This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Tight finite-key analysis for mode-pairing quantum key distribution

Ze-Hao Wang    Zhen-Qiang Yin [email protected]    Shuang Wang [email protected] CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China    Rong Wang Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China    Feng-Yu Lu    Wei Chen    De-Yong He    Guang-Can Guo    Zheng-Fu Han CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Abstract

Mode-pairing quantum key distribution (MP-QKD) is a potential protocol that is not only immune to all possible detector side channel attacks, but also breaks the repeaterless rate-transmittance bound without needing global phase locking. Here we analyze the finite-key effect for the MP-QKD protocol with rigorous security proof against general attacks. Moreover, we propose a six-state MP-QKD protocol and analyze its finite-key effect. The results show that the original protocol can break the repeaterless rate-transmittance bound with a typical finite number of pulses in practice. And our six-state protocol can improve the secret key rate significantly in long distance cases.

INTRODUCTION

Quantum key distribution (QKD) Bennett and Brassard (1984); Ekert (1991), whose security is guaranteed by the physical law of quantum mechanics, can share private keys between two authorized partners, Alice and Bob. Such keys can encrypt further communications between Alice and Bob by combining the one-time pad, which has been proven to be information-theoretically secure Shannon (1949); Molotkov (2006).

However, in practical implementations, the imperfections of practical equipments will create some security loopholes. An eavesdropper, Eve, can steal key information without introducing any signal disturbance by taking advantage of these loopholes. A close examination of hacking strategies indicates that most loopholes exist in the detection part of QKD systems Makarov et al. (2006); Zhao et al. (2008); Fung et al. (2007); Xu et al. (2010); Lydersen et al. (2010); Gerhardt et al. (2011); Qian et al. (2018); Wei et al. (2019). Considering this situation, measurement-device-independent QKD (MDI-QKD) Lo et al. (2012) (see also Braunstein and Pirandola (2012)) protocol is proposed, which can remove all loopholes on the vulnerable detection side. Various theory improvements Ma and Razavi (2012); Yu et al. (2013); Xu et al. (2014); Curty et al. (2014); Yin et al. (2014a, b); Yu et al. (2015); Wang and Wang (2014); Zhou et al. (2016); Lu et al. (2020); Hu et al. (2021); Jiang et al. (2021); Lu et al. (2022) and experiments Liu et al. (2013); Wang et al. (2015); Yin et al. (2016); Comandar et al. (2016); Wang et al. (2017); Fan-Yuan et al. (2022) are achieved in recent years.

Besides the security, high performance and long transmission distance are the eternal pursuits in the research of QKD. However, because of the inevitable transmission loss in the channel, the MDI-QKD and the other QKD protocols which are point-to-point schemes are upper bounded by the secret key capacity of repeaterless QKD Pirandola et al. (2009); Takeoka et al. (2014); Pirandola et al. (2017). The PLOB (Pirandola, Laurenza, Ottaviani, and Banchi) bound Pirandola et al. (2017), for example, restricts the secret key rate Rlog2(1η)R\leq-\log_{2}(1-\eta), where η\eta is the total channel transmittance between Alice and Bob. This bound is approximately a linear function of η\eta, RO(η)R\sim O(\eta). For breaking this restriction, an interesting work named twin-field QKD (TF-QKD) was proposed Lucamarini et al. (2018), whose secret key rate RO(η)R\sim O(\sqrt{\eta}). Moreover, it is an MDI-like protocol that is immune to all detection attacks. Subsequently, many variants of TF-QKD are proposed Ma et al. (2018); Wang et al. (2018); Curty et al. (2019); Cui et al. (2019); Wang et al. (2020), such as sending-or-not-sending QKD (SNS-QKD) Wang et al. (2018), phase-matching QKD (PM-QKD) Ma et al. (2018) and no phase post-selection QKD (NPP-QKD) Cui et al. (2019). Because of their high performance, they have attracted much attention and remarkable progress has been made not just in the theory Maeda et al. (2019); Jiang et al. (2019); Lu et al. (2019); Xu et al. (2020); Zeng et al. (2020); Currás-Lorenzo et al. (2021), but also in the experimental implementations Minder et al. (2019); Zhong et al. (2019); Wang et al. (2019); Liu et al. (2019); Fang et al. (2020); Chen et al. (2020); Liu et al. (2021); Chen et al. (2021); Clivati et al. (2022); Pittaluga et al. (2021); Chen et al. (2022); Wang et al. (2022). However, because TF-type QKD depends on stable interference between coherent states, phase-tracking is needed for compensating the phase fluctuation on the channels while phase-locking is needed for locking the frequency and phase of Alice and Bob’s lasers. These challenging techniques significantly increase the complexity of experimental systems and may bring extra noise.

Recently, two works named asynchronous-MDI-QKD Xie et al. (2022) and mode-pairing QKD (MP-QKD) Zeng et al. (2022) are proposed almost simultaneously. Surprisingly, while their quantum state preparation and measurement are almost the same as the time-bin-phase coding MDI-QKD Ma and Razavi (2012), the key rate can be increased dramatically just by defining the key bit differently in post processing step. As a result, beating the PLOB bound becomes possible even without the help of phase-locking and phase-tracking.

For ease of understanding, let’s review the MP-QKD in a simple way. Similar with the time-bin-phase coding MDI-QKD Ma and Razavi (2012), in each round, Alice and Bob send weak coherent pulses with different intensities and phases to Charlie. Then, after Charlie announces each round leads to a single click or not by his interference measurement, Alice and Bob may pair two clicked pulses to a key generation event provided the timing interval of the two paired pulses is smaller than the coherent time of the lasers. Note that this pairing step is missing in the time-bin-phase coding MDI-QKD Ma and Razavi (2012), where only two adjacent and clicked optical pulses, i.e. coincidence detection, can be used to generate key bit, thus its key rate must be proportional to the channel transmittance η\eta. Indeed, this subtle pairing strategy leads to a dramatic increment of the key rate.

Although an elegant security proof for MP-QKD has been given in Ref. Zeng et al. (2022), its security and performance in non-asymptotic situations are still unknown. Here, we show a finite-key analysis of the MP-QKD protocol. Our analysis applies to coherent attack and satisfies the definition of composable security, namely the secret keys are perfect keys except a failure probability no larger than εtol\varepsilon_{\rm{\rm{tol}}}. It’s confirmed that PLOB bound can be surpassed in MP-QKD with a moderate number of optical pulses, typically 101310^{13}. Moreover, we propose a six-state MP-QKD protocol that can improve the secret key rate, and show its performance in the finite-key regions. Our results can be directly applied in future practical experiments of MP-QKD.

RESULTS

Original protocol

Here we consider a three-intensity decoy-state scheme Zeng et al. (2022). In this scheme, Alice randomly sends the phase-randomized coherent pulses to Charlie. The intensities of the pulses are chosen from {μa,νa,o}\{\mu_{a},\nu_{a},o\} (μa>νa>o=0)(\mu_{a}>\nu_{a}>o=0) with probabilities pμap_{\mu_{a}}, pνap_{\nu_{a}} and pop_{o}, respectively. Bob takes a similar operation to distribute the pulses. According to the effective detection events announced by Charlie, Alice and Bob take the postprocessing to obtain the secret keys. The schematic diagram is illustrated in Fig. 1. And a detailed description of the scheme is presented as follows.

Refer to caption
Figure 1: Schematic diagram of the MP-QKD protocol. Alice (Bob) prepares weak coherent pulses with random intensities chosen from {μa,νa,o}\{\mu_{a},\nu_{a},o\} ({μb,νb,o}\{\mu_{b},\nu_{b},o\}) and random phases θai[0,2π)\theta^{i}_{a}\in[0,2\pi) (θbi[0,2π)\theta^{i}_{b}\in[0,2\pi)), then they send them to an untrusted measurement site, Charlie. According to the effective detection events announced by Charlie, Alice and Bob take the postprocessing to obtain the secret keys. IM, intensity modulation; PM, phase modulation; BS, beam splitter.

1.State preparation. The first two steps are repeated by Alice and Bob for NN rounds to obtain sufficient data. In the ii-th round (ii\in {1,2,,N}\{1,2,...,N\}), Alice prepares a coherent state |kaiexp(iθai)|\sqrt{k^{i}_{a}}\exp({\rm{i}}\theta^{i}_{a})\rangle with probability pkap_{k_{a}}, where the intensity kaik^{i}_{a} is chosen randomly from the set {μa,νa,o}\{\mu_{a},\nu_{a},o\} (μa>νa>o=0\mu_{a}>\nu_{a}>o=0) and the phase θai\theta^{i}_{a} is chosen uniformly from [0,2π)[0,2\pi). Similarly, Bob chooses kbik^{i}_{b} and θbi\theta^{i}_{b} then prepares a weak coherent state |kbiexp(iθbi)|\sqrt{k^{i}_{b}}\exp({\rm{i}}\theta^{i}_{b})\rangle.

2.Measurement. Alice and Bob send two pulses |kaiexp(iθai)|\sqrt{k^{i}_{a}}\exp({\rm{i}}\theta^{i}_{a})\rangle and |kbiexp(iθbi)|\sqrt{k^{i}_{b}}\exp({\rm{i}}\theta^{i}_{b})\rangle to Charlie for interference measurement. After the measurement, Charlie announces the detection results of detectors L and R. If only detector L or R clicks, Ci=1C^{i}=1. And Ci=0C^{i}=0 for the other cases.

3.Mode pairing. For all rounds with effective detection (Ci=1C^{i}=1), Alice and Bob employ a strategy to group two effective detection events as a pair. The specific pairing strategy is shown as follows:

Considering that when the time interval between adjacent pulses becomes too large, the key information suffers from phase fluctuation. Alice and Bob define a maximal pairing interval ll before the pairing, which denotes the maximal interval pulse number in an effective event pair. ll can be estimated by multiplying the laser coherence time by the system repetition rate in practically. Alice (Bob) calculates the interval between the first and second effective detection event. If the interval is less than or equal to ll, she (he) records an effective event pair Pa(b)i1,j1={ka(b)i1,ka(b)j1,θa(b)i1,θa(b)j1}P_{a(b)}^{i_{1},j_{1}}=\{k^{i_{1}}_{a(b)},k^{j_{1}}_{a(b)},\theta^{i_{1}}_{a(b)},\theta^{j_{1}}_{a(b)}\}, where i1i_{1} and j1j_{1} are the round numbers of the first and the second effective detection event, then considers the interval between the third and the fourth effective detection event. Otherwise, the first effective detection event is dropped, then she (he) considers the interval between the second and the third. Until the last effective detection event, she (he) completes the mode pairing. A flow chart of Alice’s pairing strategy is presented in Fig. 2.

Refer to caption
Figure 2: Flow chart of Alice’s pairing strategy. At the beginning, Alice inputs the maximal pairing interval ll, CiC^{i}, kaik_{a}^{i}, and θai\theta_{a}^{i}. By employing the pairing strategy, she outputs the data sets Pai1,j1,Pai2,j2,P_{a}^{i_{1},j_{1}},P_{a}^{i_{2},j_{2}},...

4.Basis sifting. Based on the intensities of two grouped rounds, Alice (Bob) labels the ’basis’ of each Pa(b)i,jP_{a(b)}^{i,j} as:

(a) ZZ-basis: if one of the intensities ka(b)ik^{i}_{a(b)} and ka(b)jk^{j}_{a(b)} is 0 and the other is nonzero;

(b) XX-basis: if ka(b)i=ka(b)j0k^{i}_{a(b)}=k^{j}_{a(b)}\neq 0;

(c) ’0’-basis: if ka(b)i=ka(b)j=0k^{i}_{a(b)}=k^{j}_{a(b)}=0;

(d) ’discard’: if 0ka(b)ika(b)j00\neq k^{i}_{a(b)}\neq k^{j}_{a(b)}\neq 0.

Table 1: Alice and Bob’s bases assignment.
ka(b)jk^{j}_{a(b)} ka(b)ik^{i}_{a(b)} μa(b)\mu_{a(b)} νa(b)\nu_{a(b)} oo
μa(b)\mu_{a(b)} XX-basis ’discard’ ZZ-basis
νa(b)\nu_{a(b)} ’discard’ XX-basis ZZ-basis
oo ZZ-basis ZZ-basis ’0’-basis

See also the Tab. 1.

Then they announce the bases (ZZ-basis, XX-basis, ’0’-basis, or ’discard’), the sum of the intensities kai+kajk^{i}_{a}+k^{j}_{a} and kbi+kbjk^{i}_{b}+k^{j}_{b} for each pair of Pai,jP_{a}^{i,j} and Pbi,jP_{b}^{i,j} respectively. Let’s denote the pair of Pai,jP_{a}^{i,j} and Pbi,jP_{b}^{i,j} by Pi,jP^{i,j} for simplicity. Then for each Pi,jP^{i,j}, if the announced bases for Pai,jP_{a}^{i,j} and Pbi,jP_{b}^{i,j} are both ZZ-basis, XX-basis or ’0’-basis, they record Pi,jP^{i,j} as ZZ-pair, XX-pair, or ’0’-pair respectively; if one of them is ’0’-basis and the other one is XX-basis (ZZ-basis), they record Pi,jP^{i,j} as XX-pair (ZZ-pair); if both of the announced bases are ’0’, they record it as ’0’-pair; and otherwise, they discard Pi,jP^{i,j}. See also the Tab. 2.

Table 2: The pair assignment.
Bob Alice ZZ-basis XX-basis ’0’-basis
ZZ-basis ZZ-pair ’discard’ ZZ-pair
XX-basis ’discard’ XX-pair XX-pair
’0’-basis ZZ-pair XX-pair ’0’-pair

5.Key mapping. For each ZZ-pair Pi,jP^{i,j}, if kajkai=0k^{j}_{a}\neq k^{i}_{a}=0, Alice sets her key to κa=0\kappa_{a}=0; if kaikaj=0k^{i}_{a}\neq k^{j}_{a}=0, Alice sets her key to κa=1\kappa_{a}=1; and for the condition kai=kaj=0k^{i}_{a}=k^{j}_{a}=0, she sets her key κa\kappa_{a} to either 0 or 1 at random with a 1/21/2 probability. The setting of Bob’s key is contrary to Alice’s. If kbikbj=0k^{i}_{b}\neq k^{j}_{b}=0, Bob sets his key to κb=0\kappa_{b}=0; if kbjkbi=0k^{j}_{b}\neq k^{i}_{b}=0, Bob sets his key to κb=1\kappa_{b}=1; and for the condition kbi=kbj=0k^{i}_{b}=k^{j}_{b}=0, he sets his key κb\kappa_{b} to either 0 or 1 at random with a 1/21/2 probability.

For each XX-pair Pi,jP^{i,j}, Alice’s key is extracted from the relative phase θa:=(θajθai)mod2π\theta_{a}:=(\theta^{j}_{a}-\theta^{i}_{a})\mod 2\pi, where the raw key bit is κa=θa/π\kappa_{a}=\lfloor\theta_{a}/\pi\rfloor and the alignment angle is δa=θamodπ\delta_{a}=\theta_{a}\mod\pi (δa[0,π))\left(\delta_{a}\in[0,\pi)\right). Bob also calculates his raw key bit κb\kappa_{b} and alignment angle δb\delta_{b} in the same way. Then they announce the alignment angles δa\delta_{a} and δb\delta_{b}. If |δaδb|Δ|\delta_{a}-\delta_{b}|\leq\Delta, they keep Pi,jP^{i,j}; if |δaδb|πΔ|\delta_{a}-\delta_{b}|\geq\pi-\Delta, Bob flips the raw key bit κb\kappa_{b} and they keep Pi,jP^{i,j}; otherwise, they discard them. Moreover, if Charlie’s clicks are (L,R) or (R,L), Bob flips κb\kappa^{b}. It should be noted that if Pi,jP^{i,j} consists of both ’0’-basis and XX-basis, they retain all the data pairs whatever the value of δa\delta_{a} and δb\delta_{b} are. We define three sets 𝒵\mathcal{Z}, 𝒳\mathcal{X} and 𝒱\mathcal{V} here, which include all ZZ-pair, XX-pair, and ’0’-pair Pi,jP^{i,j} respectively.

6.Parameter estimation. Alice and Bob choose Pi,jP^{i,j} satisfying (kai+kaj,kbi+kbj){(μa,μb),(μa,νb),(νa,μb),(νa,νb)}(k^{i}_{a}+k^{j}_{a},k^{i}_{b}+k^{j}_{b})\in\{(\mu_{a},\mu_{b}),(\mu_{a},\nu_{b}),(\nu_{a},\mu_{b}),(\nu_{a},\nu_{b})\} in the set 𝒵\mathcal{Z} to form the nZn_{Z}-length raw key bit strings 𝐙\mathbf{Z} and 𝐙\mathbf{Z^{\prime}}, respectively. And through the decoy-state method, Alice and Bob estimate the lower bound of the single-photon effective detection number in the raw key, nZ1Ln_{Z_{1}}^{\rm{L}}, according to the events in 𝒵\mathcal{Z} and 𝒱\mathcal{V}. The upper bound of the single-photon phase error rate of nZ1Ln_{Z_{1}}^{\rm{L}}, eZ1ph,Ue_{Z_{1}}^{\rm{ph,U}}, is estimated by the events in 𝒳\mathcal{X} and 𝒱\mathcal{V}.

7.Error correction. Alice and Bob exploit an information reconciliation scheme to correct 𝐙\mathbf{Z^{\prime}}, in which Bob acquires an estimation 𝐙^\hat{\mathbf{Z}} of 𝐙\mathbf{Z} from Alice. This process reveals at most λEC\lambda_{\rm{EC}} bits Alice’s raw key. Then, for verifying the success of error correction, Alice employs a random universal hash function to compute a hash of 𝐙\mathbf{Z} of length log2(2/εcor)\log_{2}(2/\varepsilon_{\rm{cor}}), and sends the hash and hash function to Bob. If the hash computed by Bob is the same as Alice’s, Pr(𝐙𝐙^)εcor\Pr\left(\mathbf{Z}\neq\hat{\mathbf{Z}}\right)\leq\varepsilon_{\rm{cor}}, they proceed this protocol. Otherwise, the protocol aborts.

8.Private amplification. Alice and Bob exploit a privacy amplification scheme based on two-universal hashing Renner (2008) to extract two lol_{o}-length bit strings 𝐒\mathbf{S} and 𝐒^\hat{\mathbf{S}} from 𝐙\mathbf{Z} and 𝐙^\hat{\mathbf{Z}} respectively. 𝐒\mathbf{S} and 𝐒^\hat{\mathbf{S}} are the secret keys.

Then, we show one of the main results of our paper. If the error correction step is passed, the protocol is εcor\varepsilon_{\rm{cor}}-correct. And the protocol is εsec\varepsilon_{\rm{sec}}-secret if the secret key length

lo\displaystyle l_{o}\leq nZ1L[1h(eZ1ph,U)]λEC\displaystyle n_{Z_{1}}^{\rm{L}}\left[1-h(e_{Z_{1}}^{\rm{ph,U}})\right]-{\lambda_{\rm{EC}}} (1)
log22εcor2log212ε^εPA,\displaystyle-\log_{2}\frac{2}{\varepsilon_{\rm{cor}}}-2\log_{2}\frac{1}{\sqrt{2}\hat{\varepsilon}\varepsilon_{\rm{PA}}},

where h(x)=xlog2x(1x)log2(1x)h(x)=-x\log_{2}x-(1-x)\log_{2}(1-x) is the binary Shannon entropy function, and εcor\varepsilon_{\rm{cor}}, ε^\hat{\varepsilon}, and εPA\varepsilon_{\rm{PA}} are the security coefficients which the users may optimize over. nZ1Ln_{Z_{1}}^{\rm{L}} is the lower bound of the single-photon effective detection number in the raw key with a failure probability ε1\varepsilon_{1}. eZ1ph,Ue_{Z_{1}}^{\rm{ph,U}} is the upper bound of the single-photon phase error rate of nZ1Ln_{Z_{1}}^{\rm{L}} with a failure probability εe\varepsilon_{e}. nZ1Ln_{Z_{1}}^{\rm{L}} and eZ1ph,Ue_{Z_{1}}^{\rm{ph,U}} are estimated by the decoy-state method, which is shown in the Supplementary Note C. And λEC=fnZh(EZ){\lambda_{\rm{EC}}}=fn_{Z}h(E_{Z}) is the information revealed in the error correction step, where ff is the error correction efficiency which is related to the specific error correction scheme, nZn_{Z} is the length of the raw key and EZE_{Z} is the bit-flip error rate between strings 𝐙\mathbf{Z} and 𝐙\mathbf{Z}^{\prime}.

Six-state MP-QKD protocol

In the original MP-QKD protocol, we bound the Eve’s smooth min-entropy Hminε¯(𝐙1|𝐙zmE)H_{\rm{min}}^{\overline{\varepsilon}}(\mathbf{Z}_{1}|\mathbf{Z}_{\rm{zm}}E) by the error rate of key bits when hypothetical σX\sigma_{X} measurements are performed, where EE is the auxiliary of Eve before error correction, and 𝐙1,𝐙zm\mathbf{Z}_{1},\mathbf{Z}_{\rm{zm}} are the corresponding bit strings due to the single-photon and the other events respectively. It’s well known that if one can additionally obtain the error rate under σY\sigma_{Y} measurements, the min-entropy will be estimated more tightly and higher key rate is expected, e.g. six-state protocol outperforms the original BB84 in most cases.

Surprisingly, it’s possible to obtain both the error rates under hypothetical σX\sigma_{X} and σY\sigma_{Y} measurements in the MP-QKD. Let’s explain this point intuitively. When the pair Pai,jP^{i,j}_{a} happens to be a ZZ-basis and also a single-photon event, its hypothetical σX\sigma_{X} and σY\sigma_{Y} measurements just lead to quantum superpositions (|i±|j)/2(|i\rangle\pm|j\rangle)/\sqrt{2} or (|i±i|j)/2(|i\rangle\pm{\rm{i}}|j\rangle)/\sqrt{2} respectively. The quantum state |i|i\rangle(|j|j\rangle) denote that in the i-th and j-th rounds, only single-photon is in the ithi-th (jthj-th) round. Note that if Pai,jP^{i,j}_{a} happens to be an XX-basis and also a single-photon event, (|i±eiθa|j)/2(|i\rangle\pm e^{{\rm{i}}\theta_{a}}|j\rangle)/\sqrt{2} will be prepared, in which θa\theta_{a} ranges from [0,π)[0,\pi). Equivalently, (|i±eiθa|j)/2(|i\rangle\pm e^{{\rm{i}}\theta_{a}}|j\rangle)/\sqrt{2} can be rewritten as (|i±eiθa|j)/2(|i\rangle\pm e^{{\rm{i}}\theta_{a}}|j\rangle)/\sqrt{2} if θa[0,π/2)\theta_{a}\in[0,\pi/2), and (|i±ieiθa|j)/2(|i\rangle\pm{\rm{i}}e^{{\rm{i}}\theta^{\prime}_{a}}|j\rangle)/\sqrt{2} if θa[π/2,π)\theta^{\prime}_{a}\in[\pi/2,\pi), where θa:=θamod(π/2)\theta^{\prime}_{a}:=\theta_{a}\mod(\pi/2). Just as mentioned in Supplemental Note, θa\theta^{\prime}_{a} can be resulted by Alice’s unitary operation on her local qubits, thus has no effect on the security. This implies that for any θa\theta^{\prime}_{a}, the former one and latter may be used to estimate the error rates under σX\sigma_{X} and σY\sigma_{Y} measurements respectively, so XX-basis is indeed XYXY-basis in this sense. Finally, a six-state like MP-QKD is possible. Following this idea, we present a detailed description of this scheme and the results of security proof as follows:

1.State preparation. Same as the step 1 in the original protocol.

2.Measurement. Same as the step 2 in the original protocol.

3.Mode pairing. Same as the step 3 in the original protocol.

4.Basis sifting. Based on the intensities of two grouped rounds, Alice (Bob) labels the ’basis’ of Pa(b)i,jP_{a(b)}^{i,j} as:

(a) ZZ-basis: if one of the intensities ka(b)ik^{i}_{a(b)} and ka(b)jk^{j}_{a(b)} is 0 and the other is nonzero;

(b) XYXY-basis: if ka(b)i=ka(b)j0k^{i}_{a(b)}=k^{j}_{a(b)}\neq 0;

(c) ’0’-basis: if ka(b)i=ka(b)j=0k^{i}_{a(b)}=k^{j}_{a(b)}=0;

(d) ’discard’: if 0ka(b)ika(b)j00\neq k^{i}_{a(b)}\neq k^{j}_{a(b)}\neq 0.

Then they announce the basis (ZZ-basis, XYXY-basis, ’0’-basis or ’discard’) and the sum of the intensities kai+kajk^{i}_{a}+k^{j}_{a} and kbi+kbjk^{i}_{b}+k^{j}_{b} for each pair of Pai,jP_{a}^{i,j} and Pbi,jP_{b}^{i,j} respectively. Let’s denote the pair of Pai,jP_{a}^{i,j} and Pbi,jP_{b}^{i,j} by Pi,jP^{i,j} for simplicity. Then for each Pi,jP^{i,j}: if the announced bases for Pai,jP_{a}^{i,j} and Pbi,jP_{b}^{i,j} are both ZZ-basis, XYXY-basis or ’0’-basis, they record Pi,jP^{i,j} as ZZ-pair, XYXY-pair, or ’0’-pair respectively; if one of them is ’0’-basis and the other one is XYXY-basis (ZZ-basis), they record Pi,jP^{i,j} as XYXY-pair (ZZ-pair); if both of the announced bases are ’0’, they record it as ’0’-pair; and otherwise, they discard Pi,jP^{i,j}.

5.Key mapping. The key mapping step of ZZ-pair Pi,jP^{i,j} is the same as the step in the original protocol. For each ZZ-pair Pi,jP^{i,j}, if kajkai=0k^{j}_{a}\neq k^{i}_{a}=0, Alice sets her key to κa=0\kappa_{a}=0; if kaikaj=0k^{i}_{a}\neq k^{j}_{a}=0, Alice sets her key to κa=1\kappa_{a}=1; and for the condition kai=kaj=0k^{i}_{a}=k^{j}_{a}=0, she sets her key κa\kappa_{a} to either 0 or 1 at random with a 1/21/2 probability. The setting of Bob’s key is contrary to Alice’s. If kbikbj=0k^{i}_{b}\neq k^{j}_{b}=0, Bob sets his key to κb=0\kappa_{b}=0; if kbjkbi=0k^{j}_{b}\neq k^{i}_{b}=0, Bob sets his key to κb=1\kappa_{b}=1; and for the condition kbi=kbj=0k^{i}_{b}=k^{j}_{b}=0, he sets his key κb\kappa_{b} to either 0 or 1 at random with a 1/21/2 probability.

Table 3: The rules of the flip operation to Bob’s basis rbr_{b} and bit κb\kappa_{b}. The word ”flip” means Bob flips the value, and the word ”no” means Bob just keeps the value.
ra=0,rb=0r_{a}=0,r_{b}=0 ra=1,rb=1r_{a}=1,r_{b}=1
rbr_{b} κb\kappa_{b} rbr_{b} κb\kappa_{b}
|δaδb|Δ|\delta_{a}-\delta_{b}|\leq\Delta no no no no
ra=0,rb=1r_{a}=0,r_{b}=1 ra=1,rb=0r_{a}=1,r_{b}=0
rbr_{b} κb\kappa_{b} rbr_{b} κb\kappa_{b}
δbδaπ/2Δ\delta_{b}-\delta_{a}\geq\pi/2-\Delta flip flip flip no
δaδbπ/2Δ\delta_{a}-\delta_{b}\geq\pi/2-\Delta flip no flip flip

For each XYXY-pair Pi,jP^{i,j}, Alice’s key and basis are extracted from the relative phase θa=(θajθai)mod2π\theta_{a}=(\theta^{j}_{a}-\theta^{i}_{a})\mod 2\pi, where the raw key bit is κa=θa/π\kappa_{a}=\lfloor\theta_{a}/\pi\rfloor, the alignment angle is δa=θamod(π/2)\delta_{a}=\theta_{a}\mod(\pi/2) (δa[0,π/2))\left(\delta_{a}\in[0,\pi/2)\right), and ra=θa/(π/2)2κar_{a}=\lfloor\theta_{a}/(\pi/2)\rfloor-2\kappa_{a}, where ra=0r_{a}=0 and 11 denotes XX- and YY-bases, respectively. Bob also calculates his raw key bit κb\kappa_{b}, alignment angle δb\delta_{b}, and obtains the information of the basis rbr_{b} in the same way. Then they announce the alignment angles δa\delta_{a}, δb\delta_{b} and the values rar_{a} and rbr_{b}. If |δaδb|Δ|\delta_{a}-\delta_{b}|\leq\Delta and ra=rbr_{a}=r_{b}, they keep Pi,jP^{i,j} and label them as XX-pair if ra=0r_{a}=0 or YY-pair if ra=1r_{a}=1; if |δaδb|π/2Δ|\delta_{a}-\delta_{b}|\geq\pi/2-\Delta and rarbr_{a}\neq r_{b}, Bob may flip the basis rbr_{b} and the raw key bit κb\kappa_{b} according to the rules in the Tab. 3, then keep Pi,jP^{i,j} and label them as XX-pair if ra(rb)=0r_{a}(r_{b})=0 or YY-pair if ra(rb)=1r_{a}(r_{b})=1; otherwise, they discard them. Moreover, if Charlie’s clicks are (L,R) or (R,L), Bob flips κb\kappa^{b}. We define three sets 𝒵\mathcal{Z}, 𝒳𝒴\mathcal{XY} and 𝒱\mathcal{V} here, which include all reserved ZZ-pair, XYXY-pair, and ’0’-pair Pi,jP^{i,j} respectively.

6.Parameter estimation. Alice and Bob choose Pi,jP^{i,j} satisfying (kai+kaj,kbi+kbj){(μa,μb),(μa,νb),(νa,μb),(νa,νb)}(k^{i}_{a}+k^{j}_{a},k^{i}_{b}+k^{j}_{b})\in\{(\mu_{a},\mu_{b}),(\mu_{a},\nu_{b}),(\nu_{a},\mu_{b}),(\nu_{a},\nu_{b})\} in the set 𝒵\mathcal{Z} to form the nZn_{Z}-length raw key bit strings 𝐙\mathbf{Z} and 𝐙\mathbf{Z^{\prime}}, respectively. And through the decoy-state method, Alice and Bob estimate the number of effective single-photon events nZ1Ln_{Z_{1}}^{\rm{L}} according the events in 𝒵\mathcal{Z} and 𝒱\mathcal{V}.

7.Error correction. Same as the step 7 in the original protocol.

8.Private amplification. Same as the step 8 in the original protocol.

Similar with the analysis of the original protocol, we can bound the secret key length with

ls\displaystyle l_{s}\leq nZ1L(1eZ1bit,U)\displaystyle n_{Z_{1}}^{\rm{L}}\left(1-e_{Z_{1}}^{\rm{bit,U}}\right) (2)
×[1h(112(eZ1bit,U+(eX1bit+eY1bit)U)1eZ1bit,U)]\displaystyle\times\left[1-h\left(\frac{1-\frac{1}{2}\left(e_{Z_{1}}^{\rm{bit,U}}+\left(e_{X_{1}}^{\rm{bit}}+e_{Y_{1}}^{\rm{bit}}\right)^{\rm{U}}\right)}{1-e_{Z_{1}}^{\rm{bit,U}}}\right)\right]
λEClog22εcor2log212ε^εPA,\displaystyle-{\lambda_{\rm{EC}}}-\log_{2}\frac{2}{\varepsilon_{\rm{cor}}}-2\log_{2}{\frac{1}{\sqrt{2}\hat{\varepsilon}\varepsilon_{\rm{PA}}}},

where eZ1bit,Ue_{Z_{1}}^{\rm{bit,U}} is the upper bound of the single-photon bit error rate of nZ1Ln_{Z_{1}}^{\rm{L}} with a failure probability εe\varepsilon_{e}^{\prime}. (eX1bit+eY1bit)U\left(e_{X_{1}}^{\rm{bit}}+e_{Y_{1}}^{\rm{bit}}\right)^{\rm{U}} is the upper bound of the sum of the single-photon bit error rate of nZ1Ln_{Z_{1}}^{\rm{L}} if Alice and Bob take σX\sigma_{X} or σY\sigma_{Y} measurement, with a failure probability εe′′\varepsilon_{e}^{\prime\prime}.The detailed security proof is shown in Supplementary Note A. And the specific calculation is shown in Supplementary Note C.

Discussion

In this section, we numerically simulate the secret key rate of the original MP-QKD and the six-state MP-QKD protocol in finite-key size cases and analyze the results. Partial experimental parameters which are fixed in the following simulations are listed in Tab. 4. Some other parameters, including the maximal pairing interval, ll, and the total pulse numbers, NN, are given in the captions of figures below. It should be noted that in Refs. Xie et al. (2022); Zeng et al. (2022), there are all specific analyses about the misalignment-error. The misalignment-error will increase as ll increases, and will decrease as the system frequency increases. Here we omit the specific analysis and just take edZ=0.5%e_{d}^{Z}=0.5\%, edX=5%e_{d}^{X}=5\%. As is shown in Ref. Zhu et al. (2023); Zhou et al. (2022), it is realizable to take a key distribution with l=104l=10^{4}, edX=0.5%e_{d}^{X}=0.5\%, and edX=5%e_{d}^{X}=5\% by employing a 4 GHz system Wang et al. (2022). If we improve the performance of the lasers, l=106l=10^{6} is achievable. In the following analysis, we focus on l=102l=10^{2}, l=104l=10^{4}, and l=106l=10^{6}. They correspond to three different performance systems.

Meanwhile, we optimize the intensities and their corresponding sending probabilities for each distance in the simulation. Without loss of generality, we assume that the distance between Alice and Charlie, LaL_{a}, and the distance between Bob and Charlie, LbL_{b}, are the same. Under this situation, μ=μa=μb\mu=\mu_{a}=\mu_{b}, ν=νa=νb\nu=\nu_{a}=\nu_{b}, pμ=pμa=pμbp_{\mu}=p_{\mu_{a}}=p_{\mu_{b}}, and pν=pνa=pνbp_{\nu}=p_{\nu_{a}}=p_{\nu_{b}}. Then, there are only five parameters, μ\mu, ν\nu, pμp_{\mu}, pνp_{\nu}, and Δ\Delta, needed to be optimized.

Table 4: Experimental parameters used in the numerical simulations. Here, pdp_{d} is the dark counting rate per pulse of Charlie’s detectors; ηd\eta_{d} is the detection efficiency of Charlie’s detectors; α\alpha is the fiber loss coefficient (dB/km); ff is the error-correction efficiency; εtol\varepsilon_{\rm{tol}} is the total secure coefficient. edZe_{d}^{Z} and edXe_{d}^{X} are the misalignment-error of the sets 𝒵\mathcal{Z} and 𝒳(𝒳𝒴)\mathcal{X}(\mathcal{XY}), respectively.
pdp_{d} ηd\eta_{d} α\alpha ff εtol\varepsilon_{\rm{tol}} edZe_{d}^{Z} edXe_{d}^{X}
1×1081\times 10^{-8} 70%70\% 0.20.2 1.11.1 1×10101\times 10^{-10} 0.5%0.5\% 5%5\%
Refer to caption
Figure 3: Comparison of the secret key rate (per pulse) of the original protocol among two different total pulse numbers, NN, and three different maximal pairing intervals, ll, as a function of transmission distance (the distance between Alice and Bob). The red, blue, and green lines represent the secret key rates of the origin MP-QKD protocol under the condition that l=106l=10^{6}, l=104l=10^{4}, and l=102l=10^{2}, respectively. The solid lines and dash lines represent the secret key rates under the condition N=1013N=10^{13} and N=1012N=10^{12}, respectively. The black line is the PLOB bound.
Refer to caption
Figure 4: Optimized variables evolution over increasing distance when the number of total pulses is 101310^{13}. The solid lines and dash lines represent the secret key rates under the condition l=106l=10^{6} and l=104l=10^{4}, respectively.
Refer to caption
Figure 5: The secret key rate (per pulse) of the six-state protocol and the ratio of RsR_{s} and RoR_{o} as a function of transmission distance (the distance between Alice and Bob). Besides the fixed parameters listed in Tab. 4, N=1013N=10^{13}. The ordinate of red lines is the secret key rate (per pulse), and the ordinate of blue lines is the ratio of RsR_{s} and RoR_{o} (Rs/RoR_{s}/R_{o}). The solid, dash-dotted, and dash lines represent the secret key rate of the six-state MP-QKD protocol under the condition that l=106l=10^{6}, l=104l=10^{4}, and l=102l=10^{2}, respectively. The black line is the PLOB bound.

With the experimental parameters and optimized parameters, we simulate observed values first, including effective detection number and bit error number. The specific formulas are shown in Supplementary Note B. Then, with those observed values, we can obtain nZ1Ln_{Z_{1}}^{\rm{L}}, eZ1ph,Ue_{Z_{1}}^{\rm{ph,U}}, eZ1bit,Ue_{Z_{1}}^{\rm{bit,U}}, and (eX1bit+eY1bit)U(e_{X_{1}}^{\rm{bit}}+e_{Y_{1}}^{\rm{bit}})^{\rm{U}} by employing the decoy-state method. The specific formulas are shown in Supplementary Note C. Here, we set the same failure probability parameters for simplicity, εcor=ε^=εPA=ξ\varepsilon_{\rm{cor}}=\hat{\varepsilon}=\varepsilon_{\rm{PA}}=\xi, ε1=8ξ\varepsilon_{1}=8\xi, and εe=εe=εe′′=5ξ\varepsilon_{e}=\varepsilon_{e}^{\prime}=\varepsilon_{e}^{\prime\prime}=5\xi. For a fair comparison, we compare the secret key rate per sending pulse, Ro(s)=lo(s)/NR_{o(s)}=l_{o(s)}/N.

Figure 3 is the simulation of the original MP-QKD protocol with finite-key size analysis. We compare the secret key rate (per pulse) under different total pulse numbers NN and different maximal pairing intervals ll. It indicates that the original protocol can reach up to 446 km under the condition that N=1013N=10^{13} and l=106l=10^{6}. Moreover, when N=1013N=10^{13} and l=104l=10^{4}, this protocol is close to the PLOB bound at a distance about 320 km. That means that it can break the PLOB bound if l>104l>10^{4} when N=1013N=10^{13}, or N>1013N>10^{13} when l=104l=10^{4}. The secret key rate under a short distance is almost invariable with the increase of the maximal pairing interval.

For a better understanding of the MP-QKD protocol, we show the evolution of optimized variables over increasing distance when the number of total pulses is 1013{10^{13}} in Fig. 4. It can be shown that for l=106l=10^{6}, the intensity μ\mu and its probability pμp_{\mu} decrease with the increase of the distance. This is because that with the increase of the distance, the quantum bit error rate (QBER) caused by the multiple-photon term will increase, causing the smaller μ\mu, which is similar to Supplementary Note 5 of Ref. Zeng et al. (2022). And because the statistical fluctuation effect intensifies, the probability pνp_{\nu} should be improved to blunt the effect, causing the bigger pνp_{\nu} and smaller pμp_{\mu}. Different from the other protocols, MP-QKD needs enough intensity oo to form a ZZ-pair, so pop_{o} is high in our optimization. For l=104l=10^{4}, the parameters are the same as l=106l=10^{6} when the distance is below 210 km. This is because the gain is high enough under this situation, the quantity of successful pairing can’t increase with ll. Then, with the improvement of the distance, μ\mu and pμp_{\mu} increase and then decrease. These are two tradeoffs between the coincidence count and the QBER, the coincidence count and the statistical fluctuation, respectively. Moreover, Δ\Delta varies between π/16\pi/16 and π/8\pi/8.

Figure 5 is the simulation of the six-state MP-QKD protocol with finite-key size analysis. We present the secret key rate under three different maximal pairing intervals. Moreover, we compare the secret key rates of the original protocol and the six-state one, the blue lines show the ratio of RsR_{s} to RoR_{o}. The improvement of our six-state protocol becomes significant in long distance cases.

In conclusion, we prove the composable security of the original MP-QKD protocol in the finite-key regime against general attacks. Methodologically, by employing the uncertainty relation of smooth min- and max-entropy and proving the relation between the single-photon phase error of the ZZ-basis and the single-photon bit error of the XX-basis, the secret key rate was obtained. Moreover, we propose a six-state MP-QKD protocol and analyze its finite-key effect. The six-state one can obtain a higher secret key rate than the original protocol. This improvement is achieved by a subtle analysis of experimental data, thus any modification of experimental system is not necessary. As shown in the numerically simulation, the MP-QKD protocol can break the PLOB bound when the total pulse numbers is 101310^{13} and the maximal pairing interval is greater than 10410^{4}. It can reach up to 446446 km with 10610^{6} pairing interval and 101310^{13} total pulses. Moreover, the simulation shows that the six-state protocol can obtain higher secret key rate than the original protocol, especially on a long distance. Our work provides theoretical tools for key rate calculation in future MP-QKD implementations.

In this work, our analysis is based on continuous phase randomization , which might be difficult to realize in the real world. For future work, an analysis based on a discrete set is meaningful Cao et al. (2015). And the data of unmatched basis are wasted in our work, the utilization of them may improve the performance or increase the security, similar to some other protocols Laing et al. (2010); Tamaki et al. (2014); Braunstein and Pirandola (2012); Watanabe et al. (2008). This is also a possible direction for future work.

METHODS

Secret key rate of the original protocol

The sketch of the security proof is presented here while the details are given in Supplementary Note A. We employ the universally composable framework Renner (2008); Müller-Quade and Renner (2009) to analyze the security of the protocol. If the error correction step is passed, the protocol is εcor\varepsilon_{\rm{cor}}-correct. And the protocol is εsec\varepsilon_{\rm{sec}}-secret if the length of the extracted secret key does not exceed a certain length in the private amplification step. In particular, a protocol is εtol\varepsilon_{\rm{tol}}-secure if it is εcor\varepsilon_{\rm{cor}}-correct and εsec\varepsilon_{\rm{sec}}-secret, εcor+εsecεtol\varepsilon_{\rm{cor}}+\varepsilon_{\rm{sec}}\leq\varepsilon_{\rm{tol}}.

According to the quantum leftover hash lemma Renner (2008); Tomamichel et al. (2011), an εsec\varepsilon_{\rm{sec}}-secret key of length lol_{o} can be extracted from the bit string 𝐙\mathbf{Z} by applying privacy amplification with two-universal hashing, and

2ε+122loHminε(𝐙|E)εsec,\displaystyle 2\varepsilon+\frac{1}{2}\sqrt{2^{l_{o}-H_{\rm{min}}^{\varepsilon}(\mathbf{Z}|E^{\prime})}}\leq\varepsilon_{\rm{sec}}, (3)

where EE^{\prime} is the auxiliary of Eve after error correction, Hminε(𝐙|E)H_{\rm{min}}^{\varepsilon}(\mathbf{Z}|E^{\prime}) is the conditional smooth min-entropy, which is employed to quantify the average probability that Eve guesses 𝐙\mathbf{Z} correctly with EE^{\prime} Konig et al. (2009). Because λEC+log2(2/εcor)\lambda_{\rm{EC}}+\log_{2}(2/\varepsilon_{\rm{cor}}) bits are published in the error correction step, the conditional smooth min-entropy Hminε(𝐙|E)H_{\rm{min}}^{\varepsilon}(\mathbf{Z}|E^{\prime}) can be bounded by

Hminε(𝐙|E)Hminε(𝐙|E)λEClog22εcor,\displaystyle H_{\rm{min}}^{\varepsilon}(\mathbf{Z}|E^{\prime})\geq H_{\rm{min}}^{\varepsilon}(\mathbf{Z}|E)-\lambda_{\rm{EC}}-\log_{2}\frac{2}{\varepsilon_{\rm{cor}}}, (4)

where EE is the auxiliary of Eve before error correction. Moreover, since the phases of coding states in ZZ-pair Pi,jP^{i,j} are never revealed, the coding states can be treated as a mixture of Fock states. This implies 𝐙\mathbf{Z} can be decomposed into 𝐙1𝐙zm\mathbf{Z}_{1}\mathbf{Z}_{\rm{zm}}, which are the corresponding bit strings due to the single-photon and the other events. By employing a chain-rule inequality for smooth entropies Vitanov et al. (2013), we have

Hminε(𝐙|E)Hminε¯(𝐙1|𝐙zmE)2log22ε^,\displaystyle H_{\rm{min}}^{\varepsilon}(\mathbf{Z}|E)\geq H_{\rm{min}}^{\overline{\varepsilon}}(\mathbf{Z}_{1}|\mathbf{Z}_{\rm{zm}}E)-2\log_{2}\frac{\sqrt{2}}{\hat{\varepsilon}}, (5)

where ε=2ε¯+ε^\varepsilon=2\overline{\varepsilon}+\hat{\varepsilon}.

The essential of the security proof is how to bound Hminε¯(𝐙1|𝐙zmE)H_{\rm{min}}^{\overline{\varepsilon}}(\mathbf{Z}_{1}|\mathbf{Z}_{\rm{zm}}E). We give the sketch of the proof and leave the details in Supplementary Note A. By describing the protocol as an entanglement-based one, Alice (Bob) decides the basis of Pai,jP^{i,j}_{a} (Pbi,jP^{i,j}_{b}) and key bit by measuring her (his) local quantum memories. Specifically, 𝐙1\mathbf{Z}_{1} can be seen as the results of σZ\sigma_{Z} measurements on Alice’s local qubits of single-photon events. Then according to the uncertainty relation for smooth entropies, Hminε¯(𝐙1|𝐙zmE)H_{\rm{min}}^{\overline{\varepsilon}}(\mathbf{Z}_{1}|\mathbf{Z}_{\rm{zm}}E) can be upper-bounded by the phase error rate, i.e. the error rate of key bits generated by the hypothetical σX\sigma_{X} measurements on these local qubits. As an example, when the pair Pai,jP^{i,j}_{a} happens to be a ZZ-basis and also a single-photon event, σZ\sigma_{Z} measurement on Alice’s local qubits makes this single-photon collapse into the position ii or jj, i.e. |i|i\rangle or |j|j\rangle respectively. Meanwhile, its hypothetical σX\sigma_{X} measurement just leads to quantum super positions (|i±|j)/2(|i\rangle\pm|j\rangle)/\sqrt{2}. Actually, one can easily imagine that (|i±eiθa|j)/2(|i\rangle\pm e^{{\rm{i}}\theta_{a}}|j\rangle)/\sqrt{2} will be prepared if Pai,jP^{i,j}_{a} is an XX-basis event. Intuitively, the phase θa\theta_{a} may be removed without compromising the security, since this phase may be resulted by a unitary operation on Alice’s local qubits. Then the sketch of the security proof is clear.

In Supplementary Note A, we prove that the phase error rate for any individual single-photon ZZ-pair Pi,jP^{i,j} must be equal to the error rate if single-photon Pi,jP^{i,j} happens to be XX-pair. Then in non-asymptotic cases, the phase error rate for the raw key string 𝐙1\mathbf{Z}_{1} has been sampled by the error rate between 𝐗1\mathbf{X}_{1} and 𝐗1\mathbf{X}_{1}^{\prime}, where 𝐗1\mathbf{X}_{1} and 𝐗1\mathbf{X}_{1}^{\prime} represent the key strings obtained from single-photon events in 𝒳\mathcal{X}. Finally, we have

Hminε¯(𝐙1|𝐙zmE)\displaystyle H_{\rm{min}}^{\overline{\varepsilon}}(\mathbf{Z}_{1}|\mathbf{Z}_{\rm{zm}}E)\geq nZ1LHmaxε¯(𝐗1|𝐗1)\displaystyle n_{Z_{1}}^{\rm{L}}-H_{\rm{max}}^{\overline{\varepsilon}}(\mathbf{X}_{1}|\mathbf{X}_{1}^{\prime}) (6)
\displaystyle\geq nZ1L(1H2(eZ1ph,U)),\displaystyle n_{Z_{1}}^{\rm{L}}\left(1-H_{2}(e_{Z_{1}}^{\rm{ph,U}})\right),

where nZ1Ln_{Z_{1}}^{\rm{L}} is the lower bound of the length of 𝐙𝟏\mathbf{Z_{1}} with a failure probability ε1\varepsilon_{1}, eZ1ph,Ue_{Z_{1}}^{\rm{ph,U}} is the upper bound of the single-photon phase error rate of nZ1Ln_{Z_{1}}^{\rm{L}} with a failure probability εe\varepsilon_{e}. And h(x)=xlog2x(1x)log2(1x)h(x)=-x\log_{2}x-(1-x)\log_{2}(1-x) is the binary Shannon entropy function. Actually, eZ1ph,Ue_{Z_{1}}^{\rm{ph,U}} can be estimated by the observed values. And the decoy-state method which is employed to estimated nZ1Ln_{Z_{1}}^{\rm{L}} and eZ1ph,Ue_{Z_{1}}^{\rm{ph,U}} is shown in Supplementary Note C.

If we choose

εsec=2(ε^+2ε¯)+εPA,\displaystyle\varepsilon_{\rm{sec}}=2(\hat{\varepsilon}+2\overline{\varepsilon})+\varepsilon_{\rm{PA}}, (7)

where ε¯=εe+ε1\overline{\varepsilon}=\sqrt{\varepsilon_{e}+\varepsilon_{1}}, εPA\varepsilon_{\rm{PA}} is the failure probability of privacy amplification, we can get one of the main results of our paper by combining the equation behind,

lo\displaystyle l_{o}\leq nZ1L[1h(eZ1ph,U)]λEC\displaystyle n_{Z_{1}}^{\rm{L}}\left[1-h(e_{Z_{1}}^{\rm{ph,U}})\right]-{\rm{\lambda_{EC}}} (8)
log22εcor2log212ε^εPA,\displaystyle-\log_{2}\frac{2}{\varepsilon_{\rm{cor}}}-2\log_{2}\frac{1}{\sqrt{2}\hat{\varepsilon}\varepsilon_{\rm{PA}}},

where λEC=fnZh(EZ){\rm{\lambda_{EC}}}=fn_{Z}h(E_{Z}) is the information revealed in the error correction step, ff is the error correction efficiency which is related to the specific error correction scheme, nZn_{Z} is the length of the raw key and EZE_{Z} is the bit error rate between strings 𝐙\mathbf{Z} and 𝐙\mathbf{Z}^{\prime}. Moreover, the security coefficient of the whole protocol is εtol=εcor+εsec\varepsilon_{\rm{tol}}=\varepsilon_{\rm{cor}}+\varepsilon_{\rm{sec}}, where εsec=2(ε^+2εe+ε1)+εPA\varepsilon_{\rm{sec}}=2(\hat{\varepsilon}+2\sqrt{\varepsilon_{e}+\varepsilon_{1}})+\varepsilon_{\rm{PA}}. ε^\hat{\varepsilon} is the coefficient while using the chain rules, and εPA\varepsilon_{\rm{PA}} is the failure probability of privacy amplification.

Supplemental Note A: Security analysis

Outline of the proof

For ease of understanding, we show the outline of our proof first, which can show the core of this analysis. Let’s assume ρAB\rho_{AB} is a two-particle system, where AA and BB are controlled by Alice and Bob respectively. AA is spanned by two-qubit states |01A|01\rangle_{A} and |01A|01\rangle_{A}. BB is defined similarly. Let’s further define unitary operation UAδa|01A=|01AU^{\delta_{a}}_{A}|01\rangle_{A}=|01\rangle_{A}, UAδa|10A=eiδa|10AU^{\delta_{a}}_{A}|10\rangle_{A}=e^{i\delta_{a}}|10\rangle_{A}. UBδbU^{\delta_{b}}_{B} is for qubit BB and defined analogously with UAδaU^{\delta_{a}}_{A}. Then we consider a protocol, in which Alice and Bob make Z-basis measurement on A and B to form key bit ZAZ_{A} and ZBZ_{B} after Alice and Bob applying UAδaU^{\delta_{a}}_{A} and UBδbU^{\delta_{b}}_{B} with probability mass function p(δa,δb)p(\delta_{a},\delta_{b}). This is equivalent to saying that ρAB=δaδbdδadδbp(δa,δb)UBδbUAδaρABUBδbUAδa\rho^{\prime}_{AB}=\int_{\delta_{a}}\int_{\delta_{b}}{\rm{d}\delta_{a}\rm{d}\delta_{b}}p(\delta_{a},\delta_{b})U^{\delta_{b}}_{B}U^{\delta_{a}}_{A}\rho_{AB}U^{-\delta_{b}}_{B}U^{-\delta_{a}}_{A} are considered as their system. To evaluate the conditional entropy H(ZA|E)H(Z_{A}|E) in which EE is ancilla of Eve, it’s of course that we can consider ZAZ_{A} is the outcome of Z-basis measurement on ρAB\rho_{AB} rather than ρAB\rho^{\prime}_{AB}. This is because the phases δa\delta_{a} and δb\delta_{b} have no physical effects on the ZAZ_{A} and EE, the details are shown in the specific proof. In this view, we can just consider ρAB\rho_{AB}, and ignore the phases δa\delta_{a} and δb\delta_{b} if we only want to characterize H(ZA|E)H(Z_{A}|E). Noting that the conjugate XX-basis measurement is also made on ρAB\rho_{AB} now. It’s well known that H(ZA|E)H(Z_{A}|E) can be bounded by 1H(XA|XB)1-H(X_{A}|X_{B}), where XAX_{A} and XBX_{B} is the outcome of X-basis (|0+|12\frac{|0\rangle+|1\rangle}{\sqrt{2}}, |0|12\frac{|0\rangle-|1\rangle}{\sqrt{2}}) measurement on ρAB\rho_{AB} and the error rate between XAX_{A} and XBX_{B} is called phase error rate.

Nevertheless, we can go further by following the logic in last paragraph. It’s not restricted to assume ZAZ_{A} is measured on ρAB′′=δaδbq(δa,δb)UBδbUAδaρABUBδbUAδa\rho^{\prime\prime}_{AB}=\int_{\delta_{a}}\int_{\delta_{b}}q(\delta_{a},\delta_{b})U^{\delta_{b}}_{B}U^{\delta_{a}}_{A}\rho_{AB}U^{-\delta_{b}}_{B}U^{-\delta_{a}}_{A} rather than ρAB{\rho_{AB}}, and phase error rate is of course defined to ρAB′′\rho^{\prime\prime}_{AB} accordingly. Here, q(δa,δb)q(\delta_{a},\delta_{b}) is another probability mass function, which we can define to make it related to an experimentally observable value. The key point here is that q(δa,δb)q(\delta_{a},\delta_{b}) can be adjusted as we wish, since any q(δa,δb)q(\delta_{a},\delta_{b}) makes no difference for the Z-basis measurement. The freedom of defining q(δa,δb)q(\delta_{a},\delta_{b}) can help us list variant expressions of phase error rate, and then find appropriate one in some particular protocol.

Further, let’s apply above considerations in MP-QKD protocol. ρAABB\rho_{AA^{\prime}BB^{\prime}} is a compound system for two adjacent rounds with successful detections i-th and j-th. AA is spanned by two-qubit states |00A|00\rangle_{A}, |01A|01\rangle_{A}, |10A|10\rangle_{A} and |11A|11\rangle_{A}. BB is defined similarly. AA^{\prime} and BB^{\prime} are quantum registers recording the phases δa\delta_{a} and δb\delta_{b}. Alice and Bob first measure ABAB to decide if they are both in the Hilbert space spanned by |01|01\rangle and |10|10\rangle. If so, this pair is a Z-pair and Z-basis measurement is followed to form key bit. We are interested in the phase error rate of a Z-pair, which are defined by the outcome of hypothetical X-basis (|0+|12\frac{|0\rangle+|1\rangle}{\sqrt{2}}, |0|12\frac{|0\rangle-|1\rangle}{\sqrt{2}}) measurement on a Z-pair. Noting that following the logic in last paragraphs, we have the freedom to redefine the distribution q(δa,δb)q(\delta_{a},\delta_{b}) of |δaA|\delta_{a}\rangle_{A^{\prime}} and |δbB|\delta_{b}\rangle_{B^{\prime}} in ρAABB\rho_{AA^{\prime}BB^{\prime}} to find some appropriate expression of phase error rate. If Alice and Bob find ABAB are both |11|11\rangle, then also |δaδb|<Δ|\delta_{a}-\delta_{b}|<\Delta or |δaδb|>πΔ|\delta_{a}-\delta_{b}|>\pi-\Delta holds by measuring AA^{\prime} and BB^{\prime}, this pair is an X-pair. Then Alice and Bob will calculate the bit error rate of this X-pair following some instructions. We proved that: 1. the ratio of probabilities for a pair happening to be a Z-pair or X-pair is fixed and cannot be affected by Eve; 2. By setting q(δa,δb)q(\delta_{a},\delta_{b}) satisfying |δaδb|<Δ|\delta_{a}-\delta_{b}|<\Delta or |δaδb|>πΔ|\delta_{a}-\delta_{b}|>\pi-\Delta. the phase error rate of a Z-pair just equals to the error rate of an X-pair. The two points guarantee that for any Z-pair, we have a fixed probability to test its phase error rate. The phase error rate is not directly measurable on ABAB, but it must equal to the bit error rate by measuring ABA^{\prime}B^{\prime}.

Original protocol

In this section, we analyze the security of the original MP-QKD protocol. For simplicity, we omit the decoy state here, Alice and Bob prepare quantum states |0\ket{0} and |μeiθ\ket{\sqrt{\mu}e^{{\rm{i}}\theta}} with the probability p0p_{0} and p1p_{1} respectively. The phase θ\theta of the quantum states are uniformly randomly chosen from [0,2π)[0,2\pi). In the entanglement-based protocol, Alice and Bob prepare entangled states in each round,

|ΨAAa=p0|0A02πdθ2π|θA|0a+p1|1A02πdθ2π|θA|μeiθa,\displaystyle\ket{\Psi}_{AA^{\prime}a}=\sqrt{p_{0}}\ket{0}_{A}\int_{0}^{2\pi}\frac{{\rm{d}}\theta}{\sqrt{2\pi}}\ket{\theta}_{A^{\prime}}\ket{0}_{a}+\sqrt{p_{1}}\ket{1}_{A}\int_{0}^{2\pi}\frac{{\rm{d}}\theta}{\sqrt{2\pi}}\ket{\theta}_{A^{\prime}}\ket{\sqrt{\mu}e^{{\rm{i}}\theta}}_{a}, (9)
|ΨBBb=p0|0B02πdθ2π|θB|0b+p1|1B02πdθ2π|θB|μeiθb,\displaystyle\ket{\Psi}_{BB^{\prime}b}=\sqrt{p_{0}}\ket{0}_{B}\int_{0}^{2\pi}\frac{{\rm{d}}\theta}{\sqrt{2\pi}}\ket{\theta}_{B^{\prime}}\ket{0}_{b}+\sqrt{p_{1}}\ket{1}_{B}\int_{0}^{2\pi}\frac{{\rm{d}}\theta}{\sqrt{2\pi}}\ket{\theta}_{B^{\prime}}\ket{\sqrt{\mu}e^{{\rm{i}}\theta}}_{b},

where A(B)A(B) and A(B)A^{\prime}(B^{\prime}) are auxiliary quantum systems that are employed to store the intensity and random phase information, respectively. For the different values of θ\theta, the quantum states |θ|\theta\rangle are orthogonal, θ|θ=δ(θθ)\langle\theta|\theta^{\prime}\rangle=\delta(\theta-\theta^{\prime}). Here we assume that the ii-th round and the jj-th round are two adjacent events with successful detection, which are recorded as Pi,jP^{i,j}. The joint state of Alice can be written as

|ΨAAai,j\displaystyle\ket{\Psi}^{i,j}_{AA^{\prime}a} =p0|00AiAj02πdθai2π|θaiAi|0ai02πdθaj2π|θajAj|0aj\displaystyle=p_{0}|00\rangle_{A_{i}A_{j}}\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{i}_{a}}{\sqrt{2\pi}}|\theta^{i}_{a}\rangle_{A^{\prime}_{i}}|0\rangle_{a_{i}}\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{j}_{a}}{\sqrt{2\pi}}|\theta^{j}_{a}\rangle_{A^{\prime}_{j}}|0\rangle_{a_{j}} (10)
+p0p1|01AiAj02πdθai2π|θaiAi|0ai02πdθaj2π|θajAj|μeiθajaj\displaystyle+\sqrt{p_{0}p_{1}}|01\rangle_{A_{i}A_{j}}\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{i}_{a}}{\sqrt{2\pi}}|\theta^{i}_{a}\rangle_{A^{\prime}_{i}}|0\rangle_{a_{i}}\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{j}_{a}}{\sqrt{2\pi}}|\theta^{j}_{a}\rangle_{A^{\prime}_{j}}|\sqrt{\mu}e^{{\rm{i}}\theta^{j}_{a}}\rangle_{a_{j}}
+p0p1|10AiAj02πdθai2π|θaiAi|μeiθaiai02πdθaj2π|θajAj|0aj\displaystyle+\sqrt{p_{0}p_{1}}|10\rangle_{A_{i}A_{j}}\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{i}_{a}}{\sqrt{2\pi}}|\theta^{i}_{a}\rangle_{A^{\prime}_{i}}|\sqrt{\mu}e^{{\rm{i}}\theta^{i}_{a}}\rangle_{a_{i}}\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{j}_{a}}{\sqrt{2\pi}}|\theta^{j}_{a}\rangle_{A^{\prime}_{j}}|0\rangle_{a_{j}}
+p1|11AiAj02πdθai2π|θaiAi|μeiθaiai02πdθaj2π|θajAj|μeiθajaj.\displaystyle+p_{1}|11\rangle_{A_{i}A_{j}}\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{i}_{a}}{\sqrt{2\pi}}|\theta^{i}_{a}\rangle_{A^{\prime}_{i}}|\sqrt{\mu}e^{{\rm{i}}\theta^{i}_{a}}\rangle_{a_{i}}\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{j}_{a}}{\sqrt{2\pi}}|\theta^{j}_{a}\rangle_{A^{\prime}_{j}}|\sqrt{\mu}e^{{\rm{i}}\theta^{j}_{a}}\rangle_{a_{j}}.

The joint state of Bob is given in a similar way. When AiAjA_{i}A_{j} collapses into the subspace spanned by |01AiAj|01\rangle_{A_{i}A_{j}} and |10AiAj|10\rangle_{A_{i}A_{j}}, Alice is sure that ZZ-basis is chosen. |11AiAj|11\rangle_{A_{i}A_{j}} means this pair is XX-basis preparation.

In the ZZ-basis Pa(b)i,jP^{i,j}_{a(b)}, the intensities are {0,μ}\{0,\mu\} or {μ,0}\{\mu,0\}. Here we define θa(b)j:=θa(b)i+δa(b)\theta^{j}_{a(b)}:=\theta^{i}_{a(b)}+\delta_{a(b)}, the ZZ-basis preparation of Alice’s joint state can be written as

|ΨZAAai,j=\displaystyle|\Psi_{Z}\rangle_{AA^{\prime}a}^{i,j}= p0p1|01AiAj02πdθai2πππdδa2π|θaiAi|0ai|δaAj|μei(θai+δa)aj\displaystyle\sqrt{p_{0}p_{1}}|01\rangle_{A_{i}A_{j}}\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{i}_{a}}{\sqrt{2\pi}}\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta_{a}}{\sqrt{2\pi}}|\theta^{i}_{a}\rangle_{A^{\prime}_{i}}|0\rangle_{a_{i}}|\delta_{a}\rangle_{A^{\prime}_{j}}|\sqrt{\mu}e^{{\rm{i}}(\theta^{i}_{a}+\delta_{a})}\rangle_{a_{j}} (11)
+p0p1|10AiAj02πdθai2πππdδa2π|θaiAi|μeiθaiai|δaAj|0aj\displaystyle+\sqrt{p_{0}p_{1}}|10\rangle_{A_{i}A_{j}}\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{i}_{a}}{\sqrt{2\pi}}\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta_{a}}{\sqrt{2\pi}}|\theta^{i}_{a}\rangle_{A^{\prime}_{i}}|\sqrt{\mu}e^{{\rm{i}}\theta^{i}_{a}}\rangle_{a_{i}}|\delta_{a}\rangle_{A^{\prime}_{j}}|0\rangle_{a_{j}}
=\displaystyle= p0p102πdθai2πππdδa2π|θaiAi|δaAj\displaystyle\sqrt{p_{0}p_{1}}\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{i}_{a}}{\sqrt{2\pi}}\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta_{a}}{\sqrt{2\pi}}|\theta^{i}_{a}\rangle_{A^{\prime}_{i}}|\delta_{a}\rangle_{A^{\prime}_{j}}
n=0pn|μeinθai(einδa|01AiAj|0ai|naj+|10AiAj|nai|0aj),\displaystyle\sum_{n=0}^{\infty}\sqrt{p_{n|\mu}}e^{{\rm{i}}n\theta^{i}_{a}}(e^{{\rm{i}}n\delta_{a}}|01\rangle_{A_{i}A_{j}}|0\rangle_{a_{i}}|n\rangle_{a_{j}}+|10\rangle_{A_{i}A_{j}}|n\rangle_{a_{i}}|0\rangle_{a_{j}}),

where nn is the number of the photon, and pn|μ=eμμnn!p_{n|\mu}=\frac{e^{-\mu}\mu^{n}}{n!} is the probability of the Poisson distribution.

First, we trace the auxiliary AiA^{\prime}_{i}, the density matrix of Alice’s ZZ-basis preparation can be written as

ρa,Zi,j=\displaystyle\rho_{a,Z}^{i,j}= TrAi(|ΨZΨZ|AAai,j)\displaystyle\text{Tr}_{A^{\prime}_{i}}(|\Psi_{Z}\rangle\langle\Psi_{Z}|^{i,j}_{AA^{\prime}a}) (12)
=\displaystyle= p0p1ππdδa2πππdδa2π|δaδa|Ajn=0pn|μ(einδa|01AiAj|0ai|naj+|10AiAj|nai|0aj)\displaystyle p_{0}p_{1}\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta_{a}}{\sqrt{2\pi}}\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta^{\prime}_{a}}{\sqrt{2\pi}}|\delta_{a}\rangle\langle\delta^{\prime}_{a}|_{A^{\prime}_{j}}\sum_{n=0}^{\infty}p_{n|\mu}(e^{{\rm{i}}n\delta_{a}}|01\rangle_{A_{i}A_{j}}|0\rangle_{a_{i}}|n\rangle_{a_{j}}+|10\rangle_{A_{i}A_{j}}|n\rangle_{a_{i}}|0\rangle_{a_{j}})
×(einδa01|AiAj0|ain|aj+10|AiAjn|ai0|aj)\displaystyle\times(e^{{\rm{i}}n\delta^{\prime}_{a}}\langle 01|_{A_{i}A_{j}}\langle 0|_{a_{i}}\langle n|_{a_{j}}+\langle 10|_{A_{i}A_{j}}\langle n|_{a_{i}}\langle 0|_{a_{j}})
=\displaystyle= 2p0p1p1|μ𝓟[ππdδa2π|δa|01AiAj|01aiaj+eiδa|10AiAj|10aiaj2]+Partzm,\displaystyle 2p_{0}p_{1}p_{1|\mu}\bm{\mathcal{P}}\left[\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta_{a}}{\sqrt{2\pi}}|\delta_{a}\rangle\frac{|01\rangle_{A_{i}A_{j}}|01\rangle_{a_{i}a_{j}}+e^{-{\rm{i}}\delta_{a}}|10\rangle_{A_{i}A_{j}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]+{\rm{Part_{\rm{zm}}}},

where 𝓟[|]=||\bm{\mathcal{P}}[|\cdot\rangle]=|\cdot\rangle\langle\cdot|, and Partzm{\rm{Part_{\rm{zm}}}} is the mixture components of the zero-photon and multiple-photon in aiaja_{i}a_{j}. Because the system AjA^{\prime}_{j} is measured and announced in the subsequent steps, the single-photon component of the density matrix can be simplified as a classical-quantum state, i.e.

ρa,Z1i,j=2p0p1p1|μππdδa2π|δaδa|Aj𝓟[|01AiAj|01aiaj+eiδa|10AiAj|10aiaj2].\displaystyle\rho_{a,Z_{1}}^{i,j}=2p_{0}p_{1}p_{1|\mu}\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta_{a}}{2\pi}|\delta_{a}\rangle\langle\delta_{a}|_{A_{j}^{\prime}}\bm{\mathcal{P}}\left[\frac{|01\rangle_{A_{i}A_{j}}|01\rangle_{a_{i}a_{j}}+e^{-i\delta_{a}}|10\rangle_{A_{i}A_{j}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]. (13)

Actually, when Alice takes the Z^A\hat{Z}_{A} measurement on AiAjA_{i}A_{j}, whose eigenstates are |01AiAj|01\rangle_{A_{i}A_{j}} and |10AiAj|10\rangle_{A_{i}A_{j}}, to the density matrix ρa,Z1i,j\rho_{a,Z_{1}}^{i,j}, the phase δa\delta_{a} plays no roles in the results of the measurement and Eve’s potential system. Therefore, it’s not restrictive to introduce a unitary operation UAδaU_{A}^{\delta_{a}} to the auxiliaries Ai,AjA_{i},A_{j} before the Z^A\hat{Z}_{A} measurement, defined by UAδa|01AiAj=|01AiAjU_{A}^{\delta_{a}}|01\rangle_{A_{i}A_{j}}=|01\rangle_{A_{i}A_{j}}, UAδa|10AiAj=eiδa|10AiAjU_{A}^{\delta_{a}}|10\rangle_{A_{i}A_{j}}=e^{i\delta_{a}}|10\rangle_{A_{i}A_{j}}. This operation can keep the specific form of send states aia_{i} and aja_{j}. The density matrix can be simplified as

ρa,Z1i,j=2p0p1p1|μππdδa2π|δaδa|Aj𝓟[|01AiAj|01aiaj+|10AiAj|10aiaj2].\displaystyle\rho_{a,Z_{1}}^{i,j}=2p_{0}p_{1}p_{1|\mu}\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta_{a}}{2\pi}|\delta_{a}\rangle\langle\delta_{a}|_{A_{j}^{\prime}}\bm{\mathcal{P}}\left[\frac{|01\rangle_{A_{i}A_{j}}|01\rangle_{a_{i}a_{j}}+|10\rangle_{A_{i}A_{j}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]. (14)

Then we consider the single-photon component of the joint density matrix of Alice and Bob, given by

ρZ1i,j=\displaystyle\rho_{Z_{1}}^{i,j}= 4p02p12p1|μ2ππdδa2πππdδb2π|δaδbδaδb|AjBj\displaystyle 4p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta_{a}}{2\pi}\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta_{b}}{2\pi}|\delta_{a}\delta_{b}\rangle\langle\delta_{a}\delta_{b}|_{A_{j}^{\prime}B_{j}^{\prime}} (15)
M^E𝓟[|01AiAj|01aiaj+|10AiAj|10aiaj2]𝓟[|01BiBj|01bibj+|10BiBj|10bibj2]M^E,\displaystyle\otimes\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{A_{i}A_{j}}|01\rangle_{a_{i}a_{j}}+|10\rangle_{A_{i}A_{j}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]\otimes\bm{\mathcal{P}}\left[\frac{|01\rangle_{B_{i}B_{j}}|01\rangle_{b_{i}b_{j}}+|10\rangle_{B_{i}B_{j}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E},

where M^E\hat{M}_{E} is an element in a set of POVM measurements made by Eve, with outputs Ci=Cj=1C^{i}=C^{j}=1. It should be noted that M^E\hat{M}_{E} operates on the systems aia_{i}, aja_{j}, bib_{i}, and bjb_{j} which are sent to Charlie. Here we just care about the reduced density matrix of ii-th and jj-th round. For different ii and jj, M^E\hat{M}_{E} might be different and relate to other rounds, M^Ei,j\hat{M}_{E}^{i,j} is a more suitable symbol. For simplicity, we omitted the superscript here. In the subsequent proof, we can see that the specific form of M^Ei,j\hat{M}_{E}^{i,j} is needless. For the ZZ-basis preparation, the systems AiAjaiajA_{i}A_{j}a_{i}a_{j} and BiBjbibjB_{i}B_{j}b_{i}b_{j} are independent of the values δa\delta_{a} and δb\delta_{b}, which are never announced. So, we can trace the auxiliaries AjBjA^{\prime}_{j}B^{\prime}_{j} for simplicity. We have

ρ~Z1i,j=\displaystyle\tilde{\rho}_{Z_{1}}^{i,j}= TrAjBj(ρZ1i,j)\displaystyle\Tr_{A^{\prime}_{j}B^{\prime}_{j}}\left(\rho_{Z_{1}}^{i,j}\right) (16)
=\displaystyle= 4p02p12p1|μ2M^E𝓟[|01AiAj|01aiaj+|10AiAj|10aiaj2]𝓟[|01BiBj|01bibj+|10BiBj|10bibj2]M^E.\displaystyle 4p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{A_{i}A_{j}}|01\rangle_{a_{i}a_{j}}+|10\rangle_{A_{i}A_{j}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]\otimes\bm{\mathcal{P}}\left[\frac{|01\rangle_{B_{i}B_{j}}|01\rangle_{b_{i}b_{j}}+|10\rangle_{B_{i}B_{j}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}.

For obtaining the single-photon phase error rate of the ZZ-basis preparation, we define two measurements X^A\hat{X}_{A} and X^B\hat{X}_{B}, whose eigenstates are

|XA+()AiAj:=|01AiAj±|10AiAj2,|XB+()BiBj:=|01BiBj±|10BiBj2,\displaystyle|X_{A}^{+(-)}\rangle_{A_{i}A_{j}}:=\frac{|01\rangle_{A_{i}A_{j}}\pm|10\rangle_{A_{i}A_{j}}}{\sqrt{2}},|X_{B}^{+(-)}\rangle_{B_{i}B_{j}}:=\frac{|01\rangle_{B_{i}B_{j}}\pm|10\rangle_{B_{i}B_{j}}}{\sqrt{2}}, (17)

respectively. The joint density matrix can be revised by these eigenstates,

ρ~Z1i,j=\displaystyle\tilde{\rho}_{Z_{1}}^{i,j}= 4p02p12p1|μ2M^E𝓟[12(|XA+AiAj|01aiaj+|10aiaj2+|XAAiAj|01aiaj|10aiaj2)]\displaystyle 4p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{1}{\sqrt{2}}\left(|X_{A}^{+}\rangle_{A_{i}A_{j}}\frac{|01\rangle_{a_{i}a_{j}}+|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}+|X_{A}^{-}\rangle_{A_{i}A_{j}}\frac{|01\rangle_{a_{i}a_{j}}-|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right)\right] (18)
𝓟[12(|XB+BiBj|01bibj+|10bibj2+|XBBiBj|01bibj|10bibj2)]M^E.\displaystyle\otimes\bm{\mathcal{P}}\left[\frac{1}{\sqrt{2}}\left(|X_{B}^{+}\rangle_{B_{i}B_{j}}\frac{|01\rangle_{b_{i}b_{j}}+|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}+|X_{B}^{-}\rangle_{B_{i}B_{j}}\frac{|01\rangle_{b_{i}b_{j}}-|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right)\right]\hat{M}^{\dagger}_{E}.

The probability of projection into |XA+AiAj|XB+BiBj|X_{A}^{+}\rangle_{A_{i}A_{j}}|X_{B}^{+}\rangle_{B_{i}B_{j}} can be given by

Pr(|XA+AiAj|XB+BiBj)=\displaystyle{\rm{Pr}}(|X_{A}^{+}\rangle_{A_{i}A_{j}}|X_{B}^{+}\rangle_{B_{i}B_{j}})= Tr(XA+|AiAjXB+|BiBjρ~Z1i,j|XA+AiAj|XB+BiBj)\displaystyle\Tr{\langle X_{A}^{+}|_{A_{i}A_{j}}\langle X_{B}^{+}|_{B_{i}B_{j}}\tilde{\rho}_{Z_{1}}^{i,j}|X_{A}^{+}\rangle_{A_{i}A_{j}}|X_{B}^{+}\rangle_{B_{i}B_{j}}} (19)
=\displaystyle= p02p12p1|μ2Tr{M^E𝓟[|01aiaj+|10aiaj2|01bibj+|10bibj2]M^E}.\displaystyle p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}+|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\otimes\frac{|01\rangle_{b_{i}b_{j}}+|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}.

Similarly,

Pr(|XA+AiAj|XBBiBj)=\displaystyle{\rm{Pr}}(|X_{A}^{+}\rangle_{A_{i}A_{j}}|X_{B}^{-}\rangle_{B_{i}B_{j}})= p02p12p1|μ2Tr{M^E𝓟[|01aiaj+|10aiaj2|01bibj|10bibj2]M^E},\displaystyle p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}+|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\otimes\frac{|01\rangle_{b_{i}b_{j}}-|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}, (20)
Pr(|XAAiAj|XB+BiBj)=\displaystyle{\rm{Pr}}(|X_{A}^{-}\rangle_{A_{i}A_{j}}|X_{B}^{+}\rangle_{B_{i}B_{j}})= p02p12p1|μ2Tr{M^E𝓟[|01aiaj|10aiaj2|01bibj+|10bibj2]M^E},\displaystyle p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}-|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\otimes\frac{|01\rangle_{b_{i}b_{j}}+|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\},
Pr(|XAAiAjXBBiBj)=\displaystyle{\rm{Pr}}(|X_{A}^{-}\rangle_{A_{i}A_{j}}X_{B}^{-}\rangle_{B_{i}B_{j}})= p02p12p1|μ2Tr{M^E𝓟[|01aiaj|10aiaj2|01bibj|10bibj2]M^E}.\displaystyle p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}-|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\otimes\frac{|01\rangle_{b_{i}b_{j}}-|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}.

Moreover,

[Pr(|XA+|XB+)+Pr(|XA+|XB)+Pr(|XA|XB+)+Pr(|XA|XB)]AiAj,BiBj\displaystyle\left[\Pr(|X_{A}^{+}\rangle|X_{B}^{+}\rangle)+\Pr(|X_{A}^{+}\rangle|X_{B}^{-}\rangle)+\Pr(|X_{A}^{-}\rangle|X_{B}^{+}\rangle)+\Pr(|X_{A}^{-}\rangle|X_{B}^{-}\rangle)\right]_{A_{i}A_{j},B_{i}B_{j}} (21)
=\displaystyle= p02p12p1|μ2Tr{M^E{𝓟[|01aiaj+|10aiaj2]+𝓟[|01aiaj|10aiaj2]}\displaystyle p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}\Tr\left\{\hat{M}_{E}\left\{\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}+|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]+\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}-|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]\right\}\right.
{𝓟[|01bibj+|10bibj2]+𝓟[|01bibj|10bibj2]}M^E}\displaystyle\left.\otimes\left\{\bm{\mathcal{P}}\left[\frac{|01\rangle_{b_{i}b_{j}}+|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]+\bm{\mathcal{P}}\left[\frac{|01\rangle_{b_{i}b_{j}}-|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\right\}\hat{M}^{\dagger}_{E}\right\}
=\displaystyle= Trρ~Z1i,j.\displaystyle\Tr\tilde{\rho}_{Z_{1}}^{i,j}.

In this way, the single-photon phase error rate of ZZ-basis preparation can be obtained by

eZ1ph(ρ~Z1i,j)=\displaystyle e_{Z_{1}}^{\rm{ph}}(\tilde{\rho}_{Z_{1}}^{i,j})= Pr(|XA+AiAj|XBBiBj)+Pr(|XAAiAj|XB+BiBj)[Pr(|XA+|XB+)+Pr(|XA+|XB)+Pr(|XA|XB+)+Pr(|XA|XB)]AiAj,BiBj\displaystyle\frac{{\rm{Pr}}(|X_{A}^{+}\rangle_{A_{i}A_{j}}|X_{B}^{-}\rangle_{B_{i}B_{j}})+{\rm{Pr}}(|X_{A}^{-}\rangle_{A_{i}A_{j}}|X_{B}^{+}\rangle_{B_{i}B_{j}})}{\left[\Pr(|X_{A}^{+}\rangle|X_{B}^{+}\rangle)+\Pr(|X_{A}^{+}\rangle|X_{B}^{-}\rangle)+\Pr(|X_{A}^{-}\rangle|X_{B}^{+}\rangle)+\Pr(|X_{A}^{-}\rangle|X_{B}^{-}\rangle)\right]_{A_{i}A_{j},B_{i}B_{j}}} (22)
=\displaystyle= p02p12p1|μ2Trρ~Z1i,jTr{M^E𝓟[|01aiaj+|10aiaj2|01bibj|10bibj2]M^E}\displaystyle\frac{p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}}{\Tr\tilde{\rho}_{Z_{1}}^{i,j}}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}+|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\otimes\frac{|01\rangle_{b_{i}b_{j}}-|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}
+\displaystyle+ p02p12p1|μ2Trρ~Z1i,jTr{M^E𝓟[|01aiaj|10aiaj2|01bibj+|10bibj2]M^E}.\displaystyle\frac{p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}}{\Tr\tilde{\rho}_{Z_{1}}^{i,j}}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}-|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\otimes\frac{|01\rangle_{b_{i}b_{j}}+|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}.

The security proof focuses on how to estimate this phase error rate. To solve this problem, we resort to XX-pair preparation. In XX-basis Pa(b)i,jP_{a(b)}^{i,j}, the intensities is {μ,μ}\{\mu,\mu\}. For the case that Alice prepares XX-basis, the joint states of Alice can be written as

|ΨXAAai,j=p1|11AiAj02πdθai2πππdδa2π|θaiAi|δaAj|μeiθaiai|μei(θai+δa)aj.\displaystyle|\Psi_{X}\rangle_{AA^{\prime}a}^{i,j}=p_{1}|11\rangle_{A_{i}A_{j}}\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{i}_{a}}{\sqrt{2\pi}}\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta_{a}}{\sqrt{2\pi}}|\theta_{a}^{i}\rangle_{A^{\prime}_{i}}|\delta_{a}\rangle_{A^{\prime}_{j}}|\sqrt{\mu}e^{{\rm{i}}\theta_{a}^{i}}\rangle_{a_{i}}|\sqrt{\mu}e^{{\rm{i}}(\theta_{a}^{i}+\delta_{a})}\rangle_{a_{j}}. (23)

Just like the operation we did to the ZZ-basis preparation, the auxiliary AiA^{\prime}_{i} is traced first, the density matrix of Alice’s XX-basis preparation can be written as

ρa,Xi,j=\displaystyle\rho_{a,X}^{i,j}= TrAi(|ΨXΨX|AAai,j)\displaystyle\Tr_{A^{\prime}_{i}}\left(|\Psi_{X}\rangle\langle\Psi_{X}|^{i,j}_{AA^{\prime}a}\right) (24)
=\displaystyle= p12|1111|AiAjππdδa2πππdδa2π|δaδa|Ajn1+n2=m1+m2pn1|μpn2|μpm1|μpm2|μei(n2δam2δa)|n1n2aiajm1m2|\displaystyle p_{1}^{2}|11\rangle\langle 11|_{A_{i}A_{j}}\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta_{a}}{\sqrt{2\pi}}\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta^{\prime}_{a}}{\sqrt{2\pi}}|\delta_{a}\rangle\langle\delta^{\prime}_{a}|_{A^{\prime}_{j}}\sum_{n_{1}+n_{2}=m_{1}+m_{2}}\sqrt{p_{n_{1}|\mu}p_{n_{2}|\mu}p_{m_{1}|\mu}p_{m_{2}|\mu}}e^{{\rm{i}}{(n_{2}\delta_{a}-m_{2}\delta^{\prime}_{a})}}|n_{1}n_{2}\rangle_{a_{i}a_{j}}\langle m_{1}m_{2}|
=\displaystyle= p12|1111|AiAjππdδa2πππdδa2π|δaδa|Aj{p1|μp0|μ(|01aiaj+eiδa|10aiaj)(01|aiaj+eiδa10|aiaj)}+Partzm\displaystyle p_{1}^{2}|11\rangle\langle 11|_{A_{i}A_{j}}\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta_{a}}{\sqrt{2\pi}}\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta^{\prime}_{a}}{\sqrt{2\pi}}|\delta_{a}\rangle\langle\delta^{\prime}_{a}|_{A^{\prime}_{j}}\{p_{1|\mu}p_{0|\mu}(|01\rangle_{a_{i}a_{j}}+e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}})(\langle 01|_{a_{i}a_{j}}+e^{{\rm{i}}\delta^{\prime}_{a}}\langle 10|_{a_{i}a_{j}})\}+{\rm{Part_{\rm{zm}}}}
=\displaystyle= p12p1|2μ|1111|AiAj𝓟[ππdδa2π|δaAj|01aiaj+eiδa|10aiaj2]+Partzm\displaystyle p_{1}^{2}p_{1|2\mu}|11\rangle\langle 11|_{A_{i}A_{j}}\bm{\mathcal{P}}\left[\int_{-\pi}^{\pi}\frac{{\rm{d}}\delta_{a}}{\sqrt{2\pi}}|\delta_{a}\rangle_{A^{\prime}_{j}}\frac{|01\rangle_{a_{i}a_{j}}+e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]+{\rm{Part_{\rm{zm}}}}
=\displaystyle= p12p1|2μ|1111|AiAj𝓟[0πdδa2π(|δa+Aj|01aiaj+eiδa|10aiaj2+|δaAj|01aiajeiδa|10aiaj2)]\displaystyle p_{1}^{2}p_{1|2\mu}|11\rangle\langle 11|_{A_{i}A_{j}}\bm{\mathcal{P}}\left[\int_{0}^{\pi}\frac{{\rm{d}}\delta_{a}}{\sqrt{2\pi}}\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}\frac{|01\rangle_{a_{i}a_{j}}+e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}+|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}\frac{|01\rangle_{a_{i}a_{j}}-e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right)\right]
+Partzm,\displaystyle+{\rm{Part_{\rm{zm}}}},

where δa+=δa\delta_{a}^{+}=\delta_{a} and δa=δa+π\delta_{a}^{-}=\delta_{a}+\pi. Indeed |δa+|\delta_{a}^{+}\rangle (|δa)(|\delta_{a}^{-}\rangle) corresponds to logical bit 0 (1)(1) with δa\delta_{a} in XX-basis. For example, in the original protocol, if Alice finds the phase difference between the ii-th and jj-th pulse is 8π/78\pi/7, this is equivalent to that his measurement result of AjA^{\prime}_{j} is |δa|\delta_{a}^{-}\rangle (logical bit 11) with δa=π/7\delta_{a}=\pi/7 in the entanglement-based protocol.

The density matrix of Bob preparing XX-basis is the same. Then we consider the single-photon component of the joint density matrix of Alice and Bob,

ρX1i,j=\displaystyle\rho_{X_{1}}^{i,j}= p14p1|2μ2𝓟[|11AiAj|11BiBj]\displaystyle p_{1}^{4}p_{1|2\mu}^{2}\bm{\mathcal{P}}[|11\rangle_{A_{i}A_{j}}|11\rangle_{B_{i}B_{j}}] (25)
×M^E𝓟[0πdδa2π(|δa+Aj|01aiaj+eiδa|10aiaj2+|δaAj|01aiajeiδa|10aiaj2)]\displaystyle\times\hat{M}_{E}\bm{\mathcal{P}}\left[\int_{0}^{\pi}\frac{{\rm{d}}\delta_{a}}{\sqrt{2\pi}}\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}\frac{|01\rangle_{a_{i}a_{j}}+e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}+|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}\frac{|01\rangle_{a_{i}a_{j}}-e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right)\right]
𝓟[0πdδb2π(|δb+Bj|01bibj+eiδb|10bibj2+|δbBj|01bibjeiδb|10bibj2)]M^E.\displaystyle\otimes\bm{\mathcal{P}}\left[\int_{0}^{\pi}\frac{{\rm{d}}\delta_{b}}{\sqrt{2\pi}}\left(|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\frac{|01\rangle_{b_{i}b_{j}}+e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}+|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\frac{|01\rangle_{b_{i}b_{j}}-e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right)\right]\hat{M}^{\dagger}_{E}.

Here we define two measurements X^Aδa\hat{X}^{\delta_{a}}_{A^{\prime}} and X^Bδb\hat{X}^{\delta_{b}}_{B^{\prime}}, whose eigenstates are |δa±Aj|\delta_{a}^{\pm}\rangle_{A^{\prime}_{j}} and |δb±Bj|\delta_{b}^{\pm}\rangle_{B^{\prime}_{j}}, respectively. The preparation of quantum states can be regarded as Alice and Bob taking the above measurements to the auxiliaries AjA^{\prime}_{j} and BjB^{\prime}_{j}. The joint probability that Ci=Cj=1C^{i}=C^{j}=1, Alice and Bob prepare the single-photon component of X-pair and the measurement results are |δa+Aj|\delta_{a}^{+}\rangle_{A_{j}^{\prime}} and |δb+Bj|\delta_{b}^{+}\rangle_{B_{j}^{\prime}} is

Pr(|δa+Aj|δb+Bj)=\displaystyle{\rm{Pr}}\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\right)= Tr(δa+|Ajδb+|BjρX1i,j|δa+Aj|δb+Bj)\displaystyle\Tr{\langle\delta_{a}^{+}|_{A^{\prime}_{j}}\langle\delta_{b}^{+}|_{B^{\prime}_{j}}\rho_{X_{1}}^{i,j}|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}} (26)
=\displaystyle= p14p1|2μ2dδadδb4π2Tr{M^E𝓟[(|01aiaj+eiδa|10aiaj)2(|01bibj+eiδb|10bibj)2]M^E}.\displaystyle\frac{p_{1}^{4}p_{1|2\mu}^{2}{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}}{4\pi^{2}}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{(|01\rangle_{a_{i}a_{j}}+e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}})}{\sqrt{2}}\otimes\frac{(|01\rangle_{b_{i}b_{j}}+e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}})}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}.

Similarly,

Pr(|δa+Aj|δbBj)=\displaystyle{\rm{Pr}}\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\right)= p14p1|2μ2dδadδb4π2Tr{M^E𝓟[(|01aiaj+eiδa|10aiaj)2(|01bibjeiδb|10bibj)2]M^E},\displaystyle\frac{p_{1}^{4}p_{1|2\mu}^{2}{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}}{4\pi^{2}}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{(|01\rangle_{a_{i}a_{j}}+e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}})}{\sqrt{2}}\otimes\frac{(|01\rangle_{b_{i}b_{j}}-e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}})}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}, (27)
Pr(|δaAj|δb+Bj)=\displaystyle{\rm{Pr}}\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\right)= p14p1|2μ2dδadδb4π2Tr{M^E𝓟[(|01aiajeiδa|10aiaj)2(|01bibj+eiδb|10bibj)2]M^E},\displaystyle\frac{p_{1}^{4}p_{1|2\mu}^{2}{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}}{4\pi^{2}}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{(|01\rangle_{a_{i}a_{j}}-e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}})}{\sqrt{2}}\otimes\frac{(|01\rangle_{b_{i}b_{j}}+e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}})}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\},
Pr(|δaAj|δbBj)=\displaystyle{\rm{Pr}}\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\right)= p14p1|2μ2dδadδb4π2Tr{M^E𝓟[(|01aiajeiδa|10aiaj)2(|01bibjeiδb|10bibj)2]M^E}.\displaystyle\frac{p_{1}^{4}p_{1|2\mu}^{2}{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}}{4\pi^{2}}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{(|01\rangle_{a_{i}a_{j}}-e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}})}{\sqrt{2}}\otimes\frac{(|01\rangle_{b_{i}b_{j}}-e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}})}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}.

For obtaining single-photon bit error rate with δa\delta_{a} and δb\delta_{b}, the sum of Pr(|δa±Aj|δb±Bj){\rm{Pr}}\left(|\delta_{a}^{\pm}\rangle_{A^{\prime}_{j}}|\delta_{b}^{\pm}\rangle_{B^{\prime}_{j}}\right) is needed, which is given by

Pr(δaδb)=\displaystyle{\rm{Pr}}(\delta_{a}\delta_{b})= Pr(|δa+Aj|δb+Bj)+Pr(|δa+Aj|δbBj)+Pr(|δaAj|δb+Bj)+Pr(|δaAj|δbBj)\displaystyle{\rm{Pr}}\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\right)+{\rm{Pr}}\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\right)+{\rm{Pr}}\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\right)+{\rm{Pr}}\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\right) (28)
=\displaystyle= p14p1|2μ2dδadδb4π2Tr{M^E{𝓟[|01aiaj+eiδa|10aiaj2]+𝓟[|01aiajeiδa|10aiaj2]}\displaystyle\frac{p_{1}^{4}p_{1|2\mu}^{2}{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}}{4\pi^{2}}\Tr\left\{\hat{M}_{E}\left\{\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}+e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]+\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}-e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]\right\}\right.
{𝓟[|01bibj+eiδb|10bibj2]+𝓟[|01bibjeiδb|10bibj2]}M^E}\displaystyle\otimes\left.\left\{\bm{\mathcal{P}}\left[\frac{|01\rangle_{b_{i}b_{j}}+e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]+\bm{\mathcal{P}}\left[\frac{|01\rangle_{b_{i}b_{j}}-e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\right\}\hat{M}^{\dagger}_{E}\right\}
=\displaystyle= p14p1|2μ2dδadδb4π2Tr{M^E(|01aiaj01|2+|10aiaj10|2)(|01bibj01|2+|10bibj10|2)M^E}\displaystyle\frac{p_{1}^{4}p_{1|2\mu}^{2}{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}}{4\pi^{2}}\Tr\left\{\hat{M}_{E}\left(\frac{|01\rangle_{a_{i}a_{j}}\langle 01|}{2}+\frac{|10\rangle_{a_{i}a_{j}}\langle 10|}{2}\right)\right.\otimes\left.\left(\frac{|01\rangle_{b_{i}b_{j}}\langle 01|}{2}+\frac{|10\rangle_{b_{i}b_{j}}\langle 10|}{2}\right)\hat{M}^{\dagger}_{E}\right\}
=\displaystyle= p14p1|2μ2dδadδb4π2Tr{M^E{𝓟[|01aiaj+|10aiaj2]+𝓟[|01aiaj|10aiaj2]}\displaystyle\frac{p_{1}^{4}p_{1|2\mu}^{2}{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}}{4\pi^{2}}\Tr\left\{\hat{M}_{E}\left\{\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}+|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]+\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}-|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]\right\}\right.
{𝓟[|01bibj+|10bibj2]+𝓟[|01bibj|10bibj2]}M^E}.\displaystyle\otimes\left.\left\{\bm{\mathcal{P}}\left[\frac{|01\rangle_{b_{i}b_{j}}+|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]+\bm{\mathcal{P}}\left[\frac{|01\rangle_{b_{i}b_{j}}-|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\right\}\hat{M}^{\dagger}_{E}\right\}.

Moreover,

TrρX1i,j=\displaystyle\Tr\rho_{X_{1}}^{i,j}= p14p1|2μ20πdδa2π0πdδb2πTr{M^E𝓟[|δa+Aj|01aiaj+eiδa|10aiaj2+|δaAj|01aiajeiδa|10aiaj2]\displaystyle p_{1}^{4}p_{1|2\mu}^{2}\int_{0}^{\pi}\frac{{\rm{d}}\delta_{a}}{2\pi}\int_{0}^{\pi}\frac{{\rm{d}}\delta_{b}}{2\pi}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}\frac{|01\rangle_{a_{i}a_{j}}+e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}+|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}\frac{|01\rangle_{a_{i}a_{j}}-e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]\right. (29)
𝓟[|δb+Bj|01bibj+eiδb|10bibj2+|δbBj|01bibjeiδb|10bibj2]M^E}\displaystyle\otimes\left.\bm{\mathcal{P}}\left[|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\frac{|01\rangle_{b_{i}b_{j}}+e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}+|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\frac{|01\rangle_{b_{i}b_{j}}-e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}
=\displaystyle= p14p1|2μ20πdδa2π0πdδb2πTr{M^E{𝓟[|01aiaj+eiδa|10aiaj2]+𝓟[|01aiajeiδa|10aiaj2]}\displaystyle p_{1}^{4}p_{1|2\mu}^{2}\int_{0}^{\pi}\frac{{\rm{d}}\delta_{a}}{2\pi}\int_{0}^{\pi}\frac{{\rm{d}}\delta_{b}}{2\pi}\Tr\left\{\hat{M}_{E}\left\{\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}+e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]+\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}-e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]\right\}\right.
{𝓟[|01bibj+eiδb|10bibj2]+𝓟[|01bibjeiδb|10bibj2]}M^E}\displaystyle\otimes\left.\left\{\bm{\mathcal{P}}\left[\frac{|01\rangle_{b_{i}b_{j}}+e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]+\bm{\mathcal{P}}\left[\frac{|01\rangle_{b_{i}b_{j}}-e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\right\}\hat{M}^{\dagger}_{E}\right\}
=\displaystyle= p14p1|2μ20πdδa2π0πdδb2πTr{M^E{𝓟[|01aiaj+|10aiaj2]+𝓟[|01aiaj|10aiaj2]}\displaystyle p_{1}^{4}p_{1|2\mu}^{2}\int_{0}^{\pi}\frac{{\rm{d}}\delta_{a}}{2\pi}\int_{0}^{\pi}\frac{{\rm{d}}\delta_{b}}{2\pi}\Tr\left\{\hat{M}_{E}\left\{\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}+|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]+\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}-|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]\right\}\right.
{𝓟[|01bibj+|10bibj2]+𝓟[|01bibj|10bibj2]}M^E}\displaystyle\otimes\left.\left\{\bm{\mathcal{P}}\left[\frac{|01\rangle_{b_{i}b_{j}}+|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]+\bm{\mathcal{P}}\left[\frac{|01\rangle_{b_{i}b_{j}}-|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\right\}\hat{M}^{\dagger}_{E}\right\}
=\displaystyle= p14p1|2μ24Tr{M^E{𝓟[|01aiaj+|10aiaj2]+𝓟[|01aiaj|10aiaj2]}\displaystyle\frac{p_{1}^{4}p_{1|2\mu}^{2}}{4}\Tr\left\{\hat{M}_{E}\left\{\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}+|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]+\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}-|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]\right\}\right.
{𝓟[|01bibj+|10bibj2]+𝓟[|01bibj|10bibj2]}M^E}.\displaystyle\otimes\left.\left\{\bm{\mathcal{P}}\left[\frac{|01\rangle_{b_{i}b_{j}}+|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]+\bm{\mathcal{P}}\left[\frac{|01\rangle_{b_{i}b_{j}}-|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\right\}\hat{M}^{\dagger}_{E}\right\}.

Then it’s clear that

Pr(δaδb)=dδadδbπ2TrρX1i,j,\Pr\left(\delta_{a}\delta_{b}\right)=\frac{{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}}{\pi^{2}}\Tr\rho_{X_{1}}^{i,j}, (30)

which means that Eve’s attacks cannot depend on the phases δa\delta_{a} and δb\delta_{b}, i.e. Pr(δaδb)\Pr\left(\delta_{a}\delta_{b}\right) does not depend on the phases δa\delta_{a} and δb\delta_{b}.

Actually, in the key mapping step, Bob keeps his logical bit if |δaδb|Δ|\delta_{a}-\delta_{b}|\leq\Delta, flips his logical bit if |δaδb|πΔ|\delta_{a}-\delta_{b}|\geq\pi-\Delta. And he keeps his logical bit if Charlie’s clicks are (L,L) or (R,R), flips his logical bit if (L,R) or (R,L). In the entanglement-based protocol, Bob operates his auxiliary BjB^{\prime}_{j} to implement this reverse. For X-pair preparation, the single-photon bit error rate under the condition Alice and Bob obtained the results δa\delta_{a} and δb\delta_{b} (δa(b)[0,π)\delta_{a(b)}\in[0,\pi), |δaδb|Δ|\delta_{a}-\delta_{b}|\leq\Delta) is

eX1bit(δa,δb)=\displaystyle e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b})= Pr(|δa+Aj|δbBj)+Pr(|δaAj|δb+Bj)Pr(δaδb)\displaystyle\frac{{\rm{Pr}}\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\right)+{\rm{Pr}}\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\right)}{\Pr(\delta_{a}\delta_{b})} (31)
=\displaystyle= p14p1|2μ24TrρX1(i,j)Tr{M^E𝓟[|01aiaj+eiδa|10aiaj2|01bibjeiδb|10bibj2]M^E}\displaystyle\frac{p_{1}^{4}p_{1|2\mu}^{2}}{4\Tr\rho_{X_{1}}^{(i,j)}}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}+e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\otimes\frac{|01\rangle_{b_{i}b_{j}}-e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}
+\displaystyle+ p14p1|2μ24TrρX1(i,j)Tr{M^E𝓟[|01aiajeiδa|10aiaj2|01bibj+eiδb|10bibj2]M^E}.\displaystyle\frac{p_{1}^{4}p_{1|2\mu}^{2}}{4\Tr\rho_{X_{1}}^{(i,j)}}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}-e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\otimes\frac{|01\rangle_{b_{i}b_{j}}+e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}.

And the single-photon bit error rate of X-pair preparation under the condition Alice and Bob obtained the results δa\delta_{a} and δb\delta_{b} (δa(b)[0,π)\delta_{a(b)}\in[0,\pi), |δaδb|πΔ|\delta_{a}-\delta_{b}|\geq\pi-\Delta) is

eX1bit(δa,δb)=\displaystyle e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b})= Pr(|δa+Aj|δb+Bj)+Pr(|δaAj|δbBj)Pr(δaδb)\displaystyle\frac{{\rm{Pr}}\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\right)+{\rm{Pr}}\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\right)}{\Pr(\delta_{a}\delta_{b})} (32)

With the relation TrρX1i,j/Trρ~Z1i,j=p12exp(2μ)/p02\Tr\rho_{X_{1}}^{i,j}/\Tr\tilde{\rho}_{Z_{1}}^{i,j}=p_{1}^{2}\exp(-2\mu)/p_{0}^{2} and eZ1phe_{Z_{1}}^{\rm{ph}} given in Eq.(22), it’s easy to verify that

eX1bit(δa,δb)={eZ1ph(UAδaUBδbρ~Z1i,jUBδbUAδa),|δaδb|ΔeZ1ph(UAδaUB(δb+π)ρ~Z1i,jUB(δb+π)UAδa),|δaδb|πΔ,\displaystyle e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b})=\left\{\begin{array}[]{lc}e_{Z_{1}}^{\rm{ph}}(U^{-\delta_{a}}_{A}U^{-\delta_{b}}_{B}\tilde{\rho}_{Z_{1}}^{i,j}U^{\delta_{b}}_{B}U^{\delta_{a}}_{A}),&|\delta_{a}-\delta_{b}|\leq\Delta\vspace{1ex}\\ e_{Z_{1}}^{\rm{ph}}(U^{-\delta_{a}}_{A}U^{-(\delta_{b}+\pi)}_{B}\tilde{\rho}_{Z_{1}}^{i,j}U^{(\delta_{b}+\pi)}_{B}U^{\delta_{a}}_{A}),&|\delta_{a}-\delta_{b}|\geq\pi-\Delta,\\ \end{array}\right. (33)

where UAδa|01AiAj=|01AiAjU_{A}^{-\delta_{a}}|01\rangle_{A_{i}A_{j}}=|01\rangle_{A_{i}A_{j}}, UAδa|10AiAj=eiδa|10AiAjU_{A}^{-\delta_{a}}|10\rangle_{A_{i}A_{j}}=e^{-{\rm{i}}\delta_{a}}|10\rangle_{A_{i}A_{j}} are applied to Alice’s local qubits, UBδbU^{-\delta_{b}}_{B} is similar. This observation confirms that any eX1bit(δa,δb)e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b}) corresponds to the phase error rate for key bits generated by Z^AZ^B\hat{Z}_{A}\hat{Z}_{B} measurement on the density matrix UAδaUBδbρ~Z1i,jUBδbUAδaU^{-\delta_{a}}_{A}U^{-\delta_{b}}_{B}\tilde{\rho}_{Z_{1}}^{i,j}U^{\delta_{b}}_{B}U^{\delta_{a}}_{A} or UAδaUB(δb+π)ρ~Z1i,jUB(δb+π)UAδaU^{-\delta_{a}}_{A}U^{-(\delta_{b}+\pi)}_{B}\tilde{\rho}_{Z_{1}}^{i,j}U^{(\delta_{b}+\pi)}_{B}U^{\delta_{a}}_{A}. On the other hand, applying UAδaUBδb(UAδaUB(δb+π))U^{-\delta_{a}}_{A}U^{-\delta_{b}}_{B}(U^{-\delta_{a}}_{A}U^{-(\delta_{b}+\pi)}_{B}) or not will not change the distribution of the Z^AZ^B\hat{Z}_{A}\hat{Z}_{B} measurement and potential information leakage to Eve. Hence, without compromising security, the phase error rate eZ1phe_{Z_{1}}^{\rm{ph}} can be assumed to be any eX1bit(δa,δb)e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b}) or its mean value of some domains of δa,δb\delta_{a},\delta_{b}.

Actually, we just calculate eX1bit(δa,δb)e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b}) satisfying |δaδb|Δ|\delta_{a}-\delta_{b}|\leq\Delta or |δaδb|πΔ|\delta_{a}-\delta_{b}|\geq\pi-\Delta in the XX-pair preparation. This probability is

qX1=\displaystyle q_{X_{1}}= 0Δ0δa+ΔPr(δaδb)+0Δδa+πΔπPr(δaδb)+πΔπδaΔπPr(δaδb)\displaystyle\int_{0}^{\Delta}\int_{0}^{\delta_{a}+\Delta}{\rm{Pr}}\left(\delta_{a}\delta_{b}\right)+\int_{0}^{\Delta}\int_{\delta_{a}+\pi-\Delta}^{\pi}{\rm{Pr}}\left(\delta_{a}\delta_{b}\right)+\int_{\pi-\Delta}^{\pi}\int_{\delta_{a}-\Delta}^{\pi}{\rm{Pr}}\left(\delta_{a}\delta_{b}\right) (34)
+πΔπ0Δπ+δaPr(δaδb)+ΔπΔδaΔδa+ΔPr(δaδb)\displaystyle+\int_{\pi-\Delta}^{\pi}\int_{0}^{\Delta-\pi+\delta_{a}}{\rm{Pr}}\left(\delta_{a}\delta_{b}\right)+\int_{\Delta}^{\pi-\Delta}\int_{\delta_{a}-\Delta}^{\delta_{a}+\Delta}{\rm{Pr}}\left(\delta_{a}\delta_{b}\right)
=\displaystyle= 2ΔπTrρX1i,j.\displaystyle\frac{2\Delta}{\pi}\Tr\rho_{X_{1}}^{i,j}.

It should be noted that Pr(δaδb){\rm{Pr}}\left(\delta_{a}\delta_{b}\right) is independent of δa\delta_{a} and δb\delta_{b}. And we come to the main conclusion:

eZ1ph=eX1bit=\displaystyle e_{Z_{1}}^{\rm{ph}}=e_{X_{1}}^{\rm{bit}}= 1qX1[0Δ0δa+ΔPr(δaδb)eX1bit(δa,δb)+0Δδa+πΔπPr(δaδb)eX1bit(δa,δb)\displaystyle\frac{1}{q_{X_{1}}}\Bigg{[}\int_{0}^{\Delta}\int_{0}^{\delta_{a}+\Delta}{\rm{Pr}}\left(\delta_{a}\delta_{b}\right)e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b})+\int_{0}^{\Delta}\int_{\delta_{a}+\pi-\Delta}^{\pi}{\rm{Pr}}\left(\delta_{a}\delta_{b}\right)e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b}) (35)
+πΔπδaΔπPr(δaδb)eX1bit(δa,δb)+πΔπ0Δπ+δaPr(δaδb)eX1bit(δa,δb)\displaystyle+\int_{\pi-\Delta}^{\pi}\int_{\delta_{a}-\Delta}^{\pi}{\rm{Pr}}\left(\delta_{a}\delta_{b}\right)e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b})+\int_{\pi-\Delta}^{\pi}\int_{0}^{\Delta-\pi+\delta_{a}}{\rm{Pr}}\left(\delta_{a}\delta_{b}\right)e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b})
+ΔπΔδaΔδa+ΔPr(δaδb)eX1bit(δa,δb)]\displaystyle+\int_{\Delta}^{\pi-\Delta}\int_{\delta_{a}-\Delta}^{\delta_{a}+\Delta}{\rm{Pr}}\left(\delta_{a}\delta_{b}\right)e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b})\Bigg{]}
=\displaystyle= 12Δπ[0Δ0δa+ΔdδadδbeX1bit(δa,δb)+0Δδa+πΔπdδadδbeX1bit(δa,δb)\displaystyle\frac{1}{2\Delta\pi}\Bigg{[}\int_{0}^{\Delta}\int_{0}^{\delta_{a}+\Delta}{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b})+\int_{0}^{\Delta}\int_{\delta_{a}+\pi-\Delta}^{\pi}{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b})
+πΔπδaΔπdδadδbeX1bit(δa,δb)+πΔπ0Δπ+δadδadδbeX1bit(δa,δb)\displaystyle+\int_{\pi-\Delta}^{\pi}\int_{\delta_{a}-\Delta}^{\pi}{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b})+\int_{\pi-\Delta}^{\pi}\int_{0}^{\Delta-\pi+\delta_{a}}{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b})
+ΔπΔδaΔδa+ΔdδadδbeX1bit(δa,δb)].\displaystyle+\int_{\Delta}^{\pi-\Delta}\int_{\delta_{a}-\Delta}^{\delta_{a}+\Delta}{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}e_{X_{1}}^{\rm{bit}}(\delta_{a},\delta_{b})\Bigg{]}.

In the above proof, we just analyze the relation of ii-th and jj-th rounds, we prove that the phase error rate for any individual single-photon ZZ-pair Pi,jP^{i,j} must be equal to the error rate if single-photon Pi,jP^{i,j} happens to be XX-pair. However, it can be expanded to all rounds. It is clear that, for each pairs, this conclusion is satisfied, and the sum of all rounds is also satisfies. In non-asymptotic cases, the phase error rate for the raw key string 𝐙1\mathbf{Z}_{1} is sampled by the error rate between 𝐗1\mathbf{X}_{1} and 𝐗1\mathbf{X}_{1}^{\prime}, where 𝐗1\mathbf{X}_{1} and 𝐗1\mathbf{X}_{1}^{\prime} represent the key strings obtained from single-photon events in 𝒳\mathcal{X}. To summarize, eX1bite_{X_{1}}^{\rm{bit}} is a random sampling without replacement for eZ1phe_{Z_{1}}^{\rm{ph}}.

Then we employ the entropic uncertainty relation for smooth entropies Tomamichel and Renner (2011) to get the length of the secret keys. The auxiliary of Eve after error correction is denoted as EE^{\prime}. Due to the quantum leftover hash lemma Renner (2008); Tomamichel et al. (2011), a εsec\varepsilon_{\rm{sec}}-secret key of length lol_{o} can be extracted from the bit string 𝐙\mathbf{Z} by applying privacy amplification with two-universal hashing,

2ε+122loHminε(𝐙|E)εsec,\displaystyle 2\varepsilon+\frac{1}{2}\sqrt{2^{l_{o}-H_{\rm{min}}^{\varepsilon}(\mathbf{Z}|E^{\prime})}}\leq\varepsilon_{\rm{sec}}, (36)

where Hminε(𝐙|E)H_{\rm{min}}^{\varepsilon}(\mathbf{Z}|E^{\prime}) is the conditional smooth min-entropy, which is employed to quantify the average probability that Eve guesses 𝐙\mathbf{Z} correctly with EE^{\prime}. In the error-correction step, λEC+log2(2/εcor)\lambda_{\rm{EC}}+\log_{2}(2/\varepsilon_{\rm{cor}}) bits are published. By employing a chain-rule inequality for smooth entropies Vitanov et al. (2013),

Hminε(𝐙|E)Hminε(𝐙|E)λEClog22εcor,\displaystyle H_{\rm{min}}^{\varepsilon}(\mathbf{Z}|E^{\prime})\geq H_{\rm{min}}^{\varepsilon}(\mathbf{Z}|E)-\lambda_{\rm{EC}}-\log_{2}\frac{2}{\varepsilon_{\rm{cor}}}, (37)

where EE is the auxiliary of Eve before error correction. Moreover, 𝐙\mathbf{Z} can be decomposed into 𝐙1𝐙zm\mathbf{Z}_{1}\mathbf{Z}_{\rm{zm}}, which are the corresponding bit strings due to the single-photon and the other events. We have

Hminε(𝐙|E)Hminε¯(𝐙1|𝐙zmE)+Hminε(𝐙zm|E)2log22ε^,\displaystyle H_{\rm{min}}^{\varepsilon}(\mathbf{Z}|E)\geq H_{\rm{min}}^{\overline{\varepsilon}}(\mathbf{Z}_{1}|\mathbf{Z}_{\rm{zm}}E)+H_{\rm{min}}^{\varepsilon^{\prime}}(\mathbf{Z}_{\rm{zm}}|E)-2\log_{2}\frac{\sqrt{2}}{\hat{\varepsilon}}, (38)

where ε=2ε¯+ε+ε^\varepsilon=2\overline{\varepsilon}+\varepsilon^{\prime}+\hat{\varepsilon} and Hminε(𝐙zm|E)0H_{\rm{min}}^{\varepsilon^{\prime}}(\mathbf{Z}_{\rm{zm}}|E)\geq 0. We can set ε=0\varepsilon^{\prime}=0 without compromising security. Here the single-photon component prepared in the ZZ-basis and XX-basis are mutually unbiased obviously. We employed the string 𝐗1(𝐗1)\mathbf{X}_{1}(\mathbf{X}_{1}^{\prime}) to denote Alice (Bob) would have obtained if they had measured in the XX-basis instead of ZZ-basis. By employing the uncertainty relation of smooth min- and max-entropy, we have

Hminε¯(𝐙1|𝐙zmE)nZ1LHmaxε¯(𝐗1|𝐗1),\displaystyle H_{\rm{min}}^{\overline{\varepsilon}}(\mathbf{Z}_{1}|\mathbf{Z}_{\rm{zm}}E)\geq n_{Z_{1}}^{\rm{L}}-H_{\rm{max}}^{\overline{\varepsilon}}(\mathbf{X}_{1}|\mathbf{X}_{1}^{\prime}), (39)

where nZ1Ln_{Z_{1}}^{\rm{L}} is the lower bound of the length of 𝐙𝟏\mathbf{Z_{1}}. And we denote eZ1ph=(𝐗1𝐗1)/nZ1Le_{Z_{1}}^{\rm{ph}}=(\mathbf{X}_{1}\oplus\mathbf{X}_{1}^{\prime})/n_{Z_{1}}^{\rm{L}}, which is the phase error rate of nZ1Ln_{Z_{1}}^{\rm{L}} under the ZZ-basis measurement or the bit error rate of nZ1Ln_{Z_{1}}^{\rm{L}} under the XX-basis measurement. Actually, eZ1phe_{Z_{1}}^{\rm{ph}} cannot directly observe. As is proved in the above, eZ1ph=eX1bit\langle e_{Z_{1}}^{\rm{ph}}\rangle=\langle e_{X_{1}}^{\rm{bit}}\rangle, \langle\cdot\rangle is employed to denote the expected value. So, eZ1ph,Ue_{Z_{1}}^{\rm{ph},U} in nZ1Ln_{Z_{1}}^{\rm{L}} can be bounded by eX1bit\langle e_{X_{1}}^{\rm{bit}}\rangle through Chernoff-Bound, where eZ1ph,Ue_{Z_{1}}^{{\rm{ph},U}} is the estimated value of eZ1phe_{Z_{1}}^{\rm{ph}}. If the probability that eZ1pheZ1ph,Ue_{Z_{1}}^{\rm{ph}}\geq e_{Z_{1}}^{{\rm{ph},U}} is no larger than ε¯2\overline{\varepsilon}^{2},

Hmaxε¯(𝐗1|𝐗1)nZ1Lh(eZ1ph,U).H_{\rm{max}}^{\overline{\varepsilon}}(\mathbf{X}_{1}|\mathbf{X}_{1}^{\prime})\leq n_{Z_{1}}^{\rm{L}}h(e_{Z_{1}}^{{\rm{ph},U}}). (40)

If we choose εsec=2(ε^+2ε¯)+εPA\varepsilon_{\rm{sec}}=2(\hat{\varepsilon}+2\overline{\varepsilon})+\varepsilon_{\rm{PA}}, where ε¯=εe+ε1\overline{\varepsilon}=\sqrt{\varepsilon_{e}+\varepsilon_{1}}, ε1\varepsilon_{1} is the probability that the real value of the number of single-photon bits is smaller than nZ1Ln_{Z_{1}}^{\rm{L}}, and εe\varepsilon_{e} is the probability that the real value of the phase error rate of single-photon component in nZ1Ln_{Z_{1}}^{\rm{L}} is bigger than eZ1ph,Ue_{Z_{1}}^{\rm{ph},U}, εPA\varepsilon_{\rm{PA}} is the failure probability of privacy amplification. We have

lonZ1L[1h(eZ1ph,U)]λEClog22εcor2log212ε^εPA.\displaystyle l_{o}\leq n_{Z_{1}}^{\rm{L}}\left[1-h(e_{Z_{1}}^{\rm{ph},U})\right]-{\lambda_{\rm{EC}}}-\log_{2}\frac{2}{\varepsilon_{\rm{cor}}}-2\log_{2}\frac{1}{\sqrt{2}\hat{\varepsilon}\varepsilon_{\rm{PA}}}. (41)

Six-state protocol

In this section, we analyze the security of the six-state MP-QKD protocol. Similar to the analysis of the original protocol, we omit the decoy state for simplicity. The single-photon component of the joint density matrix of ZZ-pair preparation is the same as the original MP-QKD protocol,

ρ~Z1i,j=4p02p12p1|μ2M^E𝓟[|01AiAj|01aiaj+|10AiAj|10aiaj2]𝓟[|01BiBj|01bibj+|10BiBj|10bibj2]M^E.\displaystyle\tilde{\rho}_{Z_{1}}^{i,j}=4p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{A_{i}A_{j}}|01\rangle_{a_{i}a_{j}}+|10\rangle_{A_{i}A_{j}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\right]\otimes\bm{\mathcal{P}}\left[\frac{|01\rangle_{B_{i}B_{j}}|01\rangle_{b_{i}b_{j}}+|10\rangle_{B_{i}B_{j}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}. (42)

If Alice and Bob take X^A\hat{X}_{A} and X^B\hat{X}_{B} measurements, whose eigenstates are

|XA+()AiAj:=|01AiAj±|10AiAj2,|XB+()BiBj:=|01BiBj±|10BiBj2,\displaystyle|X_{A}^{+(-)}\rangle_{A_{i}A_{j}}:=\frac{|01\rangle_{A_{i}A_{j}}\pm|10\rangle_{A_{i}A_{j}}}{\sqrt{2}},|X_{B}^{+(-)}\rangle_{B_{i}B_{j}}:=\frac{|01\rangle_{B_{i}B_{j}}\pm|10\rangle_{B_{i}B_{j}}}{\sqrt{2}}, (43)

respectively. The single-photon bit error rate of ZZ-pair preparation under these measurements is

eZ1X(ρ~Z1i,j)=\displaystyle e_{Z_{1}}^{X}(\tilde{\rho}_{Z_{1}}^{i,j})= Pr(|XA+AiAj|XBBiBj)+Pr(|XAAiAj|XB+BiBj)[Pr(|XA+|XB+)+Pr(|XA+|XB)+Pr(|XA|XB+)+Pr(|XA|XB)]AiAj,BiBj\displaystyle\frac{{\rm{Pr}}(|X_{A}^{+}\rangle_{A_{i}A_{j}}|X_{B}^{-}\rangle_{B_{i}B_{j}})+{\rm{Pr}}(|X_{A}^{-}\rangle_{A_{i}A_{j}}|X_{B}^{+}\rangle_{B_{i}B_{j}})}{\left[\Pr(|X_{A}^{+}\rangle|X_{B}^{+}\rangle)+\Pr(|X_{A}^{+}\rangle|X_{B}^{-}\rangle)+\Pr(|X_{A}^{-}\rangle|X_{B}^{+}\rangle)+\Pr(|X_{A}^{-}\rangle|X_{B}^{-}\rangle)\right]_{A_{i}A_{j},B_{i}B_{j}}} (44)
=\displaystyle= p02p12p1|μ2Trρ~Z1i,jTr{M^E𝓟[|01aiaj+|10aiaj2|01bibj|10bibj2]M^E}\displaystyle\frac{p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}}{\Tr\tilde{\rho}_{Z_{1}}^{i,j}}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}+|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\otimes\frac{|01\rangle_{b_{i}b_{j}}-|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}
+\displaystyle+ p02p12p1|μ2Trρ~Z1i,jTr{M^E𝓟[|01aiaj|10aiaj2|01bibj+|10bibj2]M^E}.\displaystyle\frac{p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}}{\Tr\tilde{\rho}_{Z_{1}}^{i,j}}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}-|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\otimes\frac{|01\rangle_{b_{i}b_{j}}+|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}.

And if Alice and Bob take Y^A\hat{Y}_{A} and Y^B\hat{Y}_{B} measurements, whose eigenstates are

|YA+()AiAj:=|01AiAj±i|10AiAj2,|YB+()BiBj:=|01BiBj±i|10BiBj2,\displaystyle|Y_{A}^{+(-)}\rangle_{A_{i}A_{j}}:=\frac{|01\rangle_{A_{i}A_{j}}\pm{\rm{i}}|10\rangle_{A_{i}A_{j}}}{\sqrt{2}},|Y_{B}^{+(-)}\rangle_{B_{i}B_{j}}:=\frac{|01\rangle_{B_{i}B_{j}}\pm{\rm{i}}|10\rangle_{B_{i}B_{j}}}{\sqrt{2}}, (45)

respectively. The single-photon bit error rate of ZZ-pair preparation under these measurements is

eZ1Y(ρ~Z1i,j)=\displaystyle e_{Z_{1}}^{Y}(\tilde{\rho}_{Z_{1}}^{i,j})= Pr(|YA+AiAj|YBBiBj)+Pr(|YAAiAj|YB+BiBj)[Pr(|YA+|YB+)+Pr(|YA+|YB)+Pr(|YA|YB+)+Pr(|YA|YB)]AiAj,BiBj\displaystyle\frac{{\rm{Pr}}(|Y_{A}^{+}\rangle_{A_{i}A_{j}}|Y_{B}^{-}\rangle_{B_{i}B_{j}})+{\rm{Pr}}(|Y_{A}^{-}\rangle_{A_{i}A_{j}}|Y_{B}^{+}\rangle_{B_{i}B_{j}})}{\left[\Pr(|Y_{A}^{+}\rangle|Y_{B}^{+}\rangle)+\Pr(|Y_{A}^{+}\rangle|Y_{B}^{-}\rangle)+\Pr(|Y_{A}^{-}\rangle|Y_{B}^{+}\rangle)+\Pr(|Y_{A}^{-}\rangle|Y_{B}^{-}\rangle)\right]_{A_{i}A_{j},B_{i}B_{j}}} (46)
=\displaystyle= p02p12p1|μ2Trρ~Z1i,jTr{M^E𝓟[|01aiaji|10aiaj2|01bibj+i|10bibj2]M^E}\displaystyle\frac{p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}}{\Tr\tilde{\rho}_{Z_{1}}^{i,j}}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}-{\rm{i}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\otimes\frac{|01\rangle_{b_{i}b_{j}}+{\rm{i}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}
+\displaystyle+ p02p12p1|μ2Trρ~Z1i,jTr{M^E𝓟[|01aiaj+i|10aiaj2|01bibji|10bibj2]M^E}.\displaystyle\frac{p_{0}^{2}p_{1}^{2}p_{1|\mu}^{2}}{\Tr\tilde{\rho}_{Z_{1}}^{i,j}}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[\frac{|01\rangle_{a_{i}a_{j}}+{\rm{i}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}\otimes\frac{|01\rangle_{b_{i}b_{j}}-{\rm{i}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}\right]\hat{M}^{\dagger}_{E}\right\}.

In the original MP-QKD protocol, if the intensities of Pi,jP^{i,j} are {μ,μ}\{\mu,\mu\}, Alice and Bob label the basis as XX, and they discard the events satisfying Δ<|δaδb|<πΔ\Delta<|\delta_{a}-\delta_{b}|<\pi-\Delta, where δa,δb[0,π)\delta_{a},\delta_{b}\in[0,\pi). In the six-state protocol, when the intensities of Pi,jP^{i,j} are {μ,μ}\{\mu,\mu\}, Alice and Bob label the basis of the pairs as XX or YY according to the value rar_{a} and rbr_{b}, XX-basis if ra(b)=0r_{a(b)}=0 and YY-basis if ra(b)=1r_{a(b)}=1. And they discard the events satisfying Δ<|δaδb|<π/2Δ\Delta<|\delta_{a}-\delta_{b}|<\pi/2-\Delta, where δa,δb[0,π/2)\delta_{a},\delta_{b}\in[0,\pi/2).

In the XX- or YY-basis preparation of the six-state protocol, the single-photon component of the joint density matrix can be written as

ρT1i,j=\displaystyle\rho_{T_{1}}^{i,j}= p14p1|2μ2𝓟[|11AiAj|11BiBj]\displaystyle p_{1}^{4}p_{1|2\mu}^{2}\bm{\mathcal{P}}\left[|11\rangle_{A_{i}A_{j}}|11\rangle_{B_{i}B_{j}}\right] (47)
×M^E𝓟[0π22dδaπ(|δa+|χδa+2+|δa+i|χδa+i2+|δa|χδa2+|δai|χδai2)Aj,aiaj]\displaystyle\times\hat{M}_{E}\bm{\mathcal{P}}\left[\int_{0}^{\frac{\pi}{2}}\frac{\sqrt{2}{\rm{d}}\delta_{a}}{\sqrt{\pi}}\left(\frac{|\delta_{a}^{+}\rangle|\chi_{\delta_{a}}^{+}\rangle}{2}+\frac{|\delta_{a}^{+{\rm{i}}}\rangle|\chi_{\delta_{a}}^{+{\rm{i}}}\rangle}{2}+\frac{|\delta_{a}^{-}\rangle|\chi_{\delta_{a}}^{-}\rangle}{2}+\frac{|\delta_{a}^{-{\rm{i}}}\rangle|\chi_{\delta_{a}}^{-{\rm{i}}}\rangle}{2}\right)_{A^{\prime}_{j},a_{i}a_{j}}\right]
𝓟[0π22dδbπ(|δb+|χδb+2+|δb+i|χδb+i2+|δb|χδb2+|δbi|χδbi2)Bj,bibj]M^E,\displaystyle\otimes\bm{\mathcal{P}}\left[\int_{0}^{\frac{\pi}{2}}\frac{\sqrt{2}{\rm{d}}\delta_{b}}{\sqrt{\pi}}\left(\frac{|\delta_{b}^{+}\rangle|\chi_{\delta_{b}}^{+}\rangle}{2}+\frac{|\delta_{b}^{+{\rm{i}}}\rangle|\chi_{\delta_{b}}^{+{\rm{i}}}\rangle}{2}+\frac{|\delta_{b}^{-}\rangle|\chi_{\delta_{b}}^{-}\rangle}{2}+\frac{|\delta_{b}^{-{\rm{i}}}\rangle|\chi_{\delta_{b}}^{-{\rm{i}}}\rangle}{2}\right)_{B^{\prime}_{j},b_{i}b_{j}}\right]\hat{M}_{E}^{\dagger},

where δa+=δa\delta_{a}^{+}=\delta_{a}, δa+i=δa+π/2\delta_{a}^{+{\rm{i}}}=\delta_{a}+\pi/2, δa=δa+π\delta_{a}^{-}=\delta_{a}+\pi, and δai=δa+3π/2\delta_{a}^{-{\rm{i}}}=\delta_{a}+3\pi/2. Actually, |δa+Aj|\delta_{a}^{+}\rangle_{A_{j}^{\prime}}(|δaAj)(|\delta_{a}^{-}\rangle_{A_{j}^{\prime}}) corresponds to logical bit 0(1) with δa\delta_{a} in the XX-basis. And |δa+iAj|\delta_{a}^{+{\rm{i}}}\rangle_{A_{j}^{\prime}}(|δaiAj)(|\delta_{a}^{-{\rm{i}}}\rangle_{A_{j}^{\prime}}) corresponds to logical bit 0(1) with δa\delta_{a} in the YY-basis. For example, in the six-state protocol, if Alice finds the phase difference between the ii-th and jj-th pulse is 3π/43\pi/4, this is equivalent to that his measurement result of AjA^{\prime}_{j} is |δa+iAj|\delta_{a}^{+{\rm{i}}}\rangle_{A_{j}^{\prime}} (logical bit 0 in YY-basis) with δa=π/4\delta_{a}=\pi/4 in the entanglement-based protocol. The definitions of |δb±Bj|\delta_{b}^{\pm}\rangle_{B_{j}^{\prime}} and |δb±iBj|\delta_{b}^{\pm{\rm{i}}}\rangle_{B_{j}^{\prime}} are similar. And

|χδa+()aiaj=|01aiaj±eiδa|10aiaj2,|χδa+i(i)aiaj=|01aiaj±ieiδa|10aiaj2,\displaystyle|\chi_{\delta_{a}}^{+(-)}\rangle_{a_{i}a_{j}}=\frac{|01\rangle_{a_{i}a_{j}}\pm e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}},|\chi_{\delta_{a}}^{+{\rm{i}}(-{\rm{i}})}\rangle_{a_{i}a_{j}}=\frac{|01\rangle_{a_{i}a_{j}}\pm{\rm{i}}e^{-{\rm{i}}\delta_{a}}|10\rangle_{a_{i}a_{j}}}{\sqrt{2}}, (48)
|χδb+()bibj=|01bibj±eiδb|10bibj2,|χδb+i(i)bibj=|01bibj±ieiδb|10bibj2.\displaystyle|\chi_{\delta_{b}}^{+(-)}\rangle_{b_{i}b_{j}}=\frac{|01\rangle_{b_{i}b_{j}}\pm e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}},|\chi_{\delta_{b}}^{+{\rm{i}}(-{\rm{i}})}\rangle_{b_{i}b_{j}}=\frac{|01\rangle_{b_{i}b_{j}}\pm{\rm{i}}e^{-{\rm{i}}\delta_{b}}|10\rangle_{b_{i}b_{j}}}{\sqrt{2}}.

The probability of Alice and Bob obtaining the measurement results |δa+Aj|\delta_{a}^{+}\rangle_{A^{\prime}_{j}} and |δbBj|\delta_{b}^{-}\rangle_{B^{\prime}_{j}} is

Pr(|δa+Aj|δbBj)=\displaystyle\Pr\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\right)= Tr(δa+|Ajδb|BjρT1i,j|δa+Aj|δbBj)\displaystyle\Tr{\langle\delta_{a}^{+}|_{A^{\prime}_{j}}\langle\delta_{b}^{-}|_{B^{\prime}_{j}}\rho_{T_{1}}^{i,j}|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}} (49)
=\displaystyle= p14p1|2μ2dδadδb4π2Tr{M^E𝓟[|χδa+aiaj|χδbbibj]M^E}.\displaystyle\frac{p_{1}^{4}p_{1|2\mu}^{2}{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}}{4\pi^{2}}\Tr\left\{\hat{M}_{E}\bm{\mathcal{P}}\left[|\chi_{\delta_{a}}^{+}\rangle_{a_{i}a_{j}}|\chi_{\delta_{b}}^{-}\rangle_{b_{i}b_{j}}\right]\hat{M}^{\dagger}_{E}\right\}.

The probabilities of obtaining the other measurement results are similar.

In the key mapping step of the six-state protocol, Bob decides whether to reverse his basis and logical bit according to the relation between δa\delta_{a}, δb\delta_{b} and Charlie’s clicks. If |δaδb|Δ|\delta_{a}-\delta_{b}|\leq\Delta, Bob keeps his basis and logical bit; if δbδaπ/2Δ\delta_{b}-\delta_{a}\geq\pi/2-\Delta and the bases of Alice and Bob are XX- and YY-basis, Bob reverses his basis and his logical bit; if δbδaπ/2Δ\delta_{b}-\delta_{a}\geq\pi/2-\Delta and the bases of two users are YY- and XX-basis, Bob only reverses his basis; if δaδbπ/2Δ\delta_{a}-\delta_{b}\geq\pi/2-\Delta and the bases of two users are YY- and XX-basis, Bob reverses his basis and his logical bit; and if δaδbπ/2Δ\delta_{a}-\delta_{b}\geq\pi/2-\Delta and the bases of two users are XX- and YY-basis, Bob only reverses his basis. In the entanglement-based protocol, Bob implements this operation by changing the classical information of BjB^{\prime}_{j} after the measurement.

After the reverse operation, the yield of the XX-pair preparation

qX1=\displaystyle q_{X_{1}}= 0Δ0δa+ΔPr(δaXδbX)+Δπ2ΔδaΔδa+ΔPr(δaXδbX)+π2Δπ2δaΔπ2Pr(δaXδbX)\displaystyle\int_{0}^{\Delta}\int_{0}^{\delta_{a}+\Delta}{\rm{Pr}}\left(\delta_{a}^{X}\delta_{b}^{X}\right)+\int_{\Delta}^{\frac{\pi}{2}-\Delta}\int_{\delta_{a}-\Delta}^{\delta_{a}+\Delta}{\rm{Pr}}\left(\delta_{a}^{X}\delta_{b}^{X}\right)+\int_{\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\int_{\delta_{a}-\Delta}^{\frac{\pi}{2}}{\rm{Pr}}\left(\delta_{a}^{X}\delta_{b}^{X}\right) (50)
+0Δδa+π2Δπ2Pr(δaXδbY)+π2Δπ20δa+Δπ2Pr(δaXδbY)\displaystyle+\int_{0}^{\Delta}\int_{\delta_{a}+\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}{\rm{Pr}}\left(\delta_{a}^{X}\delta_{b}^{Y}\right)+\int_{\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\int_{0}^{\delta_{a}+\Delta-\frac{\pi}{2}}{\rm{Pr}}\left(\delta_{a}^{X}\delta_{b}^{Y}\right)
=\displaystyle= ΔπTrρT1i,j,\displaystyle\frac{\Delta}{\pi}\Tr\rho_{T_{1}}^{i,j},

where

Pr(δaXδbX)=\displaystyle{\rm{Pr}}(\delta_{a}^{X}\delta_{b}^{X})= Pr(|δa+Aj|δb+Bj)+Pr(|δa+Aj|δbBj)+Pr(|δaAj|δb+Bj)+Pr(|δaAj|δbBj)\displaystyle{\rm{Pr}}\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\right)+{\rm{Pr}}\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\right)+{\rm{Pr}}\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\right)+{\rm{Pr}}\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\right) (51)
=\displaystyle= dδadδbπ2TrρT1i,j.\displaystyle\frac{{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}}{\pi^{2}}\Tr\rho_{T_{1}}^{i,j}.
Pr(δaXδbY)=\displaystyle{\rm{Pr}}(\delta_{a}^{X}\delta_{b}^{Y})= Pr(|δa+Aj|δb+iBj)+Pr(|δa+Aj|δbiBj)+Pr(|δaAj|δb+iBj)+Pr(|δaAj|δbiBj)\displaystyle{\rm{Pr}}\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+{\rm{i}}}\rangle_{B^{\prime}_{j}}\right)+{\rm{Pr}}\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-{\rm{i}}}\rangle_{B^{\prime}_{j}}\right)+{\rm{Pr}}\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+{\rm{i}}}\rangle_{B^{\prime}_{j}}\right)+{\rm{Pr}}\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-{\rm{i}}}\rangle_{B^{\prime}_{j}}\right)
=\displaystyle= dδadδbπ2TrρT1i,j.\displaystyle\frac{{\rm{d}}\delta_{a}{\rm{d}}\delta_{b}}{\pi^{2}}\Tr\rho_{T_{1}}^{i,j}.

And the single-photon bit error rate of XX-pair preparation is

eX1bit=\displaystyle e_{X_{1}}^{\rm{bit}}= 1qX1{0Δ0δa+Δ[Pr(|δa+Aj|δbBj)+Pr(|δaAj|δb+Bj)]\displaystyle\frac{1}{q_{X_{1}}}\left\{\int_{0}^{\Delta}\int_{0}^{\delta_{a}+\Delta}\left[\Pr\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\right)+\Pr\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\right)\right]\right. (52)
+Δπ2ΔδaΔδa+Δ[Pr(|δa+Aj|δbBj)+Pr(|δaAj|δb+Bj)]\displaystyle+\int_{\Delta}^{\frac{\pi}{2}-\Delta}\int_{\delta_{a}-\Delta}^{\delta_{a}+\Delta}\left[\Pr\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\right)+\Pr\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\right)\right]
+π2Δπ2δaΔπ2[Pr(|δa+Aj|δbBj)+Pr(|δaAj|δb+Bj)]\displaystyle+\int_{\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\int_{\delta_{a}-\Delta}^{\frac{\pi}{2}}\left[\Pr\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\right)+\Pr\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\right)\right]
+0Δδa+π2Δπ2[Pr(|δa+Aj|δb+iBj)+Pr(|δaAj|δbiBj)]\displaystyle+\int_{0}^{\Delta}\int_{\delta_{a}+\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\left[\Pr\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+{\rm{i}}}\rangle_{B^{\prime}_{j}}\right)+\Pr\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-{\rm{i}}}\rangle_{B^{\prime}_{j}}\right)\right]
+π2Δπ20δa+Δπ2[Pr(|δa+Aj|δbiBj)+Pr(|δaAj|δb+iBj)]}.\displaystyle\left.+\int_{\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\int_{0}^{\delta_{a}+\Delta-\frac{\pi}{2}}\left[\Pr\left(|\delta_{a}^{+}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-{\rm{i}}}\rangle_{B^{\prime}_{j}}\right)+\Pr\left(|\delta_{a}^{-}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+{\rm{i}}}\rangle_{B^{\prime}_{j}}\right)\right]\right\}.

As is proved in the original protocol, it’s not restrictive to introduce unitary operations UAδaU^{\delta_{a}}_{A}, UBδbU^{\delta_{b}}_{B} to the joint density matrix of the ZZ-pair preparation. We come to the main conclusion of the six-state protocol:

eZ1X=\displaystyle e_{Z_{1}}^{X}= 1qX1{0Δ0δa+ΔPr(δaXδbX)eZX(UAδaUBδbρ~Z1i,jUBδbUAδa)+Δπ2ΔδaΔδa+ΔPr(δaXδbX)eZX(UAδaUBδbρ~Z1i,jUBδbUAδa)\displaystyle\frac{1}{q_{X_{1}}}\left\{\int_{0}^{\Delta}\int_{0}^{\delta_{a}+\Delta}\Pr\left(\delta_{a}^{X}\delta_{b}^{X}\right)e_{Z}^{X}\left(U^{-\delta_{a}}_{A}U^{-\delta_{b}}_{B}\tilde{\rho}_{Z_{1}}^{i,j}U^{\delta_{b}}_{B}U^{\delta_{a}}_{A}\right)\right.+\int_{\Delta}^{\frac{\pi}{2}-\Delta}\int_{\delta_{a}-\Delta}^{\delta_{a}+\Delta}\Pr\left(\delta_{a}^{X}\delta_{b}^{X}\right)e_{Z}^{X}\left(U^{-\delta_{a}}_{A}U^{-\delta_{b}}_{B}\tilde{\rho}_{Z_{1}}^{i,j}U^{\delta_{b}}_{B}U^{\delta_{a}}_{A}\right) (53)
+π2Δπ2δaΔπ2Pr(δaXδbX)eZX(UAδaUBδbρ~Z1i,jUBδbUAδa)+0Δδa+π2Δπ2Pr(δaXδbY)eZX(UAδaUB(δbπ2)ρ~Z1i,jUB(δbπ2)UAδa)\displaystyle+\int_{\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\int_{\delta_{a}-\Delta}^{\frac{\pi}{2}}\Pr\left(\delta_{a}^{X}\delta_{b}^{X}\right)e_{Z}^{X}\left(U^{-\delta_{a}}_{A}U^{-\delta_{b}}_{B}\tilde{\rho}_{Z_{1}}^{i,j}U^{\delta_{b}}_{B}U^{\delta_{a}}_{A}\right)+\int_{0}^{\Delta}\int_{\delta_{a}+\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\Pr\left(\delta_{a}^{X}\delta_{b}^{Y}\right)e_{Z}^{X}\left(U^{-\delta_{a}}_{A}U^{-(\delta_{b}-\frac{\pi}{2})}_{B}\tilde{\rho}_{Z_{1}}^{i,j}U^{(\delta_{b}-\frac{\pi}{2})}_{B}U^{\delta_{a}}_{A}\right)
+π2Δπ20δa+Δπ2Pr(δaXδbY)eZX(UAδaUB(δb+π2)ρ~Z1i,jUB(δb+π2)UAδa)}\displaystyle\left.+\int_{\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\int_{0}^{\delta_{a}+\Delta-\frac{\pi}{2}}\Pr\left(\delta_{a}^{X}\delta_{b}^{Y}\right)e_{Z}^{X}\left(U^{-\delta_{a}}_{A}U^{-(\delta_{b}+\frac{\pi}{2})}_{B}\tilde{\rho}_{Z_{1}}^{i,j}U^{(\delta_{b}+\frac{\pi}{2})}_{B}U^{\delta_{a}}_{A}\right)\right\}
=\displaystyle= eX1bit.\displaystyle e_{X_{1}}^{\rm{bit}}.

Similarly,

qY1=\displaystyle q_{Y_{1}}= 0Δ0δa+ΔPr(δaYδbY)+Δπ2ΔδaΔδa+ΔPr(δaYδbY)+π2Δπ2δaΔπ2Pr(δaYδbY)\displaystyle\int_{0}^{\Delta}\int_{0}^{\delta_{a}+\Delta}{\rm{Pr}}\left(\delta_{a}^{Y}\delta_{b}^{Y}\right)+\int_{\Delta}^{\frac{\pi}{2}-\Delta}\int_{\delta_{a}-\Delta}^{\delta_{a}+\Delta}{\rm{Pr}}\left(\delta_{a}^{Y}\delta_{b}^{Y}\right)+\int_{\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\int_{\delta_{a}-\Delta}^{\frac{\pi}{2}}{\rm{Pr}}\left(\delta_{a}^{Y}\delta_{b}^{Y}\right) (54)
+0Δδa+πΔπ2Pr(δaYδbX)+π2Δπ20δa+Δπ2Pr(δaYδbX)\displaystyle+\int_{0}^{\Delta}\int_{\delta_{a}+\pi-\Delta}^{\frac{\pi}{2}}{\rm{Pr}}\left(\delta_{a}^{Y}\delta_{b}^{X}\right)+\int_{\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\int_{0}^{\delta_{a}+\Delta-\frac{\pi}{2}}{\rm{Pr}}\left(\delta_{a}^{Y}\delta_{b}^{X}\right)
=\displaystyle= ΔπTrρT1i,j,\displaystyle\frac{\Delta}{\pi}\Tr\rho_{T_{1}}^{i,j},

and

eZ1Y=\displaystyle e_{Z_{1}}^{Y}= 1qY1{0Δ0δa+Δ[Pr(|δa+iAj|δbiBj)+Pr(|δaiAj|δb+iBj)]\displaystyle\frac{1}{q_{Y_{1}}}\left\{\int_{0}^{\Delta}\int_{0}^{\delta_{a}+\Delta}\left[\Pr\left(|\delta_{a}^{+{\rm{i}}}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-{\rm{i}}}\rangle_{B^{\prime}_{j}}\right)+\Pr\left(|\delta_{a}^{-{\rm{i}}}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+{\rm{i}}}\rangle_{B^{\prime}_{j}}\right)\right]\right. (55)
+Δπ2ΔδaΔδa+Δ[Pr(|δa+iAj|δbiBj)+Pr(|δaiAj|δb+iBj)]\displaystyle+\int_{\Delta}^{\frac{\pi}{2}-\Delta}\int_{\delta_{a}-\Delta}^{\delta_{a}+\Delta}\left[\Pr\left(|\delta_{a}^{+{\rm{i}}}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-{\rm{i}}}\rangle_{B^{\prime}_{j}}\right)+\Pr\left(|\delta_{a}^{-{\rm{i}}}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+{\rm{i}}}\rangle_{B^{\prime}_{j}}\right)\right]
+π2Δπ2δaΔπ2[Pr(|δA+iAj|δbiBj)+Pr(|δaiAj|δb+iBj)]\displaystyle+\int_{\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\int_{\delta_{a}-\Delta}^{\frac{\pi}{2}}\left[\Pr\left(|\delta_{A}^{+{\rm{i}}}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-{\rm{i}}}\rangle_{B^{\prime}_{j}}\right)+\Pr\left(|\delta_{a}^{-{\rm{i}}}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+{\rm{i}}}\rangle_{B^{\prime}_{j}}\right)\right]
+0Δδa+π2Δπ2[Pr(|δa+iAj|δbBj)+Pr(|δaiAj|δb+Bj)]\displaystyle+\int_{0}^{\Delta}\int_{\delta_{a}+\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\left[\Pr\left(|\delta_{a}^{+{\rm{i}}}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\right)+\Pr\left(|\delta_{a}^{-{\rm{i}}}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\right)\right]
+π2Δπ20δa+Δπ2[Pr(|δa+iAj|δb+Bj)+Pr(|δaiAj|δbBj)]}\displaystyle\left.+\int_{\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\int_{0}^{\delta_{a}+\Delta-\frac{\pi}{2}}\left[\Pr\left(|\delta_{a}^{+{\rm{i}}}\rangle_{A^{\prime}_{j}}|\delta_{b}^{+}\rangle_{B^{\prime}_{j}}\right)+\Pr\left(|\delta_{a}^{-{\rm{i}}}\rangle_{A^{\prime}_{j}}|\delta_{b}^{-}\rangle_{B^{\prime}_{j}}\right)\right]\right\}
=\displaystyle= 1qY1{0Δ0δa+ΔPr(δaYδbY)eZY(UAδaUBδbρ~Z1i,jUBδbUAδa)\displaystyle\frac{1}{q_{Y_{1}}}\left\{\int_{0}^{\Delta}\int_{0}^{\delta_{a}+\Delta}\Pr\left(\delta_{a}^{Y}\delta_{b}^{Y}\right)e_{Z}^{Y}\left(U^{-\delta_{a}}_{A}U^{-\delta_{b}}_{B}\tilde{\rho}_{Z_{1}}^{i,j}U^{\delta_{b}}_{B}U^{\delta_{a}}_{A}\right)\right.
+Δπ2ΔδaΔδa+ΔPr(δaYδbY)eZY(UAδaUBδbρ~Z1i,jUBδbUAδa)\displaystyle+\int_{\Delta}^{\frac{\pi}{2}-\Delta}\int_{\delta_{a}-\Delta}^{\delta_{a}+\Delta}\Pr\left(\delta_{a}^{Y}\delta_{b}^{Y}\right)e_{Z}^{Y}\left(U^{-\delta_{a}}_{A}U^{-\delta_{b}}_{B}\tilde{\rho}_{Z_{1}}^{i,j}U^{\delta_{b}}_{B}U^{\delta_{a}}_{A}\right)
+π2Δπ2δaΔπ2Pr(δaYδbY)eZY(UAδaUBδbρ~Z1i,jUBδbUAδa)\displaystyle+\int_{\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\int_{\delta_{a}-\Delta}^{\frac{\pi}{2}}\Pr\left(\delta_{a}^{Y}\delta_{b}^{Y}\right)e_{Z}^{Y}\left(U^{-\delta_{a}}_{A}U^{-\delta_{b}}_{B}\tilde{\rho}_{Z_{1}}^{i,j}U^{\delta_{b}}_{B}U^{\delta_{a}}_{A}\right)
+0Δδa+π2Δπ2Pr(δaYδbX)eZY(UAδaUB(δbπ2)ρ~Z1i,jUB(δbπ2)UAδa)\displaystyle+\int_{0}^{\Delta}\int_{\delta_{a}+\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\Pr\left(\delta_{a}^{Y}\delta_{b}^{X}\right)e_{Z}^{Y}\left(U^{-\delta_{a}}_{A}U^{-(\delta_{b}-\frac{\pi}{2})}_{B}\tilde{\rho}_{Z_{1}}^{i,j}U^{(\delta_{b}-\frac{\pi}{2})}_{B}U^{\delta_{a}}_{A}\right)
+π2Δπ20δa+Δπ2Pr(δaYδbX)eZY(UAδaUB(δb+π2)ρ~Z1i,jUB(δb+π2)UAδa)}\displaystyle\left.+\int_{\frac{\pi}{2}-\Delta}^{\frac{\pi}{2}}\int_{0}^{\delta_{a}+\Delta-\frac{\pi}{2}}\Pr\left(\delta_{a}^{Y}\delta_{b}^{X}\right)e_{Z}^{Y}\left(U^{-\delta_{a}}_{A}U^{-(\delta_{b}+\frac{\pi}{2})}_{B}\tilde{\rho}_{Z_{1}}^{i,j}U^{(\delta_{b}+\frac{\pi}{2})}_{B}U^{\delta_{a}}_{A}\right)\right\}
=\displaystyle= eY1bit.\displaystyle e_{Y_{1}}^{\rm{bit}}.

To summarize, eX1bite_{X_{1}}^{\rm{bit}} and eY1bite_{Y_{1}}^{\rm{bit}} is a random sampling without replacement for eZ1Xe_{Z_{1}}^{X} and eZ1Ye_{Z_{1}}^{Y}.

Just like the analysis of the original protocol, by employing the the quantum leftover hash lemma, the chain rules, and the uncertainty relation of smooth min- and max-entropy,

2ε+122lsHminε(𝐙|E)εsec,\displaystyle 2\varepsilon+\frac{1}{2}\sqrt{2^{l_{s}-H_{\rm{min}}^{\varepsilon}(\mathbf{Z}|E^{\prime})}}\leq\varepsilon_{\rm{sec}}, (56)
Hminε(𝐙|E)Hminε¯(𝐙1|𝐙zmE)2log22ε^λEClog22εcor,\displaystyle H_{\rm{min}}^{\varepsilon}(\mathbf{Z}|E^{\prime})\geq H_{\rm{min}}^{\overline{\varepsilon}}(\mathbf{Z}_{1}|\mathbf{Z}_{\rm{zm}}E)-2\log_{2}\frac{\sqrt{2}}{\hat{\varepsilon}}-{\lambda_{\rm{EC}}}-\log_{2}\frac{2}{\varepsilon_{\rm{cor}}},
Hminε¯(𝐙1|𝐙zmE)nZ1L[1eZ1bit,U][1h(112(eZ1bit,U+(eX1bit+eY1bit)U)1eZ1bit,U)],\displaystyle H_{\rm{min}}^{\overline{\varepsilon}}(\mathbf{Z}_{1}|\mathbf{Z}_{\rm{zm}}E)\geq n_{Z_{1}}^{\rm{L}}\left[1-e_{Z_{1}}^{\rm{bit,U}}\right]\left[1-h\left(\frac{1-\frac{1}{2}\left(e_{Z_{1}}^{\rm{bit,U}}+\left(e_{X_{1}}^{\rm{bit}}+e_{Y_{1}}^{\rm{bit}}\right)^{\rm{U}}\right)}{1-e_{Z_{1}}^{\rm{bit,U}}}\right)\right],

where ε=2ε¯+ε^\varepsilon=2\overline{\varepsilon}+\hat{\varepsilon} and ε¯=1(1ε1εe)(1ε1εe′′)\overline{\varepsilon}=\sqrt{1-(1-\varepsilon_{1}-\varepsilon_{e}^{\prime})(1-\varepsilon_{1}-\varepsilon_{e}^{\prime\prime})}. The inequation of Hminε¯(𝐙1|𝐙zmE)H_{\rm{min}}^{\bar{\varepsilon}}(\mathbf{Z}_{1}|\mathbf{Z}_{\rm{zm}}E) is got by the method which is shown in Appendix A of Ref. Wang et al. (2021). Then the secret key length can be given by

ls\displaystyle l_{s}\leq nZ1L[1eZ1bit,U][1h(112(eZ1bit,U+(eX1bit+eY1bit)U)1eZ1bit,U)]\displaystyle n_{Z_{1}}^{\rm{L}}\left[1-e_{Z_{1}}^{\rm{bit,U}}\right]\left[1-h\left(\frac{1-\frac{1}{2}\left(e_{Z_{1}}^{\rm{bit,U}}+\left(e_{X_{1}}^{\rm{bit}}+e_{Y_{1}}^{\rm{bit}}\right)^{\rm{U}}\right)}{1-e_{Z_{1}}^{\rm{bit,U}}}\right)\right] (57)
λEClog22εcor2log212ε^εPA,\displaystyle-{\lambda_{\rm{EC}}}-\log_{2}\frac{2}{\varepsilon_{\rm{cor}}}-2\log_{2}{\frac{1}{\sqrt{2}\hat{\varepsilon}\varepsilon_{\rm{PA}}}},

where εsec=2ε^+4ε¯+εPA\varepsilon_{\rm{sec}}=2\hat{\varepsilon}+4\overline{\varepsilon}+\varepsilon_{\rm{PA}}.

Supplementary Note B: Simulation of observed values

For simulating the secret key rate without doing an experiment, we employ a theoretical model to simulate the observed values of the experiment, which include the effective detection number and bit error number of different intensities. Without loss of generality, we assume that the properties of Charlie’s two detectors are the same. As is defined in the main text, kaik^{i}_{a} and kbik^{i}_{b} are Alice and Bob’s preparation intensities of the ii-th round, kai{μa,νa,o}k^{i}_{a}\in\{\mu_{a},\nu_{a},o\}, kbi{μb,νb,o}k^{i}_{b}\in\{\mu_{b},\nu_{b},o\}. k=(kai+kaj,kbi+kbj)k={(k^{i}_{a}+k^{j}_{a},k^{i}_{b}+k^{j}_{b})} is the group of the intensities in the ii-th round and jj-th round, ka=kai+kajk_{a}=k^{i}_{a}+k^{j}_{a}, and kb=kbi+kbjk_{b}=k^{i}_{b}+k^{j}_{b}.

In the ii-th round, the response probability of only L or R detector can be given by Ma and Razavi (2012); Xie et al. (2022)

qkaikbiL,θi\displaystyle q_{k^{i}_{a}k^{i}_{b}}^{L,\theta^{i}} =(1pd)ekaiηa+kbiηb2[ekaiηakbiηbcosθi(1pd)ekaiηa+kbiηb2],\displaystyle=(1-p_{d})e^{-\frac{k^{i}_{a}\eta_{a}+k^{i}_{b}\eta_{b}}{2}}\left[e^{\sqrt{k^{i}_{a}\eta_{a}k^{i}_{b}\eta_{b}}\cos\theta^{i}}-(1-p_{d})e^{-\frac{k^{i}_{a}\eta_{a}+k^{i}_{b}\eta_{b}}{2}}\right], (58)
qkaikbiR,θi\displaystyle q_{k^{i}_{a}k^{i}_{b}}^{R,\theta^{i}} =(1pd)ekaiηa+kbiηb2[ekaiηakbiηbcosθi(1pd)ekaiηa+kbiηb2],\displaystyle=(1-p_{d})e^{-\frac{k^{i}_{a}\eta_{a}+k^{i}_{b}\eta_{b}}{2}}\left[e^{-\sqrt{k^{i}_{a}\eta_{a}k^{i}_{b}\eta_{b}}\cos\theta^{i}}-(1-p_{d})e^{-\frac{k^{i}_{a}\eta_{a}+k^{i}_{b}\eta_{b}}{2}}\right],

where θi=θaiθbi\theta^{i}=\theta^{i}_{a}-\theta^{i}_{b} , pdp_{d} is the dark count rate, ηa=ηd10αLa/10\eta_{a}=\eta_{d}10^{-\alpha L_{a}/10} and ηb=ηd10αLb/10\eta_{b}=\eta_{d}10^{-\alpha L_{b}/10} are the overall efficiency of Alice and Bob, ηd\eta_{d} is the detector efficiency, α\alpha is the attenuation coefficient of the fiber, and LaL_{a}, LbL_{b} are the distances between Alice, Bob and Charlie. For simplicity, we define y=(1pd)exp((kaiηa+kbiηb)/2)y=(1-p_{d})\exp(-(k^{i}_{a}\eta_{a}+k^{i}_{b}\eta_{b})/2) and ω=kaiηakbiηb\omega=\sqrt{k^{i}_{a}\eta_{a}k^{i}_{b}\eta_{b}}. The responsive probability can be revised as

qkaikbiL,θi\displaystyle q_{k^{i}_{a}k^{i}_{b}}^{L,\theta^{i}} =y[eωcosθiy],\displaystyle=y\left[e^{\omega\cos\theta^{i}}-y\right], (59)
qkaikbiR,θi\displaystyle q_{k^{i}_{a}k^{i}_{b}}^{R,\theta^{i}} =y[eωcosθiy],\displaystyle=y\left[e^{-\omega\cos\theta^{i}}-y\right],

As is defined in the main text, CiC^{i} is the response of the ii-th round, Ci=0C^{i}=0 is the invalid event and Ci=1C^{i}=1 is the effective event. The average response probability during each round, pp, can be given by a weighted average of conditional probability,

p=\displaystyle p= Pr(Ci=1)=kaikbipkaipkbiPr(Ci=1|kaikbi),\displaystyle{\rm{Pr}}(C^{i}=1)=\sum_{k^{i}_{a}k^{i}_{b}}p_{k^{i}_{a}}p_{k^{i}_{b}}{\rm{Pr}}(C^{i}=1|k^{i}_{a}k^{i}_{b}), (60)

where the conditional probability Pr(Ci=1|kaikbi){\rm{Pr}}(C^{i}=1|k^{i}_{a}k^{i}_{b}) can be given by

Pr(Ci=1|kaikbi)\displaystyle{\rm{Pr}}(C^{i}=1|k^{i}_{a}k^{i}_{b}) =02πdθi2π(qkaikbiL,θi+qkaikbiR,θi)=2y[I0(ω)y].\displaystyle=\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{i}}{2\pi}\left(q_{k^{i}_{a}k^{i}_{b}}^{L,\theta^{i}}+q_{k^{i}_{a}k^{i}_{b}}^{R,\theta^{i}}\right)=2y[I_{0}(\omega)-y]. (61)

I0(x)I_{0}(x) represents the zero-order modified Bessel function of the first kind. For a small value of xx, we can take the first-order approximation I0(x)1+x2/4I_{0}(x)\approx 1+x^{2}/4.

Considering the specific grouping strategy in this paper, the expected pair number generated during each round can be given by

rp(p,l)=[1p[1(1p)l]+1p],r_{p}(p,l)=\left[\frac{1}{p[1-(1-p)^{l}]}+\frac{1}{p}\right], (62)

where pp is the average response probability during each round and ll is the maximal pairing interval. The specific calculation is shown in Ref. Zeng et al. (2022).

In the ZZ-pair and ’0’-pair, the number of the effective detections can be given by

nZk\displaystyle n_{Z}^{k} =Nrp(kai+kaj,kbi+kbj)=kPr(kaikajkbikbj|Ci=Cj=1)\displaystyle=Nr_{p}\sum_{(k^{i}_{a}+k^{j}_{a},k^{i}_{b}+k^{j}_{b})=k}{\rm{Pr}}(k^{i}_{a}k^{j}_{a}k^{i}_{b}k^{j}_{b}|C^{i}=C^{j}=1) (63)
=Nrp(kai+kaj,kbi+kbj)=kPr(kaikbi)Pr(Ci=1)Pr(Ci=1|kaikbi)Pr(kajkbj)Pr(Cj=1)Pr(Cj=1|kajkbj)\displaystyle=Nr_{p}\sum_{(k^{i}_{a}+k^{j}_{a},k^{i}_{b}+k^{j}_{b})=k}\frac{{\rm{Pr}}(k^{i}_{a}k^{i}_{b})}{{\rm{Pr}}(C^{i}=1)}{\rm{Pr}}(C^{i}=1|k^{i}_{a}k^{i}_{b})\frac{{\rm{Pr}}(k^{j}_{a}k^{j}_{b})}{{\rm{Pr}}(C^{j}=1)}{\rm{Pr}}(C^{j}=1|k^{j}_{a}k^{j}_{b})
=Nrpp2(kai+kaj,kbi+kbj)=kPr(kaikbikajkbj)Pr(Ci=1|kaikbi)Pr(Cj=1|kajkbj),\displaystyle=\frac{Nr_{p}}{p^{2}}\sum_{(k^{i}_{a}+k^{j}_{a},k^{i}_{b}+k^{j}_{b})=k}{\rm{Pr}}(k^{i}_{a}k^{i}_{b}k^{j}_{a}k^{j}_{b}){\rm{Pr}}(C^{i}=1|k^{i}_{a}k^{i}_{b}){\rm{Pr}}(C^{j}=1|k^{j}_{a}k^{j}_{b}),

where k{(μA,μB),(μA,νB),(μA,0),(νA,μB),(νA,νB),(νA,0),(0,μB),(0,νB),(0,0)}k\in\{(\mu_{A},\mu_{B}),(\mu_{A},\nu_{B}),(\mu_{A},0),(\nu_{A},\mu_{B}),(\nu_{A},\nu_{B}),(\nu_{A},0),(0,\mu_{B}),(0,\nu_{B}),(0,0)\} and Pr(kaikbikajkbj)=pkaipkbipkajpkbj{\rm{Pr}}(k^{i}_{a}k^{i}_{b}k^{j}_{a}k^{j}_{b})=p_{k^{i}_{a}}p_{k^{i}_{b}}p_{k^{j}_{a}}p_{k^{j}_{b}}. Then we consider the error effective detections. For k{(μA,0),(νA,0),(0,μB),(0,νB),(0,0)}k\in\{(\mu_{A},0),(\nu_{A},0),(0,\mu_{B}),(0,\nu_{B}),(0,0)\}, the number of the error effective detections without considering edZe_{d}^{Z} is mZk,0=nZk/2m_{Z}^{k,0}=n_{Z}^{k}/2, where edZe_{d}^{Z} is the misalignment-error of the ZZ-pair. And for k{(μA,μB),(μA,νB),(νA,μB),(νA,νB)}k\in\{(\mu_{A},\mu_{B}),(\mu_{A},\nu_{B}),(\nu_{A},\mu_{B}),(\nu_{A},\nu_{B})\}, the number of the error effective detections without considering edZe_{d}^{Z} is

mZk,0\displaystyle m_{Z}^{k,0} =Nrp[Pr(kai=kbi=0|Ci=Cj=1)+Pr(kaj=kbj=0|Ci=Cj=1)]\displaystyle=Nr_{p}\left[{\rm{Pr}}(k^{i}_{a}=k^{i}_{b}=0|C^{i}=C^{j}=1)+{\rm{Pr}}(k^{j}_{a}=k^{j}_{b}=0|C^{i}=C^{j}=1)\right] (64)
=Nrpp2kai=kbi=0,(kai+kaj,kbi+kbj)=kPr(kaikbikajkbj)Pr(Ci=1|kaikbi)Pr(Cj=1|kajkbj)\displaystyle=\frac{Nr_{p}}{p^{2}}\sum_{\begin{subarray}{c}k^{i}_{a}=k^{i}_{b}=0,\\ (k^{i}_{a}+k^{j}_{a},k^{i}_{b}+k^{j}_{b})=k\end{subarray}}{\rm{Pr}}(k^{i}_{a}k^{i}_{b}k^{j}_{a}k^{j}_{b}){\rm{Pr}}(C^{i}=1|k^{i}_{a}k^{i}_{b}){\rm{Pr}}(C^{j}=1|k^{j}_{a}k^{j}_{b})
+Nrpp2kaj=kbj=0,(kai+kaj,kbi+kbj)=kPr(kaikbikajkbj)Pr(Ci=1|kaikbi)Pr(Cj=1|kajkbj).\displaystyle+\frac{Nr_{p}}{p^{2}}\sum_{\begin{subarray}{c}k^{j}_{a}=k^{j}_{b}=0,\\ (k^{i}_{a}+k^{j}_{a},k^{i}_{b}+k^{j}_{b})=k\end{subarray}}{\rm{Pr}}(k^{i}_{a}k^{i}_{b}k^{j}_{a}k^{j}_{b}){\rm{Pr}}(C^{i}=1|k^{i}_{a}k^{i}_{b}){\rm{Pr}}(C^{j}=1|k^{j}_{a}k^{j}_{b}).

And when we take edZe_{d}^{Z} into consideration,

mZk\displaystyle m_{Z}^{k} =(1edZ)mZk,0+edZ(nZkmZk,0).\displaystyle=(1-e_{d}^{Z})m_{Z}^{k,0}+e_{d}^{Z}(n_{Z}^{k}-m_{Z}^{k,0}). (65)

In the XX-pair of the original protocol, the number of the effective detections before phase postselection can be given by

nXk,all\displaystyle n_{X}^{k,all} =Nrpp2Pr(kaikbikajkbj)Pr(Ci=1|kaikbi)Pr(Cj=1|kajkbj),\displaystyle=\frac{Nr_{p}}{p^{2}}{\rm{Pr}}(k^{i}_{a}k^{i}_{b}k^{j}_{a}k^{j}_{b}){\rm{Pr}}(C^{i}=1|k^{i}_{a}k^{i}_{b}){\rm{Pr}}(C^{j}=1|k^{j}_{a}k^{j}_{b}), (66)

where k{(2μA,2μB),(2μA,2νB),(2μA,0),(2νA,2μB),(2νA,2νB),(2νA,0),(0,2μB),(0,2νB)}k\in\{(2\mu_{A},2\mu_{B}),(2\mu_{A},2\nu_{B}),(2\mu_{A},0),(2\nu_{A},2\mu_{B}),(2\nu_{A},2\nu_{B}),(2\nu_{A},0),(0,2\mu_{B}),(0,2\nu_{B})\}.

In the key mapping step, Alice and Bob take the phase postselection to δa\delta_{a} and δb\delta_{b}. For the events that ka=0k_{a}=0 or kb=0k_{b}=0 (k{(2μA,0),(2νA,0),(0,2μB),(0,2νB)}k\in\{(2\mu_{A},0),(2\nu_{A},0),(0,2\mu_{B}),(0,2\nu_{B})\}), they retain all the data pairs, the number of the reversed effective detections is nXk=nXk,alln_{X}^{k}=n_{X}^{k,all}, mXk,0=nXk,all/2m_{X}^{k,0}=n_{X}^{k,all}/2. And for the other events, the number of the reversed effective detections is

nXk=\displaystyle n_{X}^{k}= nXk,all02πdθiΔΔdδ(qkaikbiL,θi+qkaikbiR,θi)(qkajkbjL,θi+δ+qkajkbjR,θi+δ)02πdθi02πdδ(qkaikbiL,θi+qkaikbiR,θi)(qkajkbjL,θi+δ+qkajkbjR,θi+δ)\displaystyle n_{X}^{k,all}\frac{\int_{0}^{2\pi}{\rm{d}}\theta^{i}\int_{-\Delta}^{\Delta}{\rm{d}}\delta\left(q_{k^{i}_{a}k^{i}_{b}}^{L,\theta^{i}}+q_{k^{i}_{a}k^{i}_{b}}^{R,\theta^{i}}\right)\left(q_{k^{j}_{a}k^{j}_{b}}^{L,\theta^{i}+\delta}+q_{k^{j}_{a}k^{j}_{b}}^{R,\theta^{i}+\delta}\right)}{\int_{0}^{2\pi}{\rm{d}}\theta^{i}\int_{0}^{2\pi}{\rm{d}}\delta\left(q_{k^{i}_{a}k^{i}_{b}}^{L,\theta^{i}}+q_{k^{i}_{a}k^{i}_{b}}^{R,\theta^{i}}\right)\left(q_{k^{j}_{a}k^{j}_{b}}^{L,\theta^{i}+\delta}+q_{k^{j}_{a}k^{j}_{b}}^{R,\theta^{i}+\delta}\right)} (67)
+nXk,all02πdθiπΔπ+Δdδ(qkaikbiL,θi+qkaikbiR,θi)(qkajkbjL,θi+δ+qkajkbjR,θi+δ)02πdθi02πdδ(qkaikbiL,θi+qkaikbiR,θi)(qkajkbjL,θi+δ+qkajkbjR,θi+δ)\displaystyle+n_{X}^{k,all}\frac{\int_{0}^{2\pi}{\rm{d}}\theta^{i}\int_{\pi-\Delta}^{\pi+\Delta}{\rm{d}}\delta\left(q_{k^{i}_{a}k^{i}_{b}}^{L,\theta^{i}}+q_{k^{i}_{a}k^{i}_{b}}^{R,\theta^{i}}\right)\left(q_{k^{j}_{a}k^{j}_{b}}^{L,\theta^{i}+\delta}+q_{k^{j}_{a}k^{j}_{b}}^{R,\theta^{i}+\delta}\right)}{\int_{0}^{2\pi}{\rm{d}}\theta^{i}\int_{0}^{2\pi}{\rm{d}}\delta\left(q_{k^{i}_{a}k^{i}_{b}}^{L,\theta^{i}}+q_{k^{i}_{a}k^{i}_{b}}^{R,\theta^{i}}\right)\left(q_{k^{j}_{a}k^{j}_{b}}^{L,\theta^{i}+\delta}+q_{k^{j}_{a}k^{j}_{b}}^{R,\theta^{i}+\delta}\right)}
=\displaystyle= Nrpp22ΔπPr(kaikbikajkbj)\displaystyle\frac{Nr_{p}}{p^{2}}\frac{2\Delta}{\pi}{\rm{Pr}}(k^{i}_{a}k^{i}_{b}k^{j}_{a}k^{j}_{b})
×[y202πdθi2πΔΔdδ2Δ(eωcosθi+eωcosθi)(eωcos(θi+δ)+eωcos(θi+δ))8y3I0(ω)+4y4],\displaystyle\times\left[y^{2}\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{i}}{2\pi}\int_{-\Delta}^{\Delta}\frac{{\rm{d}}\delta}{2\Delta}\left(e^{\omega\cos\theta^{i}}+e^{-\omega\cos\theta^{i}}\right)\left(e^{\omega\cos(\theta^{i}+\delta)}+e^{-\omega\cos(\theta^{i}+\delta)}\right)-8y^{3}I_{0}(\omega)+4y^{4}\right],

where θi=θaiθbi\theta^{i}=\theta^{i}_{a}-\theta^{i}_{b}, δ=δaδb\delta=\delta_{a}-\delta_{b}. The quantity without considering edXe_{d}^{X} can be given by

mXk,0\displaystyle m_{X}^{k,0} =Nrpp22ΔπPr(kaikbikajkbj)02πdθi2πΔΔdδ2Δ(qkajkbjL,θiqkajkbjR,θi+δ+qkajkbjR,θiqkajkbjL,θi+δ)\displaystyle=\frac{Nr_{p}}{p^{2}}\frac{2\Delta}{\pi}{\rm{Pr}}(k^{i}_{a}k^{i}_{b}k^{j}_{a}k^{j}_{b})\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{i}}{2\pi}\int_{-\Delta}^{\Delta}\frac{{\rm{d}}\delta}{2\Delta}(q_{k^{j}_{a}k^{j}_{b}}^{L,\theta^{i}}q_{k^{j}_{a}k^{j}_{b}}^{R,\theta^{i}+\delta}+q_{k^{j}_{a}k^{j}_{b}}^{R,\theta^{i}}q_{k^{j}_{a}k^{j}_{b}}^{L,\theta^{i}+\delta}) (68)
=Nrpp22ΔπPr(kaikbikajkbj)[y202πdθi2πΔΔdδ2Δ(eω(cosθicos(θi+δ))+eω(cosθicos(θi+δ)))4y3I0(ω)+2y4].\displaystyle=\frac{Nr_{p}}{p^{2}}\frac{2\Delta}{\pi}{\rm{Pr}}(k^{i}_{a}k^{i}_{b}k^{j}_{a}k^{j}_{b})\left[y^{2}\int_{0}^{2\pi}\frac{{\rm{d}}\theta^{i}}{2\pi}\int_{-\Delta}^{\Delta}\frac{{\rm{d}}\delta}{2\Delta}\left(e^{\omega\left(\cos\theta^{i}-\cos(\theta^{i}+\delta)\right)}+e^{-\omega\left(\cos\theta^{i}-\cos(\theta^{i}+\delta)\right)}\right)-4y^{3}I_{0}(\omega)+2y^{4}\right].

When we take edXe_{d}^{X} into consideration,

mXk\displaystyle m_{X}^{k} =(1edX)mXk,0+edX(nXkmXk,0).\displaystyle=(1-e_{d}^{X})m_{X}^{k,0}+e_{d}^{X}(n_{X}^{k}-m_{X}^{k,0}). (69)

The simulations of the XX- and YY-pair of the six-state protocol are in the same way. However, in the six-state protocol, we divided the original protocol’s XX-pair into two pairs, the number of the reversed error effective detections of XX-pair (YY-pair), m¯X(Y)k\overline{m}_{X(Y)}^{k}, are half of mXkm_{X}^{k}.

Supplementary Note C: Simulation formulas

In this section, we show the specific formulas which are employed to get the secret key length. In the ii-th round, Alice and Bob prepare weak coherent states |kaiexp(iθai)|\sqrt{k^{i}_{a}}\exp({\rm{i}}\theta^{i}_{a})\rangle and |kbiexp(iθbi)|\sqrt{k^{i}_{b}}\exp({\rm{i}}\theta^{i}_{b})\rangle. After the mode pairing, basis sifting and key mapping steps, the basis, the key bit and the alignment angle of different pairs are determined. As is proof in the Ref. Zeng et al. (2022), the traditional decoy-state formulas for MDI-QKD can be employed directly by introducing the ’gain’ and ’yield’. It should be noted that the ’gain’ and ’yield’ are analogous values to the MDI’s gain and yield, but not the real gain and yield of MP-QKD. In this study, we analyze the secret key length by employing joint constraints Yu et al. (2015).

Original MP-QKD protocol

The lower bound of the single-photon effective detection number and the upper bound of phase error rate of the single-photon components in the raw key, which are denoted as nZ1Ln_{Z_{1}}^{\rm{L}} and eZ1ph,Ue_{Z_{1}}^{\rm{ph},U}, is needed for obtaining the secret key length. Actually, the expected values of the ’yield’ and the phase error rate of the single-photon components in the raw key satisfy

yZ1=yX1,eZ1ph=eX1bit,\displaystyle\langle y_{Z_{1}}\rangle=\langle y_{X_{1}}\rangle,\langle e_{Z_{1}}^{\rm{ph}}\rangle=\langle e_{X_{1}}^{\rm{bit}}\rangle, (70)

where yX1\langle y_{X_{1}}\rangle is the expected value of the ’yield’ of the XX-pair, and eX1bit\langle e_{X_{1}}^{\rm{bit}}\rangle is the expected value of the single-photon bit error rate in the XX-pair Jiang et al. (2021). So, we can estimate nZ1Ln_{Z_{1}}^{\rm{L}} by employing yZ1\langle y_{Z_{1}}\rangle, eZ1ph,Ue_{Z_{1}}^{\rm{ph},U} by employing eX1bit\langle e_{X_{1}}^{\rm{bit}}\rangle with the Chernoff bound

nZ1L=OL(ka{μa,νa},kb{μb,νb}NZkkakbe(kakb)yZ1L,ξy),\displaystyle n_{Z_{1}}^{\rm{L}}=O^{\rm{L}}({\sum_{\begin{subarray}{c}k_{a}\in\{\mu_{a},\nu_{a}\},\\ k_{b}\in\{\mu_{b},\nu_{b}\}\end{subarray}}N_{Z}^{k}k_{a}k_{b}e^{(-k_{a}-k_{b})}\langle y_{Z_{1}}\rangle^{\rm{L}},\xi_{y}}), (71)
eZ1ph,U=OU(nZ1LeX1bitU,ξe)/nZ1L,\displaystyle e_{Z_{1}}^{\rm{ph},U}=O^{\rm{U}}({n_{Z_{1}}^{\rm{L}}\langle e_{X_{1}}^{\rm{bit}}\rangle^{\rm{U}},\xi_{e}})/n_{Z_{1}}^{\rm{L}},

where NZk=N2kPr(kaikbikajkbj)N_{Z}^{k}=\frac{N}{2}\sum_{k}{\rm{Pr}}(k^{i}_{a}k^{i}_{b}k^{j}_{a}k^{j}_{b}). It should be noted that NZkN_{Z}^{k} is the expected number of pairs with kk. OL(E,ξ)O^{\rm{L}}(E,\xi) and OU(E,ξ)O^{\rm{U}}(E,\xi) are defined in Supplementary Note E. For obtaining the bound of expected values yZ1\langle y_{Z_{1}}\rangle and eX1bit\langle e_{X_{1}}^{\rm{bit}}\rangle, we employ the decoy-state formulas which are shown in Ref. Yu et al. (2015); Lu et al. (2020). ana_{n}, ana^{\prime}_{n}, bnb_{n}, and bnb^{\prime}_{n} are employed to denote poisson distribution probabilities of intensities νa\nu_{a}, μa\mu_{a}, νb\nu_{b}, and μb\mu_{b},

an=νaneνan!,an=μaneμan!,bn=νbneνbn!,bn=μbneμbn!,\displaystyle a_{n}=\frac{\nu_{a}^{n}e^{-\nu_{a}}}{n!},a_{n}^{\prime}=\frac{\mu_{a}^{n}e^{-\mu_{a}}}{n!},b_{n}=\frac{\nu_{b}^{n}e^{-\nu_{b}}}{n!},b_{n}^{\prime}=\frac{\mu_{b}^{n}e^{-\mu_{b}}}{n!}, (72)

respectively. If a1b2a1b2a2b1a2b1\frac{a_{1}^{\prime}b_{2}^{\prime}}{a_{1}b_{2}}\leq\frac{a_{2}^{\prime}b_{1}^{\prime}}{a_{2}b_{1}}, the lower bound of yZ1\langle y_{Z_{1}}\rangle can be estimated by

yZ1L=Y+LYUa1a1b~12,\displaystyle\langle y_{Z_{1}}\rangle^{\rm{L}}=\frac{Y_{+}^{\rm{L}}-Y_{-}^{\rm{U}}}{a_{1}a_{1}^{\prime}\tilde{b}_{12}}, (73)

where b~12=b1b2b1b2\tilde{b}_{12}=b_{1}b_{2}^{\prime}-b_{1}^{\prime}b_{2}, and

Y+L\displaystyle Y_{+}^{\rm{L}} =min:a1b2NZ(ν,ν)nZ(ν,ν)+a1b2a0NZ(0,μ)nZ(0,μ)+a1b2b0NZ(μ,0)nZ(μ,0)+a1b2a0b0a1b2a0b0NZ(0,0)nZ(0,0),\displaystyle=\rm{min}:\frac{a_{1}^{\prime}b_{2}^{\prime}}{N_{Z}^{(\nu,\nu)}}\langle n_{Z}^{(\nu,\nu)}\rangle+\frac{a_{1}b_{2}a_{0}^{\prime}}{N_{Z}^{(0,\mu)}}\langle n_{Z}^{(0,\mu)}\rangle+\frac{a_{1}b_{2}b_{0}^{\prime}}{N_{Z}^{(\mu,0)}}\langle n_{Z}^{(\mu,0)}\rangle+\frac{a_{1}^{\prime}b_{2}^{\prime}a_{0}b_{0}-a_{1}b_{2}a_{0}^{\prime}b_{0}^{\prime}}{N_{Z}^{(0,0)}}\langle n_{Z}^{(0,0)}\rangle, (74)
YU\displaystyle Y_{-}^{\rm{U}} =max:a1b2NZ(μ,μ)nZ(μ,μ)+a1b2a0NZ(0,ν)nZ(0,ν)+a1b2b0NZ(ν,0)nZ(ν,0).\displaystyle=\rm{max}:\frac{a_{1}b_{2}}{N_{Z}^{(\mu,\mu)}}\langle n_{Z}^{(\mu,\mu)}\rangle+\frac{a_{1}^{\prime}b_{2}^{\prime}a_{0}}{N_{Z}^{(0,\nu)}}\langle n_{Z}^{(0,\nu)}\rangle+\frac{a_{1}^{\prime}b_{2}^{\prime}b_{0}}{N_{Z}^{(\nu,0)}}\langle n_{Z}^{(\nu,0)}\rangle.

Here we employ the method of joint study to obtain Y+LY_{+}^{\rm{L}} and YUY_{-}^{\rm{U}}, which is proposed in Ref. Yu et al. (2015). The core of this method is to use joint constraints between different measured values to limit the influence of statistical fluctuations. For example, Y+LY_{+}^{\rm{L}} can be simply written as min:γ1g1+γ2g2+γ3g3+γ4g4\rm{min}:\gamma_{1}g_{1}+\gamma_{2}g_{2}+\gamma_{3}g_{3}+\gamma_{4}g_{4}, where γi(i{1,2,3,4})\gamma_{i}(i\in\{1,2,3,4\}) is the coefficient behind the expected values, and gi(i{1,2,3,4})g_{i}(i\in\{1,2,3,4\}) is the expected value of measured values. In the method of joint study, we not only employ the Chernoff Bound to estimate the lower bound of gig_{i}, but also employ gi+gi(ii,i,i{1,2,3,4})g_{i}+g_{i^{\prime}}(i\neq i^{\prime},i,i^{\prime}\in\{1,2,3,4\}), gi+gi+gi′′(iii′′,i,i,i′′{1,2,3,4})g_{i}+g_{i^{\prime}}+g_{i^{\prime\prime}}(i\neq i^{\prime}\neq i^{\prime\prime},i,i^{\prime},i^{\prime\prime}\in\{1,2,3,4\}) and g1+g2+g3+g4g_{1}+g_{2}+g_{3}+g_{4} to bound the lower bound of Y+LY_{+}^{\rm{L}}. Here different gig_{i} are seen as a same event. The specific descriptions are shown in Supplementary Note D. For simplicity, Y+LY_{+}^{\rm{L}} and YUY_{-}^{\rm{U}} are rewrote as

Y+L\displaystyle Y_{+}^{\rm{L}} =FL(a1b2NZ(ν,ν),a1b2a0NZ(0,μ),a1b2b0NZ(μ,0),a1b2a0b0a1b2a0b0NZ(0,0),nZ(ν,ν),nZ(0,μ),nZ(μ,0),nZ(0,0),ξy1,ξy2,ξy3,ξy4),\displaystyle={F}^{\rm{L}}\left(\frac{a_{1}^{\prime}b_{2}^{\prime}}{N_{Z}^{(\nu,\nu)}},\frac{a_{1}b_{2}a_{0}^{\prime}}{N_{Z}^{(0,\mu)}},\frac{a_{1}b_{2}b_{0}^{\prime}}{N_{Z}^{(\mu,0)}},\frac{a_{1}^{\prime}b_{2}^{\prime}a_{0}b_{0}-a_{1}b_{2}a_{0}^{\prime}b_{0}^{\prime}}{N_{Z}^{(0,0)}},n_{Z}^{(\nu,\nu)},n_{Z}^{(0,\mu)},n_{Z}^{(\mu,0)},n_{Z}^{(0,0)},\xi_{y_{1}},\xi_{y_{2}},\xi_{y_{3}},\xi_{y_{4}}\right), (75)
YU\displaystyle Y_{-}^{\rm{U}} =FU(a1b2NZ(μ,μ),a1b2a0NZ(0,ν),a1b2b0NZ(ν,0),0,nZ(μ,μ),nZ(0,ν),nZ(ν,0),0,ξy5,ξy6,ξy7,0).\displaystyle={F}^{\rm{U}}\left(\frac{a_{1}b_{2}}{N_{Z}^{(\mu,\mu)}},\frac{a_{1}^{\prime}b_{2}^{\prime}a_{0}}{N_{Z}^{(0,\nu)}},\frac{a_{1}^{\prime}b_{2}^{\prime}b_{0}}{N_{Z}^{(\nu,0)}},0,n_{Z}^{(\mu,\mu)},n_{Z}^{(0,\nu)},n_{Z}^{(\nu,0)},0,\xi_{y_{5}},\xi_{y_{6}},\xi_{y_{7}},0\right).

The functions FL(){F}^{\rm{L}}(\cdot) and FU(){F}^{\rm{U}}(\cdot) are analyzed by employing joint constraints with the Chernoff bound, which is shown in Supplementary Note D. In the case of a1b2a1b2>a2b1a2b1\frac{a_{1}^{\prime}b_{2}^{\prime}}{a_{1}b_{2}}>\frac{a_{2}^{\prime}b_{1}^{\prime}}{a_{2}b_{1}}, the lower bound of yZ1\langle y_{Z_{1}}\rangle can be obtained by making the exchange between ana_{n} and bnb_{n}, and the exchange between ana_{n}^{\prime} and bnb_{n}^{\prime}, for n=1,2n=1,2.

Moreover, the upper bound of eX1bit\langle e_{X_{1}}^{\rm{bit}}\rangle satisfies

eX1bitU=T+UTLa1b1yZ1L,\displaystyle\langle e_{X_{1}}^{\rm{bit}}\rangle^{\rm{U}}=\frac{T_{+}^{\rm{U}}-T_{-}^{\rm{L}}}{a_{1}b_{1}\langle y_{Z_{1}}\rangle^{\rm{L}}}, (76)

where

T+U=\displaystyle T_{+}^{\rm{U}}= FL(1NX(2ν,2ν),a0b0NX(0,0),0,0,mX(2ν,2ν),mX(0,0),0,0,ξe1,ξe2,0,0),\displaystyle{F}^{\rm{L}}\left(\frac{1}{N_{X}^{(2\nu,2\nu)}},\frac{a_{0}b_{0}}{N_{X}^{(0,0)}},0,0,\right.\left.m_{X}^{(2\nu,2\nu)},m_{X}^{(0,0)},0,0,\xi_{e_{1}},\xi_{e_{2}},0,0\right), (77)
TL=\displaystyle T_{-}^{\rm{L}}= FU(a0NX(0,2ν),b0NX(2ν,0),0,0,mX(0,2ν),mX(2ν,0),0,0,ξe3,ξe4,0,0).\displaystyle{F}^{\rm{U}}\left(\frac{a_{0}}{N_{X}^{(0,2\nu)}},\frac{b_{0}}{N_{X}^{(2\nu,0)}},0,0,\right.\left.m_{X}^{(0,2\nu)},m_{X}^{(2\nu,0)},0,0,\xi_{e_{3}},\xi_{e_{4}},0,0\right).

Here NX(2ν,2ν)=NΔπpν4N_{X}^{(2\nu,2\nu)}=\frac{N\Delta}{\pi}p_{\nu}^{4}, NX(0,2ν)=NX(2ν,0)=N2pν2po2N_{X}^{(0,2\nu)}=N_{X}^{(2\nu,0)}=\frac{N}{2}p_{\nu}^{2}p_{o}^{2}, and NX(0,0)=N2po4N_{X}^{(0,0)}=\frac{N}{2}p_{o}^{4}.

In the universally composable framework, ε1\varepsilon_{1} is the probability that the real value of the number of single-photon bits is smaller than nZ1Ln_{Z_{1}}^{\rm{L}}, and εe\varepsilon_{e} is the probability that the real value of the phase error rate of single-photon component in nZLn_{Z}^{\rm{L}} is bigger than eZ1ph,Ue_{Z_{1}}^{\rm{ph},U}. With the calculation method above, the failure probability of the estimation of nZ1Ln_{Z_{1}}^{\rm{L}} and eZ1ph,Ue_{Z_{1}}^{\rm{ph},U} are

ε1=\displaystyle\varepsilon_{1}= ξy+ξy1+ξy2+ξy3+ξy4+ξy5+ξy6+ξy7,\displaystyle\xi_{y}+\xi_{y_{1}}+\xi_{y_{2}}+\xi_{y_{3}}+\xi_{y_{4}}+\xi_{y_{5}}+\xi_{y_{6}}+\xi_{y_{7}}, (78)
εe=\displaystyle\varepsilon_{e}= ξe+ξe1+ξe2+ξe3+ξe4.\displaystyle\xi_{e}+\xi_{e_{1}}+\xi_{e_{2}}+\xi_{e_{3}}+\xi_{e_{4}}.

Six-state MP-QKD protocol

For the six-state MP-QKD protocol, we need nZ1Ln_{Z_{1}}^{\rm{L}}, eZ1bit,Ue_{Z_{1}}^{\rm{bit,U}}, and (eX1bit+eY1bit)U(e_{X_{1}}^{\rm{bit}}+e_{Y_{1}}^{\rm{bit}})^{\rm{U}} to obtain the secret key length. eZ1bit,Ue_{Z_{1}}^{\rm{bit,U}} is the upper bound of the bit error rate in the single-photon component of the raw key. (eX1bit+eY1bit)U(e_{X_{1}}^{\rm{bit}}+e_{Y_{1}}^{\rm{bit}})^{\rm{U}} is the upper bound of the sum of the bit error rate if Alice and Bob measure the single-photon component of the raw key in X^\hat{X} and Y^\hat{Y}.

The upper bound of eZ1bit\langle e_{Z_{1}}^{\rm{bit}}\rangle satisfies

eZ1bitU=T+UTLa1b1yZ1L,\displaystyle\langle e_{Z_{1}}^{\rm{bit}}\rangle^{\rm{U}}=\frac{T_{+}^{{}^{\prime}\rm{U}}-T_{-}^{{}^{\prime}\rm{L}}}{a_{1}b_{1}\langle y_{Z_{1}}\rangle^{\rm{L}}}, (79)

where

T+U=\displaystyle T_{+}^{{}^{\prime}\rm{U}}= FL(1NZ(ν,ν),a0b0NZ(0,0),0,0,mZ(ν,ν),mZ(0,0),0,0,ξe1,ξe2,0,0),\displaystyle{F}^{\rm{L}}\left(\frac{1}{N_{Z}^{(\nu,\nu)}},\frac{a_{0}b_{0}}{N_{Z}^{(0,0)}},0,0,\right.\left.m_{Z}^{(\nu,\nu)},m_{Z}^{(0,0)},0,0,\xi^{\prime}_{e_{1}},\xi^{\prime}_{e_{2}},0,0\right), (80)
TL=\displaystyle T_{-}^{{}^{\prime}\rm{L}}= FU(a0NZ(0,2ν),b0NZ(2ν,0),0,0,mZ(0,ν),mZ(ν,0),0,0,ξe3,ξe4,0,0).\displaystyle{F}^{\rm{U}}\left(\frac{a_{0}}{N_{Z}^{(0,2\nu)}},\frac{b_{0}}{N_{Z}^{(2\nu,0)}},0,0,\right.\left.m_{Z}^{(0,\nu)},m_{Z}^{(\nu,0)},0,0,\xi^{\prime}_{e_{3}},\xi^{\prime}_{e_{4}},0,0\right).

The upper bound of eX1bit+eY1bit\langle e_{X_{1}}^{\rm{bit}}+e_{Y_{1}}^{\rm{bit}}\rangle is

eX1bit+eY1bitU=T+UTLa1b1yZ1L,\displaystyle\langle e_{X_{1}}^{\rm{bit}}+e_{Y_{1}}^{\rm{bit}}\rangle^{\rm{U}}=\frac{T_{+}^{{}^{\prime}\rm{U}}-T_{-}^{{}^{\prime}\rm{L}}}{a_{1}b_{1}\langle y_{Z_{1}}\rangle^{\rm{L}}}, (81)

where

T+U\displaystyle T_{+}^{{}^{\prime}\rm{U}} =FL(1N¯X(2ν,2ν),a0b0N¯X(0,0),0,0,m¯X(2ν,2ν)+m¯Y(2ν,2ν),m¯X(0,0)+m¯Y(0,0),0,0,ξe1′′,ξe2′′,0,0),\displaystyle={F}^{\rm{L}}\left(\frac{1}{\overline{N}_{X}^{(2\nu,2\nu)}},\frac{a_{0}b_{0}}{\overline{N}_{X}^{(0,0)}},0,0,\right.\left.\overline{m}_{X}^{(2\nu,2\nu)}+\overline{m}_{Y}^{(2\nu,2\nu)},\overline{m}_{X}^{(0,0)}+\overline{m}_{Y}^{(0,0)},0,0,\xi^{\prime\prime}_{e_{1}},\xi^{\prime\prime}_{e_{2}},0,0\right), (82)
TL\displaystyle T_{-}^{{}^{\prime}\rm{L}} =FU(a0N¯X(0,2ν),b0N¯X(2ν,0),0,0,m¯X(0,2ν)+m¯Y(0,2ν),m¯X(2ν,0)+m¯Y(0,2ν),0,0,ξe3′′,ξe4′′,0,0),\displaystyle={F}^{\rm{U}}\left(\frac{a_{0}}{\overline{N}_{X}^{(0,2\nu)}},\frac{b_{0}}{\overline{N}_{X}^{(2\nu,0)}},0,0,\right.\left.\overline{m}_{X}^{(0,2\nu)}+\overline{m}_{Y}^{(0,2\nu)},\overline{m}_{X}^{(2\nu,0)}+\overline{m}_{Y}^{(0,2\nu)},0,0,\xi^{\prime\prime}_{e_{3}},\xi^{\prime\prime}_{e_{4}},0,0\right),

Here N¯Xk=NXk2(k{(2ν,2ν),(2ν,0),(0,2ν),(0,0)})\overline{N}_{X}^{k}=\frac{N_{X}^{k}}{2}\left(k\in\{(2\nu,2\nu),(2\nu,0),(0,2\nu),(0,0)\}\right).

Then we can get eZ1bit,Ue_{Z_{1}}^{\rm{bit,U}}, and (eX1bit+eY1bit)U(e_{X_{1}}^{\rm{bit}}+e_{Y_{1}}^{\rm{bit}})^{\rm{U}} by Chernoff bound,

eZ1bit,U=OU(nZ1LeZ1bitU,ξe)/nZ1L,\displaystyle e_{Z_{1}}^{\rm{bit,U}}=O^{\rm{U}}({n_{Z_{1}}^{\rm{L}}\langle e_{Z_{1}}^{\rm{bit}}\rangle^{\rm{U}},\xi^{\prime}_{e}})/n_{Z_{1}}^{\rm{L}}, (83)
(eX1bit+eY1bit)U=OU(nZ1LeX1bit+eY1bitU,ξe′′)/nZ1L.\displaystyle(e_{X_{1}}^{\rm{bit}}+e_{Y_{1}}^{\rm{bit}})^{\rm{U}}=O^{\rm{U}}({n_{Z_{1}}^{\rm{L}}\langle e_{X_{1}}^{\rm{bit}}+e_{Y_{1}}^{\rm{bit}}\rangle^{\rm{U}},\xi^{\prime\prime}_{e}})/n_{Z_{1}}^{\rm{L}}.

In the universally composable framework, εe\varepsilon^{\prime}_{e} is the probability that the real value of the bit error rate of single-photon component in nZ1Ln_{Z_{1}}^{\rm{L}} under ZZ-pair measurement is bigger than eZ1bit,Ue_{Z_{1}}^{\rm{bit,U}}. εe′′\varepsilon^{\prime\prime}_{e} is the probability that if Alice and Bob take XX-pair measurement and YY-pair measurement to nZ1Ln_{Z_{1}}^{\rm{L}}, the real value of the sum of bit error rate is bigger than (eX1bit+eY1bit)U\left(e_{X_{1}}^{\rm{bit}}+e_{Y_{1}}^{\rm{bit}}\right)^{\rm{U}}. With the calculation method above, the failure probability of the estimation of eZ1bit,Ue_{Z_{1}}^{\rm{bit,U}} and (eX1bit+eY1bit)U\left(e_{X_{1}}^{\rm{bit}}+e_{Y_{1}}^{\rm{bit}}\right)^{\rm{U}} are

εe=\displaystyle\varepsilon^{\prime}_{e}= ξe+ξe1+ξe2+ξe3+ξe4,\displaystyle\xi^{\prime}_{e}+\xi^{\prime}_{e_{1}}+\xi^{\prime}_{e_{2}}+\xi^{\prime}_{e_{3}}+\xi^{\prime}_{e_{4}}, (84)
εe′′=\displaystyle\varepsilon^{\prime\prime}_{e}= ξe′′+ξe1′′+ξe2′′+ξe3′′+ξe4′′.\displaystyle\xi^{\prime\prime}_{e}+\xi^{\prime\prime}_{e_{1}}+\xi^{\prime\prime}_{e_{2}}+\xi^{\prime\prime}_{e_{3}}+\xi^{\prime\prime}_{e_{4}}.

Supplementary Note D: Analytic results of joint constraints

Here we give the analytic results of joint constraints, which can be write into function FL{F}^{\rm{L}} and FU{F}^{\rm{U}}. The problem of obtaining the minimum value of function FF can be abstracted into

ming1,g2,g3,g4\displaystyle\min\limits_{g_{1},g_{2},g_{3},g_{4}} F=γ1g1+γ2g2+γ3g3+γ4g4,\displaystyle F=\gamma_{1}g_{1}+\gamma_{2}g_{2}+\gamma_{3}g_{3}+\gamma_{4}g_{4}, (85)
s.t.\displaystyle s.t. g1EL(g1~,ξ1),\displaystyle g_{1}\geq E^{\rm{L}}(\widetilde{g_{1}},\xi_{1}),
g2EL(g2~,ξ1),\displaystyle g_{2}\geq E^{\rm{L}}(\widetilde{g_{2}},\xi_{1}),
g3EL(g3~,ξ1),\displaystyle g_{3}\geq E^{\rm{L}}(\widetilde{g_{3}},\xi_{1}),
g4EL(g4~,ξ1),\displaystyle g_{4}\geq E^{\rm{L}}(\widetilde{g_{4}},\xi_{1}),
g1+g2EL(g1~+g2~,ξ2),\displaystyle g_{1}+g_{2}\geq E^{\rm{L}}(\widetilde{g_{1}}+\widetilde{g_{2}},\xi_{2}),
g1+g3EL(g1~+g3~,ξ2),\displaystyle g_{1}+g_{3}\geq E^{\rm{L}}(\widetilde{g_{1}}+\widetilde{g_{3}},\xi_{2}),
g1+g4EL(g1~+g4~,ξ2),\displaystyle g_{1}+g_{4}\geq E^{\rm{L}}(\widetilde{g_{1}}+\widetilde{g_{4}},\xi_{2}),
g2+g3EL(g2~+g3~,ξ2),\displaystyle g_{2}+g_{3}\geq E^{\rm{L}}(\widetilde{g_{2}}+\widetilde{g_{3}},\xi_{2}),
g2+g4EL(g2~+g4~,ξ2),\displaystyle g_{2}+g_{4}\geq E^{\rm{L}}(\widetilde{g_{2}}+\widetilde{g_{4}},\xi_{2}),
g3+g4EL(g3~+g4~,ξ2),\displaystyle g_{3}+g_{4}\geq E^{\rm{L}}(\widetilde{g_{3}}+\widetilde{g_{4}},\xi_{2}),
g1+g2+g3EL(g1~+g2~+g3~,ξ3),\displaystyle g_{1}+g_{2}+g_{3}\geq E^{\rm{L}}(\widetilde{g_{1}}+\widetilde{g_{2}}+\widetilde{g_{3}},\xi_{3}),
g1+g2+g4EL(g1~+g2~+g4~,ξ3),\displaystyle g_{1}+g_{2}+g_{4}\geq E^{\rm{L}}(\widetilde{g_{1}}+\widetilde{g_{2}}+\widetilde{g_{4}},\xi_{3}),
g2+g3+g4EL(g2~+g3~+g4~,ξ3),\displaystyle g_{2}+g_{3}+g_{4}\geq E^{\rm{L}}(\widetilde{g_{2}}+\widetilde{g_{3}}+\widetilde{g_{4}},\xi_{3}),
g1+g2+g3+g4EL(g1~+g2~+g3~+g4~,ξ3),\displaystyle g_{1}+g_{2}+g_{3}+g_{4}\geq E^{\rm{L}}(\widetilde{g_{1}}+\widetilde{g_{2}}+\widetilde{g_{3}}+\widetilde{g_{4}},\xi_{3}),

where γ1,γ2,γ3,γ4,g1,g2,g3,g4,g1~,g2~,g3~,g4~\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},g_{1},g_{2},g_{3},g_{4},\widetilde{g_{1}},\widetilde{g_{2}},\widetilde{g_{3}},\widetilde{g_{4}} all are positive and EL(O,ξ)E^{\rm{L}}(O,\xi) is Chernoff bound which is presented in Supplementary Note E. In this paper, γ1\gamma_{1}, γ2\gamma_{2}, γ3\gamma_{3}, and γ4\gamma_{4} are coefficients. g1g_{1}, g2g_{2}, g3g_{3}, and g4g_{4} are the expected values of g1~\widetilde{g_{1}}, g2~\widetilde{g_{2}}, g3~\widetilde{g_{3}}, and g4~\widetilde{g_{4}} which are measured in experiments, respectively.

We rearrange {γ1,γ2,γ3,γ4}\{\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4}\} in the ascending order, the new sequence is denoted by {γ1,γ2,γ3,γ4}\{\gamma_{1}^{\prime},\gamma_{2}^{\prime},\gamma_{3}^{\prime},\gamma_{4}^{\prime}\}, {g1~,g2~,g3~,g4~}\{\widetilde{g_{1}}^{\prime},\widetilde{g_{2}}^{\prime},\widetilde{g_{3}}^{\prime},\widetilde{g_{4}}^{\prime}\} as the corresponding rearrange of {g1~,g2~,g3~,g4~}\{\widetilde{g_{1}},\widetilde{g_{2}},\widetilde{g_{3}},\widetilde{g_{4}}\} according to the ascending order of {γ1,γ2,γ3,γ4}\{\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4}\}. In this way, the lower bound of F{F} can be wrote as:

FL\displaystyle{F}^{\rm{L}} (γ1,γ2,γ3,γ4,g1~,g2~,g3~,g4~,ξ1,ξ2,ξ3,ξ4)\displaystyle(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\widetilde{g_{1}},\widetilde{g_{2}},\widetilde{g_{3}},\widetilde{g_{4}},\xi_{1},\xi_{2},\xi_{3},\xi_{4}) (86)
=\displaystyle= γ1EL(g1~+g2~+g3~+g4~,ξ4)+(γ2γ1)EL(g2~+g3~+g4~,ξ3)\displaystyle\gamma_{1}^{\prime}E^{\rm{L}}(\widetilde{g_{1}}^{\prime}+\widetilde{g_{2}}^{\prime}+\widetilde{g_{3}}^{\prime}+\widetilde{g_{4}}^{\prime},\xi_{4})+(\gamma_{2}^{\prime}-\gamma_{1}^{\prime})E^{\rm{L}}(\widetilde{g_{2}}^{\prime}+\widetilde{g_{3}}^{\prime}+\widetilde{g_{4}}^{\prime},\xi_{3})
+(γ3γ2)EL(g3~+g4~,ξ2)+(γ4γ3)EL(g4~,ξ1).\displaystyle+(\gamma_{3}^{\prime}-\gamma_{2}^{\prime})E^{\rm{L}}(\widetilde{g_{3}}^{\prime}+\widetilde{g_{4}}^{\prime},\xi_{2})+(\gamma_{4}^{\prime}-\gamma_{3}^{\prime})E^{\rm{L}}(\widetilde{g_{4}}^{\prime},\xi_{1}).

And if we want to get the upper bound of F{F}, we can just replace EL(O,ξ)E^{\rm{L}}(O,\xi) by EU(O,ξ)E^{\rm{U}}(O,\xi):

FU\displaystyle{F}^{\rm{U}} (γ1,γ2,γ3,γ4,g1~,g2~,g3~,g4~,ξ1,ξ2,ξ3,ξ4)\displaystyle(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\widetilde{g_{1}},\widetilde{g_{2}},\widetilde{g_{3}},\widetilde{g_{4}},\xi_{1},\xi_{2},\xi_{3},\xi_{4}) (87)
=\displaystyle= γ1EU(g1~+g2~+g3~+g4~,ξ4)+(γ2γ1)EU(g2~+g3~+g4~,ξ3)\displaystyle\gamma_{1}^{\prime}E^{\rm{U}}(\widetilde{g_{1}}^{\prime}+\widetilde{g_{2}}^{\prime}+\widetilde{g_{3}}^{\prime}+\widetilde{g_{4}}^{\prime},\xi_{4})+(\gamma_{2}^{\prime}-\gamma_{1}^{\prime})E^{\rm{U}}(\widetilde{g_{2}}^{\prime}+\widetilde{g_{3}}^{\prime}+\widetilde{g_{4}}^{\prime},\xi_{3})
+(γ3γ2)EU(g3~+g4~,ξ2)+(γ4γ3)EU(g4~,ξ1).\displaystyle+(\gamma_{3}^{\prime}-\gamma_{2}^{\prime})E^{\rm{U}}(\widetilde{g_{3}}^{\prime}+\widetilde{g_{4}}^{\prime},\xi_{2})+(\gamma_{4}^{\prime}-\gamma_{3}^{\prime})E^{\rm{U}}(\widetilde{g_{4}}^{\prime},\xi_{1}).

Supplementary Note E: Chernoff bound

The Chernoff bound is useful in estimating the expected values from their observed values or estimating the observed values from their expected values. Let X1,X2,,XnX_{1},X_{2},...,X_{n} be a set of independent Bernoulli random samples (it can be in different distribution), and let X=i=1nXiX=\sum_{i=1}^{n}X_{i}. The observed value of XX which denotes OO is unknown and its expected value EE is known. In this situation, we have

OL(E,ξ)=[1δ1(E,ξ)]E,\displaystyle O^{\rm{L}}(E,\xi)=[1-\delta_{1}(E,\xi)]E, (88)
OU(E,ξ)=[1+δ2(E,ξ)]E,\displaystyle O^{\rm{U}}(E,\xi)=[1+\delta_{2}(E,\xi)]E, (89)

where δ1(E,ξ)\delta_{1}(E,\xi) and δ2(E,ξ)\delta_{2}(E,\xi) can be got by solving the following equations:

(eδ1(1δ1)1δ1)E=ξ,\displaystyle\left(\frac{e^{-\delta_{1}}}{(1-\delta_{1})^{1-\delta_{1}}}\right)^{E}=\xi, (90)
(eδ2(1+δ2)1+δ2)E=ξ,\displaystyle\left(\frac{e^{\delta_{2}}}{(1+\delta_{2})^{1+\delta_{2}}}\right)^{E}=\xi, (91)

where ξ\xi is the failure probability.

When the expected value EE is unknown and its observed value OO is known, we have

EL(O,ξ)=O1+δ1(O,ξ),\displaystyle E^{\rm{L}}(O,\xi)=\frac{O}{1+\delta_{1}^{\prime}(O,\xi)}, (92)
EU(O,ξ)=O1δ2(O,ξ),\displaystyle E^{\rm{U}}(O,\xi)=\frac{O}{1-\delta_{2}^{\prime}(O,\xi)}, (93)

where δ1(O,ξ)\delta_{1}^{\prime}(O,\xi) and δ2(O,ξ)\delta_{2}^{\prime}(O,\xi) can be got by solving the following equations:

(eδ1(1+δ1)1+δ1)O1+δ1=ξ,\displaystyle\left(\frac{e^{\delta_{1}^{\prime}}}{(1+\delta_{1}^{\prime})^{1+\delta_{1}^{\prime}}}\right)^{\frac{O}{1+\delta_{1}^{\prime}}}=\xi, (94)
(eδ2(1δ2)1δ2)O1δ2=ξ.\displaystyle\left(\frac{e^{-\delta_{2}^{\prime}}}{(1-\delta_{2}^{\prime})^{1-\delta_{2}^{\prime}}}\right)^{\frac{O}{1-\delta_{2}^{\prime}}}=\xi. (95)

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

CODE AVAILABILITY

Source codes of the plots are available from the corresponding authors on request.

ACKNOWLEDGEMENTS

This work has been supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309802), the National Natural Science Foundation of China (Grant Nos. 62171424, 61961136004, 62105318, 62271463), China Postdoctoral Science Foundation (2021M693098, 2022M723064), Prospect and Key Core Technology Projects of Jiangsu provincial key R & D Program (BE2022071), the Fundamental Research Funds for the Central Universities.

COMPETING INTERESTS

The authors declare that they have no competing interests.

AUTHOR CONTRIBUTIONS

Zhen-Qiang Yin, Rong Wang, Ze-Hao Wang conceived the basic idea of the security proof. Zhen-Qiang Yin and Ze-Hao Wang finished the details of the security proof. Ze-Hao Wang performed the numerical simulations. All the authors contributed to discussing the main ideas of the security proof, checking the validity of the results, and writing the paper.

REFERENCES

References

  • Bennett and Brassard (1984) C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Conf. on Computers, Systems and Signal Processing (Bangalore, 1984) p. 175.
  • Ekert (1991) Artur K Ekert, “Quantum cryptography based on bell’s theorem,” Physical review letters 67, 661 (1991).
  • Shannon (1949) Claude E Shannon, “Communication theory of secrecy systems,” The Bell system technical journal 28, 656–715 (1949).
  • Molotkov (2006) S. N. Molotkov, “Conferences and symposia: Quantum cryptography and v a kotel’nikov’s one-time key and sampling theorems,” Physics-Uspekhi  (2006).
  • Makarov et al. (2006) V. Makarov, A. Anisimov,  and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Physical Review A 74, 022313 (2006).
  • Zhao et al. (2008) Yi Zhao, Chi Hang Fred Fung, Bing Qi, Christine Chen,  and Hoi-Kwong Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Physical Review A 78, 042333 (2008).
  • Fung et al. (2007) Chi-Hang Fred Fung, Bing Qi, Kiyoshi Tamaki,  and Hoi-Kwong Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Physical Review A 75, 032314 (2007).
  • Xu et al. (2010) F. Xu, B. Qi,  and H. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New Journal of Physics 12, 113026 (2010).
  • Lydersen et al. (2010) L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar,  and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Photonics 4, 686–689 (2010).
  • Gerhardt et al. (2011) I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer,  and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system.” Nature communications 2, 349 (2011).
  • Qian et al. (2018) Yong-Jun Qian, De-Yong He, Shuang Wang, Wei Chen, Zhen-Qiang Yin, Guang-Can Guo,  and Zheng-Fu Han, “Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors,” Physical Review Applied 10, 064062 (2018).
  • Wei et al. (2019) Kejin Wei, Weijun Zhang, Yan-Lin Tang, Lixing You,  and Feihu Xu, “Implementation security of quantum key distribution due to polarization-dependent efficiency mismatch,” Physical Review A 100, 022325 (2019).
  • Lo et al. (2012) Hoi-Kwong Lo, Marcos Curty,  and Bing Qi, “Measurement-device-independent quantum key distribution,” Physical review letters 108, 130503 (2012).
  • Braunstein and Pirandola (2012) Samuel L Braunstein and Stefano Pirandola, “Side-channel-free quantum key distribution,” Physical review letters 108, 130502 (2012).
  • Ma and Razavi (2012) Xiongfeng Ma and Mohsen Razavi, “Alternative schemes for measurement-device-independent quantum key distribution,” Physical Review A 86, 062319 (2012).
  • Yu et al. (2013) Zong-Wen Yu, Yi-Heng Zhou,  and Xiang-Bin Wang, “Three-intensity decoy-state method for measurement-device-independent quantum key distribution,” Physical Review A 88, 062339 (2013).
  • Xu et al. (2014) Feihu Xu, He Xu,  and Hoi-Kwong Lo, “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution,” Physical Review A 89, 052333 (2014).
  • Curty et al. (2014) Marcos Curty, Feihu Xu, Wei Cui, Charles Ci Wen Lim, Kiyoshi Tamaki,  and Hoi-Kwong Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nature communications 5, 1–7 (2014).
  • Yin et al. (2014a) Zhen-Qiang Yin, Chi-Hang Fred Fung, Xiongfeng Ma, Chun-Mei Zhang, Hong-Wei Li, Wei Chen, Shuang Wang, Guang-Can Guo,  and Zheng-Fu Han, “Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources,” Physical Review A 90, 052319 (2014a).
  • Yin et al. (2014b) Zhen-Qiang Yin, Shuang Wang, Wei Chen, Hong-Wei Li, Guang-Can Guo,  and Zheng-Fu Han, “Reference-free-independent quantum key distribution immune to detector side channel attacks,” Quantum information processing 13, 1237–1244 (2014b).
  • Yu et al. (2015) Zong-Wen Yu, Yi-Heng Zhou,  and Xiang-Bin Wang, “Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method,” Physical Review A 91, 032318 (2015).
  • Wang and Wang (2014) Qin Wang and Xiang-Bin Wang, “Simulating of the measurement-device independent quantum key distribution with phase randomized general sources,” Scientific reports 4, 1–7 (2014).
  • Zhou et al. (2016) Yi-Heng Zhou, Zong-Wen Yu,  and Xiang-Bin Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Physical Review A 93, 042324 (2016).
  • Lu et al. (2020) Feng-Yu Lu, Zhen-Qiang Yin, Guan-Jie Fan-Yuan, Rong Wang, Hang Liu, Shuang Wang, Wei Chen, De-Yong He, Wei Huang, Bing-Jie Xu, Guang-Can Guo,  and Zheng-Fu Han, “Efficient decoy states for the reference-frame-independent measurement-device-independent quantum key distribution,” Physical Review A 101, 052318 (2020).
  • Hu et al. (2021) Xiao-Long Hu, Cong Jiang, Zong-Wen Yu,  and Xiang-Bin Wang, “Practical long-distance measurement-device-independent quantum key distribution by four-intensity protocol,” Advanced Quantum Technologies 4, 2100069 (2021).
  • Jiang et al. (2021) Cong Jiang, Zong-Wen Yu, Xiao-Long Hu,  and Xiang-Bin Wang, “Higher key rate of measurement-device-independent quantum key distribution through joint data processing,” Physical Review A 103, 012402 (2021).
  • Lu et al. (2022) Feng-Yu Lu, Ze-Hao Wang, Zhen-Qiang Yin, Shuang Wang, Rong Wang, Guan-Jie Fan-Yuan, Xiao-Juan Huang, De-Yong He, Wei Chen, Zheng Zhou, Guang-Can Guo,  and Zheng-Fu Han, “Unbalanced-basis-misalignment-tolerant measurement-device-independent quantum key distribution,” Optica 9, 886–893 (2022).
  • Liu et al. (2013) Yang Liu, Teng-Yun Chen, Liu-Jun Wang, Hao Liang, Guo-Liang Shentu, Jian Wang, Ke Cui, Hua-Lei Yin, Nai-Le Liu, Li Li, Xiongfeng Ma, Jason S. Pelc, M. M. Fejer, Cheng-Zhi Peng, Qiang Zhang,  and Jian-Wei Pan, “Experimental measurement-device-independent quantum key distribution,” Physical review letters 111, 130502 (2013).
  • Wang et al. (2015) Chao Wang, Xiao-Tian Song, Zhen-Qiang Yin, Shuang Wang, Wei Chen, Chun-Mei Zhang, Guang-Can Guo,  and Zheng-Fu Han, “Phase-reference-free experiment of measurement-device-independent quantum key distribution,” Physical review letters 115, 160502 (2015).
  • Yin et al. (2016) Hua-Lei Yin, Teng-Yun Chen, Zong-Wen Yu, Hui Liu, Li-Xing You, Yi-Heng Zhou, Si-Jing Chen, Yingqiu Mao, Ming-Qi Huang, Wei-Jun Zhang, Hao Chen, Ming Jun Li, Daniel Nolan, Fei Zhou, Xiao Jiang, Zhen Wang, Qiang Zhang, Xiang-Bin Wang,  and Jian-Wei Pan, “Measurement-device-independent quantum key distribution over a 404 km optical fiber,” Physical review letters 117, 190501 (2016).
  • Comandar et al. (2016) LC Comandar, M Lucamarini, B Fröhlich, JF Dynes, AW Sharpe, SW-B Tam, ZL Yuan, RV Penty,  and AJ Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nature Photonics 10, 312–315 (2016).
  • Wang et al. (2017) Chao Wang, Zhen-Qiang Yin, Shuang Wang, Wei Chen, Guang-Can Guo,  and Zheng-Fu Han, “Measurement-device-independent quantum key distribution robust against environmental disturbances,” Optica 4, 1016–1023 (2017).
  • Fan-Yuan et al. (2022) Guan-Jie Fan-Yuan, Feng-Yu Lu, Shuang Wang, Zhen-Qiang Yin, De-Yong He, Wei Chen, Zheng Zhou, Ze-Hao Wang, Jun Teng, Guang-Can Guo,  and Zheng-Fu Han, “Robust and adaptable quantum key distribution network without trusted nodes,” Optica 9, 812–823 (2022).
  • Pirandola et al. (2009) Stefano Pirandola, Raul García-Patrón, Samuel L. Braunstein,  and Seth Lloyd, “Direct and reverse secret-key capacities of a quantum channel,” Phys. Rev. Lett. 102, 050503 (2009).
  • Takeoka et al. (2014) Masahiro Takeoka, Saikat Guha,  and Mark M Wilde, “Fundamental rate-loss tradeoff for optical quantum key distribution,” Nature communications 5, 1–7 (2014).
  • Pirandola et al. (2017) Stefano Pirandola, Riccardo Laurenza, Carlo Ottaviani,  and Leonardo Banchi, “Fundamental limits of repeaterless quantum communications,” Nature communications 8, 1–15 (2017).
  • Lucamarini et al. (2018) Marco Lucamarini, Zhiliang L Yuan, James F Dynes,  and Andrew J Shields, “Overcoming the rate–distance limit of quantum key distribution without quantum repeaters,” Nature 557, 400–403 (2018).
  • Ma et al. (2018) Xiongfeng Ma, Pei Zeng,  and Hongyi Zhou, “Phase-matching quantum key distribution,” Physical Review X 8, 031043 (2018).
  • Wang et al. (2018) Xiang-Bin Wang, Zong-Wen Yu,  and Xiao-Long Hu, “Twin-field quantum key distribution with large misalignment error,” Physical Review A 98, 062323 (2018).
  • Curty et al. (2019) Marcos Curty, Koji Azuma,  and Hoi-Kwong Lo, “Simple security proof of twin-field type quantum key distribution protocol,” npj Quantum Information 5, 1–6 (2019).
  • Cui et al. (2019) Chaohan Cui, Zhen-Qiang Yin, Rong Wang, Wei Chen, Shuang Wang, Guang-Can Guo,  and Zheng-Fu Han, “Twin-field quantum key distribution without phase postselection,” Physical Review Applied 11, 034053 (2019).
  • Wang et al. (2020) Rong Wang, Zhen-Qiang Yin, Feng-Yu Lu, Shuang Wang, Wei Chen, Chun-Mei Zhang, Wei Huang, Bing-Jie Xu, Guang-Can Guo,  and Zheng-Fu Han, “Optimized protocol for twin-field quantum key distribution,” Communications Physics 3, 1–7 (2020).
  • Maeda et al. (2019) Kento Maeda, Toshihiko Sasaki,  and Masato Koashi, “Repeaterless quantum key distribution with efficient finite-key analysis overcoming the rate-distance limit,” Nature communications 10, 1–8 (2019).
  • Jiang et al. (2019) Cong Jiang, Zong-Wen Yu, Xiao-Long Hu,  and Xiang-Bin Wang, “Unconditional security of sending or not sending twin-field quantum key distribution with finite pulses,” Physical Review Applied 12, 024061 (2019).
  • Lu et al. (2019) Feng-Yu Lu, Zhen-Qiang Yin, Rong Wang, Guan-Jie Fan-Yuan, Shuang Wang, De-Yong He, Wei Chen, Wei Huang, Bing-Jie Xu, Guang-Can Guo,  and Zheng-Fu Han, “Practical issues of twin-field quantum key distribution,” New Journal of Physics 21, 123030 (2019).
  • Xu et al. (2020) Hai Xu, Zong-Wen Yu, Cong Jiang, Xiao-Long Hu,  and Xiang-Bin Wang, “Sending-or-not-sending twin-field quantum key distribution: Breaking the direct transmission key rate,” Physical Review A 101, 042330 (2020).
  • Zeng et al. (2020) Pei Zeng, Weijie Wu,  and Xiongfeng Ma, “Symmetry-protected privacy: beating the rate-distance linear bound over a noisy channel,” Physical Review Applied 13, 064013 (2020).
  • Currás-Lorenzo et al. (2021) Guillermo Currás-Lorenzo, Álvaro Navarrete, Koji Azuma, Go Kato, Marcos Curty,  and Mohsen Razavi, “Tight finite-key security for twin-field quantum key distribution,” npj Quantum Information 7, 1–9 (2021).
  • Minder et al. (2019) Mariella Minder, Mirko Pittaluga, George Lloyd Roberts, Marco Lucamarini, JF Dynes, ZL Yuan,  and Andrew J Shields, “Experimental quantum key distribution beyond the repeaterless secret key capacity,” Nature Photonics 13, 334–338 (2019).
  • Zhong et al. (2019) Xiaoqing Zhong, Jianyong Hu, Marcos Curty, Li Qian,  and Hoi-Kwong Lo, “Proof-of-principle experimental demonstration of twin-field type quantum key distribution,” Physical Review Letters 123, 100506 (2019).
  • Wang et al. (2019) Shuang Wang, De-Yong He, Zhen-Qiang Yin, Feng-Yu Lu, Chao-Han Cui, Wei Chen, Zheng Zhou, Guang-Can Guo,  and Zheng-Fu Han, “Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system,” Physical Review X 9, 021046 (2019).
  • Liu et al. (2019) Yang Liu, Zong-Wen Yu, Weijun Zhang, Jian-Yu Guan, Jiu-Peng Chen, Chi Zhang, Xiao-Long Hu, Hao Li, Cong Jiang, Jin Lin, Teng-Yun Chen, Lixing You, Zhen Wang, Xiang-Bin Wang, Qiang Zhang,  and Jian-Wei Pan, “Experimental twin-field quantum key distribution through sending or not sending,” Physical Review Letters 123, 100505 (2019).
  • Fang et al. (2020) Xiao-Tian Fang, Pei Zeng, Hui Liu, Mi Zou, Weijie Wu, Yan-Lin Tang, Ying-Jie Sheng, Yao Xiang, Weijun Zhang, Hao Li, Zhen Wang, Lixing You, Ming-Jun Li, Hao Chen, Yu-Ao Chen, Qiang Zhang, Cheng-Zhi Peng, Xiongfeng Ma, Teng-Yun Chen,  and Jian-Wei Pan, “Implementation of quantum key distribution surpassing the linear rate-transmittance bound,” Nature Photonics 14, 422–425 (2020).
  • Chen et al. (2020) Jiu-Peng Chen, Chi Zhang, Yang Liu, Cong Jiang, Weijun Zhang, Xiao-Long Hu, Jian-Yu Guan, Zong-Wen Yu, Hai Xu, Jin Lin, Ming-Jun Li, Hao Chen, Hao Li, Lixing You, Zhen Wang, Xiang-Bin Wang, Qiang Zhang,  and Jian-Wei Pan, “Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509 km,” Physical review letters 124, 070501 (2020).
  • Liu et al. (2021) Hui Liu, Cong Jiang, Hao-Tao Zhu, Mi Zou, Zong-Wen Yu, Xiao-Long Hu, Hai Xu, Shizhao Ma, Zhiyong Han, Jiu-Peng Chen, Yunqi Dai, Shi-Biao Tang, Weijun Zhang, Hao Li, Lixing You, Zhen Wang, Yong Hua, Hongkun Hu, Hongbo Zhang, Fei Zhou, Qiang Zhang, Xiang-Bin Wang, Teng-Yun Chen,  and Jian-Wei Pan, “Field test of twin-field quantum key distribution through sending-or-not-sending over 428 km,” Physical Review Letters 126, 250502 (2021).
  • Chen et al. (2021) Jiu-Peng Chen, Chi Zhang, Yang Liu, Cong Jiang, Wei-Jun Zhang, Zhi-Yong Han, Shi-Zhao Ma, Xiao-Long Hu, Yu-Huai Li, Hui Liu, Fei Zhou, Hai-Feng Jiang, Teng-Yun Chen, Hao Li, Li-Xing You, Zhen Wang, Xiang-Bin Wang, Qiang Zhang,  and Jian-Wei Pan, “Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas,” Nature Photonics 15, 570–575 (2021).
  • Clivati et al. (2022) Cecilia Clivati, Alice Meda, Simone Donadello, Salvatore Virzì, Marco Genovese, Filippo Levi, Alberto Mura, Mirko Pittaluga, Zhiliang Yuan, Andrew J Shields, Marco Lucamarini, Ivo Pietro Degiovanni,  and Davide Calonico, “Coherent phase transfer for real-world twin-field quantum key distribution,” Nature Communications 13, 1–9 (2022).
  • Pittaluga et al. (2021) Mirko Pittaluga, Mariella Minder, Marco Lucamarini, Mirko Sanzaro, Robert I Woodward, Ming-Jun Li, Zhiliang Yuan,  and Andrew J Shields, “600-km repeater-like quantum communications with dual-band stabilization,” Nature Photonics 15, 530–535 (2021).
  • Chen et al. (2022) Jiu-Peng Chen, Chi Zhang, Yang Liu, Cong Jiang, Dong-Feng Zhao, Wei-Jun Zhang, Fa-Xi Chen, Hao Li, Li-Xing You, Zhen Wang, Yang Chen, Xiang-Bin Wang, Qiang Zhang,  and Jian-Wei Pan, “Quantum key distribution over 658 km fiber with distributed vibration sensing,” Physical Review Letters 128, 180502 (2022).
  • Wang et al. (2022) Shuang Wang, Zhen-Qiang Yin, De-Yong He, Wei Chen, Rui-Qiang Wang, Peng Ye, Yao Zhou, Guan-Jie Fan-Yuan, Fang-Xiang Wang, Yong-Gang Zhu, Pavel V Morozov, Alexander V Divochiy, Zheng Zhou, Guang-Can Guo,  and Zheng-Fu Han, “Twin-field quantum key distribution over 830-km fibre,” Nature Photonics , 1–8 (2022).
  • Xie et al. (2022) Yuan-Mei Xie, Yu-Shuo Lu, Chen-Xun Weng, Xiao-Yu Cao, Zhao-Ying Jia, Yu Bao, Yang Wang, Yao Fu, Hua-Lei Yin,  and Zeng-Bing Chen, “Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference,” PRX Quantum 3, 020315 (2022).
  • Zeng et al. (2022) Pei Zeng, Hongyi Zhou, Weijie Wu,  and Xiongfeng Ma, “Mode-pairing quantum key distribution,” Nature Communications 13, 1–11 (2022).
  • Renner (2008) Renato Renner, “Security of quantum key distribution,” International Journal of Quantum Information 6, 1–127 (2008).
  • Zhu et al. (2023) Hao-Tao Zhu, Yizhi Huang, Hui Liu, Pei Zeng, Mi Zou, Yunqi Dai, Shibiao Tang, Hao Li, Lixing You, Zhen Wang, Yu-Ao Chen, Xiongfeng Ma, Teng-Yun Chen,  and Jian-Wei Pan, “Experimental mode-pairing measurement-device-independent quantum key distribution without global phase locking,” Phys. Rev. Lett. 130, 030801 (2023).
  • Zhou et al. (2022) Lai Zhou, Jinping Lin, Yuan-Mei Xie, Yu-Shuo Lu, Yumang Jing, Hua-Lei Yin,  and Zhiliang Yuan, “Experimental quantum communication overcomes the rate-loss limit without global phase tracking,” arXiv preprint arXiv:2212.14190  (2022).
  • Cao et al. (2015) Zhu Cao, Zhen Zhang, Hoi-Kwong Lo,  and Xiongfeng Ma, “Discrete-phase-randomized coherent state source and its application in quantum key distribution,” New Journal of Physics 17, 053014 (2015).
  • Laing et al. (2010) Anthony Laing, Valerio Scarani, John G Rarity,  and Jeremy L O’Brien, “Reference-frame-independent quantum key distribution,” Physical Review A 82, 012304 (2010).
  • Tamaki et al. (2014) Kiyoshi Tamaki, Marcos Curty, Go Kato, Hoi-Kwong Lo,  and Koji Azuma, “Loss-tolerant quantum cryptography with imperfect sources,” Physical Review A 90, 052314 (2014).
  • Watanabe et al. (2008) Shun Watanabe, Ryutaroh Matsumoto,  and Tomohiko Uyematsu, “Tomography increases key rates of quantum-key-distribution protocols,” Phys. Rev. A 78, 042316 (2008).
  • Müller-Quade and Renner (2009) Jörn Müller-Quade and Renato Renner, “Composability in quantum cryptography,” New Journal of Physics 11, 085006 (2009).
  • Tomamichel et al. (2011) Marco Tomamichel, Christian Schaffner, Adam Smith,  and Renato Renner, “Leftover hashing against quantum side information,” IEEE Transactions on Information Theory 57, 5524–5535 (2011).
  • Konig et al. (2009) Robert Konig, Renato Renner,  and Christian Schaffner, “The operational meaning of min- and max-entropy,” IEEE Transactions on Information Theory 55, 4337–4347 (2009).
  • Vitanov et al. (2013) Alexander Vitanov, Frederic Dupuis, Marco Tomamichel,  and Renato Renner, “Chain rules for smooth min-and max-entropies,” IEEE Transactions on Information Theory 59, 2603–2612 (2013).
  • Tomamichel and Renner (2011) Marco Tomamichel and Renato Renner, “Uncertainty relation for smooth entropies,” Physical review letters 106, 110506 (2011).
  • Wang et al. (2021) Rong Wang, Zhen-Qiang Yin, Hang Liu, Shuang Wang, Wei Chen, Guang-Can Guo,  and Zheng-Fu Han, “Tight finite-key analysis for generalized high-dimensional quantum key distribution,” Physical Review Research 3, 023019 (2021).