This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Tight and attainable quantum speed limit for open systems

Zi-yi Mai    Chang-shui Yu [email protected] School of Physics, Dalian University of Technology, Dalian 116024, P.R. China
Abstract

We develop an intuitive geometric picture of quantum states, define a particular state distance, and derive a quantum speed limit (QSL) for open systems. Our QSL is attainable because any initial state can be driven to a final state by the particular dynamics along the geodesic. We present the general condition for dynamics along the geodesic for our QSL. As evidence, we consider the generalized amplitude damping dynamics and the dephasing dynamics to demonstrate the attainability. In addition, we also compare our QSL with others by strict analytic processes as well as numerical illustrations, and show our QSL is tight in many cases. It indicates that our work is significant in tightening the bound of evolution time.

pacs:
03.65.-w, 03.65.Yz

I Introduction

Quantum speed limit (QSL) (or equivalently to call the quantum speed limit time (QSLT)) is an important feature of a dynamical system, which mainly characterizes the minimal time required for a state evolving to a target state. It is a constrained optimization problem important in quantum metrology [1, 2, 3], quantum optimal control [4, 5, 6, 7], quantum information processing [8, 9]. Recently, it’s considered a meaningful index for a given quantum system to evaluate its dynamics characteristics involving robustness [10], non-Markovianity [11, 12], upper bound of changing rate of expected value of observable [13], decoherence time [14, 15, 16, 17], interaction speed in spin system [18, 19] and changing rate of phase [20] and so on [21, 22]. Besides, the quantum speed limit is widely used to explore the intrinsic nature of physical systems, such as for the many-body system [23], ultracold atomic system [24], non-Hermitian system [25] and entanglement [26, 27, 28, 29, 30, 23]. For the application fields, studies of the quantum speed limit are involved in machine learning [31], quantum measurement [32] and thermometry [33].

QSL was first addressed for a unitary evolution from a pure state to its orthogonal state by Mandelstam and Tamm [34], who presented the famous time-Energy uncertainty (MT bound) τMT=π/(2ΔE)\tau_{MT}^{\bot}=\pi/(2\Delta E), where (ΔE)2=H2H2(\Delta E)^{2}=\langle H^{2}\rangle-\langle H\rangle^{2} stands for the variance of Hamiltonian of the system [35]. Later, Margolus and Levitin [36] established another bound (ML bound) of the unitary evolution between pure orthogonal states as τML=π/2E\tau_{ML}^{\bot}=\pi/2E based on the average energy EE [35]. A tighter bound was obtained by the combination of MT and ML bounds as τMTML=π/(2min{E,ΔE})\tau_{MT-ML}^{\bot}=\pi/(2\min\{E,\Delta E\}) [37]. Giovannetti et al. generalized MT and ML bounds to the mixed initial state [38]. However, a deeper understanding of the QSL could count on the geometrical perspective first developed by Anandan and Aharanov for the MT bound with time-dependent Hamiltonian in terms of the Fubini-Study metric on the pure-state space [39]. Up to now, various geometrical distances have been exploited to develop QSL for density matrices [40, 41, 42, 43, 44, 45, 46, 47, 48, 35, 49, 50, 51, 52, 15, 13, 53, 54]. Considering the inevitable contact with environments, the QSL has also been developed for open system [55] based on different metrics such as quantum Fisher information [56], relative purity [51], and the MT bound and the ML bound have been extended to open systems in terms of a geometric way [57]. In addition, QSL is also characterized based on quantum resource theory [58]. It is even shown that the speed limit is not a unique phenomenon in quantum systems [59, 60]. Every QSL could have its significance in that it gives a potentially different understanding of the bound on the evolution time of a system. The most typical examples are the MT and ML QSLs which bound the evolution time by the fluctuation of energy and the average energy, respectively. In this sense, it is important to establish a distinguished QSL.

The tightness and the attainability are key aspects of a good QSL bound, which strongly depends on the different understanding perspectives of QSL [61, 62]. If the dynamics (Hamiltonian or Lindblad) is fixed, the QSLT bounds the minimum evolution time between a pair of states with a given ‘distance.’ If the state ‘distance’ is given, the tight QSL bound means that dynamics drive the given initial state to the final state with the minimum time. MT and ML bounds are attainable for a unitary evolution if the initial state is the equal-weight superposition of two eigenstates of the Hamiltonian with zero ground-state energy [36]. Ref. [46] generalized the tight bound for the unitary case to the mixed states, Ref. [63] verifies this bound is attainable for any dimension. Ref. [64] proposed a QSLT bound attainable for dephasing and depolarized channels. For a tight bound, many papers focus on combining different QSLs.

In this paper, we establish a tight and attainable QSLT for open systems in terms of a geometric approach. Similar to the Bloch representation of quantum states, we develop an intuitive geometric picture of quantum states. All the states are mapped to the surface of the high-dimensional sphere. In this picture, we derive a QSL for an open quantum system by a particularly-defined state distance. Our QSL is attainable in that for any given initial state, one can always find a dynamics to drive the initial state to the final state along the geodesic. In particular, we present a general condition for dynamics along the geodesic. The generalized amplitude damping dynamics and the dephasing dynamics evidence the attainability. In addition, we compare our QSL and the one in Ref. [64] by considering the unitary evolution of pure states and the particular amplitude damping dynamics. It is shown that our QSL is tight. In addition, numerical examples show that the QSLT of Ref. [64] is tighter than ours in many cases, which implies the combination of the two QSLs is necessary. The paper is organized as follows. We first propose the intuitive geometric picture of quantum states and present our QSL. Then we arrive at the general condition for dynamics along the geodesic, and then we give concrete examples to demonstrate the attainability of our QSL. Finally, we show the tightness of our QSL by comparing particular dynamics.

II Quantum speed limit

For an open system, the evolution of the quantum state ρt\rho_{t} is governed by the general master equation as

ρ˙t=t(ρt),\dot{\rho}_{t}=\mathcal{L}_{t}\left(\rho_{t}\right), (1)

where t()\mathcal{L}_{t}\left(\cdot\right) denotes a general dissipator of the system and the subscript tt indicates the potential dependence on time, in particular, we don’t specify whether t()\mathcal{L}_{t}\left(\cdot\right) is Lindblad or not. Let Pt=P(ρt)=ρt/Trρt2P_{t}=P\left(\rho_{t}\right)=\rho_{t}/\sqrt{Tr\rho_{t}^{2}}, then for any pair of PtP_{t} and PtP_{t}^{\prime} we can define

D(Pt||Pt)=arccosPt,PtD(P_{t}||P_{t}^{\prime})=\arccos\langle P_{t},P_{t}^{\prime}\rangle (2)

based on the Hilbert-Schmidt distance Pt,Pt=TrPtPt\langle P_{t},P_{t}^{\prime}\rangle=TrP_{t}^{{\dagger}}P_{t}^{\prime}. Based on Schoeberg’s Theorem [65], which is firstly introduced by Ref. [66] to tackle with distance function equipped by the metric space consisted of density matrices, one can easily prove that D(Pt||Pt)D(P_{t}||P_{t}^{\prime}) is a good distance. Thus all PtP_{t} can form a metric space S()S\left(\mathcal{H}\right) with respect to the distance D(Pt||Pt)D(P_{t}||P_{t}^{\prime}). It is obvious that D(Pt||Pt)D(P_{t}||P_{t}^{\prime}) for a pair of density matrices ρ\rho and σ\sigma can be explicitly written as

D(ρ||σ)=arccosGM(ρ,σ),D(\rho||\sigma)=\arccos\mathcal{F}_{GM}(\rho,\sigma), (3)

where GM(ρ,σ)=Trρσ/(Trρ2Trσ2)\mathcal{F}_{GM}(\rho,\sigma)=Tr\rho\sigma/(\sqrt{Tr\rho^{2}}\sqrt{Tr\sigma^{2}}) is the alternative fidelity introduced in Ref. [67]. The alternative fidelity is also used in a different way for QSLT in Ref. [68].

To get the QSLT, we need the differential form of the distance D(ρ||σ)D(\rho||\sigma). Considering the infinitesimal evolution ρtρt+dρt\rho_{t}\longmapsto\rho_{t}+d\rho_{t}, the distance reads

ds=D(ρt||ρt+dρt)=arccosTrρt(ρt+dρt)Trρt2Tr(ρt+dρt)2.ds=D(\rho_{t}||\rho_{t}+d\rho_{t})=\arccos\frac{Tr\rho_{t}(\rho_{t}+d\rho_{t})}{\sqrt{Tr\rho_{t}^{2}}\sqrt{Tr(\rho_{t}+d\rho_{t})^{2}}}. (4)

A direct deformation gives Trρt(ρt+dρt)Trρt2Tr(ρt+dρt)2=cosds=1ds22\frac{Tr\rho_{t}(\rho_{t}+d\rho_{t})}{\sqrt{Tr\rho_{t}^{2}}\sqrt{Tr(\rho_{t}+d\rho_{t})^{2}}}=\cos ds=1-\frac{ds^{2}}{2}, which indicates

ds2=2(1Trρt(ρt+dρt)Trρt2Tr(ρt+dρt)2).ds^{2}=2(1-\frac{Tr\rho_{t}(\rho_{t}+d\rho_{t})}{\sqrt{Tr\rho_{t}^{2}}\sqrt{Tr(\rho_{t}+d\rho_{t})^{2}}}). (5)

Under the condition dρt0d\rho_{t}\longmapsto 0, we can expand 1Tr(ρt+dρt)2\frac{1}{\sqrt{Tr(\rho_{t}+d\rho_{t})^{2}}} to the second order:

1Tr(ρt+dρt)2=1Trdρt22Trρt2TrρtdρtTr(ρt)2+3(Trρtdρt)22(Trρt)2Trρt2\frac{1}{\sqrt{Tr(\rho_{t}+d\rho_{t})^{2}}}=\frac{1-\frac{Trd\rho_{t}^{2}}{2Tr\rho_{t}^{2}}-\frac{Tr\rho_{t}d\rho_{t}}{Tr(\rho_{t})^{2}}+\frac{3(Tr\rho_{t}d\rho_{t})^{2}}{2(Tr\rho_{t})^{2}}}{\sqrt{Tr\rho_{t}^{2}}} (6)

Substituting Eq. (6) into Eq. (5), then we can immediately obtain the metric as

ds2=Tr(dρt)2Trρt2(Trρtdρt)2(Trρt2)2.ds^{2}=\frac{Tr(d\rho_{t})^{2}Tr\rho_{t}^{2}-(Tr\rho_{t}d\rho_{t})^{2}}{(Tr\rho_{t}^{2})^{2}}. (7)

Denote t(Pt)=ρ˙t/Trρt2\mathcal{L}_{t}(P_{t})=\dot{\rho}_{t}/\sqrt{Tr\rho_{t}^{2}} if not confused(especially for the Lindbladian [69], a form of t(Pt)\mathcal{L}_{t}(P_{t}) is reasonable because 1/Trρt21/\sqrt{Tr\rho_{t}^{2}} is just a real number which is commutative with any operator), then the metric given in Eq. (7) turns to form of the Fubini-Study metric as

(ds/dt)2=t(Pt),t(Pt)Pt,t(Pt)2.(ds/dt)^{2}=\langle\mathcal{L}_{t}(P_{t}),\mathcal{L}_{t}(P_{t})\rangle-\langle P_{t},\mathcal{L}_{t}(P_{t})\rangle^{2}. (8)

For infinitesimal dtdt, we have

Pt+dt\displaystyle P_{t+dt} =\displaystyle= ρt+dρtTr(ρt+dρt)2\displaystyle\frac{\rho_{t}+d\rho_{t}}{\sqrt{Tr(\rho_{t}+d\rho_{t})^{2}}} (9)
=\displaystyle= Pt+t(Pt)dtPtPt,t(Pt)dt.\displaystyle P_{t}+\mathcal{L}_{t}(P_{t})dt-P_{t}\langle P_{t},\mathcal{L}_{t}(P_{t})\rangle dt.

According to P˙t=Pt+dtPtdt\dot{P}_{t}=\frac{P_{t+dt}-P_{t}}{dt}, one can arrive at

P˙t,P˙t=t(Pt),t(Pt)Pt,t(Pt)2.\langle\dot{P}_{t},\dot{P}_{t}\rangle=\langle\mathcal{L}_{t}(P_{t}),\mathcal{L}_{t}(P_{t})\rangle-\langle P_{t},\mathcal{L}_{t}(P_{t})\rangle^{2}. (10)

Comparing Eq. (8) and Eq. (10), we have

vt2=(ds/dt)2=P˙t,P˙t.v_{t}^{2}=(ds/dt)^{2}=\langle\dot{P}_{t},\dot{P}_{t}\rangle. (11)

In the above metric space, we can derive a speed limit based on the metric Eq. (10) and the distance Eq. (3) are as follows.

Theorem 1.-The minimal time for a given state ρ0\rho_{0} to evolve to the state ρτ\rho_{\tau} subject to the dynamics Eq. (1) is lower bounded by

τqsl=arccosP0,Pτ1τ0τP˙t,P˙t𝑑t\tau_{qsl}=\frac{\arccos\langle P_{0},P_{\tau}\rangle}{\frac{1}{\tau}\int\nolimits_{0}^{\tau}\sqrt{\langle\dot{P}_{t},\dot{P}_{t}\rangle}dt} (12)

with P0=ρ0/Trρ02P_{0}=\rho_{0}/\sqrt{Tr\rho_{0}^{2}} and Pτ=ρτ/Trρτ2P_{\tau}=\rho_{\tau}/\sqrt{Tr\rho_{\tau}^{2}}.

Proof.-Based on the distance, one can find that

arccosP0,Pτ=D(ρ0||ρτ)\displaystyle\arccos\langle P_{0},P_{\tau}\rangle=D(\rho_{0}||\rho_{\tau})
t=0τD(ρt||ρt+dρt)=0τ|dsdt|dt\displaystyle\leq\sum_{t=0}^{\tau}D(\rho_{t}||\rho_{t}+d\rho_{t})=\int_{0}^{\tau}\left|\frac{ds}{dt}\right|dt
=0τP˙t,P˙t𝑑t,\displaystyle=\int\nolimits_{0}^{\tau}\sqrt{\langle\dot{P}_{t},\dot{P}_{t}\rangle}dt, (13)

which directly leads to ττqsl\tau\geq\tau_{qsl} as given in Eq. (12). \square

Now we’d like to give an intuitive understanding of the map between this metric space and the Bloch representation. As is given in Fig. 1. the states in the metric space form a spherical crown and are one-to-one mapped to the bottom surface of the hemispherical surface, which is geometrically the same as the circular section across the center of the Bloch sphere and the two points ρ\rho and σ\sigma. The apex of the the spherical crown is the maximally mixed state. The latitude of the bottom the surface of the spherical crown is determined by the intersection angle of a pure state and the maximally mixed state or the dimension of the state space. All the states of the same mixedness are distributed on the same latitude, which especially implies unitary evolution along the latitude. The evolution of purely reducing mixedness will undergo longitude. It can be noticed that for the evolution trajectories tracing geodesics in the Bloch sphere which is equipped by the Euclidean distance, it also traces a geodesics in our metric space.

Refer to caption
Figure 1: The geometric picture of quantum states. The left figure is the Bloch sphere, and the right is our new geometric picture. The arrow 𝒓\bm{r} in the Bloch sphere is the Bloch vector, representing the corresponding density matrix ρ\rho according to ρ=1N(I+N(N1)2𝒓𝑨)\rho=\frac{1}{N}\left(I+\sqrt{\frac{N(N-1)}{2}}\bm{r}\cdot\bm{A}\right), 𝒔\bm{s} and 𝒕\bm{t} denotes the correponding Bloch vector of the state σ\sigma and ϵ\epsilon, respectively, where 𝑨=(A1,,AN)\bm{A}=\left(A_{1},...,A_{N}\right) is a Lie algebra for SU(NN) [46]. Focusing the cross-section, which involves the Bloch vectors 𝒓\bm{r}, 𝒔\bm{s}, 𝒕\bm{t} and the original point 𝒐\bm{o} (the maximally mixed state), the cross-section can be reshaped as a crown (in the right picture) of the unit sphere in the matrix space which equips with the Hilbert-Schmidt inner product. Equivalently, the crown consists of the normalized density matrices: P=ρ/Trρ2P=\rho/\sqrt{Tr\rho^{2}}, similarly, QQ and MM are defined for σ\sigma and ϵ\epsilon, respectively. Overall, the new metric space is actually an extension of the one-dimensional cross-section of the Bloch sphere to the three-dimensional space. Therefore, the unitary trajectories tracing the great circle on the surface of the Bloch sphere, correspond to the latitude on the spherical crown in the new metric space (the blue trajectories). The depolarization trajectories that evolve along the radial direction of the Bloch sphere correspond to the longitude in the new metric space (the red trajectories).

III Attainability and Tightness

Attainability.-It is easy to find that the quantum speed limit time τqsl\tau_{qsl} is expressed by the distance arccosP0,Pτ\arccos\langle P_{0},P_{\tau}\rangle divided by the average evolution speed |v¯t|=1τ0τP˙t,P˙t𝑑t\left|\bar{v}_{t}\right|=\frac{1}{\tau}\int\nolimits_{0}^{\tau}\sqrt{\langle\dot{P}_{t},\dot{P}_{t}\rangle}dt. Next, we will show that the QSL time presented in Theorem 1 can be attainable. Namely, given a distance and the average speed, one can always find a pair of quantum states and a corresponding dynamics such that the practical evolution time is exactly the QSL time.

Theorem 2.-The evolution of ρt\rho_{t} from a given initial state ρ0\rho_{0} to a final state ρτ\rho_{\tau} along the geodesic can be written as

ρ˙t=β˙(t)β(t)(ρtρ0),\dot{\rho}_{t}=\frac{\dot{\beta}(t)}{\beta(t)}\left(\rho_{t}-\rho_{0}\right), (14)

and hence the geodesic is

ρt=(1β(t))ρ0+β(t)ρτ,\rho_{t}=(1-\beta(t))\rho_{0}+\beta(t)\rho_{\tau}, (15)

where β(t)\beta(t) is a monotonic function with β(0)=0\beta(0)=0 and β(τ)=1\beta(\tau)=1.

The proof is given in Appendix A. Ref. [70] shows that the form of (14) can describe the behavior of atomic decay. It can be verified Eq. (15) is also the geodesics of the bound from Ref. [64]. In fact, one can easily verified that, the arbitrariness of βt\beta_{t} and ρτ\rho_{\tau} guarantee a highly freedom of form of the geodesics:

ρt=ρ0+β(t)C,\rho_{t}=\rho_{0}+\beta(t)C, (16)

where CC is arbitrary traceless hermitian matrix.

Theorem 2 explicitly indicates the general form of the geodesic. In particular, ρτ=1N\rho_{\tau}=\frac{1}{N} corresponds to the longitude equation. Eq. (14) means the density matrix that evolves along a geodesic or the QSLT is attainable. However, it can be shown that bound (12) is impossible to be saturated for any unitary case by making a comparison to the bound τΦ\tau_{\Phi} from Ref. [46]:

ττΦ=2arccosP0,Pτ1τ0τP˙t,P˙t𝑑t>τqsl,τ0\tau\geq\tau_{\Phi}=\frac{\sqrt{2}arccos\sqrt{\langle P_{0},P_{\tau}\rangle}}{\frac{1}{\tau}\int_{0}^{\tau}\sqrt{\langle\dot{P}_{t},\dot{P}_{t}\rangle}dt}>\tau_{qsl},\ \tau\neq 0 (17)

(17) derived from the monotone decreasing function f(x)=2arccosxarccosx2>f(1)=0f(x)=\sqrt{2}arccosx-arccosx^{2}>f(1)=0 when 0<x<10<x<1.

Examples.-Considering an NN-level system coupling to a heat bath with bkb_{k} denoting the annihilator of its kkth mode, the Hamiltonian for the total system is H=i=0NEi|ii|+kωkbkbk+ik(gkσ+ibk+h.c)H=\sum_{i=0}^{N}E_{i}\left|i\right\rangle\left\langle i\right|+\sum_{k}\omega_{k}b_{k}^{\dagger}b_{k}+\sum_{ik}(g_{k}\sigma_{+}^{i}b_{k}+h.c), where EiE_{i} is the energy of iith energy level, and σi=|0i|\sigma_{-}^{i}=\left|0\right\rangle\left\langle i\right| and σ+i=|i0|\sigma_{+}^{i}=\left|i\right\rangle\left\langle 0\right| denote the transition operators. Following Ref. [71], one can obtain the dynamics for the reduced system as

ρt˙=ki[stk2|kk|,ρt]+γtk2(2σkρtσ+kσ+kσkρtρtσ+kσk),\dot{\rho_{t}}=-\sum_{k}i[\frac{s^{k}_{t}}{2}\left|k\right\rangle\left\langle k\right|,\rho_{t}]+\frac{\gamma^{k}_{t}}{2}(2\sigma_{-}^{k}\rho_{t}\sigma_{+}^{k}-\sigma_{+}^{k}\sigma_{-}^{k}\rho_{t}-\rho_{t}\sigma_{+}^{k}\sigma_{-}^{k}), (18)

where stks^{k}_{t} is the time-dependent Lamb shift and γtk\gamma^{k}_{t} represents the time-dependent decay rate. This equation describes the generalized amplitude dampling dynamics. Let the initial state be ρ=i=0λi|ii|\rho=\sum\limits_{i=0}\lambda_{i}\left|i\right\rangle\left\langle i\right| and suppose γtkγt\gamma^{k}_{t}\equiv\gamma_{t}, the density matrix ρt\rho_{t} can be solved as

ρt=(1i0λiqt)|00|+iλiqt|ii|\rho_{t}=\left(1-\sum\limits_{i\neq 0}\lambda_{i}q_{t}\right)\left|0\right\rangle\left\langle 0\right|+\sum\limits_{i}\lambda_{i}q_{t}\left|i\right\rangle\left\langle i\right| (19)

with qt=e0tγt𝑑tq_{t}=e^{-\int\nolimits_{0}^{t}\gamma_{t^{\prime}}dt^{\prime}}. Derivation of ρt\rho_{t} in Eq. (19), we have ρt˙=q˙t(iλi|ii|)\dot{\rho_{t}}=\dot{q}_{t}\left(\sum\limits_{i}\lambda_{i}\left|i\right\rangle\left\langle i\right|\right), λ0=1i0λi\lambda_{0}=1-\sum\limits_{i\neq 0}\lambda_{i}, which means the QSLT will be attainable due to theorem 2. To explicitly show it, let’s substitute Eq. (18) and Eq. (19) into Eq. (12), one can immediately find that in the duration τ\tau, the distance in terms of the average evolution speed is

τv¯t\displaystyle\tau\bar{v}_{t} =\displaystyle= 0τ|dqtdt|c1+aqt22bqt𝑑t\displaystyle\int\nolimits_{0}^{\tau}\frac{|\frac{dq_{t}}{dt}|c}{1+aq_{t}^{2}-2bq_{t}}dt (20)
=\displaystyle= |arctana|qτ|bcarctanabc|,\displaystyle\left|\arctan\frac{a|q_{\tau}|-b}{c}-\arctan\frac{a-b}{c}\right|,

where c=iλi2c=\sqrt{\sum\limits_{i}\lambda_{i}^{2}}, b=i0λib=\sum_{i\neq 0}\lambda_{i}, a=b2+c2a=b^{2}+c^{2} and we suppose qtq_{t} is monotonic. The distance away from the initial state ρ0\rho_{0} is

D(ρτ||ρ0)=arccos1b(|qτ|+1)+a|qτ|f(q0)f(qτ)D(\rho_{\tau}||\rho_{0})=\arccos\frac{1-b(|q_{\tau}|\text{+}1)+a|q_{\tau}|}{f(q_{0})f(q_{\tau})} (21)

with f(qτ)=12b|qτ|2+a|qτ|2f(q_{\tau})=\sqrt{1-2b|q_{\tau}|^{2}+a|q_{\tau}|^{2}} and q0=1q_{0}=1. It is easy to find that D(ρτ||ρ0)=τv¯tD(\rho_{\tau}||\rho_{0})=\tau\bar{v}_{t}, which directly shows the quantum speed limit time is consistent with the practical evolution time, τqsl=D(ρτ||ρ0)v¯t=τ\tau_{qsl}=\frac{D(\rho_{\tau}||\rho_{0})}{\bar{v}_{t}}=\tau.

The other attainable case is the dephasing dynamics. Suppose the above NN-level system undergoes an environment consisting of multiple reservoirs with each two energy levels driven by an individual reservoir. Let the jjth and the kkth levels interact with the reservoir as Hjk=νσjkz(gνbν+gνbν)H_{jk}=\sum_{\nu}\sigma^{z}_{jk}(g_{\nu}b_{\nu}^{\dagger}+g_{\nu}^{*}b_{\nu}), where σjkz=|jj||kk|\sigma^{z}_{jk}=\left|j\right\rangle\left\langle j\right|-\left|k\right\rangle\left\langle k\right| for j>kj>k, gνg_{\nu} is the coupling strength, and bνb_{\nu} is any operator of the reservoir corresponding to the jjth and kkth levels. Consider the time evolution of the system [71], for any initial state ρ(0)\rho(0) one will get the final state as

ρ(t)=mnρmn(0)|mn|TrB{Vn1(t)Vm(t)ρBmn(0)},\rho(t)=\sum_{mn}\rho_{mn}(0)\left|m\right\rangle\left\langle n\right|Tr_{B}\left\{V_{n}^{-1}(t)V_{m}(t)\rho^{mn}_{B}(0)\right\}, (22)

where Vm(t)V_{m}(t) is derived from the time-evolution operator performing on the state |m\left|m\right\rangle, and ρBmn(0)\rho^{mn}_{B}(0) is the potential initial state of the reservoir corresponding to the mmth and nnth levels. Define the decay rates as

Γmn(t)=lnTrB{Vn1(t)Vm(t)ρBmn(0)}γt\Gamma_{mn}(t)=\ln{Tr_{B}\left\{V_{n}^{-1}(t)V_{m}(t)\rho^{mn}_{B}(0)\right\}}\equiv-\gamma_{t} (23)

independent of mnmn, then the final state can be written as

ρt=iρii(0)|ii|+eγtjkρjk(0)|jk|.\rho_{t}=\sum_{i}\rho_{ii}(0)\left|i\right\rangle\left\langle i\right|+e^{-\gamma_{t}}\sum_{j\neq k}\rho_{jk}(0)\left|j\right\rangle\left\langle k\right|. (24)

The derivative of ρt\rho_{t} reads

ρt˙=dγtdteγtjkρjk(0)|jk|.\dot{\rho_{t}}=-\frac{d\gamma_{t}}{dt}e^{-\gamma_{t}}\sum_{j\neq k}\rho_{jk}(0)\left|j\right\rangle\left\langle k\right|. (25)

It is evident that Eq. (25) has the same form as that in theorem 2, so the QSLT is attainable.

Again, let’s substitute Eq. (24) and Eq. (25) into Eq. (12), we can express the distance based on the average evolution speed as

τv¯t\displaystyle\tau\bar{v}_{t} =\displaystyle= 0τ|dγtdt|Reγt1+R2e2γt𝑑t\displaystyle\int\nolimits_{0}^{\tau}\left|\frac{d\gamma_{t}}{dt}\right|\frac{Re^{-\gamma_{t}}}{1+R^{2}e^{-2\gamma_{t}}}dt (26)
=\displaystyle= arctanRarctan(eγτR)\displaystyle\arctan R-\arctan\left(e^{-\gamma_{\tau}}R\right)

where R=jk|ρjk|2iρii2R=\sqrt{\frac{\sum_{j\neq k}|\rho_{jk}|^{2}}{\sum_{i}\rho_{ii}^{2}}} and γt\gamma_{t} is supposed to be monotonic. The distance away from the initial state is

D(ρ||σ)=arccosFτ2(2,1)Fτ(2,0)Fτ(2,2)D(\rho||\sigma)=\arccos\frac{F_{\tau}^{2}\left(2,1\right)}{F_{\tau}(2,0)F_{\tau}(2,2)} (27)

with Fτ(k,s)=1+RkesγτF_{\tau}\left(k,s\right)=\sqrt{1+R^{k}e^{-s\gamma_{\tau}}}. A further simplification can show that D(ρ||σ)=τv¯tD(\rho||\sigma)=\tau\bar{v}_{t}, which means the QSL time τqsl=D(ρ||σ)v¯t=τ\tau_{qsl}=\frac{D(\rho||\sigma)}{\bar{v}_{t}}=\tau.

At first, we would like to emphasize that in the two examples we choose the particular dynamics and the initial states to demonstrate the attainability. In fact, both the Hamiltonian and the initial states can change the attainability. In Appendix B, we present an example of qubit system to demonstrate the deviation of the evolution trajectory from the geodesic due to different Hamiltonian and initial states.

In addition, we don’t specify the explicit form of the decay rates except for monotonicity, the non-monotonicity or the divergence of γt\gamma_{t} will force the evolution trajectory oscillates back and forth over the geodesics, and lead to τqsl<τ\tau_{qsl}<\tau, namely, the evolution trajectory deviates from the geodesics. For example, if the decay rate takes

γt=2γ0λsinh(δt/2)δcosh(δt/2)+λsinh(δt/2),\gamma_{t}=\frac{2\gamma_{0}\lambda\sinh(\delta t/2)}{\delta\cosh(\delta t/2)+\lambda\sinh(\delta t/2)}, (28)

where δ=λ22γ0λ\delta=\sqrt{\lambda^{2}-2\gamma_{0}\lambda}, and λ\lambda and γ0\gamma_{0} represent the spectral width and coupling strength, respectively. If the parameter δ\delta is real, i.e., γ0λ/2\gamma_{0}\leq\lambda/2, the dynamics is Markovian, which implies a relatively weak coupling, and the decay rate can be taken as a constant γt=γ0\gamma_{t}=\gamma_{0} for γ0λ\gamma_{0}\ll\lambda. Conversely, if γ0λ/2\gamma_{0}\geq\lambda/2, it means the stronger coupling described by the non-Markovian dynamics, which leads to non-monotonic γt\gamma_{t}. The evolution trajectory is not the geodesics, which is similar to the unsaturated effect of QSL bounds for the non-Markovian dynamics reported by the previous works [57, 12, 72].

The above two dynamics indicate the attainability of our QSL time in any dimensional state space. It is obvious that the farthest evolution is governed by the nonunitary dynamics instead of the unitary process. If we restrict the system to undergo the unitary evolution subject to the Hamiltonian HtH_{t}, the average speed v¯t\bar{v}_{t} will be reduced to v¯t=1τ0τ12Tr{[Pt,Ht]}2𝑑t\bar{v}_{t}=\frac{1}{\tau}\int\nolimits_{0}^{\tau}\sqrt{-\frac{1}{\hbar^{2}}Tr\{[P_{t},H_{t}]\}^{2}}dt, which is the same as the speed QΦQ_{\Phi} in Ref. [46]. However, one can find that the effective distance D(ρ||σ)D(\rho||\sigma) is strictly larger than the distance Φ(ρ||σ)\Phi(\rho||\sigma) in Ref. [46] in nontrivial dynamics, so the practical evolution is strictly larger than our presented QSL time τqsl\tau_{qsl}. So our QSL cannot be attainable for a nontrivial unitary process.

Tightness.- Tightness is an important question in the QSL, which depends on not only the particular QSLT itself, but also the understanding of QSLT. For example, the MT and ML bounds for the unitary evolution can be the tightest, since they are obviously attainable for any pair of states as mentioned previously. Of course, if we understand the QSLT in the sense that for any given initial state whether one can find a proper dynamics to drive the state evolve along the geodesic, then our obtained QSLT is also the tightest since we have explicitly demonstrated the attainability. However, in the general sense, it is quite hard to evalute the tightness of a QSTL for open systems, because it is impossible to exhausted all the potential evolution trajectories to demonstrate the tightness of a single QSLT or to compare the inifinite QSLTs due to their dependence on the evolution trajectory. Therefore, we follows the usual and feasible comparison approach in the literature [73, 57, 51, 74, 64] namely, for given initial and final state, we compare two QSLTs subject to the same evolution trajectory.

Recently Ref. [64] has presented a tight QSLT

τE=E(ρ0||ρτ)1τ0τ𝑑tTrρ˙t2\tau_{E}=\frac{E(\rho_{0}||\rho_{\tau})}{\frac{1}{\tau}\int_{0}^{\tau}dt\sqrt{Tr\dot{\rho}_{t}^{2}}} (29)

with good tightness based on the Euclidean distance E(ρ0||ρτ)=Tr(ρ0ρτ)2E(\rho_{0}||\rho_{\tau})=\sqrt{Tr(\rho_{0}-\rho_{\tau})^{2}}. It has been shown that τE\tau_{E} shares the same geodesic as our QSLT τqsl\tau_{qsl}. Here we would like to compare our QSLT with τE\tau_{E}.

Since TrA2TrB2(TrAB)2TrA^{2}TrB^{2}\geq(TrAB)^{2} for any Hermitian operators AA and BB [75], one can easily find

Trρ˙t2Trρ˙t2Trρt2(Trρtρ˙t)2Trρt2.\sqrt{Tr\dot{\rho}_{t}^{2}}\leq\frac{\sqrt{Tr\dot{\rho}_{t}^{2}Tr\rho_{t}^{2}-\left(Tr\rho_{t}\dot{\rho}_{t}\right)^{2}}}{Tr\rho_{t}^{2}}. (30)

It is obvious that the left-hand side of the inequality (30) is the evolution speed of the bound τE\tau_{E}, and the right-hand side is the evolution speed of our bound. Because these two bounds are saturated by the same dynamics [41], integrating Eq. (30) one will immediately arrive at

Tr(ρ0ρτ)2<arccosTrρ0ρτTrρ02Trρτ2.\sqrt{Tr(\rho_{0}-\rho_{\tau})^{2}}<\arccos\frac{Tr\rho_{0}\rho_{\tau}}{\sqrt{Tr\rho_{0}^{2}}\sqrt{Tr\rho_{\tau}^{2}}}. (31)

When we restrict the unitary evolution and the pure initial state, the two sides of Eq. (30) are identical, but inequality in Eq. (31) still holds, which implies our bound shows τqsl>τE\tau_{qsl}>\tau_{E}. In particular, the continuity of QSLT promises that for some evolution trajectories closed to the unitary path for the pure state, our bound still shows preferable tightness compared with τE\tau_{E}.

However, to demonstrate the tightness in general nonunitary cases, we sample 10001000 randomly generated dynamics process for qubit systems to calculate τqslτE\tau_{qsl}-\tau_{E} in Fig. 2. One can find that most of the given examples show our bound is tight, but some demonstrate τE\tau_{E} is tighter than ours.

Refer to caption
Figure 2: The purity of initial state vs τqslτE\tau_{qsl}-\tau_{E}. We randomly generated 4×44\times 4 diagonal hermitian matrix as the total Hamiltonian HH for a bipartite qubit system. The initial state of the system is the product state ρSρE\rho_{S}\otimes\rho_{E}, where ρS\rho_{S} and ρE\rho_{E} are the two-dimensional density matrices. And the states we concerned about is attained by tracing out the irrelevant parts by using the partial trace: ρt=TrE(UtρSρEUt)\rho_{t}=Tr_{E}(U_{t}\rho_{S}\otimes\rho_{E}U_{t}^{\dagger}), where Ut=exp[iHt]U_{t}=exp[-iHt].

For an analytical demonstration, let’s consider a qubit interacting with a large bath. The Kraus operators are given as [41]

K0(t)=c(1p(t)|00|+|11|),K1(t)=cp(t)|10|,K2(t)=1c(1p(t)|11|+|00|),K3(t)=1cp(t)|01|,\displaystyle\begin{split}K_{0}(t)=&\sqrt{c}(\sqrt{1-p(t)}\left|0\right\rangle\left\langle 0\right|+\left|1\right\rangle\left\langle 1\right|),\\ K_{1}(t)=&\sqrt{c}\sqrt{p(t)}\left|1\right\rangle\left\langle 0\right|,\\ K_{2}(t)=&\sqrt{1-c}(\sqrt{1-p(t)}\left|1\right\rangle\left\langle 1\right|+\left|0\right\rangle\left\langle 0\right|),\\ K_{3}(t)=&\sqrt{1-c}\sqrt{p(t)}\left|0\right\rangle\left\langle 1\right|,\end{split} (32)

where cc is a parameter determined by the temperature of the bath and p(t)p(t) is some increasing function of time tt describing the evolution path. Suppose the initial state ρ0=(1ρ11(0))|00|+ρ10(0)|01|+ρ10(0)|10|+ρ11(0)|11|\rho_{0}=(1-\rho_{11}(0))\left|0\right\rangle\left\langle 0\right|+\rho_{10}(0)\left|0\right\rangle\left\langle 1\right|+\rho_{10}^{\ast}(0)\left|1\right\rangle\left\langle 0\right|+\rho_{11}(0)\left|1\right\rangle\left\langle 1\right|, the density operator can be easily obtained as

ρt=(1+(ρ11(0)c)p(t)ρ11(0)1p(t)ρ10(0)1p(t)ρ10(0)(cρ11(0))p(t)+ρ11(0)).\rho_{t}=\left(\begin{matrix}1+(\rho_{11}(0)-c)p(t)-\rho_{11}(0)&\sqrt{1-p(t)}\rho_{10}(0)\\ \sqrt{1-p(t)}\rho_{10}^{\ast}(0)&(c-\rho_{11}(0))p(t)+\rho_{11}(0)\end{matrix}\right). (33)

For the convenience of computation, we adopt the Bloch representation to describe the initial state ρ11=(1rz)/2\rho_{11}=(1-r_{z})/2 and ρ10\rho_{10} is selected for ensuring the pure initial state. The ratio τqsl/τ\tau_{qsl}/\tau of QSL time to the actual evolution time is plotted in Fig. 3 (a), which indicates that the QSLT τqsl\tau_{qsl} is less than the actual evolution time τ\tau for most of the initial states, but is attainable if ρ11=0\rho_{11}=0 and ρ11=c\rho_{11}=c. In fact, one can find that ρ11=0\rho_{11}=0 or cc is the exact condition that can ensure ρ˙t=β˙(t)C\dot{\rho}_{t}=\dot{\beta}(t)C, where CC is time-independent, which is also the equivalent condition of geodesics dynamics. Additionally, we compare our QSLT with that proposed in Ref. [64] by the ratio τqsl/τ\tau_{qsl}/\tau in Fig. 3 (b). It is obvious that our QSLT is larger (tighter) than the QSLT in Ref. [64] .

Since the combination approach has been widely used in establishing tighter QSLT [57], combining the different QSLs could provide a tighter bound for the evolution time. Namely, a combination QSLT form as τqslcomb={τqsl,τE}\tau_{qsl}^{comb}=\left\{\tau_{qsl},\tau_{E}\right\} should be a good QSLT for an open system.

Refer to caption
Refer to caption
Figure 3: (a) The ratio τqsl/τ\tau_{qsl}/\tau versus ρ11\rho_{11} and τ\tau. Here c=0.5c=0.5, p(t)=ln(1+t/100)p(t)=\ln(1+t/100). (b) The ratio τqsl/τ\tau_{qsl}/\tau of our QSL and that in Ref. [64]. The temperature-determined parameter cc is set as zero. The red surface represents our QSLT and the green one corresponds to that in Ref. [64].

IV Discussion and conclusion

We have established a quantum speed limit for the open system by an intuitive geometrical picture. For any initial state, one can always find corresponding dynamics to achieve the ”fastest” evolution along the geodesic. We found the general condition for dynamics to saturate our QSL. By evidence, we consider the evolutions of a quantum state undergoing the generalized amplitude damping channel and the dephasing channel, which verify the attainability of our QSL when the decay rates are monotonic. But for the dynamics with the non-monotonic decay rate, such as the case of non-Markovian dynamics, the bound is unsaturated. We compare our QSLT with the tight one τE\tau_{E} presented in Ref. [64]. We show our bound is tighter than τE\tau_{E} for pure initial state governed by unitary (or close to unitary) evolution. Besides, we sample 10001000 non-unitary dynamics for qubit systems, and find that for most cases our bound is tighter than tτE\tau_{E}, but for some other cases the result is contrary, which implies the combination of the two QSLTs should be a tighter bound. In summary, we have presented attainable bound for QSLT, which provide a different understanding of QSLT.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants No.12175029, No. 12011530014 and No.11775040.

Appendix A

In this section, we show a proof to verify that Eq. (14) is the geodesics. Let Δρτ0=ρτρ0\Delta\rho_{\tau 0}=\rho_{\tau}-\rho_{0}, then ρt\rho_{t} can be rewritten as ρt=ρ0+β(t)Δρτ0.\rho_{t}=\rho_{0}+\beta(t)\Delta\rho_{\tau 0}. The derivation of ρt\rho_{t} reads ρ˙t=β˙(t)(ρτρ0)\dot{\rho}_{t}=\dot{\beta}(t)\left(\rho_{\tau}-\rho_{0}\right), which is exactly the equation (14). Solving the differential equation (14), one will obtain Eq. (15).

We will show that Eq. (14) is the geodesic. One can easily find

Trρ˙t2=β˙(t)2Tr(Δρτ)2,Trρt2=Trρ02+β(t)2Tr(Δρτ0)2+2β(t)Trρ0Δρτ0,Trρtρ˙t=β˙(t)[Trρ0Δρτ0+β(t)Tr(Δρτ0)2],\begin{split}Tr\dot{\rho}_{t}^{2}=&\dot{\beta}(t)^{2}Tr(\Delta\rho_{\tau})^{2},\\ Tr\rho_{t}^{2}=&Tr\rho_{0}^{2}+\beta(t)^{2}Tr(\Delta\rho_{\tau 0})^{2}+\\ &2\beta(t)Tr\rho_{0}\Delta\rho_{\tau 0},\\ Tr\rho_{t}\dot{\rho}_{t}=&\dot{\beta}(t)[Tr\rho_{0}\Delta\rho_{\tau 0}+\beta(t)Tr(\Delta\rho_{\tau 0})^{2}],\end{split} (34)

so the average evolution speed can be calculated as

|vt|=Trρt2Trρ˙t2(Trρtρ˙t)2Trρt2=|β˙(t)|Trρ02Tr(Δρτ0)2(Trρ0Δρτ0)2Trρ02+β2(t)Tr(Δρτ0)2+2β(t)Trρ0Δρτ0=β˙(t)Tr(Δρτ0)2Tr(Δρτ0)2Trρ02(Trρ0Δρτ0)21+[β(t)Tr(Δρτ0)2+Trρ0Δρτ0Tr(Δρτ0)2Trρ02(Trρ0Δρτ0)2]2=ddtarctanβ(t)Tr(Δρτ0)2+Trρ0Δρτ0Tr(Δρτ0)2Trρ02(Trρ0Δρτ0)2,\begin{split}\left|v_{t}\right|=&\frac{\sqrt{Tr\rho_{t}^{2}Tr\dot{\rho}_{t}^{2}-(Tr\rho_{t}\dot{\rho}_{t})^{2}}}{Tr\rho_{t}^{2}}\\ =&\frac{|\dot{\beta}(t)|\sqrt{Tr\rho_{0}^{2}Tr(\Delta\rho_{\tau 0})^{2}-(Tr\rho_{0}\Delta\rho_{\tau 0})^{2}}}{Tr\rho_{0}^{2}+\beta^{2}(t)Tr(\Delta\rho_{\tau 0})^{2}+2\beta(t)Tr\rho_{0}\Delta\rho_{\tau 0}}\\ =&\frac{\dot{\beta}(t)\frac{Tr(\Delta\rho_{\tau 0})^{2}}{\sqrt{Tr(\Delta\rho_{\tau 0})^{2}Tr\rho_{0}^{2}-(Tr\rho_{0}\Delta\rho_{\tau 0})^{2}}}}{1+[\frac{\beta(t)Tr(\Delta\rho_{\tau 0})^{2}+Tr\rho_{0}\Delta\rho_{\tau 0}}{\sqrt{Tr(\Delta\rho_{\tau 0})^{2}Tr\rho_{0}^{2}-(Tr\rho_{0}\Delta\rho_{\tau 0})^{2}}}]^{2}}\\ =&\frac{d}{dt}\arctan\frac{\beta(t)Tr(\Delta\rho_{\tau 0})^{2}+Tr\rho_{0}\Delta\rho_{\tau 0}}{\sqrt{Tr(\Delta\rho_{\tau 0})^{2}Tr\rho_{0}^{2}-(Tr\rho_{0}\Delta\rho_{\tau 0})^{2}}},\end{split} (35)

where β˙(t)>0\dot{\beta}(t)>0 is considered since β(t)\beta(t) is a monotonic function with β(0)=0\beta(0)=0 and β(τ)=1\beta(\tau)=1. The evolution path is

0τ|vt|𝑑t=arctanTr(Δρτ0)2+Trρ0Δρτ0Tr(Δρτ0)2Trρ02(Trρ0Δρτ0)2arctanTrρ0Δρτ0Tr(Δρτ0)2Trρ02(Trρ0Δρτ0)2.\begin{split}\int_{0}^{\tau}\left|v_{t}\right|dt&=\arctan\frac{Tr(\Delta\rho_{\tau 0})^{2}+Tr\rho_{0}\Delta\rho_{\tau 0}}{\sqrt{Tr(\Delta\rho_{\tau 0})^{2}Tr\rho_{0}^{2}-(Tr\rho_{0}\Delta\rho_{\tau 0})^{2}}}\\ &-\arctan\frac{Tr\rho_{0}\Delta\rho_{\tau 0}}{\sqrt{Tr(\Delta\rho_{\tau 0})^{2}Tr\rho_{0}^{2}-(Tr\rho_{0}\Delta\rho_{\tau 0})^{2}}}.\end{split} (36)

A simple calculation can show that cos0τ|vt|𝑑t=Trρ0ρτ/(Trρ02Trρτ2)\cos\int_{0}^{\tau}\left|v_{t}\right|dt=Tr\rho_{0}\rho_{\tau}/(\sqrt{Tr\rho_{0}^{2}}\sqrt{Tr\rho_{\tau}^{2}}), which means Eq. (15) is the geodesic. The proof is finished. \square

Appendix B

Here we provide an example to illustrate that the system Hamiltonian can drive the evolution trajectory to deviate from the geodesics. Consider the master equation (18) in the Schrödinger picture as

ρ˙t=i[Hθ,ρt]+γ2(ΣρtΣ+Σ+ΣρtρtΣ+Σ),Hθ=ΩL2(cosθσz+sinθσx),\begin{split}\dot{\rho}_{t}=&-i[H_{\theta},\rho_{t}]+\frac{\gamma}{2}\left(\Sigma_{-}\rho_{t}\Sigma_{+}-\Sigma_{+}\Sigma_{-}\rho_{t}-\rho_{t}\Sigma_{+}\Sigma_{-}\right),\\ H_{\theta}=&\frac{\Omega_{L}}{2}\left(\cos\theta\sigma_{z}+\sin\theta\sigma_{x}\right),\end{split} (37)

where γ\gamma is the time-independent decay rate, Σ±=Uσ±U\Sigma_{\pm}=U\sigma_{\pm}U^{\dagger} with U=cosθ2Iisinθ2σyU=\cos\frac{\theta}{2}I-i\sin\frac{\theta}{2}\sigma_{y}, HθH_{\theta} is the parameter θ\theta determined Hamiltonian with the eigenfrequency of ΩL=ϵ2+Ω2\Omega_{L}=\sqrt{\epsilon^{2}+\Omega^{2}}, and ϵ\epsilon and Ω\Omega denote the energy level difference and tunneling coupling, respectively. The solution of Eq. (37) is presented in Ref. [76] as

ρt=12(1+rz(t)rx(t)iry(t)rx(t)+iry(t)1rz(t))\rho_{t}=\frac{1}{2}\left(\begin{matrix}1+r_{z}(t)&r_{x}(t)-ir_{y}(t)\\ r_{x}(t)+ir_{y}(t)&1-r_{z}(t)\end{matrix}\right) (38)

with

rx(t)=eγ2t{[sin2θeγ2t+cos2θcos(ΩLt)]rx(0)\displaystyle r_{x}(t)=e^{-\frac{\gamma}{2}t}\bigg{\{}\left[\sin^{2}\theta e^{-\frac{\gamma}{2}t}+\cos^{2}\theta\cos(\Omega_{L}t)\right]r_{x}(0)
cosθsin(ΩLt)ry(0)+sinθcosθ[eγ2t\displaystyle-\cos\theta\sin(\Omega_{L}t)r_{y}(0)+\sin\theta\cos\theta\left[e^{-\frac{\gamma}{2}t}\right.
cos(ΩLt)]rz(0)}+sinθ[eγt1]\displaystyle-\left.\cos(\Omega_{L}t)\right]r_{z}(0)\bigg{\}}+\sin\theta\left[e^{-\gamma t}-1\right] (39)
ry(t)=eγ2t[cosθsin(ΩLt)rx(0)+cos(ΩLt)ry(0)sinθsin(ΩLt)rz(0)]\begin{split}r_{y}(t)=e^{-\frac{\gamma}{2}t}\big{[}\cos\theta\sin(\Omega_{L}t)r_{x}(0)+\cos(\Omega_{L}t)r_{y}(0)\\ -\sin\theta\sin(\Omega_{L}t)r_{z}(0)\big{]}\end{split} (40)
rz(t)=eγ2t{sinθcosθ[eγ2tcos(ΩLt)]rx(0)\displaystyle r_{z}(t)=e^{-\frac{\gamma}{2}t}\bigg{\{}\sin\theta\cos\theta\left[e^{-\frac{\gamma}{2}t}-\cos(\Omega_{L}t)\right]r_{x}(0)
+sinθsin(ΩLt)eγ2try(0)+[cos2θeγ2t\displaystyle+\sin\theta\sin(\Omega_{L}t)e^{-\frac{\gamma}{2}t}r_{y}(0)+\left[\cos^{2}\theta e^{-\frac{\gamma}{2}t}\right.
+sin2θcos(ΩLt)]rz(0)}+cosθ[eγt1]\displaystyle+\left.\sin^{2}\theta\cos(\Omega_{L}t)\right]r_{z}(0)\bigg{\}}+\cos\theta\left[e^{-\gamma t}-1\right] (41)

According to Eq. (16), the geodesics dynamics can be expressed as a product of real time-dependent factor and a time-independent hermitian matrix with zero-trace, hence the time-dependent imaginary factor of the non-diagonal entries should be vanish, it means that ry=0r_{y}=0, i.e., ry(0)=0r_{y}(0)=0, rx(0)=rz(0)r_{x}(0)=r_{z}(0), θ=π/4\theta=\pi/4, one can immediately obtain that Eq. (38) is the geodesics due to rx(t)=ry(t)r_{x}(t)=r_{y}(t), and [Hθ,ρt]=0[H_{\theta},\rho_{t}]=0. That is, for this model, the system Hamiltonian drives the evolution trajectory deviate the geodesics except for the case when ρt\rho_{t} is commutative with the Hamiltonian. In the general cases, the presence of the time-dependent imaginary factor of the non-diagonal entries of the dynamics matrix always lead to a non-geodesics evolution.

References

References

  • Giovannetti et al. [2011] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature photonics 5, 222 (2011).
  • Giovannetti et al. [2006] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96, 010401 (2006).
  • Chin et al. [2012] A. W. Chin, S. F. Huelga, and M. B. Plenio, Quantum metrology in non-markovian environments, Phys. Rev. Lett. 109, 233601 (2012).
  • Caneva et al. [2009] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, and G. E. Santoro, Optimal control at the quantum speed limit, Phys. Rev. Lett. 103, 240501 (2009).
  • Govenius et al. [2016] J. Govenius, R. E. Lake, K. Y. Tan, and M. Möttönen, Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced josephson junctions, Phys. Rev. Lett. 117, 030802 (2016).
  • Machnes et al. [2011] S. Machnes, U. Sander, S. J. Glaser, P. de Fouquières, A. Gruslys, S. Schirmer, and T. Schulte-Herbrüggen, Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework, Phys. Rev. A 84, 022305 (2011).
  • Poggi et al. [2013] P. M. Poggi, F. C. Lombardo, and D. A. Wisniacki, Quantum speed limit and optimal evolution time in a two-level system, Europhysics Letters 104, 40005 (2013).
  • Girolami [2019] D. Girolami, How difficult is it to prepare a quantum state?, Phys. Rev. Lett. 122, 010505 (2019).
  • Deffner [2020] S. Deffner, Quantum speed limits and the maximal rate of information production, Phys. Rev. Res. 2, 013161 (2020).
  • Kobayashi and Yamamoto [2020] K. Kobayashi and N. Yamamoto, Quantum speed limit for robust state characterization and engineering, Phys. Rev. A 102, 042606 (2020).
  • Zhang et al. [2015] Y.-J. Zhang, W. Han, Y.-J. Xia, J.-P. Cao, and H. Fan, Classical-driving-assisted quantum speed-up, Phys. Rev. A 91, 032112 (2015).
  • Liu et al. [2016] H.-B. Liu, W. L. Yang, J.-H. An, and Z.-Y. Xu, Mechanism for quantum speedup in open quantum systems, Phys. Rev. A 93, 020105 (2016).
  • García-Pintos et al. [2022] L. P. García-Pintos, S. B. Nicholson, J. R. Green, A. del Campo, and A. V. Gorshkov, Unifying quantum and classical speed limits on observables, Phys. Rev. X 12, 011038 (2022).
  • Pires et al. [2016a] D. P. Pires, M. Cianciaruso, L. C. Céleri, G. Adesso, and D. O. Soares-Pinto, Generalized geometric quantum speed limits, Phys. Rev. X 6, 021031 (2016a).
  • Marvian et al. [2016] I. Marvian, R. W. Spekkens, and P. Zanardi, Quantum speed limits, coherence, and asymmetry, Phys. Rev. A 93, 052331 (2016).
  • Chenu et al. [2017] A. Chenu, M. Beau, J. Cao, and A. del Campo, Quantum simulation of generic many-body open system dynamics using classical noise, Phys. Rev. Lett. 118, 140403 (2017).
  • Beau et al. [2017] M. Beau, J. Kiukas, I. L. Egusquiza, and A. del Campo, Nonexponential quantum decay under environmental decoherence, Phys. Rev. Lett. 119, 130401 (2017).
  • Hamma et al. [2009] A. Hamma, F. Markopoulou, I. Prémont-Schwarz, and S. Severini, Lieb-robinson bounds and the speed of light from topological order, Phys. Rev. Lett. 102, 017204 (2009).
  • Sawyer [2004] R. F. Sawyer, Evolution speed in some coupled-spin models, Phys. Rev. A 70, 022308 (2004).
  • Sun et al. [2021] S.-N. Sun, Y.-G. Peng, X.-H. Hu, and Y.-J. Zheng, Quantum speed limit quantified by the changing rate of phase, Phys. Rev. Lett. 127, 100404 (2021).
  • [21] G. N. Fleming, Unitarity bound on the evolution of nonstationary states, Nuovo Cim., A, v. 16A, no. 2, pp. 232-240 10.1007/BF02819419.
  • Pires et al. [2021] D. P. Pires, K. Modi, and L. C. Céleri, Bounding generalized relative entropies: Nonasymptotic quantum speed limits, Phys. Rev. E 103, 032105 (2021).
  • Bukov et al. [2019] M. Bukov, D. Sels, and A. Polkovnikov, Geometric speed limit of accessible many-body state preparation, Phys. Rev. X 9, 011034 (2019).
  • del Campo [2021] A. del Campo, Probing quantum speed limits with ultracold gases, Phys. Rev. Lett. 126, 180603 (2021).
  • Cui and Zheng [2012] X.-D. Cui and Y.-J. Zheng, Geometric phases in non-hermitian quantum mechanics, Phys. Rev. A 86, 064104 (2012).
  • Liu et al. [2015] C. Liu, Z.-Y. Xu, and S.-Q. Zhu, Quantum-speed-limit time for multiqubit open systems, Phys. Rev. A 91, 022102 (2015).
  • Kupferman and Reznik [2008] J. Kupferman and B. Reznik, Entanglement and the speed of evolution in mixed states, Phys. Rev. A 78, 042305 (2008).
  • Xu et al. [2014] Z.-Y. Xu, S.-L. Luo, W. L. Yang, C. Liu, and S.-Q. Zhu, Quantum speedup in a memory environment, Phys. Rev. A 89, 012307 (2014).
  • Zander et al. [2007] C. Zander, A. R. Plastino, A. Plastino, and M. Casas, Entanglement and the speed of evolution of multi-partite quantum systems, Journal of Physics A: Mathematical and Theoretical 40, 2861 (2007).
  • Wu et al. [2014] S.-X. Wu, Y. Zhang, C.-S. Yu, and H.-S. Song, The initial-state dependence of the quantum speed limit, Journal of Physics A: Mathematical and Theoretical 48, 045301 (2014).
  • Zhang et al. [2018] X.-M. Zhang, Z.-W. Cui, X. Wang, and M.-H. Yung, Automatic spin-chain learning to explore the quantum speed limit, Phys. Rev. A 97, 052333 (2018).
  • García-Pintos and del Campo [2019] L. P. García-Pintos and A. del Campo, Quantum speed limits under continuous quantum measurements, New Journal of Physics 21, 033012 (2019).
  • Campbell et al. [2018] S. Campbell, M. G. Genoni, and S. Deffner, Precision thermometry and the quantum speed limit, Quantum Science and Technology 3, 025002 (2018).
  • Mandelstam and Tamm [1991] L. Mandelstam and I. Tamm, The uncertainty relation between energy and time in non-relativistic quantum mechanics, in Selected Papers, edited by B. M. Bolotovskii, V. Y. Frenkel, and R. Peierls (Springer Berlin Heidelberg, Berlin, Heidelberg, 1991) pp. 115–123.
  • Deffner and Lutz [2013a] S. Deffner and E. Lutz, Energy–time uncertainty relation for driven quantum systems, Journal of Physics A: Mathematical and Theoretical 46, 335302 (2013a).
  • Margolus and Levitin [1998] N. Margolus and L. B. Levitin, The maximum speed of dynamical evolution, Physica D: Nonlinear Phenomena 120, 188 (1998), proceedings of the Fourth Workshop on Physics and Consumption.
  • Giovannetti et al. [2004] V. Giovannetti, S. Lloyd, and L. Maccone, The speed limit of quantum unitary evolution, Journal of Optics B: Quantum and Semiclassical Optics 6, S807 (2004).
  • Giovannetti et al. [2003] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum limits to dynamical evolution, Phys. Rev. A 67, 052109 (2003).
  • Anandan and Aharonov [1990] J. Anandan and Y. Aharonov, Geometry of quantum evolution, Phys. Rev. Lett. 65, 1697 (1990).
  • Russell and Stepney [2014] B. Russell and S. Stepney, A geometrical derivation of a family of quantum speed limit results (2014), arXiv:1410.3209 [quant-ph] .
  • O’Connor et al. [2021] E. O’Connor, G. Guarnieri, and S. Campbell, Action quantum speed limits, Phys. Rev. A 103, 022210 (2021).
  • Ektesabi et al. [2017] A. Ektesabi, N. Behzadi, and E. Faizi, Improved bound for quantum-speed-limit time in open quantum systems by introducing an alternative fidelity, Phys. Rev. A 95, 022115 (2017).
  • Mondal et al. [2016] D. Mondal, C. Datta, and S. Sazim, Quantum coherence sets the quantum speed limit for mixed states, Physics Letters A 380, 689 (2016).
  • Cai and Zheng [2017] X.-J. Cai and Y.-J. Zheng, Quantum dynamical speedup in a nonequilibrium environment, Phys. Rev. A 95, 052104 (2017).
  • Wu and Yu [2018] S.-X. Wu and C.-S. Yu, Quantum speed limit for a mixed initial state, Phys. Rev. A 98, 042132 (2018).
  • Campaioli et al. [2018] F. Campaioli, F. A. Pollock, F. C. Binder, and K. Modi, Tightening quantum speed limits for almost all states, Phys. Rev. Lett. 120, 060409 (2018).
  • Zhang et al. [2014] Y.-J. Zhang, W. Han, Y.-J. Xia, J.-P. Cao, and H. Fan, Quantum speed limit for arbitrary initial states, Scientific reports 4, 1 (2014).
  • Mondal and Pati [2016] D. Mondal and A. K. Pati, Quantum speed limit for mixed states using an experimentally realizable metric, Physics Letters A 380, 1395 (2016).
  • Ness et al. [2022] G. Ness, A. Alberti, and Y. Sagi, Quantum speed limit for states with a bounded energy spectrum, Phys. Rev. Lett. 129, 140403 (2022).
  • Andersson and Heydari [2014] O. Andersson and H. Heydari, Quantum speed limits and optimal hamiltonians for driven systems in mixed states, Journal of Physics A: Mathematical and Theoretical 47, 215301 (2014).
  • del Campo et al. [2013] A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F. Huelga, Quantum speed limits in open system dynamics, Phys. Rev. Lett. 110, 050403 (2013).
  • Sun et al. [2015a] Z. Sun, J. Liu, J. Ma, and X.-G. Wang, Quantum speed limits in open systems: Non-markovian dynamics without rotating-wave approximation, Scientific reports 5, 1 (2015a).
  • Sun and Zheng [2019] S.-N. Sun and Y.-J. Zheng, Distinct bound of the quantum speed limit via the gauge invariant distance, Phys. Rev. Lett. 123, 180403 (2019).
  • Zwierz [2012] M. Zwierz, Comment on “geometric derivation of the quantum speed limit”, Phys. Rev. A 86, 016101 (2012).
  • Lidar et al. [2008] D. A. Lidar, P. Zanardi, and K. Khodjasteh, Distance bounds on quantum dynamics, Phys. Rev. A 78, 012308 (2008).
  • Taddei et al. [2013] M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de Matos Filho, Quantum speed limit for physical processes, Phys. Rev. Lett. 110, 050402 (2013).
  • Deffner and Lutz [2013b] S. Deffner and E. Lutz, Quantum speed limit for non-markovian dynamics, Phys. Rev. Lett. 111, 010402 (2013b).
  • Campaioli et al. [2022] F. Campaioli, C.-S. Yu, F. A. Pollock, and K. Modi, Resource speed limits: maximal rate of resource variation, New Journal of Physics 24, 065001 (2022).
  • Okuyama and Ohzeki [2018] M. Okuyama and M. Ohzeki, Quantum speed limit is not quantum, Phys. Rev. Lett. 120, 070402 (2018).
  • Shanahan et al. [2018] B. Shanahan, A. Chenu, N. Margolus, and A. del Campo, Quantum speed limits across the quantum-to-classical transition, Phys. Rev. Lett. 120, 070401 (2018).
  • Frey [2016] M. R. Frey, Quantum speed limits—primer, perspectives, and potential future directions, Quantum Information Processing 15, 3919 (2016).
  • Deffner and Campbell [2017] S. Deffner and S. Campbell, Quantum speed limits: from heisenberg’s uncertainty principle to optimal quantum control, Journal of Physics A: Mathematical and Theoretical 50, 453001 (2017).
  • Shao et al. [2020] Y.-Y. Shao, B. Liu, M. Zhang, H.-D. Yuan, and J. Liu, Operational definition of a quantum speed limit, Physical Review Research 2, 023299 (2020).
  • Campaioli et al. [2019] F. Campaioli, F. A. Pollock, and K. Modi, Tight, robust, and feasible quantum speed limits for open dynamics, Quantum 3, 168 (2019).
  • Schoenberg [1938] I. Schoenberg, Metric spaces and positive definite functions, Transactions of the American Mathematical Society 44, 522 (1938).
  • Mendonça et al. [2008] P. E. M. F. Mendonça, R. d. J. Napolitano, M. A. Marchiolli, C. J. Foster, and Y.-C. Liang, Alternative fidelity measure between quantum states, Phys. Rev. A 78, 052330 (2008).
  • Wang et al. [2008] X.-G. Wang, C.-S. Yu, and X. Yi, An alternative quantum fidelity for mixed states of qudits, Physics Letters A 373, 58 (2008).
  • Poggi et al. [2021] P. M. Poggi, S. Campbell, and S. Deffner, Diverging quantum speed limits: A herald of classicality, PRX Quantum 2, 040349 (2021).
  • Manzano [2020] D. Manzano, A short introduction to the Lindblad master equation, AIP Advances 1010.1063/1.5115323 (2020), 025106, https://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/1.5115323/12881278/025106_1_online.pdf .
  • Singh [1982] S. Singh, Field statistics in some generalized jaynes-cummings models, Phys. Rev. A 25, 3206 (1982).
  • Breuer et al. [2002] H.-P. Breuer, F. Petruccione, et al.The theory of open quantum systems (Oxford University Press on Demand, 2002).
  • Cianciaruso et al. [2017] M. Cianciaruso, S. Maniscalco, and G. Adesso, Role of non-markovianity and backflow of information in the speed of quantum evolution, Phys. Rev. A 96, 012105 (2017).
  • Pires et al. [2016b] D. P. Pires, M. Cianciaruso, L. C. Céleri, G. Adesso, and D. O. Soares-Pinto, Generalized geometric quantum speed limits, Phys. Rev. X 6, 021031 (2016b).
  • Sun et al. [2015b] Z. Sun, J. Liu, J. Ma, and X.-G. Wang, Quantum speed limits in open systems: Non-markovian dynamics without rotating-wave approximation, Scientific reports 5, 1 (2015b).
  • Jin and Zhou [2015] L. Jin and Q. Zhou, Generalization of fan-todd inequality in the matrix theory, Journal of Anqing Normal University (Natural Science Edition) 21, 453001 (2015).
  • Lan et al. [2022] K. Lan, S. Xie, and X. Cai, Geometric quantum speed limits for markovian dynamics in open quantum systems, New Journal of Physics 24, 055003 (2022).