This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\UseRawInputEncoding

Threshold current of field-free perpendicular magnetization switching using anomalous spin-orbit torque

Tian Yi Zhang1, Cai Hua Wan1, 2∗ and Xiu Feng Han1,2,3 [email protected]; [email protected]. 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
Abstract

Spin-orbit torque (SOT) is a promising technique for next-generation magnetic random-access memory (MRAM). Recent experiments have shown that materials with low-symmetry crystalline or magnetic structures can generate anomalous SOT with an out-of-plane component, which is crucial for switching the perpendicular magnetization of adjacent ferromagnetic (FM) layers in a field-free condition. In this study, we derive the threshold current for field-free perpendicular magnetization switching using anomalous SOT and numerically calculate the magnetic moment trajectory in an FM free layer for currents smaller and greater than the threshold current. We also investigate the dependence of switching time and energy consumption on applied current, finding that the minimum energy consumption decreases with an increasing out-of-plane torque proportion. Additionally, we explore the relationships between the threshold current and anisotropy strength, out-of-plane torque proportion, FM free layer thickness, and Gilbert damping constant. The results show a negative correlation between the threshold current and out-of-plane torque proportion, and positive correlations with the other three parameters. Finally, we demonstrate that even when the applied current is smaller than the threshold current, it can still add an effective exchange bias field HbiasH_{{bias}} on the FM free layer. The HbiasH_{{bias}} is proportional to the applied current JSOTJ_{SOT}, facilitating the determination of anomalous SOT efficiency. Our findings provide insights into the design of spintronic devices that favor field-free switching of perpendicular magnetization using anomalous SOT and offer a means of adjusting the exchange bias field to control FM layer magnetization depinning.

preprint: APS/123-QED

I INTRODUCTION

The spin-orbit torque (SOT) is a promising technique for developing the next-generation magnetic random-access memory (MRAM) [1, 2, 3, 4, 5, 6]. Perpendicularly magnetized ferromagnetic (FM) layers have superior performance in thermostability, high density, and retention compared to in-plane magnetized FM layers when used in MRAM [7]. However, ordinary SOT cannot easily switch the perpendicular FM films in the field-free condition. Therefore, determining how to switch the perpendicular magnetization of the FM free layer in the magnetic tunnel junctions (MTJ) by SOTs has long been a frontier of SOT studies. According to the spin Hall effect (SHE) [4], when electron current 𝐣𝐜{\bf{{j}}}_{\bf{{c}}} is sourced along the x direction, the spin current 𝐣𝐬{\bf{{j}}}_{\bf{{s}}} transports along the z direction and its polarization σ𝐣𝐬×𝐣𝐜{\bf{\sigma}}\propto{\bf{{j}}}_{\bf{{s}}}\times{\bf{{j}}}_{\bf{{c}}} will be along the y direction. The adjacent FM free layer is thus affected by the spin current dominatingly through a damping-like SOT τ𝐝(𝐦×σ)×𝐦{\bf{\tau}}_{\bf{{d}}}\propto\left({\bf{m}}\times{\bf{\sigma}}\right)\times{\bf{m}}, which is also along the y direction. This torque is orthogonal to the perpendicular easy axis of the free layer; therefore, using pure SOT alone, we cannot deterministically switch the perpendicular magnetization. Several attempts have been made to circumvent this problem, such as applying an in-plane magnetic field [8, 9], using structural asymmetry [10, 11], mediating an in-plane exchange bias/coupling field [12, 13, 14, 15, 16, 17], mediating the interlayer Dzyaloshinskii-Moriya interaction [18] or exploring materials with low-symmetric crystalline or magnetic structures to generate an anomalous SOT [19, 12, 20, 21, 22, 23, 24].

Especially, the groundbreaking studies on low-symmetry materials have shown that the spin polarization, denoted by σ{\bf{\sigma}}, of an out−of−plane−transporting spin current 𝐣𝐬{\bf{{j}}}_{\bf{{s}}} can have both in-plane and out-of-plane components, despite being generated by an in-plane electron current 𝐣𝐜{\bf{{j}}}_{\bf{{c}}}. These crystallized materials include Mn3Ir [12], Mn3Pt [20], Mn3Sn [21], WTe2 [22], CuPt [25], and more. This anomalous SOT is highly dependent on the crystal or magnetic symmetry. By utilizing the out-of-plane component of σ{\bf{\sigma}}, one can achieve a deterministic switch of the magnetization of a FM free layer without an external magnetic field.

In order to gain a more thorough understanding of the anomalous SOT and its potential for switching a perpendicular magnetization, it is necessary to optimize and utilize relevant parameters that affect the switching dynamics. An analytical derivation of the threshold current in the coexistence of ordinary and anomalous SOTs would be particularly beneficial for this purpose. Despite previous work on formulating threshold currents for different SOT modes [26, 27, 28, 29, 30], there is still a lack of a specific threshold current for the coexistence case of the anomalous and ordinary SOTs. This research aims to address this gap.

In this paper, we analytically derive the threshold current required to generate an anomalous SOT for switching the perpendicular magnetization of an adjacent FM layer. Additionally, we use macrospin simulations to investigate the precessional trajectory of the FM layer’s magnetic moment both below and above the threshold, finding consistent results with our analytical model. We also examine the dependence of switching time and energy consumption on the applied current, as well as the minimum energy consumption dependence on the proportion of out-of-plane torque. Furthermore, we calculate the threshold current’s dependence on anisotropy strength, out-of-plane torque ratio, FM free layer thickness, and Gilbert damping constant. Finally, we demonstrate that an applied current below the threshold can still produce an effective exchange bias field in the FM layer, and provide the relationship between the effective exchange bias field and the applied current. This work can be instructive to design SOT devices with the anomalous SOT materials.

II MODEL AND METHOD

The schematic diagram of a FM free layer magnetization switching driven by the anomalous SOT is shown in Fig. 1. The FM free layer with perpendicular magnetic anisotropy (PMA) is adjacent to a material with low-symmetric crystalline structure. The applied electron current 𝐉𝐒𝐎𝐓{\bf{{J}}}_{\bf{{SOT}}} is along the -y direction, spin current 𝐉𝐒{\bf{{J}}}_{\bf{{S}}} is along the z direction and the polarization σ{\bf{\sigma}} of the spin current has components in both x and z directions as shown in the upper left pannel of Fig. 1. β\beta is the angle between σ{\bf{\sigma}} and the x axis. At the interface of the low-symmetric material with the FM free layer, a pure spin current with the σ{\bf{\sigma}} polarization diffuses into the FM free layer and acts a damping-like SOT on the latter. Then the magnetization of the FM layer will precess around an effective magnetic field or switch its magnetization under the concerted interplay of the SOT with other torques from built-in fields.

Refer to caption
Figure 1: A schematic diagram of the FM free layer magnetization switch driven by an anomalous SOT with both in-plane and out-of-plane components. The applied electron current 𝐉𝐒𝐎𝐓{\bf{{J}}}_{\bf{{SOT}}} is along the -y direction and generates a spin current 𝐉𝐒{\bf{{J}}}_{\bf{{S}}} propagating along the z direction. The spin current diffuses into the FM free layer with the perpendicular magnetic anisotropy to drive its magnetization dynamics.

The spin dynamics of the FM layer can be described by the LLG formula [31]

𝐦t=γμ0(𝐦×𝐇𝐊)+α(𝐦×𝐦t)+γμ0HSOTDL((𝐦×σ)×𝐦)\begin{array}[]{ll}\frac{{\partial}{\bf{m}}}{{\partial}t}=&-\gamma{\mu}_{0}\left({\bf{m}}\times{\bf{{H}}}_{\bf{{K}}}\right)+\alpha\left({\bf{m}}\times\frac{{\partial}{\bf{m}}}{{\partial}t}\right)\\ &+\gamma{\mu}_{0}H^{{DL}}_{{SOT}}\left(\left({\bf{m}}\times{\bf{\sigma}}\right)\times{\bf{m}}\right)\end{array} (1)

where 𝐦=𝐦Ms{\bf{m}}=\frac{{\bf{m}}}{M_{s}} is the unit vector along the direction of magnetization, 𝐦{\bf{m}} is magnetic moment, MsM_{s} is the saturated magnetization value, γ=1.76×1011T1s1\gamma=1.76\times{10}^{11}\ {{T}}^{{-}{1}}{{s}}^{{-}{1}} is the gyromagnetic ratio, μ0=4π×107V·s·A1m1{\mu}_{0}=4\pi\times{10}^{-7}{\ V}{{\textperiodcentered}}{s}{{\textperiodcentered}}{{A}}^{{-}{1}}{{m}}^{{-}{1}} is the permeability of vacuum, 𝐇𝐊=HKmz𝐞𝐳{\bf{{H}}}_{\bf{{K}}}=H_{K}m_{z}{\bf{{e}}}_{\bf{{z}}} is the anisotropic field, α\alpha is Gilbert damping constant, σ=(σx,0,σz)=(cosβ,0,sinβ){\bf{\sigma}}=\left({\sigma}_{x},0,{\sigma}_{z}\right)=\left({cos}\beta,0,{sin}\beta\right) is the unit vector along the electron spin polarization direction, β\beta is the angle between the spin polarization direction and the x axis, HSOTDLH^{DL}_{SOT} is the torque intensity generated by SOT, which can be calculated by the following formula [32, 33, 34, 35, 36]

HSOTDL=JSOTθSH2etμ0MsH^{DL}_{SOT}=\frac{J_{SOT}{\theta}_{SH}\hslash}{2et{\mu}_{0}M_{s}} (2)

where JSOTJ_{SOT} is the magnitude of the applied electron current density, θSH{\theta}_{SH} is the spin Hall angle that represents conversion efficiency from electron current to spin current, =1.05×1034Js\hslash=1.05\times{10}^{-34}{\ J}{\cdot}{s} is the reduced Planck constant, e=1.6×1019Ce=1.6\times{10}^{-19}{\ C} is the elementary charge carried by an electron, and tt is the effective thickness of the free layer after subtracting a dead layer.

When a small current is applied, the anomalous SOT acting on the FM free layer is not large enough to switch the magnetization of the FM layer. The magnetization will precess under the SOT effect, and stabilize to a final direction due to the Gilbert damping. This direction is so-called the direction of the effective field 𝐇eff{\bf{{H}}}_{{eff}}. Here we constrain ourself in a field-free system which is exactly needed in practice. When the applied current is above a threshold 𝐉𝐜{\bf{{J}}}_{\bf{{c}}}, the torque acting on the FM free layer becomes large enough to make the magnetization precession amplitude divergently increase and finally realize magnetization reversal. In the following, we will give the analytical derivation of the threshold current 𝐉𝐜{\bf{{J}}}_{\bf{{c}}}. For those readers who interest the dependence of 𝐉𝐜{\bf{{J}}}_{\bf{{c}}} on various material parameters, they can directly skip to Eq. (15) where the final results are directly gave out.

By crossing 𝐦{\bf{m}} left at both sides of Eq. (1), we can reform the LLG formula Eq. (1) as in Eq. (3),

𝐦t=γμ01+α2[(𝐦×𝐇𝐊)+α𝐦×(𝐦×𝐇𝐊)HSOTDL((𝐦×σ)×𝐦)α𝐇𝐒𝐎𝐓𝐃𝐋(𝐦×σ)]\begin{array}[]{cc}\frac{{\partial}{\bf{m}}}{{\partial}t}=&\frac{-\gamma{\mu}_{0}}{1+{\alpha}^{2}}[({\bf{m}}\times{\bf{{H}}}_{\bf{{K}}})+\alpha{\bf{m}}\times({\bf{m}}\times{\bf{{H}}}_{\bf{{K}}})\\ &-H^{{DL}}_{{SOT}}(({\bf{m}}\times{\bf{\sigma}}\bf{)}\times{\bf{m}})-\alpha H^{{DL}}_{{SOT}}({\bf{m}}\times{\bf{\sigma}})]\end{array} (3)

Let 𝐦t=0\frac{{\partial}{\bf{m}}}{{\partial}t}=0 we can get

𝐦×𝐇eff=0{\bf{m}}{\times}{\bf{{H}}}_{{eff}}{=0} (4)

where the effective magnetic field 𝐇eff{\bf{{H}}}_{{eff}} can be written as

𝐇eff=𝐇KHSOTDL(σ×𝐦)=HK(HSOTDLHKsinβmy,HSOTDLHKsinβmx+HSOTDLHKcosβmz,HSOTDLHKcosβmy+mz)\begin{array}[]{ll}{\bf{{H}}}_{{eff}}&{=}{\bf{{H}}}_{{K}}{-}H^{DL}_{SOT}\left(\bf{{\sigma}}{\times}{\bf{m}}\right)\\ &{=}H_{K}(\frac{H^{DL}_{SOT}}{H_{K}}{sin}\beta m_{y}{,-}\frac{H^{DL}_{SOT}}{H_{K}}{sin}\beta m_{x}{+}\frac{H^{DL}_{SOT}}{H_{K}}{cos}\beta m_{z}\\ &\quad{,-}\frac{H^{DL}_{SOT}}{H_{K}}{cos}\beta m_{y}{+}m_{z})\end{array} (5)

The direction of 𝐇eff{\bf{{H}}}_{{eff}} is also the finally stabilized direction of the magnetization as JSOTJ_{SOT}{}_{\ }<{<} JcJ_{c}. From Eqs. (4) and (5), we can then get

{HSOTDLHKsinβmy=kmxHSOTDLHKsinβmx+HSOTDLHKcosβmz=kmyHSOTDLHKcosβmy+mz=kmz\left\{\begin{array}[]{c}\frac{H^{DL}_{SOT}}{H_{K}}{{sin}\beta m_{y}\ }{=}km_{x}\\ -\frac{H^{DL}_{SOT}}{H_{K}}{sin}\beta m_{x}+\frac{H^{DL}_{SOT}}{H_{K}}{cos}\beta m_{z}{=}km_{y}\\ -\frac{H^{DL}_{SOT}}{H_{K}}{cos}\beta m_{y}+m_{z}{=}km_{z}\end{array}\right. (6)

where the non-zero real number k satisfies

k3k2+(HSOTDLHK)2k(HSOTDLHK)2sin2β=0k^{{3}}\ {-\ }k^{{2}}{+}{\left(\frac{H^{DL}_{SOT}}{H_{K}}\right)}^{2}{\ }k\ {-\ }{\left(\frac{H^{DL}_{SOT}}{H_{K}}\right)}^{2}{{sin}}^{{2}}\beta{=0} (7)

From Eq. (7), we get k=k(HSOTDLHK,β)k=k\left(\frac{H^{DL}_{SOT}}{H_{K}},\beta\right), Then the polar and azimuth angles (θH,φH)\left({\theta}_{H},{\varphi}_{H}\right)\ of the magnetization in the steady state can be obtained, the schematic diagram of polar angle θH{\theta}_{H} and azimuth angle φH{\varphi}_{H} in spherical coordinates is shown in the upper left pannel of Fig. 1.

θH=arctan((1k)sin2β+(kHKHSOTDL)2kcosβ),φH=arctan(kHKHSOTDLsinβ)\begin{array}[]{ll}{\theta}_{H}{=arctan}\left(\frac{\left(1-k\right)\sqrt{sin^{2}\beta+{\left(\frac{kH_{K}}{H^{DL}_{SOT}}\right)}^{2}}}{kcos\beta}\right),\\ {\varphi}_{H}{=arctan}\left(\frac{kH_{K}}{H^{DL}_{SOT}sin\beta}\right)\end{array} (8)

After getting θH{\theta}_{H} and φH{\varphi}_{H}, we can transform the coordinate system from the original system O to a new one O’ in which 𝐇eff{\bf{{H}}}_{{eff}} is directed at the z’ axis, and the corresponding transformation matrix between the two coordinates is

R=(cosθH0sinθH010sinθH0cosθH)(cosφHsinφH0sinφHcosφH0001)R=\left(\begin{array}[]{ccc}{{cos}{\theta}_{H}}&0&-{{sin}{\theta}_{H}}\\ 0&1&0\\ {{sin}{\theta}_{H}}&0&{{cos}{\theta}_{H}}\end{array}\right)\left(\begin{array}[]{ccc}{{cos}{\varphi}_{H}}&{{sin}{\varphi}_{H}}&0\\ -{{sin}{\varphi}_{H}}&{{cos}{\varphi}_{H}}&0\\ 0&0&1\end{array}\right) (9)

And the relationship from the (x, y, z) coordinate to the (x’, y’, z’) coordinate is simply

(xyz)=R(xyz)\left(\begin{array}[]{c}{{x}}^{{{}^{\prime}}}\\ {{y}}^{{{}^{\prime}}}\\ {{z}}^{{{}^{\prime}}}\end{array}\right)=R\left(\begin{array}[]{c}{x}\\ {y}\\ {z}\end{array}\right) (10)

The transformed coordination allows us to analyze dynamic stability of system straightforwardly. When JSOT<JcJ_{{SOT}}{<}J_{c}, the components of the magnetization along the x’ and y’ directions will converge to 0 after a long-enough damping, and as JSOTJcJ_{{SOT}}{\geq}J_{c}, the precession amplitude will go divergently and the magnetization will switch to the opposite. At this time, the magnetization along the x ’and y’ components will gradually increase, which is our criterion to determine JcJ_{c}. Specifically, considering the two magnetization components along the x’ and y’ directions, we rewrite the LLG formula Eq. (3) in the following Eq. (11):

1+α2γμ0ddt(mxmy)=𝐦(mxmy)+𝐆-\frac{1+{\alpha}^{2}}{\gamma{\mu}_{0}}\frac{d}{dt}\left(\begin{array}[]{c}m_{x^{{{}^{\prime}}}}\\ m_{y^{{{}^{\prime}}}}\end{array}\right)={\bf{m}}\left(\begin{array}[]{c}m_{x^{{{}^{\prime}}}}\\ m_{y^{{{}^{\prime}}}}\end{array}\right)+\bf{{G}} (11)

Where 𝐦{\bf{m}} and 𝐆\bf{{G}} are 2×22\ {\times}2 matrices, and their respective components are explicitly shown below

{M11=HSOTDL(sinβcos2θHcosθHcosφHcosβsinθH)+α(cos4θHcos2θHsin2θH)HKM12=αHSOTDL(sinβcosθH+cosφHcosβsinθH)+cos3θHHKM21=αHSOTDL(sinβcosθH+cosφHcosβsinθH)+(cosθHsin2θHcos3θH)HKM22=HSOTDL(sinβcos2θHcosθHcosφHcosβsinθH)+αcos4θHHK\left\{\begin{array}[]{ccc}M_{{11}}&{=}&H^{DL}_{SOT}\left(-{sin\beta cos}^{2}{\theta}_{H}-cos{\theta}_{H}cos{\varphi}_{H}cos\beta sin{\theta}_{H}\right)+{\alpha(cos}^{4}{\theta}_{H}-{cos}^{2}{\theta}_{H}{sin}^{2}{\theta}_{H})H_{K{\ }}\\ M_{{12}}&{=}&-\alpha H^{DL}_{SOT}\left(sin\beta cos{\theta}_{H}+cos{\varphi}_{H}cos\beta sin{\theta}_{H}\right)+{cos}^{3}{\theta}_{H}H_{K}\\ M_{{21}}&{=}&\alpha H^{DL}_{SOT}\left(sin\beta cos{\theta}_{H}+cos{\varphi}_{H}cos\beta sin{\theta}_{H}\right)+(cos{\theta}_{H}{sin}^{2}{\theta}_{H}-{cos}^{3}{\theta}_{H})H_{K}\\ M_{{22}}&{=}&H^{DL}_{SOT}\left(-{sin\beta cos}^{2}{\theta}_{H}-cos{\theta}_{H}cos{\varphi}_{H}cos\beta sin{\theta}_{H}\right)+{\alpha cos}^{4}{\theta}_{H}H_{K{\ }}\end{array}\right. (12)
{G1=αHSOTDLcosθHcosβsinφHHSOTDL(cos3θHcosφHcosβsinβcos2θHsinθH)+αcos4θHsinθHHkG2=αHSOTDL(cos2θHcosφHcosβsinβcosθHsinθH)HSOTDLcos2θHcosβSinφHcos3θHsinθHHK\left\{\begin{array}[]{c}G_{1}=-\alpha H^{DL}_{{SOT\ }}cos{\theta}_{H}cos\beta sin{\varphi}_{H}-H^{DL}_{SOT}\left({cos}^{3}{\theta}_{H}cos{\varphi}_{H}cos\beta-{sin\beta cos}^{2}{\theta}_{H}sin{\theta}_{H}\right)+{\alpha cos}^{4}{\theta}_{H}sin{\theta}_{H}H_{k{\ }}\\ {G_{2}=-\alpha H^{DL}_{SOT}\left({cos}^{2}{\theta}_{H}cos{\varphi}_{H}cos\beta-sin\beta cos{\theta}_{H}sin{\theta}_{H}\right)-H^{DL}_{SOT}cos}^{2}{\theta}_{H}cos\beta Sin{\varphi}_{H}-{cos}^{3}{\theta}_{H}sin{\theta}_{H}H_{K{\ }}\end{array}\right. (13)

From Eq. (12), we can see that the eigenvalue of the 2×2\ 2\times 2 matrix 𝐦{\bf{m}} is λ1,2=M11+M22±i4M12M21(M11M22)22{\lambda}_{1,2}=\frac{M_{11}+M_{22}\pm i\sqrt{-4M_{12}M_{21}-{(M_{11}-M_{22})}^{2}}}{2}. When M11+M22<0M_{11}+M_{22}<0, mx{}_{{}^{\prime}} and my{}_{{}^{\prime}} decay to 0 if any; in contrast, when M11+M22>0M_{11}+M_{22}>0, they will diverge once the emergence of an even tiny |mx{}_{{}^{\prime}}| or |my{}_{{}^{\prime}}| activated by thermal fluctuations or other reasons. Therefore, the switching criteria turns clear as

M11+M22=0M_{11}+M_{22}{=0} (14)

The threshold current value JcJ_{c} can be obtained from this condition. Detailed derivation steps are shown in Appendix A, if HSOTDLHK1\frac{H^{DL}_{SOT}}{H_{K}}\ll 1 (widely applicable for most cases), we can get that

Jc=eμ0MsHKtθSH4αsin2β+16α2cos2β+sinβJ_{c}{=}\frac{e{\mu}_{0}M_{s}H_{K}t}{{\hslash}{\theta}_{SH}}\frac{{4}\alpha}{\sqrt{sin^{{2}}\beta{+16}{\alpha}^{{2}}cos^{{2}}\beta}{+}sin\beta} (15)

Worth noting, according to recent experiment data [22], two typical values of HSOTDLHK\frac{H^{DL}_{SOT}}{H_{K}} are 0.014and 0.0230.014\ and\ 0.023 at Jc, so the simplification condition HSOTDLHK1\frac{H^{DL}_{SOT}}{H_{K}}\ll 1 holds reasonable here. When the out-of-plane torque is 0 or β=0\beta=0, the result Jc=eμ0MsHKtθSHJ_{c}{=}\frac{e{\mu}_{0}M_{s}H_{K}t}{{{\hslash}\theta}_{SH}} becomes simplified in accordance with the previously proposed Jc for the z-type SOT magnetization reversal at a small applied magnetic field [26, 30, 37]. More interesting, if αtanβ1\frac{\alpha}{tan\beta}\ll 1 (a small damping in the order of 10-2 and a substantial anomalous SOT ratio not lower than {\sim}0.1 can qualify the condition), the above equation can be simplified as

Jc=2eμ0MsHKαtθSHsinβJ_{c}=\frac{2e{\mu}_{0}M_{s}H_{K}\alpha t}{\hslash{\theta}_{SH}sin\beta} (16)

This threshold current density then shares a similar fashion with the case of the spin-transfer torque switching mode for the perpendicular MTJ with polarization P of the pinned layer replaced by the anomalous spin Hall angle θSHsinβ{\theta}_{SH}sin\beta.

III RESULTS AND DISSCUSSIONS

We visualize the magnetization trajectory with different out-of-plane torque ratio ηtanβ\eta\ {\equiv}\ {tan}\beta and JSOTJ_{{SOT}}, as shown in Fig. 2. Time step is set as dt= 1fs{d}t\ =\ 1{\ fs}. The initial direction of 𝐦{\bf{m}} is along the (0,0,1) in the O coordinate system, Simulation parameters are displayed in TABLE 1 [20, 38, 39]. For the situation without any out-of-plane SOT or η=0\eta=0, when JSOT=1.8×1013A·m2J_{{SOT}}=1.8\times{10}^{13}{\ A}{{\textperiodcentered}}{{m}}^{{-2}} which is unable to destabilize the magnetization in the FM free layer, 𝐦{\bf{m}} is finally stabilized at the direction of the equivalent effective field (0.000,0.451, 0.893)\left(0.000,\ -0.451,\ 0.893\right). As JSOT=1.9×1013A·m2J_{{SOT}}=1.9\times{10}^{13}{\ A}{{\textperiodcentered}}{{m}}^{{-2}}, the SOT is large enough to destabilize 𝐦{\bf{m}} to (1, 0, 0)\left(-1,\ 0,\ 0\right) in the equatorial plane as shown in Fig. 2(a) and (b). These scenarios produce the case of z-type mode without an external bias field. As for η0\eta\neq 0, the final state of JSOT>JcJ_{{SOT}}>J_{c} becomes different. From Eq. (15), we can directly calculate that the threshold currents for η=0.1\eta=0.1 and 0.75 are Jc=6.2×1012A·m2J_{{c}}=6.2\times{10}^{12}\ {A}{{\textperiodcentered}}{{m}}^{{-2}} and 1.1×1012A·m21.1\times{10}^{12}\ {A}{{\textperiodcentered}}{{m}}^{{-2}} respectively. As JSOT=6×1012A·m2J_{{SOT}}=6\times{10}^{12}{\ A}{{\textperiodcentered}}{{m}}^{{-2}} and 1×1012A·m21\times{10}^{12}\ {A}{{\textperiodcentered}}{{m}}^{{-2}} for η=0.1\eta=0.1 and 0.75 respectively, the SOT acting on the FM free layer is not large enough, so the precession amplitude gets smaller and smaller, and finally 𝐦{\bf{m}} is stabilized at the direction of Heff (0.003,0.135, 0.991)\left(0.003,-0.135,\ 0.991\right) and (0.006,0.0222, 0.9997)\left(-0.006,-0.0222,\ 0.9997\right) for η=0.1\eta=0.1 and 0.75 respectively, see Fig. 2(c) and (e). When JSOT=7×1012A·m2J_{{SOT}}=7\times{10}^{12}{\ A}{{\textperiodcentered}}{{m}}^{{-2}} and 2×1012A·m22\times{10}^{12}\ {A}{{\textperiodcentered}}{{m}}^{{-2}} for η=0.1\eta=0.1 and 0.75 respectively, the precession amplitude is divergently increasing, and m eventually turns to the opposite direction (0.0035,0.1575,0.9875)\left(-0.0035,-0.1575,\ -0.9875\right) and (0.0003,0.0215,0.9998)\left(-0.0003,0.0215,\ -0.9998\right) for η=0.1\eta=0.1 and 0.75 respectively, as shown in Fig. 2(d) and (f), consistent with our previous analysis. Worth mentioning, as JSOT>JcJ_{{SOT}}>J_{{c}}, m will not converge to the direction of Heff since the prerequisite for the calculation is |mx|,|my|1{|m}^{\prime}_{x}|,{|m}^{\prime}_{y}|\ll 1, which is violated in this case. This notice does not undermine the strictness of the criteria of deriving JcJ_{{c}}.

Table 1: Parameters for numerical calculation (unless otherwise noted).
Parameters Quantity Value
Damping constant α\alpha 0.015 [39]
Anisotropic field μ0HK{\mu}_{0}H_{{K}} 0.85 T [38]
Saturated Magnetization MsM_{s} 1.3×106{1}{.3}\times{10}^{6} A/m [38]
Ratio of anomalous SOT tanβ{tan}\beta 0.1 or 0.75 [20]
the FM thickness tt 1 nm
Overall spin Hall angle θSH{\theta}_{{SH}} 0.075 [20]
Refer to caption
Figure 2: The magnetization trajectory with different η\eta and JSOTJ_{{SOT}}. The two parameters are shown as follows, η=0\eta=0, (a) JSOT=1.8×1013A·m2J_{{SOT}}=1.8\times{10}^{13}\ {A}{{\textperiodcentered}}{{m}}^{{-2}} and (b) JSOT=1.9×1013A·m2J_{{SOT}}=1.9\times{10}^{13}\ {A}{{\textperiodcentered}}{{m}}^{{-2}}; η=0.1\eta=0.1, with threshold current value Jc=1.1×1012A·m2J_{{c}}=1.1\times{10}^{12}{\ A}{{{\textperiodcentered}}{m}}^{{-2}}, (c) JSOT=1×1012A·m2J_{{SOT}}=1\times{10}^{12}\ {A}{{\textperiodcentered}}{{m}}^{{-2}} and (d) JSOT=2×1012A·m2J_{{SOT}}=2\times{10}^{12}\ {A}{{\textperiodcentered}}{{m}}^{{-2}}; η=0.75\eta=0.75, with threshold current value Jc=6.2×1012A·m2J_{{c}}=6.2\times{10}^{12}{\ A}{{{\textperiodcentered}}{m}}^{{-2}}, (e) JSOT=6×1012A·m2J_{{SOT}}=6\times{10}^{12}\ {A}{{\textperiodcentered}}{{m}}^{{-2}} and (f) JSOT=7×1012A·m2J_{{SOT}}=7\times{10}^{12}\ {A}{{\textperiodcentered}}{{m}}^{{-2}}.

We also calculate the relationship between the switching time tst_{s} , switching energy consumption QSOTQ_{SOT} and JSOTJ_{{SOT}} when JSOT>JcJ_{{SOT}}>J_{{c}}. Here η=0.75\eta=0.75, tst_{s} is defined as the time from sourcing current to the occurrence of a negative mzm_{{z}} component in the calculation, switching energy consumption is defined as QSOTJSOT2·tsQ_{SOT}\equiv J^{2}_{SOT}{\textperiodcentered}t_{s}, which scales with the energy consumed in the switching process. We can see from Fig. 3(a) that as JSOTJ_{{SOT}} increases, ts{}_{s\ }decreases rapidly from 16.5 ns when JSOT=1.2×1012A·m2J_{{SOT}}=1.2\times{10}^{12}{\ A}{{\textperiodcentered}}{{m}}^{{-2}} to 0.1 ns when JSOT=1.11×1013A·m2J_{{SOT}}=1.11\times{10}^{13}{\ A}{{\textperiodcentered}}{{m}}^{{-2}}, and the influence of JSOTJ_{{SOT}} on ts is gradually reduced as JSOTJ_{{SOT}} increases. From Fig. 3(a), we can see that QSOTQ_{SOT} minimizes when JSOTJ_{{SOT}} is near 2.4×1012A·m22.4\times{10}^{12}{\ A}{{\textperiodcentered}}{{m}}^{{-2}}, with minimum value QSOTmin=7.7×1015A2·s·m4Q^{min}_{SOT}=7.7\times{10}^{15}{\ }{{A}}^{2}{{\textperiodcentered}}{s}{{\textperiodcentered}}{{m}}^{{-4}}. Then we study the η\eta-dependence of QSOTminQ^{min}_{SOT}, as shown in Fig. 3(b). As η\eta increases, QSOTminQ^{min}_{SOT} gradually decreases, manifesting the larger out-of-plane torque ratio results in the less energy consumption. With the resistivity of conductive layer ρ=200μΩ·cm\rho=200\ {\mu}{\Omega}{{\textperiodcentered}}{cm} [20] and the SOT-channel width l=100nml=100{\ nm} and length d=300nmd=300{\ nm}, QSOT=1×1015A2·s·m4Q_{SOT}=1\times{10}^{15}\ {{A}}^{2}{{\textperiodcentered}}{s}{{\textperiodcentered}}{{m}}^{{-4}} corresponds to an energy consumption of 0.06 pJ.

Refer to caption
Figure 3: The JSOTJ_{{SOT}}-dependence of the switching time ts{}_{s\ }and the switching energy consumption QSOTQ_{SOT}. (b) The η\eta-dependence of minimum energy loss QSOTminQ^{min}_{SOT}. In the regime of η\eta {\leq} 0.8, the increase in η\eta can significantly reduce the value of QSOTminQ^{min}_{SOT}.

Then, we numerically calculate the dependence of JcJ_{{c}} on the anisotropy strength HKH_{K{\ }}, out-of-plane torque ratio η\eta, FM free layer thickness tt and Gilbert damping constant α\alpha, as shown in Fig. 4. We can see that JcJ_{{c}} increases with the increase in HK as expected. In addition, we can also see from Fig. 4(a) that JcJ_{{c}} gradually decreases with the increase in η\eta. This is because the decisive factor that affects magnetization switching is the z component of anomalous SOT. When z component of effective field caused by SOT is larger than effective anisotropy field, magnetization switch happens. And as η\eta increases, the z component of SOT increases, then JcJ_{{c}} becomes lower if we still intend to switch the magnetization. We extract three threshold currents corresponding to different anisotropic properties, as shown in Fig. 4(b). Clearly shown in the figure, the higher anisotropy results in the greater influence of η\eta on JcJ_{{c}}.

We also study the thickness tt and Gilbert damping α\alpha dependences of JcJ_{c}, as shown in Fig. 4(c). As α\alpha increases, JcJ_{c} increases. This feature, similar to the classic spin-transfer torque (STT) switching scheme [40] , can be explained as following. During the switching dynamics with a larger α\alpha, m will be easier to converge to its initialized direction due to an enhanced damping which needs a larger JcJ_{c} to battle against. And as the thickness of the magnetic layer is higher, JcJ_{c} become larger too with no doubt in accordance with Eq. (15). We then extract three JcJ_{c} corresponding to different thicknesses, as shown in Fig. 4(d). JcJ_{c} scales linearly with α\alpha, also in accordance with Eq. (15) and the STT scheme. Worth noting, on the other hand, when η=0\eta=0, the threshold current Eq. (15) is equal to the threshold current for the z-type SOT mode with an applied magnetic field HxH_{x} 0. The threshold current for the z-type SOT magnetization switching is[30]

Jc=etμ0MsHKθSH[4α(4α+2α(HSOTFLHSOTDL)2+HSOTFLHSOTDL)+(9α24α(HSOTFLHSOTDL)8α2(HSOTFLHSOTDL))(Hx/HK)24α+2α(HSOTFLHSOTDL)2+(HSOTFLHSOTDL)5α(Hx/HK)4α+2α(HSOTFLHSOTDL)2+(HSOTFLHSOTDL)]\begin{array}[]{ll}J_{c}&{=}\frac{et{\mu}_{0}M_{s}H_{K}}{{\hslash}{\theta}_{SH}}\\ &[\frac{\sqrt{{4}\alpha{(4}\alpha{+2}\alpha(\frac{H^{FL}_{SOT}}{H^{DL}_{SOT}})^{{2}}{+}\frac{H^{FL}_{SOT}}{H^{DL}_{SOT}}{)+(9}{\alpha}^{{2}}{-}{4}\alpha{(}\frac{H^{FL}_{SOT}}{H^{DL}_{SOT}}{)-8}{\alpha}^{{2}}{(}\frac{H^{FL}_{SOT}}{H^{DL}_{SOT}}{))}{{(}H_{x}{/}H_{K}{)}}^{{2}}}}{{{4}\alpha{+2}\alpha(\frac{H^{FL}_{SOT}}{H^{DL}_{SOT}})^{{2}}{+(}\frac{H^{FL}_{SOT}}{H^{DL}_{SOT}}{)}}}\\ &{-}\frac{{5}\alpha{(}H_{x}{/}H_{K}{)}}{{4}\alpha{+2}\alpha(\frac{H^{FL}_{SOT}}{H^{DL}_{SOT}})^{{2}}{+(}\frac{H^{FL}_{SOT}}{H^{DL}_{SOT}}{)}}]\end{array} (17)

with field-like torque intensity HSOTFLH^{FL}_{SOT} and applied magnetic field HxH_{x}. When the HSOTFL=0H^{FL}_{SOT}=0 and HxHKH_{x}\ll H_{K}, the threshold current is [26]

Jc=etμ0MsθSH(HK2Hx)J_{c}{=}\frac{et{\mu}_{0}M_{s}}{\hslash{\theta}_{SH}}(H_{K}-\sqrt{2}H_{x}) (18)
Refer to caption
Figure 4: The dependence of JcJ_{{c}} on the anisotropic field HKH_{K{\ }}and anomalous ratio η\eta. (b) The η\eta dependence of JcJ_{{c}} under α=0.015,t=1nm\alpha=0.015,\ \ t=1\ {nm} extracted from Fig. 4(a). (c) The dependence of JcJ_{{c}}on the thickness tt and Gilbert damping α\alpha. (d) The η\eta dependence of JcJ_{{c}} under μ0HK=0.85T,η=0.75{\mu}_{0}H_{K}=0.85\ {T},\ \eta=0.75 extracted from Fig. 4(c).

The experiment [25] and the above derivation have shown that the anomalous SOT can switch the magnetization of FM free layer if the applied current is above the threshold JcJ_{c}. However, even if JSOTJ_{SOT}{}_{\ }<{<} JcJ_{c}, the anomalous SOT can still manifest itself by acting an effective exchange bias field HbiasH_{bias}, which facilitates us to determine the anomalous SOT efficiency. We calculate the hysteresis loops corresponding to different JSOTJ_{SOT} <{<} JcJ_{c}, as shown in Fig. 5(a). Here the LLG equation has to take magnetic field 𝐇z{\bf{{H}}}_{z} into account.

𝐦t=γμ0(𝐦×(𝐇𝐊+𝐇𝐳))+α(𝐦×𝐦t)+γμ0HSOTDL((𝐦×σ)×𝐦)\begin{array}[]{ll}\frac{{\partial}{\bf{m}}}{{\partial}t}=&-\gamma{\mu}_{0}\left({\bf{m}}{\times}\left({\bf{{H}}}_{\bf{{K}}}{+}{\bf{{H}}}_{\bf{{z}}}\right)\right){+}\alpha\left({\bf{m}}{\times}\frac{{\partial}{\bf{m}}}{{\partial}t}\right)\\ &{+}\gamma{\mu}_{0}H^{{DL}}_{{SOT}}\left(\left({\bf{m}}{\times}{\bf{\sigma}}\right){\times}{\bf{m}}\right)\end{array} (19)

Fig. 5(a) shows for an unbiased loop without JSOTJ_{SOT}, the forward and backward switching coercivity of the FM layer is symmetric. However, when a positive (negative) JSOT,0=6.28×1011J_{SOT,0}=6.28\times 10^{11} Am-2 is applied, the hysteresis loop is biased leftward (rightward) or their Hz-symmetrical axis is offset in the negative (positive) direction. Therefore, equivalently, a nonzero JSOTJ_{SOT} imposes an exchange bias field HbiasH_{bias} along the z axis to the FM free layer, which determines the switching direction in the field-free condition. Compared to z-type SOT [37] that switch magnetization with the help of in-plane magnetic field, this result give a novel method to control magnetization of FM layer, which is easier to integrate. We also calculate the dependence of HbiasonJSOTH_{{bias}}\ {on}\ {\ J}_{{SOT}} shown in Fig. 5(b) which appears linear with each other and the slope is θSHsinβ2etμ0Msα=6.05×107m,\frac{{\theta}_{{SH}}\hslash{sin}\beta}{2et{\mu}_{0}M_{s}\alpha}=6.05\times{10}^{-7}\ m, if HSOTDLHK1\frac{H^{DL}_{SOT}}{H_{K}}\ll 1 and HbiasHK1\frac{H_{bias}}{H_{K}}\ll 1. This result provides a direct way to determine the anomalous torque efficiency. Compared with previous work that detect anomalous torque with in-plane magnetization of CoFeB [13], our results shows a simpler linear relationship between HbiasH_{bias} and JSOT{\ J}_{{SOT}}.

Refer to caption
Figure 5: (a) Hysteresis loop of FM free layer under different applied currentsJSOT{\ J}_{{SOT}}, (b) Relationship between equivalent exchange bias field HbiasH_{bias} and applied currentJSOT{\ J}_{{SOT}}. Here η=0.75\eta=0.75.

IV CONCLUSIONS

In this paper, we present an analytical derivation of the threshold current required to achieve field-free switching of perpendicular magnetization using the anomalous SOT in combination with an ordinary one. We also conduct numerical simulations to investigate the magnetization trajectory of a FM free layer when the applied current is both below and above the threshold. Our analytical and numerical results are in agreement. Furthermore, we explore the dependence of the switching time and energy consumption on the applied current and show that the minimum energy consumption is negatively correlated with the out-of-plane torque proportion. Additionally, we investigate the effects of various parameters, including anisotropy strength, out-of-plane torque ratio, FM free layer thickness, and Gilbert damping constant, on the threshold current. Our findings indicate a negative correlation between the out-of-plane torque proportion and the threshold current, and a positive correlation between the other three parameters and the threshold current. Finally, we demonstrate that when the applied current is below the threshold, it can induce an exchange bias field HbiasH_{bias} in the FM free layer. Our numerical results show that the exchange bias field HbiasH_{bias} is proportional to the applied current JSOTJ_{\mathrm{SOT}}. This study provides insights into the design of spintronic devices that enable field-free switching of perpendicular magnetization using the anomalous spin-orbit torque and offers a direct method for adjusting the exchange bias field, which can be useful in controlling FM layer magnetization pinning and depinning.

Acknowledgements.
This work is financial supported by the National Key Research and Development Program of China (MOST) (Grant No. 2017YFA0206200, 2021YFB3601300), the National Natural Science Foundation of China (NSFC) (Grant No. 12134017 ,11974398 , 12061131012), and partially supported by the Strategic Priority Research Program (B) (Grant No. XDB33000000, Youth Innovation Promotion Association of CAS (2020008)).

Appendix A Derivation of Eq. (15)

From Eq. (7), suppose k1=k13k_{1}=k-\frac{1}{3}, we can get that

k13+((HSOTDLHK)213)k1+(227+(13sin2β)(HSOTDLHK)2)=0k^{\mathrm{3}}_{\mathrm{1}}\mathrm{+}\left({\left(\frac{H^{DL}_{SOT}}{H_{K}}\right)}^{\mathrm{2}}\mathrm{-}\frac{\mathrm{1}}{\mathrm{3}}\right)k_{\mathrm{1}}\mathrm{+}\left(\mathrm{-}\frac{\mathrm{2}}{\mathrm{27}}\mathrm{+}\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{-}sin^{\mathrm{2}}\beta\right){\left(\frac{H^{DL}_{SOT}}{H_{K}}\right)}^{\mathrm{2}}\right)\mathrm{=0} (S20)

If HSOTDLHK1\frac{H^{DL}_{SOT}}{H_{K}}\ll 1, we can get that

k1=12713sin2β6(HSOTDLHK)2+sinβ33HSOTDLHK3+12713sin2β6(HSOTDLHK)2sinβ33HSOTDLHK3=23cos2β(HSOTDLHK)2\begin{array}[]{ll}k_{1}&=\sqrt[3]{\frac{1}{27}-\frac{1-3sin^{2}\beta}{6}{\left(\frac{H^{DL}_{SOT}}{H_{K}}\right)}^{2}+\frac{sin\beta}{3\sqrt{3}}\frac{H^{DL}_{SOT}}{H_{K}}}\\ &\quad+\sqrt[3]{\frac{1}{27}-\frac{1-3sin^{2}\beta}{6}{\left(\frac{H^{DL}_{SOT}}{H_{K}}\right)}^{2}-\frac{sin\beta}{3\sqrt{3}}\frac{H^{DL}_{SOT}}{H_{K}}}\\ &=\frac{2}{3}-cos^{2}\beta{\left(\frac{H^{DL}_{SOT}}{H_{K}}\right)}^{2}\end{array} (S21)

So that

k=1cos2β(HSOTDLHK)2k=1-cos^{2}\beta{\left(\frac{H^{DL}_{SOT}}{H_{K}}\right)}^{2} (S22)

We can get the pole angle and azimuth angle (θH,φH)\left({\theta}_{H},{\varphi}_{H}\right)

{tanθH=(1k)sin2β+(kHK/HSOTDL)2kcosβ=cosβHSOTDLHKcosφH=sinβHSOTDL/HK(1(cosβHK/HSOTDL)2+(sinβHK/HSOTDL)2=sinβHSOTDLHK\left\{\begin{array}[]{ll}tan{\theta}_{H}&=\frac{\left(1-k\right)\sqrt{sin^{2}\beta+(kH_{K}/H^{DL}_{SOT})^{2}}}{kcos\beta}\\ &=cos\beta\frac{H^{DL}_{SOT}}{H_{K}}\\ cos{\varphi}_{H}&=\frac{sin\beta H^{DL}_{SOT}/H_{K}}{\sqrt{(1-(cos\beta H_{K}/H^{DL}_{SOT})^{2}+(sin\beta H_{K}/H^{DL}_{SOT})^{2}}}\\ &=sin\beta\frac{H^{DL}_{SOT}}{H_{K}}\end{array}\right. (S23)

From Eq. (12), we can get threshold current using equation M11+M22=0M_{\mathrm{11}}+M_{\mathrm{22}}=0:

Jc=etμ0MsHKθSH4αsin2β+16α2cos2β+sinβJ_{c}\mathrm{=}\frac{et{\mu}_{0}M_{s}H_{K}}{{\theta}_{SH}\mathrm{\hslash}}\frac{\mathrm{4}\alpha}{\sqrt{sin^{\mathrm{2}}\beta\mathrm{+16}{\alpha}^{\mathrm{2}}cos^{\mathrm{2}}\beta}\mathrm{+}sin\beta} (S24)

References

  • Kong et al. [2020] W. J. Kong, C. H. Wan, C. Y. Guo, C. Fang, B. S. Tao, X. Wang, and X. F. Han, All-electrical manipulation of magnetization in magnetic tunnel junction via spin–orbit torque, Applied Physics Letters 116, 162401 (2020).
  • Manchon et al. [2019] A. Manchon, J. Železný, I.  . Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. Garello, and P. Gambardella, Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems, Reviews of Modern Physics 91, 035004 (2019).
  • Mihai Miron et al. [2010] I. Mihai Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, and P. Gambardella, Current-driven spin torque induced by the rashba effect in a ferromagnetic metal layer, Nature Materials 9, 230 (2010).
  • Sinova et al. [2015] J. Sinova, S. O. Valenzuela, J. Wunderlich, C.  . Back, and T. Jungwirth, Spin hall effects, Reviews of Modern Physics 87, 1213 (2015).
  • Song et al. [2021] C. Song, R. Zhang, L. Liao, Y. Zhou, X. Zhou, R. Chen, Y. You, X. Chen, and F. Pan, Spin-orbit torques: Materials, mechanisms, performances, and potential applications, Progress in Materials Science 118, 100761 (2021).
  • Zhang et al. [2018] Q. Zhang, K. S. Chan, and J. Li, Spin-transfer torque generated in graphene based topological insulator heterostructures, Scientific Reports 8, 4343 (2018).
  • Brataas et al. [2012] A. Brataas, A. D. Kent, and H. Ohno, Current-induced torques in magnetic materials, Nature Materials 11, 372 (2012).
  • Liu et al. [2012a] L. Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, and R. A. Buhrman, Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin hall effect, Physical Review Letters 109, 096602 (2012a).
  • Liu et al. [2012b] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin-torque switching with the giant spin hall effect of tantalum, Science 336, 555 (2012b).
  • Chen et al. [2019] S. Chen, J. Yu, Q. Xie, X. Zhang, W. Lin, L. Liu, J. Zhou, X. Shu, R. Guo, Z. Zhang, and J. Chen, Free field electric switching of perpendicularly magnetized thin film by spin current gradient, ACS Applied Materials & Interfaces 11, 30446 (2019).
  • Yu et al. [2014] G. Yu, P. Upadhyaya, Y. Fan, J. G. Alzate, W. Jiang, K. L. Wong, S. Takei, S. A. Bender, L.-T. Chang, Y. Jiang, M. Lang, J. Tang, Y. Wang, Y. Tserkovnyak, P. K. Amiri, and K. L. Wang, Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields, Nature Nanotechnology 9, 548 (2014).
  • Liu et al. [2019a] Y. Liu, Y. Liu, M. Chen, S. Srivastava, P. He, K. L. Teo, T. Phung, S.-H. Yang, and H. Yang, Current-induced out-of-plane spin accumulation on the (001) surface of the irmn3 antiferromagnet, Physical Review Applied 1210.1103/PhysRevApplied.12.064046 (2019a).
  • Baek et al. [2018] S.-h. C. Baek, V. P. Amin, Y.-W. Oh, G. Go, S.-J. Lee, G.-H. Lee, K.-J. Kim, M. D. Stiles, B.-G. Park, and K.-J. Lee, Spin currents and spin–orbit torques in ferromagnetic trilayers, Nature Materials 17, 509 (2018).
  • Fukami et al. [2016] S. Fukami, C. Zhang, S. DuttaGupta, A. Kurenkov, and H. Ohno, Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system, Nature Materials 15, 535 (2016).
  • Kong et al. [2019] W. J. Kong, C. H. Wan, X. Wang, B. S. Tao, L. Huang, C. Fang, C. Y. Guo, Y. Guang, M. Irfan, and X. F. Han, Spin–orbit torque switching in a t-type magnetic configuration with current orthogonal to easy axes, Nature Communications 10, 233 (2019).
  • Lau et al. [2016] Y.-C. Lau, D. Betto, K. Rode, J. M. D. Coey, and P. Stamenov, Spin–orbit torque switching without an external field using interlayer exchange coupling, Nature Nanotechnology 11, 758 (2016).
  • Oh et al. [2016] Y.-W. Oh, S.-h. Chris Baek, Y. M. Kim, H. Y. Lee, K.-D. Lee, C.-G. Yang, E.-S. Park, K.-S. Lee, K.-W. Kim, G. Go, J.-R. Jeong, B.-C. Min, H.-W. Lee, K.-J. Lee, and B.-G. Park, Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures, Nature Nanotechnology 11, 878 (2016).
  • He et al. [2022] W. He, C. Wan, C. Zheng, Y. Wang, X. Wang, T. Ma, Y. Wang, C. Guo, X. Luo, M. E. Stebliy, G. Yu, Y. Liu, A. V. Ognev, A. S. Samardak, and X. Han, Field-free spin-orbit torque switching enabled by the interlayer dzyaloshinskii-moriya interaction, Nano Lett 22, 6857 (2022).
  • MacNeill et al. [2017] D. MacNeill, G. M. Stiehl, M. H. D. Guimarães, N. D. Reynolds, R. A. Buhrman, and D. C. Ralph, Thickness dependence of spin-orbit torques generated by wte2, Physical Review B 9610.1103/PhysRevB.96.054450 (2017).
  • Bai et al. [2021] H. Bai, X. F. Zhou, H. W. Zhang, W. W. Kong, L. Y. Liao, X. Y. Feng, X. Z. Chen, Y. F. You, Y. J. Zhou, L. Han, W. X. Zhu, F. Pan, X. L. Fan, and C. Song, Control of spin-orbit torques through magnetic symmetry in differently oriented noncollinear antiferromagnetic mn3pt, Physical Review B 10410.1103/PhysRevB.104.104401 (2021).
  • Go et al. [2022] D. Go, M. Sallermann, F. R. Lux, S. Blugel, O. Gomonay, and Y. Mokrousov, Noncollinear spin current for switching of chiral magnetic textures, Phys Rev Lett 129, 097204 (2022).
  • Kao et al. [2022] I. H. Kao, R. Muzzio, H. Zhang, M. Zhu, J. Gobbo, S. Yuan, D. Weber, R. Rao, J. Li, J. H. Edgar, J. E. Goldberger, J. Yan, D. G. Mandrus, J. Hwang, R. Cheng, J. Katoch, and S. Singh, Deterministic switching of a perpendicularly polarized magnet using unconventional spin-orbit torques in wte(2), Nat Mater 21, 1029 (2022).
  • Liu et al. [2019b] Y. Liu, B. Zhou, Z. Dai, E. Zhang, and J.-g. Zhu, Iridium enabled field-free spin-orbit torque switching of perpendicular magnetic tunnel junction device, arXiv: Applied Physics  (2019b).
  • Zhou et al. [2020] J. Zhou, X. Shu, Y. Liu, X. Wang, W. Lin, S. Chen, L. Liu, Q. Xie, T. Hong, P. Yang, B. Yan, X. Han, and J. Chen, Magnetic asymmetry induced anomalous spin-orbit torque in irmn, Physical Review B 10110.1103/PhysRevB.101.184403 (2020).
  • Liu et al. [2021] L. Liu, C. Zhou, X. Shu, C. Li, T. Zhao, W. Lin, J. Deng, Q. Xie, S. Chen, J. Zhou, R. Guo, H. Wang, J. Yu, S. Shi, P. Yang, S. Pennycook, A. Manchon, and J. Chen, Symmetry-dependent field-free switching of perpendicular magnetization, Nat Nanotechnol 16, 277 (2021).
  • Lee et al. [2013] K.-S. Lee, S.-W. Lee, B.-C. Min, and K.-J. Lee, Threshold current for switching of a perpendicular magnetic layer induced by spin hall effect, Applied Physics Letters 10210.1063/1.4798288 (2013).
  • Sun [2000] J. Z. Sun, Spin-current interaction with a monodomain magnetic body: A model study, Physical Review B 62, 570 (2000).
  • Taniguchi et al. [2015] T. Taniguchi, S. Mitani, and M. Hayashi, Critical current destabilizing perpendicular magnetization by the spin hall effect, Physical Review B 9210.1103/PhysRevB.92.024428 (2015).
  • Taniguchi and Kubota [2016] T. Taniguchi and H. Kubota, Instability analysis of spin-torque oscillator with an in-plane magnetized free layer and a perpendicularly magnetized pinned layer, Physical Review B 9310.1103/PhysRevB.93.174401 (2016).
  • Zhu and Zhao [2020] D. Zhu and W. Zhao, Threshold current density for perpendicular magnetization switching through spin-orbit torque, Physical Review Applied 1310.1103/PhysRevApplied.13.044078 (2020).
  • Gilbert [2004] T. L. Gilbert, Classics in magnetics a phenomenological theory of damping in ferromagnetic materials, IEEE Transactions on Magnetics 40, 3443 (2004).
  • Garello et al. [2013] K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov, S. Blügel, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures, Nature Nanotechnology 8, 587 (2013).
  • Khvalkovskiy et al. [2013] A. V. Khvalkovskiy, V. Cros, D. Apalkov, V. Nikitin, M. Krounbi, K. A. Zvezdin, A. Anane, J. Grollier, and A. Fert, Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion, Physical Review B 87, 020402 (2013).
  • Kim et al. [2013] J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. Fukami, T. Suzuki, S. Mitani, and H. Ohno, Layer thickness dependence of the current-induced effective field vector in ta—cofeb—mgo, Nature Materials 12, 240 (2013).
  • Pai et al. [2014] C.-F. Pai, M.-H. Nguyen, C. Belvin, L. H. Vilela-Leão, D. C. Ralph, and R. A. Buhrman, Enhancement of perpendicular magnetic anisotropy and transmission of spin-hall-effect-induced spin currents by a hf spacer layer in w/hf/cofeb/mgo layer structures, Applied Physics Letters 104, 082407 (2014).
  • Park et al. [2014] J. Park, G. E. Rowlands, O. J. Lee, D. C. Ralph, and R. A. Buhrman, Macrospin modeling of sub-ns pulse switching of perpendicularly magnetized free layer via spin-orbit torques for cryogenic memory applications, Applied Physics Letters 105, 102404 (2014).
  • Han et al. [2021] X. Han, X. Wang, C. Wan, G. Yu, and X. Lv, Spin-orbit torques: Materials, physics, and devices, Applied Physics Letters 11810.1063/5.0039147 (2021).
  • Kim et al. [2018] G. W. Kim, A. S. Samardak, Y. J. Kim, I. H. Cha, A. V. Ognev, A. V. Sadovnikov, S. A. Nikitov, and Y. K. Kim, Role of the heavy metal’s crystal phase in oscillations of perpendicular magnetic anisotropy and the interfacial dzyaloshinskii-moriya interaction in w/co−fe−b/mgo films, Physical Review Applied 910.1103/PhysRevApplied.9.064005 (2018).
  • Lourembam et al. [2018] J. Lourembam, A. Ghosh, M. Zeng, S. K. Wong, Q. J. Yap, and S. Ter Lim, Thickness-dependent perpendicular magnetic anisotropy and gilbert damping in hf/co20fe60b20/mgo heterostructures, Physical Review Applied 1010.1103/PhysRevApplied.10.044057 (2018).
  • Bhatti et al. [2017] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N. Piramanayagam, Spintronics based random access memory: a review, Materials Today 20, 530 (2017).
  • Chirac et al. [2020] T. Chirac, J.-Y. Chauleau, P. Thibaudeau, O. Gomonay, and M. Viret, Ultrafast antiferromagnetic switching in nio induced by spin transfer torques, Physical Review B 10210.1103/PhysRevB.102.134415 (2020).
  • Jia et al. [2019] C. Jia, D. Ma, A. F. Schäffer, and J. Berakdar, Twisted magnon beams carrying orbital angular momentum, Nature Communications 10, 2077 (2019).
  • Miron et al. [2011] I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and P. Gambardella, Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection, Nature 476, 189 (2011).