This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Thresholds on growth of nonlinearities and
singularity of initial functions
for semilinear heat equations

Yasuhito Miyamoto Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan [email protected]  and  Masamitsu Suzuki Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan [email protected]
Abstract.

Let N1N\geq 1 and let fC[0,)f\in C[0,\infty) be a nonnegative nondecreasing function and u0u_{0} be a possibly singular nonnegative initial function. We are concerned with existence and nonexistence of a local in time nonnegative solution in a uniformly local Lebesgue space of a semilinear heat equation

{tu=Δu+f(u)inN×(0,T),u(x,0)=u0(x)inN\begin{cases}\partial_{t}u=\Delta u+f(u)&\textrm{in}\ {\mathbb{R}^{N}}\times(0,T),\\ u(x,0)=u_{0}(x)&\textrm{in}\ {\mathbb{R}^{N}}\end{cases}

under mild assumptions on ff. A relationship between a growth of ff and an integrability of u0u_{0} is studied in detail. Our existence theorem gives a sharp integrability condition on u0u_{0} in a critical and subcritical cases, and it can be applied to a regularly or rapidly varying function ff. In a doubly critical case existence and nonexistence of a nonnegative solution can be determined by special treatment. When f(u)=u1+2/N[log(u+e)]βf(u)=u^{1+2/N}[\log(u+e)]^{\beta}, a complete classification of existence and nonexistence of a nonnegative solution is obtained. We also show that the same characterization as in Laister et. al. [11] is still valid in the closure of the space of bounded uniformly continuous functions in the space Lulr(N)L^{r}_{\rm ul}({\mathbb{R}^{N}}). Main technical tools are a monotone iterative method, LpL^{p}-LqL^{q} estimates, Jensen’s inequality and differential inequalities.

Key words and phrases:
Existence and nonexistence; Doubly critical case; Uniformly local LpL^{p} space; Regularly and rapidly varying functions
2010 Mathematics Subject Classification:
primary 35K55, secondary 35A01, 46E30.
The first author was supported by JSPS KAKENHI Grant Numbers 19H01797, 19H05599.
The second author was supported by Grant-in-Aid for JSPS Fellows No. 20J11985.

1. Introduction and main results

We are concerned with existence and nonexistence of a local in time solution for a semilinear heat equation

(1.1) {tu=Δu+f(u)inN×(0,T),u(x,0)=u0(x)inN,\begin{cases}\partial_{t}u=\Delta u+f(u)&\textrm{in}\ {\mathbb{R}^{N}}\times(0,T),\\ u(x,0)=u_{0}(x)&\textrm{in}\ {\mathbb{R}^{N}},\end{cases}

where the domain is N{\mathbb{R}^{N}}, N1N\geq 1, ff is a C1C^{1} function and the initial function u0u_{0} may be unbounded. When u0L(N)u_{0}\in L^{\infty}({\mathbb{R}^{N}}), it is known that a solution can be constructed by contraction mapping theorem. On the other hand, when u0L(N)u_{0}\not\in L^{\infty}({\mathbb{R}^{N}}), the existence of a solution is not trivial, and it depends on the balance between a growth of ff and a strength of singularities of u0u_{0}, i.e., an integrability of u0u_{0}. Weissler [22] studied the power case f(u)=|u|p1uf(u)=|u|^{p-1}u and obtained the following:

Proposition 1.1.

Let f(u)=|u|p1uf(u)=|u|^{p-1}u, p>1p>1 and rc:=N(p1)/2r_{c}:=N(p-1)/2. Then the following hold:

  1. (i)

    (Existence) The problem (1.1) admits a local in time solution u(t)C([0,T),Lr(N))u(t)\in C([0,T),L^{r}({\mathbb{R}^{N}})) if one of the following holds:

    1. (a)

      (Subcritical case) r>rcr>r_{c}, r1r\geq 1 and u0Lr(N)u_{0}\in L^{r}({\mathbb{R}^{N}}).

    2. (b)

      (Critical case) r=rc>1r=r_{c}>1 and u0Lr(N)u_{0}\in L^{r}({\mathbb{R}^{N}}).

  2. (ii)

    (Nonexistence) For each 1r<rc1\leq r<r_{c}, there exists a nonnegative function u0Lr(N)u_{0}\in L^{r}({\mathbb{R}^{N}}) such that (1.1) admits no nonnegative solution.

Let u(x,t)u(x,t) be a solution of tu=Δu+|u|p1u\partial_{t}u=\Delta u+|u|^{p-1}u. Let λ>0\lambda>0 and uλ(x,t)=λ2/(p1)u(λx,λ2t)u_{\lambda}(x,t)=\lambda^{2/(p-1)}u(\lambda x,\lambda^{2}t). Then, uλu_{\lambda} also satisfies the same equation. We see that uλ(x,0)r=u(x,0)r\left\|u_{\lambda}(x,0)\right\|_{r}=\left\|u(x,0)\right\|_{r} if and only if r=rcr=r_{c}. Proposition 1.1 shows that

u0Lrc(N)u_{0}\in L^{r_{c}}({\mathbb{R}^{N}})

is an optimal integrability condition for the solvability. For the case f(u)=|u|p1uf(u)=|u|^{p-1}u, much attention has been paid and a brief history can be found in [11]. See also [4, 23, 19] for various results.

As mentioned in [12], a tight correspondence between ff and the integrability of u0u_{0} fails in the case where f(u)|u|p1uf(u)\neq|u|^{p-1}u. Then, two problems arise:

  1. (A)

    given ff, characterize the set SS of initial data for which (1.1) has a solution;

  2. (B)

    given the set SS of initial data, characterize the nonlinearity ff for which (1.1) has a solution for every initial data in SS.

With regards to (B), Laister et. al. [11] gave a complete answer. In [11] the following was proved: Let ff be a nonnegative nondecreasing continuous function and Ω\Omega be a smooth bounded domain. Then, a Cauchy Dirichlet problem

(1.2) {tu=Δu+f(u)inΩ×(0,T),u=0onΩ×(0,T),u(x,0)=u0(x)inΩ\begin{cases}\partial_{t}u=\Delta u+f(u)&\textrm{in}\ \Omega\times(0,T),\\ u=0&\textrm{on}\ \partial\Omega\times(0,T),\\ u(x,0)=u_{0}(x)&\textrm{in}\ \Omega\end{cases}

admits a local in time nonnegative solution for every nonnegative initial data u0Lr(Ω)u_{0}\in L^{r}(\Omega) if and only if

(1.3) {lim supuf(u)u1+2r/N<if 1<r<,1f~(u)u1+2/N𝑑u<ifr=1,\begin{cases}\limsup_{u\to\infty}\frac{f(u)}{u^{1+2r/N}}<\infty&\textrm{if}\ 1<r<\infty,\\ \int_{1}^{\infty}\frac{\tilde{f}(u)}{u^{1+{2}/{N}}}du<\infty&\textrm{if}\ r=1,\end{cases}

where f~(u)=sup1τuf(τ)τ\tilde{f}(u)=\sup_{1\leq\tau\leq u}\frac{f(\tau)}{\tau}. In the case r=1r=1 various properties were studied in [12].

In this paper we mainly study Problem (A) and also study Problem (B) under a general integrability condition on u0u_{0}. We prepare some notation. Let 1r1\leq r\leq\infty. We define uniformly local LrL^{r} spaces by

Lulr(N):={uLloc1(N)|uLulr(N)<}.L^{r}_{\rm ul}({\mathbb{R}^{N}}):=\left\{u\in L^{1}_{\rm loc}({\mathbb{R}^{N}})\left|\ \left\|u\right\|_{L^{r}_{\rm ul}({\mathbb{R}^{N}})}<\infty\right.\right\}.

Here, for ρ>0\rho>0, B(y,ρ):={xN||xy|<ρ}B(y,\rho):=\{x\in{\mathbb{R}^{N}}|\ |x-y|<\rho\} and

uLulr(N):={supyN(B(y,1)|u(x)|r𝑑x)1/rif 1r<,esssupyNuL(B(y,1))ifr=.\left\|u\right\|_{L^{r}_{\rm ul}({\mathbb{R}^{N}})}:=\begin{cases}\sup_{y\in{\mathbb{R}^{N}}}\left(\int_{B(y,1)}|u(x)|^{r}dx\right)^{1/r}&\textrm{if}\ \ 1\leq r<\infty,\\ {\rm{esssup}}_{y\in{\mathbb{R}^{N}}}\left\|u\right\|_{L^{\infty}(B(y,1))}&\textrm{if}\ \ r=\infty.\end{cases}

We easily see that Lul(N)=L(N)L^{\infty}_{\rm ul}({\mathbb{R}^{N}})=L^{\infty}({\mathbb{R}^{N}}) and that Lulβ(N)Lulα(N)L^{\beta}_{\rm ul}({\mathbb{R}^{N}})\subset L^{\alpha}_{\rm ul}({\mathbb{R}^{N}}) if 1αβ1\leq\alpha\leq\beta. We define ulr(N)\mathcal{L}^{r}_{\rm ul}({\mathbb{R}^{N}}) by

ulr(N):=BUC(N)¯Lulr(N),\mathcal{L}^{r}_{\rm ul}({\mathbb{R}^{N}}):=\overline{BUC({\mathbb{R}^{N}})}^{\|\,\cdot\,\|_{L^{r}_{\rm ul}({\mathbb{R}^{N}})}},

i.e., ulr(N)\mathcal{L}^{r}_{\rm ul}({\mathbb{R}^{N}}) denotes the closure of the space of bounded uniformly continuous functions BUC(N)BUC({\mathbb{R}^{N}}) in the space Lulr(N)L^{r}_{\rm ul}({\mathbb{R}^{N}}). We assume

(f) fC1(0,)C[0,),f(u)>0foru>0,f(u)0foru>0,F(u)<foru>0,f\in C^{1}(0,\infty)\cap C[0,\infty),\ f(u)>0\ \textrm{for}\ u>0,\ f^{\prime}(u)\geq 0\ \textrm{for}\ u>0,\ \ F(u)<\infty\ \textrm{for}\ u>0,

where

F(u):=udτf(τ).F(u):=\int_{u}^{\infty}\frac{d\tau}{f(\tau)}.

We define XqX_{q} by

Xq:={fC[0,)|f satisfies (f) and the limit q:=limuf(u)F(u) exists.}.X_{q}:=\left\{f\in C[0,\infty)\left|\ \textrm{$f$ satisfies (\ref{f}) and the limit $q:=\lim_{u\to\infty}f^{\prime}(u)F(u)$ exists.}\right.\right\}.

In [6, 14] it was proved that if the limit qq exists, then q[1,]q\in[1,\infty]. Let us explain the exponent qq. If fC2f\in C^{2}, then by L’Hospital’s rule we have

q=limuF(u)1/f(u)=limu(F(u))(1/f(u))=limuf(u)2f(u)f′′(u).q=\lim_{u\to\infty}\frac{F(u)}{1/f^{\prime}(u)}=\lim_{u\to\infty}\frac{(F(u))^{\prime}}{(1/f^{\prime}(u))^{\prime}}=\lim_{u\to\infty}\frac{f^{\prime}(u)^{2}}{f(u)f^{\prime\prime}(u)}.

The growth rate of ff can be defined by p:=limuuf(u)/f(u)p:=\lim_{u\to\infty}uf^{\prime}(u)/f(u). We apply L’Hospital’s rule. Then,

1p=limu(f(u)/f(u))(u)=limu(1f(u)f′′(u)f(u)2)=11q,and hence1p+1q=1.\frac{1}{p}=\lim_{u\to\infty}\frac{(f(u)/f^{\prime}(u))^{\prime}}{(u)^{\prime}}=\lim_{u\to\infty}\left(1-\frac{f(u)f^{\prime\prime}(u)}{f^{\prime}(u)^{2}}\right)=1-\frac{1}{q},\ \textrm{and hence}\ \frac{1}{p}+\frac{1}{q}=1.

The qq exponent is the conjugate exponent of the growth rate pp. For example, if f(u)=upf(u)=u^{p} (p>1p>1), then q=p/(p1)q=p/(p-1). The leading term is not necessarily a pure power function upu^{p}. If f(u)=up[log(u+e)]βf(u)=u^{p}[\log(u+e)]^{\beta} (p>1,β)(p>1,\ \beta\in\mathbb{R}), then q=p/(p1)q=p/(p-1). The case q=1q=1 corresponds to the superpower case. For instance, the qq exponent becomes 11 if

f(u)=exp(up)(p>0),f(u)=exp(exp(u)ntimes)orf(u)=exp(|logu|p1logu)(p>1).f(u)=\exp(u^{p})\ (p>0),\ \ f(u)=\exp(\underbrace{\cdots\exp(u)\cdots}_{n\ \textrm{times}})\ \ \textrm{or}\ \ f(u)=\exp(|\log u|^{p-1}\log u)\ (p>1).

Fujishima-Ioku [6] studied Problem (A) for fXqf\in X_{q} and obtained the following:

Proposition 1.2.

The following hold:

  1. (i)

    (Existence) Let u00u_{0}\geq 0. Suppose that fXqf\in X_{q} and

    (1.4) f(u)F(u)qfor large u>0.f^{\prime}(u)F(u)\leq q\ \ \textrm{for large $u>0$.}

    Then (1.1) has a local in time nonnegative solution if one of the following holds:

    1. (a)

      (Subcritical case) r>N/2r>N/2, q1+rq\leq 1+r and F(u0)rLul1(N)F(u_{0})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}).

    2. (b)

      (Critical case) r=N/2r=N/2, q<1+rq<1+r and F(u0)rul1(N)F(u_{0})^{-r}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}).

  2. (ii)

    (Nonexistence) Suppose that fC2[0,)Xqf\in C^{2}[0,\infty)\cap X_{q} with q<1+N/2q<1+N/2 and that f′′(u)0f^{\prime\prime}(u)\geq 0 for u0u\geq 0. If 0<r<N/20<r<N/2 and q1+rq\leq 1+r, then there exists a nonnegative initial function u0u_{0} such that F(u0)rLul1(N)F(u_{0})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and (1.1) admits no nonnegative solution.

Remark 1.3.

  1. (i)

    In Proposition 1.2 (ii) we can take u0ul1(N)u_{0}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}). See the proof of [6, Theorem 1.2] for details.

  2. (ii)

    Proposition 1.2 shows that, for each fXqf\in X_{q} with (1.4), an optimal integrability condition is

    F(u0)N/2ul1(N).F(u_{0})^{-N/2}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}).

    When f(u)=upf(u)=u^{p}, then F(u)N/2=(p1)N/2uN(p1)/2F(u)^{-N/2}=(p-1)^{N/2}u^{N(p-1)/2} for u>0u>0. Therefore, the case r=N/2r=N/2 is a critical case which corresponds to Proposition 1.1 (i) (b).

  3. (iii)

    Let qS:=(N+2)/4q_{S}:=(N+2)/4 be the conjugate exponent of the critical Sobolev exponent (N+2)/(N2)(N+2)/(N-2). In [14] a radial singular stationary solution u(x)u^{*}(x) of (1.1) near the origin was constructed if fXqf\in X_{q} with q<qSq<q_{S}. Moreover, uu^{*} is unique under a certain assumption on ff (see [15, 16]) and

    u(x)=F1(|x|22N4q(1+o(1)))as|x|0.u^{*}(x)=F^{-1}\left(\frac{|x|^{2}}{2N-4q}(1+o(1))\right)\ \ \textrm{as}\ \ |x|\to 0.

    Since F(u)rLul1(N)F(u^{*})^{-r}\not\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) for rN/2r\geq N/2 and F(u)rLul1(N)F(u^{*})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) for r<N/2r<N/2, uu^{*} is on a border between Proposition 1.2 (i) and (ii).

Let

S(t)[ϕ](x):=NK(x,y,t)ϕ(y)𝑑yforϕLul1(N),S(t)[\phi](x):=\int_{{\mathbb{R}^{N}}}K(x,y,t)\phi(y)dy\ \ \textrm{for}\ \ \phi\in L^{1}_{\textrm{ul}}({\mathbb{R}^{N}}),

where K(x,y,t):=(4πt)N/2exp(|xy|2/4t)K(x,y,t):=(4\pi t)^{-N/2}\exp\left(-{|x-y|^{2}}/{4t}\right). Then, S(t)ϕS(t)\phi gives a solution of the Cauchy problem of the linear heat equation tu=Δu\partial_{t}u=\Delta u with the initial function ϕ(x)\phi(x). We define a solution of (1.1).

Definition 1.4.

We call u(t)u(t) a solution of (1.1) if there exists T>0T>0 such that u(t)L((0,T),Lul1(N))Lloc((0,T),L(N))u(t)\in L^{\infty}((0,T),L^{1}_{\rm ul}({\mathbb{R}^{N}}))\cap L_{\rm loc}^{\infty}((0,T),L^{\infty}({\mathbb{R}^{N}})) and uu satisfies

(1.5) >u(t)=[u(t)]for a.e. xN0<t<T,\infty>u(t)=\mathcal{F}[u(t)]\ \ \textrm{for a.e.\ $x\in{\mathbb{R}^{N}}$, $0<t<T$,}

where

[u(t)]:=S(t)u0+0tS(ts)f(u(s))𝑑s.\mathcal{F}[u(t)]:=S(t)u_{0}+\int_{0}^{t}S(t-s)f(u(s))ds.

We call a measurable finite almost everywhere function u¯:N×(0,T)\bar{u}:\ {\mathbb{R}^{N}}\times(0,T)\to\mathbb{R} a supersolution for (1.1) if there exists T>0T>0 such that u¯(t)[u¯(t)]\bar{u}(t)\geq\mathcal{F}[\bar{u}(t)] for a.e. xNx\in{\mathbb{R}^{N}}, 0<t<T0<t<T.

The first result is a generalization of Proposition 1.2 (i). Specifically, the technical assumption (1.4) can be removed as the following (i) and (iii) show.

Theorem A.

Let u00u_{0}\geq 0 and fXqf\in X_{q}. Then (1.1) has a local in time nonnegative solution u(t)u(t), 0<t<T0<t<T, if one of the following holds:

  1. (i)

    (Subcritical case 1) r>N/2r>N/2, q<1+rq<1+r and F(u0)rLul1(N)F(u_{0})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}).

  2. (ii)

    (Subcritical case 2) r>N/2r>N/2, q=1+rq=1+r, F(u0)rLul1(N)F(u_{0})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and (1.4) holds.

  3. (iii)

    (Critical case) r=N/2r=N/2, q<1+rq<1+r and F(u0)rul1(N)F(u_{0})^{-r}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}).

Moreover, in all cases, there exists C>0C>0 such that

(1.6) F(u(t))rLul1(N)Cfor 0<t<T.\left\|F(u(t))^{-r}\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}\leq C\ \ \textrm{for}\ 0<t<T.
Remark 1.5.

  1. (i)

    Theorem A (i) with q>1q>1 was proved in [8, Theorem 1.4] and Theorem A (ii) is included in Proposition 1.2 (i). However, in this paper we prove three cases in a unified way, using a different approach. See the proof of Theorem 3.1 for details.

  2. (ii)

    If q<1+rq<1+r or if q=1+rq=1+r with (1.4), then F(u)rF(u)^{-r} is convex for large u>0u>0. Therefore, F(u0)rLul1(N)F(u_{0})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) always implies u0Lul1(N)u_{0}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and S(t)u0S(t)u_{0} is well defined.

  3. (iii)

    If q=1+rq=1+r and (1.4) does not hold, then F(u)rF(u)^{-r} may be nonconvex in uu, and F(u0)rLul1(N)F(u_{0})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) does not necessarily imply u0Lul1(N)u_{0}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}). Hence the case q=1+rq=1+r is critical in some sense.

  4. (iv)

    Using the method used in the proof of [24, Theorem 1], we see that Proposition 1.2 (ii) also holds even if we adopt Definition 1.4. Theorem A and Proposition 1.2 (ii) complete a classification of the existence and nonexistence problem for fXqf\in X_{q} in a reasonable region {(q,r)| 1q1+r,r>0}\{(q,r)|\ 1\leq q\leq 1+r,\ r>0\} except (q,r)=(1+N/2,N/2)(q,r)=(1+N/2,N/2).


1OO1+N2\frac{N}{2}N2\frac{N}{2}rrqqr=q1r=q-1(doubly critical)nonexistenceexistenceexistence(subcritical)(critical)
Fig. 1. Theorem A is for the existence region. Proposition 1.2 (ii) is for the nonexistence region. Theorems B and C are for a doubly critical case. Theorem D is an example of a doubly critical case, i.e., f(u)=u1+2/N[log(u+e)]βf(u)=u^{1+2/N}[\log(u+e)]^{\beta}.

Let us consider the case where (q,r)=(1+N/2,N/2)(q,r)=(1+N/2,N/2). This case corresponds to the case r=rc=1r=r_{c}=1 in Proposition 1.1 and it is not covered by Propositions 1.1, 1.2 or Theorem A. The simplest example is f(u)=u1+2/Nf(u)=u^{1+2/N}. Then, the integrability condition becomes F(u0)r=(2/N)N/2u0ul1(N)F(u_{0})^{-r}=(2/N)^{N/2}u_{0}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}). It is known that there exists a nonnegative initial data u0L1(N)(ul1(N))u_{0}\in L^{1}({\mathbb{R}^{N}})(\subset\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}})) such that (1.1) admits no nonnegative solution. See [2, 5, 11, 12, 24] for nonexistence results. This case is quite delicate and referred as a doubly critical case in [2, Section 7.5], since r=N/2r=N/2 and q=1+rq=1+r. See Figure 1. A sufficient condition for existence is recently studied in [18]. Combining a nonexistence result [3] and an existence result [18], we have the following:

Proposition 1.6.

Let f(u)=|u|2/Nuf(u)=|u|^{2/N}u and

Zr:={ϕ(x)Lloc1(N)|N|ϕ|[log(|ϕ|+e)]r𝑑x<}.Z_{r}:=\left\{\phi(x)\in L^{1}_{\rm loc}({\mathbb{R}^{N}})\left|\int_{{\mathbb{R}^{N}}}|\phi|\left[\log(|\phi|+e)\right]^{r}dx<\infty\right.\right\}.

Then the following hold:

  1. (i)

    If u0Zru_{0}\in Z_{r} for some rN/2r\geq N/2, then (1.1) admits a local in time solution.

  2. (ii)

    For each 0r<N/20\leq r<N/2, there is a nonnegative initial function u0Zru_{0}\in Z_{r} such that (1.1) admits no nonnegative solution.

Since ZrZN/2Z_{r}\subset Z_{N/2} for rN/2r\geq N/2, by Proposition 1.6 we see that

u0ZN/2u_{0}\in Z_{N/2}

is an optimal integrability condition for the solvability when f(u)=|u|2/Nuf(u)=|u|^{2/N}u. In particular, ZN/2Z_{N/2} is a proper subset of L1(N)L^{1}({\mathbb{R}^{N}}).

We study existence of a solution in a doubly critical case when ff is a general nonlinearity. The next main theorem is a generalization of Proposition 1.6 (i).

Theorem B (Existence, doubly critical case).

Let u00u_{0}\geq 0 and q=1+N/2q=1+N/2. Suppose that fXqf\in X_{q} holds. Let

(1.7) g(u):=u[log(u+e)]α,h(u):=F(u)N/2andJα(u):=g(h(u))=F(u)N/2[log(F(u)N/2+e)]α.g(u):=u[\log(u+e)]^{\alpha},\ \ h(u):=F(u)^{-N/2}\\ \textrm{and}\ \ J_{\alpha}(u):=g(h(u))=F(u)^{-N/2}\left[\log\left(F(u)^{-N/2}+e\right)\right]^{\alpha}.

Then (1.1) admits a local in time nonnegative solution u(t)u(t), 0<t<T0<t<T, if one of the following holds:

  1. (i)

    There exists α>N/2\alpha>N/2 such that Jα(u0)Lul1(N)J_{\alpha}(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and Jα(u)J_{\alpha}(u) is convex for large u>0u>0, i.e., Jα′′(u)0J^{\prime\prime}_{\alpha}(u)\geq 0 for large u>0u>0.

  2. (ii)

    Jα(u0)ul1(N)J_{\alpha}(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) for α=N/2\alpha=N/2 and there exists ρ<1\rho<1 such that

    (1.8) f(u)F(u)qNα2ρlog(F(u)N/2+e)for largeu>0.f^{\prime}(u)F(u)-q\leq\frac{N\alpha}{2}\cdot\frac{\rho}{\log\left(F(u)^{-N/2}+e\right)}\ \ \textrm{for large}\ u>0.

Moreover, in two cases, there exists C>0C>0 such that

(1.9) Jα(u(t))Lul1(N)Cfor 0<t<T.\left\|J_{\alpha}(u(t))\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}\leq C\ \ \textrm{for}\ 0<t<T.

In Corollary 5.1 it will be shown that we cannot take ρ=1\rho=1 in Theorem B (ii). Thus, the condition ρ<1\rho<1 is optimal.

Let q=1+N/2q=1+N/2 and αN/2\alpha\geq N/2. We can easily check that if fXqf\in X_{q} and (1.4) hold, then Jα(u)J_{\alpha}(u) is convex for large u>0u>0 and (1.8) holds for ρ=0\rho=0. Therefore, Theorem B immediately leads to the following simple sufficient condition:

Corollary B’ Let u00u_{0}\geq 0 and q=1+N/2q=1+N/2. Suppose that fXqf\in X_{q} and (1.4) hold. Then (1.1) admits a local in time nonnegative solution if Jα(u0)Lul1(N)J_{\alpha}(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) for some α>N/2\alpha>N/2 or Jα(u0)ul1(N)J_{\alpha}(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) for α=N/2\alpha=N/2.

We study nonexistence of a solution in a doubly critical case. For β\beta\in\mathbb{R}, we define

fβ(u):=u1+2/N[log(u+e)]β,Fβ(u):=udτfβ(τ)andhβ(u):=Fβ(u)N/2.f_{\beta}(u):=u^{1+2/N}\left[\log(u+e)\right]^{\beta},\ \ F_{\beta}(u):=\int_{u}^{\infty}\frac{d\tau}{f_{\beta}(\tau)}\ \ \textrm{and}\ \ h_{\beta}(u):=F_{\beta}(u)^{-N/2}.
Theorem C (Nonexistence, doubly critical case).

Let u00u_{0}\geq 0. Suppose that ff satisfies (f) and there exist C1>0C_{1}>0, C2>0C_{2}>0, β>0\beta>0 and 0<δ<10<\delta<1 such that the following hold:

  1. (i)

    F1FβF^{-1}\circ F_{\beta} is convex on [C1,)[C_{1},\infty), i.e., f(F1(v))fβ(Fβ1(v))f^{\prime}(F^{-1}(v))\geq f^{\prime}_{\beta}(F^{-1}_{\beta}(v)) for 0<vFβ(C1)0<v\leq F_{\beta}(C_{1}).

  2. (ii)

    F(u)C2u2/N[log(u+e)]δF(u)\leq C_{2}u^{-2/N}\left[\log(u+e)\right]^{\delta} for uC1u\geq C_{1}.

Let Jα(u):=F(u)N/2[log(F(u)N/2+e)]αJ_{\alpha}(u):=F(u)^{-N/2}\left[\log\left(F(u)^{-N/2}+e\right)\right]^{\alpha}. For each α[0,N/2)\alpha\in[0,N/2), there exists a nonnegative function u0Lul1(N)u_{0}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) satisfying Jα(u0)Lul1(N)J_{\alpha}(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) such that, for every T>0T>0, (1.1) admits no nonnegative solution.

Remark 1.7.

  1. (i)

    If ff satisfies (f) and f(u)F(u)1+N/2f^{\prime}(u)F(u)\geq 1+N/2 for large u>0u>0, then for each β>0\beta>0, the assumption of Theorem C (i) holds by taking C1>0C_{1}>0 sufficiently large.

  2. (ii)

    A characterization of ff for existence and nonexistence of a solution in ulr(N)\mathcal{L}^{r}_{\rm ul}({\mathbb{R}^{N}}), r1r\geq 1, is given in Corollary 9.2 and Theorem 9.3. This characterization is the same one as (1.3) which was obtained in [11, Corollary 4.5 and Theorem 3.4].

We study Problem (B) in Corollaries 3.2, 3.3, 4.3 and 4.5. These corollaries give existence and nonexistence conditions on ff when integrability conditions on u0u_{0} are given. These corollaries are not optimal, and could be improved. A threshold growth and a threshold integrability can be summarized as Table 1.

Table 1. Relationship between a threshold growth and a threshold integrability. Here, gN2(u)=u[log(u+e)]N/2g_{\frac{N}{2}}(u)=u[\log(u+e)]^{N/2}, q=limuf(u)F(u)q=\lim_{u\to\infty}f^{\prime}(u)F(u) and qJ=limuJ(u)2/J(u)J′′(u)q_{J}=\lim_{u\to\infty}J^{\prime}(u)^{2}/J(u)J^{\prime\prime}(u).
problem growth integrability existence nonexistence
1q<1+N21\leq q<1+\frac{N}{2} (A) f(u)f(u) \!\!\rightarrow\!\! F(u0)N2ul1(N)F(u_{0})^{-\frac{N}{2}}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) Thm A Prop 1.2(ii)
1qJ<1\leq q_{J}<\infty (B) J(u)1+2NJ(u)\frac{J(u)^{1+\frac{2}{N}}}{J^{\prime}(u)} \!\!\leftarrow\!\! J(u0)ul1(N)J(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) Cor 3.2 Cor 4.3
q=1+N2q=1+\frac{N}{2} (A) f(u)f(u) \!\!\rightarrow\!\! gN2(F(u0)N2)ul1(N)\!\!g_{\frac{N}{2}}(F(u_{0})^{-\frac{N}{2}})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}})\!\! Thm B Thm C
qJ=q_{J}=\infty (B) J(u)1+2NJ(u)log(J(u)+e)\!\!\frac{J(u)^{1+\frac{2}{N}}}{J^{\prime}(u)\log(J(u)+e)}\!\! \!\!\leftarrow\!\! J(u0)ul1(N)J(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) Cor 3.3 Cor 4.5

We consider an example of a doubly critical case. Let f(u)=fβ(u)f(u)=f_{\beta}(u). An elementary calculation shows that if β(1+2/N)κ\beta\geq-(1+2/N)\kappa, then fβ(u)f_{\beta}(u) is nondecreasing for u>0u>0. Here, κ\kappa is the largest positive root of

(1.10) logκ+2=κ,whereκ3.146.\log\kappa+2=\kappa,\ \ \textrm{where}\ \ \kappa\simeq 3.146.

The following theorem is a complete classification of integrability conditions on u0u_{0}.

Theorem D (Classification for fβf_{\beta}).

Let u00u_{0}\geq 0,

f(u)=fβ(u)andJα(u)=Fβ(u)N/2[log(Fβ(u)N/2+e)]α.f(u)=f_{\beta}(u)\ \ \textrm{and}\ \ J_{\alpha}(u)=F_{\beta}(u)^{-N/2}\left[\log\left(F_{\beta}(u)^{-N/2}+e\right)\right]^{\alpha}.

Then the following hold:

  1. (i)

    (Existence) (1.1) with initial function u0Lul1(N)u_{0}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) admits a local in time nonnegative solution if one of the following holds:

    1. (a)

      α>N/2\alpha>N/2, β1\beta\geq-1 and Jα(u0)Lul1(N){J_{\alpha}}(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}).

    2. (b)

      α=N/2\alpha=N/2, β>1\beta>-1 and Jα(u0)ul1(N){J_{\alpha}}(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}).

    3. (c)

      (1+2/N)κβ<1-(1+2/N)\kappa\leq\beta<-1, where κ\kappa is given by (1.10).

  2. (ii)

    (Nonexistence)

    1. (a)

      Let β>1\beta>-1. For each α[0,N/2)\alpha\in[0,N/2), there exists a nonnegative function u0Lul1(N)u_{0}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) such that Jα(u0)Lul1(N)J_{\alpha}(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and that (1.1) admits no nonnegative solution.

    2. (b)

      Let β=1\beta=-1. For each α[0,N/2]\alpha\in[0,N/2], there exists a nonnegative function u0ul1(N)u_{0}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) such that Jα(u0)ul1(N)J_{\alpha}(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) and that (1.1) admits no nonnegative solution.

Remark 1.8.

  1. (i)

    In the case β>1\beta>-1 (1.1) is solvable for all u00u_{0}\geq 0 satisfying JN/2(u0)ul1(N)J_{N/2}(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}). However, in the case β=1\beta=-1 (1.1) is not necessarily solvable even if JN/2(u0)ul1(N)J_{N/2}(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}).

  2. (ii)

    Theorem D indicates that if β1\beta\geq-1, then a threshold integrability condition is JN/2(u0)ul1(N)J_{N/2}(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}).

  3. (iii)

    If β=1\beta=-1, then there are C2>C1>0C_{2}>C_{1}>0 such that C1<JN/2(u)<C2C_{1}<J^{\prime}_{N/2}(u)<C_{2} for u0u\geq 0. Therefore, JN/2(u0)ul1(N)J_{N/2}(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) if and only if u0ul1(N)u_{0}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}).

  4. (iv)

    In [11, Section 4.4] it was proved that (1.2) with f(u)=fβ(u)f(u)=f_{\beta}(u) on a smooth bounded domain Ω\Omega is always solvable (resp. is not always solvable) for a nonnegative function u0L1(Ω)u_{0}\in L^{1}(\Omega) if β<1\beta<-1 (resp. if 1β0-1\leq\beta\leq 0).


We characterize the class of nonlinearities XqX_{q}, since Theorems A and B assume fXqf\in X_{q}.

Definition 1.9.

  1. (i)

    Let RVp{\rm RV}_{p}, 0p<0\leq p<\infty, denote the set of regularly varying functions, i.e., fRVpf\in{\rm RV}_{p} if

    limuf(λu)f(u)=λp.\lim_{u\to\infty}\frac{f(\lambda u)}{f(u)}=\lambda^{p}.

    In particular, if fRV0f\in{\rm RV}_{0}, then ff is called a slowly varying function.

  2. (ii)

    Let RV{\rm RV}_{\infty} denote the set of rapidly varying functions, i.e, fRVf\in{\rm RV}_{\infty} if

    limuf(λu)f(u)={forλ>1,0for 0<λ<1.\lim_{u\to\infty}\frac{f(\lambda u)}{f(u)}=\begin{cases}\infty&\textrm{for}\ \lambda>1,\\ 0&\textrm{for}\ 0<\lambda<1.\end{cases}

The class RVp{\rm RV}_{p} is a generalization of a homogeneous function of degree pp and RV{\rm RV}_{\infty} is a generalization of a superpower function, e.g., eue^{u}. Readers can consult the book [7] for details of RVp{\rm RV}_{p}.

Theorem E.

Assume that pp and qq satisfy the following: p:=q/(q1)p:=q/(q-1) if q>1q>1, and p:=p:=\infty if q=1q=1. Then the following hold:

  1. (i)

    If fXqf\in X_{q} for some q[1,)q\in[1,\infty), then fRVpf\in{\rm RV}_{p}.

  2. (ii)

    Suppose that ff satisfies (f) and that ff^{\prime} is nondecreasing. Then, fXqf\in X_{q} for q(1,)q\in(1,\infty) if and only if fRVpf\in{\rm RV}_{p} for p(1,)p\in(1,\infty).

  3. (iii)

    Suppose that ff satisfies (f) and that f(u)F(u)f^{\prime}(u)F(u) is nondecreasing. Then, fX1f\in X_{1} if and only if fRVf\in{\rm RV}_{\infty}.

Theorem E (ii) and (iii) say that XqX_{q} (1q<1\leq q<\infty) and RVp{\rm RV}_{p} (1<p1<p\leq\infty) are equivalent. Therefore, Theorems A and B can be applied to fRVpf\in{\rm RV}_{p} under additional assumptions. It follows from Karamata’s representation theorem, which is stated in Proposition 7.1, that for each function fRVpf\in{\rm RV}_{p}, 1<p<1<p<\infty, f(u)f(u) has a concrete form (7.1) which explicitly describes a function of XqX_{q}. Moreover, it is known that fRVpf\in{\rm RV}_{p}, 0<p<0<p<\infty, can be written as f(u)=upL(u)f(u)=u^{p}L(u) for u>1u>1, where LRV0L\in{\rm RV}_{0}, i.e., a slowly varying function.


Let us explain technical details. In the existence part a critical case (Theorem A (iii) without (1.4)) or a doubly critical case (Theorem B) were not covered by existing results. Since these cases are delicate, we introduce a new method. First, we separately treat the nonlinear term ff and a convex function JJ, which appears in an integrability condition J(u0)Lul1(N)J(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}). We introduce a simple but new supersolution (3.5), using JJ. In [10, 8, 20] similar functions were also used as supersolutions. However, these supersolutions were directly related to integrability conditions. In Theorem 3.1 we show that (3.5) is actually a supersolution for (1.1), and hence by monotone iterative method we can construct a nonnegative solution. In [6] a change of variables was used to construct a supersolution, and (1.4) was necessary. Essential conditions for JJ are (3.1) and (3.2). Second, we relate ff and JJ. Specifically, we take J(u)=F(u)rJ(u)=F(u)^{-r} in Theorem A and J(u)=Jα(u)J(u)=J_{\alpha}(u) in Theorem B. This method can analyze in detail a relationship between the growth of ff and the integrability of u0u_{0}, and can treat superpower nonlinearities. Parabolic systems with superpower nonlinearities were studied in [10, 17, 21]. Theorem 3.1 is also useful in the study of Problem (B). Using Theorem 3.1, we give a necessary and sufficient condition on ff for a solvability in ulr(N)\mathcal{L}^{r}_{\rm ul}({\mathbb{R}^{N}}), r1r\geq 1, in Section 9. Theorem 3.1 is used in the proof of the sufficient part. Main technical tools in the proof of Theorem 3.1 are a monotone iterative method (Proposition 2.4), LpL^{p}-LqL^{q} estimates (Proposition 2.5) and Jensen’s inequality (Proposition 2.7).

It is not easy to obtain a nonexistence result in a doubly critical case. In [3, 9] necessary conditions on u0u_{0} were obtained for f(u)=upf(u)=u^{p}, and nonexistence results were established. In Theorem 4.2 we prove a nonexistence theorem for fβ(u)=u1+2/N[log(u+e)]βf_{\beta}(u)=u^{1+2/N}[\log(u+e)]^{\beta}, β>0\beta>0, which needs a more detailed analysis than previous studies. The function fβf_{\beta} is not homogeneous, and the function H(t)H(t) defined by (4.12), which is related to a local L1L^{1}-norm of a solution, is a key in the proof of Theorem 4.2. The behavior of H(t)H(t) gives a necessary condition for the existence of a nonnegative solution. If we take (4.1) as an initial function, then we obtain a contradiction, and a nonexistence theorem for fβf_{\beta} is proved. The proof of Theorem C is by contradiction. Suppose that (1.1) has a nonnegative solution. Using a change of variables, we can construct a supersolution for (1.1) with fβf_{\beta} from a solution of (1.1). Then, it follows from a monotone iterative method that (1.1) with fβf_{\beta} has a nonnegative solution. However, (1.1) with fβf_{\beta} does not have a nonnegative solution, because of Theorem 4.2. Therefore, the contradiction concludes the proof of Theorem C. Main technical tools in the proofs of Theorems 4.2 and C are the differential inequality (4.13) and a comparison principle. Theorems B and C are used in the proof of a complete classification for fβ(u)f_{\beta}(u) (Theorem D).

In this paper Problem (B) is also studied. Specifically, we obtain growth conditions on ff for existence and nonexistence results when the integrability condition J(u0)Lul1(N)J(u_{0})\in{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) is given. Corollaries 3.2 and 3.3 are derived from Theorem 3.1. Corollaries 4.3 and 4.5 are counterparts of Proposition 1.2 (ii) and Theorem C, respectively.

In [11] a complete characterization for existence and nonexistence of a solution of (1.1) in Lr(Ω)L^{r}(\Omega) was obtained. Their definition of a solution is different from Definition 1.4, and requires that uL((0,T),Lr(Ω))u\in L^{\infty}((0,T),L^{r}(\Omega)). Only in Section 9 we adopt a similar definition of [11] which is different from Definition 1.4, and obtain the same characterization in the ulr(N)\mathcal{L}^{r}_{\rm ul}({\mathbb{R}^{N}}) framework.

This paper consists of ten sections. In Section 2 several examples to which Theorem A can be applied are given. We recall basic propositions and prove useful lemmas. They will be used in the proof of our Theorems A, B, C and D. In Section 3 we prove an abstract existence theorem (Theorem 3.1) and prove Theorem A. Moreover, existence conditions on ff are obtained in Corollaries 3.2 and 3.3. In Section 4 we prove Theorem C. Nonexistence conditions on ff are obtained in Corollaries 4.3 and 4.5. In Section 5 we study a necessary and sufficient condition for a solvability of (1.1) in ul1(N)\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}). Section 6 is devoted to the proof of Theorem D. In Section 7 we prove Theorem E. Section 8 is a summary and problems. Sections 9 and 10 are appendices to [11] and [8], respectively.

2. Examples and preliminaries

We give four examples and recall known results which are useful in the proof of the main theorems.

2.1. Example 1. f(u)=exp(up)f(u)=\exp(u^{p}), p>0p>0

By direct calculation we have

q:=limuf(u)F(u)=limuf(u)2f(u)f′′(u)=limupp+(p1)up=1.q:=\lim_{u\to\infty}f^{\prime}(u)F(u)=\lim_{u\to\infty}\frac{f^{\prime}(u)^{2}}{f(u)f^{\prime\prime}(u)}=\lim_{u\to\infty}\frac{p}{p+(p-1)u^{-p}}=1.

We have

ddu(f(u)f(u)1/q)=p(p1)up2.\frac{d}{du}\left(\frac{f^{\prime}(u)}{f(u)^{1/q}}\right)=p(p-1)u^{p-2}.

We consider the case p1p\geq 1 Since p1p\geq 1, f(u)/f(u)1/qf^{\prime}(u)/f(u)^{1/q} is nondecreasing. Since

(2.1) f(u)f(u)1/qf(u)1/qudsf(s)f(u)1/quf(s)dsf(s)1/q+1=f(u)1/q[qf(s)1/q]u=q,\frac{f^{\prime}(u)}{f(u)^{1/q}}f(u)^{1/q}\int_{u}^{\infty}\frac{ds}{f(s)}\leq f(u)^{1/q}\int_{u}^{\infty}\frac{f^{\prime}(s)ds}{f(s)^{1/q+1}}=f(u)^{1/q}\left[-qf(s)^{-1/q}\right]_{u}^{\infty}=q,

we see that f(u)F(u)qf^{\prime}(u)F(u)\leq q. Proposition 1.2 (i) and (ii) are applicable. Next, we consider the case 0<p<10<p<1. Since f(u)/f(u)1/qf^{\prime}(u)/f(u)^{1/q} is decreasing, by calculation similar to (2.1) we see that f(u)F(u)>1f^{\prime}(u)F(u)>1. Proposition 1.2 (i) is not applicable, while Theorem A (i) and (iii) are applicable. Using Theorem A (i) and (iii) and Proposition 1.2 (ii), we obtain the following:

Theorem 2.1.

Let u00u_{0}\geq 0 and f(u)=exp(up)f(u)=\exp(u^{p}) (p>0)(p>0). Then the following hold:
(i) The problem (1.1) admits a local in time nonnegative solution if F(u0)rLul1(N)F(u_{0})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) for some r>N/2r>N/2 or F(u0)N/2ul1(N)F(u_{0})^{-N/2}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}).
(ii) For each r(0,N/2)r\in(0,N/2), there exists a nonnegative initial function u0Lul1(N)u_{0}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) such that F(u0)rLul1(N)F(u_{0})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and (1.1) admits no nonnegative solution.

By L’Hospital’s rule we see that

limuF(u)p1(u+1)p+1eup=1.\lim_{u\to\infty}\frac{F(u)}{p^{-1}(u+1)^{-p+1}e^{-u^{p}}}=1.

Therefore, F(u0)rLul1(N)F(u_{0})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) if and only if (u+1)(p1)rerupLul1(N)(u+1)^{(p-1)r}e^{ru^{p}}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}).

2.2. Example 2. f(u)=exp(|logu|p1logu)f(u)=\exp(|\log u|^{p-1}\log u), p>1p>1

By direct calculation we have

q:=limuf(u)F(u)=limuf(u)2f(u)f′′(u)=limu11+p1p(logu)p1p(logu)p1=1.q:=\lim_{u\to\infty}f^{\prime}(u)F(u)=\lim_{u\to\infty}\frac{f^{\prime}(u)^{2}}{f(u)f^{\prime\prime}(u)}=\lim_{u\to\infty}\frac{1}{1+\frac{p-1}{p(\log u)^{p}}-\frac{1}{p(\log u)^{p-1}}}=1.

We have

ddu(f(u)f(u)1/q)=p(logu)p2u2{(p1)logu}<0for largeu>0.\frac{d}{du}\left(\frac{f^{\prime}(u)}{f(u)^{1/q}}\right)=p\frac{(\log u)^{p-2}}{u^{2}}\left\{(p-1)-\log u\right\}<0\ \ \textrm{for large}\ u>0.

Since f(u)/f(u)1/qf^{\prime}(u)/f(u)^{1/q} is decreasing for large u>0u>0, by calculation similar to (2.1) we see that f(u)F(u)>1f^{\prime}(u)F(u)>1. Proposition 1.2 (i) is not applicable, while Theorem A (i) and (iii) are applicable. Using Theorem A (i) and (iii) and Proposition 1.2 (ii), we obtain the following:

Theorem 2.2.

Let u00u_{0}\geq 0 and f(u)=exp(|logu|p1logu)f(u)=\exp(|\log u|^{p-1}\log u), p>1p>1. Then the same statements as Theorem 2.1 hold.

By L’Hospital’s rule we see that

limuF(u)u+ep[log(u+e)]p1e|logu|p1logu=1.\lim_{u\to\infty}\frac{F(u)}{\frac{u+e}{p[\log(u+e)]^{p-1}}e^{-|\log u|^{p-1}\log u}}=1.

Therefore, F(u0)rLul1(N)F(u_{0})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) if and only if

[log(u+e)](p1)r(u+e)rer|logu|p1loguLul1(N).\frac{[\log(u+e)]^{(p-1)r}}{(u+e)^{r}}e^{r|\log u|^{p-1}\log u}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}).

2.3. Example 3. f(u)=(u+a)p/{(p1)log(u+a)1}f(u)=(u+a)^{p}/\{(p-1)\log(u+a)-1\}, p>1+2/Np>1+2/N

We define a:=e2/(p1)a:=e^{2/(p-1)} so that (p1)log(u+a)11(p-1)\log(u+a)-1\geq 1 for u0u\geq 0. Let q:=p/(p1)q:=p/(p-1). By direct calculation we have

F(u)=log(u+a)(u+a)p1,F(u)=\frac{\log(u+a)}{(u+a)^{p-1}},

hence,

f(u)F(u)=pp1+(p1)(2p1)log(u+a)p(p1){(p1)log(u+a)1}2qasu.f^{\prime}(u)F(u)=\frac{p}{p-1}+\frac{(p-1)(2p-1)\log(u+a)-p}{(p-1)\{(p-1)\log(u+a)-1\}^{2}}\to q\ \ \textrm{as}\ \ u\to\infty.

Since f(u)F(u)>qf^{\prime}(u)F(u)>q, Proposition 1.2 (i) is not applicable. The statements of Theorem A (i) and (iii) and Proposition 1.2 (ii) hold. Here,

F(u)r=(u+a)(p1)r[log(u+a)]r.F(u)^{-r}=\frac{(u+a)^{(p-1)r}}{[\log(u+a)]^{r}}.

2.4. Example 4. The nn-th iterated exponential function

Let f(u):=exp(exp(u)ntimes)f(u):=\exp(\underbrace{\cdots\exp(u)\cdots}_{n\ {\rm times}}), n1n\geq 1. It is easy to show that q=1q=1 and f(u)2/(f(u)f′′(u))1f^{\prime}(u)^{2}/(f(u)f^{\prime\prime}(u))\leq 1. See [14] for details. Integrating 1/f(u)f′′(u)/f(u)21/f(u)\leq f^{\prime\prime}(u)/f^{\prime}(u)^{2} over [u,)[u,\infty), we have f(u)F(u)1f^{\prime}(u)F(u)\leq 1. Using Proposition 1.2, we obtain the following:

Theorem 2.3.

Let N1N\geq 1, u00u_{0}\geq 0 and f(u):=exp(exp(u)ntimes)f(u):=\exp(\underbrace{\cdots\exp(u)\cdots}_{n\ {\rm times}}), n1n\geq 1. Then the same statements as Theorem 2.1 hold.

2.5. Preliminaries

For any set XX and the mappings a=a(x)a=a(x) and b=b(x)b=b(x) from XX to [0,)[0,\infty), we say

a(x)b(x)for allxXa(x)\lesssim b(x)\ \ \textrm{for all}\ x\in X

if there exists a positive constant CC such that a(x)Cb(x)a(x)\leq Cb(x) for all xXx\in X.

We recall a monotone iterative method.

Proposition 2.4.

Let 0<T0<T\leq\infty and let ff be a continuous nondecreasing function such that f(0)0f(0)\geq 0. The problem (1.1) has a nonnegative solution for 0<t<T0<t<T if and only if (1.1) has a nonnegative supersolution u¯(t)L((0,T),Lul1(N))Lloc((0,T),L(N))\bar{u}(t)\in L^{\infty}((0,T),L^{1}_{\rm ul}({\mathbb{R}^{N}}))\cap L_{\rm loc}^{\infty}((0,T),L^{\infty}({\mathbb{R}^{N}})). Moreover, if a nonnegative supersolution u¯(t)\bar{u}(t) exists, then the solution u(t)u(t) obtained satisfies 0u(t)u¯(t)0\leq u(t)\leq\bar{u}(t).

We show the proof for readers’ convenience. See e.g. [20, Theorem 2.1] for details.

Proof.

If (1.1) has a nonnegative solution, then the solution is also a supersolution. Thus, it is enough to show that (1.1) has a nonnegative solution if (1.1) has a supersolution. Let u¯\bar{u} be a supersolution for 0<t<T0<t<T. Let u1=S(t)u0u_{1}=S(t)u_{0}. We define unu_{n}, n=1,2,3,n=1,2,3,\ldots, by

un=[un1].u_{n}=\mathcal{F}[u_{n-1}].

Then we can show by induction that

0u1u2unu¯<for a.e.xN, 0<t<T.0\leq u_{1}\leq u_{2}\leq\cdots\leq u_{n}\leq\cdots\leq\bar{u}<\infty\ \ \textrm{for a.e.}\ x\in{\mathbb{R}^{N}},\ 0<t<T.

This indicates that the limit limnun(x,t)\lim_{n\to\infty}u_{n}(x,t) which is denoted by u(x,t)u(x,t) exists for almost all xNx\in{\mathbb{R}^{N}} and 0<t<T0<t<T. By the monotone convergence theorem we see that

limn[un1]=(u),\lim_{n\to\infty}\mathcal{F}[u_{n-1}]=\mathcal{F}(u),

and hence u=(u)u=\mathcal{F}(u). It is clear that 0u(t)u¯(t)0\leq u(t)\leq\bar{u}(t). Since u¯(t)L((0,T),Lul1(N))Lloc((0,T),L(N))\bar{u}(t)\in L^{\infty}((0,T),L^{1}_{\rm ul}({\mathbb{R}^{N}}))\cap L^{\infty}_{\rm loc}((0,T),L^{\infty}({\mathbb{R}^{N}})), we see that u(t)L((0,T),Lul1(N))Lloc((0,T),L(N))u(t)\in L^{\infty}((0,T),L^{1}_{\rm ul}({\mathbb{R}^{N}}))\cap L^{\infty}_{\rm loc}((0,T),L^{\infty}({\mathbb{R}^{N}})) Thus, uu is a solution of (1.1). ∎

Proposition 2.5.

The following hold:

  1. (i)

    Let N1N\geq 1 and 1αβ1\leq\alpha\leq\beta\leq\infty. There is C>0C>0 and t0>0t_{0}>0 such that, for ϕLulα(N)\phi\in L_{\rm ul}^{\alpha}({\mathbb{R}^{N}}),

    S(t)ϕLulβ(N)CtN2(1α1β)ϕLulα(N)for 0<t<t0.\left\|S(t)\phi\right\|_{L_{\rm ul}^{\beta}({\mathbb{R}^{N}})}\leq{C}{t^{-\frac{N}{2}\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)}}\left\|\phi\right\|_{L_{\rm ul}^{\alpha}({\mathbb{R}^{N}})}\ \ \textrm{for}\ \ 0<t<t_{0}.
  2. (ii)

    Let N1N\geq 1 and 1α<β1\leq\alpha<\beta\leq\infty. Then, for each ϕulα(N)\phi\in\mathcal{L}^{\alpha}_{\rm ul}({\mathbb{R}^{N}}) and C>0C_{*}>0, there is t0=t0(C,ϕ)t_{0}=t_{0}(C_{*},\phi) such that

    S(t)ϕLulβ(N)CtN2(1α1β)for 0<t<t0.\left\|S(t)\phi\right\|_{L_{\rm ul}^{\beta}({\mathbb{R}^{N}})}\leq C_{*}t^{-\frac{N}{2}\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)}\ \ \textrm{for}\ \ 0<t<t_{0}.

A proof of Proposition 2.5, which is based on [13, Corollary 3.1] and [2, Lemma 8], can be found in [8, Propositions 2.4 and 2.5]. Note that C>0C_{*}>0 in (ii) can be chosen arbitrary small.

Proposition 2.6.

Let 1α<1\leq\alpha<\infty. The following are equivalent:

  1. (i)

    ϕulα(N)\phi\in\mathcal{L}^{\alpha}_{\rm ul}({\mathbb{R}^{N}}).

  2. (ii)

    lim|y|0ϕ(+y)ϕ()Lulα(N)=0\lim_{|y|\to 0}\left\|\phi(\,\cdot\,+y)-\phi(\,\cdot\,)\right\|_{L^{\alpha}_{\rm ul}({\mathbb{R}^{N}})}=0.

  3. (iii)

    limt0S(t)ϕϕLulα(N)=0\lim_{t\to 0}\left\|S(t)\phi-\phi\right\|_{L^{\alpha}_{\rm ul}({\mathbb{R}^{N}})}=0.

Fundamental properties of S(t)S(t) in Lulα(N)L^{\alpha}_{\rm ul}({\mathbb{R}^{N}}) were studied in [13]. For details of Proposition 2.6, see [13, Proposition 2.2].

Proposition 2.7.

(cf. [6, Lemma 2.4]) Let C0C\geq 0. The following (i) and (ii) hold:

  1. (i)

    Suppose that J:[C,)[0,)J:[C,\infty)\to[0,\infty) is a convex function. If ϕLul1(N)\phi\in L^{1}_{\rm ul}({\mathbb{R}^{N}}), J(ϕ)Lul1(N)J(\phi)\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and ϕC\phi\geq C in N{\mathbb{R}^{N}}, then

    J(S(t)[ϕ](x))S(t)[J(ϕ)](x)in N×(0,).J(S(t)[\phi](x))\leq S(t)[J(\phi)](x)\ \ \text{in ${\mathbb{R}^{N}}\times(0,\infty)$.}
  2. (ii)

    Suppose that K:[C,)[0,)K:[C,\infty)\to[0,\infty) is a concave function. If ϕLul1(N)\phi\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and ϕC\phi\geq C in N{\mathbb{R}^{N}}, then

    K(S(t)[ϕ](x))S(t)[K(ϕ)](x)in N×(0,).K(S(t)[\phi](x))\geq S(t)[K(\phi)](x)\ \ \text{in ${\mathbb{R}^{N}}\times(0,\infty)$.}

Proposition 2.7 follows from Jensen’s inequality. See [8, Proposition 2.9] for a proof of Proposition 2.7.

Hereafter in this section we collect useful lemmas.

Lemma 2.8.

Let C>0C>0. If uul1(N)u\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}), then max{u,C}ul1(N)\max\{u,C\}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}).

Proof.

Since uul1(N)u\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}), there exists a sequence {un}BUC(N)\{u_{n}\}\subset BUC({\mathbb{R}^{N}}) such that unuu_{n}\to u in Lul1(N)L^{1}_{\rm ul}({\mathbb{R}^{N}}) as nn\to\infty. Let {vn(x)}n=1\{v_{n}(x)\}_{n=1}^{\infty} be defined by vn(x):=max{un(x),C}v_{n}(x):=\max\{u_{n}(x),C\}. We see that {vn}BUC(N)\{v_{n}\}\subset BUC({\mathbb{R}^{N}}) and obtain

|max{u,C}vn||uun|0in Lul1(N) as n.\displaystyle|\max\{u,C\}-v_{n}|\leq|u-{u_{n}}|\to 0\ \ \text{in $L^{1}_{\rm ul}({\mathbb{R}^{N}})$ as $n\to\infty$.}

Thus max{u,C}ul1(N)\max\{u,C\}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}). ∎

Lemma 2.9.

Let q1q\geq 1 and ε>0\varepsilon>0. If fXqf\in X_{q}, then F(u)u1/(q1+ε)F(u)\lesssim u^{-1/(q-1+\varepsilon)} for large u>0u>0.

Proof.

Since fXqf\in X_{q}, we see that f(u)F(u)q+εf^{\prime}(u)F(u)\leq q+\varepsilon for large u>0u>0. By this together with f(u)=F′′(u)/F(u)2f^{\prime}(u)=F^{\prime\prime}(u)/F^{\prime}(u)^{2} and F(u)=1/f(u)<0F^{\prime}(u)=-1/f(u)<0 we have

F′′(u)F(u)(q+ε)F(u)F(u),\frac{F^{\prime\prime}(u)}{F^{\prime}(u)}\geq(q+\varepsilon)\frac{F^{\prime}(u)}{F(u)},

which implies that F(u)F(u)q+ε-F^{\prime}(u)\gtrsim F(u)^{q+\varepsilon} for large u>0u>0. Then we obtain F(u)u1/(q1+ε)F(u)\lesssim u^{-1/(q-1+\varepsilon)} for large u>0u>0. ∎

Lemma 2.10.

Let N1N\geq 1, β>0\beta>0 and hβ(u):=Fβ(u)N/2h_{\beta}(u):=F_{\beta}(u)^{-N/2}. Put h~β(u):=(N/4)N/2u[log(u+e)]Nβ/2\tilde{h}_{\beta}(u):=(N/4)^{N/2}u[\log(u+e)]^{-N\beta/2}. Then h~β(u)hβ1(u)\tilde{h}_{\beta}(u)\leq h^{-1}_{\beta}(u) for large u>0u>0.

Proof.

Let u>0u>0 be sufficiently large. Then it follows that

Fβ(u)=udττ1+2/N[log(τ+e)]βN4u2Nlog(τ+e)+βττ+eτ1+2/N[log(τ+e)]β+1𝑑τ=N4u2/N[log(u+e)]β.F_{\beta}(u)=\int_{u}^{\infty}\frac{d\tau}{\tau^{1+2/N}[\log(\tau+e)]^{\beta}}\geq\frac{N}{4}\int_{u}^{\infty}\frac{\frac{2}{N}\log(\tau+e)+\frac{\beta\tau}{\tau+e}}{\tau^{1+2/N}[\log(\tau+e)]^{\beta+1}}d\tau=\frac{N}{4}u^{-2/N}[\log(u+e)]^{-\beta}.

Hence, we obtain hβ(u)(4/N)N/2u[log(u+e)]Nβ/2h_{\beta}(u)\leq(4/N)^{N/2}u[\log(u+e)]^{N\beta/2}. We see that

hβ(h~β(u))(4N)N/2h~(u)[log(h~(u)+e)]N2β=u[log(u+e)]N2β[log(h~(u)+e)]N2βu.h_{\beta}(\tilde{h}_{\beta}(u))\leq\left(\frac{4}{N}\right)^{N/2}\tilde{h}(u)[\log(\tilde{h}(u)+e)]^{\frac{N}{2}\beta}=u[\log(u+e)]^{-\frac{N}{2}\beta}[\log(\tilde{h}(u)+e)]^{\frac{N}{2}\beta}\leq u.

Since hβh_{\beta} is increasing, h~β(u)hβ1(u)\tilde{h}_{\beta}(u)\leq h^{-1}_{\beta}(u) for large u>0u>0. ∎

Lemma 2.11.

Let N1N\geq 1. Suppose that ff satisfies all the assumptions of Theorem C. Let h(u):=F(u)N/2h(u):=F(u)^{-N/2}. Then there exists 0<δ<N/20<\delta^{\prime}<N/2 such that h1(u)u[log(u+e)]δh^{-1}(u)\lesssim u[\log(u+e)]^{\delta^{\prime}} for large u>0u>0.

Proof.

Let δ\delta be given by the assumption of Theorem C. Since 0<δ<10<\delta<1, we choose ε>0\varepsilon>0 such that Nδ/2+ε<N/2N\delta/2+\varepsilon<N/2. Put δ:=Nδ/2+ε>0\delta^{\prime}:=N\delta/2+\varepsilon>0 and h^(u):=C2N/2u[log(u+e)]δ\hat{h}(u):=C_{2}^{N/2}u[\log(u+e)]^{\delta^{\prime}}. Since h(u)C2N/2u[log(u+e)]Nδ/2h(u)\geq C_{2}^{-N/2}u[\log(u+e)]^{-N\delta/2} for uC1u\geq C_{1}, we obtain

(2.2) h(h^(u))C2N/2h^(u)[log(h^(u)+e)]N2δ=u(log(u+e)log(h^(u)+e))N2δ[log(u+e)]εfor largeu>0.h(\hat{h}(u))\geq C_{2}^{-N/2}\hat{h}(u)[\log(\hat{h}(u)+e)]^{-\frac{N}{2}\delta}=u\left(\frac{\log(u+e)}{\log(\hat{h}(u)+e)}\right)^{\frac{N}{2}\delta}[\log(u+e)]^{\varepsilon}\ \ \textrm{for large}\ u>0.

We see that

logulogh^(u)=logulogu+δlog(log(u+e))+logC2N/21as u,\frac{\log u}{\log\hat{h}(u)}=\frac{\log u}{\log u+\delta^{\prime}\log(\log(u+e))+\log C_{2}^{N/2}}\to 1\ \ \text{as $u\to\infty$,}

which yields

(log(u+e)log(h^(u)+e))N2δ=(log(u+e)logulogulogh^(u)logh^(u)log(h^(u)+e))N2δ1as u.\left(\frac{\log(u+e)}{\log(\hat{h}(u)+e)}\right)^{\frac{N}{2}\delta}=\left(\frac{\log(u+e)}{\log u}\frac{\log u}{\log\hat{h}(u)}\frac{\log\hat{h}(u)}{\log(\hat{h}(u)+e)}\right)^{\frac{N}{2}\delta}\to 1\ \ \text{as $u\to\infty$.}

By this together with (2.2) we have h(h^(u))uh(\hat{h}(u))\geq u for large u>0u>0. Since hh is increasing, h1(u)h^(u)h^{-1}(u)\leq\hat{h}(u) for large u>0u>0. ∎

3. Existence

In this section a function JJ satisfies the following:

(3.0) JC2[0,),limuJ(u)=,J(u)>0foru>0,J(u)>0foru>0and J(u) is nondecreasing for large u>0.J\in C^{2}[0,\infty),\ \lim_{u\to\infty}J(u)=\infty,\ J(u)>0\ \textrm{for}\ u>0,\ J^{\prime}(u)>0\ \textrm{for}\ u>0\\ \textrm{and $J^{\prime}(u)$ is nondecreasing for large $u>0$.}

The main theorem in this section is the following:

Theorem 3.1.

Let N1N\geq 1 and u00u_{0}\geq 0. Suppose that fC[0,)f\in C[0,\infty), ff is nonnegative and ff is nondecreasing for u>0u>0 and that JJ satisfies (3.0). Suppose that there exist θ(0,1]\theta\in(0,1] and ξ0\xi\geq 0 such that one of the following holds:

  1. (i)

    J(u0)Lul1(N)J(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and

    (3.1) limηJ~(η)ηf~(τ)J(τ)dτJ(τ)1+2/N=0,\lim_{\eta\to\infty}\tilde{J}(\eta)\int_{\eta}^{\infty}\frac{\tilde{f}(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+2/N}}=0,
  2. (ii)

    J(u0)ul1(N)J(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) and

    (3.2) lim supηJ~(η)ηf~(τ)J(τ)dτJ(τ)1+2/N<,\limsup_{\eta\to\infty}\tilde{J}(\eta)\int_{\eta}^{\infty}\frac{\tilde{f}(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+2/N}}<\infty,

where

(3.3) f~(u):=supξτuf(τ)J(τ)θandJ~(u):=supξτuJ(τ)J(τ)1θ.\tilde{f}(u):=\sup_{\xi\leq\tau\leq u}\frac{f(\tau)}{J(\tau)^{\theta}}\ \ \textrm{and}\ \ \tilde{J}(u):=\sup_{\xi\leq\tau\leq u}\frac{J^{\prime}(\tau)}{J(\tau)^{1-\theta}}.

Then (1.1) admits a local in time nonnegative solution u(t)u(t) for 0<t<T0<t<T. Moreover, there exists C0>0C_{0}>0 such that

(3.4) J(u(t))Lul1(N)C0for 0<t<T.\left\|J(u(t))\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}\leq C_{0}\ \ \textrm{for}\ 0<t<T.
Proof.

Let C1>0C_{1}>0 be large such that J(u)J(u) is convex for uC1u\geq C_{1}. Let σ>0\sigma>0 be a constant and u1(x):=max{u0(x),C1,1,ξ}u_{1}(x):=\max\{u_{0}(x),C_{1},1,\xi\}. We see that J(u1)Lul1(N)J(u_{1})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) in the case (i). By Lemma 2.8 we see that J(u1)ul1(N)J(u_{1})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) in the case (ii). Since JJ is convex for uC1u\geq C_{1}, in two cases (i) and (ii) J(u1)Lul1(N)J(u_{1})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) implies u1Lul1(N)u_{1}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}), and hence it follows from Proposition 2.5 that S(t)u1<\left\|S(t)u_{1}\right\|_{\infty}<\infty for t>0t>0. The first term of \mathcal{F} is well defined.

We define

(3.5) u¯(t):=J1((1+σ)S(t)J(u1)).\bar{u}(t):=J^{-1}\left((1+\sigma)S(t)J(u_{1})\right).

We show that

(3.6) u¯(t)L((0,T),Lul1(N))Lloc((0,T),L(N))\bar{u}(t)\in L^{\infty}((0,T),L^{1}_{\rm ul}({\mathbb{R}^{N}}))\cap L_{\rm loc}^{\infty}((0,T),L^{\infty}({\mathbb{R}^{N}}))

for sufficiently small T>0T>0. Since J(u1)Lul1(N)J(u_{1})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}), it follows from Proposition 2.5 (i) that

u¯(t)L(N)J1((1+σ)CtN/2J(u1)Lul1(N))<for smallt>0.\left\|\bar{u}(t)\right\|_{L^{\infty}({\mathbb{R}^{N}})}\leq J^{-1}((1+\sigma)Ct^{-N/2}\left\|J(u_{1})\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})})<\infty\ \ \textrm{for small}\ t>0.

Hence, u¯(t)Lloc((0,T),L(N))\bar{u}(t)\in L^{\infty}_{\rm loc}((0,T),L^{\infty}({\mathbb{R}^{N}})) for small T>0T>0. Since J1(u)J^{-1}(u) is concave for uJ(C1)u\geq J(C_{1}), by (3.5) and Proposition 2.5 (i) we have

u¯(t)Lul1(N)S(t)J(u1)+1Lul1(N)S(t)J(u1)Lul1(N)+1Lul1(N)J(u1)Lul1(N)+1,\left\|\bar{u}(t)\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}\lesssim\left\|S(t)J(u_{1})+1\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}\leq\left\|S(t)J(u_{1})\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}+\left\|1\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}\lesssim\left\|J(u_{1})\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}+1,

and hence u¯L((0,T),Lul1(N))\bar{u}\in L^{\infty}((0,T),L^{1}_{\rm ul}({\mathbb{R}^{N}})). We have proved (3.6).

By Proposition 2.7 (i) we have

(3.7) u¯(t)S(t)u0u¯(t)S(t)u1u¯(t)J1(S(t)J(u1))=J1((1+σ)S(t)J(u1))J1(S(t)J(u1))=(J1)((1+ρσ)S(t)J(u1))σS(t)J(u1)\bar{u}(t)-S(t)u_{0}\geq\bar{u}(t)-S(t)u_{1}\geq\bar{u}(t)-J^{-1}\left(S(t)J(u_{1})\right)\\ =J^{-1}\left((1+\sigma)S(t)J(u_{1})\right)-J^{-1}\left(S(t)J(u_{1})\right)=(J^{-1})^{\prime}\left((1+\rho\sigma)S(t)J(u_{1})\right)\sigma S(t)J(u_{1})

for some ρ=ρ(x,t)[0,1]\rho=\rho(x,t)\in[0,1]. Here, we used the mean value theorem. Since J(u)J(u) is convex for uC1u\geq C_{1}, J1(u)J^{-1}(u) is concave for uJ(C1)u\geq J(C_{1}). We have

(3.8) (J1)((1+ρσ)S(t)J(u1))σS(t)J(u1)(J1)((1+σ)S(t)J(u1))σS(t)J(u1)=σS(t)J(u1)J(J1((1+σ)S(t)J(u1)))=σ1+σJ(u¯(t))J(u¯(t)).(J^{-1})^{\prime}\left((1+\rho\sigma)S(t)J(u_{1})\right)\sigma S(t)J(u_{1})\geq(J^{-1})^{\prime}\left((1+\sigma)S(t)J(u_{1})\right)\sigma S(t)J(u_{1})\\ =\frac{\sigma S(t)J(u_{1})}{J^{\prime}\left(J^{-1}\left((1+\sigma)S(t)J(u_{1})\right)\right)}=\frac{\sigma}{1+\sigma}\frac{J(\bar{u}(t))}{J^{\prime}(\bar{u}(t))}.

By (3.7) and (3.8) we have

(3.9) u¯(t)S(t)u0σ1+σJ(u¯(t))J(u¯(t)).\bar{u}(t)-S(t)u_{0}\geq\frac{\sigma}{1+\sigma}\frac{J(\bar{u}(t))}{J^{\prime}(\bar{u}(t))}.

On the other hand, let s(0,t)s\in(0,t). Since 0<θ10<\theta\leq 1, it follows from Proposition 2.7 (ii) that

(3.10) S(ts)J(u¯(s))θ=S(ts)[{(1+σ)S(s)J(u1)}θ]{S(ts)[(1+σ)S(s)J(u1)]}θ{(1+σ)S(t)J(u1)}θ=J(u¯(t))θ.S(t-s)J(\bar{u}(s))^{\theta}=S(t-s)\left[\left\{(1+\sigma)S(s)J(u_{1})\right\}^{\theta}\right]\\ \leq\left\{S(t-s)\left[(1+\sigma)S(s)J(u_{1})\right]\right\}^{\theta}\leq\left\{(1+\sigma)S(t)J(u_{1})\right\}^{\theta}=J(\bar{u}(t))^{\theta}.

Using (3.10), we have

(3.11) 0tS(ts)f(u¯(s))𝑑s0tS(ts)[f(u¯(s))J(u¯(s))θJ(u¯(s))θ]𝑑s0tf(u¯(s))J(u¯(s))θS(ts)J(u¯(s))θ𝑑sJ(u¯(t))θ0tf(u¯(s))J(u¯(s))θ𝑑s.\int_{0}^{t}S(t-s)f(\bar{u}(s))ds\leq\int_{0}^{t}S(t-s)\left[\left\|\frac{f(\bar{u}(s))}{J(\bar{u}(s))^{\theta}}\right\|_{\infty}J(\bar{u}(s))^{\theta}\right]ds\\ \leq\int_{0}^{t}\left\|\frac{f(\bar{u}(s))}{J(\bar{u}(s))^{\theta}}\right\|_{\infty}S(t-s)J(\bar{u}(s))^{\theta}ds\leq J(\bar{u}(t))^{\theta}\int_{0}^{t}\left\|\frac{f(\bar{u}(s))}{J(\bar{u}(s))^{\theta}}\right\|_{\infty}ds.

We prove the case (i). We have

(3.12) J(u¯(t))θ0tf(u¯(s))J(u¯(s))θ𝑑sJ(u¯(t))J(u¯(t))J~(u¯(t))0tf~(u¯(s))𝑑s.J(\bar{u}(t))^{\theta}\int_{0}^{t}\left\|\frac{f(\bar{u}(s))}{J(\bar{u}(s))^{\theta}}\right\|_{\infty}ds\leq\frac{J(\bar{u}(t))}{J^{\prime}(\bar{u}(t))}\tilde{J}(\left\|\bar{u}(t)\right\|_{\infty})\int_{0}^{t}\tilde{f}(\left\|\bar{u}(s)\right\|_{\infty})ds.

We define η\eta by

(3.13) η:=J1(C(1+σ)tN/2J(u1)Lul1(N)).\eta:=J^{-1}(C(1+\sigma)t^{-N/2}\left\|J(u_{1})\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}).

Since u¯(t)η\left\|\bar{u}(t)\right\|_{\infty}\leq\eta, we have

(3.14) J~(u¯(t))0tf~(u¯(s))𝑑s2N{C(1+σ)J(u1)Lul1(N)}2/NJ~(η)ηf~(τ)J(τ)dτJ(τ)1+2/N,\tilde{J}(\left\|\bar{u}(t)\right\|_{\infty})\int_{0}^{t}\tilde{f}(\left\|\bar{u}(s)\right\|_{\infty})ds\leq\frac{2}{N}\{C(1+\sigma)\left\|J(u_{1})\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}\}^{{2}/{N}}\tilde{J}(\eta)\int_{\eta}^{\infty}\frac{\tilde{f}(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+2/N}},

where we used a change of variables τ:=J1(C(1+σ)sN/2J(u1)Lul1(N))\tau:=J^{-1}(C(1+\sigma)s^{-N/2}\left\|J(u_{1})\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}). Because of (3.1), there exists a large η>0\eta>0 such that

(3.15) 2N{C(1+σ)J(u1)Lul1(N)}2/NJ~(η)ηf~(τ)J(τ)dτJ(τ)1+2/Nσ1+σ.\frac{2}{N}\{C(1+\sigma)\left\|J(u_{1})\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}\}^{{2}/{N}}\tilde{J}(\eta)\int_{\eta}^{\infty}\frac{\tilde{f}(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+2/N}}\leq\frac{\sigma}{1+\sigma}.

Therefore, if η>0\eta>0 is large, then by (3.15), (3.14), (3.12) and (3.11) we have

(3.16) 0tS(ts)f(u¯(s))𝑑sσ1+σJ(u¯(t))J(u¯(t)).\int_{0}^{t}S(t-s)f(\bar{u}(s))ds\leq\frac{\sigma}{1+\sigma}\frac{J(\bar{u}(t))}{J^{\prime}(\bar{u}(t))}.

By (3.16) and (3.9) we have

(3.17) u¯(t)S(t)u00tS(ts)f(u¯(s))𝑑s.\bar{u}(t)-S(t)u_{0}\geq\int_{0}^{t}S(t-s)f(\bar{u}(s))ds.

Since η\eta and tt are related by (3.13), we have shown that there is a small t>0t>0 such that u¯(t)\bar{u}(t) is a supersolution which satisfies (3.6). By Proposition 2.4 we see that (1.1) has a nonnegative solution u(t)u(t) and that u(t)u¯(t)u(t)\leq\bar{u}(t) for 0<t<T0<t<T. Since σ>0\sigma>0 is a constant, (3.4) follows from (3.5).

We prove the case (ii). In the case (ii) the inequality (3.11) also holds. Since J(u1)ul1(N)J(u_{1})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}), it follows from Proposition 2.5 (ii) that u¯(s)L(N)J1((1+σ)CsN/2J(u1)Lul1(N))\left\|\bar{u}(s)\right\|_{L^{\infty}({\mathbb{R}^{N}})}\leq J^{-1}((1+\sigma)C_{*}s^{-N/2}\left\|J(u_{1})\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}). By the same calculation as (3.14) we have (3.14) with CC replaced by CC_{*}. Because of (3.2) and Proposition 2.5 (ii) we can take C>0C_{*}>0 such that if 0<t<t0(C)0<t<t_{0}(C_{*}), then

(3.18) 2N{C(1+σ)J(u1)Lul1(N)}2/NJ~(η)ηf~(τ)J(τ)J(τ)1+2/N𝑑τσ1+σ.\frac{2}{N}\{C_{*}(1+\sigma)\left\|J(u_{1})\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}\}^{2/N}\tilde{J}(\eta)\int_{\eta}^{\infty}\frac{\tilde{f}(\tau)J^{\prime}(\tau)}{J(\tau)^{1+2/N}}d\tau\leq\frac{\sigma}{1+\sigma}.

By (3.18), (3.14) with CC_{*} and (3.11) we have (3.16). By (3.16) and (3.9) we have (3.17). Since u¯(t)\bar{u}(t) is a supersolution which satisfies (3.6), by Proposition 2.4 we see that (1.1) has a nonnegative solution u(t)u(t) and that u(t)u¯(t)u(t)\leq\bar{u}(t) for 0<t<T0<t<T. Since σ>0\sigma>0 is a constant, (3.4) follows from (3.5). ∎

Proof of Theorem A.

In three cases (i) (ii) and (iii) we easily see that fC[0,)f\in C[0,\infty), ff is nonnegative and ff is nondecreasing for u>0u>0, since fXqf\in X_{q}. Let J(u):=F(u)rJ(u):=F(u)^{-r}. We show that JJ satisfies (3.0). It is enough to show that J′′(u)0J^{\prime\prime}(u)\geq 0 for large uu, since other properties follow from the definition of J(u)J(u). In the cases (i) and (iii) we see that q<1+rq<1+r, and hence

J′′(u)=r(r+1f(u)F(u))f(u)2F(u)r+20for largeu.J^{\prime\prime}(u)=\frac{r(r+1-f^{\prime}(u)F(u))}{f(u)^{2}F(u)^{r+2}}\geq 0\ \ \textrm{for large}\ u.

In the case (ii) we see that r+1=qf(u)F(u)r+1=q\geq f^{\prime}(u)F(u) for large uu, and hence J′′(u)0J^{\prime\prime}(u)\geq 0 for large uu.

Next, we show that

(3.19) ddu(f(u)J(u)θ)0for large uandddu(J(u)J(u)1θ)0for large u.\frac{d}{du}\left(\frac{f(u)}{J(u)^{\theta}}\right)\geq 0\ \ \textrm{for large $u$}\ \ \textrm{and}\ \ \frac{d}{du}\left(\frac{J^{\prime}(u)}{J(u)^{1-\theta}}\right)\geq 0\ \ \textrm{for large $u$}.

We consider the cases (i) and (iii). Then, 1q<1+r1\leq q<1+r and rN/2r\geq N/2, and there exists θ>0\theta>0 such that q1r<θ<min{1,qr}\frac{q-1}{r}<\theta<\min\{1,\frac{q}{r}\}. Then,

(3.20) ddu(f(u)J(u)θ)=(f(u)F(u)rθ)F(u)rθ1>0for largeu>0,\frac{d}{du}\left(\frac{f(u)}{J(u)^{\theta}}\right)=(f^{\prime}(u)F(u)-r\theta)F(u)^{r\theta-1}>0\ \ \textrm{for large}\ u>0,

since f(u)F(u)rθqrθ>0f^{\prime}(u)F(u)-r\theta\to q-r\theta>0 as uu\to\infty. We have

ddu(J(u)J(u)1θ)=(1θ)J(u)θ1J′′(u)(11θJ(u)2J(u)J′′(u)).\frac{d}{du}\left(\frac{J^{\prime}(u)}{J(u)^{1-\theta}}\right)=(1-\theta)J(u)^{\theta-1}J^{\prime\prime}(u)\left(\frac{1}{1-\theta}-\frac{J^{\prime}(u)^{2}}{J(u)J^{\prime\prime}(u)}\right).

Then,

J(u)2J(u)J′′(u)=rr+1f(u)F(u)rr+1qasu.\frac{J^{\prime}(u)^{2}}{J(u)J^{\prime\prime}(u)}=\frac{r}{r+1-f^{\prime}(u)F(u)}\to\frac{r}{r+1-q}\ \textrm{as}\ u\to\infty.

We see that 11θrr+1q>0\frac{1}{1-\theta}-\frac{r}{r+1-q}>0, and hence J(u)/J(u)1θJ^{\prime}(u)/J(u)^{1-\theta} is nondecreasing. Thus, (3.19) holds in the cases (i) and (iii). We consider the case (ii). Then q=1+rq=1+r and r>N/2r>N/2. We take θ=1\theta=1. Since qr=1q-r=1, (3.20) holds. Since θ=1\theta=1, by (1.4) we see that

ddu(J(u)J(u)1θ)=J′′(u)=r(qf(u)F(u))f(u)2F(u)r+20for largeu.\frac{d}{du}\left(\frac{J^{\prime}(u)}{J(u)^{1-\theta}}\right)=J^{\prime\prime}(u)=\frac{r(q-f^{\prime}(u)F(u))}{f(u)^{2}F(u)^{r+2}}\geq 0\ \ \textrm{for large}\ u.

Thus, (3.19) holds in the case (ii).

We prove (i) and (ii). Then, r>N/2r>N/2. We check (3.1). Because of (3.19), we can take ξ>0\xi>0 such that f(u)/J(u)θf(u)/J(u)^{\theta} and J(u)/J(u)1θJ^{\prime}(u)/J(u)^{1-\theta} are nondecreasing for u>ξu>\xi. If η>ξ\eta>\xi is large, then

J~(η)ηf~(τ)J(τ)dτJ(τ)1+2/Nηf(τ)J(τ)2dτJ(τ)2+2/N=r2ηF(τ)2r/N2f(τ)𝑑τ=r2F(η)2r/N12r/N10asη.\tilde{J}(\eta)\int_{\eta}^{\infty}\frac{\tilde{f}(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+2/N}}\leq\int_{\eta}^{\infty}\frac{f(\tau)J^{\prime}(\tau)^{2}d\tau}{J(\tau)^{2+2/N}}=r^{2}\int_{\eta}^{\infty}\frac{F(\tau)^{2r/N-2}}{f(\tau)}d\tau=\frac{r^{2}F(\eta)^{2r/N-1}}{2r/N-1}\to 0\ \textrm{as}\ \eta\to\infty.

Since JJ satisfies all the assumptions of Theorem 3.1 (i), by Theorem 3.1 (i) we see that (1.1) has a nonnegative solution and (1.6) holds.

We prove (iii). Then, r=N/2r=N/2. We check (3.2). Since q1<rθq-1<r\theta, we can choose ε>0\varepsilon>0 such that q1+ε<rθq-1+\varepsilon<r\theta. By Lemma 2.9 we see that

(3.21) ηF(τ)rθ𝑑τ<Cητrθ/(q1+ε)𝑑τ<.\int_{\eta}^{\infty}F(\tau)^{r\theta}d\tau<C\int_{\eta}^{\infty}\tau^{-r\theta/(q-1+\varepsilon)}d\tau<\infty.

Integrating f(u)/f(u)(q+ε)/f(u)F(u)f^{\prime}(u)/f(u)\leq(q+\varepsilon)/f(u)F(u), we have f(u)CF(u)qεf(u)\leq CF(u)^{-q-\varepsilon} for large uu, and hence

(3.22) f(u)F(u)1+rθCF(u)qε+1+rθ0asu.f(u)F(u)^{1+r\theta}\leq CF(u)^{-q-\varepsilon+1+r\theta}\to 0\ \ \textrm{as}\ \ u\to\infty.

Because of (3.19), we can take ξ>0\xi>0 such that f(u)/J(u)θf(u)/J(u)^{\theta} and J(u)/J(u)1θJ^{\prime}(u)/J(u)^{1-\theta} are nondecreasing for uξu\geq\xi. If η>ξ\eta>\xi is large, then

J~(η)ηf~(τ)J(τ)dτJ(τ)1+2/N=J(η)J(η)1θηf(τ)J(τ)dτJ(τ)1+θ+2/N=r2f(η)F(η)1+rθηF(τ)rθ𝑑τ.\tilde{J}(\eta)\int_{\eta}^{\infty}\frac{\tilde{f}(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+2/N}}=\frac{J^{\prime}(\eta)}{J(\eta)^{1-\theta}}\int_{\eta}^{\infty}\frac{f(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+\theta+2/N}}=\frac{r^{2}}{f(\eta)F(\eta)^{1+r\theta}}\int_{\eta}^{\infty}F(\tau)^{r\theta}d\tau.

Because of (3.21) and (3.22), L’Hospital’s rule is applicable in the following limit:

limηηF(τ)rθ𝑑τf(η)F(η)1+rθ=limηddη(ηF(τ)rθ𝑑τ)ddη(f(η)F(η)1+rθ)=limη1f(η)F(η)1rθ=1rθ+1q>0.\lim_{\eta\to\infty}\frac{\int_{\eta}^{\infty}F(\tau)^{r\theta}d\tau}{f(\eta)F(\eta)^{1+r\theta}}=\lim_{\eta\to\infty}\frac{\frac{d}{d\eta}\left(\int_{\eta}^{\infty}F(\tau)^{r\theta}d\tau\right)}{\frac{d}{d\eta}\left(f(\eta)F(\eta)^{1+r\theta}\right)}=\lim_{\eta\to\infty}\frac{-1}{f^{\prime}(\eta)F(\eta)-1-r\theta}=\frac{1}{r\theta+1-q}>0.

By Theorem 3.1 (ii) we see that (1.1) has a nonnegative solution and (1.6) holds. ∎

Proof of Theorem B.

In two cases (i) and (ii) we easily see that fC[0,)f\in C[0,\infty), ff is nonnegative and ff is nondecreasing for u>0u>0, since fXqf\in X_{q}. Let J(u):=Jα(u)J(u):=J_{\alpha}(u) and θ=1\theta=1. In both cases (i) and (ii) we have

ddu(f(u)J(u)θ)=h(u)1+2/N[log(h(u)+e)]α{f(u)F(u)N2(1+αh(u)(h(u)+e)log(h(u)+e))}0for largeu,\frac{d}{du}\left(\frac{f(u)}{J(u)^{\theta}}\right)=\frac{h(u)^{-1+2/N}}{[\log(h(u)+e)]^{\alpha}}\left\{f^{\prime}(u)F(u)-\frac{N}{2}\left(1+\frac{\alpha h(u)}{(h(u)+e)\log(h(u)+e)}\right)\right\}\geq 0\ \ \textrm{for large}\ u,

since f(u)F(u)1+N/2f^{\prime}(u)F(u)\to 1+N/2 as uu\to\infty. In the case (i) we see that ddu(J(u)J(u)1θ)=J′′(u)0\frac{d}{du}\left(\frac{J^{\prime}(u)}{J(u)^{1-\theta}}\right)=J^{\prime\prime}(u)\geq 0, since JJ is convex. In the case (ii) let ρ^>ρ\hat{\rho}>\rho. By direct calculation we have

(3.23) ddu(g(h(u))ρ^h(u))=g(h(u))ρ^1N2f(u)2F(u)N+2[log(h(u)+e)]α1h(u)+ej(u),\frac{d}{du}\left(g^{\prime}(h(u))^{\hat{\rho}}h^{\prime}(u)\right)=g^{\prime}(h(u))^{\hat{\rho}-1}\cdot\frac{N}{2f(u)^{2}F(u)^{N+2}}\cdot\frac{[\log(h(u)+e)]^{\alpha-1}}{h(u)+e}\cdot j(u),

where

(3.24) j(u):=N2αρ^{1+eh(u)+e+(α1)h(u)(h(u)+e)log(h(u)+e)}+(qf(u)F(u)){(1+eh(u))log(h(u)+e)+α}N2αρ^{1+eh(u)+e+(α1)h(u)(h(u)+e)log(h(u)+e)}N2αρ{1+eh(u)+αlog(h(u)+e)}N2α(ρ^ρ)>0asu.\displaystyle\begin{split}j(u)&:=\frac{N}{2}\alpha\hat{\rho}\left\{1+\frac{e}{h(u)+e}+\frac{(\alpha-1)h(u)}{(h(u)+e)\log(h(u)+e)}\right\}+(q-f^{\prime}(u)F(u))\left\{\left(1+\frac{e}{h(u)}\right)\log(h(u)+e)+\alpha\right\}\\ &\geq\frac{N}{2}\alpha\hat{\rho}\left\{1+\frac{e}{h(u)+e}+\frac{(\alpha-1)h(u)}{(h(u)+e)\log(h(u)+e)}\right\}-\frac{N}{2}\alpha\rho\left\{1+\frac{e}{h(u)}+\frac{\alpha}{\log(h(u)+e)}\right\}\\ &\to\frac{N}{2}\alpha(\hat{\rho}-\rho)>0\ \ \textrm{as}\ u\to\infty.\end{split}

Note that we use (1.8). Considering the case where ρ^=1\hat{\rho}=1, we see that J′′(u)0J^{\prime\prime}(u)\geq 0 for large u>0u>0. In both cases (i) and (ii) we have checked (3.0) and (3.19).

We prove (i). Because of (3.19), we can take a large ξ>0\xi>0 such that f~(u)=f(u)/J(u)θ\tilde{f}(u)=f(u)/J(u)^{\theta} for uξu\geq\xi and J~(u)=J(u)/J(u)1θ\tilde{J}(u)=J^{\prime}(u)/J(u)^{1-\theta} for uξu\geq\xi. Then,

J(η)J(η)1θηf(τ)J(τ)dτJ(τ)1+θ+2/Nηf(τ)J(τ)2dτJ(τ)2+2/N=ηf(τ)g(h(τ))2h(τ)2dτg(h(τ))2+2/NN2Ch(η)2dσ(σ+e)[log(σ+e)]2α/N=NC2α/N1[log(h(η)+e)]12α/N0asη,\frac{J^{\prime}(\eta)}{J(\eta)^{1-\theta}}\int_{\eta}^{\infty}\frac{f(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+\theta+2/N}}\leq\int_{\eta}^{\infty}\frac{f(\tau)J^{\prime}(\tau)^{2}d\tau}{J(\tau)^{2+2/N}}=\int_{\eta}^{\infty}\frac{f(\tau)g^{\prime}(h(\tau))^{2}h^{\prime}(\tau)^{2}d\tau}{g(h(\tau))^{2+2/N}}\\ \leq\frac{N}{2}C\int_{h(\eta)}^{\infty}\frac{2d\sigma}{(\sigma+e)[\log(\sigma+e)]^{2\alpha/N}}=\frac{NC}{2\alpha/N-1}[\log(h(\eta)+e)]^{1-2\alpha/N}\to 0\ \ \textrm{as}\ \ \eta\to\infty,

and hence (3.1) holds. By Theorem 3.1 (i) we see that (1.1) has a nonnegative solution and that (1.9) holds.

We prove (ii). Because of (3.19), we can take a large ξ>0\xi>0 such that f~(u)=f(u)/J(u)θ\tilde{f}(u)=f(u)/J(u)^{\theta} for uξu\geq\xi and J~(u)=J(u)/J(u)1θ\tilde{J}(u)=J^{\prime}(u)/J(u)^{1-\theta} for uξu\geq\xi. We choose ρ~(ρ,1)\tilde{\rho}\in(\rho,1). It follows from (3.23) and (3.24) that g(h(u))ρ~h(u)g^{\prime}(h(u))^{\tilde{\rho}}h^{\prime}(u) is increasing for large u>0u>0. When η>0\eta>0 is large, we have

J(η)J(η)1θηf(τ)J(τ)dτJ(τ)1+θ+2/N=g(h(η))1ρ~g(h(η))ρ~h(η)ηf(τ)g(h(τ))h(τ)dτg(h(τ))2+2/Ng(h(η))1ρ~ηf(τ)g(h(τ))1+ρ~h(τ)2dτg(h(τ))2+2/N=N2g(h(η))1ρ~h(η)σ1+2/Ng(σ)1+ρ~dσg(σ)2+2/NN2C[log(h(η)+e)]N(1ρ~)2h(η)dσ(σ+e)[log(σ+e)]1+N(1ρ~)2=C1ρ~.\frac{J^{\prime}(\eta)}{J(\eta)^{1-\theta}}\int_{\eta}^{\infty}\frac{f(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+\theta+2/N}}=g^{\prime}(h(\eta))^{1-\tilde{\rho}}g^{\prime}(h(\eta))^{\tilde{\rho}}h^{\prime}(\eta)\int_{\eta}^{\infty}\frac{f(\tau)g^{\prime}(h(\tau))h^{\prime}(\tau)d\tau}{g(h(\tau))^{2+2/N}}\\ \leq g^{\prime}(h(\eta))^{1-\tilde{\rho}}\int_{\eta}^{\infty}\frac{f(\tau)g^{\prime}(h(\tau))^{1+\tilde{\rho}}h^{\prime}(\tau)^{2}d\tau}{g(h(\tau))^{2+2/N}}=\frac{N}{2}g^{\prime}(h(\eta))^{1-\tilde{\rho}}\int_{h(\eta)}^{\infty}\frac{\sigma^{1+2/N}g^{\prime}(\sigma)^{1+\tilde{\rho}}d\sigma}{g(\sigma)^{2+2/N}}\\ \leq\frac{N}{2}C[\log(h(\eta)+e)]^{\frac{N(1-\tilde{\rho})}{2}}\int_{h(\eta)}^{\infty}\frac{d\sigma}{(\sigma+e)[\log(\sigma+e)]^{1+\frac{N(1-\tilde{\rho})}{2}}}=\frac{C}{1-\tilde{\rho}}.

By Theorem 3.1 (ii) we see that (1.1) has a nonnegative solution and that (1.9) holds. ∎

Corollary 3.2.

Let u00u_{0}\geq 0. Suppose that fC[0,)f\in C[0,\infty), ff is nonnegative and ff is nondecreasing for u>0u>0. Suppose that JC2[0,)J\in C^{2}[0,\infty) satisfies (3.0) and

(3.25) the limitγ:=limuJ(u)J′′(u)J(u)2exists.\textrm{the limit}\ \gamma:=\lim_{u\to\infty}\frac{J(u)J^{\prime\prime}(u)}{J^{\prime}(u)^{2}}\ \textrm{exists.}

If there exists a small ε>0\varepsilon>0 such that

(3.26) lim supuf(u)J(u)J(u)1+2/Nε<,\limsup_{u\to\infty}\frac{f(u)J^{\prime}(u)}{J(u)^{1+2/N-\varepsilon}}<\infty,

then (1.1) admits a local in time nonnegative solution for u0u_{0} satisfying J(u0)Lul1(N)J(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}).

Proof.

We define qJq_{J} by

qJ:=limuJ(u)2J(u)J′′(u),q_{J}:=\lim_{u\to\infty}\frac{J^{\prime}(u)^{2}}{J(u)J^{\prime\prime}(u)},

which is a conjugate exponent of the growth rate of JJ. In [6, 14] it was shown that 1qJ1\leq q_{J}\leq\infty if the limit qJq_{J} exists. Therefore, 0γ10\leq\gamma\leq 1.

Let f^(u):=J(u)1+2/Nε/J(u)\hat{f}(u):=J(u)^{1+2/N-\varepsilon}/J^{\prime}(u). First, we consider the case 0<γ10<\gamma\leq 1. Since 0<γ10<\gamma\leq 1, we can take θ(0,1]\theta\in(0,1] such that 1γ<θ<1γ+2/Nε1-\gamma<\theta<1-\gamma+2/N-\varepsilon. Then, for large u>0u>0,

(3.27) ddu(f(u)J(u)θ)\displaystyle\frac{d}{du}\left(\frac{f(u)}{J(u)^{\theta}}\right) =J(u)1+2/Nθε(1+2NθεJ(u)J′′(u)J(u)2)>0,\displaystyle=J(u)^{1+2/N-\theta-\varepsilon}\left(1+\frac{2}{N}-\theta-\varepsilon-\frac{J(u)J^{\prime\prime}(u)}{J^{\prime}(u)^{2}}\right)>0,
ddu(J(u)J(u)1θ)\displaystyle\frac{d}{du}\left(\frac{J^{\prime}(u)}{J(u)^{1-\theta}}\right) =J(u)2J(u)2θ(J(u)J′′(u)J(u)21+θ)>0.\displaystyle=\frac{J^{\prime}(u)^{2}}{J(u)^{2-\theta}}\left(\frac{J(u)J^{\prime\prime}(u)}{J^{\prime}(u)^{2}}-1+\theta\right)>0.

Let ξ\xi be large, and let f~\tilde{f} and J~\tilde{J} be defined by (3.3). Then, there exists ξ>0\xi>0 such that

(3.28) f~(u)=f^(u)J(u)θforuξandJ~(u)=J(u)J(u)1θforuξ.\tilde{f}(u)=\frac{\hat{f}(u)}{J(u)^{\theta}}\ \textrm{for}\ u\geq\xi\ \ \textrm{and}\ \ \tilde{J}(u)=\frac{J^{\prime}(u)}{J(u)^{1-\theta}}\ \textrm{for}\ u\geq\xi.

Second, we consider the case γ=0\gamma=0. Let θ=1\theta=1. Then we see that (3.27) holds for large τ>0\tau>0. Since θ=1\theta=1,

ddu(J(u)J(u)1θ)=J′′(u)0for largeu>0.\frac{d}{du}\left(\frac{J^{\prime}(u)}{J(u)^{1-\theta}}\right)=J^{\prime\prime}(u)\geq 0\ \ \textrm{for large}\ u>0.

Then there exists ξ>0\xi>0 such that (3.28) holds.

We prove the corollary in the case 0γ10\leq\gamma\leq 1. It follows from (3.26) that

(3.29) f(u)C0f^(u)for largeu>0.f(u)\leq C_{0}\hat{f}(u)\ \ \textrm{for large}\ u>0.

Since

J~(η)ηf~(τ)J(τ)dτJ(τ)1+2/N=ηJ(τ)1+2/NθεJ(τ)2dτJ(τ)J(τ)2+2/Nθ=ηJ(τ)dτJ(τ)1+ε=1εJ(η)ε0asη,\tilde{J}(\eta)\int_{\eta}^{\infty}\frac{\tilde{f}(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+2/N}}=\int_{\eta}^{\infty}\frac{J(\tau)^{1+2/N-\theta-\varepsilon}J^{\prime}(\tau)^{2}d\tau}{J^{\prime}(\tau)J(\tau)^{2+2/N-\theta}}=\int_{\eta}^{\infty}\frac{J^{\prime}(\tau)d\tau}{J(\tau)^{1+\varepsilon}}=\frac{1}{\varepsilon}J(\eta)^{-\varepsilon}\to 0\ \ \textrm{as}\ \ \eta\to\infty,

by (3.29) we see that (3.1) holds for ff. Hence, it follows from Theorem 3.1 (i) that (1.1) with ff admits a nonnegative solution if J(u0)Lul1(N)J(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}). The proof is complete. ∎

Corollary 3.3.

Let u00u_{0}\geq 0. Suppose that fC[0,)f\in C[0,\infty), ff is nonnegative and ff is nondecreasing for u>0u>0. Suppose that JC2[0,)J\in C^{2}[0,\infty) satisfies (3.0) and

(3.30) limuJ(u)J′′(u)J(u)2=0.\lim_{u\to\infty}\frac{J(u)J^{\prime\prime}(u)}{J^{\prime}(u)^{2}}=0.

If there exists γ>N/2\gamma>N/2 such that

(3.31) lim supuf(u)J(u)[log(J(u)+e)]2γ/NJ(u)1+2/N<,\limsup_{u\to\infty}\frac{f(u)J^{\prime}(u)[\log(J(u)+e)]^{2\gamma/N}}{J(u)^{1+2/N}}<\infty,

then (1.1) admits a local in time nonnegative solution for u0u_{0} satisfying J(u0)Lul1(N)J(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}).

Proof.

Let f^(u)=J(u)1+2/N/J(u)[log(J(u)+e)]2γ/N\hat{f}(u)=J(u)^{1+2/N}/J^{\prime}(u)[\log(J(u)+e)]^{2\gamma/N} and let θ=1\theta=1. By the same argument as in the proof of Corollary 3.2 we see that J~(u)=J(u)/J(u)1θ\tilde{J}(u)=J^{\prime}(u)/J(u)^{1-\theta} for uξu\geq\xi if ξ>0\xi>0 is large. Since

ddτ(J(u)2/NJ(u)[log(J(u)+e)]2γ/N)=J(u)2/N1log(J(u)+e)(2NJ(u)J′′(u)J(u)22γNJ(u)(J(u)+e)log(J(u)+e))>0\frac{d}{d\tau}\left(\frac{J(u)^{2/N}}{J^{\prime}(u)[\log(J(u)+e)]^{2\gamma/N}}\right)=\frac{J(u)^{2/N-1}}{\log(J(u)+e)}\left(\frac{2}{N}-\frac{J(u)J^{\prime\prime}(u)}{J^{\prime}(u)^{2}}-\frac{2\gamma}{N}\frac{J(u)}{(J(u)+e)\log(J(u)+e)}\right)>0

for large u>0u>0, we see that f~(u)=f^(u)/J(u)θ\tilde{f}(u)=\hat{f}(u)/J(u)^{\theta} for uξu\geq\xi if ξ>0\xi>0 is large. Thus, there exists ξ>0\xi>0 such that (3.28) holds.

It follows from (3.31) that

(3.32) f(u)C0f^(u)for largeu>0.f(u)\leq C_{0}\hat{f}(u)\ \ \textrm{for large}\ u>0.

Since

J~(η)ηf~(τ)J(τ)dτJ(τ)1+2/NηJ(τ)1+2/NθJ(u)2dτJ(u)2+2/NθJ(u)[log(J(u)+e)]2γ/NC2γ/N1[log(J(η)+e)]12γ/N0asη.\tilde{J}(\eta)\int_{\eta}^{\infty}\frac{\tilde{f}(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+2/N}}\leq\int_{\eta}^{\infty}\frac{J(\tau)^{1+2/N-\theta}J^{\prime}(u)^{2}d\tau}{J(u)^{2+2/N-\theta}J^{\prime}(u)[\log(J(u)+e)]^{2\gamma/N}}\\ \leq\frac{C}{2\gamma/N-1}[\log(J(\eta)+e)]^{1-2\gamma/N}\to 0\ \ \textrm{as}\ \ \eta\to\infty.

by (3.32) we see that (3.1) holds for ff. Hence, it follows from Theorem 3.1 (i) that (1.1) with ff admits a nonnegative solution if J(u0)Lul1(N)J(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}). The proof is complete. ∎

4. Nonexistence

In this section let N1N\geq 1 and 0α<N/20\leq\alpha<N/2. We begin to consider the case where f(u)=fβ(u)f(u)=f_{\beta}(u), β>0\beta>0. We recall that

Fβ(u):=udτfβ(τ)andhβ(u):=Fβ(u)N/2.F_{\beta}(u):=\int_{u}^{\infty}\frac{d\tau}{f_{\beta}(\tau)}\ \ \textrm{and}\ \ h_{\beta}(u):=F_{\beta}(u)^{-N/2}.

Let ε(0,N/2α)\varepsilon\in(0,N/2-\alpha). There exists C0>0C_{0}>0 such that fβ(u)f_{\beta}(u) is convex on [C0,)[C_{0},\infty). Then there exists m(0,1/e)m\in(0,1/e) such that |x|N(log(1/|x|))N/21+εhβ(C0)|x|^{-N}(\log(1/|x|))^{-N/2-1+\varepsilon}\geq h_{\beta}(C_{0}) for |x|m|x|\leq m. We define

(4.1) u0(x):={hβ1(|x|N(log1|x|)N/21+ε)if |x|m,hβ1(mN(log1m)N/21+ε)if |x|>m.u_{0}(x):=\begin{cases}h^{-1}_{\beta}\left(|x|^{-N}\left(\log\frac{1}{|x|}\right)^{-N/2-1+\varepsilon}\right)&\text{if $|x|\leq m$,}\\ h^{-1}_{\beta}\left(m^{-N}\left(\log\frac{1}{m}\right)^{-N/2-1+\varepsilon}\right)&\text{if $|x|>m$.}\end{cases}
Lemma 4.1.

Let Jα(u)J_{\alpha}(u) and g(u)g(u) be defined by (1.7). Let f(u)=fβ(u)f(u)=f_{\beta}(u), β>0\beta>0 and let u0(x)u_{0}(x) be defined by (4.1). Then, the following hold:

  1. (i)

    Jα(u0)=g(hβ(u0))Lul1(N)J_{\alpha}(u_{0})=g(h_{\beta}(u_{0}))\in L^{1}_{\rm ul}({\mathbb{R}^{N}}).

  2. (ii)

    u0ul1(N)u_{0}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}).

Proof.

(i) Let ρ(0,m]\rho\in(0,m] be fixed. It suffices to prove B(0,ρ)Jα(u0(x))𝑑x<\int_{B(0,\rho)}J_{\alpha}(u_{0}(x))dx<\infty. If |x|m|x|\leq m, then

(4.2) log(|x|N(log1|x|)N/21+ε+e)log(|x|N+e)2Nlog1|x|,\displaystyle\log\left(|x|^{-N}\left(\log\frac{1}{|x|}\right)^{-N/2-1+\varepsilon}+e\right)\leq\log\left(|x|^{-N}+e\right)\leq 2N\log\frac{1}{|x|},

which yields

Jα(u0(x))=g(|x|N(log1|x|)N/21+ε)|x|N(log1|x|)N/21+ε(2Nlog1|x|)α.J_{\alpha}(u_{0}(x))=g\left(|x|^{-N}\left(\log\frac{1}{|x|}\right)^{-N/2-1+\varepsilon}\right)\leq|x|^{-N}\left(\log\frac{1}{|x|}\right)^{-N/2-1+\varepsilon}\left(2N\log\frac{1}{|x|}\right)^{\alpha}.

We deduce that

B(0,ρ)Jα(u0(x))𝑑x0ρ1r(log1r)N/21+ε+α𝑑r=1N/2εα(log1ρ)N/2+ε+α<.\displaystyle\int_{B(0,\rho)}J_{\alpha}(u_{0}(x))dx\lesssim\displaystyle\int_{0}^{\rho}\frac{1}{r}\left(\log\frac{1}{r}\right)^{-N/2-1+\varepsilon+\alpha}dr=\frac{1}{N/2-\varepsilon-\alpha}\cdot\left(\log\frac{1}{\rho}\right)^{-N/2+\varepsilon+\alpha}<\infty.

Thus, Jα(u0)Lul1(N)J_{\alpha}(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}).
(ii) Let {ϕn(x)}n=1\{\phi_{n}(x)\}_{n=1}^{\infty} be defined by

ϕn(x):={u0(2nm)if |x|2nm,u0(x)if |x|>2nm.\phi_{n}(x):=\begin{cases}u_{0}(2^{-n}m)&\text{if $|x|\leq 2^{-n}m$,}\\ u_{0}(x)&\text{if $|x|>2^{-n}m$.}\end{cases}

We see that {ϕn}BUC(N)\{\phi_{n}\}\subset{BUC}({\mathbb{R}^{N}}). Since f(u)F(u)qf^{\prime}(u)F(u)\leq q for large u>0u>0, hβ1(u)h^{-1}_{\beta}(u) is concave for large u>0u>0, which implies that hβ1(u)uh^{-1}_{\beta}(u)\lesssim u for large u>0u>0. Therefore, if nn is large, then

N|u0(x)ϕn(x)|𝑑xB(0,2nm)hβ1(|x|N(log1|x|)N/21+ε)𝑑x02nm1r(log1r)N/21+ε𝑑r=1N/2ε(log2nm)N/2+ε0as n.\displaystyle\int_{{\mathbb{R}^{N}}}|u_{0}(x)-\phi_{n}(x)|dx\leq\displaystyle\int_{B(0,2^{-n}m)}h^{-1}_{\beta}\left(|x|^{-N}\left(\log\frac{1}{|x|}\right)^{-N/2-1+\varepsilon}\right)dx\\ \lesssim\displaystyle\int_{0}^{2^{-n}m}\frac{1}{r}\left(\log\frac{1}{r}\right)^{-N/2-1+\varepsilon}dr=\frac{1}{N/2-\varepsilon}\left(\log\frac{2^{n}}{m}\right)^{-N/2+\varepsilon}\to 0\ \ \text{as $n\to\infty$.}

Thus, u0ul1(N)u_{0}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}). ∎

Theorem 4.2.

Let N1N\geq 1, 0α<N/20\leq\alpha<N/2 and β>0\beta>0. Let u0u_{0} be defined by (4.1). Then (1.1) with f(u)=fβ(u)f(u)=f_{\beta}(u) admits no local in time nonnegative solution.

We postpone the proof of Theorem 4.2.

Proof of Theorem C.

We construct an initial function u0u_{0}. Choose ε\varepsilon such that 0<ε<N/2max{α,δ}0<\varepsilon<N/2-\max\{\alpha,\delta^{\prime}\}, where 0<δ<N/20<\delta^{\prime}<N/2 is chosen later. We also choose C0C1C_{0}\geq C_{1} such that fβ(u)f_{\beta}(u) is convex on [C0,)[C_{0},\infty). Then we define v0(x)v_{0}(x) by the right hand side of (4.1). Put 𝒥:=F1Fβ\mathcal{J}:=F^{-1}\circ F_{\beta} and u0(x):=𝒥(v0(x))u_{0}(x):=\mathcal{J}(v_{0}(x)). We see that u0(x)=h1(|x|N(log1|x|)N/21+ε)u_{0}(x)=h^{-1}\left(|x|^{-N}\left(\log\frac{1}{|x|}\right)^{-N/2-1+\varepsilon}\right) for |x|m|x|\leq{m}. Then we can obtain Jα(u0)Lul1(N)J_{\alpha}(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) in the same way as Lemma 4.1 (i).

We show that u0Lul1(N)u_{0}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}). It suffices to prove B(0,ρ)u0(x)𝑑x<\int_{B(0,\rho)}u_{0}(x)dx<\infty for small ρ>0\rho>0. By the assumption (ii) we can apply Lemma 2.11. Using Lemma 2.11 and (4.2) we see that there exists δ(0,N/2)\delta^{\prime}\in(0,N/2) independent of ε\varepsilon such that

h1(|x|N(log1|x|)N/21+ε)|x|N(log1|x|)N/21+ε(2Nlog1|x|)δh^{-1}\left(|x|^{-N}\left(\log\frac{1}{|x|}\right)^{-N/2-1+\varepsilon}\right)\lesssim|x|^{-N}\left(\log\frac{1}{|x|}\right)^{-N/2-1+\varepsilon}\left(2N\log\frac{1}{|x|}\right)^{\delta^{\prime}}

for small |x|>0|x|>0. Then we deduce that

B(0,ρ)u0(x)𝑑x0ρ1r(log1r)N/21+ε+δ𝑑r=1N/2εδ(log1ρ)N/2+ε+δ\displaystyle\int_{B(0,\rho)}u_{0}(x)dx\lesssim\displaystyle\int_{0}^{\rho}\frac{1}{r}\left(\log\frac{1}{r}\right)^{-N/2-1+\varepsilon+\delta^{\prime}}dr=\frac{1}{N/2-\varepsilon-\delta^{\prime}}\cdot\left(\log\frac{1}{\rho}\right)^{-N/2+\varepsilon+\delta^{\prime}}

for small ρ>0\rho>0. Thus, u0Lul1(N)u_{0}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}).

The proof is by contradiction. Suppose that there exists T>0T>0 such that (1.1) has a nonnegative solution. Since u(t)S(t)u0𝒥(C0)u(t)\geq S(t)u_{0}\geq\mathcal{J}(C_{0}) in N×(0,T){\mathbb{R}^{N}}\times(0,T), we can define v(x,t):=𝒥1(u(x,t))v(x,t):=\mathcal{J}^{-1}(u(x,t)). Since 𝒥′′(v)0\mathcal{J}^{\prime\prime}(v)\geq 0 for vC0v\geq C_{0} by the assumption (i), we have v(t)C0v(t)\geq C_{0} and

tv=𝒥′′(v)𝒥(v)|v|2+Δv+f(𝒥(v))𝒥(v)Δv+fβ(v)in N×(0,T).\partial_{t}v=\frac{\mathcal{J}^{\prime\prime}(v)}{\mathcal{J}^{\prime}(v)}|\nabla v|^{2}+\Delta v+\frac{f(\mathcal{J}(v))}{\mathcal{J}^{\prime}(v)}\geq\Delta v+f_{\beta}(v)\ \ \text{in ${\mathbb{R}^{N}}\times(0,T)$.}

Here we use f(𝒥(v))=fβ(v)𝒥(v)f(\mathcal{J}(v))=f_{\beta}(v)\mathcal{J}^{\prime}(v). Then it follows (see [19, p.77] for details) that

(4.3) v(t)S(tτ)v(τ)+τtS(ts)fβ(v(s))𝑑sin N×(τ,T).v(t)\geq S(t-\tau)v(\tau)+\int_{\tau}^{t}S(t-s)f_{\beta}(v(s))ds\ \ \text{in ${\mathbb{R}^{N}}\times(\tau,T)$.}

We also obtain

𝒥(v(τ))=u(τ)S(τ)u0=S(τ)𝒥(v0)𝒥(S(τ)v0)in N×(0,T).\mathcal{J}(v(\tau))=u(\tau)\geq S(\tau)u_{0}=S(\tau)\mathcal{J}(v_{0})\geq\mathcal{J}(S(\tau)v_{0})\ \ \text{in ${\mathbb{R}^{N}}\times(0,T)$.}

Since 𝒥\mathcal{J} is increasing on [C0,)[C_{0},\infty), we see that v(τ)S(τ)v0v(\tau)\geq S(\tau)v_{0} in N×(0,T){\mathbb{R}^{N}}\times(0,T). Letting τ0\tau\to 0 in (4.3), we have

v(t)S(t)v0+0tS(ts)fβ(v(s))𝑑sin N×(0,T),v(t)\geq S(t)v_{0}+\int_{0}^{t}S(t-s)f_{\beta}(v(s))ds\ \ \text{in ${\mathbb{R}^{N}}\times(0,T)$,}

and hence Proposition 2.4 says that (1.1) has a nonnegative solution. It contradicts the nonexistence result in Theorem 4.2. We complete the proof. ∎

Proof of Theorem 4.2.

The proof is by contradiction. Suppose that there exists T>0T>0 such that (1.1) with f(u)=fβ(u)f(u)=f_{\beta}(u) possesses a local in time nonnegative solution on (0,T)(0,T). Let 0<ξ<t<T0<\xi<t<T. It follows from the Fubini theorem and (1.5) that

(4.4) u(t)=S(tξ)u(ξ)+ξtS(ts)fβ(u(s))𝑑s.u(t)=S(t-\xi)u(\xi)+\displaystyle\int_{\xi}^{t}S(t-s)f_{\beta}(u(s))ds.

By (1.5) and u0C0u_{0}\geq C_{0} we have u(t)S(t)u0C0u(t)\geq S(t)u_{0}\geq C_{0} in N×(0,T){\mathbb{R}^{N}}\times(0,T). Let G(x.t):=K(x,0,t)G(x.t):=K(x,0,t). Then, by (4.4) we can obtain in a similar way to [9, Eq. (3.22)] that if ρ>0\rho>0 is sufficiently small, then

(4.5) w(t)cMτ3N/2G(0,1)tN/2+2N/2tN/2ρ2tsN/2fβ(w(s))𝑑s\displaystyle w(t)\geq c_{*}M_{\tau}3^{-N/2}G(0,1)t^{-N/2}+2^{-N/2}t^{-N/2}\displaystyle\int_{\rho^{2}}^{t}s^{N/2}f_{\beta}(w(s))ds

holds for almost all 0<τ<ρ20<\tau<\rho^{2} and ρ2<t<(T4ρ2)/3\rho^{2}<t<(T-4\rho^{2})/3, where c>0c_{*}>0 is a constant depending only on NN,

w(t):=Nu(x,t+4ρ2)G(x,t)𝑑xandMτ:=B(0,ρ)u(y,τ)𝑑y.w(t):=\int_{\mathbb{R}^{N}}u(x,t+4\rho^{2})G(x,t)dx\quad\text{and}\quad M_{\tau}:=\displaystyle\int_{B(0,\rho)}u(y,\tau)dy.

We show that if 0<ρ<10<\rho<1 is sufficiently small, then there exist C1>0C_{1}>0 and δ>0\delta>0 such that

(4.6) w(s)C1sN/2(log23δ2ρ2)N(β+1)/21+εfor ρ2<s<ρ.\displaystyle w(s)\geq C_{1}s^{-N/2}\left(\log\frac{2}{3\delta^{2}\rho^{2}}\right)^{-N(\beta+1)/2-1+\varepsilon}\ \ \text{for $\rho^{2}<s<\rho$.}

Let 0<ρ<10<\rho<1 and ρ2<s<ρ\rho^{2}<s<\rho. We see that

(4.7) w(s)NS(s+4ρ2)[u0](x)G(x,s)𝑑x=NNG(xy,s+4ρ2)u0(y)𝑑yG(x,s)𝑑x=NNG(xy,s+4ρ2)G(x,s)𝑑xu0(y)𝑑y=NNG(yx,s+4ρ2)G(x,s)𝑑xu0(y)𝑑y=NG(y,2s+4ρ2)u0(y)𝑑y.\displaystyle\begin{split}w(s)&\geq\displaystyle\int_{{\mathbb{R}^{N}}}S{(s+4\rho^{2})}[u_{0}](x)G(x,s)dx\\ &=\displaystyle\int_{{\mathbb{R}^{N}}}\displaystyle\int_{{\mathbb{R}^{N}}}G(x-y,s+4\rho^{2})u_{0}(y)dy\ G(x,s)dx\\ &=\displaystyle\int_{{\mathbb{R}^{N}}}\displaystyle\int_{{\mathbb{R}^{N}}}G(x-y,s+4\rho^{2})G(x,s)dx\ u_{0}(y)dy\\ &=\displaystyle\int_{{\mathbb{R}^{N}}}\displaystyle\int_{{\mathbb{R}^{N}}}G(y-x,s+4\rho^{2})G(x,s)dx\ u_{0}(y)dy\\ &=\displaystyle\int_{{\mathbb{R}^{N}}}G(y,2s+4\rho^{2})u_{0}(y)dy.\end{split}

Here we use G(y,t)=NG(yx,ts)G(x,s)𝑑xG(y,t)=\int_{{\mathbb{R}^{N}}}G(y-x,t-s)G(x,s)dx for yNy\in{\mathbb{R}^{N}} and 0<s<t0<s<t. By Lemma 2.10 there exists a small m>0m^{\prime}>0 such that for |y|m|y|\leq m^{\prime},

(4.8) hβ1(|y|N(log1|y|)N/21+ε)h~β(|y|N(log1|y|)N/21+ε)|y|N(log1|y|)N(β+1)/21+ε.h^{-1}_{\beta}\left(|y|^{-N}\left(\log\frac{1}{|y|}\right)^{-N/2-1+\varepsilon}\right)\geq\tilde{h}_{\beta}\left(|y|^{-N}\left(\log\frac{1}{|y|}\right)^{-N/2-1+\varepsilon}\right)\gtrsim|y|^{-N}\left(\log\frac{1}{|y|}\right)^{-N(\beta+1)/2-1+\varepsilon}.

Put s:=2s+4ρ2s_{*}:=2s+4\rho^{2} and choose δ>0\delta>0 such that 6δmin{m,m}\sqrt{6}\delta\leq\min\{m,m^{\prime}\}. Then we obtain

(4.9) NG(y,2s+4ρ2)u0(y)𝑑y(4πs)N/2{|y|sδ}e|y|24s|y|N(log1|y|)N(β+1)/21+ε𝑑y(4π)N/2{|z|δ}e|z|24sN/2|z|N(log1s|z|)N(β+1)/21+ε𝑑z(4π)N/2{δ/2|z|δ}e|z|24sN/2|z|N(log2sδ)N(β+1)/21+ε𝑑zsN/2(log4sδ2)N(β+1)/21+ε.\displaystyle\begin{split}&\displaystyle\int_{{\mathbb{R}^{N}}}G(y,2s+4\rho^{2})u_{0}(y)dy\\ &\hskip 30.0pt\gtrsim(4\pi s_{*})^{-N/2}\displaystyle\int_{\{|y|\leq\sqrt{s_{*}}\delta\}}e^{-\frac{|y|^{2}}{4s_{*}}}\cdot|y|^{-N}\left(\log\frac{1}{|y|}\right)^{-N(\beta+1)/2-1+\varepsilon}dy\\ &\hskip 30.0pt\geq(4\pi)^{-N/2}\displaystyle\int_{\{|z|\leq\delta\}}e^{-\frac{|z|^{2}}{4}}\cdot{s_{*}}^{-N/2}|z|^{-N}\left(\log\frac{1}{\sqrt{s_{*}}|z|}\right)^{-N(\beta+1)/2-1+\varepsilon}dz\\ &\hskip 30.0pt\geq(4\pi)^{-N/2}\displaystyle\int_{\{\delta/2\leq|z|\leq\delta\}}e^{-\frac{|z|^{2}}{4}}\cdot{s_{*}}^{-N/2}|z|^{-N}\left(\log\frac{2}{\sqrt{s_{*}}\delta}\right)^{-N(\beta+1)/2-1+\varepsilon}dz\\ &\hskip 30.0pt\gtrsim{s_{*}}^{-N/2}\left(\log\frac{4}{s_{*}\delta^{2}}\right)^{-N(\beta+1)/2-1+\varepsilon}.\end{split}

Here we put y=szy=\sqrt{s_{*}}z. By (4.7) and (4.9) we have

(4.10) sN/2w(s)(ss)N/2(log4sδ2)N(β+1)/21+ε.\displaystyle s^{N/2}w(s)\gtrsim\left(\frac{s}{s_{*}}\right)^{N/2}\left(\log\frac{4}{s_{*}\delta^{2}}\right)^{-N(\beta+1)/2-1+\varepsilon}.

Since the right hand side of (4.10) is nondecreasing with respect to ss, we have

sN/2w(s)(16)N/2(log23δ2ρ2)N(β+1)/21+ε.s^{N/2}w(s)\gtrsim\left(\frac{1}{6}\right)^{N/2}\left(\log\frac{2}{3\delta^{2}\rho^{2}}\right)^{-N(\beta+1)/2-1+\varepsilon}.

Thus there exists C1>0C_{1}>0 such that (4.6) holds. We observe from s<ρs<\rho that

sN/2(log23δ2ρ2)N(β+1)/21+ε>ρN/2(log23δ2ρ2)N(β+1)/21+εas ρ0.s^{-N/2}\left(\log\frac{2}{3\delta^{2}\rho^{2}}\right)^{-N(\beta+1)/2-1+\varepsilon}>\rho^{-N/2}\left(\log\frac{2}{3\delta^{2}\rho^{2}}\right)^{-N(\beta+1)/2-1+\varepsilon}\to\infty\ \ \text{as $\rho\to 0$.}

Hence, we choose ρ\rho sufficiently small and the right hand side of (4.6) is greater than 11. Then we have

(4.11) log(w(s)+e)log{C1sN/2(log23δ2ρ2)N(β+1)/21+ε}=N2(log1s+C2(ρ))\log(w(s)+e)\geq\log\left\{C_{1}s^{-N/2}\left(\log\frac{2}{3\delta^{2}\rho^{2}}\right)^{-N(\beta+1)/2-1+\varepsilon}\right\}=\frac{N}{2}\left(\log\frac{1}{s}+C_{2}(\rho)\right)

for ρ2<s<ρ\rho^{2}<s<\rho, where C2(ρ):=2NlogC1+2N(N(β+1)/21+ε)log(log23δ2ρ2)C_{2}(\rho):=\frac{2}{N}\log C_{1}+\frac{2}{N}(-N(\beta+1)/2-1+\varepsilon)\log(\log\frac{2}{3\delta^{2}\rho^{2}}). By (4.5) and (4.11) we have

(4.12) tN/2w(t)cMτ3N/2G(0,1)+2N/2(N2)βρ2tsN/2(log1s+C2(ρ))βw(s)1+2/N𝑑s=:H(t)\displaystyle\begin{split}t^{N/2}w(t)&\geq c_{*}M_{\tau}3^{-N/2}G(0,1)+2^{-N/2}\left(\frac{N}{2}\right)^{\beta}\displaystyle\int_{\rho^{2}}^{t}s^{N/2}\left(\log\frac{1}{s}+C_{2}(\rho)\right)^{\beta}w(s)^{1+2/N}ds\\ &=:H(t)\end{split}

for almost all 0<τ<ρ20<\tau<\rho^{2} and ρ2<t<ρ\rho^{2}<t<\rho. Note that ρ<(T4ρ2)/3\rho<(T-4\rho^{2})/3 holds since ρ\rho is sufficiently small. Put C3:=2N/2(N/2)βC_{3}:=2^{-N/2}(N/2)^{\beta}. By (4.12) we have

(4.13) dHdt(t)=C3tN/2(log1t+C2(ρ))βw(t)1+2/NC3tN/2(log1t+C2(ρ))β(tN/2H(t))1+2/N=C3t(log1t+C2(ρ))βH(t)1+2/N,\frac{dH}{dt}(t)=C_{3}t^{N/2}\left(\log\frac{1}{t}+C_{2}(\rho)\right)^{\beta}w(t)^{1+2/N}\\ \geq C_{3}t^{N/2}\left(\log\frac{1}{t}+C_{2}(\rho)\right)^{\beta}(t^{-N/2}H(t))^{1+2/N}=\frac{C_{3}}{t}\left(\log\frac{1}{t}+C_{2}(\rho)\right)^{\beta}H(t)^{1+2/N},

which yields

N2ddt(H(t)2/N)C3β+1ddt{(log1t+C2(ρ))β+1}.-\frac{N}{2}\cdot\frac{d}{dt}\left(H(t)^{-2/N}\right)\geq-\frac{C_{3}}{\beta+1}\cdot\frac{d}{dt}\left\{\left(\log\frac{1}{t}+C_{2}(\rho)\right)^{\beta+1}\right\}.

This implies that

N2H(ρ2)2/NN2H(ρ)2/NC3β+1{(2log1ρ+C2(ρ))β+1(log1ρ+C2(ρ))β+1}.\frac{N}{2}H(\rho^{2})^{-2/N}-\frac{N}{2}H(\rho)^{-2/N}\geq\frac{C_{3}}{\beta+1}\left\{\left(2\log\frac{1}{\rho}+C_{2}(\rho)\right)^{\beta+1}-\left(\log\frac{1}{\rho}+C_{2}(\rho)\right)^{\beta+1}\right\}.

Since H(ρ2)=cMτ3N/2G(0,1)H(\rho^{2})=c_{*}M_{\tau}3^{-N/2}G(0,1) and H(ρ)>0H(\rho)>0, we have

(4.14) Mτ{(2log1ρ+C2(ρ))β+1(log1ρ+C2(ρ))β+1}N/2\displaystyle M_{\tau}\lesssim\left\{\left(2\log\frac{1}{\rho}+C_{2}(\rho)\right)^{\beta+1}-\left(\log\frac{1}{\rho}+C_{2}(\rho)\right)^{\beta+1}\right\}^{-N/2}

for almost all 0<τ<ρ20<\tau<\rho^{2}. We see that

(4.15) Mτ=B(0,ρ)u(y,τ)𝑑yB(0,ρ)S(τ)[u0](y)𝑑y.\displaystyle M_{\tau}=\displaystyle\int_{B(0,\rho)}u(y,\tau)dy\geq\displaystyle\int_{B(0,\rho)}S(\tau)[u_{0}](y)dy.

By Lemma 4.1 (ii) and Proposition 2.6 we see that S(τ)u0u0Lul1(N)0\|S(\tau)u_{0}-u_{0}\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}\to 0 as τ0\tau\to 0. Then there exists a subsequence {(S(τ~)u0)|B(0,ρ)}τ~\{(S(\tilde{\tau})u_{0})|_{B(0,\rho)}\}_{\tilde{\tau}} such that (S(τ~)u0)|B(0,ρ)u0|B(0,ρ)(S(\tilde{\tau})u_{0})|_{B(0,\rho)}\to u_{0}|_{B(0,\rho)} as τ~0\tilde{\tau}\to 0 a.e. in B(0,ρ)B(0,\rho). Thus it follows from Fatou’s lemma, (4.14) and (4.15) that

(4.16) {(2log1ρ+C2(ρ))β+1(log1ρ+C2(ρ))β+1}N/2lim infτ~0B(0,ρ)S(τ~)[u0](y)𝑑yB(0,ρ)u0(y)𝑑y.\left\{\left(2\log\frac{1}{\rho}+C_{2}(\rho)\right)^{\beta+1}-\left(\log\frac{1}{\rho}+C_{2}(\rho)\right)^{\beta+1}\right\}^{-N/2}\gtrsim\liminf_{\tilde{\tau}\to 0}\int_{B(0,\rho)}S(\tilde{\tau})[u_{0}](y)dy\geq\int_{B(0,\rho)}u_{0}(y)dy.

On the other hand, by (4.8) we have

(4.17) B(0,ρ)u0(y)𝑑yB(0,ρ)|y|N(log1|y|)N(β+1)/21+ε𝑑y=0ρ1r(log1r)N(β+1)/21+ε𝑑r=1N(β+1)/2ε(log1ρ)N(β+1)/2+ε\int_{B(0,\rho)}u_{0}(y)dy\geq\int_{B(0,\rho)}|y|^{-N}\left(\log\frac{1}{|y|}\right)^{-N(\beta+1)/2-1+\varepsilon}dy\\ =\int_{0}^{\rho}\frac{1}{r}\left(\log\frac{1}{r}\right)^{-N(\beta+1)/2-1+\varepsilon}dr=\frac{1}{N(\beta+1)/2-\varepsilon}\cdot\left(\log\frac{1}{\rho}\right)^{-N(\beta+1)/2+\varepsilon}

for 0<ρ2min{m,m}0<\rho\leq 2\min\{m,m^{\prime}\}. By (4.16) and (4.17) we have

(4.18) {(2log1ρ+C2(ρ)log1ρ)β+1(log1ρ+C2(ρ)log1ρ)β+1}N/2(log1ρ)εas ρ0.\displaystyle\left\{\left(\frac{2\log\frac{1}{\rho}+C_{2}(\rho)}{\log\frac{1}{\rho}}\right)^{\beta+1}-\left(\frac{\log\frac{1}{\rho}+C_{2}(\rho)}{\log\frac{1}{\rho}}\right)^{\beta+1}\right\}^{-N/2}\gtrsim\left(\log\frac{1}{\rho}\right)^{\varepsilon}\to\infty\ \ \text{as $\rho\to 0$.}

Here we use C2(ρ)/log(1/ρ)0C_{2}(\rho)/\log(1/\rho)\to 0 as ρ0\rho\to 0. Then the left hand side of (4.18) converges to (2β+11)N/2(2^{\beta+1}-1)^{-N/2} as ρ0\rho\to 0. This is a contradiction. The proof is complete. ∎

Using Proposition 1.2 (ii), we can obtain a nonexistence result corresponding to Theorem 3.1.

Corollary 4.3.

Suppose that fC[0,)f\in C[0,\infty), ff is nonnegative and ff is nondecreasing for u>0u>0. Suppose that JC3[0,)J\in C^{3}[0,\infty) satisfies (3.0) and

(4.19) the limit δ:=limuJ(u)J′′′(u)J(u)J′′(u)exists.\textrm{the limit }\delta:=\lim_{u\to\infty}\frac{J(u)J^{\prime\prime\prime}(u)}{J^{\prime}(u)J^{\prime\prime}(u)}\ \textrm{exists}.

If there exists ε>0\varepsilon>0 such that

(4.20) lim infuf(u)J(u)J(u)1+2/N+ε>0,\liminf_{u\to\infty}\frac{f(u)J^{\prime}(u)}{J(u)^{1+2/N+\varepsilon}}>0,

then there exists u00u_{0}\geq 0 such that J(u0)Lul1(N)J(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and (1.1) admits no nonnegative solution.

Proof.

Because of (4.20), there exist C0>0C_{0}>0 and C1>0C_{1}>0 that

(4.21) f(u)>C0J(u)1+2/N+εJ(u)foruC1.f(u)>C_{0}\frac{J(u)^{1+2/N+\varepsilon}}{J^{\prime}(u)}\ \textrm{for}\ u\geq C_{1}.

Here, C0>0C_{0}>0 can be arbitrary large, since C1>0C_{1}>0 can be arbitrary large and ε>0\varepsilon>0 can be arbitrary small. Let f^(u):=ρJ(u)1+1/ρ/J(u)\hat{f}(u):=\rho J(u)^{1+1/\rho}/J^{\prime}(u), 0<ρ<N/20<\rho<N/2. Here, ρ\rho is determined later. Then F^(u):=u𝑑τ/f^(τ)=J(u)1/ρ\hat{F}(u):=\int_{u}^{\infty}d\tau/\hat{f}(\tau)=J(u)^{-1/\rho}. First, we consider the Cauchy problem

(4.22) {tu=Δu+f^(u)inN×(0,T),u(x,0)=u0(x)inN.\begin{cases}\partial_{t}u=\Delta u+\hat{f}(u)&\textrm{in}\ {\mathbb{R}^{N}}\times(0,T),\\ u(x,0)=u_{0}(x)&\textrm{in}\ {\mathbb{R}^{N}}.\end{cases}

By direct calculation we have

(4.23) f^(u)F^(u)=ρ+1ρJ(u)J′′(u)J(u)2ρ+1ργasu.\hat{f}^{\prime}(u)\hat{F}(u)=\rho+1-\rho\frac{J(u)J^{\prime\prime}(u)}{J^{\prime}(u)^{2}}\to\rho+1-{\rho\gamma}\ \ \textrm{as}\ \ u\to\infty.

By (4.23) we see that f^(u)>0\hat{f}^{\prime}(u)>0 for large u>0u>0. We can take C1>0C_{1}>0 such that f^(u)>0\hat{f}^{\prime}(u)>0 for u>C1u>C_{1}. Then, we can modify f^(u)\hat{f}(u), 0uC10\leq u\leq C_{1}, such that f^\hat{f} satisfies (f). Hereafter, we do not use f^(u)\hat{f}(u) in 0uC10\leq u\leq C_{1}.

By L’Hospital’s rule we see the following limit γ\gamma exists:

γ=limuJ(u)J′′(u)J(u)2=limu(12+J(u)J′′′(u)2J(u)J′′(u))=12+δ2.\gamma=\lim_{u\to\infty}\frac{J(u)J^{\prime\prime}(u)}{J^{\prime}(u)^{2}}=\lim_{u\to\infty}\left(\frac{1}{2}+\frac{J(u)J^{\prime\prime\prime}(u)}{2J^{\prime}(u)J^{\prime\prime}(u)}\right)=\frac{1}{2}+\frac{\delta}{2}.

Moreover,

η=limuJ(u)2J′′′(u)J(u)3=limuJ(u)J′′(u)J(u)2J(u)J′′′(u)J(u)J′′(u)=δγ.\eta=\lim_{u\to\infty}\frac{J(u)^{2}J^{\prime\prime\prime}(u)}{J^{\prime}(u)^{3}}=\lim_{u\to\infty}\frac{J(u)J^{\prime\prime}(u)}{J^{\prime}(u)^{2}}\frac{J(u)J^{\prime\prime\prime}(u)}{J^{\prime}(u)J^{\prime\prime}(u)}=\delta\gamma.

Therefore, η=γ2γ2\eta=\gamma-2\gamma^{2}. By direct calculation we have

limuf^′′(u)ρJ(u)1+1/ρJ(u)=limu(1ρ(1+1ρ)(1+1ρ)J(u)J′′(u)J(u)2+2(J(u)J′′(u)J(u)2)2J(u)2J′′′(u)J(u)3)=1ρ(1γ)+1ρ2>0,\lim_{u\to\infty}\frac{\hat{f}^{\prime\prime}(u)}{\rho J(u)^{1+1/\rho}J^{\prime}(u)}\\ =\lim_{u\to\infty}\left(\frac{1}{\rho}\left(1+\frac{1}{\rho}\right)-\left(1+\frac{1}{\rho}\right)\frac{J(u)J^{\prime\prime}(u)}{J^{\prime}(u)^{2}}+2\left(\frac{J(u)J^{\prime\prime}(u)}{J^{\prime}(u)^{2}}\right)^{2}-\frac{J(u)^{2}J^{\prime\prime\prime}(u)}{J^{\prime}(u)^{3}}\right)=\frac{1}{\rho}(1-\gamma)+\frac{1}{\rho^{2}}>0,

and hence f^′′(u)0\hat{f}^{\prime\prime}(u)\geq 0 for large u>0u>0. Here, we see that 0γ10\leq\gamma\leq 1 as mentioned in the proof of Corollary 3.2. We can retake C1>0C_{1}>0 such that f^′′(u)>0\hat{f}^{\prime\prime}(u)>0 for u>C1u>C_{1}. Then, we again modify f^(u)\hat{f}(u), 0uC10\leq u\leq C_{1}, such that f^′′(u)\hat{f}^{\prime\prime}(u) for u0u\geq 0. Hereafter, we do not use f^(u)\hat{f}(u) in 0uC10\leq u\leq C_{1}.

Since f^C2\hat{f}\in C^{2}, by (4.23) we see that f^C2[0,)Xq\hat{f}\in C^{2}[0,\infty)\cap X_{q} with q=1+ρ(1γ)q=1+\rho(1-\gamma). We see that 1<q<1+N/21<q<1+N/2. We have checked all the assumptions of Proposition 1.2 (ii). It follows from Proposition 1.2 (ii) that, for each r[q1,N/2)r\in[q-1,N/2), there exists a nonnegative function u0Lul1(N)u_{0}\in{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) such that F^(u0)rLul1(N)\hat{F}(u_{0})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and (4.22) admits no nonnegative solution. Without loss of generality, we can assume that u0C1u_{0}\geq C_{1}. Since q1ρ<N/2q-1\leq\rho<N/2, we can take r=ρr=\rho. We have

(4.24) F^(u0)r=J(u0)Lul1(N).\hat{F}(u_{0})^{-r}=J(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}).

Second, we consider (1.1). We take ρ=N/(Nε+2)\rho=N/(N\varepsilon+2). Then, q1=ρ(1γ)ρ<N/2q-1=\rho(1-\gamma)\leq\rho<N/2, and hence all the conditions before are satisfied. Because of (4.21), we have

f(u)>C0J(u)1+2/N+εJ(u)>ρJ(u)1+1/ρJ(u)=f^(u)foruC1.f(u)>C_{0}\frac{J(u)^{1+2/N+\varepsilon}}{J^{\prime}(u)}>\rho\frac{J(u)^{1+1/\rho}}{J^{\prime}(u)}=\hat{f}(u)\ \ \textrm{for}\ \ u\geq C_{1}.

Suppose that (1.1) with the initial function u0u_{0} has a solution u(t)u(t). Then,

u(t)=S(t)u0+0tS(ts)f(u(s))𝑑sS(t)u0+0tS(ts)f^(u(s))𝑑s,u(t)=S(t)u_{0}+\int_{0}^{t}S(t-s)f(u(s))ds\geq S(t)u_{0}+\int_{0}^{t}S(t-s)\hat{f}(u(s))ds,

and hence u(t)u(t) is a supersolution for (4.22). By Proposition 2.4 we see that (4.22) has a nonnegative solution. However, it contradicts the nonexistence of a nonnegative solution of (4.22) with u0u_{0}. Thus, (1.1) with u0u_{0} admits no nonnegative solution. By (4.24) we obtain the conclusion of the corollary. ∎

Remark 4.4.

  1. (i)

    When f(u)=J(u)1+2/N/J(u)f(u)=J(u)^{1+2/N}/J^{\prime}(u), it follows from Theorem A that (1.1) admits a local in time nonnegative solution for every u00u_{0}\geq 0 satisfying J(u0)ul1(N)J(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}). Therefore, we cannot take ε=0\varepsilon=0 in Corollary 4.3.

  2. (ii)

    Remark 4.4 (i) indicates that a threshold growth is f(u)=J(u)1+2/N/J(u)f(u)=J(u)^{1+2/N}/J^{\prime}(u) when the integrability condition is J(u0)ul1(N)J(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}). On the other hand, Theorem A and Proposition 1.2 (ii) indicate that a threshold integrability condition is F(u0)N/2ul1(N)F(u_{0})^{-N/2}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) when the growth is f(u)f(u).

  3. (iii)

    Since q:=1+ρ(1γ)<1+N/2q:=1+\rho(1-\gamma)<1+N/2, the extremal case is γ=0\gamma=0 and ρ=N/2\rho=N/2. In this case the qq exponent of f^(u)\hat{f}(u), which is given by (4.23), is 1+N/21+N/2. Since (q,r)=(1+N/2,N/2)(q,r)=(1+N/2,N/2), (4.22) is a doubly critical case.

Using Theorem C, we can obtain a nonexistence result corresponding to Theorem 3.1.

Corollary 4.5.

Let gγ(u)=u[log(u+e)]γg_{\gamma}(u)=u[\log(u+e)]^{\gamma}. Suppose that fC[0,)f\in C[0,\infty), ff is nonnegative and ff is nondecreasing for u>0u>0. Suppose that JC2[0,)J\in C^{2}[0,\infty) satisfies (3.0) and

(4.25) limuJ(u)J′′(u)J(u)2=0.\lim_{u\to\infty}\frac{J(u)J^{\prime\prime}(u)}{J^{\prime}(u)^{2}}=0.

If there exists γ(0,N/2)\gamma\in(0,N/2) such that

(4.26) lim infuf(u)J(u)[log(J(u)+e)]2γ/NJ(u)1+2/N>0,\liminf_{u\to\infty}\frac{f(u)J^{\prime}(u)\left[\log(J(u)+e)\right]^{2\gamma/N}}{J(u)^{1+2/N}}>0,

and

(4.27) d2du2(gγ1(J(u)))0for largeu>0.\frac{d^{2}}{du^{2}}\left(g_{\gamma}^{-1}(J(u))\right)\leq 0\ \ \textrm{for large}\ \ u>0.

then there exists a nonnegative function u0u_{0} such that J(u0)Lul1(N)J(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and (1.1) admits no nonnegative solution.

In particular, if J(u)=gα(u)J(u)=g_{\alpha}(u) for some α(0,N/2)\alpha\in(0,N/2) and lim infuf(u)/u1+2/N>0\liminf_{u\to\infty}f(u)/u^{1+2/N}>0, then there exists a nonnegative function u0u_{0} such that J(u0)Lul1(N)J(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and (1.1) admits no nonnegative solution.

Proof.

Because of (4.25), there exist C0>0C_{0}>0 and C1>1C_{1}>1 such that

f(u)>C0J(u)1+2/NJ(u)[log(J(u)+e)]2γ/NforuC1.f(u)>C_{0}\frac{J(u)^{1+2/N}}{J^{\prime}(u)[\log(J(u)+e)]^{2\gamma/N}}\ \ \textrm{for}\ u\geq C_{1}.

Note that, for each large C0>0C_{0}>0, we can retake γ(0,N/2)\gamma\in(0,N/2) and C1>0C_{1}>0 such that the above inequality holds. Let gγ1(u)g_{\gamma}^{-1}(u) denote the inverse function of gγg_{\gamma}. We define

f^(u):=N2gγ1(J(u))1+2/Ngγ(gγ1(J(u)))J(u).\hat{f}(u):=\frac{N}{2}\frac{g_{\gamma}^{-1}(J(u))^{1+2/N}g_{\gamma}^{\prime}(g_{\gamma}^{-1}(J(u)))}{J^{\prime}(u)}.

Then, F^(u):=u𝑑τ/f^(τ)=gγ1(J(u))2/N\hat{F}(u):=\int_{u}^{\infty}d\tau/\hat{f}(\tau)=g_{\gamma}^{-1}(J(u))^{-2/N}. First, we consider the Cauchy problem

(4.28) {tu=Δu+f^(u)inN×(0,T),u(x,0)=u0(x)inN.\begin{cases}\partial_{t}u=\Delta u+\hat{f}(u)&\textrm{in}\ {\mathbb{R}^{N}}\times(0,T),\\ u(x,0)=u_{0}(x)&\textrm{in}\ {\mathbb{R}^{N}}.\end{cases}

By direct calculation we have

(4.29) f^(u)F^(u)=1+N2+N2vgγ(v)gγ(v)(gγ(v)gγ′′(v)gγ(v)2J(u)J′′(u)J(u)2),\hat{f}^{\prime}(u)\hat{F}(u)=1+\frac{N}{2}+\frac{N}{2}\frac{vg_{\gamma}^{\prime}(v)}{g_{\gamma}(v)}\left(\frac{g_{\gamma}(v)g_{\gamma}^{\prime\prime}(v)}{g_{\gamma}^{\prime}(v)^{2}}-\frac{J(u)J^{\prime\prime}(u)}{J^{\prime}(u)^{2}}\right),

where v:=gγ1(J(u))v:=g_{\gamma}^{-1}(J(u)). As vv\to\infty,

(4.30) vgγ(v)gγ(v)=v[log(v+e)]γ(1+o(1))v[log(v+e)]γ1andgγ(v)gγ′′(v)gγ(v)2=v[log(v+e)]γγv+e[log(v+e)]γ1(1+o(1))[log(v+e)]2γ(1+o(1)))0.\frac{vg_{\gamma}^{\prime}(v)}{g_{\gamma}(v)}=\frac{v[\log(v+e)]^{\gamma}(1+o(1))}{v[\log(v+e)]^{\gamma}}\to 1\ \ \textrm{and}\ \ \frac{g_{\gamma}(v)g_{\gamma}^{\prime\prime}(v)}{g_{\gamma}^{\prime}(v)^{2}}=\frac{v[\log(v+e)]^{\gamma}\frac{\gamma}{v+e}[\log(v+e)]^{\gamma-1}(1+o(1))}{[\log(v+e)]^{2\gamma}(1+o(1)))}\to 0.

By (4.30), (4.29) and (4.25) we have limuf^(u)F^(u)=1+N/2\lim_{u\to\infty}\hat{f}^{\prime}(u)\hat{F}(u)=1+N/2. Because of (4.27), we have

(4.31) gγ(v)gγ′′(v)gγ(v)2J(u)J′′(u)J(u)2=gγ(v)gγ(v)d2vdu2(dvdu)20.\frac{g_{\gamma}(v)g_{\gamma}^{\prime\prime}(v)}{g_{\gamma}^{\prime}(v)^{2}}-\frac{J(u)J^{\prime\prime}(u)}{J^{\prime}(u)^{2}}=-\frac{g_{\gamma}(v)}{g_{\gamma}^{\prime}(v)}\frac{\frac{d^{2}v}{du^{2}}}{\left(\frac{dv}{du}\right)^{2}}\geq 0.

By (4.31) and (4.29) we have

(4.32) f^(u)F^(u)=1+N2N2vd2vdu2(dvdu)21+N2.\hat{f}^{\prime}(u)\hat{F}(u)=1+\frac{N}{2}-\frac{N}{2}\frac{v\frac{d^{2}v}{du^{2}}}{\left(\frac{dv}{du}\right)^{2}}\geq 1+\frac{N}{2}.

By (4.32) we see that f^(u)>0\hat{f}^{\prime}(u)>0 for large u>0u>0. Hence, we can take C1>0C_{1}>0 such that f^(u)>0\hat{f}^{\prime}(u)>0 for u>C1u>C_{1}. Moreover, we can modify f^(u)\hat{f}(u), 0uC10\leq u\leq C_{1}, such that f^\hat{f} satisfies (f). Hereafter, we do not use f^(u)\hat{f}(u) in 0uC10\leq u\leq C_{1}.

Now we prove Remark 1.7 (i). Assume that there exists c>0c>0 such that f(F1(v))F(F1(v))1+N/2f^{\prime}(F^{-1}(v))F(F^{-1}(v))\geq 1+N/2 for 0<vc0<v\leq c. Let β>0\beta>0. Since fβ(u)/fβ(u)1/(1+N/2)f^{\prime}_{\beta}(u)/f_{\beta}(u)^{1/(1+N/2)} is nondecreasing for u>0u>0, we obtain in the same way as (2.1) that fβ(u)Fβ(u)1+N/2f^{\prime}_{\beta}(u)F_{\beta}(u)\leq 1+N/2 for u>0u>0. This implies that fβ(Fβ1(v))Fβ(Fβ1(v))1+N/2f^{\prime}_{\beta}(F_{\beta}^{-1}(v))F_{\beta}(F_{\beta}^{-1}(v))\leq 1+N/2 for 0<v<Fβ(0)=0<v<F_{\beta}(0)=\infty. Thus we obtain f(F1(v))(1+N/2)/vfβ(Fβ1(v))f^{\prime}(F^{-1}(v))\geq(1+N/2)/v\geq f^{\prime}_{\beta}(F_{\beta}^{-1}(v)) for 0<vc0<v\leq c.

By Remark 1.7 (i) and (4.32) we see that the assumption Theorem C (i) is satisfied. Because of (3.0), we see that J(u)C2uJ(u)\geq C_{2}u for large u>0u>0. Since 0<γ<N/20<\gamma<N/2, there exist δ(0,1)\delta\in(0,1) and C3>0C_{3}>0 such that

J(u)C2uC3u[log(u+e)]γNδ/2for largeu>0.J(u)\geq C_{2}u\geq C_{3}u[\log(u+e)]^{\gamma-N\delta/2}\ \ \textrm{for large}\ u>0.

Then,

F^(u)=gγ1(J(u))2Ngγ1(C3u[log(u+e)]γNδ2)2NC4u2N[log(u+e)]δ,\hat{F}(u)=g_{\gamma}^{-1}(J(u))^{-\frac{2}{N}}\leq g_{\gamma}^{-1}(C_{3}u[\log(u+e)]^{\gamma-\frac{N\delta}{2}})^{-\frac{2}{N}}\leq C_{4}u^{-\frac{2}{N}}[\log(u+e)]^{\delta},

and hence the assumption Theorem C (ii) is satisfied. Using Theorem C, we see that for each α[0,N/2)\alpha\in[0,N/2), there exists u00u_{0}\geq 0 such that Jα(u0)=gα(F^(u0)N/2)Lul1(N)J_{\alpha}(u_{0})=g_{\alpha}(\hat{F}(u_{0})^{-N/2})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and (1.1) admits no nonnegative solution. We take α=γ\alpha=\gamma. Then,

(4.33) J(u)=Jγ(u)Lul1(N).J(u)=J_{\gamma}(u)\in L^{1}_{\rm ul}({\mathbb{R}^{N}}).

We consider (4.28). Since

N2gγ1(J(u))1+2/Ngγ(gγ1(J(u)))C5(J(u)[log(J(u)+e)]γ)1+2/N[log(J(u)+e)]γ=C5J(u)1+2/N[log(J(u)+e)]2γ/Nfor largeu>0,\frac{N}{2}g_{\gamma}^{-1}(J(u))^{1+2/N}g_{\gamma}^{\prime}(g_{\gamma}^{-1}(J(u)))\leq C_{5}(J(u)[\log(J(u)+e)]^{-\gamma})^{1+2/N}[\log(J(u)+e)]^{\gamma}\\ =C_{5}J(u)^{1+2/N}[\log(J(u)+e)]^{-2\gamma/N}\ \ \textrm{for large}\ u>0,

there exists C6>C1C_{6}>C_{1} such that C0>C5C_{0}>C_{5} and

f(u)>C0J(u)1+2/NJ(u)[log(J(u)+e)]2γ/NC5J(u)1+2/NJ(u)[log(J(u)+e)]2γ/NN2gγ1(J(u))1+2/Ngγ(gγ1(J(u)))J(u)=f^(u)foruC6.f(u)>C_{0}\frac{J(u)^{1+2/N}}{J^{\prime}(u)[\log(J(u)+e)]^{2\gamma/N}}\geq C_{5}\frac{J(u)^{1+2/N}}{J^{\prime}(u)[\log(J(u)+e)]^{2\gamma/N}}\\ \geq\frac{N}{2}\frac{g_{\gamma}^{-1}(J(u))^{1+2/N}g_{\gamma}^{\prime}(g_{\gamma}^{-1}(J(u)))}{J^{\prime}(u)}=\hat{f}(u)\ \ \textrm{for}\ u\geq C_{6}.

We can assume that u0C6u_{0}\geq C_{6}. Suppose that (1.1) with the initial function u0u_{0} has a solution u(t)u(t). Then

u(t)=S(t)u0+0tS(ts)f(u(s))𝑑sS(t)u0+0tS(ts)f^(u(s))𝑑s,u(t)=S(t)u_{0}+\int_{0}^{t}S(t-s)f(u(s))ds\geq S(t)u_{0}+\int_{0}^{t}S(t-s)\hat{f}(u(s))ds,

and hence u(t)u(t) is a supersolution for (4.28). By Proposition 2.4 we see that (4.28) has a nonnegative solution. However, it contradicts the nonexistence of a nonnegative solution of (4.28) with u0u_{0}. Thus, (1.1) with u0u_{0} admits no nonnegative solution. By (4.33) we obtain the first statement of the corollary.

Next, we prove the second statement. We take γ=α\gamma=\alpha. Then, (4.27) holds, and lim infuf(u)/u1+2/N>0\liminf_{u\to\infty}f(u)/u^{1+2/N}>0 implies (4.26). Thus, the second statement follows from the first statement. ∎

5. Solvability in ul1(N)\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}})

Let J(u)=uJ(u)=u, θ=1\theta=1 and ξ=1\xi=1. We use Theorem 3.1 (i) to obtain the following:

Corollary 5.1.

Let u00u_{0}\geq 0. Suppose that fC[0,)f\in C[0,\infty), and ff is nonnegative and nondecreasing. If

(5.1) 1f~(u)duu1+2/N<,wheref~(u):=sup1τuf(τ)τ,\int_{1}^{\infty}\frac{\tilde{f}(u)du}{u^{1+2/N}}<\infty,\ \ \textrm{where}\ \ \tilde{f}(u):=\sup_{1\leq\tau\leq u}\frac{f(\tau)}{\tau},

then (1.1) admits a local in time nonnegative solution u(t)u(t), 0<t<T0<t<T, for each u0Lul1(N)u_{0}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}). Moreover, u(t)Lul1(N)C\left\|u(t)\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}\leq C for 0<t<T0<t<T.

As mentioned in Section 1, [11] obtained a necessary and sufficient condition on ff for a solvability of (1.2) in L1(Ω)L^{1}(\Omega). Here, we use the following nonexistence result:

Proposition 5.2 ([11, Theorem 4.1 and Lemma 4.2]).

Let Ω\Omega be a bounded domain in N{\mathbb{R}^{N}}. Let fC([0,))f\in C([0,\infty)) be nonnegative and nondecreasing. If

(5.2) 1f~(u)duu1+2/N=,wheref~(u):=sup1τuf(τ)τ,\int_{1}^{\infty}\frac{\tilde{f}(u)du}{u^{1+2/N}}=\infty,\ \ \textrm{where}\ \ \tilde{f}(u):=\sup_{1\leq\tau\leq u}\frac{f(\tau)}{\tau},

then there is a nonnegative function u0L1(Ω)u_{0}\in L^{1}(\Omega) such that (1.2) admits no local in time nonnegative solution in L1(Ω)L^{1}(\Omega). Specifically, for each small t>0t>0,

(5.3) Ω0tSΩ(ts)f(SΩ(s)u0)𝑑s𝑑x=.\int_{\Omega}\int_{0}^{t}S_{\Omega}(t-s)f(S_{\Omega}(s)u_{0})dsdx=\infty.

Here, SΩ(t)[ϕ](x):=ΩKΩ(x,y,t)ϕ(y)𝑑yS_{\Omega}(t)[\phi](x):=\int_{\Omega}K_{\Omega}(x,y,t)\phi(y)dy and KΩ(x,y,t)K_{\Omega}(x,y,t) denotes the Dirichlet heat kernel on Ω\Omega.

Using Corollary 5.1 and Proposition 5.2, we obtain the following characterization:

Theorem 5.3.

Let u00u_{0}\geq 0. Suppose that fC[0,)f\in C[0,\infty), ff is nonnegative and nondecreasing. Then, (1.1) admits a local in time nonnegative solution for all u0ul1(N)u_{0}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) if and only if (5.1) holds.

Proof.

The sufficient part follows from Corollary 5.1. Hereafter, we prove the necessary part. Since C0(N)L1(N)C_{0}^{\infty}({\mathbb{R}^{N}})\subset L^{1}({\mathbb{R}^{N}}) is dense and C0(N)BUC(N)C_{0}^{\infty}({\mathbb{R}^{N}})\subset BUC({\mathbb{R}^{N}}), we see that L1(N)ul1(N)L^{1}({\mathbb{R}^{N}})\subset\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}). We assume (5.2). Suppose the contrary, i.e., (1.1) always has a nonnegative solution. Let u0L1(Ω)u_{0}\in L^{1}(\Omega) be the initial function given in Proposition 5.2. Here, we define u0=0u_{0}=0 in NΩ{\mathbb{R}^{N}}\setminus\Omega. Then, u0ul1(N)u_{0}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}). Since

(5.4) u(t)=S(t)u0+0tS(ts)f(u(s))𝑑s,u(t)=S(t)u_{0}+\int_{0}^{t}S(t-s)f(u(s))ds,

we have

(5.5) u(t)S(t)u0.u(t)\geq S(t)u_{0}.

By (5.5) and (5.4) we have

u(t)0tS(ts)f(u(s))𝑑s0tS(ts)f(S(s)u0)𝑑s.u(t)\geq\int_{0}^{t}S(t-s)f(u(s))ds\geq\int_{0}^{t}S(t-s)f(S(s)u_{0})ds.

Since two Green functions satisfy K(x,y,t)KΩ(x,y,t)K(x,y,t)\geq K_{\Omega}(x,y,t) (see, e.g., [1, Corollary 2.2]), we see that S(t)u0SΩ(t)u0S(t)u_{0}\geq S_{\Omega}(t)u_{0}, and hence

u(t)0tSΩ(ts)f(SΩ(s)u0)𝑑s.u(t)\geq\int_{0}^{t}S_{\Omega}(t-s)f(S_{\Omega}(s)u_{0})ds.

By (5.3) we see that u(t)Lloc1(N)u(t)\not\in L^{1}_{\rm loc}({\mathbb{R}^{N}}) for small t>0t>0, and hence (1.1) admits no nonnegative solution. This is a contradiction. Thus, the proof of the necessary part is complete, and the whole proof is also complete. ∎

Using Theorem 5.3, we show that the condition ρ<1\rho<1 in Theorem B is optimal. Specifically, we cannot take ρ=1\rho=1 in Theorem B.

Corollary 5.4.

Let g(u):=u[log(u+e)]αg(u):=u[\log(u+e)]^{\alpha}, α0\alpha\geq 0, and let f(u):=N2g(g1(u))g1(u)1+2/Nf(u):=\frac{N}{2}g^{\prime}(g^{-1}(u))g^{-1}(u)^{1+2/N}. Then the following hold:

  1. (i)

    q=1+N/2q=1+N/2, fXqf\in X_{q} and

    (5.6) f(u)F(u)q=Nα2h(h+e)log(h+e)1+1h+e+(α1)h(h+e)log(h+e)1+αh(h+e)log(h+e),f^{\prime}(u)F(u)-q=\frac{N\alpha}{2}\frac{h}{(h+e)\log(h+e)}\frac{1+\frac{1}{h+e}+\frac{(\alpha-1)h}{(h+e)\log(h+e)}}{1+\frac{\alpha h}{(h+e)\log(h+e)}},

    where h:=F(u)N/2h:=F(u)^{-N/2}. In particular, (1.8) with ρ=1\rho=1 holds.

  2. (ii)

    Let Jα(u):=g(F(u)N/2)J_{\alpha}(u):=g(F(u)^{-N/2}), α:=N/2\alpha:=N/2. Then, Jα(u)=uJ_{\alpha}(u)=u and there exists a nonnegative function u0ul1(N)u_{0}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) such that (1.1) admits no nonnegative solution.

Proof.

First, we prove (i). By direct calculation we have F(u)=(g1(u))2/NF(u)=(g^{-1}(u))^{-2/N} and g(F(u)N/2)=ug(F(u)^{-N/2})=u. Differentiating g(F(u)N/2)=ug(F(u)^{-N/2})=u with respect to uu twice, we obtain (5.6). Since h(u)(=g1(u))h(u)(=g^{-1}(u))\to\infty (u)(u\to\infty), by (5.6) we see that limuf(u)F(u)=q\lim_{u\to\infty}f^{\prime}(u)F(u)=q. Since all other conditions on (f) clearly hold, ff satisfies (f), and hence fXqf\in X_{q} with q=1+N/2q=1+N/2. Using (5.6), a direct calculation reveals that (1.4) with ρ=1\rho=1 holds. The proof of (i) is complete.
Second, we prove (ii). Let u1>1u_{1}>1 be large. Since Jα(u)=uJ_{\alpha}(u)=u, we have

1f~(u)duu1+2/Nu1f(u)duu2+2/N=u1f(u)Jα(u)2duJα(u)2+2/N=N2F(u1)N/2g(τ)2τ1+2/Ndτg(τ)2+2/N=F(u1)N/2(1+Nτ2(τ+e)log(τ+e))2τlog(τ+e)𝑑τF(u1)N/2dτ(τ+e)log(τ+e)=[loglog(τ+e)]F(u1)N/2=,\int_{1}^{\infty}\frac{\tilde{f}(u)du}{u^{1+2/N}}\geq\int_{u_{1}}^{\infty}\frac{f(u)du}{u^{2+2/N}}=\int_{u_{1}}^{\infty}\frac{f(u)J_{\alpha}^{\prime}(u)^{2}du}{J_{\alpha}(u)^{2+2/N}}=\frac{N}{2}\int_{F(u_{1})^{-{N}/{2}}}^{\infty}\frac{g^{\prime}(\tau)^{2}\tau^{1+2/N}d\tau}{g(\tau)^{2+2/N}}\\ =\int_{F(u_{1})^{-{N}/{2}}}^{\infty}\frac{\left(1+\frac{N\tau}{2(\tau+e)\log(\tau+e)}\right)^{2}}{\tau\log(\tau+e)}d\tau\geq\int_{F(u_{1})^{-{N}/{2}}}^{\infty}\frac{d\tau}{(\tau+e)\log(\tau+e)}=\left[\log\log(\tau+e)\right]_{F(u_{1})^{-{N}/{2}}}^{\infty}=\infty,

where we used the change of variables τ=F(u)N/2\tau=F(u)^{-N/2}. By Theorem 5.3 we see that there exists a nonnegative function u0ul1(N)u_{0}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}), which obviously implies Jα(u0)ul1(N)J_{\alpha}(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}), such that (1.1) admits no nonnegative solution. The proof of (ii) is complete. ∎

It follows from a direct calculation that ff given in Corollary 5.4 behaves as follows:

f(u)=N2u1+2/N[log(u+e)]2α/N(1+o(1))asu.f(u)=\frac{N}{2}u^{1+{2}/{N}}[\log(u+e)]^{-2\alpha/N}(1+o(1))\ \ \textrm{as}\ \ u\to\infty.

6. The case fβ(u)=u1+2/N[log(u+e)]βf_{\beta}(u)=u^{1+2/N}[\log(u+e)]^{\beta}

Proof of Theorem D.

We prove (i). By (3.23) with ρ^=1\hat{\rho}=1 and (3.24) with ρ^=1\hat{\rho}=1 we see that if there exists ρ<1\rho<1 such that (1.8) holds, then Jα(u)J_{\alpha}(u) is convex for large u>0u>0.

It suffices to show that (1.8) holds in both cases (a) and (b). By direct calculation we have

(f(u)F(u)q)log(h(u)+e)\displaystyle(f^{\prime}(u)F(u)-q)\log(h(u)+e)
=(f(u)F(u)q)log(u+e)log(h(u)+e)log(u+e)\displaystyle\hskip 10.0pt=(f^{\prime}(u)F(u)-q)\log(u+e)\cdot\frac{\log(h(u)+e)}{\log(u+e)}
={βuu+eF(u)u2/N[log(u+e)]β(1+2N)(N2F(u)u2/N[log(u+e)]β)log(u+e)}log(h(u)+e)log(u+e).\displaystyle\hskip 10.0pt=\left\{\frac{\beta u}{u+e}\cdot\frac{F(u)}{u^{-2/N}[\log(u+e)]^{-\beta}}-\left(1+\frac{2}{N}\right)\left(\frac{N}{2}-\frac{F(u)}{u^{-2/N}[\log(u+e)]^{-\beta}}\right)\log(u+e)\right\}\cdot\frac{\log(h(u)+e)}{\log(u+e)}.

By L’Hospital’s rule we have

limuF(u)u2/N[log(u+e)]β\displaystyle\lim_{u\to\infty}\frac{F(u)}{u^{-2/N}[\log(u+e)]^{-\beta}} =limudFdu(u)ddu(u2/N[log(u+e)]β)\displaystyle=\lim_{u\to\infty}\frac{\frac{dF}{du}(u)}{\frac{d}{du}(u^{-2/N}[\log(u+e)]^{-\beta})}
=limu(2N+βuu+e[log(u+e)]1)1=N2.\displaystyle=\lim_{u\to\infty}\left(\frac{2}{N}+\frac{\beta u}{u+e}[\log(u+e)]^{-1}\right)^{-1}=\frac{N}{2}.

We see that

(N2F(u)u2/N[log(u+e)]β)log(u+e)=N2u2/N[log(u+e)]βF(u)u2/N[log(u+e)]β1,\left(\frac{N}{2}-\frac{F(u)}{u^{-2/N}[\log(u+e)]^{-\beta}}\right)\log(u+e)=\frac{\frac{N}{2}u^{-2/N}[\log(u+e)]^{-\beta}-F(u)}{u^{-2/N}[\log(u+e)]^{-\beta-1}},

which implies that

limu(N2F(u)u2/N[log(u+e)]β)log(u+e)=limuddu(N2u2/N[log(u+e)]βF(u))ddu(u2/N[log(u+e)]β1)=limuN2βu2/N[log(u+e)]β11u+eu12/N[log(u+e)]β1(2N+(β+e)uu+e[log(u+e)]1)=(N2)2β.\lim_{u\to\infty}\left(\frac{N}{2}-\frac{F(u)}{u^{-2/N}[\log(u+e)]^{-\beta}}\right)\log(u+e)=\lim_{u\to\infty}\frac{\frac{d}{du}\left(\frac{N}{2}u^{-2/N}[\log(u+e)]^{-\beta}-F(u)\right)}{\frac{d}{du}(u^{-2/N}[\log(u+e)]^{-\beta-1})}\\ ={\lim_{u\to\infty}}\frac{-\frac{N}{2}\beta\cdot u^{-2/N}[\log(u+e)]^{-\beta-1}\cdot\frac{1}{u+e}}{-u^{-1-2/N}[\log(u+e)]^{-\beta-1}\left(\frac{2}{N}+(\beta+e)\cdot\frac{u}{u+e}[\log(u+e)]^{-1}\right)}=\left(\frac{N}{2}\right)^{2}\beta.

Moreover, since ddu(u+e)/{ddu(f(u)F(u))}=1/(f(u)F(u)1)2/N\frac{d}{du}(u+e)/\{\frac{d}{du}(f(u)F(u))\}=1/(f^{\prime}(u)F(u)-1)\to 2/N as uu\to\infty, we obtain

ddu{log(h(u)+e)}ddu{log(u+e)}=N2u+ef(u)F(u)1+F(u)N/21as u,\frac{\frac{d}{du}\left\{\log(h(u)+e)\right\}}{\frac{d}{du}\left\{\log(u+e)\right\}}=\frac{\frac{N}{2}\cdot\frac{u+e}{f(u)F(u)}}{1+F(u)^{N/2}}\to 1\ \ \text{as $u\to\infty$,}

and hence log(h(u)+e)/log(u+e)1{\log(h(u)+e)}/{\log(u+e)}\to 1 as uu\to\infty. Therefore, we have

(6.1) limu(f(u)F(u)q)log(h(u)+e)=(N2)2β.\displaystyle\lim_{u\to\infty}(f^{\prime}(u)F(u)-q)\log(h(u)+e)=-\left(\frac{N}{2}\right)^{2}\beta.

Since β1\beta\geq-1 and α>N/2\alpha>N/2, or β>1\beta>-1 and α=N/2\alpha=N/2, we have Nβ/(2α)<1-{N\beta}/{(2\alpha)}<1. Then we can choose ρ\rho such that Nβ/(2α)<ρ<1-{N\beta}/{(2\alpha)}<\rho<1, which leads to (N2)2β<N2αρ-\left(\frac{N}{2}\right)^{2}\beta<\frac{N}{2}\alpha\rho. By this together with (6.1) we obtain (1.8) in both cases (a) and (b).

We prove (c). Let (1+2/N)κ<β<1-(1+2/N)\kappa<\beta<-1, θ=1\theta=1 and J(u)=uJ(u)=u. In order to apply Theorem 3.1 (i) we check all the assumptions. Since ddu(J(u)J(u)1θ)=0\frac{d}{du}\left(\frac{J^{\prime}(u)}{J(u)^{1-\theta}}\right)=0 and

ddu(f(u)J(u)θ)=2Nu2N1[log(u+e)]β(1+βu(u+e)log(u+e))>0for largeu>0,\frac{d}{du}\left(\frac{f(u)}{J(u)^{\theta}}\right)=\frac{2}{N}u^{\frac{2}{N}-1}[\log(u+e)]^{\beta}\left(1+\frac{\beta u}{(u+e)\log(u+e)}\right)>0\ \ \textrm{for large}\ u>0,

f(u)/J(u)θf(u)/J(u)^{\theta} and J(u)/J(u)1θJ^{\prime}(u)/J(u)^{1-\theta} are nondecreasing for large u>0u>0. If η>0\eta>0 is large, then

J~(η)ηf~(τ)J(τ)dτJ(τ)1+2/N=J(η)J(η)1θηf(τ)J(τ)dτJ(τ)1+θ+2/N=η[log(τ+e)]βdττη2[log(τ+e)]βdττ+e=2β1[log(η+e)]β+10asη.\tilde{J}(\eta)\int_{\eta}^{\infty}\frac{\tilde{f}(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+2/N}}=\frac{J^{\prime}(\eta)}{J(\eta)^{1-\theta}}\int_{\eta}^{\infty}\frac{f(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+\theta+2/N}}=\int_{\eta}^{\infty}\frac{[\log(\tau+e)]^{\beta}d\tau}{\tau}\\ \leq\int_{\eta}^{\infty}\frac{2[\log(\tau+e)]^{\beta}d\tau}{\tau+e}=\frac{2}{-\beta-1}[\log(\eta+e)]^{\beta+1}\to 0\ \ \textrm{as}\ \ \eta\to\infty.

Then, (3.1) holds. It follows from Theorem 3.1 (i) that (1.1) has a nonnegative solution. A proof of (c) is complete.

We prove (a) of (ii). It suffices to show that f=fβf=f_{\beta} satisfies all the assumptions of Theorem C. We easily see that ff satisfies (f). We check the assumption Theorem C (i). When β>0\beta>0, since Fβ1Fβ(u)=uF^{-1}_{\beta}\circ F_{\beta}(u)=u, Theorem C (i) holds. When 1<β0-1<\beta\leq 0, we have f(u)F(u)1+N/2f^{\prime}(u)F(u)\geq 1+N/2 for large u>0u>0. Thus, Theorem C (i) follows from Remark 1.7. We check the assumption Theorem C (ii). We choose δ\delta such that max{β,0}<δ<1\max\{-\beta,0\}<\delta<1. Since β+δ>0\beta+\delta>0, we have

limudFdu(u)ddu{u2/N[log(u+e)]δ}=limu1[log(u+e)]β+δ(2Nδu(u+e)log(u+e))=0.\lim_{u\to\infty}\frac{\frac{dF}{du}(u)}{\frac{d}{du}\left\{u^{-2/N}[\log(u+e)]^{\delta}\right\}}=\lim_{u\to\infty}\frac{1}{[\log(u+e)]^{\beta+\delta}\left(\frac{2}{N}-\frac{\delta u}{(u+e)\log(u+e)}\right)}=0.

By L’Hospital’s rule we have F(u)/{u2/N[log(u+e)]δ}0F(u)/\left\{u^{-2/N}[\log(u+e)]^{\delta}\right\}\to 0 as uu\to\infty. Thus, Theorem C (ii) also holds. Applying Theorem C, we obtain (a) of (ii).

We prove (b) of (ii). Since β(1+2/N)κ\beta\geq-(1+2/N)\kappa, fβ(u)f_{\beta}(u) is nondecreasing, and Theorem 5.3 is applicable. Since there is σ>1\sigma>1 such that f~(τ)=f(τ)/τ\tilde{f}(\tau)=f(\tau)/\tau for τσ\tau\geq\sigma, we have

1f~(τ)dττ1+2/Nσf(τ)dττ2+2/Nσdτ(τ+e)log(τ+e)=[loglog(τ+e)]σ=,\int_{1}^{\infty}\frac{\tilde{f}(\tau)d\tau}{\tau^{1+2/N}}\geq\int_{\sigma}^{\infty}\frac{f(\tau)d\tau}{\tau^{2+2/N}}\geq\int_{\sigma}^{\infty}\frac{d\tau}{(\tau+e)\log(\tau+e)}=\left[\log\log(\tau+e)\right]_{\sigma}^{\infty}=\infty,

and hence it follows from Theorem 5.3 that there exists a nonnegative function u0ul1(N)u_{0}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) such that (1.1) admits no nonnegative solution. Next, we show that Jα(u0)ul1(N)J_{\alpha}(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}). We have

F(u)log(u+e)udττ1+2/N=N2log(u+e)u2/N.F(u)\geq\log(u+e)\int_{u}^{\infty}\frac{d\tau}{\tau^{1+2/N}}=\frac{N}{2}\frac{\log(u+e)}{u^{2/N}}.

Hence,

(6.2) h(u):=F(u)N/2Cu[log(u+e)]N/2.h(u):=F(u)^{-N/2}\leq C\frac{u}{[\log(u+e)]^{N/2}}.

Since 0αN/20\leq\alpha\leq N/2, by (6.2) we see that

(6.3) [log(h(u)+e)]α[log(u+e)]N/2Cforu0.\frac{[\log(h(u)+e)]^{\alpha}}{[\log(u+e)]^{N/2}}\leq C\ \ \textrm{for}\ \ u\geq 0.

By (6.2) and (6.3) we have

(6.4) 0Jα(u)=N2(1+αh(u)(h(u)+e)log(h(u)+e))[log(h(u)+e)]αf(u)F(u)1+N/2C[log(h(u)+e)]αu1+2/N[log(u+e)]1(Cu[log(u+e)]N/2)1+2/NC[log(h(u)+e)]α[log(u+e)]N/2Cforu0.0\leq J^{\prime}_{\alpha}(u)=\frac{N}{2}\left(1+\frac{\alpha h(u)}{(h(u)+e)\log(h(u)+e)}\right)\frac{[\log(h(u)+e)]^{\alpha}}{f(u)F(u)^{1+N/2}}\\ \leq C\frac{[\log(h(u)+e)]^{\alpha}}{u^{1+2/N}[\log(u+e)]^{-1}}\left(\frac{Cu}{[\log(u+e)]^{N/2}}\right)^{1+2/N}\leq C\frac{[\log(h(u)+e)]^{\alpha}}{[\log(u+e)]^{N/2}}\leq C\ \ \textrm{for}\ \ u\geq 0.

Since u0ul1(N)u_{0}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}), by (6.4) we see that Jα(u0)ul1(N)J_{\alpha}(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}).

Proofs of all the cases are complete. ∎

7. Regularly varying functions and rapidly varying functions

In this section we always assume the two exponents pp and qq always satisfy

{1p+1q=1if 1<q<,p=ifq=1.\begin{cases}\frac{1}{p}+\frac{1}{q}=1&\textrm{if}\ 1<q<\infty,\\ p=\infty&\textrm{if}\ q=1.\end{cases}

The following theorem is a fundamental property of RVp{\rm RV}_{p}:

Proposition 7.1 (Karamata’s representation theorem).

There exsit functions a(s)a(s) and b(u)b(u) with

limub(u)=b0(0<b0<)andlimsa(s)=p(0p<)\lim_{u\to\infty}b(u)=b_{0}\ (0<b_{0}<\infty)\ \ \textrm{and}\ \ \lim_{s\to\infty}a(s)=p\ (0\leq p<\infty)

and u00u_{0}\geq 0 such that for u>u0u>u_{0},

(7.1) f(u)=b(u)exp(u0ua(s)s𝑑s)f(u)=b(u)\exp\left(\int_{u_{0}}^{u}\frac{a(s)}{s}ds\right)

if and only if fRVpf\in{\rm RV}_{p} (0p<)(0\leq p<\infty).

See [7, Theorem 1.5] for details. Note that in this section u0u_{0} does not stand for an initial function.

Hereafter, we assume that ff satisfies (f).

Lemma 7.2.

Suppose that fXqf\in X_{q} for some q(1,)q\in(1,\infty). Then there exist a(s)a(s) and b(u)b(u) with

limub(u)=b0(0<b0<)andlimsa(s)=p\lim_{u\to\infty}b(u)=b_{0}\ (0<b_{0}<\infty)\ \ \textrm{and}\ \ \lim_{s\to\infty}a(s)=p

and u0>0u_{0}>0 such that (7.1) holds for u>u0u>u_{0}.

Proof.

Let η(u)C[0,)\eta(u)\in C[0,\infty) such that f(u)F(u)=q+η(u)f^{\prime}(u)F(u)=q+\eta(u). Then η(u) 0\eta(u)\to\ 0 as uu\to\infty. We have (f(u)F(u))=q1+η(u)(f(u)F(u))^{\prime}=q-1+\eta(u). Integrating it over [u0,u][u_{0},u], we have

(7.2) f(u)F(u)=(q1)u+h(u),f(u)F(u)=(q-1)u+h(u),

where h(u):=u0uη(s)𝑑s+f(u0)F(u0)(q1)u0h(u):=\int_{u_{0}}^{u}\eta(s)ds+f(u_{0})F(u_{0})-(q-1)u_{0}. Integrating 1f(u)F(u)=1(q1)u+h(u)\frac{1}{f(u)F(u)}=\frac{1}{(q-1)u+h(u)} over [u0,u][u_{0},u], we have logF(u)F(u0)=u0uds(q1)s+h(s)-\log\frac{F(u)}{F(u_{0})}=\int_{u_{0}}^{u}\frac{ds}{(q-1)s+h(s)}. Hence,

(7.3) 1F(u)=1F(u0)exp(u0uds(q1)s+h(s)).\frac{1}{F(u)}=\frac{1}{F(u_{0})}\exp\left(\int_{u_{0}}^{u}\frac{ds}{(q-1)s+h(s)}\right).

By (7.2) and (7.3) we have

f(u)=(q1)u+h(u)F(u0)exp(u0uds(q1)s+h(s)).f(u)=\frac{(q-1)u+h(u)}{F(u_{0})}\exp\left(\int_{u_{0}}^{u}\frac{ds}{(q-1)s+h(s)}\right).

Thus, we obtain (7.1), where

a(u):=p+ρ(u)1+ρ(u),b(u):=(q1)u0F(u0)(1+ρ(u)),p:=qq1andρ(u):=h(u)(q1)u.a(u):=\frac{p+\rho(u)}{1+\rho(u)},\ \ b(u):=\frac{(q-1)u_{0}}{F(u_{0})}(1+\rho(u)),\ \ p:=\frac{q}{q-1}\ \ \textrm{and}\ \ \rho(u):=\frac{h(u)}{(q-1)u}.

Since ρ(u)0\rho(u)\to 0 (u)(u\to\infty), we see that b(u)b0>0b(u)\to b_{0}>0 (u)(u\to\infty) and a(u)pa(u)\to p (u)(u\to\infty). The proof is complete. ∎

Proof of Theorem E (i).

We consider the case 1<q<1<q<\infty. Let fXqf\in X_{q}. It follows from Lemma 7.2 that there exist a(s)a(s) and b(u)b(u) such that f(u)=b(u)exp(u0ua(s)𝑑s/s)f(u)=b(u)\exp\left(\int_{u_{0}}^{u}a(s)ds/s\right), where b(u)b0>0b(u)\to b_{0}>0 (u)(u\to\infty) and a(u)p:=q/(q1)a(u)\to p:=q/(q-1) (u)(u\to\infty). By Proposition 7.1 we see that fRVpf\in{\rm RV}_{p}.

We consider the case q=1q=1. Let fX1f\in X_{1}. Since f(u)F(u)1f^{\prime}(u)F(u)\to 1 (u)(u\to\infty), for any ε>0\varepsilon>0, there is uε>0u_{\varepsilon}>0 such that |f(u)F(u)1|<ε|f^{\prime}(u)F(u)-1|<\varepsilon for u>uεu>u_{\varepsilon}. By the mean value theorem we see that 0f(u)F(u)f(uε)F(uε)+ε(uuε)0\leq f(u)F(u)\leq f(u_{\varepsilon})F(u_{\varepsilon})+\varepsilon(u-u_{\varepsilon}) for u>uεu>u_{\varepsilon}. We have

uf(u)F(u)uf(uε)F(uε)+ε(uuε)1εasu.\frac{u}{f(u)F(u)}\geq\frac{u}{f(u_{\varepsilon})F(u_{\varepsilon})+\varepsilon(u-u_{\varepsilon})}\to\frac{1}{\varepsilon}\ \ \textrm{as}\ \ u\to\infty.

Since ε>0\varepsilon>0 can be chosen arbitrary small, we see that limuu/f(u)F(u)=\lim_{u\to\infty}u/f(u)F(u)=\infty. Then,

(7.4) limuuf(u)f(u)=limuf(u)F(u)uf(u)F(u)=.\lim_{u\to\infty}\frac{uf^{\prime}(u)}{f(u)}=\lim_{u\to\infty}f^{\prime}(u)F(u)\frac{u}{f(u)F(u)}=\infty.

Let a(u):=uf(u)/f(u)a(u):=uf^{\prime}(u)/f(u). Then, we easily see that f(u)=f(u0)exp(u0ua(s)𝑑s/s)f(u)=f(u_{0})\exp\left(\int_{u_{0}}^{u}a(s)ds/s\right). It follows from (7.4) that for any M>0M>0, there is uM>0u_{M}>0 such that a(u)>Ma(u)>M for u>uMu>u_{M}. Let λ>1\lambda>1. For u>uMu>u_{M},

f(λu)f(u)=exp(uλua(s)s𝑑s)exp(uλuMs𝑑s)=λM.\frac{f(\lambda u)}{f(u)}=\exp\left(\int_{u}^{\lambda u}\frac{a(s)}{s}ds\right)\geq\exp\left(\int_{u}^{\lambda u}\frac{M}{s}ds\right)=\lambda^{M}.

Since MM is arbitrary large, we see that f(λu)/f(u)f(\lambda u)/f(u)\to\infty as uu\to\infty. When 0<λ<10<\lambda<1, by similar way we can show that f(λu)/f(u)0f(\lambda u)/f(u)\to 0 as uu\to\infty. Thus, fRVf\in{\rm RV}_{\infty}. ∎

Lemma 7.3.

The following hold:
(i) Suppose that ff^{\prime} is nondecreasing. If fRVpf\in{\rm RV}_{p} for some p(1,)p\in(1,\infty), then fXqf\in X_{q}.
(ii) Suppose that f(u)F(u)f^{\prime}(u)F(u) is nondecreasing. If fRVf\in{\rm RV}_{\infty}, then fX1f\in X_{1}.

Proof.

(i) We follow the strategy used in [7, Proposition 1.7.11]. Let 1<p<1<p<\infty and fRVpf\in{\rm RV}_{p}. Let λ>1\lambda>1. Since ff^{\prime} is nondecreasing,

u(λ1)f(u)f(u)1λuf(μu)f(u)𝑑μ=f(λu)f(u)f(u).\frac{u(\lambda-1)f^{\prime}(u)}{f(u)}\leq\int_{1}^{\lambda}\frac{uf^{\prime}(\mu u)}{f(u)}d\mu=\frac{f(\lambda u)-f(u)}{f(u)}.

Since fRVpf\in{\rm RV}_{p}, we see that lim supuuf(u)f(u)λp1λ1\limsup_{u\to\infty}\frac{uf^{\prime}(u)}{f(u)}\leq\frac{\lambda^{p}-1}{\lambda-1} for all λ>1\lambda>1. Letting λ1\lambda\downarrow 1, we have lim supuuf(u)f(u)p\limsup_{u\to\infty}\frac{uf^{\prime}(u)}{f(u)}\leq p. Let 0<λ<10<\lambda<1. Since

(7.5) u(1λ)f(u)f(u)λ1uf(μu)f(u)𝑑μ=f(u)f(λu)f(u),\frac{u(1-\lambda)f^{\prime}(u)}{f(u)}\geq\int_{\lambda}^{1}\frac{uf^{\prime}(\mu u)}{f(u)}d\mu=\frac{f(u)-f(\lambda u)}{f(u)},

we have lim infuuf(u)f(u)λp1λ1\liminf_{u\to\infty}\frac{uf^{\prime}(u)}{f(u)}\geq\frac{\lambda^{p}-1}{\lambda-1}. Letting λ1\lambda\uparrow 1, we have lim infuuf(u)f(u)p\liminf_{u\to\infty}\frac{uf^{\prime}(u)}{f(u)}\geq p. Thus, limuuf(u)f(u)=p\lim_{u\to\infty}\frac{uf^{\prime}(u)}{f(u)}=p. Since p>1p>1, we can show that limuuf(u)=0\lim_{u\to\infty}\frac{u}{f(u)}=0. By L’Hospital’s rule we have

limuF(u)uf(u)=limu1f(u)1f(u)uf(u)f(u)2=1p1.\lim_{u\to\infty}\frac{F(u)}{\frac{u}{f(u)}}=\lim_{u\to\infty}\frac{-\frac{1}{f(u)}}{\frac{1}{f(u)}-\frac{uf^{\prime}(u)}{f(u)^{2}}}=\frac{1}{p-1}.

Then,

limuf(u)F(u)=limuuf(u)f(u)F(u)uf(u)=pp1,\lim_{u\to\infty}f^{\prime}(u)F(u)=\lim_{u\to\infty}\frac{uf^{\prime}(u)}{f(u)}\frac{F(u)}{\frac{u}{f(u)}}=\frac{p}{p-1},

and hence fXqf\in X_{q}.
(ii) Let fRVf\in{\rm RV}_{\infty}. Since F(u)F(u) is decreasing and f(u)F(u)f^{\prime}(u)F(u) is nondecreasing, f(u)f^{\prime}(u) is nondecreasing. Let 0<λ<10<\lambda<1. Then, (7.5) holds. Since fRVf\in{\rm RV}_{\infty} and 0<λ<10<\lambda<1, we see that limuf(λu)/f(u)=0\lim_{u\to\infty}f(\lambda u)/f(u)=0. Then,

uf(u)f(u)11λ(1f(λu)f(u))11λasu.\frac{uf^{\prime}(u)}{f(u)}\geq\frac{1}{1-\lambda}\left(1-\frac{f(\lambda u)}{f(u)}\right)\to\frac{1}{1-\lambda}\ \ \textrm{as}\ \ u\to\infty.

Letting λ1\lambda\uparrow 1, we have limuuf(u)/f(u)=\lim_{u\to\infty}uf^{\prime}(u)/f(u)=\infty. By L’Hospital’s rule we have

(7.6) limuf(u)F(u)u=limuF(u)uf(u)=limu1f(u)1f(u)uf(u)f(u)2=0.\lim_{u\to\infty}\frac{f(u)F(u)}{u}=\lim_{u\to\infty}\frac{F(u)}{\frac{u}{f(u)}}=\lim_{u\to\infty}\frac{-\frac{1}{f(u)}}{\frac{1}{f(u)}-\frac{uf^{\prime}(u)}{f(u)^{2}}}=0.

Let λ>1\lambda>1. Since f(u)F(u)f^{\prime}(u)F(u) is nondecreasing, by (7.6) we have

(λ1)(f(u)F(u)1)1λ(f(μu)F(μu)1)𝑑μ=1λ1uddμ(f(μu)F(μu))𝑑μ=f(λu)F(λu)λuλf(u)F(u)u0asu,(\lambda-1)(f^{\prime}(u)F(u)-1)\leq\int_{1}^{\lambda}(f^{\prime}(\mu u)F(\mu u)-1)d\mu=\int_{1}^{\lambda}\frac{1}{u}\frac{d}{d\mu}\left(f(\mu u)F(\mu u)\right)d\mu\\ =\frac{f(\lambda u)F(\lambda u)}{\lambda u}\lambda-\frac{f(u)F(u)}{u}\to 0\ \ \textrm{as}\ \ u\to\infty,

and hence lim supu(f(u)F(u)1)0\limsup_{u\to\infty}(f^{\prime}(u)F(u)-1)\leq 0. Let 0<λ<10<\lambda<1. Then

(1λ)(f(u)F(u)1)λ1(f(μu)F(μu)1)𝑑μ=f(u)F(u)uf(λu)F(λu)λuλ0asu,(1-\lambda)(f^{\prime}(u)F(u)-1)\geq\int_{\lambda}^{1}\left(f^{\prime}(\mu u)F(\mu u)-1\right)d\mu=\frac{f(u)F(u)}{u}-\frac{f(\lambda u)F(\lambda u)}{\lambda u}\lambda\to 0\ \ \textrm{as}\ \ u\to\infty,

and hence 0lim infu(f(u)F(u)1)0\leq\liminf_{u\to\infty}(f^{\prime}(u)F(u)-1). Thus,

0lim infu(f(u)F(u)1)lim supu(f(u)F(u)1)0,0\leq\liminf_{u\to\infty}(f^{\prime}(u)F(u)-1)\leq\limsup_{u\to\infty}(f^{\prime}(u)F(u)-1)\leq 0,

and hence limuf(u)F(u)=1\lim_{u\to\infty}f^{\prime}(u)F(u)=1. We see that fX1f\in X_{1}. ∎

Proof of Theorem E (ii) and (iii).

Theorem E (ii) and (iii) follow from Theorem E (i) and Lemma 7.3. ∎

8. Summary and problems

In this paper we study integrability conditions on u0u_{0} which determines existence and nonexistence of a local in time nonnegative solution of (1.1). In a critical and subcritical cases existence and nonexistence integrability conditions on u0u_{0} are given by Theorem A and Proposition 1.2 (ii). In the doubly critical case these conditions are given by Theorems B and C. See Figure 1. When f(u)=u1+2/N[log(u+e)]βf(u)=u^{1+2/N}[\log(u+e)]^{\beta}, β(1+2/N)κ\beta\geq-(1+2/N)\kappa, where κ\kappa is given by (1.10), the problem becomes a doubly critical case and a complete classification is given by Theorem D. Theorems A and B can be applied to a nonlinearity in XqX_{q}. A characterization of XqX_{q} is given in Theorem E.

We also study Problem (B) stated in Section 1. Corollaries 3.2 and 3.3 are sufficient conditions on ff for existence when JJ is given. Corollaries 4.3 and 4.5 are sufficient conditions on ff for nonexistence when JJ is given. In Sections 5 and 9 we give a necessary and sufficient condition on ff for an existence of a nonnegative solution of (1.1) for every nonnegative function u0ulr(N)u_{0}\in\mathcal{L}^{r}_{\rm ul}({\mathbb{R}^{N}}). Section 5 (resp. 9) is for the case r=1r=1 (resp. r>1r>1). This necessary and sufficient condition corresponds to [11, Corollary 4.5 and Theorem 3.4] which studied in the Lr(Ω)L^{r}(\Omega) framework.

An objective of this study is to prove Table 1 under mild assumptions on ff and JJ. This problem derives several concrete problems.

In the proof of Theorems A and B we use Theorem 3.1 which relates the nonlinearity ff and the integrability J(u0)Lul1(N)J(u_{0})\in L^{1}_{\rm ul}({\mathbb{R}^{N}}). The condition (3.2) is a sufficient condition for an existence. Since there is a gap between (3.2) and (4.20) (or between (3.2) and (4.26)), it is natural to ask the following:

Problem 8.1.

Suppose that (3.2) does not hold. Does there exist u00u_{0}\geq 0 such that J(u0)ul1(N)J(u_{0})\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) and (1.1) admits no nonnegative solution?

Corollaries 3.2, 3.3, 4.3 and 4.5 are partial answers to Problem (B) and they are not optimal. We do not know whether (3.25), (3.30), (4.19) and (4.25) are technical conditions or not.

Problem 8.2.

Can one prove a theorem similar to Corollary 4.3 (resp. Corollary 4.5) without assuming (4.19) (resp. (4.25))?

There is a gap between (3.26) and (4.20) (or between (3.31) and (4.26)).

Problem 8.3.

Can one obtain a growth condition on ff which is shaper than (3.26), (3.31), (4.20) or (4.26)?

Theorem C is a sufficient condition for nonexistence in a doubly critical case. The assumption Theorem C (i) and (ii) seem technical.

Problem 8.4.

Can one obtain a nonexistence result for a wide class of nonlinearities in a doubly critical case?

9. Appendix to [11]: Solvability in ulr(N)\mathcal{L}^{r}_{\rm ul}({\mathbb{R}^{N}})

We recover [11, Theorem 3.4 and Corollary 4.5] in a framework of uniformly local Lebesgue spaces. Only in this section we adopt the following definition of a solution:

Definition 9.1.

Let r1r\geq 1. We call u(t)u(t) a solution of (1.1) if u(t)u(t) is a solution in the sense of Definition 1.4 and u(t)L((0,T),Lulr(N))u(t)\in L^{\infty}((0,T),L^{r}_{\rm ul}({\mathbb{R}^{N}})).

In Theorem 5.3 we already obtained a necessary and sufficient condition for an existence of a nonnegative solution of (1.1) in ul1(N)\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) in the sense of Definition 1.4. Since the solution u(t)u(t) satisfies u(t)L((0,T),Lul1(N))u(t)\in L^{\infty}((0,T),L^{1}_{\rm ul}({\mathbb{R}^{N}})), u(t)u(t) is also a solution in the sense of Definition 9.1 with r=1r=1.

Corollary 9.2.

Suppose that fC[0,)f\in C[0,\infty), ff is nonnegative and nondecreasing. Then (1.1) admits a local in time nonnegative solution in the sense of Definition 9.1 for every nonnegative function u0ul1(N)u_{0}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}) if and only if (5.1) holds.

Hereafter, we consider the case r>1r>1.

Theorem 9.3.

Let r>1r>1. Suppose that fC[0,)f\in C[0,\infty), ff is nonnegative and nondecreasing. Then, (1.1) admits a local in time nonnegative solution in the sense of Definition 9.1 for every nonnegative function u0ulr(N)u_{0}\in\mathcal{L}^{r}_{\rm ul}({\mathbb{R}^{N}}) if and only if

(9.1) lim supuf(u)u1+2r/N<.\limsup_{u\to\infty}\frac{f(u)}{u^{1+2r/N}}<\infty.

When the function space is Lr(Ω)L^{r}(\Omega), Theorem 9.3 was obtained in [11]. Theorem 9.3 corresponds to [11, Theorem 3.4]. Since we work in Lulr(N)L^{r}_{\rm ul}({\mathbb{R}^{N}}), we do not have to care about a behavior of f(u)f(u) near u=0u=0.

Proof.

First, we prove the sufficient part. Specifically, we prove the existence of a solution provided that (9.1) holds. Let J(u):=urJ(u):=u^{r}. We consider the case rN/(N2)r\geq N/(N-2) and N3N\geq 3. Let θ:=1/r+2/N\theta:=1/r+2/N. Then, rθ=1+2r/Nr\theta=1+2r/N and 0<θ10<\theta\leq 1. Since there is C>0C>0 such that

f~(u)=sup1τuf(τ)τrθ<C,\tilde{f}(u)=\sup_{1\leq\tau\leq u}\frac{f(\tau)}{\tau^{r\theta}}<C,

we have

J~(η)ηf~(τ)J(τ)dτJ(τ)1+2/Nr2η2/Nηf~(τ)dττ1+2/Nr2η2/NN2Cη2/N=CNr22.\tilde{J}(\eta)\int_{\eta}^{\infty}\frac{\tilde{f}(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+2/N}}\leq r^{2}\eta^{2/N}\int_{\eta}^{\infty}\frac{\tilde{f}(\tau)d\tau}{\tau^{1+2/N}}\leq r^{2}\eta^{2/N}\frac{N}{2}\frac{C}{\eta^{2/N}}=\frac{CNr^{2}}{2}.

Since u0ulr(N)u_{0}\in\mathcal{L}^{r}_{\rm ul}({\mathbb{R}^{N}}) implies u0rul1(N)u_{0}^{r}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}), it follows from Theorem 3.1 (ii) that (1.1) has a nonnegative solution u(t)u(t) in the sense of Definition 1.4 and u(t)rLul1(N)<C1\left\|u(t)^{r}\right\|_{L^{1}_{\rm ul}({\mathbb{R}^{N}})}<C_{1} for small t>0t>0. Since u(t)Lulr(N)<C1\left\|u(t)\right\|_{L^{r}_{\rm ul}({\mathbb{R}^{N}})}<C_{1} for small t>0t>0, u(t)u(t) is a nonnegative solution in the sense of Definition 9.1. We consider the case N=1,2N=1,2 or 1<r<N/(N2)1<r<N/(N-2) and N3N\geq 3. Let θ=1\theta=1. Then, 1/r+2/N>11/r+2/N>1. Since

f~(τ)sup1στ(f(σ)J(σ)θJ(τ)1/r+2/N1J(σ)1/r+2/N1)=sup1στ(f(σ)J(σ)1/r+2/N)J(τ)1/r+2/N1Cτ1+2r/Nr,\tilde{f}(\tau)\leq\sup_{1\leq\sigma\leq\tau}\left(\frac{f(\sigma)}{J(\sigma)^{\theta}}\frac{J(\tau)^{1/r+2/N-1}}{J(\sigma)^{1/r+2/N-1}}\right)=\sup_{1\leq\sigma\leq\tau}\left(\frac{f(\sigma)}{J(\sigma)^{1/r+2/N}}\right)J(\tau)^{1/r+2/N-1}\leq C\tau^{1+2r/N-r},

we have

J~(η)ηf~(τ)J(τ)dτJ(τ)1+2/Nrηr1ηCrτr1τ2r1=r2ηr1C(r1)ηr1=Cr2r1.\tilde{J}(\eta)\int_{\eta}^{\infty}\frac{\tilde{f}(\tau)J^{\prime}(\tau)d\tau}{J(\tau)^{1+2/N}}\leq r\eta^{r-1}\int_{\eta}^{\infty}\frac{Cr\tau^{r-1}}{\tau^{2r-1}}=r^{2}\eta^{r-1}\frac{C}{(r-1)\eta^{r-1}}=\frac{Cr^{2}}{r-1}.

Since u0rul1(N)u_{0}^{r}\in\mathcal{L}^{1}_{\rm ul}({\mathbb{R}^{N}}), it follows from Theorem 3.1 (ii) and the same argument above that (1.1) has a nonnegative solution in the sense of Definition 9.1. The proof of the sufficient part is complete.

Second, we prove the necessary part. Specifically, we prove that for a certain nonnegative function u0ulr(N)u_{0}\in\mathcal{L}^{r}_{\rm ul}({\mathbb{R}^{N}}), (1.1) admits no nonnegative solution provided that (9.1) does not hold. Let ΩN\Omega\subset{\mathbb{R}^{N}} be a bounded domain. In [11, Theorem 3.3] it was shown that if (9.1) does not hold, i.e.,

lim supuf(u)u1+2r/N=,\limsup_{u\to\infty}\frac{f(u)}{u^{1+2r/N}}=\infty,

then there exists a nonnegative function u0Lr(Ω)u_{0}\in L^{r}(\Omega) such that

Ω|0tSΩ(ts)f(SΩ(s)u0)𝑑s|r𝑑x=for smallt>0.\int_{\Omega}\left|\int_{0}^{t}S_{\Omega}(t-s)f(S_{\Omega}(s)u_{0})ds\right|^{r}dx=\infty\ \ \textrm{for small}\ t>0.

We can easily see that u0r(N)u_{0}\in\mathcal{L}^{r}({\mathbb{R}^{N}}), because u0Lr(N)u_{0}\in L^{r}({\mathbb{R}^{N}}) and C0(N)C_{0}^{\infty}({\mathbb{R}^{N}}) is dense in Lr(N)L^{r}({\mathbb{R}^{N}}). If a solution u(t)u(t) of (1.1) exists, then by the same argument as in the proof of Theorem 5.3 we see that

u(t)Lr(Ω)rΩ|0tSΩ(ts)f(SΩ(s)u0)𝑑s|r𝑑x=for smallt>0,\left\|u(t)\right\|^{r}_{L^{r}(\Omega)}\geq\int_{\Omega}\left|\int_{0}^{t}S_{\Omega}(t-s)f(S_{\Omega}(s)u_{0})ds\right|^{r}dx=\infty\ \ \textrm{for small}\ t>0,

which indicates that (1.1) with u0u_{0} admits no nonnegative solution in the sense of Definition 9.1. The proof is complete. ∎

10. Appendix to [8]

In the proof of [8, Theorems 1.4 (ii) and 1.6 (ii)] the following was claimed: Let 0<r<N/20<r<N/2 and 2<α<N/r2<\alpha<N/r. The function

u0(x):={F1(|x|α)ifF(0)=,F1(min{|x|α,F(0)})ifF(0)<u_{0}(x):=\begin{cases}F^{-1}(|x|^{\alpha})&\textrm{if}\ F(0)=\infty,\\ F^{-1}(\min\{|x|^{\alpha},F(0)\})&\textrm{if}\ F(0)<\infty\end{cases}

satisfies F(u0)rLul1(N)F(u_{0})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and (1.1) admits no nonnegative solution.

As mentioned in Remark 1.5 (vi), F(u0)rLul1(N)F(u_{0})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) does not necessarily imply u0Lul1(N)u_{0}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) if q>1+rq>1+r. In that case it may occur that S(t)u0L((0,T),Lul1(N))Lloc((0,T),L(N))S(t)u_{0}\not\in L^{\infty}((0,T),L^{1}_{\rm ul}({\mathbb{R}^{N}}))\cap L^{\infty}_{\rm loc}((0,T),L^{\infty}({\mathbb{R}^{N}})), and hence (1.5) does not hold. Thus, the assumption q1+rq\leq 1+r should be added in [8, Theorems 1.4 (ii) and 1.6 (ii)] as follows:

Proposition 10.1.

Let fXqf\in X_{q}. If q1+rq\leq 1+r, then for each r(0,N/2)r\in(0,N/2), there is a nonnegative function u0Lul1(N)u_{0}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) such that F(u0)rLul1(N)F(u_{0})^{-r}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}) and (1.1) admits no nonnegative solution.

Proof.

If we prove

(10.1) u0Lul1(N),u_{0}\in L^{1}_{\rm ul}({\mathbb{R}^{N}}),

then by Proposition 2.5 we see that S(t)u0L((0,T),Lul1(N))Lloc((0,T),L(N))S(t)u_{0}\in L^{\infty}((0,T),L^{1}_{\rm ul}({\mathbb{R}^{N}}))\cap L^{\infty}_{\rm loc}((0,T),L^{\infty}({\mathbb{R}^{N}})).

Hereafter, we prove (10.1). Since f(u)F(u)qf^{\prime}(u)F(u)\to q for large uu, there is ε1>0\varepsilon_{1}>0 such that

f(u)F(u)q+ε1f^{\prime}(u)F(u)\leq q+\varepsilon_{1}

for large uu. Integrating f(u)/f(u)(q+ε1)/f(u)F(u)f^{\prime}(u)/f(u)\leq(q+\varepsilon_{1})/f(u)F(u) over [u0,u][u_{0},u], we have f(u)F(u)q+ε1C1f(u)F(u)^{q+\varepsilon_{1}}\leq C_{1}. Integrating 1/C11/f(u)F(u)q+ε11/C_{1}\leq 1/f(u)F(u)^{q+\varepsilon_{1}} over [u0,u][u_{0},u], we have F(u)C3(uC2)1/(q1+ε1)F(u)\leq C_{3}(u-C_{2})^{-1/(q-1+\varepsilon_{1})}. Therefore, there is a large C4>0C_{4}>0 such that F(u)C4u1/(q1+ε1)F(u)\leq C_{4}u^{-1/(q-1+\varepsilon_{1})} for large uu. Since F1F^{-1} is decreasing, uF1(C4u1/(q1+ε1))u\geq F^{-1}(C_{4}u^{-1/(q-1+\varepsilon_{1})}), and hence F1(u)C5u(q1+ε1)F^{-1}(u)\leq C_{5}u^{-(q-1+\varepsilon_{1})}. Let ρ>0\rho>0 be small. Then,

(10.2) |x|ρF1(|x|α)𝑑xC60ρrα(q1+ε1)+N1𝑑r.\int_{|x|\leq\rho}F^{-1}(|x|^{\alpha})dx\leq C_{6}\int_{0}^{\rho}r^{-\alpha(q-1+\varepsilon_{1})+N-1}dr.

Since q1rq-1\leq r and α=N(1ε2)/r\alpha=N(1-\varepsilon_{2})/r for some ε2>0\varepsilon_{2}>0, we have

α(q1+ε1)+N1Nr(1ε2)(r+ε1)+N1=1+ε2Nε1(1ε2)Nr.-\alpha(q-1+\varepsilon_{1})+N-1\geq-\frac{N}{r}(1-\varepsilon_{2})(r+\varepsilon_{1})+N-1=-1+\varepsilon_{2}N-\varepsilon_{1}(1-\varepsilon_{2})\frac{N}{r}.

Since ε1>0\varepsilon_{1}>0 can be taken arbitrary small, we can take ε1>0\varepsilon_{1}>0 such that α(q1+ε1)+N1>1-\alpha(q-1+\varepsilon_{1})+N-1>-1. By (10.2) we see that |x|ρF1(|x|α)𝑑x<\int_{|x|\leq\rho}F^{-1}(|x|^{\alpha})dx<\infty and it indicates (10.1). By the proof of [8, Theorems 1.4 (ii) and 1.6 (ii)] we see that the conclusion of the proposition holds. ∎

References

  • [1] M. van den Berg, Heat equation and the principle of not feeling the boundary, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989) 257–262.
  • [2] H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277–304.
  • [3] P. Baras and M. Pierre, Critère d’existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 185–212.
  • [4] T. Cazenave and F. Weissler, Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z. 228 (1998), 83–120.
  • [5] C. Celik and Z. Zhou, No local L1L^{1} solution for a nonlinear heat equation, Comm. Partial Differential Equations 28 (2003), 1807–1831.
  • [6] Y. Fujishima and N. Ioku, Existence and nonexistence of solutions for the heat equation with a superlinear source term, J. Math. Pures Appl. 118 (2018), 128–158.
  • [7] J. Geluk and L. de Haan, Regular variation, extensions and Tauberian theorems, CWI Tract, 40. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1987. iv+132 pp. ISBN: 90-6196-324-9.
  • [8] T. Giraudon and Y. Miyamoto, Fractional semilinear heat equations with singular and nondecaying initial data, to appear in Rev. Mat. Complut.
  • [9] K. Hisa and K. Ishige, Existence of solutions for a fractional semilinear parabolic equation with singular initial data, Nonlinear Anal. 175 (2018), 108–132.
  • [10] K. Ishige, T. Kawakami and M. Sierżȩga, Supersolutions for a class of nonlinear parabolic systems, J. Differential Equations 260 (2016), 6084–6107.
  • [11] R. Laister, J. Robinson, M. Sierzȩga and A. Vidal-López, A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), 1519–1538.
  • [12] R. Laister and M. Sierżȩga, Well-posedness of semilinear heat equation in L1L^{1}, Ann. Inst. H. Poincaré Anal. Non Linéaire 37 (2020), 709–725.
  • [13] Y. Maekawa and Y. Terasawa, The Navier-Stokes equations with initial data in uniformly local LpL^{p} spaces, Differential Integral Equations 19 (2006), 369–400.
  • [14] Y. Miyamoto, A limit equation and bifurcation diagrams of semilinear elliptic equations with general supercritical growth, J. Differential Equations 264 (2018), 2684–2707.
  • [15] Y. Miyamoto and Y. Naito, Singular extremal solutions for supercritical elliptic equations in a ball, J. Differential Equations 265 (2018), 2842–2885.
  • [16] Y. Miyamoto and Y. Naito, Fundamental properties and asymptotic shapes of the singular and classical radial solutions for supercritical semilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl. 27 (2020) Paper No. 52, 25 pp.
  • [17] Y. Miyamoto and M. Suzuki, Weakly coupled reaction-diffusion system with rapidly growing nonlinearities and singular initial data, Nonlinear Anal. 189 (2019), 111576.
  • [18] Y. Miyamoto, A doubly critical semilinear heat equation in the L1L^{1} space, J. Evol. Equ. 21 (2021), 151–166.
  • [19] P. Quittner and P. Souplet, Superlinear parabolic problems. Blow-up, global existence and steady states, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 2007. xii+584 pp. ISBN: 978-3-7643-8441-8.
  • [20] J. Robinson and M. Sierżȩga, Supersolutions for a class of semilinear heat equations, Rev. Mat. Complut. 26 (2013), 341–360.
  • [21] M. Suzuki, Local existence and nonexistence for reaction-diffusion systems with coupled exponential nonlinearities, J. Math. Anal. Appl. 477 (2019), 776–804.
  • [22] F. Weissler, Local existence and nonexistence for semilinear parabolic equations in LpL^{p}, Indiana Univ. Math. J. 29 (1980), 79–102.
  • [23] F. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), 29–40.
  • [24] F. Weissler, LpL^{p}-energy and blow-up for a semilinear heat equation, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983), 545–551, Proc. Sympos. Pure Math., 45, Part 2, Amer. Math. Soc., Providence, RI, 1986.