This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Tight error bounds for log-determinant cones without constraint qualifications

Ying Lin Department of Applied Mathematics, the Hong Kong Polytechnic University, Hong Kong, People’s Republic of China. E-mail: [email protected].    Scott B. Lindstrom Centre for Optimisation and Decision Science, Curtin University, Australia. E-mail: [email protected].    Bruno F. Lourenço Department of Statistical Inference and Mathematics, Institute of Statistical Mathematics, Japan. This author was supported partly by the JSPS Grant-in-Aid for Early-Career Scientists 23K16844 and the Grant-in-Aid for Scientific Research (B)21H03398. Email: [email protected].    Ting Kei Pong Department of Applied Mathematics, the Hong Kong Polytechnic University, Hong Kong, People’s Republic of China. This author was supported partly by the Hong Kong Research Grants Council PolyU153001/22p. E-mail: [email protected].
Abstract

In this paper, without requiring any constraint qualifications, we establish tight error bounds for the log-determinant cone, which is the closure of the hypograph of the perspective function of the log-determinant function. This error bound is obtained using the recently developed framework based on one-step facial residual functions.

Keywords: error bounds, facial residual functions, log-determinant cone

1 Introduction

The convex conic feasibility problem has attracted a lot of attention due to its power in modeling convex problems. Specifically, a convex conic feasibility problem admits the following form:

Find 𝒙(+𝒂)𝒦,\text{Find }\quad\bm{x}\in(\mathcal{L}+\bm{a})\cap\mathcal{K}, (Feas)

where 𝒦\mathcal{K} is a closed convex cone contained in a finite dimensional Euclidean space \mathcal{E}, \mathcal{L}\subseteq\mathcal{E} is a subspace and 𝒂\bm{a}\in\mathcal{E} is given. Various aspects of (Feas) such as numerical algorithms and applications have been studied in the literature; see e.g., [5, 17]. Here we focus on the theoretical aspects, particularly error bounds for (Feas). To be more precise, assuming the feasibility of (Feas), we want to establish inequalities that give upper bounds on the distance from an arbitrary point to (+𝒂)𝒦(\mathcal{L}+\bm{a})\cap\mathcal{K} based on the individual distances from the point to +𝒂\mathcal{L}+\bm{a} and 𝒦\mathcal{K}. As a fundamental topic in optimization [18, 21, 29, 32, 43], error bounds possess a wide range of applications, especially in algorithm design and convergence analysis.

In this paper, we consider (Feas) with 𝒦=𝒦logdet\mathcal{K}=\mathcal{K}_{{\rm logdet}} being the log-determinant cone defined as

𝒦logdet{(x,y,Z)IR×IR++×𝒮++d:xylogdet(Z/y)}(IR×{0}×𝒮+d),\mathcal{K}_{{\rm logdet}}\coloneqq\left\{(x,y,Z)\in{\rm I\!R}\times{\rm I\!R}_{++}\times\mathcal{S}_{++}^{d}:x\leq y\log\det(Z/y)\right\}\cup({\rm I\!R}_{-}\times\{0\}\times\mathcal{S}_{+}^{d}),

where d1d\geq 1, IR++{\rm I\!R}_{++} is the positive orthant, 𝒮+d\mathcal{S}_{+}^{d} (resp., 𝒮++d\mathcal{S}_{++}^{d}) is the set of d×dd\times d positive semidefinite (resp., positive definite) matrices. We note that the log-determinant cone is the closure of the hypograph of the perspective function of the log-determinant function.

The log-determinant function has both theoretical and practical importance. It is a self-concordant barrier function for 𝒮+d\mathcal{S}_{+}^{d}, and hence it is useful for defining the logarithmically homogeneous self-concordant barrier functions (LHSCBs) for various matrix cones. LHSCBs are crucial for complexity analysis of the celebrated primal-dual interior point methods for solving conic feasibility problems; see, e.g., [31, 9]. In practice, the log-determinant function appears frequently in countless real-world applications, especially in the area of machine learning, to name but a few, the sparse inverse covariance estimation [16], the fused multiple graphical Lasso problem [41, 42], Gaussian process [34, 36], sparse covariance selection [13, 12], finding minimum-volume ellipsoids [1, 38, 39], the determinantal point process [20], kernel learning [4], D-optimal design [2, 8] and so on.

An elementary observation is that

tlogdet(Z),Z𝒮++d(t,1,Z)𝒦logdet,t\leq\log\det(Z),Z\in\mathcal{S}_{++}^{d}\Longleftrightarrow(t,1,Z)\in\mathcal{K}_{{\rm logdet}},

in this way, a problem that has a log-determinant term in its objective can be recast as a problem over the log-determinant cone 𝒦logdet\mathcal{K}_{{\rm logdet}}. In view of the importance and prevalence of the log-determinant function, the cone 𝒦logdet\mathcal{K}_{{\rm logdet}} can also be used to handle numerous applications.

That said, if one wishes to use conic linear optimization to solve problems involving log-determinants, it is not strictly necessary to use 𝒦logdet\mathcal{K}_{{\rm logdet}}. Indeed, it is possible, for example, to consider a reformulation using positive semidefinite cones and exponential cones, e.g., [30, Section 6.2.3].

A natural question then is whether it is more advantageous to use a reformulation or handle 𝒦logdet\mathcal{K}_{{\rm logdet}} directly. Indeed, Hypatia implements the log-determinant cone as a predefined exotic cone [9] and their numerical experiments show that the direct use of the log-determinant cone gives numerical advantages compared to the use of reformulations, see [11] and [10, Sections 8.4.1, 8.4.2]. One reason that other formulations may be less efficient is that they increase the dimension of the problem. Another drawback is that they do not capture the geometry of the hypograph of the log determinant function as tightly.

Motivated by these results, we present a study of the facial structure of 𝒦logdet\mathcal{K}_{{\rm logdet}} and its properties in connection to feasibility problems as in (Feas).

Specifically, we deduce tight error bounds for (Feas) with 𝒦=𝒦logdet\mathcal{K}=\mathcal{K}_{{\rm logdet}} by deploying a recently developed framework [23, 24], which is based on the facial reduction algorithm [7, 33, 40] and one-step facial residual functions [23, Definition 3.4]. This framework has been used with success to develop concrete error bounds for symmetric cones [26], exponential cones [23], pp-cones [24] and power cones [22]. Although the log-determinant cone is a high-dimensional generalization of the exponential cone, whose error bounds were studied in depth in [23], the derivation of the error bounds for the log-determinant cone is not straightforward. Indeed, the exponential cone is three dimensional and so its facial structure can be visualized explicitly. In contrast, with a higher dimension, the log-determinant cone has a more involved facial structure.

This paper is organized as follows. In Section 2, we recall notation and preliminaries. In Section 3, we develop tight error bounds for (Feas) with 𝒦=𝒦logdet\mathcal{K}=\mathcal{K}_{{\rm logdet}}.

2 Notation and preliminaries

In this paper, we will use lowercase letters to represent real scalars, bold-faced letters to denote vectors (including “generalized” vectors such as 𝒙𝒦logdet\bm{x}\in\mathcal{K}_{{\rm logdet}}, which consists of real scalars and a matrix), capital letters to denote matrices and curly capital letters for spaces, subspaces or cones.

Let \mathcal{E} be a finite dimensional Euclidean space, and IR+{\rm I\!R}_{+} and IR++{\rm I\!R}_{++} be the set of nonnegative and positive real numbers, respectively. For a real number xx, we denote that (x)+:=max{x,0}(x)_{+}:=\max\{x,0\}. The inner product on \mathcal{E} is denoted by ,\langle\cdot,\cdot\rangle and the induced norm is denoted by \|\cdot\|. With the induced norm, for any 𝒙\bm{x}\in\mathcal{E} and a closed convex set Ω\Omega\subseteq\mathcal{E}, we denote the projection of 𝒙\bm{x} onto Ω\Omega by PΩ(𝒙):=argmin𝒚Ω𝒙𝒚P_{\Omega}(\bm{x}):=\mathop{\rm arg\,min}_{\bm{y}\in\Omega}\|\bm{x}-\bm{y}\| and the distance between 𝒙\bm{x} and Ω\Omega by dist(𝒙,Ω):=inf𝒚Ω𝒙𝒚=𝒙PΩ(𝒙){\rm dist}(\bm{x},\Omega):=\inf_{\bm{y}\in\Omega}\|\bm{x}-\bm{y}\|=\|\bm{x}-P_{\Omega}(\bm{x})\|. For any η0\eta\geq 0, we denote the ball centered at 𝒙0\bm{x}_{0} with radius η\eta by B(𝒙0;η):={𝒙:𝒙𝒙0η}B(\bm{x}_{0};\eta):=\{\bm{x}\in\mathcal{E}\,:\,\|\bm{x}-\bm{x}_{0}\|\leq\eta\}. For notational simplicity, we will use B(η)B(\eta) to denote the ball centered at 𝟎\bm{0} with radius η\eta. Meanwhile, we will denote the orthogonal complement of Ω\Omega by Ω{𝒗:𝒙,𝒗=0𝒙Ω}\Omega^{\perp}\coloneqq\left\{\bm{v}\in\mathcal{E}\,:\,\langle\bm{x},\bm{v}\rangle=0\,\,\,\,\forall\,\bm{x}\in\Omega\right\}.

2.1 Matrices

We use IRm×n{\rm I\!R}^{m\times n} to denote the set of all real m×nm\times n matrices and 𝒮d\mathcal{S}^{d} to denote the set of symmetric d×dd\times d matrices. The n×nn\times n identity matrix will be denoted by InI_{n}. Let 𝒮+d\mathcal{S}_{+}^{d} and 𝒮++d\mathcal{S}_{++}^{d} be the set of symmetric d×dd\times d positive semidefinite matrices and d×dd\times d positive definite matrices respectively. The interior of 𝒮+d\mathcal{S}_{+}^{d} is 𝒮++d\mathcal{S}_{++}^{d}. We write X0X\succ 0 (resp., X0X\succeq 0) if X𝒮++dX\in\mathcal{S}_{++}^{d} (resp., X𝒮+dX\in\mathcal{S}_{+}^{d}). For any X𝒮dX\in\mathcal{S}^{d}, we let λi(X)IR\lambda_{i}(X)\in{\rm I\!R} denote the ii-th eigenvalue of XX such that λd(X)λd1(X)λ1(X)\lambda_{d}(X)\geq\lambda_{d-1}(X)\geq\dots\geq\lambda_{1}(X). We will use λmax(X)\lambda_{\max}(X) and λmin(X)\lambda_{\min}(X) to denote the maximum and minimum eigenvalues of XX, respectively. The rank of XX is defined by the number of non-zero eigenvalues, denoted by rank(X){\rm rank}(X). The trace (resp., determinant) of XX is defined by tr(X):=i=1dλi(X){\rm\,tr}(X):=\sum_{i=1}^{d}\lambda_{i}(X) (resp., det(X):=i=1dλi(X)\det(X):=\prod_{i=1}^{d}\lambda_{i}(X)). With these, we recall that the Frobenius inner product on 𝒮d\mathcal{S}^{d} is given by X,Y:=tr(XY)\langle X,Y\rangle:={\rm\,tr}(XY) for any X,Y𝒮dX,Y\in\mathcal{S}^{d}, and the Frobenius norm is XF:=tr(X2)\|X\|_{F}:=\sqrt{{\rm\,tr}(X^{2})}. For any X𝒮+dX\in\mathcal{S}_{+}^{d} (resp., X𝒮++dX\in\mathcal{S}_{++}^{d}), we have λi(X)0\lambda_{i}(X)\geq 0 (resp., λi(X)>0\lambda_{i}(X)>0). We hence also have for any X,Y𝒮+dX,Y\in\mathcal{S}_{+}^{d} that

tr(XY)λmin(Y)tr(X)0and moreover,tr(XY)=0XY=0.\!{\rm\,tr}(XY)\geq\lambda_{\min}(Y){\rm\,tr}(X)\geq 0\ \text{and moreover},\ {\rm\,tr}(XY)=0\iff XY=0.\!\! (2.1)

For a given non-zero positive semidefinite matrix, the next result connects its determinant with its trace and rank.

Lemma 2.1.

Let Z𝒮+d{𝟎}Z\in\mathcal{S}_{+}^{d}\setminus\{\bm{0}\}. Then for any η>0\eta>0, there exists C>0C>0 so that

(det(R))1dC[tr(RZ)]rank(Z)dRB(η)𝒮+d.(\det(R))^{\frac{1}{d}}\leq C[{\rm\,tr}(RZ)]^{\frac{{\rm rank}(Z)}{d}}\quad\quad\forall R\in B(\eta)\cap\mathcal{S}_{+}^{d}. (2.2)
Proof.

Let Z=QΣQZ=Q\Sigma Q^{\top} be an eigendecomposition of ZZ, where QQ is orthogonal and Σ\Sigma is diagonal, and let 𝗋\mathsf{r} be the rank of ZZ. Then 𝗋1\mathsf{r}\geq 1 since Z0Z\neq 0. Without loss of generality, we may suppose that the first 𝗋\mathsf{r} diagonal entries of Σ\Sigma, denoted as σ1,σ2,,σ𝗋\sigma_{1},\sigma_{2},\dots,\sigma_{\mathsf{r}}, are nonzero and are arranged in descending order. Then σ𝗋\sigma_{\mathsf{r}} is the smallest positive eigenvalue of ZZ and we have for any RB(η)𝒮+dR\in B(\eta)\cap\mathcal{S}_{+}^{d} that

tr(RZ)=tr(RQΣQ)=tr(QRQΣ)=tr([QRQ]𝗋[Σ]𝗋)(a)σ𝗋tr([QRQ]𝗋)(b)σ𝗋i=1𝗋λi(QRQ),\begin{split}{\rm\,tr}(RZ)&={\rm\,tr}(RQ\Sigma Q^{\top})={\rm\,tr}(Q^{\top}RQ\Sigma)={\rm\,tr}([Q^{\top}RQ]_{\mathsf{r}}[\Sigma]_{\mathsf{r}})\\ &\overset{(\text{a})}{\geq}\sigma_{\mathsf{r}}{\rm\,tr}([Q^{\top}RQ]_{\mathsf{r}})\overset{(\text{b})}{\geq}\sigma_{\mathsf{r}}\sum_{i=1}^{\mathsf{r}}\lambda_{i}(Q^{\top}RQ),\end{split} (2.3)

where [A]𝗋[A]_{\mathsf{r}} is the submatrix of AA formed by AijA_{ij} for 1i,j𝗋1\leq i,j\leq\mathsf{r}, (a) holds since [QRQ]𝗋0[Q^{\top}RQ]_{\mathsf{r}}\succeq 0 (thanks to R0R\succeq 0), (b) is true because of the interlacing theorem (see [19, Theorem 4.3.8]).

Next, note that we have for any RB(η)𝒮+dR\in B(\eta)\cap\mathcal{S}_{+}^{d} that

det(R)=det(QRQ)=i=1dλi(QRQ)(a)ηd𝗋i=1𝗋λi(QRQ)(b)ηd𝗋(1𝗋i=1𝗋λi(QRQ))𝗋,\begin{split}\det(R)&=\det(Q^{\top}RQ)=\prod_{i=1}^{d}\lambda_{i}(Q^{\top}RQ)\stackrel{{\scriptstyle\text{(a)}}}{{\leq}}\eta^{d-\mathsf{r}}\prod_{i=1}^{\mathsf{r}}\lambda_{i}(Q^{\top}RQ)\\ &\stackrel{{\scriptstyle\text{(b)}}}{{\leq}}\eta^{d-\mathsf{r}}\left(\frac{1}{\mathsf{r}}\sum_{i=1}^{\mathsf{r}}\lambda_{i}(Q^{\top}RQ)\right)^{\mathsf{r}},\end{split} (2.4)

where (a) holds because

  1. (i)

    i=1,2,,d,λi(QRQ)=λi(R)\forall\,i=1,2,\dots,d,\,\lambda_{i}(Q^{\top}RQ)=\lambda_{i}(R) since QQ is orthogonal.

  2. (ii)

    RB(η)𝒮+dRF=tr(R2)ηi=1,2,,d,λi(R)ηR\in B(\eta)\cap\mathcal{S}_{+}^{d}\implies\|R\|_{F}=\sqrt{{\rm\,tr}(R^{2})}\leq\eta\implies\forall\,i=1,2,\dots,d,\,\lambda_{i}(R)\leq\eta.

and (b) comes from the AM-GM inequality. Combining (2.4) with (2.3) gives

(det(R))1dη1𝗋d(1𝗋i=1𝗋λi(QRQ))𝗋dη1𝗋d(1𝗋σ𝗋tr(RZ))𝗋d(\det(R))^{\frac{1}{d}}\leq\eta^{1-\frac{\mathsf{r}}{d}}\cdot\left(\frac{1}{\mathsf{r}}\sum_{i=1}^{\mathsf{r}}\lambda_{i}(Q^{\top}RQ)\right)^{\frac{\mathsf{r}}{d}}\leq\eta^{1-\frac{\mathsf{r}}{d}}\cdot\left(\frac{1}{\mathsf{r}\sigma_{\mathsf{r}}}{\rm\,tr}(RZ)\right)^{\frac{\mathsf{r}}{d}}

whenever RB(η)𝒮+dR\in B(\eta)\cap\mathcal{S}_{+}^{d}. Hence, we see that (2.2) holds with C=η1𝗋d(𝗋σ𝗋)𝗋dC=\eta^{1-\frac{\mathsf{r}}{d}}(\mathsf{r}\sigma_{\mathsf{r}})^{-\frac{\mathsf{r}}{d}}. ∎

2.2 Error bounds for conic feasibility problems

We first recall the definition of error bounds.

Definition 2.2 (Error bounds [25, 32]).

Suppose (Feas) is feasible. We say that (Feas) satisfies an error bound with a residual function r:IR+IR+r:{\rm I\!R}_{+}\to{\rm I\!R}_{+} if for every bounded set BB\subseteq\mathcal{E}, there exists a constant cB>0c_{B}>0 such that

dist(𝒙,𝒦(+𝒂))cBr(max{dist(𝒙,𝒦),dist(𝒙,+𝒂)})𝒙B.{\rm dist}(\bm{x},{\cal K}\cap(\mathcal{L}+\bm{a}))\leq c_{B}r\left(\max\left\{{\rm dist}(\bm{x},{\cal K}),{\rm dist}(\bm{x},\mathcal{L}+\bm{a})\right\}\right)\quad\quad\forall\bm{x}\in B.

We remark that typically it is required that rr satisfy r(0)=0r(0)=0, be nondecreasing and be right-continuous at 0. Under these conditions, the error bound in Definition 2.2 can be understood in the context of consistent error bound functions, see [25, Definition 3.1] and this footnote.111For Bb=B(b)B_{b}=B(b) (where B(b)B(b) is the ball centered at the origin with radius bb), if Definition 2.2 holds, then cBbc_{B_{b}} can be taken to be a nondecreasing function of bb (since considering a larger constant still preserves the error bound inequality). In this way, the function Φ:IR+×IR+IR+\Phi:{\rm I\!R}_{+}\times{\rm I\!R}_{+}\to{\rm I\!R}_{+} given by Φ(a,b)cBbr(a)\Phi(a,b)\coloneqq c_{B_{b}}r(a) satisfies [25, Definition 3.1], provided that rr has the aforementioned properties. With different residual functions, we will have different error bounds, among which the Lipschitzian and Hölderian error bounds are most widely studied in the literature.

Particularly, we say that (Feas) satisfies a uniform Hölderian error bound with exponent γ(0,1]\gamma\in(0,1] if Definition 2.2 holds with r=()γr=(\cdot)^{\gamma} for every bounded set BB. That is, for every bounded set BB\subseteq\mathcal{E}, there exists a constant κB>0\kappa_{B}>0 such that

dist(𝒙,𝒦(+𝒂))κBmax{dist(𝒙,𝒦),dist(𝒙,+𝒂)}γ,{\rm dist}(\bm{x},{\cal K}\cap(\mathcal{L}+\bm{a}))\!\leq\!\kappa_{B}\max\left\{{\rm dist}(\bm{x},{\cal K}),{\rm dist}(\bm{x},\mathcal{L}+\bm{a})\right\}^{\gamma},

for all 𝒙B\bm{x}\in B. If γ=1\gamma=1, then the error bound is said to be Lipschitzian. Hölderian error bounds are a particular case of a consistent error bound, see [25, Theorem 3.5].

Let 𝒦\mathcal{K} be a closed convex cone contained in \mathcal{E} and 𝒦\mathcal{K}^{*} be its dual cone. We will denote the boundary, relative interior, linear span, and dimension of 𝒦\mathcal{K} by 𝒦,ri𝒦,span𝒦\partial\mathcal{K},{\rm ri\,}\mathcal{K},{\rm span\,}\mathcal{K} and dim𝒦{\rm dim\,}\mathcal{K}, respectively. If 𝒦𝒦={𝟎}\mathcal{K}\cap-\mathcal{K}=\{\bm{0}\}, then 𝒦\mathcal{K} is said to be pointed. If 𝒦\mathcal{F}\subseteq\mathcal{K} is a face of 𝒦\mathcal{K}, i.e., for any 𝒙,𝒚𝒦\bm{x},\bm{y}\in\mathcal{K} such that 𝒙+𝒚\bm{x}+\bm{y}\in\mathcal{F}, we have 𝒙,𝒚\bm{x},\bm{y}\in\mathcal{F}, then we write 𝒦\mathcal{F}\unlhd\mathcal{K}.222By convention, we only consider nonempty faces. If further =𝒦{𝒏}\mathcal{F}=\mathcal{K}\cap\{\bm{n}\}^{\perp} for some 𝒏𝒦\bm{n}\in\mathcal{K}^{*}, we say that \mathcal{F} is an exposed face of 𝒦\mathcal{K}. A face \mathcal{F} is said to be proper if 𝒦\mathcal{F}\neq\mathcal{K}, and we denote it by 𝒦\mathcal{F}\mathrel{\text{$\ooalign{$\lneq$\cr\raise 0.94722pt\hbox{$\lhd$}\cr}$}}\mathcal{K}. If \mathcal{F} is proper and 𝒦𝒦\mathcal{F}\neq\mathcal{K}\cap-\mathcal{K}, then \mathcal{F} is said to be a nontrivial face of 𝒦\mathcal{K}.

The facial reduction algorithm [7, 33, 40] and the FRA-poly algorithm [27] play important roles in making full use of the facial structure of a cone; see also [23, Section 3]. More precisely, assuming (Feas) is feasible, the facial reduction algorithm aims at finding the minimal face that contains the feasible region and satisfies some constraint qualification. One of the most commonly used constraint qualification is the so-called partial-polyhedral Slater (PPS) condition [26, Definition 3]. For (Feas), if 𝒦\mathcal{K} and +𝒂\mathcal{L}+\bm{a} satisfy the PPS condition, then a Lipschitzian error bound holds for 𝒦\mathcal{K} and +𝒂\mathcal{L}+\bm{a}; see [6, Corollary 3] and the discussion preceding [23, Proposition 2.3]. Thanks to this property, we can apply the facial reduction algorithm to deduce the error bounds based on the one-step facial residual function [23, Definition 3.4] without requiring any constraint qualifications, as in the framework developed recently in [26]; see also [23, 24]. This framework is highly inspired by the fundamental work of Sturm on error bound for LMIs, see [37]. For the convenience of the reader, we recall the definition of the one-step facial residual function as follows.

Definition 2.3 (One-step facial residual function (𝟙\mathds{1}-FRF)).

Let 𝒦\mathcal{K} be a closed convex cone and 𝐧𝒦\bm{n}\in\mathcal{K}^{*}. Suppose that ψ,𝐧:IR+×IR+IR+\psi_{\mathcal{F},\bm{n}}:{\rm I\!R}_{+}\times{\rm I\!R}_{+}\to{\rm I\!R}_{+} satisfies the following properties:

  1. (i)

    ψ,𝒏\psi_{\mathcal{F},\bm{n}} is nonnegative, nondecreasing in each argument and it holds that ψ,𝒏(0,t)=0\psi_{\mathcal{F},\bm{n}}(0,t)=0 for every tIR+t\in{\rm I\!R}_{+}.

  2. (ii)

    The following implication holds for any 𝒙span𝒦\bm{x}\in{\rm span\,}\mathcal{K} and ϵ0\epsilon\geq 0:

    dist(𝒙,𝒦)ϵ,𝒙,𝒏ϵdist(𝒙,𝒦{𝒏})ψ𝒦,𝒏(ϵ,𝒙).{\rm dist}(\bm{x},\mathcal{K})\leq\epsilon,\langle\bm{x},\bm{n}\rangle\leq\epsilon\implies{\rm dist}(\bm{x},\mathcal{K}\cap\{\bm{n}\}^{\perp})\leq\psi_{\mathcal{K},\bm{n}}(\epsilon,\|\bm{x}\|).

Then ψ,𝐧\psi_{\mathcal{F},\bm{n}} is said to be a one-step facial residual function (FRF) for 𝒦\mathcal{K} and 𝐧\bm{n}.

The one-step facial residual function is used in each step of the facial reduction algorithm to connect a face and its subface until a face \mathcal{F} is found such that \mathcal{F} and +𝒂\mathcal{L}+\bm{a} satisfy the PPS condition. Then the error bound for 𝒦\mathcal{K} and +𝒂\mathcal{L}+\bm{a} can be obtained as a special composition of those one-step facial residual functions. Due to the importance of the PPS condition in this framework, we shall define the distance to the PPS condition of a feasible (Feas), denoted by dPPS(𝒦,+𝒂)d_{{\rm PPS}}(\mathcal{K},\mathcal{L}+\bm{a}), as the length minus one of the shortest chain of faces (among those chains constructed as in [26, Proposition 5]) such that the PPS condition holds for the final face in the chain and +𝒂\mathcal{L}+\bm{a}.

Before ending this subsection, we present a lemma and a proposition that will help simplify our subsequent analysis.

Lemma 2.4 (Formula of 𝒘𝒖\|\bm{w}-\bm{u}\|).

Let 𝒦\mathcal{K} be a closed convex cone and 𝐧𝒦{𝟎}\bm{n}\in\partial\mathcal{K}^{*}\setminus\{\bm{0}\} be such that :={𝐧}𝒦\mathcal{F}:=\{\bm{n}\}^{\perp}\cap\mathcal{K} is a nontrivial exposed face of 𝒦\mathcal{K}. Let η>0\eta>0 and let 𝐯𝒦B(η),𝐰=P{𝐧}(𝐯),𝐮=P(𝐰)\bm{v}\in\partial\mathcal{K}\cap B(\eta)\setminus\mathcal{F},\bm{w}=P_{\{\bm{n}\}^{\perp}}(\bm{v}),\bm{u}=P_{\mathcal{F}}(\bm{w}) and 𝐰𝐮\bm{w}\neq\bm{u}. Then, we have

𝒘𝒖2=𝒗𝒖2𝒘𝒗2,\|\bm{w}-\bm{u}\|^{2}=\|\bm{v}-\bm{u}\|^{2}-\|\bm{w}-\bm{v}\|^{2}, (2.5)

and,

𝒘𝒖𝒗𝒖=dist(𝒗,).\|\bm{w}-\bm{u}\|\leq\|\bm{v}-\bm{u}\|={\rm dist}(\bm{v},\mathcal{F}). (2.6)
Proof.

Since 𝒘=P{𝒏}(𝒗)\bm{w}=P_{\{\bm{n}\}^{\perp}}(\bm{v}), we have

𝒘=𝒗𝒏,𝒗𝒏2𝒏 and 𝒘𝒗=|𝒏,𝒗|𝒏.\bm{w}=\bm{v}-\frac{\langle\bm{n},\bm{v}\rangle}{\|\bm{n}\|^{2}}\bm{n}\quad\text{ and }\quad\|\bm{w}-\bm{v}\|=\frac{|\langle\bm{n},\bm{v}\rangle|}{\|\bm{n}\|}.

Moreover, we can notice that 𝒘𝒏\bm{w}\perp\bm{n} and 𝒖𝒏\bm{u}\perp\bm{n}.

Now, for any 𝒖~{𝒏}\widetilde{\bm{u}}\in\{\bm{n}\}^{\perp}, we have

𝒘𝒖~2=𝒗𝒏,𝒗𝒏2𝒏𝒖~2=𝒗𝒏,𝒗𝒏2𝒏22𝒗𝒏,𝒗𝒏2𝒏,𝒖~+𝒖~2\displaystyle\|\bm{w}-\widetilde{\bm{u}}\|^{2}=\left\|\bm{v}-\frac{\langle\bm{n},\bm{v}\rangle}{\|\bm{n}\|^{2}}\bm{n}-\widetilde{\bm{u}}\right\|^{2}=\left\|\bm{v}-\frac{\langle\bm{n},\bm{v}\rangle}{\|\bm{n}\|^{2}}\bm{n}\right\|^{2}-2\left\langle\bm{v}-\frac{\langle\bm{n},\bm{v}\rangle}{\|\bm{n}\|^{2}}\bm{n},\widetilde{\bm{u}}\right\rangle+\|\widetilde{\bm{u}}\|^{2}
=(a)\displaystyle\overset{(\text{a})}{=} 𝒗22𝒏,𝒗𝒏2𝒏,𝒗+𝒏,𝒗2𝒏22𝒗,𝒖~+𝒖~2=𝒗2𝒏,𝒗2𝒏22𝒗,𝒖~+𝒖~2\displaystyle\|\bm{v}\|^{2}-2\frac{\langle\bm{n},\bm{v}\rangle}{\|\bm{n}\|^{2}}\langle\bm{n},\bm{v}\rangle+\frac{\langle\bm{n},\bm{v}\rangle^{2}}{\|\bm{n}\|^{2}}-2\langle\bm{v},\widetilde{\bm{u}}\rangle+\|\widetilde{\bm{u}}\|^{2}=\|\bm{v}\|^{2}-\frac{\langle\bm{n},\bm{v}\rangle^{2}}{\|\bm{n}\|^{2}}-2\langle\bm{v},\widetilde{\bm{u}}\rangle+\|\widetilde{\bm{u}}\|^{2}
=\displaystyle= 𝒗𝒖~2𝒘𝒗2,\displaystyle\|\bm{v}-\widetilde{\bm{u}}\|^{2}-\|\bm{w}-\bm{v}\|^{2},

where (a) comes from the fact that 𝒖~𝒏\widetilde{\bm{u}}\perp\bm{n}. This proves (2.5) upon letting 𝒖~=𝒖\widetilde{\bm{u}}=\bm{u}.

The above display implies that for any 𝒖~{𝒏}\widetilde{\bm{u}}\in\{\bm{n}\}^{\perp}, 𝒗,𝒘,𝒖~\bm{v},\bm{w},\widetilde{\bm{u}} are three vertices of a right-angled triangle with 𝒘\angle\bm{w} being the right angle. This fact also leads us to the observation that 𝒖=P(𝒗)\bm{u}=P_{\mathcal{F}}(\bm{v}). Indeed, suppose not, then there exists 𝒖^=P(𝒗)\widehat{\bm{u}}=P_{\mathcal{F}}(\bm{v}) with 𝒖^𝒖\widehat{\bm{u}}\neq\bm{u} such that 𝒖^𝒗<𝒖𝒗\|\widehat{\bm{u}}-\bm{v}\|<\|\bm{u}-\bm{v}\|. Then 𝒖^{𝒏}\widehat{\bm{u}}\in\{\bm{n}\}^{\perp} and hence 𝒗,𝒘,𝒖^\bm{v},\bm{w},\widehat{\bm{u}} form a new right-angled triangle. Thus,

𝒘𝒖^2=𝒗𝒖^2𝒘𝒗2<𝒖𝒗2𝒘𝒗2=𝒘𝒖2.\|\bm{w}-\widehat{\bm{u}}\|^{2}=\|\bm{v}-\widehat{\bm{u}}\|^{2}-\|\bm{w}-\bm{v}\|^{2}<\|\bm{u}-\bm{v}\|^{2}-\|\bm{w}-\bm{v}\|^{2}=\|\bm{w}-\bm{u}\|^{2}.

Since 𝒖^\widehat{\bm{u}}\in\mathcal{F}, the above display contradicts the fact that 𝒖=P(𝒘)\bm{u}=P_{\mathcal{F}}(\bm{w}). Therefore, 𝒖=P(𝒗)\bm{u}=P_{\mathcal{F}}(\bm{v}) and 𝒖𝒗=dist(𝒗,)\|\bm{u}-\bm{v}\|={\rm dist}(\bm{v},\mathcal{F}). ∎

The next proposition states an error bound result related to the positive semidefinite cone. We present a proof based on the results in [26], although it can also be obtained from Sturm’s error bound in [37].

Proposition 2.5 (Error bound for positive semidefinite cones).

Let Z𝒮+d{𝟎}Z\in\mathcal{S}_{+}^{d}\setminus\{\bm{0}\} and η>0\eta>0, then there exists CP>0C_{P}>0 such that

dist(Y,𝒮+d{Z})CPtr(YZ)αY𝒮+dB(η),{\rm dist}(Y,\mathcal{S}_{+}^{d}\cap\{Z\}^{\perp})\leq C_{P}{\rm\,tr}(YZ)^{\alpha}\quad\quad\forall Y\in\mathcal{S}_{+}^{d}\cap B(\eta), (2.7)

where

α:={12if rank(Z)<d,1otherwise.\alpha:=\begin{cases}\frac{1}{2}&\text{if }{\rm rank}(Z)<d,\\ 1&\text{otherwise}.\end{cases} (2.8)
Proof.

By [26, Proposition 27, Theorem 37], there exists C0>0C_{0}>0 such that

dist(Y,𝒮+d{Z})C0max{dist(Y,𝒮+d),dist(Y,{Z})}αwhenever YB(η),{\rm dist}(Y,\mathcal{S}_{+}^{d}\cap\{Z\}^{\perp})\leq C_{0}\max\{{\rm dist}(Y,\mathcal{S}_{+}^{d}),{\rm dist}(Y,\{Z\}^{\perp})\}^{\alpha}\quad\text{whenever }Y\in B(\eta),

where α\alpha is defined as in (2.8).

If further Y𝒮+dY\in\mathcal{S}_{+}^{d}, then dist(Y,𝒮+d)=0{\rm dist}(Y,\mathcal{S}_{+}^{d})=0; moreover, dist(Y,{Z})=|tr(YZ)|ZF=tr(YZ)ZF{\rm dist}(Y,\{Z\}^{\perp})=\frac{|{\rm\,tr}(YZ)|}{\|Z\|_{F}}=\frac{{\rm\,tr}(YZ)}{\|Z\|_{F}}. Therefore, letting CP:=C0/ZFαC_{P}:=C_{0}/\|Z\|_{F}^{\alpha}, we can obtain (2.7). ∎

3 Error bounds for the log-determinant cones

In this section, we will compute the one-step facial residual functions for the log-determinant cones, and obtain error bounds. Let dd be a positive integer and sd(d):=d(d+1)2{\rm sd}(d):=\frac{d(d+1)}{2} be the dimension of 𝒮d\mathcal{S}^{d}, we consider the (sd(d)+2)({\rm sd}(d)+2)-dimensional space IR×IR×𝒮d{\rm I\!R}\times{\rm I\!R}\times\mathcal{S}^{d}. We let 𝒙:=(𝒙x,𝒙y,𝒙Z)\bm{x}:=(\bm{x}_{x},\bm{x}_{y},\bm{x}_{Z}) denote an element of IR×IR×𝒮d{\rm I\!R}\times{\rm I\!R}\times\mathcal{S}^{d}, where 𝒙xIR,𝒙yIR\bm{x}_{x}\in{\rm I\!R},\bm{x}_{y}\in{\rm I\!R} and 𝒙Z𝒮d\bm{x}_{Z}\in\mathcal{S}^{d}, and equip IR×IR×𝒮d{\rm I\!R}\times{\rm I\!R}\times\mathcal{S}^{d} with the following inner product:

𝒙,𝒛=𝒙x𝒛x+𝒙y𝒛y+tr(𝒙Z𝒛Z)for any𝒙,𝒛IR×IR×𝒮d.\langle\bm{x},\bm{z}\rangle=\bm{x}_{x}\bm{z}_{x}+\bm{x}_{y}\bm{z}_{y}+{\rm\,tr}(\bm{x}_{Z}\bm{z}_{Z})\quad\text{for any}\quad\bm{x},\bm{z}\in{\rm I\!R}\times{\rm I\!R}\times\mathcal{S}^{d}.

Recall that the log-determinant cone is defined as follows.

𝒦logdet\displaystyle\mathcal{K}_{{\rm logdet}} :={(x,y,Z)IR×IR++×𝒮++d:xylogdet(Z/y)}(IR×{0}×𝒮+d)\displaystyle:=\left\{(x,y,Z)\!\in\!{\rm I\!R}\!\times\!{\rm I\!R}_{++}\!\times\!\mathcal{S}_{++}^{d}:x\leq y\log\det(Z/y)\right\}\cup({\rm I\!R}_{-}\!\times\!\{0\}\!\times\!\mathcal{S}_{+}^{d}) (3.1)
={(x,y,Z)IR×IR++×𝒮++d:ydex/ydet(Z)}(IR×{0}×𝒮+d).\displaystyle=\left\{(x,y,Z)\!\in\!{\rm I\!R}\!\times\!{\rm I\!R}_{++}\!\times\!\mathcal{S}_{++}^{d}:y^{d}e^{x/y}\leq\det(Z)\right\}\cup({\rm I\!R}_{-}\!\times\!\{0\}\!\times\!\mathcal{S}_{+}^{d}). (3.2)

Its dual cone is given by333Here is a sketch. Let f:𝒮++dIRf:\mathcal{S}_{++}^{d}\to{\rm I\!R} be such that f(Z)=dlogdet(Z)f(Z)=-d-\log\det(Z) and let 𝒦{\cal K} be the closed convex cone generated by the set C{(1,y,Z)f(Z)y}C\coloneqq\{(1,y,Z)\mid f(Z)\leq y\}. We have 𝒦=cl{(x,y,Z)IR++×IR×𝒮++dxf(Z/x)y}{\cal K}={\rm cl\,}\{(x,y,Z)\in{\rm I\!R}_{++}\times{\rm I\!R}\times\mathcal{S}_{++}^{d}\mid xf(Z/x)\leq y\}. That is, 𝒦{\cal K} is the closure of {(x,y,Z)IR++×IR×𝒮++dyx(logdet(Z/x)d)}\{(x,y,Z)\in{\rm I\!R}_{++}\times{\rm I\!R}\times\mathcal{S}_{++}^{d}\mid y\geq x(-\log\det(Z/x)-d)\}. By [35, Theorem 14.4], the closed convex cone 𝒦¯\bar{{\cal K}} generated by {(1,v,W)vf(W)}\{(1,v,W)\mid v\geq f^{*}(W)\} satisfies 𝒦¯={(u,v,W)(v,u,W)𝒦}\bar{{\cal K}}=\{(u,v,W)\mid(-v,-u,W)\in{\cal K}^{\circ}\}, where 𝒦{\cal K}^{\circ} is the polar of 𝒦{\cal K}. The conjugate of ff is logdet(W)-\log\det(-W) for W𝒮++dW\in-\mathcal{S}_{++}^{d}. Overall, we conclude that (x,y,Z)𝒦(x,y,Z)\in{\cal K}^{*} iff (x,y,Z)𝒦(-x,-y,-Z)\in{\cal K}^{\circ} iff (y,x,Z)(y,x,-Z) is in the closure of {(u,v,W)IR++×IR×𝒮++dvulogdet(W/u)}\{(u,v,W)\in{\rm I\!R}_{++}\times{\rm I\!R}\times-\mathcal{S}_{++}^{d}\mid v\geq-u\log\det(-W/u)\}. Finally, this implies that (x,y,Z)𝒦(x,y,Z)\in{\cal K}^{*} if and only if (x,y,Z)(x,y,Z) is in the closure of {(x,y,Z)IR×IR++×𝒮++dxylogdet(Z/y)}\{(x,y,Z)\in{\rm I\!R}\times{\rm I\!R}_{++}\times\mathcal{S}_{++}^{d}\mid-x\leq y\log\det(Z/y)\}. This means (x,y,Z)𝒦(x,y,Z)\in{\cal K}^{*} iff (x,y,Z)𝒦logdet(-x,y,Z)\in\mathcal{K}_{{\rm logdet}}. Thus, we conclude that the cones in (3.1) and (3.3) are dual to each other.

𝒦logdet\displaystyle\!\!\mathcal{K}_{{\rm logdet}}^{*} :={(x,y,Z)IR×IR×𝒮++d:yx(logdet(Z/x)+d)}({0}×IR+×𝒮+d)\displaystyle\!\!:=\!\!\left\{\!(x,y,Z)\!\in\!{\rm I\!R}_{--}\!\!\times\!{\rm I\!R}\!\times\!\mathcal{S}_{++}^{d}\!\!:\!y\!\geq\!x(\log\det(-Z/x)\!+d)\!\right\}\!\cup\!(\{0\}\!\times\!{\rm I\!R}_{+}\!\times\!\mathcal{S}_{+}^{d})\!\!\! (3.3)
={(x,y,Z)IR×IR×𝒮++d:(x)dey/xeddet(Z)}({0}×IR+×𝒮+d).\displaystyle\!\!=\!\!\left\{\!(x,y,Z)\!\in\!{\rm I\!R}_{--}\!\!\times\!{\rm I\!R}\!\times\!\mathcal{S}_{++}^{d}\!:(-x)^{d}e^{y/x}\leq e^{d}\det(Z)\!\right\}\!\cup\!(\{0\}\!\times\!{\rm I\!R}_{+}\!\times\!\mathcal{S}_{+}^{d}). (3.4)

One should notice that if d=1d=1, then the log-determinant cone reduces to the exponential cone, whose corresponding error bound results were discussed in [23]. Hence, without loss of generality, we assume that d>1d>1 in the rest of this paper. Notice from (3.2) and (3.4) that 𝒦logdet\mathcal{K}_{{\rm logdet}}^{*} is a scaled and rotated version of 𝒦logdet\mathcal{K}_{{\rm logdet}}.

For convenience, we further define

𝒦logdet1\displaystyle\mathcal{K}_{{\rm logdet}}^{1} :={(x,y,Z)IR×IR++×𝒮++d:xylogdet(Z/y)};\displaystyle:=\left\{(x,y,Z)\in{\rm I\!R}\times{\rm I\!R}_{++}\times\mathcal{S}_{++}^{d}:x\leq y\log\det(Z/y)\right\};
𝒦logdet1e\displaystyle\mathcal{K}_{{\rm logdet}}^{1\mathrm{e}} :={(x,y,Z)IR×IR++×𝒮++d:x=ylogdet(Z/y)};\displaystyle:=\left\{(x,y,Z)\in{\rm I\!R}\times{\rm I\!R}_{++}\times\mathcal{S}_{++}^{d}:x=y\log\det(Z/y)\right\};
𝒦logdet2\displaystyle\mathcal{K}_{{\rm logdet}}^{2} :=IR×{0}×𝒮+d;\displaystyle:={\rm I\!R}_{-}\times\{0\}\times\mathcal{S}_{+}^{d};
𝒦logdet1\displaystyle\mathcal{K}_{{\rm logdet}}^{*1} :={(x,y,Z)IR×IR×𝒮++d:yx(logdet(Z/x)+d)};\displaystyle:=\left\{(x,y,Z)\in{\rm I\!R}_{--}\times{\rm I\!R}\times\mathcal{S}_{++}^{d}:y\geq x(\log\det(-Z/x)+d)\right\};
𝒦logdet1e\displaystyle\mathcal{K}_{{\rm logdet}}^{*1\mathrm{e}} :={(x,y,Z)IR×IR×𝒮++d:y=x(logdet(Z/x)+d)};\displaystyle:=\left\{(x,y,Z)\in{\rm I\!R}_{--}\times{\rm I\!R}\times\mathcal{S}_{++}^{d}:y=x(\log\det(-Z/x)+d)\right\};
𝒦logdet2\displaystyle\mathcal{K}_{{\rm logdet}}^{*2} :={0}×IR+×𝒮+d.\displaystyle:=\{0\}\times{\rm I\!R}_{+}\times\mathcal{S}_{+}^{d}. (3.5)

With that, we have

𝒦logdet=𝒦logdet1e𝒦logdet2\partial\mathcal{K}_{{\rm logdet}}=\mathcal{K}_{{\rm logdet}}^{1\mathrm{e}}\cup\mathcal{K}_{{\rm logdet}}^{2} (3.6)

and

𝒦logdet=𝒦logdet1e𝒦logdet2.\partial\mathcal{K}_{{\rm logdet}}^{*}=\mathcal{K}_{{\rm logdet}}^{*1\mathrm{e}}\cup\mathcal{K}_{{\rm logdet}}^{*2}.

Before moving on, we present several inequalities, which will be useful for our subsequent analysis.

  1. 1.

    Let η>0\eta>0, and let 𝒙=(𝒙ylogdet(𝒙Z/𝒙y),𝒙y,𝒙Z)𝒦logdet1eB(η)\bm{x}=(\bm{x}_{y}\log\det(\bm{x}_{Z}/\bm{x}_{y}),\bm{x}_{y},\bm{x}_{Z})\in\mathcal{K}_{{\rm logdet}}^{1\mathrm{e}}\cap B(\eta) with 𝒙y>0\bm{x}_{y}>0 and 𝒙Z0\bm{x}_{Z}\succ 0 and satisfy 𝒙ylogdet(𝒙Z/𝒙y)0\bm{x}_{y}\log\det(\bm{x}_{Z}/\bm{x}_{y})\geq 0. Then, we have

    0𝒙ylogdet(𝒙Z/𝒙y)𝒙ylogdet(ηId/𝒙y)d𝒙y|log(η)|d𝒙ylog(𝒙y).0\leq\bm{x}_{y}\log\det(\bm{x}_{Z}/\bm{x}_{y})\leq\bm{x}_{y}\log\det(\eta I_{d}/\bm{x}_{y})\leq d\bm{x}_{y}|\log(\eta)|-d\bm{x}_{y}\log(\bm{x}_{y}). (3.7)
  2. 2.

    Let α>0\alpha>0 and s>0s>0. The following inequalities hold for all sufficiently small t>0t>0,

    tt,tαlog(t)tα/2,tα1log(t),tαlog(t)1log(st).t\leq\sqrt{t},\quad-t^{\alpha}\log(t)\leq t^{\alpha/2},\quad t^{\alpha}\leq-\frac{1}{\log(t)},\quad-t^{\alpha}\log(t)\leq-\frac{1}{\log(st)}. (3.8)

3.1 Facial structure

In general, we are more interested in nontrivial faces, especially nontrivial exposed faces. Recall that if there exists 𝒏:=(𝒏x,𝒏y,𝒏Z)𝒦logdet{𝟎}\bm{n}:=(\bm{n}_{x},\bm{n}_{y},\bm{n}_{Z})\in\partial\mathcal{K}_{{\rm logdet}}^{*}\setminus\{\bm{0}\} such that =𝒦logdet{𝒏}\mathcal{F}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp}, then \mathcal{F} is a nontrivial exposed face of 𝒦logdet\mathcal{K}_{{\rm logdet}}. Different nonzero 𝒏\bm{n}’s along 𝒦logdet\partial\mathcal{K}_{{\rm logdet}}^{*} will induce different nontrivial exposed faces.

The next proposition completely characterizes the facial structure of the log-determinant cone.

Proposition 3.1 (Facial structure of 𝒦logdet\mathcal{K}_{{\rm logdet}}).

All nontrivial faces of the log-determinant cone can be classified into the following types:

  1. (a)

    infinitely many 1-dimensional faces exposed by 𝒏=(𝒏x,𝒏x(logdet(𝒏Z/𝒏x)+d),𝒏Z)\bm{n}=(\bm{n}_{x},\bm{n}_{x}(\log\det(-\bm{n}_{Z}/\bm{n}_{x})+d),\bm{n}_{Z}) with 𝒏x<0,𝒏Z0\bm{n}_{x}<0,\bm{n}_{Z}\succ 0,

    r:={(ylogdet(𝒏x𝒏Z1),y,y𝒏x𝒏Z1):yIR+}={y𝒇r:yIR+},\mathcal{F}_{{\rm r}}:=\left\{(y\log\det(-\bm{n}_{x}\bm{n}_{Z}^{-1}),y,-y\bm{n}_{x}\bm{n}_{Z}^{-1}):y\in{\rm I\!R}_{+}\right\}=\{y\bm{f}_{{\rm r}}:y\in{\rm I\!R}_{+}\}, (3.9)

    where

    𝒇r=(logdet(𝒏x𝒏Z1),1,𝒏x𝒏Z1).\bm{f}_{{\rm r}}=(\log\det(-\bm{n}_{x}\bm{n}_{Z}^{-1}),1,-\bm{n}_{x}\bm{n}_{Z}^{-1}). (3.10)
  2. (b)

    a single (sd(d)+1)({\rm sd}(d)+1)-dimensional exposed face exposed by 𝒏=(0,𝒏y,𝟎)\bm{n}=(0,\bm{n}_{y},\bm{0}) with 𝒏y>0\bm{n}_{y}>0,

    d:=IR×{0}×𝒮+d=𝒦logdet2.\mathcal{F}_{{\rm d}}:={\rm I\!R}_{-}\times\{0\}\times\mathcal{S}_{+}^{d}=\mathcal{K}_{{\rm logdet}}^{2}. (3.11)
  3. (c)

    infinitely many (sd(drank(𝒏Z))+1)({\rm sd}(d-{\rm rank}(\bm{n}_{Z}))+1)-dimensional exposed faces given by

    #:=IR×{0}×(𝒮+d{𝒏Z}),\mathcal{F}_{\#}:={\rm I\!R}_{-}\times\{0\}\times(\mathcal{S}_{+}^{d}\cap\{\bm{n}_{Z}\}^{\perp}), (3.12)

    which are exposed by

    𝒏=(0,𝒏y,𝒏Z) with 𝒏y0,𝒏Z0,0<rank(𝒏Z)<d.\bm{n}=(0,\bm{n}_{y},\bm{n}_{Z})\text{ with }\bm{n}_{y}\geq 0,\bm{n}_{Z}\succeq 0,0<{\rm rank}(\bm{n}_{Z})<d. (3.13)
  4. (d)

    a single 11-dimensional exposed face exposed by

    𝒏=(0,𝒏y,𝒏Z) with 𝒏y0,𝒏Z0,\bm{n}=(0,\bm{n}_{y},\bm{n}_{Z})\text{ with }\bm{n}_{y}\geq 0,\bm{n}_{Z}\succ 0,

    that is, rank(𝒏Z)=d{\rm rank}(\bm{n}_{Z})=d,

    :=IR×{0}×{𝟎}.\mathcal{F}_{\infty}:={\rm I\!R}_{-}\times\{0\}\times\{\bm{0}\}. (3.14)
  5. (e)

    infinitely many non-exposed faces defined by

    ne#:={0}×{0}×(𝒮+d{𝒏Z}),\mathcal{F}_{{\rm ne}}^{\#}:=\{0\}\times\{0\}\times(\mathcal{S}_{+}^{d}\cap\{\bm{n}_{Z}\}^{\perp}), (3.15)

    which are proper subfaces of exposed faces of the form #\mathcal{F}_{\#} or d\mathcal{F}_{{\rm d}} (see (3.11) and (3.12)), and 𝒏Z\bm{n}_{Z} comes from the 𝒏\bm{n} that exposes #\mathcal{F}_{\#} or d\mathcal{F}_{{\rm d}}, i.e., 0rank(𝒏Z)<d0\leq{\rm rank}(\bm{n}_{Z})<d.

Proof.

Let 𝒏:=(𝒏x,𝒏y,𝒏Z)𝒦logdet\bm{n}:=(\bm{n}_{x},\bm{n}_{y},\bm{n}_{Z})\in\mathcal{K}_{{\rm logdet}}^{*} be such that {𝒏}𝒦logdet\{\bm{n}\}^{\perp}\cap\mathcal{K}_{{\rm logdet}} is a nontrivial face of 𝒦logdet\mathcal{K}_{{\rm logdet}}. Recall that 𝒦logdet\mathcal{K}_{{\rm logdet}} is pointed, so 𝒏𝒦logdet{𝟎}\bm{n}\in\partial\mathcal{K}_{{\rm logdet}}^{*}\setminus\{\bm{0}\}. By (3), 𝒏x0\bm{n}_{x}\leq 0 and we can determine whether 𝒏𝒦logdet1\bm{n}\in\mathcal{K}_{{\rm logdet}}^{*1} or 𝒏𝒦logdet2\bm{n}\in\mathcal{K}_{{\rm logdet}}^{*2} by checking whether 𝒏x<0\bm{n}_{x}<0 or not. Therefore, we shall consider the following cases.

𝒏x<0\bm{n}_{x}<0: 𝒏x<0\bm{n}_{x}<0 indicates that 𝒏𝒦logdet1e\bm{n}\in\mathcal{K}_{{\rm logdet}}^{*1\mathrm{e}}, then we must have

𝒏=(𝒏x,𝒏x(logdet(𝒏Z/𝒏x)+d),𝒏Z) with 𝒏x<0,𝒏Z0.\bm{n}=(\bm{n}_{x},\bm{n}_{x}(\log\det(-\bm{n}_{Z}/\bm{n}_{x})+d),\bm{n}_{Z})\text{ with }\bm{n}_{x}<0,\,\bm{n}_{Z}\succ 0.

For any 𝒒:=(𝒒x,𝒒y,𝒒Z)𝒦logdet\bm{q}:=(\bm{q}_{x},\bm{q}_{y},\bm{q}_{Z})\in\partial\mathcal{K}_{{\rm logdet}}, since 𝒏x<0\bm{n}_{x}<0, we can see that 𝒒{𝒏}\bm{q}\in\{\bm{n}\}^{\perp} if and only if

𝒒x+𝒒y(logdet(𝒏Z/𝒏x)+d)+tr(𝒏Z𝒒Z)/𝒏x=0.\bm{q}_{x}+\bm{q}_{y}(\log\det(-\bm{n}_{Z}/\bm{n}_{x})+d)+{\rm\,tr}(\bm{n}_{Z}\bm{q}_{Z})/\bm{n}_{x}=0. (3.16)

If 𝒒y=0\bm{q}_{y}=0, then 𝒒𝒦logdet2\bm{q}\in\mathcal{K}_{{\rm logdet}}^{2}, and so 𝒒x0,𝒒Z0\bm{q}_{x}\leq 0,\bm{q}_{Z}\succeq 0. This together with 𝒏Z0\bm{n}_{Z}\succ 0 and (2.1) imply that tr(𝒏Z𝒒Z)0{\rm\,tr}(\bm{n}_{Z}\bm{q}_{Z})\geq 0. Since 𝒏x<0\bm{n}_{x}<0, we observe that

0𝒒x=tr(𝒏Z𝒒Z)/𝒏x0.0\leq-\bm{q}_{x}={\rm\,tr}(\bm{n}_{Z}\bm{q}_{Z})/\bm{n}_{x}\leq 0.

Thus, 𝒒x=0\bm{q}_{x}=0 and tr(𝒏Z𝒒Z)=0{\rm\,tr}(\bm{n}_{Z}\bm{q}_{Z})=0. The latter relation leads to 𝒒Z=𝟎\bm{q}_{Z}=\bm{0}. Consequently, 𝒒=𝟎\bm{q}=\bm{0}.

If 𝒒y0\bm{q}_{y}\neq 0, then 𝒒y>0\bm{q}_{y}>0 by the definition of the log-determinant cone and hence 𝒒𝒦logdet1e\bm{q}\in\mathcal{K}_{{\rm logdet}}^{1\mathrm{e}}. Then, we know that 𝒒x=𝒒ylogdet(𝒒Z/𝒒y),𝒒Z0\bm{q}_{x}=\bm{q}_{y}\log\det(\bm{q}_{Z}/\bm{q}_{y}),\,\bm{q}_{Z}\succ 0 and hence (3.16) becomes

logdet(𝒒Z𝒒y)+logdet(𝒏Z𝒏x)+d+tr(𝒏Z𝒒Z𝒏x𝒒y)=0.\log\det\left(\frac{\bm{q}_{Z}}{\bm{q}_{y}}\right)+\log\det\left(-\frac{\bm{n}_{Z}}{\bm{n}_{x}}\right)+d+{\rm\,tr}\left(\frac{\bm{n}_{Z}\bm{q}_{Z}}{\bm{n}_{x}\bm{q}_{y}}\right)=0.

After rearranging terms, we have

logdet(𝒏Z𝒒Z𝒏x𝒒y)+d+tr(𝒏Z𝒒Z𝒏x𝒒y)=0.\log\det\left(-\frac{\bm{n}_{Z}\bm{q}_{Z}}{\bm{n}_{x}\bm{q}_{y}}\right)+d+{\rm\,tr}\left(\frac{\bm{n}_{Z}\bm{q}_{Z}}{\bm{n}_{x}\bm{q}_{y}}\right)=0. (3.17)

Note also that

det(𝒏Z𝒒Z𝒏x𝒒y)=det(𝒏Z12𝒒Z𝒏Z12𝒏x𝒒y)andtr(𝒏Z𝒒Z𝒏x𝒒y)=tr(𝒏Z12𝒒Z𝒏Z12𝒏x𝒒y),\det\left(-\frac{\bm{n}_{Z}\bm{q}_{Z}}{\bm{n}_{x}\bm{q}_{y}}\right)=\det\left(-\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{q}_{Z}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{n}_{x}\bm{q}_{y}}\right)\quad\text{and}\quad{\rm\,tr}\left(\frac{\bm{n}_{Z}\bm{q}_{Z}}{\bm{n}_{x}\bm{q}_{y}}\right)={\rm\,tr}\left(\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{q}_{Z}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{n}_{x}\bm{q}_{y}}\right),

where 𝒏Z12𝒒Z𝒏Z120\bm{n}_{Z}^{\frac{1}{2}}\bm{q}_{Z}\bm{n}_{Z}^{\frac{1}{2}}\succ 0 and 𝒏Z12𝒒Z𝒏Z12𝒏x𝒒y0-\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{q}_{Z}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{n}_{x}\bm{q}_{y}}\succ 0.

Let f(x)=log(x)x+1f(x)=\log(x)-x+1, we can rewrite (3.17) as follows,

i=1df(λi(𝒏Z12𝒒Z𝒏Z12𝒏x𝒒y))=i=1d(log(λi(𝒏Z12𝒒Z𝒏Z12𝒏x𝒒y))+1λi(𝒏Z12𝒒Z𝒏Z12𝒏x𝒒y))=0.\begin{split}&\sum_{i=1}^{d}f\left(\lambda_{i}\left(-\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{q}_{Z}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{n}_{x}\bm{q}_{y}}\right)\right)\\ =&\sum_{i=1}^{d}\left(\log\left(\lambda_{i}\left(-\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{q}_{Z}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{n}_{x}\bm{q}_{y}}\right)\right)+1-\lambda_{i}\left(-\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{q}_{Z}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{n}_{x}\bm{q}_{y}}\right)\right)=0.\end{split} (3.18)

Since f(x)0f(x)\leq 0 for all x>0x>0 and f(x)=0f(x)=0 if and only if x=1x=1, (3.18) holds if and only if

λi(𝒏Z12𝒒Z𝒏Z12𝒏x𝒒y)=1i{1,2,,d}.\lambda_{i}\left(-\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{q}_{Z}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{n}_{x}\bm{q}_{y}}\right)=1\quad\forall i\in\{1,2,\dots,d\}.

This illustrates that all the eigenvalues of 𝒏Z12𝒒Z𝒏Z12𝒏x𝒒y-\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{q}_{Z}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{n}_{x}\bm{q}_{y}} are 11. Hence, one can immediately see 𝒏Z12𝒒Z𝒏Z12=𝒏x𝒒yId\bm{n}_{Z}^{\frac{1}{2}}\bm{q}_{Z}\bm{n}_{Z}^{\frac{1}{2}}=-\bm{n}_{x}\bm{q}_{y}I_{d} and so 𝒒Z=𝒒y𝒏x𝒏Z1\bm{q}_{Z}=-\bm{q}_{y}\bm{n}_{x}\bm{n}_{Z}^{-1}. By substituting this expression of 𝒒Z\bm{q}_{Z} into 𝒒=(𝒒ylogdet(𝒒Z/𝒒y),𝒒y,𝒒Z)\bm{q}=(\bm{q}_{y}\log\det(\bm{q}_{Z}/\bm{q}_{y}),\bm{q}_{y},\bm{q}_{Z}), we obtain (3.9).

𝒏x=0\bm{n}_{x}=0: 𝒏x=0\bm{n}_{x}=0 indicates that 𝒏𝒦logdet2\bm{n}\in\mathcal{K}_{{\rm logdet}}^{*2}, then 𝒏y0\bm{n}_{y}\geq 0 and 𝒏Z0\bm{n}_{Z}\succeq 0. Now, for any 𝒒𝒦logdet\bm{q}\in\partial\mathcal{K}_{{\rm logdet}}, we have 𝒒{𝒏}\bm{q}\in\{\bm{n}\}^{\perp} if and only if

𝒏y𝒒y+tr(𝒏Z𝒒Z)=0.\bm{n}_{y}\bm{q}_{y}+{\rm\,tr}(\bm{n}_{Z}\bm{q}_{Z})=0. (3.19)

Since 𝒏y0,𝒒y0,𝒏Z0\bm{n}_{y}\geq 0,\bm{q}_{y}\geq 0,\bm{n}_{Z}\succeq 0 and 𝒒Z0\bm{q}_{Z}\succeq 0, we observe that both summands on the left hand side of (3.19) are nonnegative. Therefore, (3.19) holds if and only if

𝒏y𝒒y=0,tr(𝒏Z𝒒Z)=0.\bm{n}_{y}\bm{q}_{y}=0,\quad{\rm\,tr}(\bm{n}_{Z}\bm{q}_{Z})=0. (3.20)

These together with (2.1) make it clear the cases we need to consider.

Specifically, if 𝒏x=0\bm{n}_{x}=0, we consider the following four cases.

  1. 1.

    If rank(𝒏Z)=0{\rm rank}(\bm{n}_{Z})=0 and 𝒏y=0\bm{n}_{y}=0, then 𝒏=𝟎\bm{n}=\bm{0}, which contradicts our assumption. This case is hence impossible.

  2. 2.

    If rank(𝒏Z)=0{\rm rank}(\bm{n}_{Z})=0 and 𝒏y>0\bm{n}_{y}>0, then by (3.20), 𝒒y=0\bm{q}_{y}=0. This corresponds to (3.11).

  3. 3.

    If 0<rank(𝒏Z)<d0<{\rm rank}(\bm{n}_{Z})<d, then 𝒒Z0\bm{q}_{Z}\succeq 0 but 𝒒Z\bm{q}_{Z} is not definite, so (𝒒x,𝒒y,𝒒Z)𝒦logdet2(\bm{q}_{x},\bm{q}_{y},\bm{q}_{Z})\in\mathcal{K}_{{\rm logdet}}^{2}. Since 𝒒Z{𝒏Z}\bm{q}_{Z}\in\{\bm{n}_{Z}\}^{\perp} holds, this corresponds to (3.12).

  4. 4.

    If rank(𝒏Z)=d{\rm rank}(\bm{n}_{Z})=d, i.e., 𝒏Z0\bm{n}_{Z}\succ 0, then 𝒒Z=𝟎\bm{q}_{Z}=\bm{0}. This corresponds to (3.14).

Therefore, we obtain the exposed faces defined as in (3.11), (3.12) and (3.14).

We now show that all nontrivial faces of 𝒦logdet\mathcal{K}_{{\rm logdet}} were accounted for (3.9), (3.11), (3.12), (3.14) and (3.15). First of all, by the previous discussion, all nontrivial exposed faces must be among the ones in (3.9), (3.11), (3.12), and (3.14). Suppose \mathcal{F} is a non-exposed face of 𝒦logdet\mathcal{K}_{{\rm logdet}}. Then it must be contained in a nontrivial exposed face ^\widehat{\cal F} of 𝒦logdet\mathcal{K}_{{\rm logdet}}, e.g., [7, Proposition 3.6] or [28, Proposition 2.1]. The faces in (3.9) and (3.14) are one-dimensional, so the only candidates for ^\widehat{\cal F} are the faces as in (3.11) and (3.12).

So suppose that ^\widehat{\cal F} is as in  (3.11) or  (3.12). Recalling the list of nontrivial exposed faces described so far, the only nontrival faces of ^\widehat{\cal F} that have not appeared yet are the ones of the form ne#\mathcal{F}_{{\rm ne}}^{\#} (as in (3.15)) for some 𝒏Z\bm{n}_{Z} with 0rank(𝒏Z)<d0\leq{\rm rank}(\bm{n}_{Z})<d. This shows the completeness of the classification. ∎

It is worth noting that when d=1d=1, the case corresponding to #\mathcal{F}_{\#} does not occur. We also have the following relationships between these nontrivial faces. Let 𝒏𝟎\bm{n}\neq\bm{0} with 0rank(𝒏Z)<d0\leq{\rm rank}(\bm{n}_{Z})<d be given. If rank(𝒏Z)>0{\rm rank}(\bm{n}_{Z})>0, then the corresponding faces #\mathcal{F}_{\#} and ne#\mathcal{F}_{{\rm ne}}^{\#} satisfy the following inclusion

ne##dand#d.\mathcal{F}_{{\rm ne}}^{\#}\mathrel{\text{$\ooalign{$\lneq$\cr\raise 0.94722pt\hbox{$\lhd$}\cr}$}}\mathcal{F}_{\#}\mathrel{\text{$\ooalign{$\lneq$\cr\raise 0.94722pt\hbox{$\lhd$}\cr}$}}\mathcal{F}_{{\rm d}}\quad\text{and}\quad\mathcal{F}_{\infty}\mathrel{\text{$\ooalign{$\lneq$\cr\raise 0.94722pt\hbox{$\lhd$}\cr}$}}\mathcal{F}_{\#}\mathrel{\text{$\ooalign{$\lneq$\cr\raise 0.94722pt\hbox{$\lhd$}\cr}$}}\mathcal{F}_{{\rm d}}. (3.21)

If rank(𝒏Z)=0{\rm rank}(\bm{n}_{Z})=0, then we have

ne#d.\mathcal{F}_{{\rm ne}}^{\#}\mathrel{\text{$\ooalign{$\lneq$\cr\raise 0.94722pt\hbox{$\lhd$}\cr}$}}\mathcal{F}_{{\rm d}}. (3.22)

For distinct 𝒏1:=(𝒏x1,𝒏y1,𝒏Z1)\bm{n}^{1}:=(\bm{n}_{x}^{1},\bm{n}_{y}^{1},\bm{n}_{Z}^{1}) and 𝒏2:=(𝒏x2,𝒏y2,𝒏Z2)\bm{n}^{2}:=(\bm{n}_{x}^{2},\bm{n}_{y}^{2},\bm{n}_{Z}^{2}) with 0<rank(𝒏Z1)<d0<{\rm rank}(\bm{n}_{Z}^{1})<d and 0<rank(𝒏Z2)<d0<{\rm rank}(\bm{n}_{Z}^{2})<d, suppose 𝒏1\bm{n}^{1} and 𝒏2\bm{n}^{2} expose #1\mathcal{F}_{\#}^{1} and #2\mathcal{F}_{\#}^{2}, respectively. If range(𝒏Z1)range(𝒏Z2)\text{range}(\bm{n}_{Z}^{1})\supsetneq\text{range}(\bm{n}_{Z}^{2}), then #1#2\mathcal{F}_{\#}^{1}\mathrel{\text{$\ooalign{$\lneq$\cr\raise 0.94722pt\hbox{$\lhd$}\cr}$}}\mathcal{F}_{\#}^{2} (see, e.g., [3, Section 6]). A similar result also holds for non-exposed faces, that is, denote the non-exposed faces by ne#1\mathcal{F}_{{\rm ne}}^{\#1} and ne#2\mathcal{F}_{{\rm ne}}^{\#2}, respectively, with respect to 𝒏1\bm{n}^{1} and 𝒏2\bm{n}^{2}, if range(𝒏Z1)range(𝒏Z2)\text{range}(\bm{n}_{Z}^{1})\supsetneq\text{range}(\bm{n}_{Z}^{2}), then ne#1ne#2\mathcal{F}_{{\rm ne}}^{\#1}\mathrel{\text{$\ooalign{$\lneq$\cr\raise 0.94722pt\hbox{$\lhd$}\cr}$}}\mathcal{F}_{{\rm ne}}^{\#2}.

3.2 One-step facial residual functions

In this subsection, we shall apply the strategy in [23, Section 3.1] to compute the corresponding one-step facial residual functions for nontrivial exposed faces of the log-determinant cone. Put concretely, consider =𝒦logdet{𝒏}\mathcal{F}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp} with 𝒏𝒦logdet{𝟎}\bm{n}\in\partial\mathcal{K}_{{\rm logdet}}^{*}\setminus\{\bm{0}\}. For η>0\eta>0 and some nondecreasing function 𝔤:IR+IR+\mathfrak{g}:{\rm I\!R}_{+}\to{\rm I\!R}_{+} with 𝔤(0)=0\mathfrak{g}(0)=0 and 𝔤||α\mathfrak{g}\geq|\cdot|^{\alpha} for some α(0,1]\alpha\in(0,1], we define

γ𝒏,η:=inf𝒗{𝔤(𝒗𝒘)𝒖𝒘|𝒗𝒦logdetB(η),𝒘=P{𝒏}(𝒗),𝒖=P(𝒘),𝒖𝒘}.\!\gamma_{\bm{n},\eta}\!:=\!\inf_{\bm{v}}\left\{\frac{\mathfrak{g}(\|\bm{v}-\bm{w}\|)}{\|\bm{u}-\bm{w}\|}\,\bigg{|}\,\begin{array}[]{c}\bm{v}\in\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F},\,\bm{w}=P_{\{\bm{n}\}^{\perp}}(\bm{v}),\\ \bm{u}=P_{\mathcal{F}}(\bm{w}),\,\bm{u}\neq\bm{w}\end{array}\right\}. (3.23)

In view of [23, Theorem 3.10] and [23, Lemma 3.9], if γ𝒏,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty] then we can use γ𝒏,η\gamma_{\bm{n},\eta} and 𝔤\mathfrak{g} to construct a one-step facial residual function for 𝒦logdet\mathcal{K}_{{\rm logdet}} and 𝒏\bm{n}. In [23], the positivity of γ𝒏,η\gamma_{\bm{n},\eta} (with the exponential cone in place of 𝒦logdet\mathcal{K}_{{\rm logdet}} and some properly selected 𝔤\mathfrak{g}) was shown by contradiction. Here, we will follow a similar strategy and make extensive use of the following fact from [23, Lemma 3.12]: if γ𝒏,η=0\gamma_{\bm{n},\eta}=0, then there exist 𝒗^\widehat{\bm{v}}\in\mathcal{F} and a sequence {𝒗k}𝒦logdetB(η)\{\bm{v}^{k}\}\subset\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F} such that

limk𝒗k=limk𝒘k=𝒗^andlimk𝔤(𝒘k𝒗k)𝒖k𝒘k=0,\lim_{k\to\infty}\bm{v}^{k}=\lim_{k\to\infty}\bm{w}^{k}=\widehat{\bm{v}}\,\,{\rm and}\,\,\lim_{k\to\infty}\frac{\mathfrak{g}(\|\bm{w}^{k}-\bm{v}^{k}\|)}{\|\bm{u}^{k}-\bm{w}^{k}\|}=0, (3.24)

where 𝒘k=P{𝒏}(𝒗k)\bm{w}^{k}=P_{\{\bm{n}\}^{\perp}}(\bm{v}^{k}), 𝒖k=P(𝒘k)\bm{u}^{k}=P_{\mathcal{F}}(\bm{w}^{k}) and 𝒖k𝒘k\bm{u}^{k}\neq\bm{w}^{k}.

3.2.1 d\mathcal{F}_{{\rm d}}: the unique (sd(d)+1)({\rm sd}(d)+1)-dimensional faces

We define the piecewise modified Boltzmann-Shannon entropy 𝔤d:IR+IR+\mathfrak{g}_{{\rm d}}:{\rm I\!R}_{+}\to{\rm I\!R}_{+} as follows:

𝔤d(t):={0 if t=0,tlog(t) if 0<t1e2,t+1e2 if t>1e2.\mathfrak{g}_{{\rm d}}(t):=\left\{\begin{array}[]{ll}0&\text{ if }t=0,\\ -t\log(t)&\text{ if }0<t\leq\frac{1}{e^{2}},\\ t+\frac{1}{e^{2}}&\text{ if }t>\frac{1}{e^{2}}.\end{array}\right. (3.25)

Note that 𝔤d\mathfrak{g}_{{\rm d}} is nondecreasing with 𝔤d(0)=0\mathfrak{g}_{{\rm d}}(0)=0 and |t|𝔤d(t)|t|\leq\mathfrak{g}_{{\rm d}}(t) for any tIR+t\in{\rm I\!R}_{+}.

The next theorem shows that γ𝒏,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty] for d\mathcal{F}_{{\rm d}}, which implies that an entropic error bound holds.

Theorem 3.2 (Entropic error bound concerning d\mathcal{F}_{{\rm d}}).

Let 𝐧=(0,𝐧y,𝟎)𝒦logdet\bm{n}=(0,\bm{n}_{y},\bm{0})\in\partial\mathcal{K}_{{\rm logdet}}^{*} with 𝐧y>0\bm{n}_{y}>0 such that d=𝒦logdet{𝐧}\mathcal{F}_{{\rm d}}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp}. Let η>0\eta>0 and let γ𝐧,η\gamma_{\bm{n},\eta} be defined as in (3.23) with =d\mathcal{F}=\mathcal{F}_{{\rm d}} and 𝔤=𝔤d\mathfrak{g}=\mathfrak{g}_{{\rm d}}. Then γ𝐧,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty] and

dist(𝒒,d)max{2,2γ𝒏,η1}𝔤d(dist(𝒒,𝒦logdet))𝒒{𝒏}B(η).{\rm dist}(\bm{q},\mathcal{F}_{{\rm d}})\leq\max\{2,2\gamma_{\bm{n},\eta}^{-1}\}\cdot\mathfrak{g}_{{\rm d}}({\rm dist}(\bm{q},\mathcal{K}_{{\rm logdet}}))\quad\quad\forall\bm{q}\in\{\bm{n}\}^{\perp}\cap B(\eta). (3.26)
Proof.

If γ𝒏,η=0\gamma_{\bm{n},\eta}=0, in view of [23, Lemma 3.12], there exist 𝒗^d\widehat{\bm{v}}\in\mathcal{F}_{{\rm d}} and a sequence {𝒗k}𝒦logdetB(η)d\{\bm{v}^{k}\}\subset\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{{\rm d}} such that (3.24) holds with 𝔤=𝔤d\mathfrak{g}=\mathfrak{g}_{{\rm d}} and =d{\cal F}=\mathcal{F}_{{\rm d}}.

By (3.11), 𝒗^=(𝒗^x,0,𝒗^Z)\widehat{\bm{v}}=(\widehat{\bm{v}}_{x},0,\widehat{\bm{v}}_{Z}) with 𝒗^Z0\widehat{\bm{v}}_{Z}\succeq 0. Since 𝒗k𝒦logdetB(η)d\bm{v}^{k}\in\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{{\rm d}} for all kk, we have 𝒗yk>0\bm{v}_{y}^{k}>0 and 𝒗k𝒦logdet1e\bm{v}^{k}\in\mathcal{K}_{{\rm logdet}}^{1\mathrm{e}} for all kk. Hence, 𝒗k=(𝒗yklogdet(𝒗Zk/𝒗yk),𝒗yk,𝒗Zk) with 𝒗yk>0,𝒗Zk0\bm{v}^{k}=(\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}),\bm{v}_{y}^{k},\bm{v}_{Z}^{k})\text{ with }\bm{v}_{y}^{k}>0,\bm{v}_{Z}^{k}\succ 0 for all kk.

Recall that 𝒏=(0,𝒏y,𝟎)\bm{n}=(0,\bm{n}_{y},\bm{0}) with 𝒏y>0\bm{n}_{y}>0, then 𝒏=𝒏y and 𝒏,𝒗k=𝒏y𝒗yk>0.\|\bm{n}\|=\bm{n}_{y}\text{ and }\langle\bm{n},\bm{v}^{k}\rangle=\bm{n}_{y}\bm{v}_{y}^{k}>0. Since 𝒘k=P{𝒏}(𝒗k)\bm{w}^{k}=P_{\{\bm{n}\}^{\perp}}(\bm{v}^{k}) and {𝒏}\{\bm{n}\}^{\perp} is a hyperplane, one can immediately see that for all kk,

𝒘k=𝒗k𝒏,𝒗k𝒏2𝒏=(𝒗yklogdet(𝒗Zk/𝒗yk),0,𝒗Zk)and𝒘k𝒗k=|𝒏,𝒗k|𝒏=𝒗yk.\bm{w}^{k}=\bm{v}^{k}-\frac{\langle\bm{n},\bm{v}^{k}\rangle}{\|\bm{n}\|^{2}}\bm{n}=(\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}),0,\bm{v}_{Z}^{k})\quad\text{and}\quad\|\bm{w}^{k}-\bm{v}^{k}\|=\frac{|\langle\bm{n},\bm{v}^{k}\rangle|}{\|\bm{n}\|}=\bm{v}_{y}^{k}.

Using (3.11), 𝒖k=Pd(𝒘k)\bm{u}^{k}=P_{\mathcal{F}_{{\rm d}}}(\bm{w}^{k}) and 𝒖k𝒘k\bm{u}^{k}\neq\bm{w}^{k}, we see that 𝒗yklogdet(𝒗Zk/𝒗yk)>0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})>0 and 𝒖k=(0,0,𝒗Zk)\bm{u}^{k}=(0,0,\bm{v}_{Z}^{k}). We thus obtain that for all kk,

𝒘k𝒖k=𝒗yklogdet(𝒗Zk/𝒗yk).\|\bm{w}^{k}-\bm{u}^{k}\|=\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}).

Because limk𝒗yk=0\lim_{k\to\infty}\bm{v}_{y}^{k}=0, for sufficiently large kk, we have 0<𝒗yk<1e20<\bm{v}_{y}^{k}<\frac{1}{e^{2}}. Hence,

limk𝔤d(𝒘k𝒗k)𝒘k𝒖k(a)limk𝒗yklog(𝒗yk)d𝒗yk|log(η)|d𝒗yklog(𝒗yk)=limk1dd|log(η)|log(𝒗yk)=1d>0,\displaystyle\lim_{k\to\infty}\frac{\mathfrak{g}_{{\rm d}}(\|\bm{w}^{k}-\bm{v}^{k}\|)}{\|\bm{w}^{k}-\bm{u}^{k}\|}\overset{(\text{a})}{\geq}\lim_{k\to\infty}\frac{-\bm{v}_{y}^{k}\log(\bm{v}_{y}^{k})}{d\bm{v}_{y}^{k}|\log(\eta)|-d\bm{v}_{y}^{k}\log(\bm{v}_{y}^{k})}=\lim_{k\to\infty}\frac{1}{d-d\frac{|\log(\eta)|}{\log(\bm{v}_{y}^{k})}}=\frac{1}{d}>0,

where (a) comes from the fact 𝒗kB(η)\bm{v}^{k}\in B(\eta) and (3.7). This contradicts (3.24) with 𝔤d\mathfrak{g}_{{\rm d}} in place of 𝔤\mathfrak{g} and hence this case cannot happen. Therefore, we conclude that γ𝒏,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty], with which and [23, Theorem 3.10], (3.26) holds. ∎

Remark 3.3 (Tightness of (3.26)).

We claim that for d\mathcal{F}_{{\rm d}}, there is a specific choice of sequence {𝐰k}\{\bm{w}^{k}\} in {𝐧}\{\bm{n}\}^{\perp} with dist(𝐰k,𝒦logdet)0{\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}})\to 0 along which both sides of (3.26) vanish at the same order of magnitude. Recall that we assumed that d>1d>1; see the discussions following (3.4).444When d=1d=1, the log-determinant cone reduces to the exponential cone studied in [23], where the tightness of the corresponding error bounds was shown in Remark 4.14 therein. Let 𝐧=(0,𝐧y,𝟎)\bm{n}=(0,\bm{n}_{y},\bm{0}) with 𝐧y>0\bm{n}_{y}>0 so that {𝐧}𝒦logdet=d\{\bm{n}\}^{\perp}\cap\mathcal{K}_{{\rm logdet}}=\mathcal{F}_{{\rm d}}. Define 𝐰k=(dlog(k)/k,0,Id)\bm{w}^{k}=(d\log(k)/k,0,I_{d}) for every kk\in\mathbb{N}. Then {𝐰k}{𝐧}\{\bm{w}^{k}\}\subseteq\{\bm{n}\}^{\perp}. Since log(k)/k>0\log(k)/k>0 for any k2k\geq 2 and log(k)/k0\log(k)/k\to 0 as kk\to\infty, there exists η>0\eta>0 such that {𝐰k}B(η)\left\{\bm{w}^{k}\right\}\subseteq B(\eta). Thus, applying (3.26), there exists κB>0\kappa_{B}>0 such that

dist(𝒘k,d)κB𝔤d(dist(𝒘k,𝒦logdet))for all sufficiently large k.{\rm dist}\left(\bm{w}^{k},\mathcal{F}_{{\rm d}}\right)\leq\kappa_{B}\mathfrak{g}_{{\rm d}}\left({\rm dist}\left(\bm{w}^{k},\mathcal{K}_{{\rm logdet}}\right)\right)\quad\text{for all sufficiently large }k.

Noticing that the projection of 𝐰k\bm{w}^{k} onto d\mathcal{F}_{{\rm d}} (see (3.11)) is given by (0,0,Id)(0,0,I_{d}), we obtain

dlog(k)k=dist(𝒘k,d)κB𝔤d(dist(𝒘k,𝒦logdet)).\frac{d\log(k)}{k}={\rm dist}(\bm{w}^{k},\mathcal{F}_{{\rm d}})\leq\kappa_{B}\mathfrak{g}_{{\rm d}}\left({\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}})\right).

Let 𝐯k=(dlog(k)/k,1/k,Id)\bm{v}^{k}=(d\log(k)/k,1/k,I_{d}) for every kk. Then dist(𝐰k,𝒦logdet)1/k{\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}})\leq 1/k since 𝐯k𝒦logdet\bm{v}^{k}\in\mathcal{K}_{{\rm logdet}}. In view of the definition of 𝔤d\mathfrak{g}_{{\rm d}} (see (3.25)) and its monotonicity, we conclude that for large enough kk we have

dlog(k)k=dist(𝒘k,d)κB𝔤d(dist(𝒘k,𝒦logdet))κBlog(k)k.\frac{d\log(k)}{k}={\rm dist}(\bm{w}^{k},\mathcal{F}_{{\rm d}})\leq\kappa_{B}\mathfrak{g}_{{\rm d}}({\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}}))\leq\kappa_{B}\frac{\log(k)}{k}.

That means it holds that for all sufficiently large kk,

ddist(𝒘k,d)𝔤d(dist(𝒘k,𝒦logdet))κB.d\leq\frac{{\rm dist}(\bm{w}^{k},\mathcal{F}_{{\rm d}})}{\mathfrak{g}_{{\rm d}}({\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}}))}\leq\kappa_{B}.

Consequently, for any given nonnegative function 𝔤:IR+IR+\mathfrak{g}:{\rm I\!R}_{+}\to{\rm I\!R}_{+} such that limt0𝔤(t)𝔤d(t)=0\lim_{t\downarrow 0}\frac{\mathfrak{g}(t)}{\mathfrak{g}_{{\rm d}}(t)}=0, we have upon noting dist(𝐰k,𝒦logdet)0{\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}})\to 0 that

dist(𝒘k,d)𝔤(dist(𝒘k,𝒦logdet))=dist(𝒘k,d)𝔤d(dist(𝒘k,𝒦logdet))𝔤d(dist(𝒘k,𝒦logdet))𝔤(dist(𝒘k,𝒦logdet)),\frac{{\rm dist}(\bm{w}^{k},\mathcal{F}_{{\rm d}})}{\mathfrak{g}({\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}}))}=\frac{{\rm dist}(\bm{w}^{k},\mathcal{F}_{{\rm d}})}{\mathfrak{g}_{{\rm d}}({\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}}))}\frac{\mathfrak{g}_{{\rm d}}({\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}}))}{\mathfrak{g}({\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}}))}\to\infty,

which shows that the choice of 𝔤d\mathfrak{g}_{{\rm d}} in (3.26) is tight.

Upon invoking Theorem 3.2 and [23, Lemma 3.9], we obtain the following one-step facial residual function for 𝒦logdet\mathcal{K}_{{\rm logdet}} and 𝒏\bm{n}.

Corollary 3.4.

Let 𝐧=(0,𝐧y,𝟎)𝒦logdet\bm{n}=(0,\bm{n}_{y},\bm{0})\in\partial\mathcal{K}_{{\rm logdet}}^{*} with 𝐧y>0\bm{n}_{y}>0 such that d=𝒦logdet{𝐧}\mathcal{F}_{{\rm d}}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp}. Let γ𝐧,t\gamma_{\bm{n},t} be defined as in (3.23) with =d{\cal F}=\mathcal{F}_{{\rm d}} and 𝔤=𝔤d\mathfrak{g}=\mathfrak{g}_{{\rm d}} in (3.25). Then the function ψ𝒦,𝐧:IR+×IR+IR+\psi_{\mathcal{K},\bm{n}}:{\rm I\!R}_{+}\times{\rm I\!R}_{+}\to{\rm I\!R}_{+} defined by

ψ𝒦,𝒏(ϵ,t):=max{ϵ,ϵ/𝒏}+max{2,2γ𝒏,t1}𝔤d(ϵ+max{ϵ,ϵ/𝒏})\psi_{\mathcal{K},\bm{n}}(\epsilon,t):=\max\left\{\epsilon,\epsilon/\|\bm{n}\|\right\}+\max\left\{2,2\gamma_{\bm{n},t}^{-1}\right\}\mathfrak{g}_{{\rm d}}\left(\epsilon+\max\left\{\epsilon,\epsilon/\|\bm{n}\|\right\}\right)

is a one-step facial residual function for 𝒦logdet\mathcal{K}_{{\rm logdet}} and 𝐧\bm{n}.

3.2.2 #\mathcal{F}_{\#}: the family of (sd(drank(𝒏Z))+1)({\rm sd}(d-{\rm rank}(\bm{n}_{Z}))+1)-dimensional faces

Let η>0\eta>0 and let 𝒏𝒦logdet\bm{n}\in\partial\mathcal{K}_{{\rm logdet}}^{*} be such that #=𝒦logdet{𝒏}\mathcal{F}_{\#}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp}. Let γ𝒏,η\gamma_{\bm{n},\eta} be defined as in (3.23) with =#\mathcal{F}=\mathcal{F}_{\#} and some nondecreasing function 𝔤:IR+IR+\mathfrak{g}:{\rm I\!R}_{+}\to{\rm I\!R}_{+} with 𝔤(0)=0\mathfrak{g}(0)=0 and 𝔤||α\mathfrak{g}\geq|\cdot|^{\alpha} for some α(0,1]\alpha\in(0,1]. If γ𝒏,η=0\gamma_{\bm{n},\eta}=0, in view of [23, Lemma 3.12], there exists 𝒗^#\widehat{\bm{v}}\in\mathcal{F}_{\#} and a sequence {𝒗k}𝒦logdetB(η)#\{\bm{v}^{k}\}\subset\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{\#} such that (3.24) holds. As we will see later in the proofs of Theorem 3.6 and Theorem 3.8 below, we will encounter the following three cases:

  1. (I)

    𝒏y0\bm{n}_{y}\geq 0 and 𝒗kdB(η)#\bm{v}^{k}\in\mathcal{F}_{{\rm d}}\cap B(\eta)\setminus\mathcal{F}_{\#} for all large kk;

  2. (II)

    𝒏y>0\bm{n}_{y}>0 and 𝒗k𝒦logdetB(η)d\bm{v}^{k}\in\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{{\rm d}} infinitely often;

  3. (III)

    𝒏y=0\bm{n}_{y}=0 and 𝒗k𝒦logdetB(η)d\bm{v}^{k}\in\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{{\rm d}} infinitely often.

For case (I), we have the following lemma which will aid in our further analysis. One should notice that this lemma holds for both #\mathcal{F}_{\#} and \mathcal{F}_{\infty}.

Lemma 3.5.

Let 𝐧=(0,𝐧y,𝐧Z)𝒦logdet{𝟎}\bm{n}=(0,\bm{n}_{y},\bm{n}_{Z})\in\partial\mathcal{K}_{{\rm logdet}}^{*}\setminus\{\bm{0}\} with 𝐧y0\bm{n}_{y}\geq 0 and 𝐧Z0\bm{n}_{Z}\succeq 0 such that =𝒦logdet{𝐧}\mathcal{F}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp} with =#\mathcal{F}=\mathcal{F}_{\#} or \mathcal{F}_{\infty}. Let 𝐯¯\overline{\bm{v}}\in\mathcal{F} be arbitrary and {𝐯k}dB(η)\{\bm{v}^{k}\}\subset\mathcal{F}_{{\rm d}}\cap B(\eta)\setminus\mathcal{F} be such that

limk𝒗k=limk𝒘k=𝒗¯,\lim_{k\to\infty}\bm{v}^{k}=\lim_{k\to\infty}\bm{w}^{k}=\overline{\bm{v}},

where 𝐰k=P{𝐧}(𝐯k),𝐮k=P(𝐰k)\bm{w}^{k}=P_{\{\bm{n}\}^{\perp}}(\bm{v}^{k}),\bm{u}^{k}=P_{\mathcal{F}}(\bm{w}^{k}) and 𝐰k𝐮k\bm{w}^{k}\neq\bm{u}^{k}. Then

lim infk𝒘k𝒗kα𝒘k𝒖k(0,],\liminf_{k\to\infty}\frac{\|\bm{w}^{k}-\bm{v}^{k}\|^{\alpha}}{\|\bm{w}^{k}-\bm{u}^{k}\|}\in(0,\infty],

where α\alpha is defined as in (2.8) with ZZ being 𝐧Z\bm{n}_{Z}.

Proof.

Note that {𝒗k}dB(η)\{\bm{v}^{k}\}\subset\mathcal{F}_{{\rm d}}\cap B(\eta)\setminus\mathcal{F} implies 𝒗k=(𝒗xk,0,𝒗Zk)\bm{v}^{k}=(\bm{v}_{x}^{k},0,\bm{v}_{Z}^{k}) with 𝒗xk0\bm{v}_{x}^{k}\leq 0 and 𝒗Zk𝒮+d\bm{v}_{Z}^{k}\in\mathcal{S}_{+}^{d} for all kk. Then, 𝒏,𝒗k=tr(𝒗Zk𝒏Z)\langle\bm{n},\bm{v}^{k}\rangle={\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z}), which is nonnegative since both 𝒗Zk\bm{v}_{Z}^{k} and 𝒏Z\bm{n}_{Z} are positive semidefinite. Because 𝒘k=P{𝒏}(𝒗k)\bm{w}^{k}=P_{\{\bm{n}\}^{\perp}}(\bm{v}^{k}) and {𝒏}\{\bm{n}\}^{\perp} is a hyperplane, one can immediately see that for all kk,

𝒘k𝒗k=|𝒏,𝒗k|𝒏=tr(𝒗Zk𝒏Z)𝒏.\|\bm{w}^{k}-\bm{v}^{k}\|=\frac{|\langle\bm{n},\bm{v}^{k}\rangle|}{\|\bm{n}\|}=\frac{{\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z})}{\|\bm{n}\|}.

On the other hand, by Lemma 2.4 and the formula of \mathcal{F}, we obtain that for all kk,

𝒘k𝒖kdist(𝒗k,)=dist(𝒗Zk,𝒮+d{𝒏Z})CPtr(𝒗Zk𝒏Z)α,\displaystyle\|\bm{w}^{k}-\bm{u}^{k}\|\leq{\rm dist}(\bm{v}^{k},\mathcal{F})={\rm dist}(\bm{v}_{Z}^{k},\mathcal{S}_{+}^{d}\cap\{\bm{n}_{Z}\}^{\perp})\leq C_{P}{\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z})^{\alpha},

where the final inequality comes from Proposition 2.5 and α\alpha is defined as in (2.8) with ZZ being 𝒏Z\bm{n}_{Z}.

Now, we can conclude that

lim infk𝒘k𝒗kα𝒘k𝒖k1CP𝒏α>0.\liminf_{k\to\infty}\frac{\|\bm{w}^{k}-\bm{v}^{k}\|^{\alpha}}{\|\bm{w}^{k}-\bm{u}^{k}\|}\geq\frac{1}{C_{P}\|\bm{n}\|^{\alpha}}>0.

This completes the proof. ∎

Now, we are ready to show the error bound concerning #\mathcal{F}_{\#}. We first show that we have a Hölderian error bound concerning #\mathcal{F}_{\#} when 𝒏y>0\bm{n}_{y}>0.

Theorem 3.6 (Hölderian error bound concerning #\mathcal{F}_{\#} if 𝒏y>0\bm{n}_{y}>0).

Let 𝐧=(0,𝐧y,𝐧Z)𝒦logdet\bm{n}=(0,\bm{n}_{y},\bm{n}_{Z})\in\partial\mathcal{K}_{{\rm logdet}}^{*} with 𝐧y>0\bm{n}_{y}>0, 𝐧Z0\bm{n}_{Z}\succeq 0 and 0<rank(𝐧Z)<d0<{\rm rank}(\bm{n}_{Z})<d such that #=𝒦logdet{𝐧}\mathcal{F}_{\#}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp}. Let η>0\eta>0 and let γ𝐧,η\gamma_{\bm{n},\eta} be defined as in (3.23) with =#\mathcal{F}=\mathcal{F}_{\#} and 𝔤=||12\mathfrak{g}=|\cdot|^{\frac{1}{2}}. Then γ𝐧,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty] and

dist(𝒒,#)max{2η12,2γ𝒏,η1}(dist(𝒒,𝒦logdet))12𝒒{𝒏}B(η).{\rm dist}(\bm{q},\mathcal{F}_{\#})\leq\max\{2\eta^{\frac{1}{2}},2\gamma_{\bm{n},\eta}^{-1}\}\cdot({\rm dist}(\bm{q},\mathcal{K}_{{\rm logdet}}))^{\frac{1}{2}}\quad\quad\forall\bm{q}\in\{\bm{n}\}^{\perp}\cap B(\eta). (3.27)
Proof.

If γ𝒏,η=0\gamma_{\bm{n},\eta}=0, in view of [23, Lemma 3.12], there exist 𝒗^#\widehat{\bm{v}}\in\mathcal{F}_{\#} and a sequence {𝒗k}𝒦logdetB(η)#\{\bm{v}^{k}\}\subset\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{\#} such that (3.24) holds with 𝔤=||12\mathfrak{g}=|\cdot|^{\frac{1}{2}} and =#{\cal F}=\mathcal{F}_{\#}. Since {𝒗k}𝒦logdetB(η)#\{\bm{v}^{k}\}\subset\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{\#}, the equation for the boundary of 𝒦logdet\mathcal{K}_{{\rm logdet}} (see (3.6) and (3.21)) implies that we have the following two cases:

  1. (i)

    𝒗k𝒦logdetB(η)d\bm{v}^{k}\in\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{{\rm d}} infinitely often;

  2. (ii)

    𝒗kdB(η)#\bm{v}^{k}\in\mathcal{F}_{{\rm d}}\cap B(\eta)\setminus\mathcal{F}_{\#} for all large kk.

(i) Passing to a subsequence if necessary, we can assume that 𝒗k𝒦logdetB(η)d\bm{v}^{k}\in\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{{\rm d}} for all kk, that is,

𝒗k=(𝒗yklogdet(𝒗Zk/𝒗yk),𝒗yk,𝒗Zk) with 𝒗yk>0,𝒗Zk0,for all k.\bm{v}^{k}=(\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}),\bm{v}_{y}^{k},\bm{v}_{Z}^{k})\text{ with }\bm{v}_{y}^{k}>0,\bm{v}_{Z}^{k}\succ 0,\quad\text{for all }k.

Then, 𝒏,𝒗k=𝒏y𝒗yk+tr(𝒗Zk𝒏Z)\langle\bm{n},\bm{v}^{k}\rangle=\bm{n}_{y}\bm{v}_{y}^{k}+{\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z}), which is positive since 𝒏y>0,𝒗yk>0\bm{n}_{y}>0,\bm{v}_{y}^{k}>0 and both 𝒗Zk,𝒏Z\bm{v}_{Z}^{k},\bm{n}_{Z} are positive semidefinite.

Now, one can check that

𝒘k𝒗k=𝒏,𝒗k𝒏=𝒏y𝒗yk+tr(𝒗Zk𝒏Z)𝒏.\|\bm{w}^{k}-\bm{v}^{k}\|=\frac{\langle\bm{n},\bm{v}^{k}\rangle}{\|\bm{n}\|}=\frac{\bm{n}_{y}\bm{v}_{y}^{k}+{\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z})}{\|\bm{n}\|}. (3.28)

On the other hand, by Lemma 2.4, the formula of #\mathcal{F}_{\#} and Proposition 2.5, we obtain the following inequality for all kk,

𝒘k𝒖kdist(𝒗k,#)(𝒗yklogdet(𝒗Zk/𝒗yk))++𝒗yk+CPtr(𝒗Zk𝒏Z)12.\|\bm{w}^{k}-\bm{u}^{k}\|\leq{\rm dist}(\bm{v}^{k},\mathcal{F}_{\#})\leq(\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}))_{+}+\bm{v}_{y}^{k}+C_{P}{\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z})^{\frac{1}{2}}. (3.29)

Let τk:=tr(𝒗Zk𝒏Z)\tau^{k}:={\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z}) and 𝗋:=rank(𝒏Z)\mathsf{r}:={\rm rank}(\bm{n}_{Z}).

If 𝒗yklogdet(𝒗Zk/𝒗yk)0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})\geq 0 infinitely often, then by extracting a subsequence if necessary, we may assume that 𝒗yklogdet(𝒗Zk/𝒗yk)0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})\geq 0 for all kk. Then we have from (3.29) and (3.7) that for all large kk,

𝒘k𝒖k\displaystyle\|\bm{w}^{k}-\bm{u}^{k}\| d|log(η)|𝒗ykd𝒗yklog(𝒗yk)+𝒗yk+CP(τk)12\displaystyle\leq d|\log(\eta)|\bm{v}_{y}^{k}-d\bm{v}_{y}^{k}\log(\bm{v}_{y}^{k})+\bm{v}_{y}^{k}+C_{P}(\tau^{k})^{\frac{1}{2}}
(a)(d|log(η)|+1)(𝒗yk)12+d(𝒗yk)12+CP(τk)12\displaystyle\overset{(\text{a})}{\leq}(d|\log(\eta)|+1)(\bm{v}_{y}^{k})^{\frac{1}{2}}+d(\bm{v}_{y}^{k})^{\frac{1}{2}}+C_{P}(\tau^{k})^{\frac{1}{2}}
(b)(d|log(η)|+d+1)𝒏12(𝒏y)12𝒘k𝒗k12+CP𝒏12𝒘k𝒗k12\displaystyle\overset{(\text{b})}{\leq}\frac{(d|\log(\eta)|+d+1)\|\bm{n}\|^{\frac{1}{2}}}{(\bm{n}_{y})^{\frac{1}{2}}}\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}}+C_{P}\|\bm{n}\|^{\frac{1}{2}}\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}}
=[(d|log(η)|+d+1)𝒏12(𝒏y)12+CP𝒏12]𝒘k𝒗k12,\displaystyle=\left[\frac{(d|\log(\eta)|+d+1)\|\bm{n}\|^{\frac{1}{2}}}{(\bm{n}_{y})^{\frac{1}{2}}}+C_{P}\|\bm{n}\|^{\frac{1}{2}}\right]\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}},

where (a) holds by (3.8) with α=1\alpha=1 and the fact that 𝒗yk0\bm{v}_{y}^{k}\to 0 (since 𝒗k𝒗^#{\bm{v}^{k}}\to\widehat{\bm{v}}\in\mathcal{F}_{\#}), (b) is true since 𝒘k𝒗k12(𝒏y𝒗yk)12/(𝒏)12\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}}\geq(\bm{n}_{y}\bm{v}_{y}^{k})^{\frac{1}{2}}/(\|\bm{n}\|)^{\frac{1}{2}} and 𝒘k𝒗k12(τk)12/(𝒏)12\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}}\geq(\tau^{k})^{\frac{1}{2}}/(\|\bm{n}\|)^{\frac{1}{2}} for all kk thanks to (3.28).

This contradicts (3.24) with ||12|\cdot|^{\frac{1}{2}} in place of 𝔤\mathfrak{g} and hence this case cannot happen.

If 𝒗yklogdet(𝒗Zk/𝒗yk)<0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})<0 infinitely often, then by extracting a subsequence if necessary, we may assume that 𝒗yklogdet(𝒗Zk/𝒗yk)<0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})<0 for all kk. Similar to the previous analysis, we have from (3.29), (3.8) and (3.28) that for all large kk,

𝒘k𝒖k𝒗yk+CP(τk)12(𝒗yk)12+CP(τk)12[(𝒏/𝒏y)12+CP𝒏12]𝒘k𝒗k12.\|\bm{w}^{k}-\bm{u}^{k}\|\leq\bm{v}_{y}^{k}+C_{P}(\tau^{k})^{\frac{1}{2}}\leq(\bm{v}_{y}^{k})^{\frac{1}{2}}+C_{P}(\tau^{k})^{\frac{1}{2}}\leq\left[(\|\bm{n}\|/\bm{n}_{y})^{\frac{1}{2}}+C_{P}\|\bm{n}\|^{\frac{1}{2}}\right]\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}}.

The above display contradicts (3.24) with ||12|\cdot|^{\frac{1}{2}} in place of 𝔤\mathfrak{g} and hence this case cannot happen.

(ii) By Lemma 3.5, case (ii) also cannot happen.

Hence, we conclude that γ𝒏,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty]. In view of [23, Theorem 3.10], we deduce that (3.27) holds. ∎

Remark 3.7 (Tightness of (3.27)).

Fix any 0<𝗋<d0<{\sf r}<d (recall that we assumed d2d\geq 2; see the discussions following (3.4)). Let 𝐧=(0,𝐧y,𝐧Z)\bm{n}=(0,\bm{n}_{y},\bm{n}_{Z}) with 𝐧y>0\bm{n}_{y}>0, 𝐧Z0\bm{n}_{Z}\succeq 0 and rank(𝐧Z)=𝗋{\rm rank}(\bm{n}_{Z})={\sf r}. Then, we have #=𝒦logdet{𝐧}\mathcal{F}_{\#}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp} from (3.12). Let RIRd×dR\in{\rm I\!R}^{d\times d} be such that 𝐧Z=R[𝟎𝟎𝟎Σ𝗋]R\bm{n}_{Z}=R\begin{bmatrix}\bm{0}&\bm{0}\\ \bm{0}&\Sigma_{\mathsf{r}}\end{bmatrix}R^{\top} where Σ𝗋𝒮𝗋\Sigma_{\mathsf{r}}\in{\cal S}^{{\sf r}} is diagonal, Σ𝗋0\Sigma_{\mathsf{r}}\succ 0 and RR=IdRR^{\top}=I_{d}. Then

#=IR×{0}×(𝒮+d{𝒏Z})=IR×{0}×{R[A𝟎𝟎𝟎]R:A𝒮+d𝗋}.\mathcal{F}_{\#}={\rm I\!R}_{-}\times\{0\}\times(\mathcal{S}_{+}^{d}\cap\{\bm{n}_{Z}\}^{\perp})={\rm I\!R}_{-}\times\{0\}\times\left\{R\begin{bmatrix}A&\bm{0}\\ \bm{0}&\bm{0}\end{bmatrix}R^{\top}\,:\,A\in\mathcal{S}_{+}^{d-\mathsf{r}}\right\}. (3.30)

Fix a QIR𝗋×(d𝗋)Q\in{\rm I\!R}^{{\sf r}\times(d-{\sf r})} with 0<λmax(QQ)10<\lambda_{\max}(Q^{\top}Q)\leq 1. For every k>0k>0, we define

𝒘k=(1,0,R[Id𝗋QkQk𝟎]R) and 𝒗k=(1,0,R[Id𝗋QkQkI𝗋k2]R).\bm{w}^{k}=\left(-1,0,R\begin{bmatrix}I_{d-\mathsf{r}}&\frac{Q^{\top}}{k}\\ \frac{Q}{k}&\bm{0}\end{bmatrix}R^{\top}\right)\text{ and }\bm{v}^{k}=\left(-1,0,R\begin{bmatrix}I_{d-\mathsf{r}}&\frac{Q^{\top}}{k}\\ \frac{Q}{k}&\frac{I_{\mathsf{r}}}{k^{2}}\end{bmatrix}R^{\top}\right).

Then there exists η>0\eta>0 such that {𝐰k}{𝐧}B(η)\{\bm{w}^{k}\}\subset\{\bm{n}\}^{\perp}\cap B(\eta). We also observe that R[Id𝗋QkQkI𝗋k2]R0R\begin{bmatrix}I_{d-\mathsf{r}}&\frac{Q^{\top}}{k}\\ \frac{Q}{k}&\frac{I_{\mathsf{r}}}{k^{2}}\end{bmatrix}R^{\top}\succeq 0 for all kk based on standard arguments involving the Schur complement. Then {𝐯k}d𝒦logdet\{\bm{v}^{k}\}\subset\mathcal{F}_{{\rm d}}\subset\mathcal{K}_{{\rm logdet}}. With that, we have

dist(𝒘k,𝒦logdet)𝒘k𝒗k=I𝗋k2F=𝗋k2.{\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}})\leq\|\bm{w}^{k}-\bm{v}^{k}\|=\left\|\frac{I_{\mathsf{r}}}{k^{2}}\right\|_{F}=\frac{\sqrt{\mathsf{r}}}{k^{2}}.

Therefore, by applying (3.27) and using (3.30), there exists κB>0\kappa_{B}>0 such that

0<2QFk=dist(𝒘k,#)κBdist(𝒘k,𝒦logdet)12κB𝗋14k.0<\frac{\sqrt{2}\|Q\|_{F}}{k}={\rm dist}(\bm{w}^{k},\mathcal{F}_{\#})\leq\kappa_{B}{\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}})^{\frac{1}{2}}\leq\frac{\kappa_{B}\mathsf{r}^{\frac{1}{4}}}{k}.

Consequently, for all kk, we have

0<2QF𝗋14dist(𝒘k,#)dist(𝒘k,𝒦logdet)12κB.0<\frac{\sqrt{2}\|Q\|_{F}}{\mathsf{r}^{\frac{1}{4}}}\leq\frac{{\rm dist}(\bm{w}^{k},\mathcal{F}_{\#})}{{\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}})^{\frac{1}{2}}}\leq\kappa_{B}.

Similar to the argument in Remark 3.3, we conclude that the choice of ||12|\cdot|^{\frac{1}{2}} is tight.

Next, we consider the case where 𝒏y=0\bm{n}_{y}=0. Define 𝔤log\mathfrak{g}_{\log} as follows

𝔤log(t):={0 if t=0,1log(t) if 0<t1e2,14+14e2t if t>1e2.\mathfrak{g}_{\log}(t):=\left\{\begin{array}[]{ll}0&\text{ if }t=0,\\ -\frac{1}{\log(t)}&\text{ if }0<t\leq\frac{1}{e^{2}},\\ \frac{1}{4}+\frac{1}{4}e^{2}t&\text{ if }t>\frac{1}{e^{2}}.\end{array}\right. (3.31)

We note that 𝔤log\mathfrak{g}_{\log} is increasing with 𝔤log(0)=0\mathfrak{g}_{\log}(0)=0 and |t|𝔤log(t)|t|\leq\mathfrak{g}_{\log}(t) for all tIR+t\in{\rm I\!R}_{+}. Moreover, 𝔤log(t)>𝔤d(t)\mathfrak{g}_{\log}(t)>\mathfrak{g}_{{\rm d}}(t) for any t(0,1e2)t\in(0,\frac{1}{e^{2}}). With 𝔤log\mathfrak{g}_{\log}, the next theorem shows that γ𝒏,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty] for #\mathcal{F}_{\#}, which implies that a log-type error bound holds.

Theorem 3.8 (Log-type error bound concerning #\mathcal{F}_{\#} if 𝒏y=0\bm{n}_{y}=0).

Let 𝐧=(0,0,𝐧Z)𝒦logdet\bm{n}=(0,0,\bm{n}_{Z})\in\partial\mathcal{K}_{{\rm logdet}}^{*} with 𝐧Z0\bm{n}_{Z}\succeq 0 and 0<rank(𝐧Z)<d0<{\rm rank}(\bm{n}_{Z})<d such that #=𝒦logdet{𝐧}\mathcal{F}_{\#}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp}. Let η>0\eta>0 and let γ𝐧,η\gamma_{\bm{n},\eta} be defined as in (3.23) with =#\mathcal{F}=\mathcal{F}_{\#} and 𝔤=𝔤log\mathfrak{g}=\mathfrak{g}_{\log} in (3.31). Then γ𝐧,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty] and

dist(𝒒,#)max{2,2γ𝒏,η1}𝔤log(dist(𝒒,𝒦logdet))𝒒{𝒏}B(η).{\rm dist}(\bm{q},\mathcal{F}_{\#})\leq\max\{2,2\gamma_{\bm{n},\eta}^{-1}\}\cdot\mathfrak{g}_{\log}({\rm dist}(\bm{q},\mathcal{K}_{{\rm logdet}}))\quad\quad\forall\bm{q}\in\{\bm{n}\}^{\perp}\cap B(\eta). (3.32)
Proof.

If γ𝒏,η=0\gamma_{\bm{n},\eta}=0, in view of [23, Lemma 3.12], there exists 𝒗^#\widehat{\bm{v}}\in\mathcal{F}_{\#} and sequences {𝒗k},{𝒘k},{𝒖k}\{\bm{v}^{k}\},\{\bm{w}^{k}\},\{\bm{u}^{k}\} being defined as those therein, with the cone being 𝒦logdet\mathcal{K}_{{\rm logdet}} and the face being #\mathcal{F}_{\#}, such that (3.24) holds with 𝔤=𝔤log\mathfrak{g}=\mathfrak{g}_{\log} as in (3.31). As in the proof of Theorem 3.6, the condition {𝒗k}𝒦logdetB(η)#\{\bm{v}^{k}\}\subset\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{\#} means that we need to consider the following two cases:

  1. (i)

    𝒗k𝒦logdetB(η)d\bm{v}^{k}\in\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{{\rm d}} infinitely often;

  2. (ii)

    𝒗kdB(η)#\bm{v}^{k}\in\mathcal{F}_{{\rm d}}\cap B(\eta)\setminus\mathcal{F}_{\#} for all large kk.

(i) Passing to a subsequence if necessary, we can assume that 𝒗k𝒦logdetB(η)d\bm{v}^{k}\in\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{{\rm d}} for all kk, that is,

𝒗k=(𝒗yklogdet(𝒗Zk/𝒗yk),𝒗yk,𝒗Zk) with 𝒗yk>0,𝒗Zk0,for all k.\bm{v}^{k}=(\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}),\bm{v}_{y}^{k},\bm{v}_{Z}^{k})\text{ with }\bm{v}_{y}^{k}>0,\bm{v}_{Z}^{k}\succ 0,\quad\text{for all }k.

Then 𝒏,𝒗k=tr(𝒗Zk𝒏Z)\langle\bm{n},\bm{v}^{k}\rangle={\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z}), which is nonnegative since 𝒏Z0,𝒗Zk0\bm{n}_{Z}\succeq 0,\bm{v}_{Z}^{k}\succ 0.

Now, one can check that for all kk,

𝒘k𝒗k=𝒏,𝒗k𝒏=tr(𝒗Zk𝒏Z)𝒏.\|\bm{w}^{k}-\bm{v}^{k}\|=\frac{\langle\bm{n},\bm{v}^{k}\rangle}{\|\bm{n}\|}=\frac{{\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z})}{\|\bm{n}\|}. (3.33)

On the other hand, by Lemma 2.4, the formula of #\mathcal{F}_{\#} and Proposition 2.5, we obtain that for all kk,

𝒘k𝒖kdist(𝒗k,#)(𝒗yklogdet(𝒗Zk/𝒗yk))++𝒗yk+CPtr(𝒗Zk𝒏Z)12.\|\bm{w}^{k}-\bm{u}^{k}\|\leq{\rm dist}(\bm{v}^{k},\mathcal{F}_{\#})\leq(\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}))_{+}+\bm{v}_{y}^{k}+C_{P}{\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z})^{\frac{1}{2}}. (3.34)

Let τk:=tr(𝒗Zk𝒏Z)\tau^{k}:={\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z}) and 𝗋:=rank(𝒏Z)\mathsf{r}:={\rm rank}(\bm{n}_{Z}).

If 𝒗yklogdet(𝒗Zk/𝒗yk)0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})\geq 0 infinitely often, then, by passing to a subsequence if necessary, we may assume that det(𝒗Zk/𝒗yk)1\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})\geq 1 for all kk, and hence (𝒗yk)ddet(𝒗Zk)(\bm{v}_{y}^{k})^{d}\leq\det(\bm{v}_{Z}^{k}) for all kk. Thus, upon invoking Lemma 2.1, we obtain that for all kk,

𝒗yk(det(𝒗Zk))1dC(τk)𝗋d.\bm{v}_{y}^{k}\leq(\det(\bm{v}_{Z}^{k}))^{\frac{1}{d}}\leq C(\tau^{k})^{\frac{\mathsf{r}}{d}}. (3.35)

Then, for all sufficiently large kk,

𝒘k𝒖k\displaystyle\|\bm{w}^{k}-\bm{u}^{k}\| (a)d𝒗yk|log(η)|d𝒗yklog(𝒗yk)+𝒗yk+CP(τk)12\displaystyle\overset{(\text{a})}{\leq}d\bm{v}_{y}^{k}|\log(\eta)|-d\bm{v}_{y}^{k}\log(\bm{v}_{y}^{k})+\bm{v}_{y}^{k}+C_{P}(\tau^{k})^{\frac{1}{2}}
(b)(d|log(η)|+1)C(τk)𝗋ddC(τk)𝗋dlog(C(τk)𝗋d)+CP(τk)12\displaystyle\overset{(\text{b})}{\leq}(d|\log(\eta)|+1)C(\tau^{k})^{\frac{\mathsf{r}}{d}}-dC(\tau^{k})^{\frac{\mathsf{r}}{d}}\log(C(\tau^{k})^{\frac{\mathsf{r}}{d}})+C_{P}(\tau^{k})^{\frac{1}{2}}
=(d|log(η)|+1)C(τk)𝗋dCdlog(C)(τk)𝗋dC𝗋(τk)𝗋dlog(τk)+CP(τk)12\displaystyle=(d|\log(\eta)|+1)C(\tau^{k})^{\frac{\mathsf{r}}{d}}-Cd\log(C)(\tau^{k})^{\frac{\mathsf{r}}{d}}-C\mathsf{r}(\tau^{k})^{\frac{\mathsf{r}}{d}}\log(\tau^{k})+C_{P}(\tau^{k})^{\frac{1}{2}}
(c)(Cd|log(η)|+CCdlog(C))(τk)𝗋d+C𝗋(τk)r2d+CP(τk)12\displaystyle\overset{(\text{c})}{\leq}(Cd|\log(\eta)|+C-Cd\log(C))(\tau^{k})^{\frac{\mathsf{r}}{d}}+C\mathsf{r}(\tau^{k})^{\frac{r}{2d}}+C_{P}(\tau^{k})^{\frac{1}{2}}
|Cd|log(η)|+CCdlog(C)|(τk)ρ+C𝗋(τk)ρ+CP(τk)ρ\displaystyle\leq\Big{|}Cd|\log(\eta)|+C-Cd\log(C)\Big{|}(\tau^{k})^{\rho}+C\mathsf{r}(\tau^{k})^{\rho}+C_{P}(\tau^{k})^{\rho}
=C#(τk)ρ,\displaystyle=C_{\#}(\tau^{k})^{\rho},

where ρ=min{𝗋2d,12}\rho=\min\{\frac{\mathsf{r}}{2d},\frac{1}{2}\} and C#:=|Cd|log(η)|+CCdlog(C)|+C𝗋+CP>0C_{\#}:=\Big{|}Cd|\log(\eta)|+C-Cd\log(C)\Big{|}+C\mathsf{r}+C_{P}>0, (a) comes from (3.34) and (3.7), (b) holds because of (3.35) and the fact that xxlog(x)x\mapsto-x\log(x) is increasing for all sufficiently small positive xx, (c) is true by (3.8) (with α=𝗋/d>0\alpha=\mathsf{r}/d>0).

Therefore, we conclude that

limk𝔤log(𝒘k𝒗k)𝒘k𝒖klim infk𝒘k𝒗kρ𝒘k𝒖klimk(τk)ρ𝒏ρC#(τk)ρ=1𝒏ρC#>0.\lim_{k\to\infty}\frac{\mathfrak{g}_{\log}(\|\bm{w}^{k}-\bm{v}^{k}\|)}{\|\bm{w}^{k}-\bm{u}^{k}\|}\geq\liminf_{k\to\infty}\frac{\|\bm{w}^{k}-\bm{v}^{k}\|^{\rho}}{\|\bm{w}^{k}-\bm{u}^{k}\|}\geq\lim_{k\to\infty}\frac{(\tau^{k})^{\rho}}{\|\bm{n}\|^{\rho}C_{\#}(\tau^{k})^{\rho}}=\frac{1}{\|\bm{n}\|^{\rho}C_{\#}}>0.

This contradicts (3.24) with 𝔤log\mathfrak{g}_{\log} in place of 𝔤\mathfrak{g} and hence this case cannot happen.

If 𝒗yklogdet(𝒗Zk/𝒗yk)<0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})<0 infinitely often, then by passing to a subsequence if necessary, we may assume that 𝒗yklogdet(𝒗Zk/𝒗yk)<0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})<0 for all large kk. Moreover, recalling the exponential form of 𝒦logdet\mathcal{K}_{{\rm logdet}} in (3.2), we have (𝒗yk)de𝒗xk/𝒗yk=det(𝒗Zk)(\bm{v}_{y}^{k})^{d}e^{\bm{v}_{x}^{k}/\bm{v}_{y}^{k}}=\det(\bm{v}_{Z}^{k}) for all kk. Invoking Lemma 2.1, we then see that for all kk,

𝒗yke𝒗xk/(d𝒗yk)=(det(𝒗Zk))1dC(τk)𝗋d.\bm{v}_{y}^{k}e^{\bm{v}_{x}^{k}/(d\bm{v}_{y}^{k})}=(\det(\bm{v}_{Z}^{k}))^{\frac{1}{d}}\leq C(\tau^{k})^{\frac{\mathsf{r}}{d}}.

Thus, by taking logarithm on both sides, the above inequality becomes

log(𝒗yk)+𝒗xkd𝒗yklog(C)+𝗋dlog(τk).\log(\bm{v}_{y}^{k})+\frac{\bm{v}_{x}^{k}}{d\bm{v}_{y}^{k}}\leq\log(C)+\frac{\mathsf{r}}{d}\log(\tau^{k}).

Since 𝒗yk0\bm{v}_{y}^{k}\to 0, τk0\tau^{k}\to 0, and both sequences are positive, we note that 𝒗yklog(τk)>0-\bm{v}_{y}^{k}\log(\tau^{k})>0 for all large kk. After multiplying 𝒗yk-\bm{v}_{y}^{k} on both sides of the above display and rearranging terms, we see that for all large kk,

0<𝒗yklog(τk)dlog(C)𝒗yk𝗋d𝒗yklog(𝒗yk)𝗋𝒗xk𝗋.0<-\bm{v}_{y}^{k}\log(\tau^{k})\leq\frac{d\log(C)\bm{v}_{y}^{k}}{\mathsf{r}}-\frac{d\bm{v}_{y}^{k}\log(\bm{v}_{y}^{k})}{\mathsf{r}}-\frac{\bm{v}_{x}^{k}}{\mathsf{r}}.

Then, by passing to the limit on both sides of the above display, we obtain that

0\displaystyle 0 lim supk𝒗yklog(τk)lim supkdlog(C)𝒗yk𝗋d𝒗yklog(𝒗yk)𝗋𝒗xk𝗋\displaystyle\leq\limsup_{k\to\infty}-\bm{v}_{y}^{k}\log(\tau^{k})\leq\limsup_{k\to\infty}\frac{d\log(C)\bm{v}_{y}^{k}}{\mathsf{r}}-\frac{d\bm{v}_{y}^{k}\log(\bm{v}_{y}^{k})}{\mathsf{r}}-\frac{\bm{v}_{x}^{k}}{\mathsf{r}}
=limk𝒗xk𝗋=𝒗^x𝗋.\displaystyle=-\lim_{k\to\infty}\frac{\bm{v}_{x}^{k}}{\mathsf{r}}=-\frac{\widehat{\bm{v}}_{x}}{\mathsf{r}}. (3.36)

Therefore, we conclude that

limk𝔤log(𝒘k𝒗k)𝒘k𝒖k(a)lim infk1log(τk)log(𝒏)1𝒗yk+CP(τk)12\displaystyle\quad\lim_{k\to\infty}\frac{\mathfrak{g}_{\log}(\|\bm{w}^{k}-\bm{v}^{k}\|)}{\|\bm{w}^{k}-\bm{u}^{k}\|}\overset{(\text{a})}{\geq}\liminf_{k\to\infty}-\frac{1}{\log(\tau^{k})-\log(\|\bm{n}\|)}\frac{1}{\bm{v}_{y}^{k}+C_{P}(\tau^{k})^{\frac{1}{2}}}
=lim infk1log(𝒏)(𝒗yk+CP(τk)12)𝒗yklog(τk)CP(τk)12log(τk)\displaystyle=\liminf_{k\to\infty}\frac{1}{\log(\|\bm{n}\|)(\bm{v}_{y}^{k}+C_{P}(\tau^{k})^{\frac{1}{2}})-\bm{v}_{y}^{k}\log(\tau^{k})-C_{P}(\tau^{k})^{\frac{1}{2}}\log(\tau^{k})}
(b)limk𝗋𝒗xk(0,],\displaystyle\overset{(\text{b})}{\geq}\lim_{k\to\infty}\frac{-\mathsf{r}}{\bm{v}_{x}^{k}}\in(0,\infty],

where (a) is true owing to (3.33) and (3.34), (b) comes from (3.36) and the fact 𝒗yk0,τk0\bm{v}_{y}^{k}\to 0,{\tau^{k}}\to 0, the last inequality holds because 𝒗^x0\widehat{\bm{v}}_{x}\leq 0 thanks to 𝒗yklogdet(𝒗Zk/𝒗yk)<0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})<0 for all large kk. The above display contradicts (3.24) with 𝔤log\mathfrak{g}_{\log} in place of 𝔤\mathfrak{g} and so this case cannot happen.

(ii) In this case, we have from Lemma 3.5 that lim infk𝒘k𝒗k1/2𝒘k𝒖k(0,]\liminf_{k\to\infty}\frac{\|\bm{w}^{k}-\bm{v}^{k}\|^{1/2}}{\|\bm{w}^{k}-\bm{u}^{k}\|}\in(0,\infty], which implies that

limk𝔤log(𝒘k𝒗k)𝒘k𝒖klim infk𝒘k𝒗k1/2𝒘k𝒖k(0,],\lim_{k\to\infty}\frac{\mathfrak{g}_{\log}(\|\bm{w}^{k}-\bm{v}^{k}\|)}{\|\bm{w}^{k}-\bm{u}^{k}\|}\geq\liminf_{k\to\infty}\frac{\|\bm{w}^{k}-\bm{v}^{k}\|^{1/2}}{\|\bm{w}^{k}-\bm{u}^{k}\|}\in(0,\infty],

where we recall that |t|1/2𝔤log(t)|t|^{1/2}\leq\mathfrak{g}_{\log}(t) for tt sufficiently small. In view of the definition of γ𝒏,η\gamma_{\bm{n},\eta}, case (ii) also cannot happen.

Hence, we conclude that γ𝒏,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty]. Using this together with [23, Theorem 3.10], we deduce that (3.32) holds. ∎

Remark 3.9 (Tightness of (3.32)).

Let 𝐧=(0,0,𝐧Z)\bm{n}=(0,0,\bm{n}_{Z}) with 𝐧Z0\bm{n}_{Z}\succeq 0, 0<rank(𝐧Z)<d0<{\rm rank}(\bm{n}_{Z})<d. Then, we have #={𝐧}𝒦logdet\mathcal{F}_{\#}=\{\bm{n}\}^{\perp}\cap\mathcal{K}_{{\rm logdet}} from (3.12). Consider the sequence 𝐰k=(1,1/k,𝟎)\bm{w}^{k}=(-1,1/k,\bm{0}), 𝐯k=(1,1/k,Id/(kekd))\bm{v}^{k}=(-1,1/k,I_{d}/(ke^{\frac{k}{d}})) and 𝐮k=(1,0,𝟎)\bm{u}^{k}=(-1,0,\bm{0}) for every kk, we note that 𝐰k{𝐧},𝐯k𝒦logdet\bm{w}^{k}\in\{\bm{n}\}^{\perp},\bm{v}^{k}\in\mathcal{K}_{{\rm logdet}} and 𝐮k=P#(𝐰k)\bm{u}^{k}=P_{\mathcal{F}_{\#}}(\bm{w}^{k}) for every kk. Moreover, there exists η>0\eta>0 such that {𝐰k}B(η)\{\bm{w}^{k}\}\subseteq B(\eta). Therefore, applying (3.32), there exists κB>0\kappa_{B}>0 such that

1k=dist(𝒘k,#)κB𝔤log(dist(𝒘k,𝒦logdet))κB𝔤log(dkekd)k.\frac{1}{k}={\rm dist}(\bm{w}^{k},\mathcal{F}_{\#})\leq\kappa_{B}\mathfrak{g}_{\log}({\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}}))\leq\kappa_{B}\mathfrak{g}_{\log}\left(\frac{\sqrt{d}}{ke^{\frac{k}{d}}}\right)\quad\forall k\in\mathbb{N}.

In view of the definition of 𝔤log\mathfrak{g}_{\log} (see (3.31)) and its monotonicity, for large enough kk we have

1k=dist(𝒘k,#)κB𝔤log(dist(𝒘k,𝒦logdet))κBlogk+(k/d)logdκB2dk.\frac{1}{k}={\rm dist}(\bm{w}^{k},\mathcal{F}_{\#})\leq\kappa_{B}\mathfrak{g}_{\log}({\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}}))\leq\frac{\kappa_{B}}{\log k+(k/d)-\log\sqrt{d}}\leq\kappa_{B}\frac{2d}{k}.

Consequently, it holds that for all sufficiently large kk,

12ddist(𝒘k,#)𝔤log(dist(𝒘k,𝒦logdet))κB.\frac{1}{2d}\leq\frac{{\rm dist}(\bm{w}^{k},\mathcal{F}_{\#})}{\mathfrak{g}_{\log}({\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}}))}\leq\kappa_{B}.

Similar to the argument in Remark 3.3, we conclude that the choice of 𝔤log\mathfrak{g}_{\log} is tight.

Using Theorems 3.6 and 3.8 in combination with [23, Lemma 3.9], we obtain the following one-step facial residual functions for 𝒦logdet\mathcal{K}_{{\rm logdet}} and 𝒏\bm{n}.

Corollary 3.10.

Let 𝐧=(0,𝐧y,𝐧Z)𝒦logdet\bm{n}=(0,\bm{n}_{y},\bm{n}_{Z})\in\partial\mathcal{K}_{{\rm logdet}}^{*} with 𝐧y0\bm{n}_{y}\geq 0, 𝐧Z0\bm{n}_{Z}\succeq 0 and 0<rank(𝐧Z)<d0<{\rm rank}(\bm{n}_{Z})<d such that #=𝒦logdet{𝐧}\mathcal{F}_{\#}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp}.

  1. (i)

    If 𝒏y>0\bm{n}_{y}>0, let γ𝒏,t\gamma_{\bm{n},t} be as in (3.23) with =#{\cal F}=\mathcal{F}_{\#} and 𝔤=||12\mathfrak{g}=|\cdot|^{\frac{1}{2}}. Then the function ψ𝒦,𝒏:IR+×IR+IR+\psi_{\mathcal{K},\bm{n}}:{\rm I\!R}_{+}\times{\rm I\!R}_{+}\to{\rm I\!R}_{+} defined by

    ψ𝒦,𝒏(ϵ,t):=max{ϵ,ϵ/𝒏}+max{2t12,2γ𝒏,t1}(ϵ+max{ϵ,ϵ/𝒏})12\psi_{\mathcal{K},\bm{n}}(\epsilon,t):=\max\left\{\epsilon,\epsilon/\|\bm{n}\|\right\}+\max\left\{2t^{\frac{1}{2}},2\gamma_{\bm{n},t}^{-1}\right\}\left(\epsilon+\max\left\{\epsilon,\epsilon/\|\bm{n}\|\right\}\right)^{\frac{1}{2}}

    is a one-step facial residual function for 𝒦logdet\mathcal{K}_{{\rm logdet}} and 𝒏\bm{n}.

  2. (ii)

    If 𝒏y=0\bm{n}_{y}=0, let γ𝒏,t\gamma_{\bm{n},t} be as in (3.23) with =#{\cal F}=\mathcal{F}_{\#} and 𝔤=𝔤log\mathfrak{g}=\mathfrak{g}_{\log} in (3.31). Then the function ψ𝒦,𝒏:IR+×IR+IR+\psi_{\mathcal{K},\bm{n}}:{\rm I\!R}_{+}\times{\rm I\!R}_{+}\to{\rm I\!R}_{+} defined by

    ψ𝒦,𝒏(ϵ,t):=max{ϵ,ϵ/𝒏}+max{2,2γ𝒏,t1}𝔤log(ϵ+max{ϵ,ϵ/𝒏})\psi_{\mathcal{K},\bm{n}}(\epsilon,t):=\max\left\{\epsilon,\epsilon/\|\bm{n}\|\right\}+\max\left\{2,2\gamma_{\bm{n},t}^{-1}\right\}\mathfrak{g}_{\log}\left(\epsilon+\max\left\{\epsilon,\epsilon/\|\bm{n}\|\right\}\right)

    is a one-step facial residual function for 𝒦logdet\mathcal{K}_{{\rm logdet}} and 𝒏\bm{n}.

3.2.3 \mathcal{F}_{\infty}: the exceptional 1-dimensional face

We first show a Lipschitz error bound concerning \mathcal{F}_{\infty} if 𝒏y>0\bm{n}_{y}>0.

Theorem 3.11 (Lipschitz error bound concerning \mathcal{F}_{\infty} if 𝒏y>0\bm{n}_{y}>0).

Let 𝐧=(0,𝐧y,𝐧Z)𝒦logdet\bm{n}=(0,\bm{n}_{y},\bm{n}_{Z})\in\partial\mathcal{K}_{{\rm logdet}}^{*} with 𝐧y>0\bm{n}_{y}>0 and 𝐧Z0\bm{n}_{Z}\succ 0 such that =𝒦logdet{𝐧}\mathcal{F}_{\infty}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp}. Let η>0\eta>0 and let γ𝐧,η\gamma_{\bm{n},\eta} be defined as in (3.23) with ={\cal F}=\mathcal{F}_{\infty} and 𝔤=||\mathfrak{g}=|\cdot|. Then γ𝐧,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty] and

dist(𝒒,)max{2,2γ𝒏,η1}dist(𝒒,𝒦logdet)𝒒{𝒏}B(η).{\rm dist}(\bm{q},\mathcal{F}_{\infty})\leq\max\{2,2\gamma_{\bm{n},\eta}^{-1}\}\cdot{\rm dist}(\bm{q},\mathcal{K}_{{\rm logdet}})\quad\quad\forall\bm{q}\in\{\bm{n}\}^{\perp}\cap B(\eta). (3.37)
Proof.

If γ𝒏,η=0\gamma_{\bm{n},\eta}=0, in view of [23, Lemma 3.12], there exists 𝒗^\widehat{\bm{v}}\in\mathcal{F}_{\infty} and sequences {𝒗k},{𝒘k},{𝒖k}\{\bm{v}^{k}\},\{\bm{w}^{k}\},\{\bm{u}^{k}\} being defined as those therein, with the cone being 𝒦logdet\mathcal{K}_{{\rm logdet}} and the face being \mathcal{F}_{\infty}, such that (3.24) holds with 𝔤=||\mathfrak{g}=|\cdot|. Note that {𝒗k}𝒦logdetB(η)\{\bm{v}^{k}\}\subset\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{\infty} means that we need to consider the following two cases:

  1. (i)

    𝒗k𝒦logdetB(η)d\bm{v}^{k}\in\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{{\rm d}} infinitely often;

  2. (ii)

    𝒗kdB(η)\bm{v}^{k}\in\mathcal{F}_{{\rm d}}\cap B(\eta)\setminus\mathcal{F}_{\infty} for all large kk.

(i) Without loss of generality, we assume that 𝒗k𝒦logdetB(η)d\bm{v}^{k}\in\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{{\rm d}} for all kk by passing to a subsequence if necessary, that is,

𝒗k=(𝒗yklogdet(𝒗Zk/𝒗yk),𝒗yk,𝒗Zk) with 𝒗yk>0,𝒗Zk0for all k.\bm{v}^{k}=(\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}),\bm{v}_{y}^{k},\bm{v}_{Z}^{k})\text{ with }\bm{v}_{y}^{k}>0,\bm{v}_{Z}^{k}\succ 0\quad\text{for all }k.

Then, 𝒏,𝒗k=𝒏y𝒗yk+tr(𝒗Zk𝒏Z)>0\langle\bm{n},\bm{v}^{k}\rangle=\bm{n}_{y}\bm{v}_{y}^{k}+{\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z})>0 and

𝒘k𝒗k=𝒏y𝒗yk+tr(𝒗Zk𝒏Z)𝒏.\|\bm{w}^{k}-\bm{v}^{k}\|=\frac{\bm{n}_{y}\bm{v}_{y}^{k}+{\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z})}{\|\bm{n}\|}.

On the other hand, by Lemma 2.4, we obtain that for all kk,

𝒘k𝒖kdist(𝒗k,)(𝒗yklogdet(𝒗Zk/𝒗yk))++𝒗yk+𝒗ZkF.\|\bm{w}^{k}-\bm{u}^{k}\|\leq{\rm dist}(\bm{v}^{k},\mathcal{F}_{\infty})\leq(\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}))_{+}+\bm{v}_{y}^{k}+\|\bm{v}_{Z}^{k}\|_{F}. (3.38)

If 𝒗yklogdet(𝒗Zk/𝒗yk)0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})\geq 0 infinitely often, by passing to a subsequence if necessary, we may assume that 𝒗yklogdet(𝒗Zk/𝒗yk)0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})\geq 0 for all large kk and hence, recalling that 𝒗ZkFtr(𝒗Zk)\|\bm{v}_{Z}^{k}\|_{F}\leq{\rm\,tr}(\bm{v}_{Z}^{k}) (since 𝒗Zk0\bm{v}_{Z}^{k}\succ 0), we obtain

𝒘k𝒖k\displaystyle\|\bm{w}^{k}-\bm{u}^{k}\| 𝒗yklogdet(𝒗Zk/𝒗yk)+𝒗yk+tr(𝒗Zk)=𝒗yk+tr(𝒗Zk)+𝒗yklog(i=1dλi(𝒗Zk)/𝒗yk)\displaystyle\leq\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})+\bm{v}_{y}^{k}+{\rm\,tr}(\bm{v}_{Z}^{k})=\bm{v}_{y}^{k}+{\rm\,tr}(\bm{v}_{Z}^{k})+\bm{v}_{y}^{k}\log(\prod_{i=1}^{d}\lambda_{i}(\bm{v}_{Z}^{k})/\bm{v}_{y}^{k})
=𝒗yk+tr(𝒗Zk)+i=1d𝒗yklog(λi(𝒗Zk)/𝒗yk)\displaystyle=\bm{v}_{y}^{k}+{\rm\,tr}(\bm{v}_{Z}^{k})+\sum_{i=1}^{d}\bm{v}_{y}^{k}\log(\lambda_{i}(\bm{v}_{Z}^{k})/\bm{v}_{y}^{k})
(a)𝒗yk+tr(𝒗Zk)+i=1d𝒗yk(λi(𝒗Zk)/𝒗yk+1)\displaystyle\overset{(\text{a})}{\leq}\bm{v}_{y}^{k}+{\rm\,tr}(\bm{v}_{Z}^{k})+\sum_{i=1}^{d}\bm{v}_{y}^{k}(\lambda_{i}(\bm{v}_{Z}^{k})/\bm{v}_{y}^{k}+1)
=𝒗yk+tr(𝒗Zk)+tr(𝒗Zk)+d𝒗yk=(1+d)𝒗yk+2tr(𝒗Zk),\displaystyle=\bm{v}_{y}^{k}+{\rm\,tr}(\bm{v}_{Z}^{k})+{\rm\,tr}(\bm{v}_{Z}^{k})+d\bm{v}_{y}^{k}=(1+d)\bm{v}_{y}^{k}+2{\rm\,tr}(\bm{v}_{Z}^{k}),

where (a) holds because log(x)x+1\log(x)\leq x+1 for all x>0x>0.

Combining these identities and using (2.1) yields:

limk𝒘k𝒗k𝒘k𝒖klim infk𝒏y𝒏(1+d)(1+d)𝒗yk+λmin(𝒏Z)2𝒏2tr(𝒗Zk)(1+d)𝒗yk+2tr(𝒗Zk)min{𝒏y𝒏(1+d),λmin(𝒏Z)2𝒏}>0.\begin{split}&\lim_{k\to\infty}\frac{\|\bm{w}^{k}-\bm{v}^{k}\|}{\|\bm{w}^{k}-\bm{u}^{k}\|}\geq\liminf_{k\to\infty}\frac{\frac{\bm{n}_{y}}{\|\bm{n}\|(1+d)}(1+d)\bm{v}_{y}^{k}+\frac{\lambda_{\min}(\bm{n}_{Z})}{2\|\bm{n}\|}2{\rm\,tr}(\bm{v}_{Z}^{k})}{(1+d)\bm{v}_{y}^{k}+2{\rm\,tr}(\bm{v}_{Z}^{k})}\\ \geq&\min\left\{\frac{\bm{n}_{y}}{\|\bm{n}\|(1+d)},\frac{\lambda_{\min}(\bm{n}_{Z})}{2\|\bm{n}\|}\right\}>0.\end{split}

This contradicts (3.24) with |||\cdot| in place of 𝔤\mathfrak{g} and hence this case cannot happen.

If 𝒗yklogdet(𝒗Zk/𝒗yk)<0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})<0 infinitely often, then by extracting a subsequence if necessary, we may assume that 𝒗yklogdet(𝒗Zk/𝒗yk)<0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})<0 for all large kk and hence (3.38) becomes

𝒘k𝒖k𝒗yk+tr(𝒗Zk).\|\bm{w}^{k}-\bm{u}^{k}\|\leq\bm{v}_{y}^{k}+{\rm\,tr}(\bm{v}_{Z}^{k}).

Therefore,

limk𝒘k𝒗k𝒘k𝒖klim infk𝒏y𝒏𝒗yk+λmin(𝒏Z)𝒏tr(𝒗Zk)𝒗yk+tr(𝒗Zk)min{𝒏y𝒏,λmin(𝒏Z)𝒏}>0.\lim_{k\to\infty}\frac{\|\bm{w}^{k}-\bm{v}^{k}\|}{\|\bm{w}^{k}-\bm{u}^{k}\|}\geq\liminf_{k\to\infty}\frac{\frac{\bm{n}_{y}}{\|\bm{n}\|}\bm{v}_{y}^{k}+\frac{\lambda_{\min}(\bm{n}_{Z})}{\|\bm{n}\|}{\rm\,tr}(\bm{v}_{Z}^{k})}{\bm{v}_{y}^{k}+{\rm\,tr}(\bm{v}_{Z}^{k})}\geq\min\left\{\frac{\bm{n}_{y}}{\|\bm{n}\|},\frac{\lambda_{\min}(\bm{n}_{Z})}{\|\bm{n}\|}\right\}>0.

The above inequality contradicts (3.24) with |||\cdot| in place of 𝔤\mathfrak{g} and hence this case cannot happen.

(ii) By Lemma 3.5, case (ii) also cannot happen.

Overall, we conclude that γ𝒏,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty], and so by  [23, Theorem 3.10], (3.37) holds. ∎

Note that a Lipschitz error bound is always tight up to a constant, so (3.37) is tight.

If 𝒏y=0\bm{n}_{y}=0, we have the following Log-type error bound for 𝒦logdet\mathcal{K}_{{\rm logdet}}.

Theorem 3.12 (Log-type error bound concerning \mathcal{F}_{\infty} if 𝒏y=0\bm{n}_{y}=0).

Let 𝐧=(0,0,𝐧Z)𝒦logdet\bm{n}=(0,0,\bm{n}_{Z})\in\partial\mathcal{K}_{{\rm logdet}}^{*} with 𝐧Z0\bm{n}_{Z}\succ 0 such that =𝒦logdet{𝐧}\mathcal{F}_{\infty}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp}. Let η>0\eta>0 and let γ𝐧,η\gamma_{\bm{n},\eta} be defined as in (3.23) with ={\cal F}=\mathcal{F}_{\infty} and 𝔤=𝔤log\mathfrak{g}=\mathfrak{g}_{\log} in (3.31). Then γ𝐧,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty] and

dist(𝒒,)max{2,2γ𝒏,η1}𝔤log(dist(𝒒,𝒦logdet))𝒒{𝒏}B(η).{\rm dist}(\bm{q},\mathcal{F}_{\infty})\leq\max\{2,2\gamma_{\bm{n},\eta}^{-1}\}\cdot\mathfrak{g}_{\log}({\rm dist}(\bm{q},\mathcal{K}_{{\rm logdet}}))\quad\quad\forall\bm{q}\in\{\bm{n}\}^{\perp}\cap B(\eta). (3.39)
Proof.

If γ𝒏,η=0\gamma_{\bm{n},\eta}=0, in view of [23, Lemma 3.12], there exists 𝒗^\widehat{\bm{v}}\in\mathcal{F}_{\infty} and sequences {𝒗k},{𝒘k},{𝒖k}\{\bm{v}^{k}\},\{\bm{w}^{k}\},\{\bm{u}^{k}\} being defined as those therein, with the cone being 𝒦logdet\mathcal{K}_{{\rm logdet}} and the face being \mathcal{F}_{\infty}, such that (3.24) holds with 𝔤=𝔤log\mathfrak{g}=\mathfrak{g}_{\log} as in (3.31). Note that {𝒗k}𝒦logdetB(η)\{\bm{v}^{k}\}\subset\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{\infty} means that we need to consider the following two cases:

  1. (i)

    𝒗k𝒦logdetB(η)d\bm{v}^{k}\in\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{{\rm d}} infinitely often;

  2. (ii)

    𝒗kdB(η)\bm{v}^{k}\in\mathcal{F}_{{\rm d}}\cap B(\eta)\setminus\mathcal{F}_{\infty} for all large kk.

(i) Without loss of generality, we assume that 𝒗k𝒦logdetB(η)d\bm{v}^{k}\in\partial\mathcal{K}_{{\rm logdet}}\cap B(\eta)\setminus\mathcal{F}_{{\rm d}} for all kk by passing to a subsequence if necessary, that is,

𝒗k=(𝒗yklogdet(𝒗Zk/𝒗yk),𝒗yk,𝒗Zk) with 𝒗yk>0,𝒗Zk0for all k.\bm{v}^{k}=(\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}),\bm{v}_{y}^{k},\bm{v}_{Z}^{k})\text{ with }\bm{v}_{y}^{k}>0,\bm{v}_{Z}^{k}\succ 0\quad\text{for all }k.

Then 𝒏,𝒗k=tr(𝒗Zk𝒏Z)0\langle\bm{n},\bm{v}^{k}\rangle={\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z})\geq 0 and

𝒘k𝒗k=𝒏,𝒗k𝒏=tr(𝒗Zk𝒏Z)𝒏.\|\bm{w}^{k}-\bm{v}^{k}\|=\frac{\langle\bm{n},\bm{v}^{k}\rangle}{\|\bm{n}\|}=\frac{{\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z})}{\|\bm{n}\|}. (3.40)

In addition, by Lemma 2.4, we obtain that for all kk,

𝒘k𝒖kdist(𝒗k,)(𝒗yklogdet(𝒗Zk/𝒗yk))++𝒗yk+𝒗ZkF.\|\bm{w}^{k}-\bm{u}^{k}\|\leq{\rm dist}(\bm{v}^{k},\mathcal{F}_{\infty})\leq(\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}))_{+}+\bm{v}_{y}^{k}+\|\bm{v}_{Z}^{k}\|_{F}. (3.41)

Let τk:=tr(𝒗Zk𝒏Z)\tau^{k}:={\rm\,tr}(\bm{v}_{Z}^{k}\bm{n}_{Z}).

If 𝒗yklogdet(𝒗Zk/𝒗yk)0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})\geq 0 infinitely often, then by passing to a subsequence if necessary, we may assume that det(𝒗Zk/𝒗yk)1\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})\geq 1 for all kk. Hence we have (𝒗yk)ddet(𝒗Zk)(\bm{v}_{y}^{k})^{d}\leq\det(\bm{v}_{Z}^{k}). Thus, combining Lemma 2.1 with rank(𝒏Z)=d{\rm rank}(\bm{n}_{Z})=d, we obtain that for all kk,

𝒗yk(det(𝒗Zk))1dCτk.\bm{v}_{y}^{k}\leq(\det(\bm{v}_{Z}^{k}))^{\frac{1}{d}}\leq C\tau^{k}. (3.42)

Then, for sufficiently large kk,

𝒘k𝒖k(a)d|log(η)|𝒗ykd𝒗yklog(𝒗yk)+𝒗yk+tr(𝒗Zk)\displaystyle\|\bm{w}^{k}-\bm{u}^{k}\|\overset{(\text{a})}{\leq}d|\log(\eta)|\bm{v}_{y}^{k}-d\bm{v}_{y}^{k}\log(\bm{v}_{y}^{k})+\bm{v}_{y}^{k}+{\rm\,tr}(\bm{v}_{Z}^{k}) (3.43)
=(d|log(η)|+1)𝒗ykd𝒗yklog(𝒗yk)+1λmin(𝒏Z)λmin(𝒏Z)tr(𝒗Zk)\displaystyle=(d|\log(\eta)|+1)\bm{v}_{y}^{k}-d\bm{v}_{y}^{k}\log(\bm{v}_{y}^{k})+\frac{1}{\lambda_{\min}(\bm{n}_{Z})}\lambda_{\min}(\bm{n}_{Z}){\rm\,tr}(\bm{v}_{Z}^{k})
(b)(Cd|log(η)|+C)τkCdτklog(Cτk)+1λmin(𝒏Z)τk\displaystyle\overset{(\text{b})}{\leq}(Cd|\log(\eta)|+C)\tau^{k}-Cd\tau^{k}\log(C\tau^{k})+\frac{1}{\lambda_{\min}(\bm{n}_{Z})}\tau^{k}
=(Cd|log(η)|+CCdlog(C))τkCdτklog(τk)+1λmin(𝒏Z)τk\displaystyle=(Cd|\log(\eta)|+C-Cd\log(C))\tau^{k}-Cd\tau^{k}\log(\tau^{k})+\frac{1}{\lambda_{\min}(\bm{n}_{Z})}\tau^{k}
(c)(|Cd|log(η)|+CCdlog(C)|+Cd+1λmin(𝒏Z))(τklog(τk))\displaystyle\overset{(\text{c})}{\leq}\left(\Big{|}Cd|\log(\eta)|+C-Cd\log(C)\Big{|}+Cd+\frac{1}{\lambda_{\min}(\bm{n}_{Z})}\right)(-\tau^{k}\log(\tau^{k}))
=C(τklog(τk)),\displaystyle=C_{\infty}(-\tau^{k}\log(\tau^{k})),

where C:=|Cd|log(η)|+CCdlog(C)|+Cd+1λmin(𝒏Z)>0C_{\infty}:=\Big{|}Cd|\log(\eta)|+C-Cd\log(C)\Big{|}+Cd+\frac{1}{\lambda_{\min}(\bm{n}_{Z})}>0, (a) comes from (3.41) and (3.7), (b) holds because of (2.1),  (3.42) and the fact that xxlog(x)x\mapsto-x\log(x) is increasing for all sufficiently small positive xx, (c) is true because xxlog(x)x\leq-x\log(x) for sufficiently small xx and τk0\tau^{k}\rightarrow 0 because 𝒗Zk0\bm{v}_{Z}^{k}\rightarrow 0.

Hence,

limk𝔤log(𝒘k𝒗k)𝒘k𝒖klim infk1log(τk𝒏)1C(τklog(τk))limkτklog(τk)C(τklog(τk))=1C>0,\begin{split}&\lim_{k\to\infty}\frac{\mathfrak{g}_{\log}(\|\bm{w}^{k}-\bm{v}^{k}\|)}{\|\bm{w}^{k}-\bm{u}^{k}\|}\geq\liminf_{k\to\infty}-\frac{1}{\log\left(\frac{\tau^{k}}{\|\bm{n}\|}\right)}\frac{1}{C_{\infty}(-\tau^{k}\log(\tau^{k}))}\\ \geq&\lim_{k\to\infty}\frac{-\tau^{k}\log(\tau^{k})}{C_{\infty}(-\tau^{k}\log(\tau^{k}))}=\frac{1}{C_{\infty}}>0,\end{split}

where the first inequality comes from (3.40) and (3.43), the second inequality comes from (3.8) (with α=1\alpha=1 and s=1𝒏s=\frac{1}{\|\bm{n}\|}). This contradicts (3.24) with 𝔤log\mathfrak{g}_{\log} in place of 𝔤\mathfrak{g} and hence this case cannot happen.

If 𝒗yklogdet(𝒗Zk/𝒗yk)<0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})<0 infinitely often, then by passing to a subsequence if necessary, we may assume that that 𝒗yklogdet(𝒗Zk/𝒗yk)<0\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})<0 for all kk. Moreover, recalling the exponential form of 𝒦logdet\mathcal{K}_{{\rm logdet}} in (3.2), we have (𝒗yk)de𝒗xk/𝒗yk=det(𝒗Zk)(\bm{v}_{y}^{k})^{d}e^{\bm{v}_{x}^{k}/\bm{v}_{y}^{k}}=\det(\bm{v}_{Z}^{k}) for all kk. Upon invoking Lemma 2.1 with rank(𝒏Z)=d{\rm rank}(\bm{n}_{Z})=d, we then see that for all kk, we have

𝒗yke𝒗xk/(d𝒗yk)=(det(𝒗Zk))1dCτk.\bm{v}_{y}^{k}e^{\bm{v}_{x}^{k}/(d\bm{v}_{y}^{k})}=(\det(\bm{v}_{Z}^{k}))^{\frac{1}{d}}\leq C\tau^{k}.

Thus, by taking the logarithm on both sides, the above inequality becomes

log(𝒗yk)+𝒗xkd𝒗yklog(C)+log(τk).\log(\bm{v}_{y}^{k})+\frac{\bm{v}_{x}^{k}}{d\bm{v}_{y}^{k}}\leq\log(C)+\log(\tau^{k}).

Since 𝒗yk0,τk0\bm{v}_{y}^{k}\to 0,\,\tau^{k}\to 0 and {𝒗yk}\{\bm{v}_{y}^{k}\}, {τk}\{\tau^{k}\} are positive sequences, we note that 𝒗yklog(τk)>0-\bm{v}_{y}^{k}\log(\tau^{k})>0 for all large kk. After multiplying 𝒗yk-\bm{v}_{y}^{k} on both sides of the above display and rearranging terms, we see that for all large kk,

0<𝒗yklog(τk)𝒗yklog(𝒗yk)𝒗xkd+log(C)𝒗yk.0<-\bm{v}_{y}^{k}\log(\tau^{k})\leq-\bm{v}_{y}^{k}\log(\bm{v}_{y}^{k})-\frac{\bm{v}_{x}^{k}}{d}+\log(C)\bm{v}_{y}^{k}.

Then, by passing to the limit on both sides of the above display, we obtain that

0lim supk𝒗yklog(τk)lim supk𝒗yklog(𝒗yk)𝒗xkd+log(C)𝒗yk=limk𝒗xkd=𝒗^xd.\begin{split}0&\leq\limsup_{k\to\infty}-\bm{v}_{y}^{k}\log(\tau^{k})\leq\limsup_{k\to\infty}-\bm{v}_{y}^{k}\log(\bm{v}_{y}^{k})-\frac{\bm{v}_{x}^{k}}{d}+\log(C)\bm{v}_{y}^{k}\\ &=-\lim_{k\to\infty}\frac{\bm{v}_{x}^{k}}{d}=-\frac{\widehat{\bm{v}}_{x}}{d}.\end{split} (3.44)

Note also that since 𝒏Z\bm{n}_{Z} has full rank, we have upon invoking the equivalence in (2.1) that {𝒏Z}𝒮+d={𝟎}\{\bm{n}_{Z}\}^{\perp}\cap\mathcal{S}_{+}^{d}=\{\bm{0}\}. Then Proposition 2.5 guarantees that CPτk𝒗ZkFC_{P}\tau^{k}\geq\|\bm{v}_{Z}^{k}\|_{F}.

Therefore, altogether we conclude that

limk𝔤log(𝒘k𝒗k)𝒘k𝒖k(a)lim infk1log(τk)log(𝒏)1𝒗yk+CPτk\displaystyle\quad\lim_{k\to\infty}\frac{\mathfrak{g}_{\log}(\|\bm{w}^{k}-\bm{v}^{k}\|)}{\|\bm{w}^{k}-\bm{u}^{k}\|}\overset{(\text{a})}{\geq}\liminf_{k\to\infty}-\frac{1}{\log(\tau^{k})-\log(\|\bm{n}\|)}\frac{1}{\bm{v}_{y}^{k}+C_{P}\tau^{k}}
lim infk1log(𝒏)(𝒗yk+CPτk)𝒗yklog(τk)CPτklog(τk)(b)limkd𝒗xk(0,],\displaystyle\geq\liminf_{k\to\infty}\frac{1}{\log(\|\bm{n}\|)(\bm{v}_{y}^{k}+C_{P}\tau^{k})-\bm{v}_{y}^{k}\log(\tau^{k})-C_{P}\tau^{k}\log(\tau^{k})}\overset{(\text{b})}{\geq}\lim_{k\to\infty}\frac{-d}{\bm{v}_{x}^{k}}\in(0,\infty],

where (a) is true owing to (3.40), (3.41), (b) comes from (3.44), τklog(τk)0\tau^{k}\log(\tau^{k})\to 0 and 𝒗yk+CPτk0\bm{v}_{y}^{k}+C_{P}\tau^{k}\to 0, the last inequality holds because 𝒗^x0\widehat{\bm{v}}_{x}\leq 0. The above display contradicts (3.24) with 𝔤log\mathfrak{g}_{\log} in place of 𝔤\mathfrak{g} and hence this case cannot happen.

(ii) Analogously to the proof of Theorem 3.8, by Lemma 3.5, case (ii) cannot happen.

Therefore, we obtain that γ𝒏,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty]. Using this together with [23, Theorem 3.10], we deduce that (3.32) holds. ∎

Remark 3.13 (Tightness of (3.39)).

Let 𝐧=(0,0,𝐧Z)\bm{n}=(0,0,\bm{n}_{Z}) with 𝐧Z0\bm{n}_{Z}\succ 0. Then, ={𝐧}𝒦logdet\mathcal{F}_{\infty}=\{\bm{n}\}^{\perp}\cap\mathcal{K}_{{\rm logdet}}. Consider the same sequences {𝐯k},{𝐰k},{𝐮k}\{\bm{v}^{k}\},\{\bm{w}^{k}\},\{\bm{u}^{k}\} in Remark 3.9, i.e., for every kk,

𝒗k=(1,1/k,Id/(kekd)),𝒘k=(1,1/k,𝟎),𝒖k=(1,0,𝟎).\bm{v}^{k}=(-1,1/k,I_{d}/(ke^{\frac{k}{d}})),\quad\bm{w}^{k}=(-1,1/k,\bm{0}),\quad\bm{u}^{k}=(-1,0,\bm{0}).

Note that there exists η>0\eta>0 such that 𝐰k{𝐧}B(η),𝐯k𝒦logdet\bm{w}^{k}\in\{\bm{n}\}^{\perp}\cap B(\eta),\,\bm{v}^{k}\in\mathcal{K}_{{\rm logdet}} and 𝐮k=P(𝐰k)\bm{u}^{k}=P_{\mathcal{F}_{\infty}}(\bm{w}^{k}) for any kk. Therefore, applying (3.39), there exists κB>0\kappa_{B}>0 such that

1k=dist(𝒘k,)κB𝔤log(dist(𝒘k,𝒦logdet))κB𝔤log(dkekd)k.\frac{1}{k}={\rm dist}(\bm{w}^{k},\mathcal{F}_{\infty})\leq\kappa_{B}\mathfrak{g}_{\log}({\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}}))\leq\kappa_{B}\mathfrak{g}_{\log}\left(\frac{\sqrt{d}}{ke^{\frac{k}{d}}}\right)\quad\forall k\in\mathbb{N}.

In view of the definition of 𝔤log\mathfrak{g}_{\log} (see (3.31)) and its monotonicity, for large enough kk we have

1k=dist(𝒘k,)κB𝔤log(dist(𝒘k,𝒦logdet))κBlogk+(k/d)logdκB2dk.\frac{1}{k}={\rm dist}(\bm{w}^{k},\mathcal{F}_{\infty})\leq\kappa_{B}\mathfrak{g}_{\log}({\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}}))\leq\frac{\kappa_{B}}{\log k+(k/d)-\log\sqrt{d}}\leq\kappa_{B}\frac{2d}{k}.

Consequently, it holds that for all sufficiently large kk,

12ddist(𝒘k,)𝔤log(dist(𝒘k,𝒦logdet))κB.\frac{1}{2d}\leq\frac{{\rm dist}(\bm{w}^{k},\mathcal{F}_{\infty})}{\mathfrak{g}_{\log}({\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}}))}\leq\kappa_{B}.

Similar to the argument in Remark 3.3, we conclude that the choice of 𝔤log\mathfrak{g}_{\log} is tight.

Using Theorem 3.11 and Theorem 3.12 in combination with [23, Lemma 3.9], we deduce the following one-step facial residual function for 𝒦logdet\mathcal{K}_{{\rm logdet}} and 𝒏\bm{n}.

Corollary 3.14.

Let 𝐧=(0,𝐧y,𝐧Z)𝒦logdet\bm{n}=(0,\bm{n}_{y},\bm{n}_{Z})\in\partial\mathcal{K}_{{\rm logdet}}^{*} with 𝐧y0\bm{n}_{y}\geq 0 and 𝐧Z0\bm{n}_{Z}\succ 0 such that =𝒦logdet{𝐧}\mathcal{F}_{\infty}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp}.

  1. (i)

    If 𝒏y>0\bm{n}_{y}>0, let γ𝒏,t\gamma_{\bm{n},t} be as in (3.23) with ={\cal F}=\mathcal{F}_{\infty} and 𝔤=||\mathfrak{g}=|\cdot|. Then the function

    ψ𝒦,𝒏(ϵ,t):=max{ϵ,ϵ/𝒏}+max{2,2γ𝒏,t1}(ϵ+max{ϵ,ϵ/𝒏})\psi_{\mathcal{K},\bm{n}}(\epsilon,t):=\max\left\{\epsilon,\epsilon/\|\bm{n}\|\right\}+\max\left\{2,2\gamma_{\bm{n},t}^{-1}\right\}\left(\epsilon+\max\left\{\epsilon,\epsilon/\|\bm{n}\|\right\}\right)

    is a one-step facial residual function for 𝒦logdet\mathcal{K}_{{\rm logdet}} and 𝒏\bm{n}.

  2. (ii)

    If 𝒏y=0\bm{n}_{y}=0, let γ𝒏,t\gamma_{\bm{n},t} be as in (3.23) with ={\cal F}=\mathcal{F}_{\infty} and 𝔤log\mathfrak{g}_{\log} defined in (3.31). Then the function

    ψ𝒦,𝒏(ϵ,t):=max{ϵ,ϵ/𝒏}+max{2,2γ𝒏,t1}𝔤log(ϵ+max{ϵ,ϵ/𝒏})\psi_{\mathcal{K},\bm{n}}(\epsilon,t):=\max\left\{\epsilon,\epsilon/\|\bm{n}\|\right\}+\max\left\{2,2\gamma_{\bm{n},t}^{-1}\right\}\mathfrak{g}_{\log}\left(\epsilon+\max\left\{\epsilon,\epsilon/\|\bm{n}\|\right\}\right)

    is a one-step facial residual function for 𝒦logdet\mathcal{K}_{{\rm logdet}} and 𝒏\bm{n}.

3.2.4 r\mathcal{F}_{{\rm r}}: the family of 1-dimensional faces

Theorem 3.15 (Hölderian error bound concerning r\mathcal{F}_{{\rm r}}).

Let 𝐧=(𝐧x,𝐧x(logdet(𝐧Z/𝐧x)+d),𝐧Z)𝒦logdet\bm{n}=(\bm{n}_{x},\bm{n}_{x}(\log\det(-\bm{n}_{Z}/\bm{n}_{x})+d),\bm{n}_{Z})\in\partial\mathcal{K}_{{\rm logdet}}^{*} with 𝐧x<0\bm{n}_{x}<0 and 𝐧Z0\bm{n}_{Z}\succ 0 such that r=𝒦logdet{𝐧}\mathcal{F}_{{\rm r}}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp}. Let η>0\eta>0 and let γ𝐧,η\gamma_{\bm{n},\eta} be defined as (3.23) with =r{\cal F}=\mathcal{F}_{{\rm r}} and 𝔤=||12\mathfrak{g}=|\cdot|^{\frac{1}{2}}. Then γ𝐧,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty] and

dist(𝒒,r)max{2η12,2γ𝒏,η1}(dist(𝒒,𝒦logdet))12𝒒{𝒏}B(η).{\rm dist}(\bm{q},\mathcal{F}_{{\rm r}})\leq\max\{2\eta^{\frac{1}{2}},2\gamma_{\bm{n},\eta}^{-1}\}\cdot({\rm dist}(\bm{q},\mathcal{K}_{{\rm logdet}}))^{\frac{1}{2}}\quad\quad\forall\bm{q}\in\{\bm{n}\}^{\perp}\cap B(\eta). (3.45)
Proof.

If γ𝒏,η=0\gamma_{\bm{n},\eta}=0, in view of [23, Lemma 3.12], there exists 𝒗^r\widehat{\bm{v}}\in\mathcal{F}_{{\rm r}} and sequences {𝒗k},{𝒘k},{𝒖k}\{\bm{v}^{k}\},\{\bm{w}^{k}\},\{\bm{u}^{k}\} being defined as those therein, with the cone being 𝒦logdet\mathcal{K}_{{\rm logdet}} and the face being r\mathcal{F}_{{\rm r}}, such that (3.24) holds with 𝔤=||12\mathfrak{g}=|\cdot|^{\frac{1}{2}}. We consider two different cases.

  1. (i)

    𝒗kd\bm{v}^{k}\in\mathcal{F}_{{\rm d}} infinitely often, i.e., 𝒗yk=0\bm{v}_{y}^{k}=0 infinitely often (wherefore 𝒗^=𝟎\widehat{\bm{v}}=\mathbf{0});

  2. (ii)

    𝒗kd\bm{v}^{k}\notin\mathcal{F}_{{\rm d}} for all large kk, i.e., 𝒗yk>0\bm{v}_{y}^{k}>0 for all large kk.

(i) If 𝒗yk=0\bm{v}_{y}^{k}=0 infinitely often, by extracting a subsequence if necessary, we may assume that

𝒗k=(𝒗xk,0,𝒗Zk) with 𝒗xk0,𝒗Zk0for all k.\bm{v}^{k}=(\bm{v}_{x}^{k},0,\bm{v}_{Z}^{k})\text{ with }\bm{v}_{x}^{k}\leq 0,\bm{v}_{Z}^{k}\succeq 0\quad\text{for all }k.

Combining this with the definition of 𝒏\bm{n}, we have

|𝒏,𝒗k|=\displaystyle|\langle\bm{n},\bm{v}^{k}\rangle|= |𝒏x𝒗xk+tr(𝒏Z𝒗Zk)|=𝒏x|𝒗xk|+tr(𝒏Z𝒗Zk)𝒏x|𝒗xk|+λmin(𝒏Z)tr(𝒗Zk)\displaystyle|\bm{n}_{x}\bm{v}_{x}^{k}+{\rm\,tr}(\bm{n}_{Z}\bm{v}_{Z}^{k})|=-\bm{n}_{x}|\bm{v}_{x}^{k}|+{\rm\,tr}(\bm{n}_{Z}\bm{v}_{Z}^{k})\geq-\bm{n}_{x}|\bm{v}_{x}^{k}|+\lambda_{\min}(\bm{n}_{Z}){\rm\,tr}(\bm{v}_{Z}^{k})
\displaystyle\geq min{𝒏x,λmin(𝒏Z)}(|𝒗xk|+tr(𝒗Zk))min{𝒏x,λmin(𝒏Z)}𝒗k.\displaystyle\min\{-\bm{n}_{x},\lambda_{\min}(\bm{n}_{Z})\}(|\bm{v}_{x}^{k}|+{\rm\,tr}(\bm{v}_{Z}^{k}))\geq\min\{-\bm{n}_{x},\lambda_{\min}(\bm{n}_{Z})\}\|\bm{v}^{k}\|.

Here, we recall that tr(𝒏Z𝒗Zk)0,λmin(𝒏Z)>0,tr(𝒗Zk)0{\rm\,tr}(\bm{n}_{Z}\bm{v}_{Z}^{k})\geq 0,\lambda_{\min}(\bm{n}_{Z})>0,{\rm\,tr}(\bm{v}_{Z}^{k})\geq 0.

Since projections are non-expansive, we have 𝒘k𝒗k\|\bm{w}^{k}\|\leq\|\bm{v}^{k}\|. Moreover, since 𝟎r\bm{0}\in\mathcal{F}_{{\rm r}}, we have dist(,r){\rm dist}(\cdot,\mathcal{F}_{{\rm r}})\leq\|\cdot\|. Thus,

𝒘k𝒖k=\displaystyle\|\bm{w}^{k}-\bm{u}^{k}\|= dist(𝒘k,r)𝒘k𝒗k\displaystyle{\rm dist}(\bm{w}^{k},\mathcal{F}_{{\rm r}})\leq\|\bm{w}^{k}\|\leq\|\bm{v}^{k}\|
\displaystyle\leq 1min{𝒏x,λmin(𝒏Z)}|𝒏,𝒗k|=𝒏min{𝒏x,λmin(𝒏Z)}𝒘k𝒗k.\displaystyle\frac{1}{\min\{-\bm{n}_{x},\lambda_{\min}(\bm{n}_{Z})\}}|\langle\bm{n},\bm{v}^{k}\rangle|=\frac{\|\bm{n}\|}{\min\{-\bm{n}_{x},\lambda_{\min}(\bm{n}_{Z})\}}\|\bm{w}^{k}-\bm{v}^{k}\|.

This display shows that (3.24) for 𝔤=||\mathfrak{g}=|\cdot| does not hold in this case. Since |t|1/2|t||t|^{1/2}\geq|t| holds for small t>0t>0, we conclude that (3.24) for 𝔤=||1/2\mathfrak{g}=|\cdot|^{1/2} does not hold as well.

(ii) If 𝒗yk>0\bm{v}_{y}^{k}>0 for all large kk, by passing to a subsequence if necessary, we can assume that

𝒗k=(𝒗yklogdet(𝒗Zk/𝒗yk),𝒗yk,𝒗Zk) with 𝒗yk>0,𝒗Zk0,for all k.\bm{v}^{k}=(\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}),\bm{v}_{y}^{k},\bm{v}_{Z}^{k})\text{ with }\bm{v}_{y}^{k}>0,\bm{v}_{Z}^{k}\succ 0,\quad\text{for all }k.

Thus, we have

𝒘k𝒗k=|𝒏,𝒗k|𝒏,\|\bm{w}^{k}-\bm{v}^{k}\|=\frac{|\langle\bm{n},\bm{v}^{k}\rangle|}{\|\bm{n}\|}, (3.46)

and

𝒏,𝒗k=𝒏x𝒗yklogdet(𝒗Zk/𝒗yk)+𝒏x𝒗yk(logdet(𝒏Z/𝒏x)+d)+tr(𝒏Z𝒗Zk)\displaystyle\quad\langle\bm{n},\bm{v}^{k}\rangle=\bm{n}_{x}\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})+\bm{n}_{x}\bm{v}_{y}^{k}(\log\det(-\bm{n}_{Z}/\bm{n}_{x})+d)+{\rm\,tr}(\bm{n}_{Z}\bm{v}_{Z}^{k})
=𝒏x𝒗yk(logdet(𝒗Zk𝒏Z𝒗yk𝒏x)+d+tr(𝒗Zk𝒏Z𝒗yk𝒏x))\displaystyle=\bm{n}_{x}\bm{v}_{y}^{k}\left(\log\det\left(-\frac{\bm{v}_{Z}^{k}\bm{n}_{Z}}{\bm{v}_{y}^{k}\bm{n}_{x}}\right)+d+{\rm\,tr}\left(\frac{\bm{v}_{Z}^{k}\bm{n}_{Z}}{\bm{v}_{y}^{k}\bm{n}_{x}}\right)\right)
=𝒏x𝒗yk(logdet(𝒏Z12𝒗Zk𝒏Z12𝒗yk𝒏x)+d+tr(𝒏Z12𝒗Zk𝒏Z12𝒗yk𝒏x))\displaystyle=\bm{n}_{x}\bm{v}_{y}^{k}\left(\log\det\left(-\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{v}_{Z}^{k}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{v}_{y}^{k}\bm{n}_{x}}\right)+d+{\rm\,tr}\left(\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{v}_{Z}^{k}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{v}_{y}^{k}\bm{n}_{x}}\right)\right)
=𝒏x𝒗yki=1d(log(λi(𝒏Z12𝒗Zk𝒏Z12𝒗yk𝒏x))+1+λi(𝒏Z12𝒗Zk𝒏Z12𝒗yk𝒏x))\displaystyle=\bm{n}_{x}\bm{v}_{y}^{k}\sum_{i=1}^{d}\left(\log\left(\lambda_{i}\left(-\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{v}_{Z}^{k}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{v}_{y}^{k}\bm{n}_{x}}\right)\right)+1+\lambda_{i}\left(\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{v}_{Z}^{k}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{v}_{y}^{k}\bm{n}_{x}}\right)\right)
=𝒏x𝒗yki=1d(tik+1etik)0,\displaystyle=\bm{n}_{x}\bm{v}_{y}^{k}\sum_{i=1}^{d}\left(t_{i}^{k}+1-e^{t_{i}^{k}}\right)\geq 0, (3.47)

where tik:=log(λi(𝒏Z12𝒗Zk𝒏Z12𝒗yk𝒏x))t_{i}^{k}:=\log\left(\lambda_{i}\left(-\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{v}_{Z}^{k}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{v}_{y}^{k}\bm{n}_{x}}\right)\right) for i=1,2,,di=1,2,\dots,d and k1k\geq 1, and the nonnegativity comes from the observation that t+1et0t+1-e^{t}\leq 0 for all tIRt\in{\rm I\!R} and the facts that 𝒏x<0\bm{n}_{x}<0 and 𝒗yk>0\bm{v}_{y}^{k}>0; recall that here 𝒗Zk0,𝒏Z0,𝒏x<0,\bm{v}_{Z}^{k}\succ 0,\bm{n}_{Z}\succ 0,\bm{n}_{x}<0, and 𝒗yk>0\bm{v}_{y}^{k}>0, then λi(𝒏Z12𝒗Zk𝒏Z12𝒗yk𝒏x)>0\lambda_{i}(-\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{v}_{Z}^{k}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{v}_{y}^{k}\bm{n}_{x}})>0 for all ii, and hence tikt_{i}^{k} is well-defined.

Next, we turn to compute 𝒘k𝒖k\|\bm{w}^{k}-\bm{u}^{k}\|. Using Lemma 2.4, (3.9) and (3.10), one can see for all kk,

𝒘k𝒖kdist(𝒗k,r)(a)𝒗k𝒗yk𝒇r\displaystyle\,\quad\|\bm{w}^{k}-\bm{u}^{k}\|\leq{\rm dist}(\bm{v}^{k},\mathcal{F}_{{\rm r}})\overset{(\text{a})}{\leq}\|\bm{v}^{k}-\bm{v}_{y}^{k}\bm{f}_{{\rm r}}\|
=(𝒗yklogdet(𝒗Zk/𝒗yk)𝒗yklogdet(𝒏x𝒏Z1),0,𝒗Zk+𝒗yk𝒏x𝒏Z1)\displaystyle=\|(\bm{v}_{y}^{k}\log\det(\bm{v}_{Z}^{k}/\bm{v}_{y}^{k})-\bm{v}_{y}^{k}\log\det(-\bm{n}_{x}\bm{n}_{Z}^{-1}),0,\bm{v}_{Z}^{k}+\bm{v}_{y}^{k}\bm{n}_{x}\bm{n}_{Z}^{-1})\|
𝒗yk(|logdet((𝒏Z12𝒗Zk𝒏Z12)/(𝒗yk𝒏x))|+𝒗Zk/𝒗yk+𝒏x𝒏Z1F)\displaystyle\leq\bm{v}_{y}^{k}(|\log\det(-(\bm{n}_{Z}^{\frac{1}{2}}\bm{v}_{Z}^{k}\bm{n}_{Z}^{\frac{1}{2}})/(\bm{v}_{y}^{k}\bm{n}_{x}))|+\|\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}+\bm{n}_{x}\bm{n}_{Z}^{-1}\|_{F})
𝒗yk((i=1d|tik|)+𝒗Zk/𝒗yk+𝒏x𝒏Z1F),\displaystyle\leq\bm{v}_{y}^{k}\left(\left(\sum_{i=1}^{d}|t_{i}^{k}|\right)+\|\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}+\bm{n}_{x}\bm{n}_{Z}^{-1}\|_{F}\right),

where (a) holds because 𝒗yk𝒇rr\bm{v}_{y}^{k}\bm{f}_{{\rm r}}\in\mathcal{F}_{{\rm r}}. We remark that 𝒗Zk/𝒗yk+𝒏x𝒏Z1\bm{v}_{Z}^{k}/\bm{v}_{y}^{k}+\bm{n}_{x}\bm{n}_{Z}^{-1} is a symmetric matrix. Let

Ak:=𝒗Zk𝒗yk+𝒏x𝒏Z1,B:=𝒏x𝒏Z1,Dk:=𝒗Zk𝒏Z𝒗yk𝒏x,D^k:=𝒏Z12𝒗Zk𝒏Z12𝒗yk𝒏x.A_{k}:=\frac{\bm{v}_{Z}^{k}}{\bm{v}_{y}^{k}}+\bm{n}_{x}\bm{n}_{Z}^{-1},\quad B:=-\bm{n}_{x}\bm{n}_{Z}^{-1},\quad D_{k}:=\frac{\bm{v}_{Z}^{k}\bm{n}_{Z}}{\bm{v}_{y}^{k}\bm{n}_{x}},\quad\widehat{D}_{k}:=\frac{\bm{n}_{Z}^{\frac{1}{2}}\bm{v}_{Z}^{k}\bm{n}_{Z}^{\frac{1}{2}}}{\bm{v}_{y}^{k}\bm{n}_{x}}.

We notice that Dk=𝒏Z12D^k𝒏Z12D_{k}=\bm{n}_{Z}^{-\frac{1}{2}}\widehat{D}_{k}\bm{n}_{Z}^{\frac{1}{2}} and etik=λi(D^k)e^{t_{i}^{k}}=\lambda_{i}(-\widehat{D}_{k}) for i=1,2,,di=1,2,\dots,d and k1k\geq 1. Then, we have for all kk,555For XIRn×nX\in{\rm I\!R}^{n\times n}, we denote the nuclear norm and spectral norm of XX by X\|X\|_{*} and X2\|X\|_{2}, respectively.

AkFAk=Ak(𝒏Z/𝒏x)(𝒏x𝒏Z1)=(Dk+I)B\displaystyle\,\quad\|A_{k}\|_{F}\leq\|A_{k}\|_{*}=\|A_{k}(\bm{n}_{Z}/\bm{n}_{x})(\bm{n}_{x}\bm{n}_{Z}^{-1})\|_{*}=\|(D_{k}+I)B\|_{*}
=(a)supW21tr(W(Dk+I)B)=supW21tr(BW(𝒏Z12D^k𝒏Z12+I))\displaystyle\overset{(\text{a})}{=}\sup_{\|W\|_{2}\leq 1}{\rm\,tr}(W(D_{k}+I)B)=\sup_{\|W\|_{2}\leq 1}{\rm\,tr}\left(BW\left(\bm{n}_{Z}^{-\frac{1}{2}}\widehat{D}_{k}\bm{n}_{Z}^{\frac{1}{2}}+I\right)\right)
=supW21tr(𝒏Z12BW𝒏Z12(D^k+I))(b)D^k+IsupW21𝒏Z12BW𝒏Z122\displaystyle=\sup_{\|W\|_{2}\leq 1}{\rm\,tr}\left(\bm{n}_{Z}^{\frac{1}{2}}BW\bm{n}_{Z}^{-\frac{1}{2}}(\widehat{D}_{k}+I)\right)\overset{(\text{b})}{\leq}\|\widehat{D}_{k}+I\|_{*}\sup_{\|W\|_{2}\leq 1}\|\bm{n}_{Z}^{\frac{1}{2}}BW\bm{n}_{Z}^{-\frac{1}{2}}\|_{2}
=βi=1d|λi(D^k+I)|=βi=1d|λi(D^k)+1|=βi=1d|λi(D^k)1|=βi=1d|etik1|,\displaystyle=\beta\sum_{i=1}^{d}|\lambda_{i}(\widehat{D}_{k}+I)|=\beta\sum_{i=1}^{d}|\lambda_{i}(\widehat{D}_{k})+1|=\beta\sum_{i=1}^{d}|\lambda_{i}(-\widehat{D}_{k})-1|=\beta\sum_{i=1}^{d}|e^{t_{i}^{k}}-1|,

where β:=supW21𝒏Z12BW𝒏Z122(0,)\beta:=\sup_{\|W\|_{2}\leq 1}\|\bm{n}_{Z}^{\frac{1}{2}}BW\bm{n}_{Z}^{-\frac{1}{2}}\|_{2}\in(0,\infty), and (a) and (b) hold since the dual norm of nuclear norm \|\cdot\|_{*} is the spectral norm 2\|\cdot\|_{2}. Hence, we obtain that for all kk,

𝒘k𝒖k𝒗yk(i=1d|tik|+β|etik1|).\|\bm{w}^{k}-\bm{u}^{k}\|\leq\bm{v}_{y}^{k}\left(\sum_{i=1}^{d}|t_{i}^{k}|+\beta|e^{t_{i}^{k}}-1|\right). (3.48)

Before moving on, we define two auxiliary functions and discuss some useful properties. Define

h(t):=t+1et and g(t):=|t|+β|et1|.h(t):=t+1-e^{t}\quad\text{ and }\quad g(t):=|t|+\beta|e^{t}-1|. (3.49)

We observe that

h(t)=0t=0,\displaystyle h(t)=0\Longleftrightarrow t=0, (3.50)
limth(t)=limth(t)=,\displaystyle\lim_{t\to\infty}h(t)=\lim_{t\to-\infty}h(t)=-\infty,
h(t)=1et,h(0)=0,\displaystyle h^{\prime}(t)=1-e^{t},\quad h^{\prime}(0)=0,
h′′(t)=et,h′′(0)=1.\displaystyle h^{\prime\prime}(t)=-e^{t},\quad h^{\prime\prime}(0)=-1.

In addition, g(t)0g(t)\geq 0 for all tIRt\in{\rm I\!R} and g(t)=0g(t)=0 if and only if t=0t=0.

Now, recall from the setting of {𝒗k}\{\bm{v}^{k}\} that 𝒗k𝒗^\bm{v}^{k}\to\widehat{\bm{v}} and 𝒏,𝒗k0\langle\bm{n},\bm{v}^{k}\rangle\to 0. This and the formula of 𝒏,𝒗k\langle\bm{n},\bm{v}^{k}\rangle in (3.47) reveal that we need to consider the following two cases:

  1. (I)

    lim infki=1dh(tik)=0\liminf_{k\to\infty}\sum_{i=1}^{d}h(t_{i}^{k})=0;

  2. (II)

    lim infki=1dh(tik)[,0)\liminf_{k\to\infty}\sum_{i=1}^{d}h(t_{i}^{k})\in[-\infty,0).

For notational simplicity, we define 𝒕k:=(tik)i=1d\bm{t}^{k}:=(t_{i}^{k})_{i=1}^{d} for all kk.

(I) Without loss of generality, by passing to a further subsequence, we assume that limki=1dh(tik)=0\lim_{k\to\infty}\sum_{i=1}^{d}h(t_{i}^{k})=0. Combining this assumption and the fact that h(t)0h(t)\leq 0 for all tIRt\in{\rm I\!R} with (3.50), we know that 𝒕k𝟎\bm{t}^{k}\to\bm{0}. Now, consider the Taylor expansion of h(t)h(t) at t=0t=0, that is,

h(t)=0.5t2+O(|t|3),t0.h(t)=-0.5t^{2}+O(|t|^{3}),\quad t\to 0.

It follows that there exists ϵ>0\epsilon>0 such that for any tt satisfying |t|<ϵ|t|<\epsilon, h(t)0.25t20h(t)\leq-0.25t^{2}\leq 0. Thus, we have for all large kk that,

0i=1d0.25(tik)2i=1d|h(tik)|.0\leq\sum_{i=1}^{d}0.25(t_{i}^{k})^{2}\leq\sum_{i=1}^{d}|h(t_{i}^{k})|. (3.51)

We can deduce the lower bound of 𝒘k𝒗k12\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}} for sufficiently large kk as follows:

𝒘k𝒗k12=(a)|𝒏,𝒗k|12𝒏12=(b)|𝒏x|12|𝒗yk|12𝒏12(i=1d|h(tik)|)12\displaystyle\,\quad\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}}\overset{(\text{a})}{=}\frac{|\langle\bm{n},\bm{v}^{k}\rangle|^{\frac{1}{2}}}{\|\bm{n}\|^{\frac{1}{2}}}\overset{(\text{b})}{=}\frac{|\bm{n}_{x}|^{\frac{1}{2}}|\bm{v}_{y}^{k}|^{\frac{1}{2}}}{\|\bm{n}\|^{\frac{1}{2}}}\left(\sum_{i=1}^{d}|h(t_{i}^{k})|\right)^{\frac{1}{2}}
(c)|𝒏x|12|𝒗yk|122𝒏12(i=1d(tik)2)12(d)(|𝒏x||𝒗yk|)122(d𝒏)12(i=1d|tik|),\displaystyle\overset{(\text{c})}{\geq}\frac{|\bm{n}_{x}|^{\frac{1}{2}}|\bm{v}_{y}^{k}|^{\frac{1}{2}}}{2\|\bm{n}\|^{\frac{1}{2}}}\left(\sum_{i=1}^{d}(t_{i}^{k})^{2}\right)^{\frac{1}{2}}\overset{(\text{d})}{\geq}\frac{(|\bm{n}_{x}||\bm{v}_{y}^{k}|)^{\frac{1}{2}}}{2(d\|\bm{n}\|)^{\frac{1}{2}}}\left(\sum_{i=1}^{d}|t_{i}^{k}|\right),

where (a) comes from (3.46), (b) comes from (3.47) and (3.49), (c) holds by (3.51), (d) comes from the root-mean inequality.

Next, to derive a bound for 𝒘k𝒖k\|\bm{w}^{k}-\bm{u}^{k}\|, we shall relate |etik1||e^{t_{i}^{k}}-1| to |tik||t_{i}^{k}|. To this end, notice that limt0(et1)/t=1.\lim_{t\to 0}(e^{t}-1)/t=1. Then, there exists C1>0C_{1}>0 such that for any i=1,2,,di=1,2,\dots,d,

|etik1|C1|tik| for sufficiently large k.|e^{t_{i}^{k}}-1|\leq C_{1}|t_{i}^{k}|\quad\text{ for sufficiently large }k.

Therefore, by (3.48), for all sufficiently large kk,

𝒘k𝒖k𝒗yk(βC1+1)i=1d|tik|.\|\bm{w}^{k}-\bm{u}^{k}\|\leq\bm{v}_{y}^{k}(\beta C_{1}+1)\sum_{i=1}^{d}|t_{i}^{k}|.

We thus conclude that

limk𝒘k𝒗k12𝒘k𝒖klim infk(|𝒏x||𝒗yk|)122(d𝒏)12(i=1d|tik|)𝒗yk(βC1+1)(i=1d|tik|)(a)|𝒏x|122(d𝒏η)12(βC1+1)>0,\begin{split}\lim_{k\to\infty}\frac{\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}}}{\|\bm{w}^{k}-\bm{u}^{k}\|}\geq&\liminf_{k\to\infty}\frac{(|\bm{n}_{x}||\bm{v}_{y}^{k}|)^{\frac{1}{2}}}{2(d\|\bm{n}\|)^{\frac{1}{2}}}\frac{(\sum_{i=1}^{d}|t_{i}^{k}|)}{\bm{v}_{y}^{k}(\beta C_{1}+1)(\sum_{i=1}^{d}|t_{i}^{k}|)}\\ \overset{(\text{a})}{\geq}&\frac{|\bm{n}_{x}|^{\frac{1}{2}}}{2(d\|\bm{n}\|\eta)^{\frac{1}{2}}(\beta C_{1}+1)}>0,\end{split}

where (a) holds since 0<𝒗yk𝒗kη0<\bm{v}_{y}^{k}\leq\|\bm{v}^{k}\|\leq\eta. This contradicts (3.24) with ||12|\cdot|^{\frac{1}{2}} in place of 𝔤\mathfrak{g} and hence this case cannot happen.

(II) In this case, in view of (3.50), by passing to a further subsequence if necessary, we can assume that there exist ϵ>0\epsilon>0 and i0i_{0} such that |ti0k|ϵ|t_{i_{0}}^{k}|\geq\epsilon for all large kk, that is, g(ti0k)>0g(t_{i_{0}}^{k})>0 for all large kk. Then, 𝒕kϵ\|\bm{t}^{k}\|_{\infty}\geq\epsilon for all large kk. Now, consider the following function

H(𝒕):={i=1d|h(ti)|i=1dg(ti) if 𝒕ϵ,otherwise,H(\bm{t}):=\begin{cases}\frac{\sum_{i=1}^{d}|h(t_{i})|}{\sum_{i=1}^{d}g(t_{i})}&\text{ if }\|\bm{t}\|_{\infty}\geq\epsilon,\\ \infty&\text{otherwise},\end{cases}

where hh is defined as in (3.49). Since 𝒕ϵ\|\bm{t}\|_{\infty}\geq\epsilon implies g(ti)>0g(t_{i})>0 for some ii, we see that HH is well-defined. Moreover, one can check that HH is lower semi-continuous and never zero.

We claim that infH>0\inf H>0. Granting this, we have

limk𝒘k𝒗k12𝒘k𝒖klim infk𝒘k𝒗k𝒘k𝒖k(a)lim infk|𝒏x|𝒏i=1d|h(tik)|i=1dg(tik)\displaystyle\,\quad\lim_{k\to\infty}\frac{\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}}}{\|\bm{w}^{k}-\bm{u}^{k}\|}\geq\liminf_{k\to\infty}\frac{\|\bm{w}^{k}-\bm{v}^{k}\|}{\|\bm{w}^{k}-\bm{u}^{k}\|}\overset{(\text{a})}{\geq}\liminf_{k\to\infty}\frac{|\bm{n}_{x}|}{\|\bm{n}\|}\frac{\sum_{i=1}^{d}|h(t_{i}^{k})|}{\sum_{i=1}^{d}g(t_{i}^{k})}
=(b)lim infk|𝒏x|𝒏H(𝒕k)|𝒏x|𝒏infH>0,\displaystyle\overset{(\text{b})}{=}\liminf_{k\to\infty}\frac{|\bm{n}_{x}|}{\|\bm{n}\|}H(\bm{t}^{k})\geq\frac{|\bm{n}_{x}|}{\|\bm{n}\|}\inf H>0,

where (a) comes from (3.46), (3.47), (3.48) and the definition of hh and gg in (3.49), (b) holds thanks to the definition of HH. The above display contradicts (3.24) with ||12|\cdot|^{\frac{1}{2}} in place of 𝔤\mathfrak{g} and hence this case cannot happen. Therefore, we obtain that γ𝒏,η(0,]\gamma_{\bm{n},\eta}\in(0,\infty] with 𝔤=||12\mathfrak{g}=|\cdot|^{\frac{1}{2}}. Together with [23, Theorem 3.10], we deduce that (3.45) holds.

Now it remains to show that infH>0\inf H>0. Since HH is lower semi-continuous and never zero, it suffices to show that lim inf𝒕H(𝒕)>0\liminf_{\|\bm{t}\|\to\infty}H(\bm{t})>0; see this footnote.666Suppose that infH=0\inf H=0. Then, there exists a sequence {𝜻l}\{\bm{\zeta}^{l}\} such that H(𝜻l)0H(\bm{\zeta}^{l})\to 0. If {𝜻l}\{\bm{\zeta}^{l}\} is unbounded, we can find a subsequence {𝜻lk}\{\bm{\zeta}^{l_{k}}\} such that 𝜻lk\|\bm{\zeta}^{l_{k}}\|\to\infty and H(𝜻lk)0H(\bm{\zeta}^{l_{k}})\to 0 holds, which would contradict lim inf𝒕H(𝒕)>0\liminf_{\|\bm{t}\|\to\infty}H(\bm{t})>0. So {𝜻l}\{\bm{\zeta}^{l}\} must be bounded and passing to a subsequence we may assume it converges to some 𝜻¯\bar{\bm{\zeta}}. By lower semicontinuity, we have H(𝜻¯)liminf𝒕𝜻¯H(𝒕)limlH(𝜻l)=0H(\bar{\bm{\zeta}})\leq\lim\inf_{\bm{t}\to\bar{\bm{\zeta}}}H(\bm{t})\leq\lim_{l\to\infty}H(\bm{\zeta}^{l})=0. However, HH is always positive, so this cannot happen either. Therefore, lim inf𝒕H(𝒕)>0\liminf_{\|\bm{t}\|\to\infty}H(\bm{t})>0 implies infH>0\inf H>0.

To this end, consider a sequence {𝜻l}\{\bm{\zeta}^{l}\} such that 𝜻l\|\bm{\zeta}^{l}\|\to\infty and

limlH(𝜻l)=lim inf𝒕H(𝒕),\lim_{l\to\infty}H(\bm{\zeta}^{l})=\liminf_{\|\bm{t}\|\to\infty}H(\bm{t}),

then there exists at least one i0{1,2,,d}i_{0}\in\{1,2,\dots,d\} such that |ζi0l||\zeta_{i_{0}}^{l}|\to\infty. Consequently, |h(ζi0l)||h(\zeta_{i_{0}}^{l})|\to\infty and g(ζi0l)g(\zeta_{i_{0}}^{l})\to\infty, and so both i=1d|h(ζil)|\sum_{i=1}^{d}|h(\zeta_{i}^{l})| and i=1dg(ζil)\sum_{i=1}^{d}g(\zeta_{i}^{l}) tend to \infty. Passing to a subsequence, we can assume that for each ii, limlζil[,]\lim_{l\to\infty}\zeta_{i}^{l}\in[-\infty,\infty] exists and we can split 𝜻l\bm{\zeta}^{l} into three parts:

  1. (1)

    ζilζ¯iIR{0}\zeta_{i}^{l}\to\overline{\zeta}_{i}\in{\rm I\!R}\setminus\{0\}, then |h(ζil)||h(ζ¯i)|0|h(\zeta_{i}^{l})|\to|h(\overline{\zeta}_{i})|\neq 0, g(ζil)g(ζ¯i)0g(\zeta_{i}^{l})\to g(\overline{\zeta}_{i})\neq 0. Denote the set of indices of these components by 𝜻C\mathcal{I}_{\bm{\zeta}}^{C} where CC refers to “constant”.

    For any i𝜻Ci\in\mathcal{I}_{\bm{\zeta}}^{C}, we have

    liml|h(ζil)|g(ζil)=|h(ζ¯i)|g(ζ¯i)>0.\lim_{l\to\infty}\frac{|h(\zeta_{i}^{l})|}{g(\zeta_{i}^{l})}=\frac{|h(\overline{\zeta}_{i})|}{g(\overline{\zeta}_{i})}>0.

    Thus, there exists a constant CC>0C_{C}>0 such that for all sufficiently large ll and all i𝜻Ci\in\mathcal{I}_{\bm{\zeta}}^{C},

    |h(ζil)|CCg(ζil).|h(\zeta_{i}^{l})|\geq C_{C}g(\zeta_{i}^{l}).
  2. (2)

    ζil0\zeta_{i}^{l}\to 0, then |h(ζil)|0|h(\zeta_{i}^{l})|\to 0, g(ζil)0g(\zeta_{i}^{l})\to 0. Denote the set of indices of these components by 𝜻0\mathcal{I}_{\bm{\zeta}}^{0}.

  3. (3)

    |ζil||\zeta_{i}^{l}|\to\infty, then |h(ζil)||h(\zeta_{i}^{l})|\to\infty, g(ζil)g(\zeta_{i}^{l})\to\infty. Denote the set of these components by 𝜻\mathcal{I}_{\bm{\zeta}}^{\infty}. We have 𝜻\mathcal{I}_{\bm{\zeta}}^{\infty}\neq\emptyset, since otherwise 𝜻l↛\|\bm{\zeta}^{l}\|\not\to\infty.

    For any i𝜻i\in\mathcal{I}_{\bm{\zeta}}^{\infty}, we notice that

    lim infl|h(ζil)|g(ζil)min{lim inft|h(t)|g(t),lim inft|h(t)|g(t)}=min{1,1β}:=β^>0.\liminf_{l\to\infty}\frac{|h(\zeta_{i}^{l})|}{g(\zeta_{i}^{l})}\geq\min\left\{\liminf_{t\to-\infty}\frac{|h(t)|}{g(t)},\liminf_{t\to\infty}\frac{|h(t)|}{g(t)}\right\}=\min\left\{1,\frac{1}{\beta}\right\}:=\widehat{\beta}>0.

    Thus, for all sufficiently large ll and all i𝜻Ci\in\mathcal{I}_{\bm{\zeta}}^{C},

    |h(ζil)|β^2g(ζil).|h(\zeta_{i}^{l})|\geq\frac{\widehat{\beta}}{2}g(\zeta_{i}^{l}).

Combining the above three cases, we obtain

lim inf𝒕H(𝒕)=limlH(𝜻l)\displaystyle\,\quad\liminf_{\|\bm{t}\|\to\infty}H(\bm{t})=\lim_{l\to\infty}H(\bm{\zeta}^{l})
limlCCi𝜻Cg(ζil)+β^2i𝜻g(ζil)+i𝜻0g(ζil)i=1dg(ζil)+i𝜻0|h(ζil)|i𝜻0g(ζil)i=1dg(ζil)\displaystyle\geq\lim_{l\to\infty}\frac{C_{C}\sum_{i\in\mathcal{I}_{\bm{\zeta}}^{C}}g(\zeta_{i}^{l})+\frac{\widehat{\beta}}{2}\sum_{i\in\mathcal{I}_{\bm{\zeta}}^{\infty}}g(\zeta_{i}^{l})+\sum_{i\in\mathcal{I}_{\bm{\zeta}}^{0}}g(\zeta_{i}^{l})}{\sum_{i=1}^{d}g(\zeta_{i}^{l})}+\frac{\sum_{i\in\mathcal{I}_{\bm{\zeta}}^{0}}|h(\zeta_{i}^{l})|-\sum_{i\in\mathcal{I}_{\bm{\zeta}}^{0}}g(\zeta_{i}^{l})}{\sum_{i=1}^{d}g(\zeta_{i}^{l})}
(a)min{CC,β^2,1}>0,\displaystyle\overset{(\text{a})}{\geq}\min\left\{C_{C},\frac{\widehat{\beta}}{2},1\right\}>0, (3.52)

where (a) comes from the fact that

limli𝜻0|h(ζil)|i𝜻0g(ζil)i=1dg(ζil)=0,\lim_{l\to\infty}\frac{\sum_{i\in\mathcal{I}_{\bm{\zeta}}^{0}}|h(\zeta_{i}^{l})|-\sum_{i\in\mathcal{I}_{\bm{\zeta}}^{0}}g(\zeta_{i}^{l})}{\sum_{i=1}^{d}g(\zeta_{i}^{l})}=0,

which holds because the numerator tends to 0 while the denominator tends to infinity. ∎

Remark 3.16 (Tightness of (3.45)).

Let 𝐧\bm{n} be defined as in Proposition 3.1.(a)) and

𝒗k=(logdet(𝒏x𝒏Z1)+1k,1,e1dk(𝒏x𝒏Z1)),𝒘k=P{𝒏}(𝒗k),𝒖k=Pr(𝒘k),\bm{v}^{k}=\left(\log\det(-\bm{n}_{x}\bm{n}_{Z}^{-1})+\frac{1}{k},1,e^{\frac{1}{dk}}(-\bm{n}_{x}\bm{n}_{Z}^{-1})\right),\quad\bm{w}^{k}=P_{\{\bm{n}\}^{\perp}}(\bm{v}^{k}),\quad\bm{u}^{k}=P_{\mathcal{F}_{{\rm r}}}(\bm{w}^{k}),

so that r=𝒦logdet{𝐧}\mathcal{F}_{{\rm r}}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp}, {𝐯k}𝒦logdet\{\bm{v}^{k}\}\subset\mathcal{K}_{{\rm logdet}} and there exists η>0\eta>0 such that {𝐰k}B(η)\{\bm{w}^{k}\}\subseteq B(\eta). Then we have

𝒘k𝒗k=|𝒏,𝒗k|𝒏=𝒏x|1k+dde1dk|𝒏.\|\bm{w}^{k}-\bm{v}^{k}\|=\frac{|\langle\bm{n},\bm{v}^{k}\rangle|}{\|\bm{n}\|}=\frac{-\bm{n}_{x}|\frac{1}{k}+d-de^{\frac{1}{dk}}|}{\|\bm{n}\|}.

For the sake of notational simplicity, we denote ξ:=1k\xi:=\frac{1}{k}, then

𝒘k𝒗k=𝒏x|ξ+ddeξd|𝒏.\|\bm{w}^{k}-\bm{v}^{k}\|=\frac{-\bm{n}_{x}|\xi+d-de^{\frac{\xi}{d}}|}{\|\bm{n}\|}. (3.53)

Consider the Taylor expansion of ξ+ddeξd\xi+d-de^{\frac{\xi}{d}} with respect to ξ\xi at 0, we have

ξ+ddeξd=ξ+dd(1+ξd+ξ22d2)+o(ξ2)=ξ22d+o(ξ2), as ξ0.\xi+d-de^{\frac{\xi}{d}}=\xi+d-d\left(1+\frac{\xi}{d}+\frac{\xi^{2}}{2d^{2}}\right)+o(\xi^{2})=-\frac{\xi^{2}}{2d}+o(\xi^{2}),\text{ as }\xi\to 0. (3.54)

Next, upon invoking the definitions of r\mathcal{F}_{{\rm r}} and 𝐟r\bm{f}_{{\rm r}} (see (3.9) and (3.10), respectively), we can see that

𝒗k𝒖k2=dist2(𝒗k,r)=miny0𝒗ky𝒇r2=miny0((1y)logdet(𝒏x𝒏Z1)+ξ,1y,(eξdy)𝒏x𝒏Z1)2=miny0{[(1y)logdet(𝒏x𝒏Z1)+ξ]2+(1y)2+(eξdy)2𝒏x2𝒏Z1F2F(y)}\begin{split}&\,\quad\|\bm{v}^{k}-\bm{u}^{k}\|^{2}={\rm dist}^{2}(\bm{v}^{k},\mathcal{F}_{{\rm r}})=\min_{y\geq 0}\|\bm{v}^{k}-y\bm{f}_{{\rm r}}\|^{2}\\ &=\min_{y\geq 0}\left\|\left((1-y)\log\det(-\bm{n}_{x}\bm{n}_{Z}^{-1})+\xi,1-y,-(e^{\frac{\xi}{d}}-y)\bm{n}_{x}\bm{n}_{Z}^{-1}\right)\right\|^{2}\\ &=\min_{y\geq 0}\Bigg{\{}\underbrace{\left[(1-y)\log\det(-\bm{n}_{x}\bm{n}_{Z}^{-1})+\xi\right]^{2}+(1-y)^{2}+(e^{\frac{\xi}{d}}-y)^{2}\bm{n}_{x}^{2}\|\bm{n}_{Z}^{-1}\|_{F}^{2}}_{F(y)}\Bigg{\}}\\ \end{split}

For the sake of brevity, we denote μ:=logdet(𝐧x𝐧Z1)\mu:=\log\det(-\bm{n}_{x}\bm{n}_{Z}^{-1}) and ν:=𝐧x2𝐧Z1F2\nu:=\bm{n}_{x}^{2}\|\bm{n}_{Z}^{-1}\|_{F}^{2}. Then we have

F(y)=(μ(y1)ξ)2+(y1)2+ν(yeξd)2.F(y)=\left(\mu(y-1)-\xi\right)^{2}+(y-1)^{2}+\nu(y-e^{\frac{\xi}{d}})^{2}.

Noting

F(y)=2μ(μ(y1)ξ)+2(y1)+2ν(yeξd)=(2μ2+2+2ν)y(2μ2+2+2μξ+2νeξ/d),\begin{split}F^{\prime}(y)&=2\mu\left(\mu(y-1)-\xi\right)+2(y-1)+2\nu(y-e^{\frac{\xi}{d}})\\ &=(2\mu^{2}+2+2\nu)y-(2\mu^{2}+2+2\mu\xi+2\nu e^{\xi/d}),\end{split}

we know that FF attains its minimum at y¯=μ2+1+μξ+νeξ/dμ2+ν+1\bar{y}=\frac{\mu^{2}+1+\mu\xi+\nu e^{\xi/d}}{\mu^{2}+\nu+1}, which is larger than 0 for sufficiently large kk (or, equivalently, sufficiently small ξ\xi).

Next we move towards the analysis of 𝐯k𝐮k2=F(y¯)\|\bm{v}^{k}-\bm{u}^{k}\|^{2}=F(\bar{y}). Consider the Taylor expansion of y¯1\bar{y}-1 and y¯eξd\bar{y}-e^{\frac{\xi}{d}} with respect to ξ\xi at 0, we have that

y¯1=μ2+1+μξ+νeξ/dμ2+ν+11=μξ+ν(eξd1)μ2+ν+1=μξ+νξdμ2+ν+1+o(ξ),\bar{y}-1=\frac{\mu^{2}+1+\mu\xi+\nu e^{\xi/d}}{\mu^{2}+\nu+1}-1=\frac{\mu\xi+\nu(e^{\frac{\xi}{d}}-1)}{\mu^{2}+\nu+1}=\frac{\mu\xi+\nu\frac{\xi}{d}}{\mu^{2}+\nu+1}+o(\xi),

and

y¯eξd=y¯1ξd+o(ξ)=(μ+νdμ2+ν+11d)ξ+o(ξ)=(μ2dμ+1dμ2+ν+1)ξ+o(ξ).\bar{y}-e^{\frac{\xi}{d}}=\bar{y}-1-\frac{\xi}{d}+o(\xi)=\left(\frac{\mu+\frac{\nu}{d}}{\mu^{2}+\nu+1}-\frac{1}{d}\right)\xi+o(\xi)=-\left(\frac{\frac{\mu^{2}}{d}-\mu+\frac{1}{d}}{\mu^{2}+\nu+1}\right)\xi+o(\xi).

Then, for all sufficiently large kk,

𝒗k𝒖k2=F(y¯)\displaystyle\|\bm{v}^{k}-\bm{u}^{k}\|^{2}=F(\bar{y})
=\displaystyle= (μ(y¯1)ξ)2+(y¯1)2+ν(y¯eξd)2\displaystyle\left(\mu(\bar{y}-1)-\xi\right)^{2}+(\bar{y}-1)^{2}+\nu(\bar{y}-e^{\frac{\xi}{d}})^{2}
=\displaystyle= (μ2+μνdμ2+ν+11)2ξ2+(μ+νdμ2+ν+1)2ξ2+ν(μ2dμ+1dμ2+ν+1)2ξ2+o(ξ2)\displaystyle\left(\frac{\mu^{2}+\mu\frac{\nu}{d}}{\mu^{2}+\nu+1}-1\right)^{2}\xi^{2}+\left(\frac{\mu+\frac{\nu}{d}}{\mu^{2}+\nu+1}\right)^{2}\xi^{2}+\nu\left(\frac{\frac{\mu^{2}}{d}-\mu+\frac{1}{d}}{\mu^{2}+\nu+1}\right)^{2}\xi^{2}+o(\xi^{2})
=\displaystyle= [(ν(1μd)+1μ2+ν+1)2+(μ+νdμ2+ν+1)2+ν(μ2dμ+1dμ2+ν+1)2Cr0]ξ2+o(ξ2).\displaystyle\Bigg{[}\underbrace{\left(\frac{\nu(1-\frac{\mu}{d})+1}{\mu^{2}+\nu+1}\right)^{2}+\left(\frac{\mu+\frac{\nu}{d}}{\mu^{2}+\nu+1}\right)^{2}+\nu\left(\frac{\frac{\mu^{2}}{d}-\mu+\frac{1}{d}}{\mu^{2}+\nu+1}\right)^{2}}_{C_{{\rm r}}\geq 0}\Bigg{]}\xi^{2}+o(\xi^{2}). (3.55)

Next we show Cr>0C_{{\rm r}}>0. Suppose that μ2dμ+1d=0\frac{\mu^{2}}{d}-\mu+\frac{1}{d}=0, then777Note that this quadratic in μ\mu has real roots because d2d\geq 2; see the discussions following (3.4). μ=d±d242>0\mu=\frac{d\pm\sqrt{d^{2}-4}}{2}>0 and μ(1μd)=1d\mu(1-\frac{\mu}{d})=\frac{1}{d}. This implies that 1μd>01-\frac{\mu}{d}>0 and hence ν(1μd)+1>0\nu(1-\frac{\mu}{d})+1>0 thanks to ν>0\nu>0. Therefore, we can see that Cr>0C_{{\rm r}}>0 because either μ2dμ+1d0\frac{\mu^{2}}{d}-\mu+\frac{1}{d}\neq 0 or ν(1μd)+10\nu(1-\frac{\mu}{d})+1\neq 0.

Using Lemma 2.4, (3.53), (3.54) and (3.55), we deduce that

Lr:=limk𝒘k𝒖k𝒘k𝒗k12=limk𝒗k𝒖k2𝒘k𝒗k2𝒘k𝒗k12\displaystyle\,\quad L_{{\rm r}}:=\lim_{k\to\infty}\frac{\|\bm{w}^{k}-\bm{u}^{k}\|}{\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}}}=\lim_{k\to\infty}\frac{\sqrt{\|\bm{v}^{k}-\bm{u}^{k}\|^{2}-\|\bm{w}^{k}-\bm{v}^{k}\|^{2}}}{\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}}}
=limk𝒏12(𝒏x|1k+dde1dk|)12𝒏2𝒗k𝒖k2(1k+dde1dk)2𝒏x2𝒏\displaystyle=\lim_{k\to\infty}\frac{\|\bm{n}\|^{\frac{1}{2}}}{\left(-\bm{n}_{x}|\frac{1}{k}+d-de^{\frac{1}{dk}}|\right)^{\frac{1}{2}}}\frac{\sqrt{\|\bm{n}\|^{2}\|\bm{v}^{k}-\bm{u}^{k}\|^{2}-(\frac{1}{k}+d-de^{\frac{1}{dk}})^{2}\bm{n}_{x}^{2}}}{\|\bm{n}\|}
=1𝒏12limk𝒏2𝒏x𝒗k𝒖k2|1k+dde1dk|+|1k+dde1dk|𝒏x\displaystyle=\frac{1}{\|\bm{n}\|^{\frac{1}{2}}}\lim_{k\to\infty}\sqrt{\frac{\|\bm{n}\|^{2}}{-\bm{n}_{x}}\frac{\|\bm{v}^{k}-\bm{u}^{k}\|^{2}}{|\frac{1}{k}+d-de^{\frac{1}{dk}}|}+\Big{|}\frac{1}{k}+d-de^{\frac{1}{dk}}\Big{|}\cdot\bm{n}_{x}}
=1𝒏12limξ0𝒏2𝒏xCrξ2+o(ξ2)ξ22d+o(ξ2)+𝒏x(ξ22d+o(ξ2))\displaystyle=\frac{1}{\|\bm{n}\|^{\frac{1}{2}}}\lim_{\xi\to 0}\sqrt{\frac{\|\bm{n}\|^{2}}{-\bm{n}_{x}}\frac{C_{{\rm r}}\xi^{2}+o(\xi^{2})}{\frac{\xi^{2}}{2d}+o(\xi^{2})}+\bm{n}_{x}\left(\frac{\xi^{2}}{2d}+o(\xi^{2})\right)}
=1𝒏122𝒏2Crd𝒏x=2𝒏Crd𝒏x>0.\displaystyle=\frac{1}{\|\bm{n}\|^{\frac{1}{2}}}\sqrt{\frac{2\|\bm{n}\|^{2}C_{{\rm r}}d}{-\bm{n}_{x}}}=\sqrt{\frac{2\|\bm{n}\|C_{{\rm r}}d}{-\bm{n}_{x}}}>0. (3.56)

By contrast, applying (3.45), there exists κB>0\kappa_{B}>0 such that

𝒘k𝒖k=dist(𝒘k,r)κBdist(𝒘k,𝒦logdet)12κB𝒘k𝒗k12.\|\bm{w}^{k}-\bm{u}^{k}\|={\rm dist}(\bm{w}^{k},\mathcal{F}_{{\rm r}})\leq\kappa_{B}{\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}})^{\frac{1}{2}}\leq\kappa_{B}\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}}.

This shows that LrκB<L_{{\rm r}}\leq\kappa_{B}<\infty. Moreover, from (3.56), for large enough kk, we have 𝐰k𝐮kLr2𝐰k𝐯k12\|\bm{w}^{k}-\bm{u}^{k}\|\geq\frac{L_{{\rm r}}}{2}\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}}. Therefore, for sufficiently large kk, we have

Lr2𝒘k𝒗k12dist(𝒘k,r)κBdist(𝒘k,𝒦logdet)12κB𝒘k𝒗k12.\frac{L_{{\rm r}}}{2}\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}}\leq{\rm dist}(\bm{w}^{k},\mathcal{F}_{{\rm r}})\leq\kappa_{B}{\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}})^{\frac{1}{2}}\leq\kappa_{B}\|\bm{w}^{k}-\bm{v}^{k}\|^{\frac{1}{2}}.

Consequently, it holds that for all large enough kk,

Lr2dist(𝒘k,r)dist(𝒘k,𝒦logdet)12κB.\frac{L_{{\rm r}}}{2}\leq\frac{{\rm dist}(\bm{w}^{k},\mathcal{F}_{{\rm r}})}{{\rm dist}(\bm{w}^{k},\mathcal{K}_{{\rm logdet}})^{\frac{1}{2}}}\leq\kappa_{B}.

Similar to the argument in Remark 3.3, we conclude that the choice of ||12|\cdot|^{\frac{1}{2}} is tight.

By Theorem 3.15, we have the following one-step facial residual function for 𝒦logdet\mathcal{K}_{{\rm logdet}} and 𝒏\bm{n}.

Corollary 3.17.

Let 𝐧=(𝐧x,𝐧x(logdet(𝐧Z/𝐧x)+d),𝐧Z)𝒦logdet\bm{n}=(\bm{n}_{x},\bm{n}_{x}(\log\det(-\bm{n}_{Z}/\bm{n}_{x})+d),\bm{n}_{Z})\in\partial\mathcal{K}_{{\rm logdet}}^{*} with 𝐧x<0\bm{n}_{x}<0 and 𝐧Z0\bm{n}_{Z}\succ 0 such that r=𝒦logdet{𝐧}\mathcal{F}_{{\rm r}}=\mathcal{K}_{{\rm logdet}}\cap\{\bm{n}\}^{\perp}. Let γ𝐧,t\gamma_{\bm{n},t} be as in (3.23) with =r{\cal F}=\mathcal{F}_{{\rm r}} and 𝔤=||12\mathfrak{g}=|\cdot|^{\frac{1}{2}}. Then the function ψ𝒦,𝐧:IR+×IR+IR+\psi_{\mathcal{K},\bm{n}}:{\rm I\!R}_{+}\times{\rm I\!R}_{+}\to{\rm I\!R}_{+} defined by

ψ𝒦,𝒏(ϵ,t):=max{ϵ,ϵ/𝒏}+max{2t12,2γ𝒏,t1}(ϵ+max{ϵ,ϵ/𝒏})12\psi_{\mathcal{K},\bm{n}}(\epsilon,t):=\max\left\{\epsilon,\epsilon/\|\bm{n}\|\right\}+\max\left\{2t^{\frac{1}{2}},2\gamma_{\bm{n},t}^{-1}\right\}\left(\epsilon+\max\left\{\epsilon,\epsilon/\|\bm{n}\|\right\}\right)^{\frac{1}{2}}

is a one-step facial residual function for 𝒦logdet\mathcal{K}_{{\rm logdet}} and 𝐧\bm{n}.

3.3 Error bounds

In this subsection, we combine all the previous analysis to deduce the error bound concerning (Feas) with 𝒦=𝒦logdet\mathcal{K}=\mathcal{K}_{{\rm logdet}}. We proceed as follows.

We consider  (Feas) with 𝒦=𝒦logdet\mathcal{K}=\mathcal{K}_{{\rm logdet}} and we suppose (Feas) is feasible. We also let 𝔡:=dPPS(𝒦logdet,+𝒂)\mathfrak{d}:=d_{{\rm PPS}}(\mathcal{K}_{{\rm logdet}},\mathcal{L}+\bm{a}), where we recall that dPPSd_{{\rm PPS}} denotes the distance to the PPS condition, i.e., the minimum number of facial reduction steps necessary to find a face {\cal F} such that {\cal F} and +𝒂{\cal L}+{\bm{a}} satisfy the PPS condition; see [26, Section 2.4.1].

In particular, invoking [26, Proposition 5], there exists a chain of faces

𝔡+1𝔡21=𝒦logdet\mathcal{F}_{\mathfrak{d}+1}\subsetneq\mathcal{F}_{\mathfrak{d}}\subsetneq\dots\subsetneq\mathcal{F}_{2}\subsetneq\mathcal{F}_{1}=\mathcal{K}_{{\rm logdet}} (3.57)

together with 𝒏1,,𝒏𝔡\bm{n}^{1},\ldots,\bm{n}^{\mathfrak{d}} satisfying the following properties:

  1. (a)

    For all i{1,,𝔡}i\in\{1,\ldots,\mathfrak{d}\} we have

    𝒏ii{𝒂}andi+1=i{𝒏i}.\displaystyle\bm{n}^{i}\in\mathcal{F}_{i}^{*}\cap\mathcal{L}^{\perp}\cap\{\bm{a}\}^{\perp}\ \ {\rm and}\ \ \mathcal{F}_{i+1}=\mathcal{F}_{i}\cap\{\bm{n}^{i}\}^{\perp}.
  2. (b)

    𝔡+1(+𝒂)=𝒦logdet(+𝒂)\mathcal{F}_{\mathfrak{d}+1}\cap(\mathcal{L}+\bm{a})=\mathcal{K}_{{\rm logdet}}\cap(\mathcal{L}+\bm{a}) and 𝔡+1\mathcal{F}_{\mathfrak{d}+1} and +𝒂\mathcal{L}+\bm{a} satisfy the PPS condition.

In order to get the final error bound for (Feas) we aggregate the one-step facial residual functions for each of i\mathcal{F}_{i} and 𝒏i\bm{n}^{i} using the recipe described in [23, Theorem 3.8].

So far, we only computed facial residual functions for 1=𝒦logdet\mathcal{F}_{1}=\mathcal{K}_{{\rm logdet}} and 𝒏1𝒦logdet\bm{n}^{1}\in\mathcal{K}_{{\rm logdet}}^{*}, but we need the ones for the other i\mathcal{F}_{i} and 𝒏i\bm{n}^{i}. Fortunately, thanks to the facial structure of 𝒦logdet\mathcal{K}_{{\rm logdet}}, if 𝔡2\mathfrak{d}\geq 2, then 2\mathcal{F}_{2} must be a face of the form d\mathcal{F}_{{\rm d}} or #\mathcal{F}_{\#} (see (3.11) and (3.12)). This is because all other possibilities correspond to non-exposed faces or faces of dimension 11 (for which the PPS condition is automatically satisfied).

#\mathcal{F}_{\#} and d\mathcal{F}_{{\rm d}} are symmetric cones [14, 15] since they are linearly isomorphic to a direct product of IR{\rm I\!R}_{-} and a face of a positive semidefinite cone (which are symmetric cones on their own right, e.g., [26, Proposition 31]). The conclusion is that for the faces “down the chain” we can compute the one-step facial residual functions using the general result for symmetric cones given in [26, Theorem 35]. We note this as a lemma.

Lemma 3.18.

Let ¯\bar{\mathcal{F}} be a face of d\mathcal{F}_{{\rm d}}. Let 𝐧¯{𝐚}\bm{n}\in\bar{\mathcal{F}}^{*}\cap{\mathcal{L}}^{\perp}\cap\{\bm{a}\}^{\perp}. Then, there exists a constant κ>0\kappa>0 such that the function

ψ¯,𝒏(ϵ,t)κϵ+κϵt\psi_{\bar{\mathcal{F}},\bm{n}}(\epsilon,t)\coloneqq\kappa\epsilon+\kappa\sqrt{\epsilon t}

is a one-step facial residual function for ¯\bar{\mathcal{F}} and 𝐧\bm{n}.

Proof.

Follows by invoking [26, Theorem 35] with 𝒦¯{\cal K}\coloneqq\bar{\mathcal{F}}, ¯\mathcal{F}\coloneqq\bar{\mathcal{F}} and z𝒏z\coloneqq\bm{n}. ∎

We are now positioned to prove our main result in this paper.

Theorem 3.19 (Error bounds for (Feas) with 𝒦=𝒦logdet\mathcal{K}=\mathcal{K}_{{\rm logdet}}).

Consider (Feas) with 𝒦=𝒦logdet\mathcal{K}=\mathcal{K}_{{\rm logdet}}. Suppose (Feas) is feasible and let 𝔡:=dPPS(𝒦logdet,+𝐚)\mathfrak{d}:=d_{{\rm PPS}}(\mathcal{K}_{{\rm logdet}},\mathcal{L}+\bm{a}) and consider a chain of faces as in (3.57). Then 𝔡min{d1,dim({𝐚})}+1\mathfrak{d}\leq\min\{d-1,{\rm dim\,}(\mathcal{L}^{\perp}\cap\{\bm{a}\}^{\perp})\}+1 and the following items hold:

  1. (i)

    If 𝔡=0\mathfrak{d}=0, then (Feas) satisfies a Lipschitzian error bound.

  2. (ii)

    If 𝔡=1\mathfrak{d}=1, we have 2={𝟎}\mathcal{F}_{2}=\{\bm{0}\} or 2=d\mathcal{F}_{2}=\mathcal{F}_{{\rm d}} or 2=#\mathcal{F}_{2}=\mathcal{F}_{\#} or 2=r\mathcal{F}_{2}=\mathcal{F}_{{\rm r}} or 2=\mathcal{F}_{2}=\mathcal{F}_{\infty}.

    1. (a)

      If 2={𝟎}\mathcal{F}_{2}=\{\bm{0}\}, then (Feas) satisfies a Lipschitzian error bound.

    2. (b)

      If 2=d\mathcal{F}_{2}=\mathcal{F}_{{\rm d}}, then (Feas) satisfies an entropic error bound.888 An entropic error bound is an error bound with the residual function being 𝔤d\mathfrak{g}_{{\rm d}}, see Definition 2.2. A log-type error bound refers to an error bound with the residual function being 𝔤log\mathfrak{g}_{\log}. See (3.25) and (3.31) for the definitions of 𝔤d\mathfrak{g}_{{\rm d}} and 𝔤log\mathfrak{g}_{\log}, respectively.

    3. (c)

      If 2=#\mathcal{F}_{2}=\mathcal{F}_{\#} and 𝒏y1>0\bm{n}^{1}_{y}>0, then (Feas) satisfies a Hölderian error bound with exponent 12\frac{1}{2}. If 2=#\mathcal{F}_{2}=\mathcal{F}_{\#} and 𝒏y1=0\bm{n}^{1}_{y}=0, then (Feas) satisfies a log-type error bound.8

    4. (d)

      If 2=r\mathcal{F}_{2}=\mathcal{F}_{{\rm r}}, then (Feas) satisfies a Hölderian error bound with exponent 12\frac{1}{2}.

    5. (e)

      If 2=\mathcal{F}_{2}=\mathcal{F}_{\infty}and 𝒏y1>0\bm{n}^{1}_{y}>0, then (Feas) satisfies a Lipschitzian error bound. If 2=\mathcal{F}_{2}=\mathcal{F}_{\infty} and 𝒏y1=0\bm{n}^{1}_{y}=0, then (Feas) satisfies a log-type error bound.8

  3. (iii)

    If 𝔡2\mathfrak{d}\geq 2 we have 2=d\mathcal{F}_{2}=\mathcal{F}_{{\rm d}} or 2\mathcal{F}_{2} is of form #\mathcal{F}_{\#}. Then, an error bound with residual function 𝔥𝔥𝔥𝔡1𝔤¯\underbrace{\mathfrak{h}\circ\mathfrak{h}\circ\cdots\circ\mathfrak{h}}_{\mathfrak{d}-1}\circ\,\bar{\mathfrak{g}} holds, where 𝔥=||12\mathfrak{h}=|\cdot|^{\frac{1}{2}} and

    𝔤¯={𝔤d if 2=d,𝔤log if 2=# and 𝒏y1=0,||12 if 2=# and 𝒏y1>0.\bar{\mathfrak{g}}=\begin{cases}\mathfrak{g}_{{\rm d}}&\text{ if }\mathcal{F}_{2}=\mathcal{F}_{{\rm d}},\\[2.84544pt] \mathfrak{g}_{\log}&\text{ if }\mathcal{F}_{2}=\mathcal{F}_{\#}\text{ and }\bm{n}^{1}_{y}=0,\\[2.84544pt] |\cdot|^{\frac{1}{2}}&\text{ if }\mathcal{F}_{2}=\mathcal{F}_{\#}\text{ and }\bm{n}^{1}_{y}>0.\end{cases} (3.58)
Proof.

Following the discussion so far, if 𝔡2\mathfrak{d}\geq 2, it is because 2=d\mathcal{F}_{2}=\mathcal{F}_{{\rm d}} or 2\mathcal{F}_{2} is of the form #\mathcal{F}_{\#}. Also, as remarked previously, in this case, 2\mathcal{F}_{2} is a symmetric cone that is a direct product of a polyhedral cone (of rank at most 11) and a symmetric cone of rank at most dd. Considering the conic feasibility problem with 𝒦=2\mathcal{K}=\mathcal{F}_{2}, it follows from [26, Proposition 24, Remark 39] that

dPPS(2,+𝒂)min{d1,dim({𝒂})}.d_{{\rm PPS}}(\mathcal{F}_{2},\mathcal{L}+\bm{a})\leq\min\{d-1,{\rm dim\,}(\mathcal{L}^{\perp}\cap\{\bm{a}\}^{\perp})\}.

Hence, by adding the first facial reduction step to get 2\mathcal{F}_{2}, we obtain the bound on 𝔡\mathfrak{d}. Next, we examine the possibilities for 𝔡\mathfrak{d}.

  1. (i)(i)

    If 𝔡=0\mathfrak{d}=0, then (Feas) satisfies the PPS condition and so a Lipschitzian error bound holds because of [6, Corollary 6].

  2. (ii)(ii)

    If 𝔡=1\mathfrak{d}=1, then the possibilities for 2\mathcal{F}_{2} are {𝟎},d\{\bm{0}\},\,\mathcal{F}_{{\rm d}}, #\,\mathcal{F}_{\#}, \mathcal{F}_{\infty} or r\mathcal{F}_{{\rm r}}. Then, except for the case {𝟎}\{\bm{0}\}, the error bound then follows from [23, Theorem 3.8] and the facial residual functions computed in Corollaries 3.4, 3.10, 3.14 and 3.17. The case 2={𝟎}\mathcal{F}_{2}=\{\bm{0}\} follows from [26, Proposition 27].

  3. (iii)(iii)

    In this case, it must hold that 2=d\mathcal{F}_{2}=\mathcal{F}_{{\rm d}} or 2\mathcal{F}_{2} is of form #\mathcal{F}_{\#}. Both cases, as discussed previously, correspond to symmetric cones. The error bound is obtained by invoking [23, Theorem 3.8] and using the facial residual functions constructed in Corollaries 3.4 and 3.10 and Lemma 3.18.

From Theorem 3.19 we see the presence of non-Hölderian behaviour in the cases of entropic and logarithmic error bounds. A similar phenomenon was observed in the study of error bounds for the exponential cone, see [23, Section 4.4]. The analysis of convergence rates of algorithms under non-Hölderian error bounds is still a challenge (see [25, Sections 5 and 6]) and 𝒦logdet\mathcal{K}_{{\rm logdet}} is thus another interesting test bed for research ideas on this topic.

References

  • [1] S. D. Ahipasaoglu, P. Sun, and M. J. Todd. Linear convergence of a modified Frank-Wolfe algorithm for computing minimum-volume enclosing ellipsoids. Optimization Methods and Software, 23(1):5–19, 2008.
  • [2] C. L. Atwood. Optimal and efficient designs of experiments. Annals of Mathematical Statistics, 40:1570–1602, 1969.
  • [3] G. P. Barker and D. Carlson. Cones of diagonally dominant matrices. Pacific Journal of Mathematics, 57(1):15 – 32, 1975.
  • [4] S. Bartels, W. Boomsma, J. Frellsen, and D. Garreau. Kernel-matrix determinant estimates from stopped Cholesky decomposition. Journal of Machine Learning Research, 24:71:1–71:57, 2023.
  • [5] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex feasibility problems. SIAM Review, 38(3):367–426, 1996.
  • [6] H. H. Bauschke, J. M. Borwein, and W. Li. Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization. Mathematical Programming, 86(1):135–160, Sep 1999.
  • [7] J. M. Borwein and H. Wolkowicz. Regularizing the abstract convex program. Journal of Mathematical Analysis and Applications, 83(2):495 – 530, 1981.
  • [8] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, 2004.
  • [9] C. Coey, L. Kapelevich, and J. P. Vielma. Solving natural conic formulations with Hypatia.jl. INFORMS Journal on Computing, 34:2686–2699, 2022.
  • [10] C. Coey, L. Kapelevich, and J. P. Vielma. Conic optimization with spectral functions on Euclidean Jordan algebras. Mathematics of Operations Research, 48(4):1906–1933, 2023.
  • [11] C. Coey, L. Kapelevich, and J. P. Vielma. Performance enhancements for a generic conic interior point algorithm. Mathematical Programming Computation, 15(1):53–101, 2023.
  • [12] A. d’Aspremont, O. Banerjee, and L. El Ghaoui. First-order methods for sparse covariance selection. SIAM Journal on Matrix Analysis and Applications, 30(1):56–66, 2008.
  • [13] A. P. Dempster. Covariance selection. Biometrics, 28(1):157–175, 1972.
  • [14] J. Faraut and A. Korányi. Analysis on Symmetric Cones. Clarendon Press, Oxford, 1994.
  • [15] L. Faybusovich. Several Jordan-algebraic aspects of optimization. Optimization, 57(3):379–393, 2008.
  • [16] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008.
  • [17] D. Henrion and J. Malick. Projection methods for conic feasibility problems: applications to polynomial sum-of-squares decompositions. Optimization Methods and Software, 26(1):23–46, 2011.
  • [18] A. J. Hoffman. On approximate solutions of systems of linear inequalities. Journal of Research of the National Bureau of Standards, 49(4):263–265, 1952.
  • [19] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1990.
  • [20] A. Kulesza and B. Taskar. Determinantal point processes for machine learning. Foundations and Trend® in Machine Learning, 5(2-3):123–286, 2012.
  • [21] A. S. Lewis and J.-S. Pang. Error bounds for convex inequality systems. In Generalized Convexity, Generalized Monotonicity: Recent Results, pages 75–110. Springer, US, 1998.
  • [22] Y. Lin, S. B. Lindstrom, B. F. Lourenço, and T. K. Pong. Generalized power cones: optimal error bounds and automorphisms. ArXiv e-prints. To appear at the SIAM Journal on Optimization, 2023. arXiv:2211.16142.
  • [23] S. B. Lindstrom, B. F. Lourenço, and T. K. Pong. Error bounds, facial residual functions and applications to the exponential cone. Mathematical Programming, 200:229–278, 2023.
  • [24] S. B. Lindstrom, B. F. Lourenço, and T. K. Pong. Optimal error bounds in the absence of constraint qualifications with applications to the pp-cones and beyond. arXiv preprint, 2021. arXiv:2109.11729.
  • [25] T. Liu and B. F. Lourenço. Convergence analysis under consistent error bounds. Foundations of Computational Mathematics, pages 1–51, 2022.
  • [26] B. F. Lourenço. Amenable cones: error bounds without constraint qualifications. Mathematical Programming, 186:1–48, 2021.
  • [27] B. F. Lourenço, M. Muramatsu, and T. Tsuchiya. Facial reduction and partial polyhedrality. SIAM Journal on Optimization, 28(3):2304–2326, 2018.
  • [28] B. F. Lourenço, V. Roshchina, and J. Saunderson. Amenable cones are particularly nice. SIAM Journal on Optimization, 32(3):2347–2375, 2022.
  • [29] Z.-Q. Luo and P. Tseng. Error bounds and convergence analysis of feasible descent methods: a general approach. Annals of Operations Research, 46(1):157–178, 1993.
  • [30] MOSEK ApS. MOSEK Modeling Cookbook Release 3.3.0, 2022. URL: https://docs.mosek.com/modeling-cookbook/index.html.
  • [31] Y. Nesterov and A. Nemirovskii. Interior-point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia, 1994.
  • [32] J.-S. Pang. Error bounds in mathematical programming. Mathematical Programming, 79(1):299–332, 1997.
  • [33] G. Pataki. Strong duality in conic linear programming: Facial reduction and extended duals. In Computational and Analytical Mathematics, volume 50, pages 613–634. Springer, New York, 2013.
  • [34] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, Cambridge, MA, 2005.
  • [35] R. T. Rockafellar. Convex Analysis. Princeton University Press, New Jersey, 1997.
  • [36] H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC, New York, 2005.
  • [37] J. F. Sturm. Error bounds for linear matrix inequalities. SIAM Journal on Optimization, 10(4):1228–1248, 2000.
  • [38] M. J. Todd. Minimum-volume Ellipsoids: Theory and Algorithms. SIAM, Philadelphia, 2016.
  • [39] S. Van Aelst and P. Rousseeuw. Minimum volume ellipsoid. Wiley Interdisciplinary Reviews: Computational Statistics, 1(1):71–82, 2009.
  • [40] H. Waki and M. Muramatsu. Facial reduction algorithms for conic optimization problems. Journal of Optimization Theory and Applications, 158(1):188–215, 2013.
  • [41] S. Yang, Z. Lu, X. Shen, P. Wonka, and J. Ye. Fused multiple graphical lasso. SIAM Journal on Optimization, 25(2):916–943, 2015.
  • [42] N. Zhang, Y. Zhang, D. Sun, and K.-C. Toh. An efficient linearly convergent regularized proximal point algorithm for fused multiple graphical Lasso problems. SIAM Journal on Mathematics of Data Science, 3(2):524–543, 2021.
  • [43] Z. Zhou and A. M.-C. So. A unified approach to error bounds for structured convex optimization problems. Mathematical Programming, 165(2):689–728, Oct 2017.