This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Tighter sum uncertainty relations via metric-adjusted skew information

Hui Li    Ting Gao [email protected] School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China    Fengli Yan [email protected] College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, China
Abstract

In this paper, we first provide three general norm inequalities, which are used to give new uncertainty relations of any finite observables and quantum channels via metric-adjusted skew information. The results are applicable to its special cases as Wigner-Yanase-Dyson skew information. In quantifying the uncertainty of channels, we discuss two types of lower bounds and compare the tightness between them, meanwhile, a tight lower bound is given. The uncertainty relations obtained by us are stronger than the existing ones. To illustrate our results, we give several specific examples.

sum uncertainty relation, metric-adjusted skew information, observables, quantum channels
pacs:
03.65.-w, 03.65.Ta

I Introduction

Uncertainty principle as a quintessential manifestation of quantum mechanics reveals the insights that distinguish quantum theory from classical theory. Heisenberg originally came up with the uncertainty principle 100 in 1927, which enunciates that the position and momentum of a particle cannot be determined simultaneously. Since then, the quantitative characterization of the uncertainty relation has received extensive attention, and many results have been obtained.

There are a host of methods to characterize the uncertainty principle, one of which is variance. This method, which was adopted by Robertson 101 and Schrödinger 102 , has been found that there exist lower bounds on the variances product for any two non-commuting observables. Subsequently, with regard to the sum of variance, the stronger uncertainty relations are provided 103 . And Wang etal.et~{}al. 104 verified the results in 103 through experiment. Later, some tighter uncertainty relations with respect to variance were given 105 ; 106 ; 107 ; 4 .

The other well-known method of characterizing uncertainty relation is entropy. Deutsch 110 first proposed a quantitative expression of the uncertainty principle by entropy for any two non-commuting observables, and then Maassen and Uffink 111 optimized the result in 1988. Furthermore, many scholars have put forward diverse uncertainty relations respecting distinct entropies 112 ; 121 ; 113 ; 114 . The uncertainty relations of entropy have numerous applications ranging from entanglement witnesses 16 ; 116 , quantum teleportation 117 , quantum steering 118 , quantum key distribution 15 ; 115 to quantum metrology 119 .

Recently, Luo 120 confirmed that skew information is an alternative approach to characterize the uncertainty relation. In 122 , Wigner and Yanase introduced the definition of skew information

Iρ(M)=12Tr[ρ1/2,M]2=12[ρ1/2,M]2.\displaystyle I_{\rho}(M)=-\frac{1}{2}{\rm{Tr}}[{\rho}^{{1}/{2}},M]^{2}=\frac{1}{2}\|[{\rho}^{{1}/{2}},M]\|^{2}. (1)

Here ρ\rho and MM represent the quantum state and the observable, respectively. It can be considered as a measure and quantifies the information content included in the state ρ\rho regarding the conserved observables. Meanwhile, compared to the usual variance, it is better at times. The skew information, for pure states, is the same as the variance 125 , but they differ in mixed states. In the space of quantum states, skew information is convex, on the contrary for variance 125 , which is one of the remarkable differences between them. Later, Dyson put forth a quantitative way which is a generalization of skew information, its specific expression is

Iρα(M)=12Tr[ρα,M][ρ1α,M],0<α<1,\displaystyle I_{\rho}^{\alpha}(M)=-\frac{1}{2}{\rm Tr}[\rho^{\alpha},M][\rho^{1-\alpha},M],~{}~{}~{}~{}0<\alpha<1, (2)

termed as Wigner-Yanase-Dyson skew information, and Lieb 123 resolved the convexity of this form on quantum states.

The sum of quantum uncertainty is crucial, because it is an effective tool for detecting quantum entanglement 126 ; 127 ; 128 ; 129 ; 130 . To this end, the sum of quantum Fisher information (QFI) which was defined by means of symmetric logarithmic derivative probably is superior to Wigner-Yanase skew information 128 , as in the quantum Cramér-Rao inequality. In 50 , Petz proposed the concept of monotone metric. After that, Hansen 51 further developed the notion of monotone metric which is metric-adjusted skew information, and QFI can be considered as a particular case of it. Consequently, we would like to further study tighter uncertainty relations regarding metric-adjusted skew information.

Quantum channel is essential in quantum theory. The uncertainty relation of channels has also been investigated extensively, and a large number of results have been yielded 2 ; 5 . Recently, some scholars generalized the uncertainty inequalities to metric-adjusted skew information for arbitrary finite quantum channels 1 ; 3 ; 27 .

The overall structure of this paper is as follows. In Sec. II, we recall the notion of metric-adjusted skew information. In Sec. III, we present some norm inequalities, and then new uncertainty relations of observables are given regarding metric-adjusted skew information. The distinct types of uncertainty relations of quantum channels as for metric-adjusted skew information are discussed in Sec. IV, and we proved that which of the two corresponding lower bounds obtained by the same norm inequality is better. At the same time, the above conclusions still hold for its special metrics. We also give several examples and compare the lower bounds obtained by us with the lower bounds in 3 ; 1 ; 27 . This more intuitively shows that our results are more accurate than the ones in 3 ; 1 ; 27 . The main conclusions are summarized in Sec. V.

II Metric-adjusted skew information

Suppose that Mn()M_{n}(\mathbb{C}) is the set of all complex n×nn\times n matrices, n\mathscr{M}_{n} is the set of all positive definite n×nn\times n matrices with trace 1, where nn\in\mathbb{N}. For any A,BMn()A,B\in M_{n}(\mathbb{C}), ρn\rho\in\mathscr{M}_{n}, Kρ(,):Mn()×Mn()K_{\rho}(\cdot,\cdot):M_{n}(\mathbb{C})\times M_{n}(\mathbb{C})\mapsto\mathbb{C} is termed as symmetric monotone metric 50 when it is content with the requirements

(i) (A,B)Kρ(A,B)(A,B)\mapsto K_{\rho}(A,B) is sesquilinear, that is, the function Kρ(A,)K_{\rho}(A,\cdot) is linear and Kρ(,B)K_{\rho}(\cdot,B) conjugate linear.

(ii) Kρ(A,A)K_{\rho}(A,A) is nonnegative, Kρ(A,A)=0K_{\rho}(A,A)=0 if and only if A=0A=0.

(iii) ρKρ(A,A)\rho\mapsto K_{\rho}(A,A) is continuous on n\mathscr{M}_{n}.

(iv) KT(ρ)(T(A),T(A))Kρ(A,A)K_{T(\rho)}(T(A),T(A))\leq K_{\rho}(A,A) for any stochastic mapping TT. A linear mapping T:Mn()Mm()T:M_{n}(\mathbb{C})\rightarrow M_{m}(\mathbb{C}) is called stochastic mapping if T(n)nT(\mathscr{M}_{n})\subset{\mathscr{M}_{n}} and TT is a completely positive.

(v) Kρ(A,B)=Kρ(A,B)K_{\rho}(A,B)=K_{\rho}(A^{\dagger},B^{\dagger}).

The symmetric monotone metric Kρ(A,B)K_{\rho}(A,B) can be expressed as

Kρ(A,B)=Tr[Ac(Lρ,Rρ)B],\displaystyle K_{\rho}(A,B)={\rm{Tr}}[A^{\dagger}c(L_{\rho},R_{\rho})B], (3)

where LρL_{\rho} and RρR_{\rho} are respectively left and right multiplication operators, cc is termed as Morozova-Chentsov function, and its form is

c(x,y)=1yf(xy1),x,y>0,\displaystyle c(x,y)=\frac{1}{yf(xy^{-1})},~{}~{}x,y>0, (4)

where the function ff is satisfied with the conditions: (a) f:R+R+f:R_{+}\mapsto R_{+} is an operator monotone, where R+R_{+} is the set of all positive real number, namely, if ABA\geq B, then f(A)f(B)f(A)\geq f(B) for arbitrary A,B>0A,B>0; (b) tf(t1)=f(t)tf(t^{-1})=f(t) for every t>0t>0. Especially, it has been shown that if KI/n(I,I)=1K_{I/{n}}(I,I)=1 holds, then the associated normalized function ff requires to admit f(1)=1f(1)=1. Here II is nn-dimensional identity operator.

In addition, in the space of quantum state, if the Morozova-Chentsov function associated with the symmetric monotone metric Kρ(,)K_{\rho}(\cdot,\cdot) satisfies

m(c)=limx0c(x,1)1>0,\displaystyle m(c)=\mathop{\mathrm{lim}}_{x\rightarrow 0}c(x,1)^{-1}>0, (5)

then Kρ(,)K_{\rho}(\cdot,\cdot) is known as regular 51 . m(c)m(c) is called metric constant and m(c)=f(0)m(c)=f(0).

In 51 , Hansen introduced the metric-adjusted skew information Iρc(M)I_{\rho}^{c}(M) which is

Iρc(M)\displaystyle I_{\rho}^{c}(M) =m(c)2Kρc(i[ρ,M],i[ρ,M])\displaystyle=\frac{m(c)}{2}{K}_{\rho}^{c}({\rm i}[\rho,M],{\rm i}[\rho,M]) (6)
=m(c)2Tr{i[ρ,M]c(Lρ,Rρ)i[ρ,M]},\displaystyle=\frac{m(c)}{2}{\rm Tr}\left\{{\rm i}[\rho,M]c(L_{\rho},R_{\rho}){\rm i}[\rho,M]\right\},

where cc satisfies the constraint (5). Due to i[ρ,M]=i(LρRρ)M{\rm i}[\rho,M]={\rm i}(L_{\rho}-R_{\rho})M, then Eq. (6) can be rewritten as

Iρc(M)=m(c)2Tr{Mc^(Lρ,Rρ)M},\displaystyle I_{\rho}^{c}(M)=\frac{m(c)}{2}{\rm Tr}\left\{M\hat{c}(L_{\rho},R_{\rho})M\right\}, (7)

where c^(x,y)=(xy)2c(x,y)\hat{c}(x,y)=(x-y)^{2}c(x,y), x,y>0x,y>0.

When one chooses

cWY(x,y)=4(x+y)2,x,y>0,\displaystyle c^{\rm{WY}}(x,y)=\frac{4}{(\sqrt{x}+\sqrt{y})^{2}},~{}~{}x,y>0, (8)

and

cα(x,y)=1α(1α)(xαyα)(x1αy1α)(xy)2,0<α<1,\displaystyle c^{\alpha}(x,y)=\frac{1}{\alpha(1-\alpha)}\frac{(x^{\alpha}-y^{\alpha})(x^{1-\alpha}-y^{1-\alpha})}{(x-y)^{2}},~{}~{}0<\alpha<1, (9)

the associated monotone metrics

KρWY(A,B)=Tr[AcρWY(Lρ,Rρ)B],\displaystyle K_{\rho}^{\rm WY}(A,B)={\rm Tr}[A^{\dagger}c_{\rho}^{\rm WY}(L_{\rho},R_{\rho})B], (10)

and

Kρα(A,B)=Tr[Acρα(Lρ,Rρ)B]\displaystyle K_{\rho}^{\alpha}(A,B)={\rm Tr}[A^{\dagger}c_{\rho}^{\alpha}(L_{\rho},R_{\rho})B] (11)

are known as Wigner-Yanase metric and Wigner-Yanase-Dyson metric, respectively. Therefore, when c=cαc=c^{\alpha}, Eq. (6) turns into Eq. (2) which is Wigner-Yanase-Dyson skew information Iρα(M)I_{\rho}^{\alpha}(M). When α=12\alpha=\frac{1}{2}, Eq. (2) reduces to Eq. (1) which is Wigner-Yanase skew information Iρ(M)I_{\rho}(M).

III Uncertainty relations of finite observables

In this section, we first present some norm inequalities. By using these inequalities the new sum uncertainty relations of finite observables are given via metric-adjusted skew information, and the results also hold for its special metrics, such as those mentioned in Sec. II above. Then we provide two examples which show that our results are better than existing ones.

For finite nn observables M1,M2,,Mn(n>2)M_{1},M_{2},\cdot\cdot\cdot,M_{n}~{}(n>2), Cai 3 showed the uncertainty relation

i=1nIρc(Mi)1n2[1i<jnIρc(Mi+Mj)1(n1)2(1i<jnIρc(Mi+Mj))2].\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}^{c}(M_{i})\geq\frac{1}{n-2}\Bigg{[}\sum\limits_{1\leq i<j\leq n}{I}_{\rho}^{c}(M_{i}+M_{j})-\frac{1}{(n-1)^{2}}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}^{c}(M_{i}+M_{j})}\Bigg{)}^{2}\Bigg{]}. (12)

Ren etalet~{}al. 1 gave an uncertainty inequality

i=1nIρc(Mi)1nIρc(i=1nMi)+2n2(n1)(1i<jnIρc(MiMj))2.\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}^{c}(M_{i})\geq\frac{1}{n}{I}_{\rho}^{c}\Bigg{(}\sum\limits_{i=1}^{n}M_{i}\Bigg{)}+\frac{2}{n^{2}(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}^{c}(M_{i}-M_{j})}\Bigg{)}^{2}. (13)

Recently, Zhang etalet~{}al. 27 provided an uncertainty inequality

i=1nIρc(Mi)maxz{0,1}12n2{2n(n1)(1i<jnIρc(Mi+(1)zMj))2+1i<jnIρc(Mi+(1)z+1Mj)}.\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}^{c}(M_{i})\geq\max_{z\in\{0,1\}}\frac{1}{2n-2}{\left\{\frac{2}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}^{c}(M_{i}+(-1)^{z}M_{j})}\Bigg{)}^{2}+\sum\limits_{1\leq i<j\leq n}{I}_{\rho}^{c}(M_{i}+(-1)^{z+1}M_{j})\right\}}. (14)

The inequalities (13) and (14) hold when n2n\geq 2. For simplicity, the lower bounds in (12), (13), and (14) are marked by Lb1Lb_{1}, Lb2Lb_{2}, and Lb3Lb_{3}, respectively.

Next we show various inequalities of the norm which are essential for the discussion of main results, so we take the inequalities as a Lemma.

Lemma 1. Suppose that 𝐱i{\mathbf{x}}_{i} is a complex matrix, we can get

i=1n𝐱i21mn+(n2)l[2ln(n1)(1i<jn𝐱i+𝐱j)2+m1i<jn𝐱i𝐱j2+(ml)i=1n𝐱i2]\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2}\geq\frac{1}{mn+(n-2)l}\left[{\frac{2l}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}}+m\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|^{2}+(m-l)\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}\right]\\ (15)

and

i=1n𝐱i21mn+(n2)l[l1i<jn𝐱i+𝐱j2+2mn(n1)(1i<jn𝐱i𝐱j)2+(ml)i=1n𝐱i2]\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2}\geq\frac{1}{mn+(n-2)l}\left[l\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}+{\frac{2m}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}}+(m-l)\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}\right]\\ (16)

for arbitrary m,l>0m,l>0, and

i=1n𝐱i21mn+(n2)l[l1i<jn𝐱i+𝐱j2+m1i<jn𝐱i𝐱j2+ml(n1)2(1i<jn𝐱i+𝐱j)2]\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2}\geq\frac{1}{mn+(n-2)l}\left[l\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}+m\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|^{2}+\frac{m-l}{(n-1)^{2}}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}\right]\\ (17)

for l>m>0l>m>0. Special we have

i=1n𝐱i213n2[2n(n1)(1i<jn𝐱i+𝐱j)2+21i<jn𝐱i𝐱j2+i=1n𝐱i2],\displaystyle\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2}\geq\frac{1}{3n-2}\Bigg{[}\frac{2}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}+2\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|^{2}+\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}\Bigg{]}, (18)

and

i=1n𝐱i213n4[21i<jn𝐱i+𝐱j2+2n(n1)(1i<jn𝐱i𝐱j)2i=1n𝐱i2],\displaystyle\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2}\geq\frac{1}{3n-4}\Bigg{[}2\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}+\frac{2}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}-\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}\Bigg{]}, (19)

and

i=1n𝐱i213n4[21i<jn𝐱i+𝐱j2+1i<jn𝐱i𝐱j21(n1)2(1i<jn𝐱i+𝐱j)2],\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2}\geq\frac{1}{3n-4}\left[2\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}+\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|^{2}-\frac{1}{(n-1)^{2}}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}\right],\\ (20)

where \|\cdot\| denotes the operator norm of a matrix.

Proof. By using the equations

1i<jn𝐱i+𝐱j2=i=1n𝐱i2+(n2)i=1n𝐱i2,\displaystyle\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}=\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}+(n-2)\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2}, (21)

and

1i<jn𝐱i𝐱j2=ni=1n𝐱i2i=1n𝐱i2,\displaystyle\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|^{2}=n\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2}-\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}, (22)

we can derive that

i=1n𝐱i2=1mn+(n2)l[l1i<jn𝐱i+𝐱j2+m1i<jn𝐱i𝐱j2+(ml)i=1n𝐱i2]\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2}=\frac{1}{mn+(n-2)l}\left[l\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}+m\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|^{2}+(m-l)\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}\right] (23)

for arbitrary m,l0m,l\neq 0 holds.

Then according to the inequality relations

1i<jn𝐱i±𝐱j22n(n1)(1i<jn𝐱i±𝐱j)2,\displaystyle\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}\pm{{\mathbf{x}}_{j}}\|^{2}\geq{\frac{2}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}\pm{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}}, (24)

we can get

i=1n𝐱i21mn+(n2)l[2ln(n1)(1i<jn𝐱i+𝐱j)2+m1i<jn𝐱i𝐱j2+(ml)i=1n𝐱i2]\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2}\geq\frac{1}{mn+(n-2)l}\left[{\frac{2l}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}}+m\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|^{2}+(m-l)\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}\right] (25)

and

i=1n𝐱i21mn+(n2)l[l1i<jn𝐱i+𝐱j2+2mn(n1)(1i<jn𝐱i𝐱j)2+(ml)i=1n𝐱i2]\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2}\geq\frac{1}{mn+(n-2)l}\left[l\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}+{\frac{2m}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}}+(m-l)\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}\right] (26)

for m,l0m,l\geq 0. Due to i=1n𝐱i21(n1)2(1i<jn𝐱i+𝐱j)2\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}\leq\frac{1}{(n-1)^{2}}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}, when l>m>0l>m>0, we have

i=1n𝐱i21mn+(n2)l[l1i<jn𝐱i+𝐱j2+m1i<jn𝐱i𝐱j2+ml(n1)2(1i<jn𝐱i+𝐱j)2].\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2}\geq\frac{1}{mn+(n-2)l}\left[l\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}+m\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|^{2}+\frac{m-l}{(n-1)^{2}}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}\right].\\ (27)

For special case m=2,l=1m=2,~{}l=1, we obtain inequality (18). In the case m=1,l=2m=1,~{}l=2, one gets inequalities (19) and (20). \hfill\blacksquare

When n(2)n~{}(\geq 2) is determined, the larger mm and the smaller ll, the bigger right side of inequalities (15) and (17), the larger ll and the smaller mm, the bigger right side of inequality (16).

Note that for ml>0m\geq l>0 we have

i=1n𝐱i2\displaystyle\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2} 1mn+(n2)l[2ln(n1)(1i<jn𝐱i+𝐱j)2+m1i<jn𝐱i𝐱j2+(ml)i=1n𝐱i2]\displaystyle\geq\frac{1}{mn+(n-2)l}\Bigg{[}\frac{2l}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}+m\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|^{2}+(m-l)\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}\Bigg{]} (28)
12n2[2n(n1)(1i<jn𝐱i+𝐱j)2+1i<jn𝐱i𝐱j2],\displaystyle\geq\frac{1}{2n-2}\Bigg{[}\frac{2}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}+\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|^{2}\Bigg{]},

and for lm>0l\geq m>0 one obtains

i=1n𝐱i2\displaystyle\sum\limits_{i=1}^{n}\|{\mathbf{x}}_{i}\|^{2} 1mn+(n2)l[2mn(n1)(1i<jn𝐱i𝐱j)2+l1i<jn𝐱i+𝐱j2+(ml)i=1n𝐱i2]\displaystyle\geq\frac{1}{mn+(n-2)l}\Bigg{[}\frac{2m}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}+l\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}+(m-l)\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}\Bigg{]} (29)
12n2[2n(n1)(1i<jn𝐱i𝐱j)2+1i<jn𝐱i+𝐱j2]\displaystyle\geq\frac{1}{2n-2}\Bigg{[}\frac{2}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}+\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}\Bigg{]}
1ni=1n𝐱i2+2n2(n1)(1i<jn𝐱i𝐱j)2,\displaystyle\geq\frac{1}{n}\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}+\frac{2}{n^{2}(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|\Bigg{)}^{2},

and for l>m>0l>m>0 we get

i=1n𝐱i2\displaystyle\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2} 1mn+(n2)l[l1i<jn𝐱i+𝐱j2+m1i<jn𝐱i𝐱j2+ml(n1)2(1i<jn𝐱i+𝐱j)2]\displaystyle\geq\frac{1}{mn+(n-2)l}\left[l\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}+m\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|^{2}+\frac{m-l}{(n-1)^{2}}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}\right] (30)
1n2[1i<jn𝐱i+𝐱j21(n1)2(1i<jn𝐱i+𝐱j)2].\displaystyle\geq\frac{1}{n-2}\left[\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}-\frac{1}{(n-1)^{2}}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}\right].

Here the second inequality of (28) is strictly greater than when m>l>0m>l>0, the second inequality of (29) and (30) is strictly greater than when l>m>0l>m>0 and n>2n>2. So the inequality (18) and the inequality in 5 have the following relation

i=1n𝐱i2\displaystyle\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2} 13n2[2n(n1)(1i<jn𝐱i+𝐱j)2+21i<jn𝐱i𝐱j2+i=1n𝐱i2]\displaystyle\geq\frac{1}{3n-2}\Bigg{[}\frac{2}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}+2\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|^{2}+\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}\Bigg{]} (31)
>12n2[2n(n1)(1i<jn𝐱i+𝐱j)2+1i<jn𝐱i𝐱j2],\displaystyle>\frac{1}{2n-2}\Bigg{[}\frac{2}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}+\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|^{2}\Bigg{]},

and the inequality (19) and the inequalities in 2 ; 5 have the relation

i=1n𝐱i2\displaystyle\sum\limits_{i=1}^{n}\|{\mathbf{x}}_{i}\|^{2} 13n4[2n(n1)(1i<jn𝐱i𝐱j)2+21i<jn𝐱i+𝐱j2i=1n𝐱i2]\displaystyle\geq\frac{1}{3n-4}\Bigg{[}\frac{2}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}+2\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}-\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}\Bigg{]} (32)
12n2[2n(n1)(1i<jn𝐱i𝐱j)2+1i<jn𝐱i+𝐱j2]\displaystyle\geq\frac{1}{2n-2}\Bigg{[}\frac{2}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}+\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}\Bigg{]}
1ni=1n𝐱i2+2n2(n1)(1i<jn𝐱i𝐱j)2,\displaystyle\geq\frac{1}{n}\Bigg{\|}\sum\limits_{i=1}^{n}{\mathbf{x}}_{i}\Bigg{\|}^{2}+\frac{2}{n^{2}(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|\Bigg{)}^{2},

and when n>2n>2, the relation between the inequality (20) and the inequality in 28 is

i=1n𝐱i2\displaystyle\sum\limits_{i=1}^{n}\|{{\mathbf{x}}_{i}}\|^{2} 13n4[21i<jn𝐱i+𝐱j2+1i<jn𝐱i𝐱j21(n1)2(1i<jn𝐱i+𝐱j)2]\displaystyle\geq\frac{1}{3n-4}\left[2\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}+\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}-{{\mathbf{x}}_{j}}\|^{2}-\frac{1}{(n-1)^{2}}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}\right] (33)
>1n2[1i<jn𝐱i+𝐱j21(n1)2(1i<jn𝐱i+𝐱j)2].\displaystyle>\frac{1}{n-2}\left[\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|^{2}-\frac{1}{(n-1)^{2}}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\|{{\mathbf{x}}_{i}}+{{\mathbf{x}}_{j}}\|\Bigg{)}^{2}\right].

These inequalities are helpful for us to explore the tighter uncertainty relations. Based on the inequalities (15)—(20), we give tighter sum uncertainty relations in the following Theorem.

Theorem 1. For finite nn observables M1,M2,,Mn(n2)M_{1},M_{2},\cdot\cdot\cdot,M_{n}~{}(n\geq 2), the sum uncertainty relation with respect to metric-adjusted skew information is

i=1nIρc(Mi)max{ineq37,ineq38,ineq39},\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}^{c}(M_{i})\geq\max\{\rm{ineq\ref{16},ineq\ref{15},ineq\ref{64}}\}, (34)

Specially, we have

i=1nIρc(Mi)max{ineq40,ineq41,ineq42},\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}^{c}(M_{i})\geq\max\{\rm{ineq\ref{016},ineq\ref{015},ineq\ref{65}}\}, (35)

where the ineq37—ineq42 represent the lower bounds of inequality (37)—inequality (42), respectively.

Proof. Because the symmetric monotone metrics Kρc(,)K_{\rho}^{c}(\cdot,\cdot) are satisfied with the norm property, according to inequality (15), one has

i=1nKρc(i[ρ,Mi],\displaystyle\sum\limits_{i=1}^{n}K_{\rho}^{c}({\rm i}[\rho,M_{i}], i[ρ,Mi])1mn+(n2)l{2ln(n1)(1i<jnKρc(i[ρ,Mi+Mj],i[ρ,Mi+Mj]))2+\displaystyle{\rm i}[\rho,M_{i}])\geq\frac{1}{mn+(n-2)l}{\left\{\frac{2l}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{K_{\rho}^{c}({\rm i}[\rho,M_{i}+M_{j}],{\rm i}[\rho,M_{i}+M_{j}])}\Bigg{)}^{2}+\right.} (36)
m1i<jnKρc(i[ρ,MiMj],i[ρ,MiMj])+(ml)Kρc(i[ρ,i=1nMi],i[ρ,i=1nMi])}\displaystyle{\left.m\sum\limits_{1\leq i<j\leq n}K_{\rho}^{c}({\rm i}[\rho,M_{i}-M_{j}],{\rm i}[\rho,M_{i}-M_{j}])+(m-l)K_{\rho}^{c}\bigg{(}{\rm i}\bigg{[}\rho,\sum\limits_{i=1}^{n}M_{i}\bigg{]},{\rm i}\bigg{[}\rho,\sum\limits_{i=1}^{n}M_{i}\bigg{]}\bigg{)}\right\}}

for ml>0m\geq l>0. Multiply both sides of inequality (36) by a constant f(0)2\frac{f(0)}{2}, we can derive

i=1nIρc(Mi)\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}^{c}(M_{i})\geq 1mn+(n2)l{2ln(n1)(1i<jnIρc(Mi+Mj))2+\displaystyle\frac{1}{mn+(n-2)l}{\left\{\frac{2l}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}^{c}(M_{i}+M_{j})}\Bigg{)}^{2}+\right.} (37)
m1i<jnIρc(MiMj)+(ml)Iρc(i=1nMi)}.\displaystyle{\left.m\sum\limits_{1\leq i<j\leq n}{I}_{\rho}^{c}(M_{i}-M_{j})+(m-l){I}_{\rho}^{c}\bigg{(}\sum\limits_{i=1}^{n}M_{i}\bigg{)}\right\}}.

Using the similar procedure, for lm>0l\geq m>0 we can get

i=1nIρc(Mi)\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}^{c}(M_{i})\geq 1mn+(n2)l{2mn(n1)(1i<jnIρc(MiMj))2+\displaystyle\frac{1}{mn+(n-2)l}{\left\{\frac{2m}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}^{c}(M_{i}-M_{j})}\Bigg{)}^{2}+\right.} (38)
l1i<jnIρc(Mi+Mj)+(ml)Iρc(i=1nMi)},\displaystyle{\left.l\sum\limits_{1\leq i<j\leq n}{I}_{\rho}^{c}(M_{i}+M_{j})+(m-l){I}_{\rho}^{c}\bigg{(}\sum\limits_{i=1}^{n}{M}_{i}\bigg{)}\right\}},

and for l>m>0l>m>0 one reads

i=1nIρc(Mi)\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}^{c}(M_{i})\geq 1mn+(n2)l{l1i<jnIρc(Mi+Mj)+m1i<jnIρc(MiMj)\displaystyle\frac{1}{mn+(n-2)l}{\left\{l\sum\limits_{1\leq i<j\leq n}{I}_{\rho}^{c}(M_{i}+M_{j})+m\sum\limits_{1\leq i<j\leq n}{I}_{\rho}^{c}(M_{i}-M_{j})\right.} (39)
+ml(n1)2(1i<jnIρc(Mi+Mj))2}.\displaystyle{\left.+\frac{m-l}{(n-1)^{2}}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}^{c}(M_{i}+M_{j})}\Bigg{)}^{2}\right\}}.

If we take m=2m=2, l=1l=1, the inequality (37) turns into

i=1nIρc(Mi)\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}^{c}(M_{i})\geq 13n2{2n(n1)(1i<jnIρc(Mi+Mj))2+21i<jnIρc(MiMj)+Iρc(i=1nMi)}.\displaystyle\frac{1}{3n-2}{\left\{\frac{2}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}^{c}(M_{i}+M_{j})}\Bigg{)}^{2}+2\sum\limits_{1\leq i<j\leq n}{I}_{\rho}^{c}(M_{i}-M_{j})+{I}_{\rho}^{c}\bigg{(}\sum\limits_{i=1}^{n}M_{i}\bigg{)}\right\}}. (40)

If we take m=1m=1, l=2l=2, the inequality (38) becomes

i=1nIρc(Mi)\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}^{c}(M_{i})\geq 13n4{2n(n1)(1i<jnIρc(MiMj))2+21i<jnIρc(Mi+Mj)Iρc(i=1nMi)},\displaystyle\frac{1}{3n-4}{\left\{\frac{2}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}^{c}(M_{i}-M_{j})}\Bigg{)}^{2}+2\sum\limits_{1\leq i<j\leq n}{I}_{\rho}^{c}(M_{i}+M_{j})-{I}_{\rho}^{c}\bigg{(}\sum\limits_{i=1}^{n}M_{i}\bigg{)}\right\}}, (41)

and the inequality (39) reduces to

i=1nIρc(Mi)\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}^{c}(M_{i})\geq 13n4{21i<jnIρc(Mi+Mj)+1i<jnIρc(MiMj)\displaystyle\frac{1}{3n-4}{\left\{2\sum\limits_{1\leq i<j\leq n}{I}_{\rho}^{c}(M_{i}+M_{j})+\sum\limits_{1\leq i<j\leq n}{I}_{\rho}^{c}(M_{i}-M_{j})\right.} (42)
1(n1)2(1i<jnIρc(Mi+Mj))2}.\displaystyle{\left.-\frac{1}{(n-1)^{2}}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}^{c}(M_{i}+M_{j})}\Bigg{)}^{2}\right\}}.

For convenience, the lower bound of formula (34) is marked by LbLb, that is, Lb=max{ineq37,ineq38,ineq39}Lb=\max\{\rm{ineq\ref{16},ineq\ref{15},ineq\ref{64}}\}. \hfill\blacksquare

The following we illustrate that the lower bound obtained by us is stronger than the lower bounds in 3 ; 1 ; 27 . Because the uncertainty relations are derived by using the norm inequalities, according to the relationship between the norm inequalities presented in (28), (29), and (30), it is not difficult to show the lower bound LbLb obtained by us is more accurate than the lower bounds of inequalities (12), (13), and (14).

It is acknowledged that different results can be obtained by taking different Morozova-Chentsov functions for metric-adjusted skew information. Herein, we first consider the Morozova-Chentsov function with the form of Eq. (9). Meanwhile, the following results are obtained.

Corollary 1. For finite nn observables M1,M2,,Mn(n2)M_{1},M_{2},\cdot\cdot\cdot,M_{n}~{}(n\geq 2), the sum uncertainty relations with respect to Wigner-Yanase-Dyson skew information are that for ml>0m\geq l>0 we can obtain

i=1nIρα(Mi)\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}^{\alpha}(M_{i})\geq 1mn+(n2)l{2ln(n1)(1i<jnIρα(Mi+Mj))2+\displaystyle\frac{1}{mn+(n-2)l}{\left\{\frac{2l}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}^{\alpha}(M_{i}+M_{j})}\Bigg{)}^{2}+\right.} (43)
m1i<jnIρα(MiMj)+(ml)Iρα(i=1nMi)},\displaystyle{\left.m\sum\limits_{1\leq i<j\leq n}{I}_{\rho}^{\alpha}(M_{i}-M_{j})+(m-l){I}_{\rho}^{\alpha}\bigg{(}\sum\limits_{i=1}^{n}M_{i}\bigg{)}\right\}},

and for lm>0l\geq m>0 one derives

i=1nIρα(Mi)\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}^{\alpha}(M_{i})\geq 1mn+(n2)l{2mn(n1)(1i<jnIρα(MiMj))2+\displaystyle\frac{1}{mn+(n-2)l}{\left\{\frac{2m}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}^{\alpha}(M_{i}-M_{j})}\Bigg{)}^{2}+\right.} (44)
l1i<jnIρα(Mi+Mj)+(ml)Iρα(i=1nMi)},\displaystyle{\left.l\sum\limits_{1\leq i<j\leq n}{I}_{\rho}^{\alpha}(M_{i}+M_{j})+(m-l){I}_{\rho}^{\alpha}\bigg{(}\sum\limits_{i=1}^{n}{M}_{i}\bigg{)}\right\}},

and for l>m>0l>m>0 one reads

i=1nIρα(Mi)\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}^{\alpha}(M_{i})\geq 1mn+(n2)l{l1i<jnIρα(Mi+Mj)+m1i<jnIρα(MiMj)\displaystyle\frac{1}{mn+(n-2)l}{\left\{l\sum\limits_{1\leq i<j\leq n}{I}_{\rho}^{\alpha}(M_{i}+M_{j})+m\sum\limits_{1\leq i<j\leq n}{I}_{\rho}^{\alpha}(M_{i}-M_{j})\right.} (45)
+ml(n1)2(1i<jnIρα(Mi+Mj))2}.\displaystyle{\left.+\frac{m-l}{(n-1)^{2}}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}^{\alpha}(M_{i}+M_{j})}\Bigg{)}^{2}\right\}}.

Thus we have i=1nIρα(Mi)max{ineq43,ineq44,ineq45}\sum\limits_{i=1}^{n}{I}_{\rho}^{\alpha}(M_{i})\geq\max\{{\rm ineq}\ref{19},{\rm ineq}\ref{20},{\rm ineq}\ref{66}\}, where ineq43, ineq44, and ineq45 represent the lower bounds of inequality (43), inequality (44), and inequality (45), respectively.

When α=12\alpha=\frac{1}{2}, the inequalities (43), (44), and (45) can be further reduced to the uncertainty inequalities with respect to Wigner-Yanase skew information, as shown below. For ml>0m\geq l>0 we get

i=1nIρ(Mi)\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}(M_{i})\geq 1mn+(n2)l{2ln(n1)(1i<jnIρ(Mi+Mj))2+\displaystyle\frac{1}{mn+(n-2)l}{\left\{\frac{2l}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}(M_{i}+M_{j})}\Bigg{)}^{2}+\right.} (46)
m1i<jnIρ(MiMj)+(ml)Iρ(i=1nMi)},\displaystyle{\left.m\sum\limits_{1\leq i<j\leq n}{I}_{\rho}(M_{i}-M_{j})+(m-l){I}_{\rho}\bigg{(}\sum\limits_{i=1}^{n}M_{i}\bigg{)}\right\}},

and for lm>0l\geq m>0 one obtains

i=1nIρ(Mi)\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}(M_{i})\geq 1mn+(n2)l{2mn(n1)(1i<jnIρ(MiMj))2+\displaystyle\frac{1}{mn+(n-2)l}{\left\{\frac{2m}{n(n-1)}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}(M_{i}-M_{j})}\Bigg{)}^{2}+\right.} (47)
l1i<jnIρ(Mi+Mj)+(ml)Iρ(i=1nMi)},\displaystyle{\left.l\sum\limits_{1\leq i<j\leq n}{I}_{\rho}(M_{i}+M_{j})+(m-l){I}_{\rho}\bigg{(}\sum\limits_{i=1}^{n}{M}_{i}\bigg{)}\right\}},

and for l>m>0l>m>0 one reads

i=1nIρ(Mi)\displaystyle\sum\limits_{i=1}^{n}{I}_{\rho}(M_{i})\geq 1mn+(n2)l{l1i<jnIρ(Mi+Mj)+m1i<jnIρ(MiMj)\displaystyle\frac{1}{mn+(n-2)l}{\left\{l\sum\limits_{1\leq i<j\leq n}{I}_{\rho}(M_{i}+M_{j})+m\sum\limits_{1\leq i<j\leq n}{I}_{\rho}(M_{i}-M_{j})\right.} (48)
+ml(n1)2(1i<jnIρ(Mi+Mj))2}.\displaystyle{\left.+\frac{m-l}{(n-1)^{2}}\Bigg{(}\sum\limits_{1\leq i<j\leq n}\sqrt{{I}_{\rho}(M_{i}+M_{j})}\Bigg{)}^{2}\right\}}.

So we have i=1nIρ(Mi)max{ineq46,ineq47,ineq48}\sum\limits_{i=1}^{n}{I}_{\rho}(M_{i})\geq\max\{{\rm ineq}\ref{32},{\rm ineq}\ref{33},{\rm ineq}\ref{67}\}, where ineq46, ineq47, and ineq48 represent the lower bounds of inequality (46), inequality (47), and inequality (48), respectively.

It is highly natural to get that the lower bound max{ineq46,ineq47,ineq48}\max\{\rm{ineq\ref{32},ineq\ref{33}},{\rm ineq}\ref{67}\} is superior to the lower bounds in 4 ; 2 ; 29 .

Next we present two examples in term of Wigner-Yanase-Dyson skew information to illustrate the superiority of our result. In the examples below we consider a special case, where we take m=2m=2, l=1l=1 for inequality (37), and m=1m=1, l=2l=2 for inequalities (38) and (39).

Example 1. Assume a qubit state ρ=I+rσ2\rho=\frac{I+\vec{r}\cdot\vec{\sigma}}{2} with r\vec{r}=(32\frac{\sqrt{3}}{2}cosθ\theta, 32\frac{\sqrt{3}}{2}sinθ\theta, 0), and regard Pauli operators σx,σy,σz\sigma_{x},~{}\sigma_{y},~{}\sigma_{z} as observables. The first three figures of FIG. 1 show the comparison of lower bounds for any α\alpha. The (a) depicts the lower bounds LbLb and Lb1Lb_{1}. The difference value between the lower bound LbLb and Lb2Lb_{2} is illustrated in (b), and LbLb2Lb-Lb_{2} is nonnegative, that is, LbLb2Lb\geq Lb_{2}. Similarly, the lower bounds LbLb and Lb3Lb_{3} are compared in (c), and LbLb3Lb\geq Lb_{3}. Evidently, the lower bound LbLb is larger than Lb1Lb_{1}, Lb2Lb_{2}, Lb3Lb_{3}. Considering a special case, we take α=13\alpha=\frac{1}{3}. In FIG. 1(d), we only show the lower bounds LbLb, Lb3Lb_{3}. And one can find that the lower bound obtained by us is closer to the sum Iρ1/3(σx)+Iρ1/3(σy)+Iρ1/3(σz){I}_{\rho}^{1/3}(\sigma_{x})+{I}_{\rho}^{1/3}(\sigma_{y})+{I}_{\rho}^{1/3}(\sigma_{z}).

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: In (a), compared with the lower bounds for qubit states ρ\rho. The red surface represents the lower bound LbLb for arbitrary α\alpha; the green surface is the lower bound Lb1Lb_{1} for arbitrary α\alpha. The (b) stands for the difference value between the lower bound LbLb and Lb2Lb_{2}. The (c) denotes the difference value between the lower bound LbLb and Lb3Lb_{3}. Evidently, the lower bound LbLb is more accurate than Lb1Lb_{1}, Lb2Lb_{2}, Lb3Lb_{3}. Specially, in (d), we fix α=13\alpha=\frac{1}{3}. The black line expresses Iρ1/3(σx)+Iρ1/3(σy)+Iρ1/3(σz){I}_{\rho}^{1/3}(\sigma_{x})+{I}_{\rho}^{1/3}(\sigma_{y})+{I}_{\rho}^{1/3}(\sigma_{z}); the red line and the blue line are the lower bounds LbLb and Lb3Lb_{3}, respectively.

Example 2. For a Gisin state ρ=λ|φ(θ)φ(θ)|+(1λ)σ\rho=\lambda|\varphi(\theta)\rangle\langle\varphi(\theta)|+(1-\lambda)\sigma with |φ(θ)=sinθ|01cosθ|10|\varphi(\theta)\rangle=\rm{sin}\theta|01\rangle-\rm{cos}\theta|10\rangle, σ=12|0000|+12|1111|\sigma=\frac{1}{2}|00\rangle\langle 00|+\frac{1}{2}|11\rangle\langle 11|, 0λ10\leq\lambda\leq 1, and 0θ2π0\leq\theta\leq 2\pi. The operators Iσx,Iσy,IσzI\otimes\sigma_{x},~{}I\otimes\sigma_{y},~{}I\otimes\sigma_{z} are viewed as observables. Herein, we take α=13\alpha=\frac{1}{3}. The FIG. 2(a) depicts the lower bounds LbLb and Lb1Lb_{1}. The difference values of lower bounds are shown in FIG. 2(b) which depicts LbLb3Lb-Lb_{3} and LbLb2Lb-Lb_{2}, and they are nonnegative. Therefore, the lower bound LbLb obtained by us is the most accurate.

Refer to caption
Refer to caption
Figure 2: In (a), compared with the lower bounds for Gisin state ρ\rho, we fix α=13\alpha=\frac{1}{3}. The red upper surface represents the lower bound LbLb; the green surface stands for the lower bound Lb1Lb_{1}. Obviously, the lower bound LbLb we obtained is larger. The upper surface of (b) denotes the difference value between the lower bound LbLb and the lower bound Lb2Lb_{2}, the below surface of (b) is the difference value between the lower bound LbLb and the lower bound Lb3Lb_{3}.

IV Uncertainty relations of finite quantum channels

In this section, the different types of uncertainty relations associated with any finite quantum channels are presented in terms of metric-adjusted skew information, and the conclusions also hold for its special metrics, such as those mentioned above in Sec. II. In addition, we prove which of the two corresponding forms yields a better lower bound, and then an optimal lower bound is given. We also provide two examples for the sake of illustrating our results.

Given a quantum state ρ\rho and a quantum channel Φ\Phi represented by Kraus operators Φ(ρ)=jKjρKj\Phi(\rho)=\sum\limits_{j}K_{j}\rho K_{j}^{\dagger}. In 3 , Cai gave an uncertainty quantification associated with channel Φ\Phi with regard to metric-adjusted skew information

Iρc(Φ)=jIρc(Kj),\displaystyle{I}_{\rho}^{c}(\Phi)=\sum\limits_{j}{I}_{\rho}^{c}(K_{j}), (49)

where

Iρc(Kj)\displaystyle{I}_{\rho}^{c}(K_{j}) =m(c)2Kρc(i[ρ,Kj],i[ρ,Kj])\displaystyle=\frac{m(c)}{2}{K}_{\rho}^{c}({\rm i}[\rho,K_{j}],{\rm i}[\rho,K_{j}]) (50)
=m(c)2Tr{i[ρ,Kj]c(Lρ,Rρ)i[ρ,Kj]}.\displaystyle=\frac{m(c)}{2}{\rm Tr}\left\{{\rm i}[\rho,K_{j}^{\dagger}]c(L_{\rho},R_{\rho}){\rm i}[\rho,K_{j}]\right\}.

Analogously, Iρc(Φ){I}_{\rho}^{c}(\Phi) reduces to Wigner-Yanase-Dyson skew information Iρα(Φ){I}_{\rho}^{\alpha}(\Phi) when c=cαc=c^{\alpha}, the specific form is

Iρα(Φ)=jIρα(Kj)=12jTr[ρα,Kj][ρ1α,Kj].\displaystyle{I}_{\rho}^{\alpha}(\Phi)=\sum\limits_{j}{I}_{\rho}^{\alpha}(K_{j})=-\frac{1}{2}\sum\limits_{j}{\rm{Tr}}[\rho^{\alpha},K_{j}^{\dagger}][\rho^{1-\alpha},K_{j}]. (51)

When α=12\alpha=\frac{1}{2}, Iρα(Φ){I}_{\rho}^{\alpha}(\Phi) can be turned into the form

Iρ(Φ)=jIρ(Kj)=12jTr[ρ1/2,Kj][ρ1/2,Kj],\displaystyle{I}_{\rho}(\Phi)=\sum\limits_{j}{I}_{\rho}(K_{j})=-\frac{1}{2}\sum\limits_{j}{\rm{Tr}}[{\rho}^{{1}/{2}},K_{j}^{\dagger}][{\rho}^{{1}/{2}},K_{j}], (52)

which is Wigner-Yanase skew information associated with channel.

For arbitrary NN quantum channels Φ1,Φ2,,ΦN(N2)\Phi_{1},\Phi_{2},\cdot\cdot\cdot,\Phi_{N}~{}(N\geq 2), and each channel Φt\Phi_{t} is represented by Kraus operators, i.e., Φt(ρ)=j=1nKjtρ(Kjt)\Phi_{t}(\rho)=\sum\limits_{j=1}^{n}K_{j}^{t}\rho(K_{j}^{t})^{\dagger}, t=1,2,,Nt=1,2,\cdot\cdot\cdot,N. In 1 , Ren etal.et~{}al. gave two sum uncertainty quantification associated with channels,

t=1NIρc(Φt)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq maxπt,πsSn1N2{1t<sNj=1nIρc(Kπt(j)t+Kπs(j)s)\displaystyle\mathop{\rm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{N-2}{\left\{\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}-\right.} (53)
1(N1)2[j=1n(1t<sNIρc(Kπt(j)t+Kπs(j)s))2]},\displaystyle{\left.\frac{1}{(N-1)^{2}}\Bigg{[}\sum\limits_{j=1}^{n}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\Bigg{]}\right\}},

and

t=1NIρc(Φt)maxπt,πsSn{1Nj=1nIρc(t=1NKπt(j)t)+2N2(N1)[j=1n(1t<sNIρc(Kπt(j)tKπs(j)s))2]}.\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq\mathop{\rm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}{\left\{\frac{1}{N}\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Bigg{(}\sum\limits_{t=1}^{N}K_{\pi_{t}(j)}^{t}\Bigg{)}+\frac{2}{N^{2}(N-1)}\Bigg{[}\sum\limits_{j=1}^{n}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\Bigg{]}\right\}}. (54)

The formula (53) can be used when N>2N>2, while the formula (54) can be used when N2N\geq 2. For simplicity, the lower bounds in (53) and (54) are marked by LB1¯\overline{LB_{1}}, and LB2¯\overline{LB_{2}}, respectively.

Next, we will present the sum uncertainty relation of arbitrary finite NN quantum channels with regard to metric-adjusted skew information.

Theorem 2. For arbitrary NN quantum channels Φ1,Φ2,,ΦN(N2)\Phi_{1},\Phi_{2},\cdot\cdot\cdot,\Phi_{N}~{}(N\geq 2), and each channel Φt\Phi_{t} is represented by Kraus operators, Φt(ρ)=j=1nKjtρ(Kjt)\Phi_{t}(\rho)=\sum\limits_{j=1}^{n}K_{j}^{t}\rho(K_{j}^{t})^{\dagger}, t=1,2,,Nt=1,2,\cdot\cdot\cdot,N, one reads

t=1NIρc(Φt)max{ineq58,ineq59,ineq60}.\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq\max\{\rm ineq\ref{27},ineq\ref{28},ineq\ref{68}\}. (55)

Specially, we have

t=1NIρc(Φt)max{ineq61,ineq62,ineq63}.\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq\max\{\rm ineq\ref{027},ineq\ref{028},ineq\ref{69}\}. (56)

where ineq58—ineq63 represent the lower bounds of inequality (58)—inequality (63), respectively.

Proof. According to the norm inequality of Lemma 1, we can get

t=1NIρc(Kπt(j)t)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(K_{\pi_{t}(j)}^{t})\geq 1mn+(n2)l{2lN(N1)(1t<sNIρc(Kπt(j)t+Kπs(j)s))2\displaystyle\frac{1}{mn+(n-2)l}{\left\{\frac{2l}{N(N-1)}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\right.} (57)
+m1t<sNIρc(Kπt(j)tKπs(j)s)+(ml)Iρc(t=1NKπt(j)t)},\displaystyle{\left.+m\sum\limits_{1\leq t<s\leq N}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}+(m-l){I}_{\rho}^{c}\Bigg{(}\sum\limits_{t=1}^{N}K_{\pi_{t}(j)}^{t}\Bigg{)}\right\}},

both sides of this formula sum over jj, for ml>0m\geq l>0 we have

t=1NIρc(Φt)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq maxπt,πsSn1mn+(n2)l{2lN(N1)[j=1n(1t<sNIρc(Kπt(j)t+Kπs(j)s))2]\displaystyle\mathop{\rm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{mn+(n-2)l}{\left\{\frac{2l}{N(N-1)}\Bigg{[}\sum\limits_{j=1}^{n}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\Bigg{]}\right.} (58)
+m1t<sNj=1nIρc(Kπt(j)tKπs(j)s)+(ml)j=1nIρc(t=1NKπt(j)t)}.\displaystyle{\left.+m\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}+(m-l)\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Bigg{(}\sum\limits_{t=1}^{N}K_{\pi_{t}(j)}^{t}\Bigg{)}\right\}}.

Using the similar method, for lm>0l\geq m>0 we can get

t=1NIρc(Φt)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq maxπt,πsSn1mn+(n2)l{2mN(N1)[j=1n(1t<sNIρc(Kπt(j)tKπs(j)s))2]\displaystyle\mathop{\max}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{mn+(n-2)l}{\left\{\frac{2m}{N(N-1)}\Bigg{[}\sum\limits_{j=1}^{n}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\Bigg{]}\right.} (59)
+l1t<sNj=1nIρc(Kπt(j)t+Kπs(j)s)+(ml)j=1nIρc(t=1NKπt(j)t)},\displaystyle{\left.+l\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}+(m-l)\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Bigg{(}\sum\limits_{t=1}^{N}K_{\pi_{t}(j)}^{t}\Bigg{)}\right\}},

and for l>m>0l>m>0 one obtains

t=1NIρc(Φt)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq maxπt,πsSn1mn+(n2)l{l1t<sNj=1nIρc(Kπt(j)t+Kπs(j)s)+m1t<sNj=1nIρc(Kπt(j)tKπs(j)s)\displaystyle\mathop{\rm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{mn+(n-2)l}{\left\{l\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}+m\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}\right.} (60)
+ml(n1)2[j=1n(1t<sNIρc(Kπt(j)t+Kπs(j)s))2]}.\displaystyle{\left.+\frac{m-l}{(n-1)^{2}}\Bigg{[}\sum\limits_{j=1}^{n}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\Bigg{]}\right\}}.

Specially, if we take m=2m=2, l=1l=1, the inequality (58) turns into

t=1NIρc(Φt)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq maxπt,πsSn13N2{2N(N1)[j=1n(1t<sNIρc(Kπt(j)t+Kπs(j)s))2]\displaystyle\mathop{\rm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{3N-2}{\left\{\frac{2}{N(N-1)}\Bigg{[}\sum\limits_{j=1}^{n}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\Bigg{]}\right.} (61)
+21t<sNj=1nIρc(Kπt(j)tKπs(j)s)+j=1nIρc(t=1NKπt(j)t)},\displaystyle{\left.+2\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}+\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Bigg{(}\sum\limits_{t=1}^{N}K_{\pi_{t}(j)}^{t}\Bigg{)}\right\}},

If one takes m=1m=1, l=2l=2, the inequalities (59) and (60) respectively reduces into

t=1NIρc(Φt)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq maxπt,πsSn13N4{2N(N1)[j=1n(1t<sNIρc(Kπt(j)tKπs(j)s))2]\displaystyle\mathop{\rm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{3N-4}{\left\{\frac{2}{N(N-1)}\Bigg{[}\sum\limits_{j=1}^{n}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\Bigg{]}\right.} (62)
+21t<sNj=1nIρc(Kπt(j)t+Kπs(j)s)j=1nIρc(t=1NKπt(j)t)}.\displaystyle{\left.+2\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}-\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Bigg{(}\sum\limits_{t=1}^{N}K_{\pi_{t}(j)}^{t}\Bigg{)}\right\}}.

and

t=1NIρc(Φt)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq maxπt,πsSn13N4{21t<sNj=1nIρc(Kπt(j)t+Kπs(j)s)+1t<sNj=1nIρc(Kπt(j)tKπs(j)s)\displaystyle\mathop{\rm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{3N-4}{\left\{2\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}+\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}\right.} (63)
1(n1)2[j=1n(1t<sNIρc(Kπt(j)t+Kπs(j)s))2]}.\displaystyle{\left.-\frac{1}{(n-1)^{2}}\Bigg{[}\sum\limits_{j=1}^{n}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\Bigg{]}\right\}}.

Here πt,πsSn\pi_{t},\pi_{s}\in S_{n} are nn-element permutations. \hfill\blacksquare

By means of the norm inequality (29), for lm>0l\geq m>0 we can derive

t=1NIρc(Kπt(j)t)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(K_{\pi_{t}(j)}^{t})\geq 1mn+(n2)l{2mN(N1)(1t<sNIρc(Kπt(j)tKπs(j)s))2\displaystyle\frac{1}{mn+(n-2)l}{\left\{\frac{2m}{N(N-1)}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\right.} (64)
+l1t<sNIρc(Kπt(j)t+Kπs(j)s)+(ml)Iρc(t=1NKπt(j)t)}\displaystyle{\left.+l\sum\limits_{1\leq t<s\leq N}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}+(m-l){I}_{\rho}^{c}\Bigg{(}\sum\limits_{t=1}^{N}K_{\pi_{t}(j)}^{t}\Bigg{)}\right\}}
\displaystyle\geq 1NIρc(t=1NKπt(j)t)+2N2(N1)(1t<sNIρc(Kπt(j)tKπs(j)s))2,\displaystyle{\frac{1}{N}{I}_{\rho}^{c}\Bigg{(}\sum\limits_{t=1}^{N}K_{\pi_{t}(j)}^{t}\Bigg{)}+\frac{2}{N^{2}(N-1)}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}},

which leads to the result obtained by us being more accurate than the lower bound of inequality (54). In the same way, we can also demonstrate that ineq60 is greater than LB1¯\overline{LB_{1}} based on inequality (30).

The above results can be appropriate for its special measures, as Wigner-Yanase-Dyson skew information, thus the conclusions can be drawn as follows.

Corollary 2. For arbitrary NN quantum channels Φ1,Φ2,,ΦN(N2)\Phi_{1},\Phi_{2},\cdot\cdot\cdot,\Phi_{N}~{}(N\geq 2), and each channel Φt\Phi_{t} is represented by Kraus operators, Φt(ρ)=j=1nKjtρ(Kjt)\Phi_{t}(\rho)=\sum\limits_{j=1}^{n}K_{j}^{t}\rho(K_{j}^{t})^{\dagger}, t=1,2,,Nt=1,2,\cdot\cdot\cdot,N, for ml>0m\geq l>0 one has

t=1NIρα(Φt)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{\alpha}(\Phi_{t})\geq maxπt,πsSn1mn+(n2)l{2lN(N1)[j=1n(1t<sNIρα(Kπt(j)t+Kπs(j)s))2]\displaystyle\mathop{\rm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{mn+(n-2)l}{\left\{\frac{2l}{N(N-1)}\Bigg{[}\sum\limits_{j=1}^{n}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{\alpha}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\Bigg{]}\right.} (65)
+m1t<sNj=1nIρα(Kπt(j)tKπs(j)s)+(ml)j=1nIρα(t=1NKπt(j)t)},\displaystyle{\left.+m\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{\alpha}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}+(m-l)\sum\limits_{j=1}^{n}{I}_{\rho}^{\alpha}\Bigg{(}\sum\limits_{t=1}^{N}K_{\pi_{t}(j)}^{t}\Bigg{)}\right\}},

and for lm>0l\geq m>0 we have

t=1NIρα(Φt)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{\alpha}(\Phi_{t})\geq maxπt,πsSn1mn+(n2)l{2mN(N1)[j=1n(1t<sNIρα(Kπt(j)tKπs(j)s))2]\displaystyle\mathop{\rm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{mn+(n-2)l}{\left\{\frac{2m}{N(N-1)}\Bigg{[}\sum\limits_{j=1}^{n}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{\alpha}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\Bigg{]}\right.} (66)
+l1t<sNj=1nIρα(Kπt(j)t+Kπs(j)s)+(ml)j=1nIρα(t=1NKπt(j)t)},\displaystyle{\left.+l\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{\alpha}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}+(m-l)\sum\limits_{j=1}^{n}{I}_{\rho}^{\alpha}\Bigg{(}\sum\limits_{t=1}^{N}K_{\pi_{t}(j)}^{t}\Bigg{)}\right\}},

and for l>m>0l>m>0 one obtains

t=1NIρα(Φt)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{\alpha}(\Phi_{t})\geq maxπt,πsSn1mn+(n2)l{l1t<sNj=1nIρα(Kπt(j)t+Kπs(j)s)+m1t<sNj=1nIρα(Kπt(j)t\displaystyle\mathop{\rm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{mn+(n-2)l}{\left\{l\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{\alpha}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}+m\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{\alpha}\Big{(}K_{\pi_{t}(j)}^{t}\right.} (67)
Kπs(j)s)+ml(n1)2[j=1n(1t<sNIρα(Kπt(j)t+Kπs(j)s))2]}.\displaystyle{\left.-K_{\pi_{s}(j)}^{s}\Big{)}+\frac{m-l}{(n-1)^{2}}\Bigg{[}\sum\limits_{j=1}^{n}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{\alpha}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\Bigg{]}\right\}}.

Therefore, t=1NIρα(Φt)max{ineq65,ineq66,ineq67}\sum\limits_{t=1}^{N}{I}_{\rho}^{\alpha}(\Phi_{t})\geq\max\{\rm ineq\ref{30},ineq\ref{31},ineq\ref{70}\}, where ineq65, ineq66, and ineq67 represent the lower bounds of inequality (65), inequality (66), and inequality (67), respectively.

When α=12\alpha=\frac{1}{2}, the three uncertainty inequalities of Corollary 2 can be further simplified to Wigner-Yanase skew information, it is highly obvious that the lower bound of inequality (66) is superior to the lower bound of (2, , Theorem 3) according to the inequality (29), and the lower bound of inequality (67) is more precise than the lower bound of (2, , Theorem 2) according to the inequality (30).

The uncertainty quantification of channel Φ\Phi with regard to metric-adjusted skew information can also be expressed in the form

Iρc(Φ)\displaystyle{I}_{\rho}^{c}(\Phi) =m(c)2Tr{j=1ni[ρ,Kj]c(Lρ,Rρ)i[ρ,Kj]}\displaystyle=\frac{m(c)}{2}{\rm Tr}\bigg{\{}\sum_{j=1}^{n}{\rm i}[\rho,K_{j}^{\dagger}]c(L_{\rho},R_{\rho}){\rm i}[\rho,K_{j}]\bigg{\}} (68)
=m(c)2Tr(𝜶Inc(Lρ,Rρ)𝜶).\displaystyle=\frac{m(c)}{2}{\rm Tr}({\boldsymbol{\alpha}}^{\dagger}I_{n}\otimes c(L_{\rho},R_{\rho}){\boldsymbol{\alpha}}).

Here 𝜶=(i[ρ,K1],,i[ρ,Kn]){\boldsymbol{\alpha}}^{\dagger}=({\rm i}[\rho,K_{1}^{\dagger}],\cdots,{\rm i}[\rho,K_{n}^{\dagger}]). Therefore, on the basis of the inequalities (15), (16), and (17), for ml>0m\geq l>0 we have uncertainty relation

t=1NIρc(Φt)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq maxπt,πsSn1mn+(n2)l{2lN(N1)(1t<sNj=1nIρc(Kπt(j)t+Kπs(j)s))2\displaystyle\mathop{\rm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{mn+(n-2)l}{\left\{\frac{2l}{N(N-1)}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\right.} (69)
+m1t<sNj=1nIρc(Kπt(j)tKπs(j)s)+(ml)j=1nIρc(t=1NKπt(j)t)},\displaystyle{\left.+m\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}+(m-l)\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Bigg{(}\sum\limits_{t=1}^{N}K_{\pi_{t}(j)}^{t}\Bigg{)}\right\}},

and for lm>0l\geq m>0 one reads

t=1NIρc(Φt)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq maxπt,πsSn1mn+(n2)l{2mN(N1)(1t<sNj=1nIρc(Kπt(j)tKπs(j)s))2\displaystyle\mathop{\rm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{mn+(n-2)l}{\left\{\frac{2m}{N(N-1)}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\right.} (70)
+l1t<sNj=1nIρc(Kπt(j)t+Kπs(j)s)+(ml)j=1nIρc(t=1NKπt(j)t)},\displaystyle{\left.+l\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}+(m-l)\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Bigg{(}\sum\limits_{t=1}^{N}K_{\pi_{t}(j)}^{t}\Bigg{)}\right\}},

and for l>m>0l>m>0 one derives

t=1NIρc(Φt)\displaystyle\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq maxπt,πsSn1mn+(n2)l{l1t<sNj=1nIρc(Kπt(j)t+Kπs(j)s)+m1t<sNj=1nIρc(Kπt(j)tKπs(j)s)\displaystyle\mathop{\rm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{mn+(n-2)l}{\left\{l\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}+m\sum\limits_{1\leq t<s\leq N}\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}-K_{\pi_{s}(j)}^{s}\Big{)}\right.} (71)
+ml(n1)2(1t<sNj=1nIρc(Kπt(j)t+Kπs(j)s))2}.\displaystyle{\left.+\frac{m-l}{(n-1)^{2}}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}+K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\right\}}.

For simplicity, the lower bounds in (69), (70), and (71) are respectively marked by ineq69, ineq70, and ineq71, then let LB=max{ineq69,ineq70,ineq71}{LB}=\max\{\rm ineq\ref{48},ineq\ref{49},ineq\ref{71}\}, namely, t=1NIρc(Φt)LB\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq LB.

In 27 , Zhang etal.et~{}al. provided three lower bounds LB1LB1, LB2LB2, and LB3LB3, and the uncertainty relation t=1NIρc(Φt)max{LB1,LB2,LB3}\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq\max\{LB1,LB2,LB3\} (see reference 27 in detail).

According to the relationship between the norm inequalities given by (28), (29), and (30), it is not hard to show that the result LBLB derived by us is larger than the lower bound max{LB1,LB2,LB3}\max\{LB1,LB2,LB3\} in 27 .

The above results (69), (70), and (71) are also satisfied for special cases of metric-adjusted skew information.

Noted that the lower bounds of inequalities (58) and (69), (59) and (70), (60) and (71) are not equal in general. That is to say, the lower bounds obtained by the two distinct expressions of the sum uncertainty relation associated with channels are generally different. Next we will show that the lower bounds in (69), (70), and (60) are greater than the lower bounds in (58), (59), and (71), respectively. Because Iρc(){I}_{\rho}^{c}(\cdot) is nonnegative, the key is to prove (1t<sNj=1nIρc(Kπt(j)t±Kπs(j)s))2j=1n(1t<sNIρc(Kπt(j)t±Kπs(j)s))2\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}\pm K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}\geq\sum\limits_{j=1}^{n}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}\pm K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}. If we set yπt(j),πs(j)t,s=Iρc(Kπt(j)t±Kπs(j)s)y_{\pi_{t}(j),\pi_{s}(j)}^{t,s}={I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}\pm K_{\pi_{s}(j)}^{s}\Big{)}, then j=1n(1t<sNIρc(Kπt(j)t±Kπs(j)s))2=(yπ1(1),π2(1)1,2+yπ1(1),π3(1)1,3++yπN1(1),πN(1)N1,N)2+(yπ1(2),π2(2)1,2+yπ1(2),π3(2)1,3++yπN1(2),πN(2)N1,N)2++(yπ1(n),π2(n)1,2+yπ1(n),π3(n)1,3++yπN1(n),πN(n)N1,N)2\sum\limits_{j=1}^{n}\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}\pm K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}=\Big{(}\sqrt{y_{\pi_{1}(1),\pi_{2}(1)}^{1,2}}+\sqrt{y_{\pi_{1}(1),\pi_{3}(1)}^{1,3}}+\cdot\cdot\cdot+\sqrt{y_{\pi_{N-1}(1),\pi_{N}(1)}^{N-1,N}}\Big{)}^{2}+\Big{(}\sqrt{y_{\pi_{1}(2),\pi_{2}(2)}^{1,2}}+\sqrt{y_{\pi_{1}(2),\pi_{3}(2)}^{1,3}}+\cdot\cdot\cdot+\sqrt{y_{\pi_{N-1}(2),\pi_{N}(2)}^{N-1,N}}\Big{)}^{2}+\cdot\cdot\cdot+\Big{(}\sqrt{y_{\pi_{1}(n),\pi_{2}(n)}^{1,2}}+\sqrt{y_{\pi_{1}(n),\pi_{3}(n)}^{1,3}}+\cdot\cdot\cdot+\sqrt{y_{\pi_{N-1}(n),\pi_{N}(n)}^{N-1,N}}\Big{)}^{2}, (1t<sNj=1nIρc(Kπt(j)t±Kπs(j)s))2=(yπ1(1),π2(1)1,2+yπ1(2),π2(2)1,2++yπ1(n),π2(n)1,2+yπ1(1),π3(1)1,3+yπ1(2),π3(2)1,3++yπ1(n),π3(n)1,3++yπN1(1),πN(1)N1,N+yπN1(2),πN(2)N1,N++yπN1(n),πN(n)N1,N)2\Bigg{(}\sum\limits_{1\leq t<s\leq N}\sqrt{\sum\limits_{j=1}^{n}{I}_{\rho}^{c}\Big{(}K_{\pi_{t}(j)}^{t}\pm K_{\pi_{s}(j)}^{s}\Big{)}}\Bigg{)}^{2}=\Big{(}\sqrt{y_{\pi_{1}(1),\pi_{2}(1)}^{1,2}+y_{\pi_{1}(2),\pi_{2}(2)}^{1,2}+\cdot\cdot\cdot+y_{\pi_{1}(n),\pi_{2}(n)}^{1,2}}+\sqrt{y_{\pi_{1}(1),\pi_{3}(1)}^{1,3}+y_{\pi_{1}(2),\pi_{3}(2)}^{1,3}+\cdot\cdot\cdot+y_{\pi_{1}(n),\pi_{3}(n)}^{1,3}}+\cdot\cdot\cdot+\sqrt{y_{\pi_{N-1}(1),\pi_{N}(1)}^{N-1,N}+y_{\pi_{N-1}(2),\pi_{N}(2)}^{N-1,N}+\cdot\cdot\cdot+y_{\pi_{N-1}(n),\pi_{N}(n)}^{N-1,N}}\Big{)}^{2}. Given some permutation, there are nN(N1)2\frac{nN(N-1)}{2} different values here, we suppose the sets {yj1,yj2,,yja}\{y_{j}^{1},y_{j}^{2},\cdot\cdot\cdot,y_{j}^{a}\} and {yπt(j),πs(j)t,s|1t<sN}={yπ1(j),π2(j)1,2,yπ1(j),π3(j)1,3,,yπ1(j),πN(j)1,N,yπ2(j),π3(j)2,3,yπ2(j),π4(j)2,4,,yπ2(j),πN(j)2,N,,yπN1(j),πN(j)N1,N}\{y_{\pi_{t}(j),\pi_{s}(j)}^{t,s}|1\leq t<s\leq N\}=\{y_{\pi_{1}(j),\pi_{2}(j)}^{1,2},y_{\pi_{1}(j),\pi_{3}(j)}^{1,3},\cdot\cdot\cdot,y_{\pi_{1}(j),\pi_{N}(j)}^{1,N},y_{\pi_{2}(j),\pi_{3}(j)}^{2,3},y_{\pi_{2}(j),\pi_{4}(j)}^{2,4},\cdot\cdot\cdot,y_{\pi_{2}(j),\pi_{N}(j)}^{2,N},\cdot\cdot\cdot,y_{\pi_{N}-1(j),\pi_{N}(j)}^{N-1,N}\} correspond in order of elements, j=1,2,nj=1,2,\cdot\cdot\cdot n, a=N(N1)2a=\frac{N(N-1)}{2}. By subtracting, we derive (yπ1(1),π2(1)1,2+yπ1(1),π3(1)1,3++yπN1(1),πN(1)N1,N)2+(yπ1(2),π2(2)1,2+yπ1(2),π3(2)1,3++yπN1(2),πN(2)N1,N)2++(yπ1(n),π2(n)1,2+yπ1(n),π3(n)1,3++yπN1(n),πN(n)N1,N)2(yπ1(1),π2(1)1,2+yπ1(2),π2(2)1,2++yπ1(n),π2(n)1,2+yπ1(1),π3(1)1,3+yπ1(2),π3(2)1,3++yπ1(n),π3(n)1,3++yπN1(1),πN(1)N1,N+yπN1(2),πN(2)N1,N++yπN1(n),πN(n)N1,N)2=(y11+y12++y1a)2+(y21+y22++y2a)2++(yn1+yn2++yna)2(y11+y21++yn1+y12+y22++yn2++y1a+y2a++yna)2=2p<q(y1py1q+y2py2q++ynpynq)2p<qy1p+y2p++ynpy1q+y2q++ynq0\Big{(}\sqrt{y_{\pi_{1}(1),\pi_{2}(1)}^{1,2}}+\sqrt{y_{\pi_{1}(1),\pi_{3}(1)}^{1,3}}+\cdot\cdot\cdot+\sqrt{y_{\pi_{N-1}(1),\pi_{N}(1)}^{N-1,N}}\Big{)}^{2}+\Big{(}\sqrt{y_{\pi_{1}(2),\pi_{2}(2)}^{1,2}}+\sqrt{y_{\pi_{1}(2),\pi_{3}(2)}^{1,3}}+\cdot\cdot\cdot+\sqrt{y_{\pi_{N-1}(2),\pi_{N}(2)}^{N-1,N}}\Big{)}^{2}+\cdot\cdot\cdot+\Big{(}\sqrt{y_{\pi_{1}(n),\pi_{2}(n)}^{1,2}}+\sqrt{y_{\pi_{1}(n),\pi_{3}(n)}^{1,3}}+\cdot\cdot\cdot+\sqrt{y_{\pi_{N-1}(n),\pi_{N}(n)}^{N-1,N}}\Big{)}^{2}-\Big{(}\sqrt{y_{\pi_{1}(1),\pi_{2}(1)}^{1,2}+y_{\pi_{1}(2),\pi_{2}(2)}^{1,2}+\cdot\cdot\cdot+y_{\pi_{1}(n),\pi_{2}(n)}^{1,2}}+\sqrt{y_{\pi_{1}(1),\pi_{3}(1)}^{1,3}+y_{\pi_{1}(2),\pi_{3}(2)}^{1,3}+\cdot\cdot\cdot+y_{\pi_{1}(n),\pi_{3}(n)}^{1,3}}+\cdot\cdot\cdot+\sqrt{y_{\pi_{N-1}(1),\pi_{N}(1)}^{N-1,N}+y_{\pi_{N-1}(2),\pi_{N}(2)}^{N-1,N}+\cdot\cdot\cdot+y_{\pi_{N-1}(n),\pi_{N}(n)}^{N-1,N}}\Big{)}^{2}=\big{(}\sqrt{y_{1}^{1}}+\sqrt{y_{1}^{2}}+\cdot\cdot\cdot+\sqrt{y_{1}^{a}}\big{)}^{2}+\big{(}\sqrt{y_{2}^{1}}+\sqrt{y_{2}^{2}}+\cdot\cdot\cdot+\sqrt{y_{2}^{a}}\big{)}^{2}+\cdot\cdot\cdot+\big{(}\sqrt{y_{n}^{1}}+\sqrt{y_{n}^{2}}+\cdot\cdot\cdot+\sqrt{y_{n}^{a}}\big{)}^{2}-\big{(}\sqrt{y_{1}^{1}+y_{2}^{1}+\cdot\cdot\cdot+y_{n}^{1}}+\sqrt{y_{1}^{2}+y_{2}^{2}+\cdot\cdot\cdot+y_{n}^{2}}+\cdot\cdot\cdot+\sqrt{y_{1}^{a}+y_{2}^{a}+\cdot\cdot\cdot+y_{n}^{a}}\big{)}^{2}=2\sum\limits_{p<q}\big{(}\sqrt{y_{1}^{p}y_{1}^{q}}+\sqrt{y_{2}^{p}y_{2}^{q}}+\cdot\cdot\cdot+\sqrt{y_{n}^{p}y_{n}^{q}}\big{)}-2\sum\limits_{p<q}\sqrt{y_{1}^{p}+y_{2}^{p}+\cdot\cdot\cdot+y_{n}^{p}}\sqrt{y_{1}^{q}+y_{2}^{q}+\cdot\cdot\cdot+y_{n}^{q}}\leq 0, where the inequality is obtained because (y1py1q+y2py2q++ynpynq)2(y1p+y2p++ynp)(y1q+y2q++ynq)\big{(}\sqrt{y_{1}^{p}y_{1}^{q}}+\sqrt{y_{2}^{p}y_{2}^{q}}+\cdot\cdot\cdot+\sqrt{y_{n}^{p}y_{n}^{q}}\big{)}^{2}\leq({y_{1}^{p}+y_{2}^{p}+\cdot\cdot\cdot+y_{n}^{p}})({y_{1}^{q}+y_{2}^{q}+\cdot\cdot\cdot+y_{n}^{q}}) holds based on the triangle inequality. Due to the arbitrariness of permutation, the above conclusion holds for every permutation. The proof completes.

It is obvious that max{ineq69,ineq70,ineq60}\max\{\rm ineq\ref{48},ineq\ref{49},ineq\ref{68}\} is more precise than the lower bounds max{ineq58,ineq59,ineq60}\max\{\rm ineq\ref{27},ineq\ref{28},ineq\ref{68}\} and max{ineq69,ineq70,ineq71}\max\{\rm ineq\ref{48},ineq\ref{49},ineq\ref{71}\}. Therefore, we can get

t=1NIρc(Φt)max{ineq69,ineq70,ineq60}.\sum\limits_{t=1}^{N}{I}_{\rho}^{c}(\Phi_{t})\geq\max\{\rm ineq\ref{48},ineq\ref{49},ineq\ref{68}\}.\\ (72)

For simplicity, the right side of inequality (72) is marked by LB¯\overline{LB}.

To illustrate the tightness of our results, we compare the results obtained by us with existing results. The following we will show two examples based on Wigner-Yanase-Dyson skew information where we take m=2m=2, l=1l=1 for inequality (69), and m=1m=1, l=2l=2 for inequalities (60) and (70). One is that each channel has the same number of Kraus operators, and the other is that each channel has a different number of Kraus operators.

Example 3. Assume a mixed state ρ=I+rσ2\rho=\frac{I+\vec{r}\cdot\vec{\sigma}}{2} with r\vec{r}=(32\frac{\sqrt{3}}{2}cosθ\theta, 32\frac{\sqrt{3}}{2}sinθ\theta, 0), 0θπ0\leq\theta\leq\pi, and three channels Λ(ρ)=j=12EjρEj\Lambda(\rho)=\sum\limits_{j=1}^{2}E_{j}\rho E_{j}^{\dagger} with E1=1γ(|00|+|11|)E_{1}=\sqrt{1-\gamma}(|0\rangle\langle 0|+|1\rangle\langle 1|)E2=γ(|01|+|10|)E_{2}=\sqrt{\gamma}(|0\rangle\langle 1|+|1\rangle\langle 0|), ε(ρ)=j=12FjρFj\varepsilon(\rho)=\sum\limits_{j=1}^{2}F_{j}\rho F_{j}^{\dagger} with F1=1γ(|00|+|11|)F_{1}=\sqrt{1-\gamma}(|0\rangle\langle 0|+|1\rangle\langle 1|)F2=γ(|00||11|)F_{2}=\sqrt{\gamma}(|0\rangle\langle 0|-|1\rangle\langle 1|), ϕ(ρ)=j=12KjρKj\phi(\rho)=\sum\limits_{j=1}^{2}K_{j}\rho K_{j}^{\dagger} with K1=|00|+1γ|11|K_{1}=|0\rangle\langle 0|+\sqrt{1-\gamma}|1\rangle\langle 1|K2=γ|11|K_{2}=\sqrt{\gamma}|1\rangle\langle 1|, are called bit-flipping channel Λ\Lambda, phase-flipping channel ε\varepsilon, and amplitude damping channel ϕ\phi, respectively, where 0γ10\leq\gamma\leq 1. Then according to (53) and (54), one has Iρα(Λ)+Iρα(ε)+Iρα(ϕ)max{A1,A2,A3,A4}{I}_{\rho}^{\alpha}(\Lambda)+{I}_{\rho}^{\alpha}(\varepsilon)+{I}_{\rho}^{\alpha}(\phi)\geq{\rm{max}}\left\{A_{1},A_{2},A_{3},A_{4}\right\} and Iρα(Λ)+Iρα(ε)+Iρα(ϕ)max{B1,B2,B3,B4}{I}_{\rho}^{\alpha}(\Lambda)+{I}_{\rho}^{\alpha}(\varepsilon)+{I}_{\rho}^{\alpha}(\phi)\geq{\rm{max}}\left\{B_{1},B_{2},B_{3},B_{4}\right\}, where Aj,BjA_{j},~{}B_{j} (j=1,2,3,4)(j=1,2,3,4) are the lower bounds corresponding to {π1=(1),π2=(1),π3=(1)}\left\{\pi_{1}=(1),\pi_{2}=(1),\pi_{3}=(1)\right\}, {π1=(1),π2=(12),π3=(12)}\left\{\pi_{1}=(1),\pi_{2}=(12),\pi_{3}=(12)\right\}, {π1=(1),π2=(1),π3=(12)}\left\{\pi_{1}=(1),\pi_{2}=(1),\pi_{3}=(12)\right\} or {π1=(1),π2=(12),π3=(1)}\left\{\pi_{1}=(1),\pi_{2}=(12),\pi_{3}=(1)\right\}. Analogously, one can get Iρα(Λ)+Iρα(ε)+Iρα(ϕ){max{C1,C2,C3,C4},max{D1,D2,D3,D4},max{N1,N2,N3,N4}}{I}_{\rho}^{\alpha}(\Lambda)+{I}_{\rho}^{\alpha}(\varepsilon)+{I}_{\rho}^{\alpha}(\phi)\geq\{\max\{C_{1},C_{2},C_{3},C_{4}\},\max\{D_{1},D_{2},D_{3},D_{4}\},\max\{N_{1},N_{2},N_{3},N_{4}\}\} by inequalities (69), (70), and (60), respectively. Here the lower bounds Cj,Dj,NjC_{j},~{}D_{j},~{}N_{j} are similar to Aj,BjA_{j},~{}B_{j}, where j=1,2,3,4j=1,2,3,4. Here π1\pi_{1}, π2\pi_{2}, π3\pi_{3} need to take all of the binary permutations, but the lower bounds in the case {π1=(1),π2=(1),π3=(1)}\left\{\pi_{1}=(1),\pi_{2}=(1),\pi_{3}=(1)\right\} and the case {π1=(12),π2=(12),π3=(12)}\left\{\pi_{1}=(12),\pi_{2}=(12),\pi_{3}=(12)\right\} are same, similarly the lower bounds in the cases {π1=(1),π2=(12),π3=(12)}\left\{\pi_{1}=(1),\pi_{2}=(12),\pi_{3}=(12)\right\} and {π1=(12),π2=(1),π3=(1)}\left\{\pi_{1}=(12),\pi_{2}=(1),\pi_{3}=(1)\right\}, {π1=(1),π2=(1),π3=(12)}\left\{\pi_{1}=(1),\pi_{2}=(1),\pi_{3}=(12)\right\} and {π1=(12),π2=(12),π3=(1)}\left\{\pi_{1}=(12),\pi_{2}=(12),\pi_{3}=(1)\right\}, {π1=(1),π2=(12),π3=(1)}\left\{\pi_{1}=(1),\pi_{2}=(12),\pi_{3}=(1)\right\} and {π1=(12),π2=(1),π3=(12)}\left\{\pi_{1}=(12),\pi_{2}=(1),\pi_{3}=(12)\right\} are same, so we only need to consider four cases. When α=13\alpha=\frac{1}{3} and γ=0.7\gamma=0.7, apparently, the lower bound LB¯\overline{LB} we had is always greater than the lower bounds LB2¯\overline{LB_{2}} and LB1¯\overline{LB_{1}}, and our result LB¯\overline{LB} is highly close to Iρ1/3(Λ)+Iρ1/3(ε)+Iρ1/3(ϕ)I_{\rho}^{1/3}(\Lambda)+I_{\rho}^{1/3}(\varepsilon)+I_{\rho}^{1/3}(\phi), which is illustrated in FIG. 3(a). The FIG. 3(b) shows that the lower bound LB¯\overline{LB} is greater than the lower bound max{LB1,LB2,LB3}\max\{LB1,LB2,LB3\} in 27 .

Refer to caption
Refer to caption
Figure 3: Set α=13\alpha=\frac{1}{3} and γ=0.7\gamma=0.7. The black dashed line expresses the value of Iρ1/3(Λ)+Iρ1/3(ε)+Iρ1/3(ϕ)I_{\rho}^{1/3}(\Lambda)+I_{\rho}^{1/3}(\varepsilon)+I_{\rho}^{1/3}(\phi); the red line, the blue dashed line, and the green dashed line represent the lower bounds LB¯\overline{LB}, LB2¯\overline{LB_{2}} and LB1¯\overline{LB_{1}}, respectively. Obviously, the value of LB¯\overline{LB} is always larger than LB2¯\overline{LB_{2}} and LB1¯\overline{LB_{1}}. The (b) shows the difference value between the lower bound LB¯\overline{LB} and the lower bound in 27 , namely, LB¯max{LB1,LB2,LB3}>0\overline{LB}-\max\{LB1,LB2,LB3\}>0.

Example 4. Assume that the chosen quantum state is the same as in Example 3, we consider three channels here which are bit-flipping channel Λ\Lambda, phase-flipping channel ε\varepsilon, and one unitary channel UU, respectively, where Λ(ρ)=j=12EjρEj\Lambda(\rho)=\sum\limits_{j=1}^{2}E_{j}\rho E_{j}^{\dagger} with E1=1γ(|00|+|11|)E_{1}=\sqrt{1-\gamma}(|0\rangle\langle 0|+|1\rangle\langle 1|), E2=γ(|01|+|10|)E_{2}=\sqrt{\gamma}(|0\rangle\langle 1|+|1\rangle\langle 0|), ε(ρ)=j=12FjρFj\varepsilon(\rho)=\sum\limits_{j=1}^{2}F_{j}\rho F_{j}^{\dagger} with F1=1γ(|00|+|11|)F_{1}=\sqrt{1-\gamma}(|0\rangle\langle 0|+|1\rangle\langle 1|), F2=γ(|00||11|)F_{2}=\sqrt{\gamma}(|0\rangle\langle 0|-|1\rangle\langle 1|), 0γ10\leq\gamma\leq 1, and U=cosπ8|00|+sinπ8|01|sinπ8|10|+cosπ8|11|U={\rm cos}{\frac{\pi}{8}|0\rangle\langle 0|}+{\rm sin}{\frac{\pi}{8}|0\rangle\langle 1|}-{\rm sin}{\frac{\pi}{8}|1\rangle\langle 0|}+{\rm cos}{\frac{\pi}{8}|1\rangle\langle 1|}. Since each channel has a different number of Kraus operators, we adopt the method of supplementing 𝟎\mathbf{0} proposed by Ren etalet~{}al. in 1 . We then use the same procedure as in Example 3. When α=13\alpha=\frac{1}{3} and γ=0.7\gamma=0.7, one can see that LB¯\overline{LB} is stronger than LB1¯\overline{LB_{1}} and LB2¯\overline{LB_{2}}, which is illustrated in FIG. 4(a). Compared the lower bound LB¯\overline{LB} with the lower bound max{LB1,LB2,LB3}\max\{LB1,LB2,LB3\} in 27 as shown in FIG. 4(b), the result LB¯\overline{LB} is larger.

Refer to caption
Refer to caption
Figure 4: Set α=13\alpha=\frac{1}{3} and γ=0.7\gamma=0.7. In (a), the black dashed line is the value of Iρ1/3(Λ)+Iρ1/3(ε)+Iρ1/3(U)I_{\rho}^{1/3}(\Lambda)+I_{\rho}^{1/3}(\varepsilon)+I_{\rho}^{1/3}(U); the red line, the blue dashed line, and the green dashed line represent the lower bounds LB¯\overline{LB}, LB2¯\overline{LB_{2}} and LB1¯\overline{LB_{1}}, respectively. Obviously, the lower bound LB¯\overline{LB} is always tighter than LB1¯\overline{LB_{1}} and LB2¯\overline{LB_{2}}. The (b) shows the difference value between the lower bound LB¯\overline{LB} and the lower bound in 27 , namely, LB¯max{LB1,LB2,LB3}>0\overline{LB}-\max\{LB1,LB2,LB3\}>0.

V Conclusion

To sum up, we have obtained the new sum uncertainty relations with regard to metric-adjusted skew information of any finite observables and quantum channels by means of the norm inequalities we constructed, and proved our results are stronger than some results in 3 ; 1 ; 27 . The results also definitely hold for its special measures, and we have shown that our results are stronger than some results in 2 ; 4 ; 29 with respect to Wigner-Yanase skew information. For the two different uncertainty relations of channels, when utilizing the norm inequality (17), the lower bound derived directly by first form is better, when using the norm inequality (15) and (16), the results yielded by second form are superior. Using this result we gave an optimal bound. Meanwhile, several specific examples were given to illustrate more clearly that the conclusions we have drawn are superior to the lower bounds in 3 ; 1 ; 27 . We think by using the general form of Lemma 1, one can obtain much better result. It is hoped that our results can provide some reference for further research on sum uncertainty relations.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China under Grant No. 12071110, the Hebei Natural Science Foundation of China under Grant No. A2020205014, and funded by Science and Technology Project of Hebei Education Department under Grant Nos. ZD2020167, ZD2021066.

References