Theorem 2 Let U1,,UNU_{1},\cdots,U_{N} be arbitrary NN unitary operators. Then we have

t=1NKρ,γα,β(Ut)max{Lb1,Lb2,Lb3},\displaystyle\sum_{t=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(U_{t})\geq\mathop{\mathrm{max}}\{Lb1,Lb2,Lb3\}, (18)

where

Lb1\displaystyle Lb1 =1N2{1t<sNKρ,γα,β(Ut+Us)1(N1)2[1t<sNKρ,γα,β(Ut+Us)]2},\displaystyle=\frac{1}{N-2}\left\{\sum_{1\leq t<s\leq N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(U_{t}+U_{s})-\frac{1}{(N-1)^{2}}\left[\sum_{1\leq t<s\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(U_{t}+U_{s})}\right]^{2}\right\}, (19)
Lb2\displaystyle Lb2 =1NKρ,γα,β(t=1NUt)+2N2(N1)[1t<sNKρ,γα,β(UtUs)]2,\displaystyle=\frac{1}{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{t=1}^{N}U_{t}\right)+\frac{2}{N^{2}(N-1)}\left[\sum_{1\leq t<s\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(U_{t}-U_{s})}\right]^{2}, (20)
Lb3\displaystyle Lb3 =maxx{0,1}12(N1){1t<sNKρ,γα,β(Ut+(1)xUs)\displaystyle=\mathop{\mathrm{max}}\limits_{x\in\{0,1\}}\frac{1}{2(N-1)}\left\{\sum_{1\leq t<s\leq N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(U_{t}+(-1)^{x}U_{s})\right.
+2N(N1)[1t<sNKρ,γα,β(Ut+(1)x+1Us)]2}\displaystyle\left.+\frac{2}{N(N-1)}\left[\sum_{1\leq t<s\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(U_{t}+(-1)^{x+1}U_{s})}\right]^{2}\right\} (21)

and x{0,1}x\in\{0,1\}, α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1.

Note that (19), (20) and (Tighter uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson skew information of quantum channels) of Theorem 2 reduce to (13), (Tighter uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson skew information of quantum channels) and (Tighter uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson skew information of quantum channels) in [37] when α=γ=12\alpha=\gamma=\frac{1}{2}, respectively.

Example 2 Given a qubit state ρ=12(𝟏+𝐫𝝈)\rho=\frac{1}{2}(\mathbf{1}+\mathbf{r}\cdot\bm{\sigma}) with 𝐫=(22cosθ,22sinθ,0)\mathbf{r}=(\frac{\sqrt{2}}{2}\cos\theta,\frac{\sqrt{2}}{2}\sin\theta,0). Consider the following three unitary operators,

U1=eiπσ18=(cosπ8isinπ8isinπ8cosπ8),U2=eiπσ28=(cosπ8sinπ8sinπ8cosπ8),U3=eiπσ38=(eiπ80 0eiπ8),U_{1}=e^{\frac{i\pi\sigma_{1}}{8}}=\left(\begin{matrix}\cos\frac{\pi}{8}\ i\sin\frac{\pi}{8}\\ i\sin\frac{\pi}{8}\ \cos\frac{\pi}{8}\end{matrix}\right),U_{2}=e^{\frac{i\pi\sigma_{2}}{8}}=\left(\begin{matrix}\cos\frac{\pi}{8}\ \sin\frac{\pi}{8}\\ -\sin\frac{\pi}{8}\ \cos\frac{\pi}{8}\end{matrix}\right),U_{3}=e^{\frac{i\pi\sigma_{3}}{8}}=\left(\begin{matrix}e^{i\frac{\pi}{8}}\quad 0\\ \ 0\ -e^{i\frac{\pi}{8}}\end{matrix}\right),

which correspond to the rotations around the zz axis of the Bloch sphere. When β=1α\beta=1-\alpha, i.e., when the (α,β,γ)(\alpha,\beta,\gamma) MWWYD skew information reduces to the (α,γ)(\alpha,\gamma) MWWYD skew information, the comparison among the lower bounds of Theorem 2 is presented in Figure 2, from which one sees that the lower bound Lb3Lb3 is tighter than Lb2Lb2 and Lb1Lb1 in this case.

Refer to caption
Figure 2: For α=γ=14\alpha=\gamma=\frac{1}{4}, the solid black curve represents the sum =Kρ,1414(U1)+Kρ,1414(U2)+Kρ,1414(U3)=\mathrm{K}_{\rho,\frac{1}{4}}^{\frac{1}{4}}(U_{1})+\mathrm{K}_{\rho,\frac{1}{4}}^{\frac{1}{4}}(U_{2})+\mathrm{K}_{\rho,\frac{1}{4}}^{\frac{1}{4}}(U_{3}). The dotted blue, dashed green and dot-dashed red curves represent Lb1Lb1, Lb2Lb2 and Lb3Lb3, respectively.

4. Conclusions

We have studied the sum uncertainty relations for NN quantum channels based on the (α,β,γ)(\alpha,\beta,\gamma) MWWYD skew information. By detailed example it has been shown that our uncertainty inequalities are tighter than the existing ones. Since the MWWYD skew information and (α,γ\alpha,\gamma) MWWYD skew information are two special cases of the (α,β,γ)(\alpha,\beta,\gamma) MWWYD skew information, our results are also valid for the MWWYD skew information and the (α,γ\alpha,\gamma) MWWYD skew information. Finally, we have also explored sum uncertainty relations for unitary channels. These results may shed some new light on the study of skew information-based sum uncertainty relations for quantum channels.

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 12161056, 12075159, 12171044); Jiangxi Provincial Natural Science Foundation (Grant No. 20202BAB201001); Beijing Natural Science Foundation (Grant No. Z190005); Academy for Multidisciplinary Studies, Capital Normal University; Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology (Grant No. SIQSE202001); the Academician Innovation Platform of Hainan Province.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  • [1] Heisenberg W 1927 Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik Z. Phys. 43 172
  • [2] Robertson H P 1929 The uncertainty principle Phys. Rev. 34 163
  • [3] Deutsch D 1983 Uncertainty in quantum measurements Phys. Rev. Lett. 50 631
  • [4] Maassen H and Uffink J B M 1988 Generalized entropic uncertainty relations Phys. Rev. Lett. 60 1103
  • [5] Wehner S and Winter A 2010 Entropic uncertainty relations-a survey New J. Phys. 12 025009
  • [6] Wu S, Yu S and Mø{\o}lmer K 2009 Entropic uncertainty relation for mutually unbiased bases Phys. Rev. A 79 022104
  • [7] Rastegin A E 2013 Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies Eur. Phys. J. D 67 269
  • [8] Gudder S 2007 Operator probability theory Int. J. Pure Appl. Math. 39 511
  • [9] Dou Y and Du H 2013 Generalizations of the Heisenberg and Schrödinger uncertainty relations J. Math. Phys. 54 103508
  • [10] Dou Y and Du H 2014 Note on the Wigner-Yanase-Dyson skew information Int. J. Theor. Phys. 53 952
  • [11] Sun Y and Li N 2021 The uncertainty of quantum channels in terms of variance Quantum Inf. Process. 20 25
  • [12] Rudnicki Ł, Puchała Z and Zyczkowski K 2014 Strong majorization entropic uncertainty relations Phys. Rev. A 89 052115
  • [13] Puchała Z, Rudnicki Ł and Zyczkowski K 2013 Majorization entropic uncertainty relations J. Phys. A: Math. Theor. 46 272002
  • [14] Rudnicki Ł 2015 Majorization approach to entropic uncertainty relations for coarse-grained observables Phys. Rev. A 91 032123
  • [15] Friedland S, Gheorghiu V and Gour G 2013 Universal uncertainty relations Phys. Rev. Lett. 111 230401
  • [16] Wigner E P and Yanase M M 1963 Information contents of distributions Proc. Natl. Acad. Sci. 49 910-918
  • [17] Chen P and Luo S 2007 Direct approach to quantum extensions of Fisher information Front. Math. 2 359
  • [18] Luo S and Zhang Q 2004 On skew information IEEE Trans. Inf. Theory 50 1778
  • [19] Cai L and Luo S 2008 On convexity of generalized Wigner-Yanase-Dyson information Lett. Math. Phys. 83 253
  • [20] Yanagi K 2010 Uncertainty relation on Wigner-Yanase-Dyson skew information J. Math. Anal. Appl. 365 12
  • [21] Yanagi K 2010 Wigner-Yanase-Dyson skew information and uncertainty relation J. Phys. Conf. Ser. 201 012015
  • [22] Wu Z, Zhang L, Fei S-M and Li-Jost X 2020 Coherence and complementarity based on modified generalized skew information Quantum Inf. Process. 19 154
  • [23] Wu Z, Zhang L, Wang J, Li-Jost X, and Fei S-M 2020 Uncertainty relations based on modified Wigner-Yanase-Dyson skew information Int. J. Theor. Phys. 59 704
  • [24] Furuichi S, Yanagi K and Kuriyama K 2009 Trace inequalities on a generalized Wigner-Yanase skew information J. Math. Anal. Appl. 356 179
  • [25] Chen Z, Liang L, Li H and Wang W 2016 Two generalized Wigner-Yanase skew information and their uncertainty relations Quantum Inf. Process. 15 5107
  • [26] Zhang Z 2021 Trace inequalities based on two-parameter extended Wigner-Yanase skew information J. Math. Anal. Appl. 497 124851
  • [27] Xu C, Wu Z and Fei S-M 2022 Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information Int. J. Theor. Phys. 61 185
  • [28] Nielson M A and Chuang I L 2010 Quanutm Computation and Quantum Information (Cambridge: Cambridge University Press)
  • [29] Busch P, Grabowski M and Lahti P 1997 Operational Quantum Physics 2nd edn (Berlin: Springer)
  • [30] Krishna M and Parthasarathy K R 2002 An entropic uncertainty principle for quantum measurements Sankhyā A 64 842
  • [31] Massar S 2008 Uncertainty relations for positive-operator-valued measures Phys. Rev. A 76 042114
  • [32] Bagchi S and Pati A K 2016 Uncertainty relations for general unitary operators Phys. Rev. A 94 042104
  • [33] Tajima H, Shiraishi N and Saito K 2018 Uncertainty relations in implementation of unitary operations Phys. Rev. Lett. 121 110403
  • [34] Bong K-W, Tischler N, Patel R B, Wollmann S, Pryde G J and Hall M J W 2018 Strong unitary and overlap uncertainty relations: theory and experiment Phys. Rev. Lett. 120 230402
  • [35] Fu S, Sun Y and Luo S 2019 Skew information-based uncertainty relations for quantum channels Quantum Inf. Process. 18 258
  • [36] Zhang L, Gao T and Yan F 2021 Tighter uncertainty relations based on Wigner-Yanase skew information for observables and channels Phys. Lett. A 387 127029
  • [37] Zhang Q, Wu J and Fei S-M 2021 A note on uncertainty relations of arbitrary NN quantum channels Laser Phys. Lett. 18 095204
  • [38] Cai L 2021 Sum uncertainty relations based on metric-adjusted skew information Quantum Inf. Process. 20 72
  • [39] Luo S and Sun Y 2018 Coherence and complementarity in state-channel interaction Phys. Rev. A. 98 012113
  • [40] Chen B and Fei S-M 2015 Sum uncertainty relations for arbitrary NN incompatible observables Sci. Rep. 5 14238