This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

This is the title

C*-ALGEBRAIC SCHUR PRODUCT THEOREM, PÓLYA-SZEGŐ-RUDIN QUESTION AND NOVAK’S CONJECTURE
K. MAHESH KRISHNA

Department of Humanities and Basic Sciences

Aditya College of Engineering and Technology

Surampalem, East-Godavari

Andhra Pradesh 533 437 India

Email: [email protected]

 

Abstract: Striking result of Vybíral [Adv. Math. 2020] says that Schur product of positive matrices is bounded below by the size of the matrix and the row sums of Schur product. Vybíral used this result to prove the Novak’s conjecture. In this paper, we define Schur product of matrices over arbitrary C*-algebras and derive the results of Schur and Vybíral. As an application, we state C*-algebraic version of Novak’s conjecture and solve it for commutative unital C*-algebras. We formulate Pólya-Szegő-Rudin question for the C*-algebraic Schur product of positive matrices.

Keywords: Schur/Hadamard product, Positive matrix, Hilbert C*-module, C*-algebra, Schur product theorem, Pólya-Szegő-Rudin question, Novak’s conjecture.

Mathematics Subject Classification (2020): 15B48, 46L05, 46L08.

1. Introduction

Given matrices A[aj,k]1j,knA\coloneqq[a_{j,k}]_{1\leq j,k\leq n} and B[bj,k]1j,knB\coloneqq[b_{j,k}]_{1\leq j,k\leq n} in the matrix ring Mn(𝕂)M_{n}(\mathbb{K}), where 𝕂=\mathbb{K}=\mathbb{R} or \mathbb{C}, the Schur/Hadamard/pointwise product of AA and BB is defined as

(1) AB[aj,kbj,k]1j,kn.\displaystyle A\circ B\coloneqq\begin{bmatrix}a_{j,k}b_{j,k}\end{bmatrix}_{1\leq j,k\leq n}.

Recall that a matrix AMn(𝕂)A\in M_{n}(\mathbb{K}) is said to be positive (also known as self-adjont positive semidefinite) if it is self-adjoint and

Ax,x0,x𝕂n,\displaystyle\langle Ax,x\rangle\geq 0,\quad\forall x\in\mathbb{K}^{n},

where ,\langle\cdot,\cdot\rangle is the standard Hermitian inner product (which is left linear right conjugate linear) on 𝕂n\mathbb{K}^{n} (to move with the tradition of ‘operator algebra’, by ‘positive’ we only consider self-adjoint matrices). In this case we write A0A\succeq 0 and we write ABA\succeq B if all of AA, BB and ABA-B are positive. It is a century old result that whenever A,BMn(𝕂)A,B\in M_{n}(\mathbb{K}) are positive, then their Schur product ABA\circ B is positive. Schur originally proved this result in his famous ‘Crelle’ paper [45] and today there are varieties of proofs of this theorem. For a comprehensive look on Hadamard products we refer the reader to [47, 37, 54, 17, 19, 18].

Once we know that the Schur product of two positive matrices is positive, then next step is to ask for a lower bound for the product, if exists. There are series of papers obtaining lower bounds for Schur product of positive correlation matrices [31, 53], positive invertible matrices [1, 2, 21, 8, 9, 49, 30, 51] but for arbitrary positive matrices there are a couple of recent results by Vybíral [50] which we mention now. To state the results we need some notations. Given a matrix MMn(𝕂)M\in M_{n}(\mathbb{K}), by M¯\overline{M} we mean the matrix obtained by taking conjugate of each entry of MM. Conjugate transpose of a matrix MM is denoted by MM^{*} and MTM^{\text{T}} denotes its transpose. Notation diag(M)\text{diag}(M) denotes the vector consisting of the diagonal of matrix in the increasing subscripts. Matrix EnE_{n} denotes the nn by nn matrix in Mn(𝕂)M_{n}(\mathbb{K}) with all one’s. Given a vector x𝕂nx\in\mathbb{K}^{n}, by diag(x)\text{diag}(x) we mean the nn by nn diagonal matrix obtained by putting ii’th co-ordinate of xx as (i,i)(i,i) entry.

Theorem 1.1.

[50] Let AMn(𝕂)A\in M_{n}(\mathbb{K}) be a positive matrix. Let M=AAM=AA^{*} and y𝕂ny\in\mathbb{K}^{n} be the vector of row sums of AA. Then

M1nyy.\displaystyle M\succeq\frac{1}{n}yy^{*}.
Theorem 1.2.

[50] Let M,NMn(𝕂)M,N\in M_{n}(\mathbb{K}) be positive matrices. Let M=AAM=AA^{*}, M=BBM=BB^{*} and y𝕂ny\in\mathbb{K}^{n} be the vector of row sums of ABA\circ B. Then

MN(AB)(AB)1nyy.\displaystyle M\circ N\succeq(A\circ B)(A\circ B)^{*}\succeq\frac{1}{n}yy^{*}.

Immediate consequences of Theorem 1.2 are the following.

Corollary 1.3.

[50] Let MMn(𝕂)M\in M_{n}(\mathbb{K}) be a positive matrix. Then

MM¯1n(diag M)(diag M)T\displaystyle M\circ\overline{M}\succeq\frac{1}{n}(\text{diag }M)(\text{diag }M)^{\text{T}}

and

MM1n(diag M)(diag M).\displaystyle M\circ M\succeq\frac{1}{n}(\text{diag }M)(\text{diag }M)^{*}.
Corollary 1.4.

[50] Let MMn()M\in M_{n}(\mathbb{R}) be a positive matrix such that all diagonal entries are one’s. Then

MM1nEn.\displaystyle M\circ M\succeq\frac{1}{n}E_{n}.

Vybíral used Corollary 1.4 to solve two decades old Novak’s conjecture which states as follows.

Theorem 1.5.

[36, 35, 15] (Novak’s conjecture) The matrix

[l=1d1+cos(xj,lxk,l)21n]1j,kn\displaystyle\begin{bmatrix}\prod_{l=1}^{d}\frac{1+\cos(x_{j,l}-x_{k,l})}{2}-\frac{1}{n}\end{bmatrix}_{1\leq j,k\leq n}

is positive for all n,d2n,d\geq 2 and all choices of xj=(xj,1,,xj,d)dx_{j}=(x_{j,1},\dots,x_{j,d})\in\mathbb{R}^{d}, 1jn\forall 1\leq j\leq n.

Theorem 1.2 is also used in the study of random variables, numerical integration, trigonometric polynomials and tensor product problems, see [50, 14].

The purpose of this paper is to introduce the Schur product of matrices over C*-algebras, obtain some fundamental results and to state some problems. A very handy tool which we use is the theory of Hilbert C*-modules. This was first introduced by Kaplansky [25] for commutative C*-algebras and later by Paschke [38] and Rieffel [41] for non commutative C*-algebras. The theory attained a greater height from the work of Kasparov [26, 6, 20]. For an introduction to the subject Hilbert C*-modules we refer [29, 33].

Definition 1.6.

[25, 38, 41] Let 𝒜\mathcal{A} be a C*-algebra. A left module \mathcal{E} over 𝒜\mathcal{A} is said to be a (left) Hilbert C*-module if there exists a map ,:×𝒜\langle\cdot,\cdot\rangle:\mathcal{E}\times\mathcal{E}\to\mathcal{A} such that the following hold.

  1. (i)

    x,x0\langle x,x\rangle\geq 0, x\forall x\in\mathcal{E}. If xx\in\mathcal{E} satisfies x,x=0\langle x,x\rangle=0, then x=0x=0.

  2. (ii)

    x+y,z=x,z+y,z\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle, x,y,z\forall x,y,z\in\mathcal{E}.

  3. (iii)

    ax,y=ax,y\langle ax,y\rangle=a\langle x,y\rangle, x,y\forall x,y\in\mathcal{E}, a𝒜\forall a\in\mathcal{A}.

  4. (iv)

    x,y=y,x\langle x,y\rangle=\langle y,x\rangle^{*}, x,y\forall x,y\in\mathcal{E}.

  5. (v)

    \mathcal{E} is complete w.r.t. the norm xx,x\|x\|\coloneqq\sqrt{\|\langle x,x\rangle\|}, x\forall x\in\mathcal{E}.

We are going to use the following inequality.

Lemma 1.7.

[38] (Cauchy-Schwarz inequality for Hilbert C*-modules) If \mathcal{E} is a Hilbert C*-module over 𝒜\mathcal{A}, then

x,yy,xy,yx,x,x,y.\displaystyle\langle x,y\rangle\langle y,x\rangle\leq\|\langle y,y\rangle\|\langle x,x\rangle,\quad\forall x,y\in\mathcal{E}.

We encounter the following standard Hilbert C*-module in this paper. Let 𝒜\mathcal{A} be a C*-algebra and 𝒜n\mathcal{A}^{n} be the left module over 𝒜\mathcal{A} w.r.t. natural operations. Modular 𝒜\mathcal{A}-inner product on 𝒜n\mathcal{A}^{n} is defined as

(xj)j=1n,(yj)j=1nj=1nxjyj,(xj)j=1n,(yj)j=1n𝒜n.\displaystyle\langle(x_{j})_{j=1}^{n},(y_{j})_{j=1}^{n}\rangle\coloneqq\sum_{j=1}^{n}x_{j}y_{j}^{*},\quad\forall(x_{j})_{j=1}^{n},(y_{j})_{j=1}^{n}\in\mathcal{A}^{n}.

Hence the norm on 𝒜n\mathcal{A}^{n} becomes

(xj)j=1nj=1nxjxj12,(xj)j=1n𝒜n.\displaystyle\|(x_{j})_{j=1}^{n}\|\coloneqq\left\|\sum_{j=1}^{n}x_{j}x_{j}^{*}\right\|^{\frac{1}{2}},\quad\forall(x_{j})_{j=1}^{n}\in\mathcal{A}^{n}.

This paper is organized as follows. In Section 2 we define Schur/Hadamard/pointwise product of two matrices over C*-algebras (Definition 2.1). This is not a direct mimic of Schur product of matrices over scalars. After the definition of Schur product, we derive Schur product theorem for matrices over commutative C*-algebras (Theorem 2.3), σ\sigma-finite W*-algebras or AW*-algebras (Theorem 2.10). Followed by these results, we ask Pólya-Szegő-Rudin question for positive matrices over C*-algebras (Question 2.11). We then develop the paper following the developments by Vybíral in [50] to the setting of C*-algebras. In Section 3 we first derive lower bound for positive matrices over C*-algebras (Theorem 3.1) and using that we derive lower bounds for Schur product (Theorem 3.2 and Corollaries 3.3, 3.4). We later state C*-algebraic version of Novak’s conjecture (Conjecture 4.3). We solve it for commutative unital C*-algebras (Theorem 4.4). Finally we end the paper by asking Question 4.5.

2. C*-algebraic Schur product, Schur product theorem and Pólya-Szegő-Rudin question

We first recall the basics in the theory of matrices over C*-algebras. More information can be found in [52, 34]. Let 𝒜\mathcal{A} be a unital C*-algebra and nn be a natural number. Set Mn(𝒜)M_{n}(\mathcal{A}) is defined as the set of all nn by nn matrices over 𝒜\mathcal{A} which becomes an algebra with respect to natural matrix operations. The involution of an element A[aj,k]1j,knMn(𝒜)A\coloneqq[a_{j,k}]_{1\leq j,k\leq n}\in M_{n}(\mathcal{A}) as A[ak,j]1j,knA^{*}\coloneqq[a_{k,j}^{*}]_{1\leq j,k\leq n}. Then Mn(𝒜)M_{n}(\mathcal{A}) becomes a *-algebra. Gelfand-Naimark-Segal theorem says that there exists a unique universal representation (,π)(\mathcal{H},\pi), where \mathcal{H} is a Hilbert space, π:Mn(𝒜)Mn(())\pi:M_{n}(\mathcal{A})\to M_{n}(\mathcal{B}(\mathcal{H})) is an isometric *-homomorphism. Using this, the norm on Mn(𝒜)M_{n}(\mathcal{A}) is defined as

Aπ(A),AMn(𝒜)\displaystyle\|A\|\coloneqq\|\pi(A)\|,\quad\forall A\in M_{n}(\mathcal{A})

which makes Mn(𝒜)M_{n}(\mathcal{A}) as a C*-algebra (where ()\mathcal{B}(\mathcal{H}) is the C*-algebra of all continuous linear operators on \mathcal{H} equipped with the operator-norm).
We define C*-algebraic Schur product as follows.

Definition 2.1.

Let 𝒜\mathcal{A} be a C*-algebra. Given A[aj,k]1j,kn,B[bj,k]1j,knMn(𝒜)A\coloneqq[a_{j,k}]_{1\leq j,k\leq n},B\coloneqq[b_{j,k}]_{1\leq j,k\leq n}\in M_{n}(\mathcal{A}), we define the C*-algebraic Schur/Hadamard/pointwise product of AA and BB as

(2) AB12[aj,kbj,k+bj,kaj,k]1j,kn.\displaystyle A\circ B\coloneqq\frac{1}{2}\begin{bmatrix}a_{j,k}b_{j,k}+b_{j,k}a_{j,k}\end{bmatrix}_{1\leq j,k\leq n}.

Whenever the C*-algebra is commutative, then (2) becomes

AB=[aj,kbj,k]1j,kn.\displaystyle A\circ B=\begin{bmatrix}a_{j,k}b_{j,k}\end{bmatrix}_{1\leq j,k\leq n}.

In particular, Definition 2.1 reduces to the definition of classical Schur product given in Equation (1). From a direct computation, we have the following result.

Theorem 2.2.

Let 𝒜\mathcal{A} be a unital C*-algebra and let A,B,CMn(𝒜)A,B,C\in M_{n}(\mathcal{A}). Then

  1. (i)

    AB=BAA\circ B=B\circ A.

  2. (ii)

    (AB)=AB(A\circ B)^{*}=A^{*}\circ B^{*}. In particular, if AA and BB are self-adjoint, then ABA\circ B is self-adjoint.

  3. (iii)

    A(B+C)=AB+ACA\circ(B+C)=A\circ B+A\circ C.

  4. (iv)

    (A+B)C=AC+BC(A+B)\circ C=A\circ C+B\circ C.

One of the most important difference of Definition 2.1 from the classical Schur product is that the product may not be associative, i.e., (AB)CA(BC)(A\circ B)\circ C\neq A\circ(B\circ C) in general.
Similar to the scalar case, A[aj,k]1j,knMn(𝒜)A\coloneqq[a_{j,k}]_{1\leq j,k\leq n}\in M_{n}(\mathcal{A}) is said to be positive if it is self-adjoint and

Ax,x0,x𝒜n,\displaystyle\langle Ax,x\rangle\geq 0,\quad\forall x\in\mathcal{A}^{n},

where \geq is the partial order on the set of all positive elements of 𝒜\mathcal{A}. In this case we write A0A\succeq 0. It is well-known in the theory of C*-algebras that the set of all positive elements in a C*-algebra is a closed positive cone. We then have that the set of all positive matrices in Mn(𝒜)M_{n}(\mathcal{A}) is a closed positive cone. Here comes the first version of C*-algebraic Schur product theorem.

Theorem 2.3.

(Commutative C*-algebraic version of Schur product theorem) Let 𝒜\mathcal{A} be a commutative unital C*-algebra. If M,NMn(𝒜)M,N\in M_{n}(\mathcal{A}) are positive, then their Schur product MNM\circ N is also positive.

Proof.

Let x𝒜nx\in\mathcal{A}^{n} and define L(M12)T(diag x)(N12)TL\coloneqq(M^{\frac{1}{2}})^{\text{T}}(\text{diag }x)(N^{\frac{1}{2}})^{\text{T}}. First note that MNM\circ N is self-adjoint. Using the commutativity of C*-algebra, we get

(MN)x,x\displaystyle\langle(M\circ N)x,x\rangle =x(MN)x=Tr((diag x)M(diag x)NT)\displaystyle=x^{*}(M\circ N)x=\text{Tr}((\text{diag }x^{*})M(\text{diag }x)N^{\text{T}})
=Tr((diag x)M(diag x)(N12)T(N12)T)\displaystyle=\text{Tr}((\text{diag }x^{*})M(\text{diag }x)(N^{\frac{1}{2}})^{\text{T}}(N^{\frac{1}{2}})^{\text{T}})
=Tr((N12)T(diag x)M(diag x)(N12)T)\displaystyle=\text{Tr}((N^{\frac{1}{2}})^{\text{T}}(\text{diag }x^{*})M(\text{diag }x)(N^{\frac{1}{2}})^{\text{T}})
=Tr((N12)T(diag x)(M12)T(M12)T(diag x)(N12)T)\displaystyle=\text{Tr}((N^{\frac{1}{2}})^{\text{T}}(\text{diag }x^{*})(M^{\frac{1}{2}})^{\text{T}}(M^{\frac{1}{2}})^{\text{T}}(\text{diag }x)(N^{\frac{1}{2}})^{\text{T}})
=Tr(LL)0.\displaystyle=\text{Tr}(L^{*}L)\geq 0.

Since xx was arbitrary, the result follows. ∎

In the sequel, we use the following notation. Given MMn(𝒜)M\in M_{n}(\mathcal{A}), we define

(M)nMM(n times),n1,(M)0I(identity matrix in Mn(𝒜)).\displaystyle(M^{\circ})^{n}\coloneqq M\circ\cdots\circ M\quad(\text{n times}),\forall n\geq 1,\quad(M^{\circ})^{0}\coloneqq I\quad\text{(identity matrix in }M_{n}(\mathcal{A})).
Corollary 2.4.

Let 𝒜\mathcal{A} be a commutative unital C*-algebra. Let MMn(𝒜)M\in M_{n}(\mathcal{A}) be positive. If a0+a1z+a2z2++anzna_{0}+a_{1}z+a_{2}z^{2}+\cdots+a_{n}z^{n} is any polynomial with coefficients from 𝒜\mathcal{A} with all a0,,ana_{0},\dots,a_{n} are positive elements of 𝒜\mathcal{A}, then the matrix

a0I+a1M+a2(M)2++an(M)nMn(𝒜)\displaystyle a_{0}I+a_{1}M+a_{2}(M^{\circ})^{2}+\cdots+a_{n}(M^{\circ})^{n}\in M_{n}(\mathcal{A})

is positive.

Proof.

This follows from Theorem 2.3 and Mathematical induction. ∎

Remark 2.5.

Note that we used commutativity of C*-algebra in the proof of Theorem 2.3 and thus it can not be carried over to non commutative C*-algebras.

Theorem 2.3 leads us to seek a similar result for non commutative C*-algebras. At present we don’t know Schur product theorem for positive matrices over arbitrary C*-algebras. For the purpose of definiteness, we state it as an open problem.

Question 2.6.

Let 𝒜\mathcal{A} be a C*-algebra. Given positive matrices M,NMn(𝒜)M,N\in M_{n}(\mathcal{A}), does MNM\circ N is positive? In other words, classify those C*-algebras 𝒜\mathcal{A} such that MNM\circ N is positive whenever M,NMn(𝒜)M,N\in M_{n}(\mathcal{A}) are positive.

To make some progress to Question 2.6, we give an affirmative answer for certain classes of C*-algebras (von Neumann algebras). To do so we need spectral theorem for matrices over C*-algebras. First let us recall two definitions.

Definition 2.7.

[32] A W*-algebra is called σ\sigma-finite if it contains no more than a countable set of mutually orthogonal projections.

Definition 2.8.

[24] A C*-algebra 𝒜\mathcal{A} is called an AW*-algebra if the following conditions hold.

  1. (i)

    Any set of orthogonal projections has supremum.

  2. (ii)

    Any maximal commutative self-adjoint subalgebra of 𝒜\mathcal{A} is generated by its projections.

Theorem 2.9.

[32, 13] (Spectral theorem for Hilbert C*-modules) Let 𝒜\mathcal{A} be a σ\sigma-finite W*-algebra or an AW*-algebra. If MMn(𝒜)M\in M_{n}(\mathcal{A}) is normal, then there exists a unitary matrix UMn(𝒜)U\in M_{n}(\mathcal{A}) such that UMUUMU^{*} is a diagonal matrix.

Theorem 2.10.

(Non commutative C*-algebraic Schur product theorem) Let 𝒜\mathcal{A} be a σ\sigma-finite W*-algebra or an AW*-algebra and M,NMn(𝒜)M,N\in M_{n}(\mathcal{A}) be positive. Let U=[uj,k]1j,kn,V=[vj,k]1j,knMn(𝒜)U=[u_{j,k}]_{1\leq j,k\leq n},V=[v_{j,k}]_{1\leq j,k\leq n}\in M_{n}(\mathcal{A}) be unitary such that

M=U[λ1000λ2000λn]U,N=V[μ1000μ2000μn]V,\displaystyle M=U\begin{bmatrix}\lambda_{1}&0&\cdots&0\\ 0&\lambda_{2}&\cdots&0\\ \vdots&\vdots&\cdots&\vdots\\ 0&0&\cdots&\lambda_{n}\\ \end{bmatrix}U^{*},\quad N=V\begin{bmatrix}\mu_{1}&0&\cdots&0\\ 0&\mu_{2}&\cdots&0\\ \vdots&\vdots&\cdots&\vdots\\ 0&0&\cdots&\mu_{n}\\ \end{bmatrix}V^{*},

for some λ1,,λn,μ1,,μn𝒜\lambda_{1},\dots,\lambda_{n},\mu_{1},\dots,\mu_{n}\in\mathcal{A}. If all λj,μk,ul,m,vr,s\lambda_{j},\mu_{k},u_{l,m},v_{r,s}, 1j,k,l,m,r,sn1\leq j,k,l,m,r,s\leq n commute with each other, then the Schur product MNM\circ N is also positive.

Proof.

Let {u1,,un}\{u_{1},\dots,u_{n}\} be columns of UU and {v1,,vn}\{v_{1},\dots,v_{n}\} be columns of VV. Then

A=j=1nλjujuj,B=k=1nμkvkvk\displaystyle A=\sum_{j=1}^{n}\lambda_{j}u_{j}u_{j}^{*},\quad B=\sum_{k=1}^{n}\mu_{k}v_{k}v_{k}^{*}

where λ1,,λn\lambda_{1},\dots,\lambda_{n} are eigenvalues of AA, {u1,,un}\{u_{1},\dots,u_{n}\} is an orthonormal basis for 𝒜n\mathcal{A}^{n}, μ1,,μn\mu_{1},\dots,\mu_{n} are eigenvalues of BB and {v1,,vn}\{v_{1},\dots,v_{n}\} is an orthonormal basis for 𝒜n\mathcal{A}^{n} (they exist from Theorem 2.9). Definition 2 of Schur product says that MNM\circ N is self-adjoint. It is well known in the theory of C*-algebras that sum of positive elements in a C*-algebra is positive and the product of two commuting positive elements is positive. This observation, Theorem 2.2 and the following calculation shows that MNM\circ N is positive:

MN\displaystyle M\circ N =(j=1nλjujuj)(k=1nμkvkvk)=j=1nk=1nλjμk(ujuj)(vkvk)\displaystyle=\left(\sum_{j=1}^{n}\lambda_{j}u_{j}u_{j}^{*}\right)\circ\left(\sum_{k=1}^{n}\mu_{k}v_{k}v_{k}^{*}\right)=\sum_{j=1}^{n}\sum_{k=1}^{n}\lambda_{j}\mu_{k}(u_{j}u_{j}^{*})\circ(v_{k}v_{k}^{*})
=j=1nk=1nλjμk(ujvk)(ujvk)0.\displaystyle=\sum_{j=1}^{n}\sum_{k=1}^{n}\lambda_{j}\mu_{k}(u_{j}\circ v_{k})(u_{j}\circ v_{k})^{*}\succeq 0.

Since the spectral theorem fails for matrices over C*-algebras (see [10, 23, 22]), proof of Theorem 2.10 can not be executed for arbitrary C*-algebras.
Given certain order structure, one naturally considers functions (in a suitable way) which preserve the order. For matrices over C*-algebras, we formulate this in the following definition.

Definition 2.11.

Let \mathcal{B} be a subset of a C*-algebra 𝒜\mathcal{A} and nn be a natural number. Define 𝒫n()\mathcal{P}_{n}(\mathcal{B}) as the set of all nn by nn positive matrices with entries from \mathcal{B}. Given a function f:𝒜f:\mathcal{B}\to\mathcal{A}, define a function

𝒫n()A[aj,k]1j,knf[A][f(aj,k)]1j,knMn(𝒜).\displaystyle\mathcal{P}_{n}(\mathcal{B})\ni A\coloneqq\begin{bmatrix}a_{j,k}\end{bmatrix}_{1\leq j,k\leq n}\mapsto f[A]\coloneqq\begin{bmatrix}f(a_{j,k})\end{bmatrix}_{1\leq j,k\leq n}\in M_{n}(\mathcal{A}).

A function f:𝒜f:\mathcal{B}\to\mathcal{A} is said to be a positivity preserver in all dimensions if

f[A]𝒫n(𝒜),A𝒫n(),n.\displaystyle f[A]\in\mathcal{P}_{n}(\mathcal{A}),\quad\forall A\in\mathcal{P}_{n}(\mathcal{B}),\quad\forall n\in\mathbb{N}.

A function f:𝒜f:\mathcal{B}\to\mathcal{A} is said to be a positivity preserver in fixed dimension nn if

f[A]𝒫n(𝒜),A𝒫n().\displaystyle f[A]\in\mathcal{P}_{n}(\mathcal{A}),\quad\forall A\in\mathcal{P}_{n}(\mathcal{B}).

We now have the important C*-algebraic Pólya-Szegő-Rudin open problem.

Question 2.12.

(Pólya-Szegő-Rudin question for C*-algebraic Schur product of positive matrices) Let \mathcal{B} be a subset of a (commutative) C*-algebra 𝒜\mathcal{A} and 𝒫n()\mathcal{P}_{n}(\mathcal{B}) be as in Definition 2.11.

  1. (i)

    Characterize ff such that ff is a positivity preserver for all nn\in\mathbb{N}.

  2. (ii)

    Characterize ff such that ff is a positivity preserver for fixed nn.

Answer to (i) in Question 2.12 in the case 𝒜=\mathcal{A}=\mathbb{R} (which is due to Pólya and Szegő [39]) is known from the works of Schoenberg [44], Vasudeva [48], Rudin [42], Christensen and Ressel [7]. Further the answer to Question (i) in the case 𝒜=\mathcal{A}=\mathbb{C} (which is due to Rudin [42]) is also known from the work of Herz [12]. There are certain partial answers to (ii) in Question 2.12 from the works of Horn [16], Belton, Guillot, Khare, Putinar, Rajaratnam and Tao [3, 11, 4, 5, 28].
Corollary 2.4 and the observation that the set of all positive matrices in Mn(𝒜)M_{n}(\mathcal{A}) is a closed set gives a partial answer to (i) in Question 2.12.

Theorem 2.13.

Let 𝒜\mathcal{A} be a commutative unital C*-algebra. Let the power series f(z)n=0anznf(z)\coloneqq\sum_{n=0}^{\infty}a_{n}z^{n} over 𝒜\mathcal{A} be convergent on a subset \mathcal{B} of 𝒜\mathcal{A}. If all ana_{n}’s are positive elements of 𝒜\mathcal{A}, then the matrix

f[A]=n=0an(A)nMm(𝒜)\displaystyle f[A]=\sum_{n=0}^{\infty}a_{n}(A^{\circ})^{n}\in M_{m}(\mathcal{A})

is positive for all positive AMm(𝒜)A\in M_{m}(\mathcal{A}), for all mm\in\mathbb{N}. In other words, a convergent power series over a commutative unital C*-algebra with positive elements as coefficients is a positivity preserver in all dimensions.

3. Lower bounds for C*-algebraic Schur product

Our first result is on the lower bound of positive matrices over C*-algebras.

Theorem 3.1.

Let 𝒜\mathcal{A} be a unital C*-algebra (need not be commutative) and AMn(𝒜)A\in M_{n}(\mathcal{A}) be a positive matrix. Let M=AAM=AA^{*} and y𝒜ny\in\mathcal{A}^{n} be the vector of row sums of AA. Then

M1nyy,\displaystyle M\succeq\frac{1}{n}yy^{*},

i.e.,

(3) Mx,x1nx,x,x𝒜n.\displaystyle\langle Mx,x\rangle\geq\frac{1}{n}\langle x,x\rangle,\quad\forall x\in\mathcal{A}^{n}.
Proof.

Set

A[a1,1a1,2a1,na2,1a2,2a2,nan,1an,2an,n]Mn(𝒜),x(x1x2xn)𝒜n,y(y1y2yn)𝒜n.\displaystyle A\coloneqq\begin{bmatrix}a_{1,1}&a_{1,2}&\cdots&a_{1,n}\\ a_{2,1}&a_{2,2}&\cdots&a_{2,n}\\ \vdots&\vdots&&\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\end{bmatrix}\in M_{n}(\mathcal{A}),\quad x\coloneqq\begin{pmatrix}x_{1}\\ x_{2}\\ \vdots\\ x_{n}\\ \end{pmatrix}\in\mathcal{A}^{n},\quad y\coloneqq\begin{pmatrix}y_{1}\\ y_{2}\\ \vdots\\ y_{n}\\ \end{pmatrix}\in\mathcal{A}^{n}.

Since yy is the vector of row sums of AA, we have

yj=k=1naj,k,1jn.\displaystyle y_{j}=\sum_{k=1}^{n}a_{j,k},\quad\forall 1\leq j\leq n.

Consider

Mx,x\displaystyle\langle Mx,x\rangle =AAx,x=Ax,Ax=(k=1nak,1xkk=1nak,2xkk=1nak,nxk),(l=1nal,1xll=1nal,2xll=1nal,nxl)\displaystyle=\langle AA^{*}x,x\rangle=\langle A^{*}x,A^{*}x\rangle=\left\langle\begin{pmatrix}\sum_{k=1}^{n}a_{k,1}^{*}x_{k}\\ \sum_{k=1}^{n}a_{k,2}^{*}x_{k}\\ \vdots\\ \sum_{k=1}^{n}a_{k,n}^{*}x_{k}\\ \end{pmatrix},\begin{pmatrix}\sum_{l=1}^{n}a_{l,1}^{*}x_{l}\\ \sum_{l=1}^{n}a_{l,2}^{*}x_{l}\\ \vdots\\ \sum_{l=1}^{n}a_{l,n}^{*}x_{l}\\ \end{pmatrix}\right\rangle
=j=1n(k=1nak,jxk)(l=1nal,jxl)=j=1nk=1nl=1nak,jxkxlal,j\displaystyle=\sum_{j=1}^{n}\left(\sum_{k=1}^{n}a_{k,j}^{*}x_{k}\right)\left(\sum_{l=1}^{n}a_{l,j}^{*}x_{l}\right)^{*}=\sum_{j=1}^{n}\sum_{k=1}^{n}\sum_{l=1}^{n}a_{k,j}^{*}x_{k}x_{l}^{*}a_{l,j}

which is the left side of Inequality (3). Set

en(111)𝒜n,z(z1z2zn)(k=1nak,1xkk=1nak,2xkk=1nak,nxk)𝒜n.\displaystyle e_{n}\coloneqq\begin{pmatrix}1\\ 1\\ \vdots\\ 1\\ \end{pmatrix}\in\mathcal{A}^{n},\quad z\coloneqq\begin{pmatrix}z_{1}\\ z_{2}\\ \vdots\\ z_{n}\\ \end{pmatrix}\coloneqq\begin{pmatrix}\sum_{k=1}^{n}a_{k,1}^{*}x_{k}\\ \sum_{k=1}^{n}a_{k,2}^{*}x_{k}\\ \vdots\\ \sum_{k=1}^{n}a_{k,n}^{*}x_{k}\\ \end{pmatrix}\in\mathcal{A}^{n}.

We now consider the right side of Inequality (3) and use Lemma 1.7 to get

1nyyx,x\displaystyle\frac{1}{n}\langle yy^{*}x,x\rangle =1nyx,yx\displaystyle=\frac{1}{n}\langle y^{*}x,y^{*}x\rangle
=1n(y1y2yn)(x1x2xn),(y1y2yn)(x1x2xn)\displaystyle=\frac{1}{n}\left\langle\begin{pmatrix}y_{1}^{*}&y_{2}^{*}&\dots&y_{n}^{*}\end{pmatrix}\begin{pmatrix}x_{1}\\ x_{2}\\ \vdots\\ x_{n}\\ \end{pmatrix},\begin{pmatrix}y_{1}^{*}&y_{2}^{*}&\dots&y_{n}^{*}\end{pmatrix}\begin{pmatrix}x_{1}\\ x_{2}\\ \vdots\\ x_{n}\\ \end{pmatrix}\right\rangle
=1n(k=1nykxk)(l=1nylxl)=1n(k=1nykxk)(l=1nxlyl)\displaystyle=\frac{1}{n}\left(\sum_{k=1}^{n}y_{k}^{*}x_{k}\right)\left(\sum_{l=1}^{n}y_{l}^{*}x_{l}\right)^{*}=\frac{1}{n}\left(\sum_{k=1}^{n}y_{k}^{*}x_{k}\right)\left(\sum_{l=1}^{n}x_{l}^{*}y_{l}\right)
=1n(k=1nr=1nak,rxk)(l=1nxls=1nal,s)\displaystyle=\frac{1}{n}\left(\sum_{k=1}^{n}\sum_{r=1}^{n}a_{k,r}^{*}x_{k}\right)\left(\sum_{l=1}^{n}x_{l}^{*}\sum_{s=1}^{n}a_{l,s}\right)
=1n(k=1nr=1nak,rxk)(l=1ns=1nxlal,s)\displaystyle=\frac{1}{n}\left(\sum_{k=1}^{n}\sum_{r=1}^{n}a_{k,r}^{*}x_{k}\right)\left(\sum_{l=1}^{n}\sum_{s=1}^{n}x_{l}^{*}a_{l,s}\right)
=1n(r=1nk=1nak,rxk)(s=1nl=1nxlal,s)\displaystyle=\frac{1}{n}\left(\sum_{r=1}^{n}\sum_{k=1}^{n}a_{k,r}^{*}x_{k}\right)\left(\sum_{s=1}^{n}\sum_{l=1}^{n}x_{l}^{*}a_{l,s}\right)
=1n(r=1n(k=1nak,rxk).1)(s=1n1.(l=1nal,sxl))\displaystyle=\frac{1}{n}\left(\sum_{r=1}^{n}\left(\sum_{k=1}^{n}a_{k,r}^{*}x_{k}\right).1\right)\left(\sum_{s=1}^{n}1.\left(\sum_{l=1}^{n}a_{l,s}^{*}x_{l}\right)^{*}\right)
=1n(k=1nak,1xkk=1nak,2xkk=1nak,nxk),(111)(111),(k=1nak,1xkk=1nak,2xkk=1nak,nxk)\displaystyle=\frac{1}{n}\left\langle\begin{pmatrix}\sum_{k=1}^{n}a_{k,1}^{*}x_{k}\\ \sum_{k=1}^{n}a_{k,2}^{*}x_{k}\\ \vdots\\ \sum_{k=1}^{n}a_{k,n}^{*}x_{k}\\ \end{pmatrix},\begin{pmatrix}1\\ 1\\ \vdots\\ 1\\ \end{pmatrix}\right\rangle\left\langle\begin{pmatrix}1\\ 1\\ \vdots\\ 1\\ \end{pmatrix},\begin{pmatrix}\sum_{k=1}^{n}a_{k,1}^{*}x_{k}\\ \sum_{k=1}^{n}a_{k,2}^{*}x_{k}\\ \vdots\\ \sum_{k=1}^{n}a_{k,n}^{*}x_{k}\\ \end{pmatrix}\right\rangle
=1nz,enen,z1nen,enz,z=z,z\displaystyle=\frac{1}{n}\langle z,e_{n}\rangle\langle e_{n},z\rangle\leq\frac{1}{n}\|\langle e_{n},e_{n}\rangle\|\langle z,z\rangle=\langle z,z\rangle
=j=1nzjzj=j=1n(k=1nak,jxk)(l=1nal,jxl)\displaystyle=\sum_{j=1}^{n}z_{j}z_{j}^{*}=\sum_{j=1}^{n}\left(\sum_{k=1}^{n}a_{k,j}^{*}x_{k}\right)\left(\sum_{l=1}^{n}a_{l,j}^{*}x_{l}\right)^{*}
=j=1nk=1nl=1nak,jxkxlal,j=Mx,x\displaystyle=\sum_{j=1}^{n}\sum_{k=1}^{n}\sum_{l=1}^{n}a_{k,j}^{*}x_{k}x_{l}^{*}a_{l,j}=\langle Mx,x\rangle

which is the required inequality. ∎

Theorem 3.2.

Let 𝒜\mathcal{A} be a commutative unital C*-algebra. Let M,NMn(𝒜)M,N\in M_{n}(\mathcal{A}) be positive matrices. Let M=AAM=AA^{*}, M=BBM=BB^{*} and y𝒜ny\in\mathcal{A}^{n} be the vector of row sums of ABA\circ B. Then

MN(AB)(AB)1nyy.\displaystyle M\circ N\succeq(A\circ B)(A\circ B)^{*}\succeq\frac{1}{n}yy^{*}.
Proof.

Let {A1,,An}\{A_{1},\dots,A_{n}\} be columns of AA and {B1,,Bn}\{B_{1},\dots,B_{n}\} be columns of BB. Then using commutativity and Theorem 3.1 we get

MN\displaystyle M\circ N =(AA)(BB)=(j=1nAjAj)(k=1nBkBk)\displaystyle=(AA^{*})\circ(BB^{*})=\left(\sum_{j=1}^{n}A_{j}A_{j}^{*}\right)\circ\left(\sum_{k=1}^{n}B_{k}B_{k}^{*}\right)
=j=1nk=1n((AjAj)(BkBk))=j=1nk=1n(AjBk)(AjBk)\displaystyle=\sum_{j=1}^{n}\sum_{k=1}^{n}((A_{j}A_{j}^{*})\circ(B_{k}B_{k}^{*}))=\sum_{j=1}^{n}\sum_{k=1}^{n}(A_{j}\circ B_{k})(A_{j}\circ B_{k})^{*}
j=1n(AjBj)(AjBj)=(AB)(AB)1nyy.\displaystyle\succeq\sum_{j=1}^{n}(A_{j}\circ B_{j})(A_{j}\circ B_{j})^{*}=(A\circ B)(A\circ B)^{*}\succeq\frac{1}{n}yy^{*}.

Corollary 3.3.

Let MMn(𝒜)M\in M_{n}(\mathcal{A}) be a positive matrix. Then

MM1n(diag M)(diag M).\displaystyle M\circ M\succeq\frac{1}{n}(\text{diag }M)(\text{diag }M)^{*}.
Proof.

Let B=AB=A in Theorem 3.2. Result follows by noting that diagonal entries of MM are row sums of AAA\circ A. ∎

Following corollary is immediate from Corollary 3.3.

Corollary 3.4.

Let MMn(𝒜)M\in M_{n}(\mathcal{A}) be a positive matrix such that all diagonal entries of MM are one’s. Then

MM1nEn.\displaystyle M\circ M\succeq\frac{1}{n}E_{n}.

4. C*-algebraic Novak’s conjecture

It is well known that the exponential map

e:𝒜xexn=0xnn!𝒜\displaystyle e:\mathcal{A}\ni x\mapsto e^{x}\coloneqq\sum_{n=0}^{\infty}\frac{x^{n}}{n!}\in\mathcal{A}

is a well defined map on a unital C*-algebra (more is true, it is well-defined on unital Banach algebras). Using this map and from the definition of trigonometric functions (for instance, see Chapter 8 in [43]) we define C*-algebraic sine and cosine functions as follows.

Definition 4.1.

Let 𝒜\mathcal{A} be a unital C*-algebra. Define the C*-algebraic sine function by

sin:𝒜xsinxeixeix2i𝒜.\displaystyle\sin:\mathcal{A}\ni x\mapsto\sin x\coloneqq\frac{e^{ix}-e^{-ix}}{2i}\in\mathcal{A}.

Define the C*-algebraic cosine function by

cos:𝒜xcosxeix+eix2𝒜.\displaystyle\cos:\mathcal{A}\ni x\mapsto\cos x\coloneqq\frac{e^{ix}+e^{-ix}}{2}\in\mathcal{A}.

By a direct computation, we have the following result. The result also shows the similarity and differences of C*-algebraic trigonometric functions with usual trigonometric functions.

Theorem 4.2.

Let 𝒜\mathcal{A} be a unital C*-algebra. Then

  1. (i)

    sin(x)=sinx,x𝒜.\sin(-x)=-\sin x,\forall x\in\mathcal{A}.

  2. (ii)

    cos(x)=cosx,x𝒜.\cos(-x)=\cos x,\forall x\in\mathcal{A}.

  3. (iii)

    sin(x+y)=sinxcosy+cosxsiny,x,y𝒜\sin(x+y)=\sin x\cos y+\cos x\sin y,\forall x,y\in\mathcal{A} such that xy=yxxy=yx.

  4. (iv)

    cos(x+y)=cosxcosysinxsiny,x,y𝒜\cos(x+y)=\cos x\cos y-\sin x\sin y,\forall x,y\in\mathcal{A} such that xy=yxxy=yx.

  5. (v)

    (sinx)=sinx,x𝒜.(\sin x)^{*}=\sin x^{*},\forall x\in\mathcal{A}.

  6. (vi)

    (cosx)=cosx,x𝒜.(\cos x)^{*}=\cos x^{*},\forall x\in\mathcal{A}.

  7. (vii)

    sin2x+cos2x=1,x𝒜.\sin^{2}x+\cos^{2}x=1,\forall x\in\mathcal{A}.

In the sequel, by 𝒜sa\mathcal{A}_{\text{sa}} we mean the set of all self-adjoint elements in the unital C*-algebra 𝒜\mathcal{A}. Motivated from Novak’s conjecture (Theorem 1.5), we formulate the following conjecture.

Conjecture 4.3.

(C*-algebraic Novak’s conjecture) Let 𝒜\mathcal{A} be a unital C*-algebra. Then the matrix

[l=1d1+cos(xj,lxk,l)21n]1j,kn\displaystyle\begin{bmatrix}\prod_{l=1}^{d}\frac{1+\cos(x_{j,l}-x_{k,l})}{2}-\frac{1}{n}\end{bmatrix}_{1\leq j,k\leq n}

is positive for all n,d2n,d\geq 2 and all choices of xj=(xj,1,,xj,d)𝒜sadx_{j}=(x_{j,1},\dots,x_{j,d})\in\mathcal{A}_{\text{sa}}^{d}, 1jn\forall 1\leq j\leq n.

We solve a special case of Conjecture 4.3.

Theorem 4.4.

(Commutative C*-algebraic Novak’s conjecture) Let 𝒜\mathcal{A} be a commutative unital C*-algebra. Then the matrix

[l=1d1+cos(xj,lxk,l)21n]1j,kn\displaystyle\begin{bmatrix}\prod_{l=1}^{d}\frac{1+\cos(x_{j,l}-x_{k,l})}{2}-\frac{1}{n}\end{bmatrix}_{1\leq j,k\leq n}

is positive for all n,d2n,d\geq 2 and all choices of xj=(xj,1,,xj,d)𝒜sadx_{j}=(x_{j,1},\dots,x_{j,d})\in\mathcal{A}_{\text{sa}}^{d}, 1jn\forall 1\leq j\leq n.

Proof.

We first show that the matrix

A[cos(zjzk)]1j,kn\displaystyle A\coloneqq\begin{bmatrix}\cos(z_{j}-z_{k})\end{bmatrix}_{1\leq j,k\leq n}

is positive for all n,d2n,d\geq 2 and all choices of z1,,zn𝒜saz_{1},\dots,z_{n}\in\mathcal{A}_{\text{sa}}. First note that Theorem 4.2 says that the matrix AA is self adjoint. An important theorem used by Vybíral in his proof of Novak’s conjecture is the Bochner theorem [40]. Since Bochner theorem for C*-algebras is probably not known, we use Theorem 4.2 and make a direct computation which is inspired from computation done in [46]. Let y=(y1,,yn)𝒜sady=(y_{1},\dots,y_{n})\in\mathcal{A}_{\text{sa}}^{d}. Then

Ay,y\displaystyle\langle Ay,y\rangle =j=1nk=1n(cos(zjzk))yjyk\displaystyle=\sum_{j=1}^{n}\sum_{k=1}^{n}(\cos(z_{j}-z_{k}))y_{j}y_{k}^{*}
=j=1nk=1n(coszjcoszk+sinzjsinzk)yjyk\displaystyle=\sum_{j=1}^{n}\sum_{k=1}^{n}(\cos z_{j}\cos z_{k}+\sin z_{j}\sin z_{k})y_{j}y_{k}^{*}
=(j=1n(coszj)yj)(j=1n(coszj)yj)+(j=1n(sinzj)yj)(j=1n(sinzj)yj)\displaystyle=\left(\sum_{j=1}^{n}(\cos z_{j})y_{j}\right)\left(\sum_{j=1}^{n}(\cos z_{j})y_{j}\right)^{*}+\left(\sum_{j=1}^{n}(\sin z_{j})y_{j}\right)\left(\sum_{j=1}^{n}(\sin z_{j})y_{j}\right)^{*}
0.\displaystyle\geq 0.

We define nn by nn matrices M1,,MdM_{1},\dots,M_{d} as follows.

Ml[cos(xj,lxk,l2)]1j,kn,1ld.\displaystyle M_{l}\coloneqq\begin{bmatrix}\cos\left(\frac{x_{j,l}-x_{k,l}}{2}\right)\end{bmatrix}_{1\leq j,k\leq n},\quad\forall 1\leq l\leq d.

Theorem 2.3 then says that the matrix

MM1Md=[l=1dcos(xj,lxk,l2)]1j,kn\displaystyle M\coloneqq M_{1}\circ\cdots\circ M_{d}=\begin{bmatrix}\prod_{l=1}^{d}\cos\left(\frac{x_{j,l}-x_{k,l}}{2}\right)\end{bmatrix}_{1\leq j,k\leq n}

is positive. Since all diagonal entries of MM are one’s, we can apply Corollary 3.4 to get

[l=1d1+cos(xj,lxk,l)2]1j,kn=[l=1dcos2(xj,lxk,l2)]1j,kn=MM1nEn,\displaystyle\begin{bmatrix}\prod_{l=1}^{d}\frac{1+\cos(x_{j,l}-x_{k,l})}{2}\end{bmatrix}_{1\leq j,k\leq n}=\begin{bmatrix}\prod_{l=1}^{d}\cos^{2}\left(\frac{x_{j,l}-x_{k,l}}{2}\right)\end{bmatrix}_{1\leq j,k\leq n}=M\circ M\succeq\frac{1}{n}E_{n},

i.e.,

[l=1d1+cos(xj,lxk,l)21n]1j,kn0.\displaystyle\begin{bmatrix}\prod_{l=1}^{d}\frac{1+\cos(x_{j,l}-x_{k,l})}{2}-\frac{1}{n}\end{bmatrix}_{1\leq j,k\leq n}\succeq 0.

We end the paper by asking an open problem similar to question asked by Vybíral in arXiv version (see https://arxiv.org/abs/1909.11726v1) of the paper [50].

Question 4.5.

Can the bound in Theorem 3.2 be improved for the C*-algebraic Schur product of positive matrices over (commutative) unital C*-algebras?

Final sentense: Improved version of Theorem 1.2 is given by Dr. Apoorva Khare (see Theorem A in [27]) but it seems that the arguments used in the proof of Theorem A in [27] do not work for C*-algebras.

5. Acknowledgements

I thank Dr. P. Sam Johnson, Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka (NITK), Surathkal for his help and some discussions.

References

  • [1] T. Ando. Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl., 26:203–241, 1979.
  • [2] R. B. Bapat and Man Kam Kwong. A generalization of AA1IA\circ A^{-1}\geq I. Linear Algebra Appl., 93:107–112, 1987.
  • [3] Alexander Belton, Dominique Guillot, Apoorva Khare, and Mihai Putinar. Matrix positivity preservers in fixed dimension. I. Adv. Math., 298:325–368, 2016.
  • [4] Alexander Belton, Dominique Guillot, Apoorva Khare, and Mihai Putinar. A panorama of positivity. I: Dimension free. In Analysis of operators on function spaces, Trends Math., pages 117–164. Birkhäuser/Springer, Cham, 2019.
  • [5] Alexander Belton, Dominique Guillot, Apoorva Khare, and Mihai Putinar. A panorama of positivity. II: Fixed dimension. In Complex analysis and spectral theory, volume 743 of Contemp. Math., pages 109–150. Amer. Math. Soc., [Providence], RI, 2020.
  • [6] Bruce Blackadar. KK-theory for operator algebras, volume 5 of Mathematical Sciences Research Institute Publications. Springer-Verlag, New York, 1986.
  • [7] Jens Peter Reus Christensen and Paul Ressel. Functions operating on positive definite matrices and a theorem of Schoenberg. Trans. Amer. Math. Soc., 243:89–95, 1978.
  • [8] Miroslav Fiedler. Über eine Ungleichung für positiv definite Matrizen. Math. Nachr., 23:197–199, 1961.
  • [9] Miroslav Fiedler and Thomas L. Markham. An observation on the Hadamard product of Hermitian matrices. Linear Algebra Appl., 215:179–182, 1995.
  • [10] Karsten Grove and Gert Kjærgå rd Pedersen. Diagonalizing matrices over C(X)C(X). J. Funct. Anal., 59(1):65–89, 1984.
  • [11] Dominique Guillot, Apoorva Khare, and Bala Rajaratnam. Preserving positivity for rank-constrained matrices. Trans. Amer. Math. Soc., 369(9):6105–6145, 2017.
  • [12] Carl S. Herz. Fonctions opérant sur les fonctions définies-positives. Ann. Inst. Fourier (Grenoble), 13:161–180, 1963.
  • [13] Chris Heunen and Manuel L. Reyes. Diagonalizing matrices over AW{\rm AW}^{*}-algebras. J. Funct. Anal., 264(8):1873–1898, 2013.
  • [14] Aicke Hinrichs, David Krieg, Erich Novak, and Jan Vybíral. Lower bounds for the error of quadrature formulas for Hilbert spaces. J. Complexity, 65:101544, 2021.
  • [15] Aicke Hinrichs and Jan Vybíral. On positive positive-definite functions and Bochner’s Theorem. J. Complexity, 27(3-4):264–272, 2011.
  • [16] Roger A. Horn. The theory of infinitely divisible matrices and kernels. Trans. Amer. Math. Soc., 136:269–286, 1969.
  • [17] Roger A. Horn. The Hadamard product. In Matrix theory and applications (Phoenix, AZ, 1989), volume 40 of Proc. Sympos. Appl. Math., pages 87–169. Amer. Math. Soc., Providence, RI, 1990.
  • [18] Roger A. Horn and Charles R. Johnson. Topics in matrix analysis. Cambridge University Press, Cambridge, 1994.
  • [19] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, second edition, 2013.
  • [20] Kjeld Knudsen Jensen and Klaus Thomsen. Elements of KKKK-theory. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1991.
  • [21] Charles R. Johnson. Partitioned and Hadamard product matrix inequalities. J. Res. Nat. Bur. Standards, 83(6):585–591, 1978.
  • [22] Richard V. Kadison. Diagonalizing matrices over operator algebras. Bull. Amer. Math. Soc. (N.S.), 8(1):84–86, 1983.
  • [23] Richard V. Kadison. Diagonalizing matrices. Amer. J. Math., 106(6):1451–1468, 1984.
  • [24] Irving Kaplansky. Projections in Banach algebras. Ann. of Math. (2), 53:235–249, 1951.
  • [25] Irving Kaplansky. Modules over operator algebras. Amer. J. Math., 75:839–858, 1953.
  • [26] G. G. Kasparov. Hilbert CC^{\ast}-modules: theorems of Stinespring and Voiculescu. J. Operator Theory, 4(1):133–150, 1980.
  • [27] Apoorva Khare. Sharp nonzero lower bounds for the schur product theorem. Proc. Amer. Math. Soc. https://doi.org/10.1090/proc/15652.
  • [28] Apoorva Khare and Terence Tao. On the sign patterns of entrywise positivity preservers in fixed dimension. American Journal of Mathematics: arXiv.org/abs/1708.05197v5 [7 January 2021].
  • [29] E. C. Lance. Hilbert CC^{*}-modules: A toolkit for operator algebraists, volume 210 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1995.
  • [30] Shuangzhe Liu. Inequalities involving Hadamard products of positive semidefinite matrices. J. Math. Anal. Appl., 243(2):458–463, 2000.
  • [31] Shuangzhe Liu and Götz Trenkler. Hadamard, Khatri-Rao, Kronecker and other matrix products. Int. J. Inf. Syst. Sci., 4(1):160–177, 2008.
  • [32] V. M. Manuilov. Diagonalizing operators in Hilbert modules over CC^{\ast}-algebras. J. Math. Sci. (New York), 98(2):202–244, 2000.
  • [33] V. M. Manuilov and E. V. Troitsky. Hilbert CC^{*}-modules, volume 226 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 2005.
  • [34] Gerard J. Murphy. CC^{*}-algebras and operator theory. Academic Press, Inc., Boston, MA, 1990.
  • [35] Erich Novak. Intractability results for positive quadrature formulas and extremal problems for trigonometric polynomials. J. Complexity, 15(3):299–316, 1999.
  • [36] Erich Novak and Henryk Woźniakowski. Tractability of multivariate problems. Vol. 1: Linear information, volume 6 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2008.
  • [37] A. Oppenheim. Inequalities Connected with Definite Hermitian Forms. J. London Math. Soc., 5(2):114–119, 1930.
  • [38] William L. Paschke. Inner product modules over BB^{\ast}-algebras. Trans. Amer. Math. Soc., 182:443–468, 1973.
  • [39] Georg Pólya and Gabor Szegő. Aufgaben und Lehrsätze aus der Analysis. Band II: Funktionentheorie, Nullstellen, Polynome Determinanten, Zahlentheorie. Springer-Verlag, Berlin-New York, 1971. Vierte Auflage, Heidelberger Taschenbücher, Band 74.
  • [40] Michael Reed and Barry Simon. Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
  • [41] Marc A. Rieffel. Induced representations of CC^{\ast}-algebras. Advances in Math., 13:176–257, 1974.
  • [42] Walter Rudin. Positive definite sequences and absolutely monotonic functions. Duke Math. J., 26:617–622, 1959.
  • [43] Walter Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, third edition, 1976.
  • [44] I. J. Schoenberg. Positive definite functions on spheres. Duke Math. J., 9:96–108, 1942.
  • [45] J. Schur. Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. J. Reine Angew. Math., 140:1–28, 1911.
  • [46] James Stewart. Positive definite functions and generalizations, an historical survey. Rocky Mountain J. Math., 6(3):409–434, 1976.
  • [47] George P. H. Styan. Hadamard products and multivariate statistical analysis. Linear Algebra Appl., 6:217–240, 1973.
  • [48] Harkrishan Vasudeva. Positive definite matrices and absolutely monotonic functions. Indian J. Pure Appl. Math., 10(7):854–858, 1979.
  • [49] George Visick. A quantitative version of the observation that the Hadamard product is a principal submatrix of the Kronecker product. Linear Algebra Appl., 304(1-3):45–68, 2000.
  • [50] Jan Vybíral. A variant of Schur’s product theorem and its applications. Adv. Math., 368:107140, 9, 2020.
  • [51] Bo-Ying Wang and Fuzhen Zhang. Schur complements and matrix inequalities of Hadamard products. Linear and Multilinear Algebra, 43(1-3):315–326, 1997.
  • [52] N. E. Wegge-Olsen. KK-theory and CC^{*}-algebras: A friendly approach. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.
  • [53] Fuzhen Zhang. Schur complements and matrix inequalities in the Löwner ordering. Linear Algebra Appl., 321(1-3):399–410, 2000.
  • [54] Fuzhen Zhang. Matrix theory: Basic results and techniques. Universitext. Springer, New York, second edition, 2011.