This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

This is the title

EXTENSION OF FRAMES AND BASES - II
K. MAHESH KRISHNA AND P. SAM JOHNSON

Department of Mathematical and Computational Sciences

National Institute of Technology Karnataka (NITK), Surathkal

Mangaluru 575 025, India

Emails: [email protected], [email protected],

[email protected], [email protected]

Date:

  Abstract: Operator-valued frame (GG-frame), as a generalization of frame is introduced by Kaftal, Larson, and Zhang in Trans. Amer. Math. Soc., 361(12):6349-6385, 2009 and by Sun in J. Math. Anal. Appl., 322(1):437-452, 2006. It has been further extended in the paper arXiv:1810.01629 [math.OA] 3 October 2018, so as to have a rich theory on operator-valued frames for Hilbert spaces as well as for Banach spaces. The continuous version has been studied in this paper when the indexing set is a measure space. We study duality, similarity, orthogonality and stability of this extension. Several characterizations are given including a notable characterization when the measure space is a locally compact group. Variation formula, dimension formula and trace formula are derived when the Hilbert space is finite dimensional.

Keywords: Frames, weak integrals, continuous operator-valued frames, unitary representations, locally compact groups, perturbation.

Mathematics Subject Classification (2010): Primary 42C15, 47A13, 47B65, 46G10; Secondary 46E40, 28B05, 22D10.

1. Introduction

Let \mathcal{H}, 0\mathcal{H}_{0} be Hilbert spaces, (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) be the Banach space of all bounded linear operators from \mathcal{H} to 0\mathcal{H}_{0} and ()(,)\mathcal{B}(\mathcal{H})\coloneqq\mathcal{B}(\mathcal{H},\mathcal{H}). Letter 𝕁\mathbb{J} denotes an indexing set and 𝕂\mathbb{K} denotes the field of scalars (\mathbb{R} or \mathbb{C}).

Definition 1.1.

[14, 10] A collection {xj}j𝕁\{x_{j}\}_{j\in\mathbb{J}} in a Hilbert space \mathcal{H} is said to be a (discrete)

  1. (i)

    frame for \mathcal{H} if there exist a,b>0a,b>0 such that

    ah2j𝕁|h,xj|2bh2,h.a\|h\|^{2}\leq\sum_{j\in\mathbb{J}}|\langle h,x_{j}\rangle|^{2}\leq b\|h\|^{2},\quad\forall h\in\mathcal{H}.
  2. (ii)

    Bessel sequence for \mathcal{H} if there exists b>0b>0 such that

    j𝕁|h,xj|2bh2,h.\sum_{j\in\mathbb{J}}|\langle h,x_{j}\rangle|^{2}\leq b\|h\|^{2},\quad\forall h\in\mathcal{H}.

We refer [10, 51, 27, 8, 23, 24, 6, 44, 16, 12, 5, 19] for more details on frames (and a well studied class of frames) and Bessel sequences in Hilbert spaces. Most general version of Definition 1.1 is

Definition 1.2.

[33, 47] A collection {Aj}j𝕁\{A_{j}\}_{j\in\mathbb{J}} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is said to be an operator-valued

  1. (i)

    frame in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if the series j𝕁AjAj\sum_{j\in\mathbb{J}}A_{j}^{*}A_{j} converges in the strong-operator topology on ()\mathcal{B}(\mathcal{H}) to a bounded positive invertible operator.

  2. (ii)

    Bessel sequence in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if the series j𝕁AjAj\sum_{j\in\mathbb{J}}A_{j}^{*}A_{j} converges in the strong-operator topology on ()\mathcal{B}(\mathcal{H}) to a bounded positive operator.

We refer [33, 47, 26, 40, 48] for more details on operator-valued frames and Bessel sequences in Hilbert spaces. In [36] we defined the following two definitions.

Definition 1.3.

[36] Let {τj}j𝕁\{\tau_{j}\}_{j\in\mathbb{J}} be a set of vectors in a Hilbert space \mathcal{H}. A set of vectors {xj}j𝕁\{x_{j}\}_{j\in\mathbb{J}} in \mathcal{H} is said to be a

  1. (i)

    frame with respect to (w.r.t.) {τj}j𝕁\{\tau_{j}\}_{j\in\mathbb{J}} if there are c,d>0c,d>0 such that

    1. (a)

      the map hj𝕁h,xjτj\mathcal{H}\ni h\mapsto\sum_{j\in\mathbb{J}}\langle h,x_{j}\rangle\tau_{j}\in\mathcal{H} is a well-defined bounded positive invertible operator.

    2. (b)

      j𝕁|h,xj|2ch2,h;j𝕁|h,τj|2dh2,h.\sum_{j\in\mathbb{J}}|\langle h,x_{j}\rangle|^{2}\leq c\|h\|^{2},\forall h\in\mathcal{H};\sum_{j\in\mathbb{J}}|\langle h,\tau_{j}\rangle|^{2}\leq d\|h\|^{2},\forall h\in\mathcal{H}.

  2. (ii)

    Bessel sequence w.r.t. {τj}j𝕁\{\tau_{j}\}_{j\in\mathbb{J}} if there are c,d>0c,d>0 such that

    1. (a)

      the map hj𝕁h,xjτj\mathcal{H}\ni h\mapsto\sum_{j\in\mathbb{J}}\langle h,x_{j}\rangle\tau_{j}\in\mathcal{H} is a well-defined bounded positive operator.

    2. (b)

      j𝕁|h,xj|2ch2,h;j𝕁|h,τj|2dh2,h.\sum_{j\in\mathbb{J}}|\langle h,x_{j}\rangle|^{2}\leq c\|h\|^{2},\forall h\in\mathcal{H};\sum_{j\in\mathbb{J}}|\langle h,\tau_{j}\rangle|^{2}\leq d\|h\|^{2},\forall h\in\mathcal{H}.

Definition 1.4.

[36] Define Lj:0hejh2(𝕁)0L_{j}:\mathcal{H}_{0}\ni h\mapsto e_{j}\otimes h\in\ell^{2}(\mathbb{J})\otimes\mathcal{H}_{0}, where {ej}j𝕁\{e_{j}\}_{j\in\mathbb{J}} is the standard orthonormal basis for 2(𝕁)\ell^{2}(\mathbb{J}), for each j𝕁j\in\mathbb{J}. A collection {Aj}j𝕁\{A_{j}\}_{j\in\mathbb{J}} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is said to be an operator-valued

  1. (i)

    frame in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with respect to a collection {Ψj}j𝕁\{\Psi_{j}\}_{j\in\mathbb{J}} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if

    1. (a)

      the series j𝕁ΨjAj\sum_{j\in\mathbb{J}}\Psi_{j}^{*}A_{j} converges in the strong-operator topology on ()\mathcal{B}(\mathcal{H}) to a bounded positive invertible operator,

    2. (b)

      both j𝕁LjAj\sum_{j\in\mathbb{J}}L_{j}A_{j}, j𝕁LjΨj\sum_{j\in\mathbb{J}}L_{j}\Psi_{j} converge in the strong-operator topology on (,2(𝕁)0)\mathcal{B}(\mathcal{H},\ell^{2}(\mathbb{J})\otimes\mathcal{H}_{0}) to bounded operators.

  2. (ii)

    Bessel sequence in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with respect to a collection {Ψj}j𝕁\{\Psi_{j}\}_{j\in\mathbb{J}} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if

    1. (a)

      the series j𝕁ΨjAj\sum_{j\in\mathbb{J}}\Psi_{j}^{*}A_{j} converges in the strong-operator topology on ()\mathcal{B}(\mathcal{H}) to a bounded positive operator,

    2. (b)

      both j𝕁LjAj\sum_{j\in\mathbb{J}}L_{j}A_{j}, j𝕁LjΨj\sum_{j\in\mathbb{J}}L_{j}\Psi_{j} converge in the strong-operator topology on (,2(𝕁)0)\mathcal{B}(\mathcal{H},\ell^{2}(\mathbb{J})\otimes\mathcal{H}_{0}) to bounded operators.

All of our vector-valued integrals are in the weak-sense (i.e., they are Gelfand-Pettis integral and we refer [50, 42, 29, 41, 45, 38, 15, 39] for more details). Ω\Omega denotes a measure space with positive measure μ\mu.

Continuous frame, as a generalization of frames was introduced independently by Ali, Antoine, Gazeau [2] and Kaiser [34].

Definition 1.5.

[2, 34] A set of vectors {xα}αΩ\{x_{\alpha}\}_{\alpha\in\Omega} in \mathcal{H} is said to be a continuous frame for \mathcal{H} if

  1. (i)

    for each hh\in\mathcal{H}, the map Ωαh,xα𝕂\Omega\ni\alpha\mapsto\langle h,x_{\alpha}\rangle\in\mathbb{K} is measurable,

  2. (ii)

    there exist a,b>0a,b>0 such that

    ah2Ω|h,xα|2𝑑μ(α)bh2,h.\displaystyle a\|h\|^{2}\leq\int_{\Omega}|\langle h,x_{\alpha}\rangle|^{2}\,d\mu(\alpha)\leq b\|h\|^{2},\quad\forall h\in\mathcal{H}.

We refer [34, 2, 21, 22, 18, 46, 32, 31] for more details on continuous frames. We also refer [18, 20, 3] for connections between continuous frames and discrete frames.

2. Extension of continuous operator-valued frames

In order to set continuous version of Definition 1.4, we want existence of certain operators, for which we use the following definition.

Definition 2.1.

[1, 25] Let Ω\Omega be a measure space with positive measure μ\mu. A collection {Aα}αΩ\{A_{\alpha}\}_{\alpha\in\Omega} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is said to be continuous operator-valued Bessel if

  1. (i)

    for each hh\in\mathcal{H}, the map ΩαAαh0\Omega\ni\alpha\mapsto A_{\alpha}h\in\mathcal{H}_{0} is measurable,

  2. (ii)

    there exists b>0b>0 such that

    (1) ΩAαh2𝑑μ(α)bh2,h.\int_{\Omega}\|A_{\alpha}h\|^{2}\,d\mu(\alpha)\leq b\|h\|^{2},\quad\forall h\in\mathcal{H}.

Let {Aα}αΩ\{A_{\alpha}\}_{\alpha\in\Omega} and {Ψα}αΩ\{\Psi_{\alpha}\}_{\alpha\in\Omega} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) be continuous operator-valued Bessel with bounds bb and dd, respectively. Continuity of norm and polarization identity reveal that the map ΩαAαh,Ψαg𝕂\Omega\ni\alpha\mapsto\langle A_{\alpha}h,\Psi_{\alpha}g\rangle\in\mathbb{K} is measurable, for each fixed h,gh,g\in\mathcal{H}. Cauchy-Schwarz inequality and Inequality (1) now tell that this map is in 2(Ω,𝕂)\mathcal{L}^{2}(\Omega,\mathbb{K}), explicitly,

|ΩAαh,Ψαg𝑑μ(α)|\displaystyle\left|\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}g\rangle\,d\mu(\alpha)\right| Ω|Aαh,Ψαg|𝑑μ(α)ΩAαhΨαg𝑑μ(α)\displaystyle\leq\int_{\Omega}|\langle A_{\alpha}h,\Psi_{\alpha}g\rangle|\,d\mu(\alpha)\leq\int_{\Omega}\|A_{\alpha}h\|\|\Psi_{\alpha}g\|\,d\mu(\alpha)
(ΩAαh2𝑑μ(α))12(ΩΨαg2𝑑μ(α))12bdhg.\displaystyle\leq\left(\int_{\Omega}\|A_{\alpha}h\|^{2}\,d\mu(\alpha)\right)^{\frac{1}{2}}\left(\int_{\Omega}\|\Psi_{\alpha}g\|^{2}\,d\mu(\alpha)\right)^{\frac{1}{2}}\leq\sqrt{bd}\|h\|\|g\|.

Previous inequalities also show that for each fixed hh\in\mathcal{H}, the map

ζh:gΩAαh,Ψαg𝑑μ(α)𝕂\displaystyle\zeta_{h}:\mathcal{H}\ni g\mapsto\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}g\rangle\,d\mu(\alpha)\in\mathbb{K}

is a conjugate-linear bounded functional with ζhopbdh\|\zeta_{h}\|_{\text{op}}\leq\sqrt{bd}\|h\| (where op\|\cdot\|_{\text{op}} denotes the operator-norm). Let ΩΨαAαh𝑑μ(α)\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha) be that unique element (which comes from Riesz representation theorem) of \mathcal{H} such that

ΩAαh,Ψαg𝑑μ(α)\displaystyle\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}g\rangle\,d\mu(\alpha) =ζhg=ΩΨαAαh𝑑μ(α),g,g and\displaystyle=\zeta_{h}g=\left\langle\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha),g\right\rangle,~{}\forall g\in\mathcal{H}\text{ and }
ζhop\displaystyle\|\zeta_{h}\|_{\text{op}} =ΩΨαAαh𝑑μ(α).\displaystyle=\left\|\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha)\right\|.

By varying hh\in\mathcal{H}, we get the map

SA,Ψ:hSA,ΨhΩΨαAαh𝑑μ(α)𝕂.\displaystyle S_{A,\Psi}:\mathcal{H}\ni h\mapsto S_{A,\Psi}h\coloneqq\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha)\in\mathbb{K}.

Above map is a bounded linear operator, SA,Ψ=SΨ,AS_{A,\Psi}^{*}=S_{\Psi,A} and SA,AS_{A,A} is positive. Indeed,

SA,Ψ\displaystyle\|S_{A,\Psi}\| =suph,h1SA,Ψh=suph,h1ΩΨαAαh𝑑μ(α)\displaystyle=\sup_{h\in\mathcal{H},\|h\|\leq 1}\|S_{A,\Psi}h\|=\sup_{h\in\mathcal{H},\|h\|\leq 1}\left\|\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha)\right\|
=suph,h1ζhopsuph,h1bdh=bd.\displaystyle=\sup_{h\in\mathcal{H},\|h\|\leq 1}\|\zeta_{h}\|_{\text{op}}\leq\sup_{h\in\mathcal{H},\|h\|\leq 1}\sqrt{bd}\|h\|=\sqrt{bd}.

and

SA,Ψh,g\displaystyle\langle S_{A,\Psi}h,g\rangle =ΩAαh,Ψαg𝑑μ(α)=ΩΨαg,Aαh¯𝑑μ(α)\displaystyle=\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}g\rangle\,d\mu(\alpha)=\int_{\Omega}\overline{\langle\Psi_{\alpha}g,A_{\alpha}h\rangle}\,d\mu(\alpha)
=ΩΨαg,Aαh𝑑μ(α)¯=SΨ,Ag,h¯=h,SΨ,Ag,h,g,\displaystyle=\overline{\int_{\Omega}\langle\Psi_{\alpha}g,A_{\alpha}h\rangle\,d\mu(\alpha)}=\overline{\langle S_{\Psi,A}g,h\rangle}=\langle h,S_{\Psi,A}g\rangle,\quad\forall h,g\in\mathcal{H},
SA,Ah,h\displaystyle\langle S_{A,A}h,h\rangle =ΩAαh2𝑑μ(α)0,h.\displaystyle=\int_{\Omega}\|A_{\alpha}h\|^{2}\,d\mu(\alpha)\geq 0,\quad\forall h\in\mathcal{H}.

We further note that Inequality (1) gives that

θA:hθAh2(Ω,0),θAh:ΩαAαh0\theta_{A}:\mathcal{H}\ni h\mapsto\theta_{A}h\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}),\quad\theta_{A}h:\Omega\ni\alpha\mapsto A_{\alpha}h\in\mathcal{H}_{0}

is a well-defined bounded linear operator whose adjoint is

θA:2(Ω,0)fΩAαf(α)𝑑μ(α),\theta_{A}^{*}:\mathcal{L}^{2}(\Omega,\mathcal{H}_{0})\ni f\mapsto\int_{\Omega}A_{\alpha}^{*}f(\alpha)\,d\mu(\alpha)\in\mathcal{H},

where the integral is in the weak-sense. In fact,

θAh2=ΩθAh(α)2𝑑μ(α)=ΩAαh2𝑑μ(α)bh2,h\displaystyle\|\theta_{A}h\|^{2}=\int_{\Omega}\|\theta_{A}h(\alpha)\|^{2}\,d\mu(\alpha)=\int_{\Omega}\|A_{\alpha}h\|^{2}\,d\mu(\alpha)\leq b\|h\|^{2},\quad\forall h\in\mathcal{H}

and

θAh,f\displaystyle\langle\theta_{A}h,f\rangle =ΩθAh(α),f(α)𝑑μ(α)=ΩAαh,f(α)𝑑μ(α)\displaystyle=\int_{\Omega}\langle\theta_{A}h(\alpha),f(\alpha)\rangle\,d\mu(\alpha)=\int_{\Omega}\langle A_{\alpha}h,f(\alpha)\rangle\,d\mu(\alpha)
=Ωh,Aαf(α)𝑑μ(α)=h,θAf,h,f2(Ω,0).\displaystyle=\int_{\Omega}\langle h,A_{\alpha}^{*}f(\alpha)\rangle\,d\mu(\alpha)=\langle h,\theta_{A}^{*}f\rangle,\quad\forall h\in\mathcal{H},\forall f\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}).

We next observe that Condition (ii) in Definition 2.1 holds if and only if the map θA\theta_{A} is a well-defined bounded linear operator. With this knowledge we are ready to define the continuous version of Definition 1.4.

Definition 2.2.

A collection {Aα}αΩ\{A_{\alpha}\}_{\alpha\in\Omega} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is said to be a continuous operator-valued frame (in short, continuous (ovf)) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with respect to a collection {Ψα}αΩ\{\Psi_{\alpha}\}_{\alpha\in\Omega} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if

  1. (i)

    for each hh\in\mathcal{H}, both maps ΩαAαh0\Omega\ni\alpha\mapsto A_{\alpha}h\in\mathcal{H}_{0} and ΩαΨαh0\Omega\ni\alpha\mapsto\Psi_{\alpha}h\in\mathcal{H}_{0} are measurable,

  2. (ii)

    the map (we call as frame operator) SA,Ψ:hΩΨαAαh𝑑μ(α)S_{A,\Psi}:\mathcal{H}\ni h\mapsto\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha)\in\mathcal{H} (the integral is in the weak-sense) is a well-defined bounded positive invertible operator,

  3. (iii)

    both maps (we call as analysis operator and its adjoint as synthesis operator) θA:hθAh2(Ω,0)\theta_{A}:\mathcal{H}\ni h\mapsto\theta_{A}h\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}), θAh:ΩαAαh0\theta_{A}h:\Omega\ni\alpha\mapsto A_{\alpha}h\in\mathcal{H}_{0} and θΨ:hθΨh2(Ω,0)\theta_{\Psi}:\mathcal{H}\ni h\mapsto\theta_{\Psi}h\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}), θΨh:ΩαΨαh0\theta_{\Psi}h:\Omega\ni\alpha\mapsto\Psi_{\alpha}h\in\mathcal{H}_{0} are well-defined bounded linear operators.

We note that θA:2(Ω,0)fΩAαf(α)𝑑μ(α)\theta_{A}^{*}:\mathcal{L}^{2}(\Omega,\mathcal{H}_{0})\ni f\mapsto\int_{\Omega}A_{\alpha}^{*}f(\alpha)\,d\mu(\alpha)\in\mathcal{H}, θΨ:2(Ω,0)fΩΨαf(α)𝑑μ(α)\theta_{\Psi}^{*}:\mathcal{L}^{2}(\Omega,\mathcal{H}_{0})\ni f\mapsto\int_{\Omega}\Psi_{\alpha}^{*}f(\alpha)\,d\mu(\alpha)\in\mathcal{H} (both integrals are in the weak-sense). Notions of frame bounds, Parseval frame are similar to the same in Definition 2.1 in [36].

Whenever {Aα}αΩ\{A_{\alpha}\}_{\alpha\in\Omega} is a continuous operator-valued frame w.r.t. {Ψα}αΩ\{\Psi_{\alpha}\}_{\alpha\in\Omega} we write ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is continuous (ovf).

For fixed Ω\Omega, ,0\mathcal{H},\mathcal{H}_{0} and {Ψα}αΩ\{\Psi_{\alpha}\}_{\alpha\in\Omega}, the set of all continuous operator-valued frames in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with respect to collection {Ψα}αΩ\{\Psi_{\alpha}\}_{\alpha\in\Omega} is denoted by Ψ.\mathscr{F}_{\Psi}.

Remark 2.3.

Fundamental difference of continuous frames with discrete one is that we are not allowed to use orthonormal bases (indexed by Ω\Omega).

If the condition (ii) in Definition 2.2 is replaced by “the map SA,Ψ:hΩΨαAαh𝑑μ(α)S_{A,\Psi}:\mathcal{H}\ni h\mapsto\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha)\in\mathcal{H} is a well-defined bounded positive operator (not necessarily invertible)”, then we say {Aα}αΩ\{A_{\alpha}\}_{\alpha\in\Omega} w.r.t. {Ψα}αΩ\{\Psi_{\alpha}\}_{\alpha\in\Omega} is Bessel.

We note that (ii) in Definition 2.2 implies that there are real a,b>0a,b>0 such that for all hh\in\mathcal{H},

ah2SA,Ψh,h=ΩΨαAαh𝑑μ(α),h=ΩΨαAαh,h𝑑μ(α)=ΩAαh,Ψαh𝑑μ(α)bh2,\displaystyle a\|h\|^{2}\leq\langle S_{A,\Psi}h,h\rangle=\left\langle\int_{\Omega}\Psi^{*}_{\alpha}A_{\alpha}h\,d\mu(\alpha),h\right\rangle=\int_{\Omega}\langle\Psi^{*}_{\alpha}A_{\alpha}h,h\rangle\,d\mu(\alpha)=\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\leq b\|h\|^{2},

and (iii) implies there exist c,d>0c,d>0 such that for all hh\in\mathcal{H},

θAh2=θAh,θAh=ΩθAh(α),θAh(α)𝑑μ(α)=ΩAαh,Aαh𝑑μ(α)=ΩAαh2𝑑μ(α)ch2;\displaystyle\|\theta_{A}h\|^{2}=\langle\theta_{A}h,\theta_{A}h\rangle=\int_{\Omega}\langle\theta_{A}h(\alpha),\theta_{A}h(\alpha)\rangle\,d\mu(\alpha)=\int_{\Omega}\langle A_{\alpha}h,A_{\alpha}h\rangle\,d\mu(\alpha)=\int_{\Omega}\|A_{\alpha}h\|^{2}\,d\mu(\alpha)\leq c\|h\|^{2};
θΨh2=θΨh,θΨh=ΩθΨh(α),θΨh(α)𝑑μ(α)=ΩΨαh,Ψαh𝑑μ(α)=ΩΨαh2𝑑μ(α)dh2.\displaystyle\|\theta_{\Psi}h\|^{2}=\langle\theta_{\Psi}h,\theta_{\Psi}h\rangle=\int_{\Omega}\langle\theta_{\Psi}h(\alpha),\theta_{\Psi}h(\alpha)\rangle\,d\mu(\alpha)=\int_{\Omega}\langle\Psi_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)=\int_{\Omega}\|\Psi_{\alpha}h\|^{2}\,d\mu(\alpha)\leq d\|h\|^{2}.

We note the following.

  1. (i)

    If {Aα}αΩ\{A_{\alpha}\}_{\alpha\in\Omega} is a continuous (ovf) w.r.t. {Ψα}αΩ\{\Psi_{\alpha}\}_{\alpha\in\Omega}, then {Ψα}αΩ\{\Psi_{\alpha}\}_{\alpha\in\Omega} is a continuous (ovf) w.r.t. {Aα}αΩ\{A_{\alpha}\}_{\alpha\in\Omega}.

  2. (ii)

    {h:Aαh=0,αΩ}={0}={h:Ψαh=0,αΩ}\{h\in\mathcal{H}:A_{\alpha}h=0,\forall\alpha\in\Omega\}=\{0\}=\{h\in\mathcal{H}:\Psi_{\alpha}h=0,\forall\alpha\in\Omega\}, and span¯αΩAα(0)==span¯αΩΨα(0).\overline{\operatorname{span}}\cup_{\alpha\in\Omega}A^{*}_{\alpha}(\mathcal{H}_{0})=\mathcal{H}=\overline{\operatorname{span}}\cup_{\alpha\in\Omega}\Psi^{*}_{\alpha}(\mathcal{H}_{0}).

  3. (iii)

    SA,Ψ=SΨ,AS_{A,\Psi}=S_{\Psi,A}.

  4. (iv)

    If {Aα}αΩ,\{A_{\alpha}\}_{\alpha\in\Omega}, {Bα}αΩΨ\{B_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\Psi}, then {Aα+Bα}αΩΨ\{A_{\alpha}+B_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\Psi}, and {αAα}αΩΨ,α>0.\{\alpha A_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\Psi},\forall\alpha>0.

  5. (v)

    If ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is tight continuous (ovf) with bound a,a, then SA,Ψ=aI.S_{A,\Psi}=aI_{\mathcal{H}}.

Proposition 2.4.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) be a continuous (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with an upper frame bound bb. If {α}\{\alpha\} is measurable and ΨαAα0,αΩ,\Psi_{\alpha}^{*}A_{\alpha}\geq 0,\forall\alpha\in\Omega, then μ({α})ΨαAαb,αΩ.\mu(\{\alpha\})\|\Psi_{\alpha}^{*}A_{\alpha}\|\leq b,\forall\alpha\in\Omega.

Proof.

For each h,αΩh\in\mathcal{H},\alpha\in\Omega we get μ({α})ΨαAαh,h={α}ΨβAβh,h𝑑μ(β){α}ΨβAβh,h𝑑μ(β)+Ω{α}ΨβAβh,h𝑑μ(β)=ΩΨβAβh,h𝑑μ(β)bh,h\mu(\{\alpha\})\langle\Psi_{\alpha}^{*}A_{\alpha}h,h\rangle=\int_{\{\alpha\}}\langle\Psi_{\beta}^{*}A_{\beta}h,h\rangle\,d\mu(\beta)\leq\int_{\{\alpha\}}\langle\Psi_{\beta}^{*}A_{\beta}h,h\rangle\,d\mu(\beta)+\int_{\Omega\setminus\{\alpha\}}\langle\Psi_{\beta}^{*}A_{\beta}h,h\rangle\,d\mu(\beta)=\int_{\Omega}\langle\Psi_{\beta}^{*}A_{\beta}h,h\rangle\,d\mu(\beta)\leq b\langle h,h\rangle and hence μ({α})ΨαAα=μ({α})suph,h=1\mu(\{\alpha\})\|\Psi_{\alpha}^{*}A_{\alpha}\|=\mu(\{\alpha\})\sup_{h\in\mathcal{H},\|h\|=1} ΨαAαh,hb,αΩ.\langle\Psi_{\alpha}^{*}A_{\alpha}h,h\rangle\leq b,\forall\alpha\in\Omega.

Proposition 2.5.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) be a continuous (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). Then the bounded left-inverses of

  1. (i)

    θA\theta_{A} are precisely SA,Ψ1θΨ+U(I2(Ω,0)θASA,Ψ1θΨ)S_{A,\Psi}^{-1}\theta_{\Psi}^{*}+U(I_{\mathcal{L}^{2}(\Omega,\mathcal{H}_{0})}-\theta_{A}S_{A,\Psi}^{-1}\theta_{\Psi}^{*}), where U(2(Ω,0),)U\in\mathcal{B}(\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}),\mathcal{H}).

  2. (ii)

    θΨ\theta_{\Psi} are precisely SA,Ψ1θA+V(I2(Ω,0)θΨSA,Ψ1θA)S_{A,\Psi}^{-1}\theta_{A}^{*}+V(I_{\mathcal{L}^{2}(\Omega,\mathcal{H}_{0})}-\theta_{\Psi}S_{A,\Psi}^{-1}\theta_{A}^{*}), where V(2(Ω,0),)V\in\mathcal{B}(\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}),\mathcal{H}).

Proof.

Similar to the proof of Proposition 2.29 in [36]. ∎

Proposition 2.6.

For every {Aα}αΩΨ\{A_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\Psi},

  1. (i)

    θAθAh=ΩAαAαh𝑑μ(α)\theta_{A}^{*}\theta_{A}h=\int_{\Omega}A_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha), h\forall h\in\mathcal{H}.

  2. (ii)

    SA,Ψ=θΨθA=θAθΨ=SΨ,A.S_{A,\Psi}=\theta_{\Psi}^{*}\theta_{A}=\theta_{A}^{*}\theta_{\Psi}=S_{\Psi,A}.

  3. (iii)

    ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is Parseval if and only if θΨθA=I.\theta_{\Psi}^{*}\theta_{A}=I_{\mathcal{H}}.

  4. (iv)

    ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is Parseval if and only if θAθΨ\theta_{A}\theta_{\Psi}^{*} is idempotent.

  5. (v)

    PA,ΨθASA,Ψ1θΨP_{A,\Psi}\coloneqq\theta_{A}S_{A,\Psi}^{-1}\theta_{\Psi}^{*} is idempotent and PΨ,A=PA,ΨP_{\Psi,A}=P_{A,\Psi}^{*}.

  6. (vi)

    θA\theta_{A} and θΨ\theta_{\Psi} are injective and their ranges are closed.

  7. (vii)

    θA\theta_{A}^{*} and θΨ\theta_{\Psi}^{*} are surjective.

Proof.

Let h,g.h,g\in\mathcal{H}. We observe

θAθAh,g=θAh,θAg=ΩθAh(α),θAg(α)𝑑μ(α)=ΩAαh,Aαg𝑑μ(α)=ΩAαAαh𝑑μ(α),g,\left\langle\theta_{A}^{*}\theta_{A}h,g\right\rangle=\left\langle\theta_{A}h,\theta_{A}g\right\rangle=\int_{\Omega}\langle\theta_{A}h(\alpha),\theta_{A}g(\alpha)\rangle\,d\mu(\alpha)=\int_{\Omega}\langle A_{\alpha}h,A_{\alpha}g\rangle\,d\mu(\alpha)=\left\langle\int_{\Omega}A_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha),g\right\rangle,

and

SA,Ψh,g\displaystyle\langle S_{A,\Psi}h,g\rangle =ΩΨαAαh𝑑μ(α),g=ΩΨαAαh,g𝑑μ(α)\displaystyle=\left\langle\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha),g\right\rangle=\int_{\Omega}\langle\Psi_{\alpha}^{*}A_{\alpha}h,g\rangle\,d\mu(\alpha)
=ΩAαh,Ψαg𝑑μ(α)=θAh,θΨg=θΨθAh,g,\displaystyle=\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}g\rangle\,d\mu(\alpha)=\langle\theta_{A}h,\theta_{\Psi}g\rangle=\langle\theta_{\Psi}^{*}\theta_{A}h,g\rangle,

hence we get (i) and (ii). Arguments for other statements are similar to the proof of Proposition 2.30 in [36]. ∎

Proposition 2.7.

A collection {Aα}αΩ\{A_{\alpha}\}_{\alpha\in\Omega} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is a continuous (ovf) w.r.t. {Ψα}αΩ\{\Psi_{\alpha}\}_{\alpha\in\Omega} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if and only if there exist a,b,c,d>0a,b,c,d>0 such that

  1. (i)

    for each hh\in\mathcal{H}, both maps ΩαAαh0\Omega\ni\alpha\mapsto A_{\alpha}h\in\mathcal{H}_{0}, ΩαΨαh0\Omega\ni\alpha\mapsto\Psi_{\alpha}h\in\mathcal{H}_{0} are measurable,

  2. (ii)

    ΩΨαAαh𝑑μ(α)=ΩAαΨαh𝑑μ(α),h,\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha)=\int_{\Omega}A_{\alpha}^{*}\Psi_{\alpha}h\,d\mu(\alpha),\forall h\in\mathcal{H},

  3. (iii)

    ah2ΩAαh,Ψαh𝑑μ(α)bh2,h,a\|h\|^{2}\leq\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\leq b\|h\|^{2},\forall h\in\mathcal{H},

  4. (iv)

    ΩAαh2𝑑μ(α)ch2,h;ΩΨαh2𝑑μ(α)dh2,h\int_{\Omega}\|A_{\alpha}h\|^{2}\,d\mu(\alpha)\leq c\|h\|^{2},\forall h\in\mathcal{H};\int_{\Omega}\|\Psi_{\alpha}h\|^{2}\,d\mu(\alpha)\leq d\|h\|^{2},\forall h\in\mathcal{H}.

Definition 2.8.

A continuous (ovf) ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is said to be a Riesz continuous (ovf) if PA,Ψ=I2(Ω,0)P_{A,\Psi}=I_{\mathcal{L}^{2}(\Omega,\mathcal{H}_{0})}.

Proposition 2.9.

A continuous (ovf) ({Aα}Ω,{Ψα}Ω)(\{A_{\alpha}\}_{\Omega},\{\Psi_{\alpha}\}_{\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is a Riesz continuous (ovf) if and only if θA()=2(Ω,0)\theta_{A}(\mathcal{H})=\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}) if and only if θΨ()=2(Ω,0).\theta_{\Psi}(\mathcal{H})=\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}).

Proof.

Similar to the proof of Proposition 2.36 in [36]. ∎

Following is the dilation result in discrete setting (for dilation results in Hilbert spaces we refer Theorem 2.38 in [36] and [35, 24, 11, 37]).

Theorem 2.10.

[36] Let ({Aj}j𝕁,{Ψj}j𝕁)(\{A_{j}\}_{j\in\mathbb{J}},\{\Psi_{j}\}_{j\in\mathbb{J}}) be a Parseval (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) such that θA()=θΨ()\theta_{A}(\mathcal{H})=\theta_{\Psi}(\mathcal{H}) and PA,ΨP_{A,\Psi} is projection. Then there exist a Hilbert space 1\mathcal{H}_{1} which contains \mathcal{H} isometrically and bounded linear operators Bj,Φj:10,j𝕁B_{j},\Phi_{j}:\mathcal{H}_{1}\rightarrow\mathcal{H}_{0},\forall j\in\mathbb{J} such that ({Bj}j𝕁,{Φj}j𝕁)(\{B_{j}\}_{j\in\mathbb{J}},\{\Phi_{j}\}_{j\in\mathbb{J}}) is an orthonormal (ovf) in (1,0)\mathcal{B}(\mathcal{H}_{1},\mathcal{H}_{0}) and Bj|=Aj,Φj|=Ψj,j𝕁B_{j}|_{\mathcal{H}}=A_{j},\Phi_{j}|_{\mathcal{H}}=\Psi_{j},\forall j\in\mathbb{J}.

We remark here that we don’t know any result corresponding to Theorem 2.10 when the indexing set is a measure space.

Definition 2.11.

A continuous (ovf) ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is said to be a dual of a continuous (ovf) ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if θΦθA=θBθΨ=I\theta_{\Phi}^{*}\theta_{A}=\theta_{B}^{*}\theta_{\Psi}=I_{\mathcal{H}}. The ‘continuous operator-valued frame’ ({A~αAαSA,Ψ1}αΩ,{Ψ~αΨαSA,Ψ1}αΩ)(\{\widetilde{A}_{\alpha}\coloneqq A_{\alpha}S_{A,\Psi}^{-1}\}_{\alpha\in\Omega},\{\widetilde{\Psi}_{\alpha}\coloneqq\Psi_{\alpha}S_{A,\Psi}^{-1}\}_{\alpha\in\Omega}), which is a ‘dual’ of ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is called as the canonical dual of ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}).

Proposition 2.12.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) be a continuous (ovf) in (,0).\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). If hh\in\mathcal{H} has representation h=ΩAαf(α)𝑑μ(α)=ΩΨαg(α)𝑑μ(α),h=\int_{\Omega}A_{\alpha}^{*}f(\alpha)\,d\mu(\alpha)=\int_{\Omega}\Psi_{\alpha}^{*}g(\alpha)\,d\mu(\alpha), for some measurable f,g:Ω0f,g:\Omega\rightarrow\mathcal{H}_{0}, then

Ωf(α),g(α)𝑑μ(α)=ΩΨ~αh,A~αh𝑑μ(α)+Ωf(α)Ψ~αh,g(α)A~αh𝑑μ(α).\int_{\Omega}\langle f(\alpha),g(\alpha)\rangle\,d\mu(\alpha)=\int_{\Omega}\langle\widetilde{\Psi}_{\alpha}h,\widetilde{A}_{\alpha}h\rangle\,d\mu(\alpha)+\int_{\Omega}\langle f(\alpha)-\widetilde{\Psi}_{\alpha}h,g(\alpha)-\widetilde{A}_{\alpha}h\rangle\,d\mu(\alpha).
Proof.
Right side =ΩΨ~αh,A~αh𝑑μ(α)+Ωf(α),g(α)𝑑μ(α)Ωf(α),A~αh𝑑μ(α)\displaystyle=\int_{\Omega}\langle\widetilde{\Psi}_{\alpha}h,\widetilde{A}_{\alpha}h\rangle\,d\mu(\alpha)+\int_{\Omega}\langle f(\alpha),g(\alpha)\rangle\,d\mu(\alpha)-\int_{\Omega}\langle f(\alpha),\widetilde{A}_{\alpha}h\rangle\,d\mu(\alpha)
ΩΨ~αh,g(α)𝑑μ(α)+ΩΨ~αh,A~αh𝑑μ(α)\displaystyle\quad-\int_{\Omega}\langle\widetilde{\Psi}_{\alpha}h,g(\alpha)\rangle\,d\mu(\alpha)+\int_{\Omega}\langle\widetilde{\Psi}_{\alpha}h,\widetilde{A}_{\alpha}h\rangle\,d\mu(\alpha)
=2ΩΨ~αh,A~αh𝑑μ(α)+Ωf(α),g(α)𝑑μ(α)Ωf(α),AαSA,Ψ1h𝑑μ(α)\displaystyle=2\int_{\Omega}\langle\widetilde{\Psi}_{\alpha}h,\widetilde{A}_{\alpha}h\rangle\,d\mu(\alpha)+\int_{\Omega}\langle f(\alpha),g(\alpha)\rangle\,d\mu(\alpha)-\int_{\Omega}\langle f(\alpha),A_{\alpha}S_{A,\Psi}^{-1}h\rangle\,d\mu(\alpha)
ΩΨαSA,Ψ1h,g(α)𝑑μ(α)\displaystyle\quad-\int_{\Omega}\langle\Psi_{\alpha}S_{A,\Psi}^{-1}h,g(\alpha)\rangle\,d\mu(\alpha)
=2ΩSA,Ψ1AαΨαSA,Ψ1h𝑑μ(α),h+Ωf(α),g(α)𝑑μ(α)\displaystyle=2\left\langle\int_{\Omega}S_{A,\Psi}^{-1}A_{\alpha}^{*}\Psi_{\alpha}S_{A,\Psi}^{-1}h\,d\mu(\alpha),h\right\rangle+\int_{\Omega}\langle f(\alpha),g(\alpha)\rangle\,d\mu(\alpha)
ΩAαf(α)𝑑μ(α),SA,Ψ1hSA,Ψ1h,ΩΨαg(α)𝑑μ(α)\displaystyle\quad-\left\langle\int_{\Omega}A_{\alpha}^{*}f(\alpha)\,d\mu(\alpha),S_{A,\Psi}^{-1}h\right\rangle-\left\langle S_{A,\Psi}^{-1}h,\int_{\Omega}\Psi_{\alpha}^{*}g(\alpha)\,d\mu(\alpha)\right\rangle
=2SA,Ψ1h,h+Ωf(α),g(α)𝑑μ(α)h,SA,Ψ1hSA,Ψ1h,h=Left side.\displaystyle=2\langle S_{A,\Psi}^{-1}h,h\rangle+\int_{\Omega}\langle f(\alpha),g(\alpha)\rangle\,d\mu(\alpha)-\langle h,S_{A,\Psi}^{-1}h\rangle-\langle S_{A,\Psi}^{-1}h,h\rangle=\text{Left side.}

Theorem 2.13.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) be a continuous (ovf) with frame bounds aa and b.b. Then the following statements are true.

  1. (i)

    The canonical dual (ovf) of the canonical dual (ovf) of ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is itself.

  2. (ii)

    1b,1a\frac{1}{b},\frac{1}{a} are frame bounds for the canonical dual of ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}).

  3. (iii)

    If a,ba,b are optimal frame bounds for ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}), then 1b,1a\frac{1}{b},\frac{1}{a} are optimal frame bounds for its canonical dual.

Proof.

We note that

ΩΨ~αA~αh𝑑μ(α),g=ΩSA,Ψ1ΨαAαSA,Ψ1h,g𝑑μ(α)=ΩΨαAαSA,Ψ1h,SA,Ψ1g𝑑μ(α)\displaystyle\left\langle\int_{\Omega}\widetilde{\Psi}^{*}_{\alpha}\widetilde{A}_{\alpha}h\,d\mu(\alpha),g\right\rangle=\int_{\Omega}\langle S_{A,\Psi}^{-1}\Psi_{\alpha}^{*}A_{\alpha}S_{A,\Psi}^{-1}h,g\rangle\,d\mu(\alpha)=\int_{\Omega}\langle\Psi_{\alpha}^{*}A_{\alpha}S_{A,\Psi}^{-1}h,S_{A,\Psi}^{-1}g\rangle\,d\mu(\alpha)
=ΩΨαAα(SA,Ψ1h)𝑑μ(α),SA,Ψ1g=SA,Ψ(SA,Ψ1h),SA,Ψ1g=SA,Ψ1h,g,h,g.\displaystyle=\left\langle\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}(S_{A,\Psi}^{-1}h)\,d\mu(\alpha),S_{A,\Psi}^{-1}g\right\rangle=\langle S_{A,\Psi}(S_{A,\Psi}^{-1}h),S_{A,\Psi}^{-1}g\rangle=\langle S_{A,\Psi}^{-1}h,g\rangle,\quad\forall h,g\in\mathcal{H}.

Therefore the frame operator for the canonical dual ({AαSA,Ψ1}αΩ,{ΨαSA,Ψ1}αΩ)(\{A_{\alpha}S_{A,\Psi}^{-1}\}_{\alpha\in\Omega},\{\Psi_{\alpha}S_{A,\Psi}^{-1}\}_{\alpha\in\Omega}) is SA,ΨS_{A,\Psi}. Remainings are similar to the proof of Theorem 2.41 in [36]. ∎

Proposition 2.14.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) and ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) be continuous operator-valued frames in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). Then the following are equivalent.

  1. (i)

    ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) is a dual of ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}).

  2. (ii)

    ΩΦαAαh𝑑μ(α)=ΩBαΨαh𝑑μ(α)=h,h\int_{\Omega}\Phi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha)=\int_{\Omega}B_{\alpha}^{*}\Psi_{\alpha}h\,d\mu(\alpha)=h,\forall h\in\mathcal{H}.

Proof.

θΦθAh,g=θAh,θΦg=ΩθAh(α),θΦg(α)𝑑μ(α)=ΩAαh,Φαg𝑑μ(α)=ΩΦαAαh𝑑μ(α),g,\langle\theta_{\Phi}^{*}\theta_{A}h,g\rangle=\langle\theta_{A}h,\theta_{\Phi}g\rangle=\int_{\Omega}\langle\theta_{A}h(\alpha),\theta_{\Phi}g(\alpha)\rangle\,d\mu(\alpha)=\int_{\Omega}\langle A_{\alpha}h,\Phi_{\alpha}g\rangle\,d\mu(\alpha)=\langle\int_{\Omega}\Phi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha),g\rangle, h,g\forall h,g\in\mathcal{H}. Similarly θBθΨh,g=ΩBαΨαh𝑑μ(α),g,\langle\theta_{B}^{*}\theta_{\Psi}h,g\rangle=\langle\int_{\Omega}B_{\alpha}^{*}\Psi_{\alpha}h\,d\mu(\alpha),g\rangle, h,g\forall h,g\in\mathcal{H}. ∎

Theorem 2.15.

If ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is a Riesz continuous (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}), then it has unique dual.

Proof.

Let ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) and ({Cα}αΩ,{Ξα}αΩ)(\{C_{\alpha}\}_{\alpha\in\Omega},\{\Xi_{\alpha}\}_{\alpha\in\Omega}) be continuous operator-valued frames such that both are duals of ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}). Then θΨθB=I=θAθΦ=θΨθC=θAθΞ\theta_{\Psi}^{*}\theta_{B}=I_{\mathcal{H}}=\theta_{A}^{*}\theta_{\Phi}=\theta_{\Psi}^{*}\theta_{C}=\theta_{A}^{*}\theta_{\Xi} \Rightarrow θΨ(θBθC)=0=θA(θΦθΞ)\theta_{\Psi}^{*}(\theta_{B}-\theta_{C})=0=\theta_{A}^{*}(\theta_{\Phi}-\theta_{\Xi}) \Rightarrow θASA,Ψ1θΨ(θBθC)=PA,Ψ(θBθC)=I(θBθC)=0=θΨSΨ,A1θA(θΦθΞ)=PΨ,A(θΦθΞ)=I(θΦθΞ)\theta_{A}S_{A,\Psi}^{-1}\theta_{\Psi}^{*}(\theta_{B}-\theta_{C})=P_{A,\Psi}(\theta_{B}-\theta_{C})=I_{\mathcal{H}}(\theta_{B}-\theta_{C})=0=\theta_{\Psi}S_{\Psi,A}^{-1}\theta_{A}^{*}(\theta_{\Phi}-\theta_{\Xi})=P_{\Psi,A}(\theta_{\Phi}-\theta_{\Xi})=I_{\mathcal{H}}(\theta_{\Phi}-\theta_{\Xi}) \Rightarrow θB=θC,θΦ=θΞ\theta_{B}=\theta_{C},\theta_{\Phi}=\theta_{\Xi} \Rightarrow Bαh=θBh(α)=θCh(α)=Cαh,Φαh=θΦh(α)=θΞh(α)=ΞαhB_{\alpha}h=\theta_{B}h(\alpha)=\theta_{C}h(\alpha)=C_{\alpha}h,\Phi_{\alpha}h=\theta_{\Phi}h(\alpha)=\theta_{\Xi}h(\alpha)=\Xi_{\alpha}h, h,αΩ\forall h\in\mathcal{H},\forall\alpha\in\Omega. ∎

Proposition 2.16.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) be a continuous (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). If ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) is dual of ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}), then there exist continuous Bessel {Cα}αΩ\{C_{\alpha}\}_{\alpha\in\Omega} and {Ξα}αΩ\{\Xi_{\alpha}\}_{\alpha\in\Omega} (w.r.t. themselves) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) such that Bα=AαSA,Ψ1+Cα,Φα=ΨαSA,Ψ1+Ξα,αΩB_{\alpha}=A_{\alpha}S_{A,\Psi}^{-1}+C_{\alpha},\Phi_{\alpha}=\Psi_{\alpha}S_{A,\Psi}^{-1}+\Xi_{\alpha},\forall\alpha\in\Omega, and θC()θΨ(),θΞ()θA()\theta_{C}(\mathcal{H})\perp\theta_{\Psi}(\mathcal{H}),\theta_{\Xi}(\mathcal{H})\perp\theta_{A}(\mathcal{H}). Converse holds if θΞθC0\theta_{\Xi}^{*}\theta_{C}\geq 0.

Proof.

Similar to the proof of Proposition 2.44 in [36]. ∎

Definition 2.17.

A continuous (ovf) ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is said to be orthogonal to a continuous (ovf) ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if θΦθA=θBθΨ=0.\theta_{\Phi}^{*}\theta_{A}=\theta_{B}^{*}\theta_{\Psi}=0.

Proposition 2.18.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) and ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) be continuous operator-valued frames in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). Then the following are equivalent.

  1. (i)

    ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) is orthogonal to ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}).

  2. (ii)

    ΩΦαAαh𝑑μ(α)=ΩBαΨαh𝑑μ(α)=0,h\int_{\Omega}\Phi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha)=\int_{\Omega}B_{\alpha}^{*}\Psi_{\alpha}h\,d\mu(\alpha)=0,\forall h\in\mathcal{H}.

Proposition 2.19.

Two orthogonal continuous operator-valued frames have common dual continuous (ovf).

Proof.

Similar to the proof of Proposition 2.48 in [36]. ∎

Proposition 2.20.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) and ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) be two Parseval continuous operator-valued frames in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) which are orthogonal. If C,D,E,F()C,D,E,F\in\mathcal{B}(\mathcal{H}) are such that CE+DF=IC^{*}E+D^{*}F=I_{\mathcal{H}}, then ({AαC+BαD}αΩ,{ΨαE+ΦαF}αΩ)(\{A_{\alpha}C+B_{\alpha}D\}_{\alpha\in\Omega},\{\Psi_{\alpha}E+\Phi_{\alpha}F\}_{\alpha\in\Omega}) is a Parseval continuous (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). In particular, if scalars c,d,e,fc,d,e,f satisfy c¯e+d¯f=1\bar{c}e+\bar{d}f=1, then ({cAα+dBα}αΩ,{eΨα+fΦα}αΩ)(\{cA_{\alpha}+dB_{\alpha}\}_{\alpha\in\Omega},\{e\Psi_{\alpha}+f\Phi_{\alpha}\}_{\alpha\in\Omega}) is a Parseval continuous (ovf).

Proof.

For all hh\in\mathcal{H} and αΩ\alpha\in\Omega we see θAC+BDh(α)=(AαC+BαD)h=Aα(Ch)+Bα(Dh)=θA(Ch)(α)+θB(Dh)(α)=(θA(Ch)+θB(Dh))(α)=(θAC+θBD)h(α)\theta_{AC+BD}h(\alpha)=(A_{\alpha}C+B_{\alpha}D)h=A_{\alpha}(Ch)+B_{\alpha}(Dh)=\theta_{A}(Ch)(\alpha)+\theta_{B}(Dh)(\alpha)=(\theta_{A}(Ch)+\theta_{B}(Dh))(\alpha)=(\theta_{A}C+\theta_{B}D)h(\alpha) \Rightarrow θAC+BD=θAC+θBD\theta_{AC+BD}=\theta_{A}C+\theta_{B}D. Similarly θΨE+ΦF=θΨE+θΦF\theta_{\Psi E+\Phi F}=\theta_{\Psi}E+\theta_{\Phi}F. Other arguments are similar to that in the proof of Proposition 2.49 in [36]. ∎

Definition 2.21.

Two continuous operator-valued frames ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) and ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) are called disjoint if ({AαBα}αΩ,{ΨαΦα}αΩ)(\{A_{\alpha}\oplus B_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\oplus\Phi_{\alpha}\}_{\alpha\in\Omega}) is continuous (ovf) in (,0).\mathcal{B}(\mathcal{H}\oplus\mathcal{H},\mathcal{H}_{0}).

Proposition 2.22.

If ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) and ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) are orthogonal continuous operator-valued frames in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}), then they are disjoint. Further, if both ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) and ({Bα}αΩ(\{B_{\alpha}\}_{\alpha\in\Omega}, {Φα}αΩ)\{\Phi_{\alpha}\}_{\alpha\in\Omega}) are Parseval, then ({AαBα}αΩ,{ΨαΦα}αΩ)(\{A_{\alpha}\oplus B_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\oplus\Phi_{\alpha}\}_{\alpha\in\Omega}) is Parseval.

Proof.

For all hgh\oplus g\in\mathcal{H}\oplus\mathcal{H}, θAB(hg)(α)=(AαBα)(hg)=Aαh+Bαg=θAh(α)+θBg(α)=(θAh+θBg)(α)\theta_{A\oplus B}(h\oplus g)(\alpha)=(A_{\alpha}\oplus B_{\alpha})(h\oplus g)=A_{\alpha}h+B_{\alpha}g=\theta_{A}h(\alpha)+\theta_{B}g(\alpha)=(\theta_{A}h+\theta_{B}g)(\alpha) and for all f2(Ω,0)f\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}), θΨΦf,hg=f,θΨΦ(hg)=θΨf,h+θΦf,g=θΨfθΦf,hg.\langle\theta_{\Psi\oplus\Phi}^{*}f,h\oplus g\rangle=\langle f,\theta_{\Psi\oplus\Phi}(h\oplus g)\rangle=\langle\theta_{\Psi}^{*}f,h\rangle+\langle\theta_{\Phi}^{*}f,g\rangle=\langle\theta_{\Psi}^{*}f\oplus\theta_{\Phi}^{*}f,h\oplus g\rangle. Thus SAB,ΨΦ(hg)=θΨΦθAB(hg)=θΨΦ(θAh+θBg)=θΨ(θAh+θBg)θΦ(θAh+θBg)=(SA,Ψ+0)(0+SB,Φ)=SA,ΨSB,ΦS_{A\oplus B,\Psi\oplus\Phi}(h\oplus g)=\theta^{*}_{\Psi\oplus\Phi}\theta_{A\oplus B}(h\oplus g)=\theta^{*}_{\Psi\oplus\Phi}(\theta_{A}h+\theta_{B}g)=\theta_{\Psi}^{*}(\theta_{A}h+\theta_{B}g)\oplus\theta_{\Phi}^{*}(\theta_{A}h+\theta_{B}g)=(S_{A,\Psi}+0)\oplus(0+S_{B,\Phi})=S_{A,\Psi}\oplus S_{B,\Phi}, which is bounded positive invertible with SAB,ΨΦ1=SA,Ψ1SB,Φ1S_{A\oplus B,\Psi\oplus\Phi}^{-1}=S_{A,\Psi}^{-1}\oplus S_{B,\Phi}^{-1}. ∎

3. Characterizations of the extension

Theorem 3.1.

Let {Aα}αΩ,{Ψα}αΩ\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega} be in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) such that for each hh\in\mathcal{H}, both maps ΩαAαh0\Omega\ni\alpha\mapsto A_{\alpha}h\in\mathcal{H}_{0}, ΩαΨαh0\Omega\ni\alpha\mapsto\Psi_{\alpha}h\in\mathcal{H}_{0} are measurable. Then ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is a continuous (ovf) with bounds aa and bb (resp. continuous Bessel with bound bb)

  1. (i)

    if and only if

    U:2(Ω,0)fΩAαf(α)dμ(α),andV:2(Ω,0)gΩΨαg(α)dμ(α)U:\mathcal{L}^{2}(\Omega,\mathcal{H}_{0})\ni f\mapsto\int_{\Omega}A_{\alpha}^{*}f(\alpha)\,d\mu(\alpha)\in\mathcal{H},~{}\text{and}~{}V:\mathcal{L}^{2}(\Omega,\mathcal{H}_{0})\ni g\mapsto\int_{\Omega}\Psi_{\alpha}^{*}g(\alpha)\,d\mu(\alpha)\in\mathcal{H}

    are well-defined, U,V(2(Ω,0),)U,V\in\mathcal{B}(\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}),\mathcal{H}) such that aIVUbIaI_{\mathcal{H}}\leq VU^{*}\leq bI_{\mathcal{H}} (resp. 0VUbI0\leq VU^{*}\leq bI_{\mathcal{H}}).

  2. (ii)

    if and only if

    U:2(Ω,0)fΩAαf(α)dμ(α),andS:xSx2(Ω,0),Sx:ΩαΨαx0U:\mathcal{L}^{2}(\Omega,\mathcal{H}_{0})\ni f\mapsto\int_{\Omega}A_{\alpha}^{*}f(\alpha)\,d\mu(\alpha)\in\mathcal{H},~{}\text{and}~{}S:\mathcal{H}\ni x\mapsto Sx\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}),Sx:\Omega\ni\alpha\mapsto\Psi_{\alpha}x\in\mathcal{H}_{0}

    are well-defined, U(2(Ω,0),)U\in\mathcal{B}(\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}),\mathcal{H}), S(,2(Ω,0))S\in\mathcal{B}(\mathcal{H},\mathcal{L}^{2}(\Omega,\mathcal{H}_{0})) such that aISUbIaI_{\mathcal{H}}\leq S^{*}U^{*}\leq bI_{\mathcal{H}} (resp. 0SUbI0\leq S^{*}U^{*}\leq bI_{\mathcal{H}}).

  3. (iii)

    if and only if

    R:hRh2(Ω,0),Rh:ΩαAαh0,andV:2(Ω,0)gΩΨαg(α)dμ(α)R:\mathcal{H}\ni h\mapsto Rh\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}),Rh:\Omega\ni\alpha\mapsto A_{\alpha}h\in\mathcal{H}_{0},~{}\text{and}~{}V:\mathcal{L}^{2}(\Omega,\mathcal{H}_{0})\ni g\mapsto\int_{\Omega}\Psi_{\alpha}^{*}g(\alpha)\,d\mu(\alpha)\in\mathcal{H}

    are well-defined, R(,2(Ω,0))R\in\mathcal{B}(\mathcal{H},\mathcal{L}^{2}(\Omega,\mathcal{H}_{0})), V(2(Ω,0),)V\in\mathcal{B}(\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}),\mathcal{H}) such that aIVRbIaI_{\mathcal{H}}\leq VR\leq bI_{\mathcal{H}} (resp. 0VRbI0\leq VR\leq bI_{\mathcal{H}}).

  4. (iv)

    if and only if

    hRh2(Ω,0),Rh:ΩαAαh0,andS:xSx2(Ω,0),Sx:ΩαΨαx0\mathcal{H}\ni h\mapsto Rh\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}),Rh:\Omega\ni\alpha\mapsto A_{\alpha}h\in\mathcal{H}_{0},~{}\text{and}~{}S:\mathcal{H}\ni x\mapsto Sx\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}),Sx:\Omega\ni\alpha\mapsto\Psi_{\alpha}x\in\mathcal{H}_{0}

    are well-defined, R,S(,2(Ω,0))R,S\in\mathcal{B}(\mathcal{H},\mathcal{L}^{2}(\Omega,\mathcal{H}_{0})) such that aISRbIaI_{\mathcal{H}}\leq S^{*}R\leq bI_{\mathcal{H}} (resp. 0SRbI0\leq S^{*}R\leq bI_{\mathcal{H}}).

Proof.

We argue only for (i), in frame situation. ()(\Rightarrow) Now U=θAU=\theta_{A}^{*}, V=θΨV=\theta_{\Psi}^{*} and VU=θΨθA=SA,ΨVU^{*}=\theta_{\Psi}^{*}\theta_{A}=S_{A,\Psi}.

()(\Leftarrow) Now θA=U\theta_{A}=U^{*}, θΨ=V\theta_{\Psi}=V^{*} and SA,Ψ=θΨθA=VUS_{A,\Psi}=\theta_{\Psi}^{*}\theta_{A}=VU^{*}. ∎

Let {Aα}αΩ,{Ψα}αΩ\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega} be in (,0).\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). For each fixed αΩ\alpha\in\Omega, suppose {eα,β}βΩα\{e_{\alpha,\beta}\}_{\beta\in\Omega_{\alpha}} is an orthonormal basis for 0.\mathcal{H}_{0}. From Riesz representation theorem, we get unique uα,β,vα,βu_{\alpha,\beta},v_{\alpha,\beta}\in\mathcal{H} such that Aαh,eα,β=h,uα,β,Ψαh,eα,β=h,vα,β,h,βΩα,αΩ\langle A_{\alpha}h,e_{\alpha,\beta}\rangle=\langle h,u_{\alpha,\beta}\rangle,\langle\Psi_{\alpha}h,e_{\alpha,\beta}\rangle=\langle h,v_{\alpha,\beta}\rangle,\forall h\in\mathcal{H},\forall\beta\in\Omega_{\alpha},\forall\alpha\in\Omega. Now Aαh=βΩαAαh,eα,βeα,β=βΩαh,uα,βeα,βA_{\alpha}h=\sum_{\beta\in\Omega_{\alpha}}\langle A_{\alpha}h,e_{\alpha,\beta}\rangle e_{\alpha,\beta}=\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle e_{\alpha,\beta}, Ψαh=βΩαh,vα,βeα,β,h,αΩ.\Psi_{\alpha}h=\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle e_{\alpha,\beta},\forall h\in\mathcal{H},\forall\alpha\in\Omega. We next find the adjoints of AαA_{\alpha}’s and Ψα\Psi_{\alpha}’s in terms of {uα,β}βΩα\{u_{\alpha,\beta}\}_{\beta\in\Omega_{\alpha}} and {vα,β}βΩα\{v_{\alpha,\beta}\}_{\beta\in\Omega_{\alpha}}. For all hh\in\mathcal{H}, h,Aαy=Aαh,y=βΩαh,uα,βeα,β,y\langle h,A_{\alpha}^{*}y\rangle=\langle A_{\alpha}h,y\rangle=\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle\langle e_{\alpha,\beta},y\rangle =h,βΩαy,eα,βuα,β,h,Ψαy=Ψαh,y=βΩαh,vα,βeα,β,y=h,βΩαy,eα,βvα,β,y0.=\langle h,\sum_{\beta\in\Omega_{\alpha}}\langle y,e_{\alpha,\beta}\rangle u_{\alpha,\beta}\rangle,\langle h,\Psi_{\alpha}^{*}y\rangle=\langle\Psi_{\alpha}h,y\rangle=\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle\langle e_{\alpha,\beta},y\rangle=\langle h,\sum_{\beta\in\Omega_{\alpha}}\langle y,e_{\alpha,\beta}\rangle v_{\alpha,\beta}\rangle,\forall y\in\mathcal{H}_{0}. Therefore Aαy=βΩαy,eα,βuα,βA_{\alpha}^{*}y=\sum_{\beta\in\Omega_{\alpha}}\langle y,e_{\alpha,\beta}\rangle u_{\alpha,\beta}, Ψαz=βΩαz,eα,βvα,β,y,z0,αΩ.\Psi_{\alpha}^{*}z=\sum_{\beta\in\Omega_{\alpha}}\langle z,e_{\alpha,\beta}\rangle v_{\alpha,\beta},\forall y,z\in\mathcal{H}_{0},\forall\alpha\in\Omega. Evaluation of these at eα,β0e_{\alpha,\beta_{0}} gives uα,β0=Aαeα,β0,vα,β0=Ψαeα,β0,β0Ωα,αΩ.u_{\alpha,\beta_{0}}=A_{\alpha}^{*}e_{\alpha,\beta_{0}},v_{\alpha,\beta_{0}}=\Psi_{\alpha}^{*}e_{\alpha,\beta_{0}},\forall\beta_{0}\in\Omega_{\alpha},\alpha\in\Omega.

Theorem 3.2.

Let {Aα}αΩ,{Ψα}αΩ\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega} be in (,0).\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). Suppose {eα,β}βΩα\{e_{\alpha,\beta}\}_{\beta\in\Omega_{\alpha}} is an orthonormal basis for 0,\mathcal{H}_{0}, for each αΩ.\alpha\in\Omega. Let uα,β=Aαeα,β,vα,β=Ψαeα,β,βΩα,αΩ.u_{\alpha,\beta}=A_{\alpha}^{*}e_{\alpha,\beta},v_{\alpha,\beta}=\Psi_{\alpha}^{*}e_{\alpha,\beta},\forall\beta\in\Omega_{\alpha},\forall\alpha\in\Omega. Then ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is a continuous

  1. (i)

    (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with bounds aa and bb if and only if for each hh\in\mathcal{H}, both maps ΩαβΩαh,uα,βeα,β0\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle e_{\alpha,\beta}\in\mathcal{H}_{0}, ΩαβΩαh,vα,βeα,β0\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle e_{\alpha,\beta}\in\mathcal{H}_{0} are measurable and there exist c,d>0c,d>0 such that the map

    T:hΩβΩαh,uα,βvα,βdμ(α)T:\mathcal{H}\ni h\mapsto\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha)\in\mathcal{H}

    is a well-defined bounded positive invertible operator such that ah2Th,hbh2,ha\|h\|^{2}\leq\langle Th,h\rangle\leq b\|h\|^{2},\forall h\in\mathcal{H}, and

    ΩβΩα|h,uα,β|2dμ(α)ch2,h;ΩβΩα|h,vα,β|2dμ(α)dh2,h.\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}|\langle h,u_{\alpha,\beta}\rangle|^{2}\,d\mu(\alpha)\leq c\|h\|^{2},~{}\forall h\in\mathcal{H};\quad\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}|\langle h,v_{\alpha,\beta}\rangle|^{2}\,d\mu(\alpha)\leq d\|h\|^{2},~{}\forall h\in\mathcal{H}.
  2. (ii)

    Bessel in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with bound bb if and only if for each hh\in\mathcal{H}, both maps ΩαβΩαh,uα,βeα,β\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle e_{\alpha,\beta} 0\in\mathcal{H}_{0}, ΩαβΩαh,vα,βeα,β0\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle e_{\alpha,\beta}\in\mathcal{H}_{0} are measurable and there exist c,d>0c,d>0 such that the map

    T:hΩβΩαh,uα,βvα,βdμ(α)T:\mathcal{H}\ni h\mapsto\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha)\in\mathcal{H}

    is a well-defined bounded positive operator such that 0Th,hbh2,h0\leq\langle Th,h\rangle\leq b\|h\|^{2},\forall h\in\mathcal{H}, and

    ΩβΩα|h,uα,β|2dμ(α)ch2,h;ΩβΩα|h,vα,β|2dμ(α)dh2,h.\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}|\langle h,u_{\alpha,\beta}\rangle|^{2}\,d\mu(\alpha)\leq c\|h\|^{2},~{}\forall h\in\mathcal{H};\quad\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}|\langle h,v_{\alpha,\beta}\rangle|^{2}\,d\mu(\alpha)\leq d\|h\|^{2},~{}\forall h\in\mathcal{H}.
  3. (iii)

    (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with bounds aa and bb if and only if for each hh\in\mathcal{H}, both maps ΩαβΩαh,uα,βeα,β0\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle e_{\alpha,\beta}\in\mathcal{H}_{0}, ΩαβΩαh,vα,βeα,β0\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle e_{\alpha,\beta}\in\mathcal{H}_{0} are measurable and there exist c,d,r>0c,d,r>0 such that

    ΩβΩαh,uα,βvα,βdμ(α)rh,h;\left\|\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha)\right\|\leq r\|h\|,~{}\forall h\in\mathcal{H};
    ΩβΩαh,uα,βvα,βdμ(α)=ΩβΩαh,vα,βuα,βdμ(α),h;\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha)=\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle u_{\alpha,\beta}\,d\mu(\alpha),~{}\forall h\in\mathcal{H};
    ah2ΩβΩαh,uα,βvα,β,hdμ(α)bh2,h,anda\|h\|^{2}\leq\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle\langle v_{\alpha,\beta},h\rangle\,d\mu(\alpha)\leq b\|h\|^{2},~{}\forall h\in\mathcal{H},~{}\text{and}
    ΩβΩα|h,uα,β|2dμ(α)ch2,h;ΩβΩα|h,vα,β|2dμ(α)dh2,h.\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}|\langle h,u_{\alpha,\beta}\rangle|^{2}\,d\mu(\alpha)\leq c\|h\|^{2},~{}\forall h\in\mathcal{H};\quad\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}|\langle h,v_{\alpha,\beta}\rangle|^{2}\,d\mu(\alpha)\leq d\|h\|^{2},~{}\forall h\in\mathcal{H}.
  4. (iv)

    Bessel in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with bound bb if and only if for each hh\in\mathcal{H}, both maps ΩαβΩαh,uα,βeα,β\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle e_{\alpha,\beta} 0\in\mathcal{H}_{0}, ΩαβΩαh,vα,βeα,β\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle e_{\alpha,\beta} 0\in\mathcal{H}_{0} are measurable and there exist c,d,r>0c,d,r>0 such that

    ΩβΩαh,uα,βvα,βdμ(α)rh,h;\left\|\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha)\right\|\leq r\|h\|,~{}\forall h\in\mathcal{H};
    ΩβΩαh,uα,βvα,βdμ(α)=ΩβΩαh,vα,βuα,βdμ(α),h;\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha)=\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle u_{\alpha,\beta}\,d\mu(\alpha),~{}\forall h\in\mathcal{H};
    0ΩβΩαh,uα,βvα,β,hdμ(α)bh2,h,and0\leq\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle\langle v_{\alpha,\beta},h\rangle\,d\mu(\alpha)\leq b\|h\|^{2},~{}\forall h\in\mathcal{H},~{}\text{and}
    ΩβΩα|h,uα,β|2dμ(α)ch2,h;ΩβΩα|h,vα,β|2dμ(α)dh2,h.\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}|\langle h,u_{\alpha,\beta}\rangle|^{2}\,d\mu(\alpha)\leq c\|h\|^{2},~{}\forall h\in\mathcal{H};\quad\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}|\langle h,v_{\alpha,\beta}\rangle|^{2}\,d\mu(\alpha)\leq d\|h\|^{2},~{}\forall h\in\mathcal{H}.
Proof.
  1. (i)

    For all h,h\in\mathcal{H},

    ΩβΩαh,uα,βvα,βdμ(α)\displaystyle\int_{\Omega}\sum\limits_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha) =ΩβΩαAαh,eα,βΨαeα,βdμ(α)\displaystyle=\int_{\Omega}\sum\limits_{\beta\in\Omega_{\alpha}}\langle A_{\alpha}h,e_{\alpha,\beta}\rangle\Psi_{\alpha}^{*}e_{\alpha,\beta}\,d\mu(\alpha)
    =ΩΨα(βΩαAαh,eα,βeα,β)𝑑μ(α)=ΩΨαAαh𝑑μ(α),\displaystyle=\int_{\Omega}\Psi_{\alpha}^{*}\left(\sum\limits_{\beta\in\Omega_{\alpha}}\langle A_{\alpha}h,e_{\alpha,\beta}\rangle e_{\alpha,\beta}\right)\,d\mu(\alpha)=\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha),
    ΩAαh,Ψαh𝑑μ(α)\displaystyle\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha) =ΩβΩαh,Aαeα,βeα,β,γΩαh,Ψαeα,γeα,γ𝑑μ(α)\displaystyle=\int_{\Omega}\left\langle\sum\limits_{\beta\in\Omega_{\alpha}}\langle h,A_{\alpha}^{*}e_{\alpha,\beta}\rangle e_{\alpha,\beta},\sum\limits_{\gamma\in\Omega_{\alpha}}\langle h,\Psi_{\alpha}^{*}e_{\alpha,\gamma}\rangle e_{\alpha,\gamma}\right\rangle\,d\mu(\alpha)
    =ΩβΩαh,uα,βeα,β,γΩαh,vα,γeα,γ𝑑μ(α)\displaystyle=\int_{\Omega}\left\langle\sum\limits_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle e_{\alpha,\beta},\sum\limits_{\gamma\in\Omega_{\alpha}}\langle h,v_{\alpha,\gamma}\rangle e_{\alpha,\gamma}\right\rangle\,d\mu(\alpha)
    =ΩβΩαh,uα,βvα,β,hdμ(α),\displaystyle=\int_{\Omega}\sum\limits_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle\langle v_{\alpha,\beta},h\rangle\,d\mu(\alpha),
    θAh2\displaystyle\left\|\theta_{A}h\right\|^{2} =ΩAαh2𝑑μ(α)=ΩβΩα|h,uα,β|2dμ(α);\displaystyle=\int_{\Omega}\|A_{\alpha}h\|^{2}\,d\mu(\alpha)=\int_{\Omega}\sum\limits_{\beta\in\Omega_{\alpha}}|\langle h,u_{\alpha,\beta}\rangle|^{2}\,d\mu(\alpha);
    θΨh2\displaystyle\left\|\theta_{\Psi}h\right\|^{2} =ΩβΩα|h,vα,β|2dμ(α).\displaystyle=\int_{\Omega}\sum\limits_{\beta\in\Omega_{\alpha}}|\langle h,v_{\alpha,\beta}\rangle|^{2}\,d\mu(\alpha).
  2. (ii)

    Similar to (i).

  3. (iii)

    hΩΨαAαh𝑑μ(α)\mathcal{H}\ni h\mapsto\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha)\in\mathcal{H} exists and is bounded positive invertible if and only if there exist c,d,r>0c,d,r>0 such that ΩβΩαh,uα,βvα,βdμ(α)rh,h\|\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha)\|\leq r\|h\|,\forall h\in\mathcal{H}, ΩβΩαh,uα,βvα,βdμ(α)=ΩβΩαh,vα,βuα,βdμ(α),h\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha)=\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle u_{\alpha,\beta}\,d\mu(\alpha),\forall h\in\mathcal{H} and ah2ΩβΩαh,uα,βvα,β,hdμ(α)bh2,ha\|h\|^{2}\leq\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle\langle v_{\alpha,\beta},h\rangle\,d\mu(\alpha)\leq b\|h\|^{2},\forall h\in\mathcal{H}. Also, θA:hθAh2(Ω,0)\theta_{A}:\mathcal{H}\ni h\mapsto\theta_{A}h\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}), θAh:ΩαAαh0\theta_{A}h:\Omega\ni\alpha\mapsto A_{\alpha}h\in\mathcal{H}_{0}, (resp. θΨ:hθΨh2(Ω,0)\theta_{\Psi}:\mathcal{H}\ni h\mapsto\theta_{\Psi}h\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}), θΨh:ΩαΨαh0\theta_{\Psi}h:\Omega\ni\alpha\mapsto\Psi_{\alpha}h\in\mathcal{H}_{0}) exists and is bounded if and only if there exists c>0c>0 (resp. d>0d>0) such that ΩβΩα|h,uα,β|2dμ(α)ch2,h\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}|\langle h,u_{\alpha,\beta}\rangle|^{2}\,d\mu(\alpha)\leq c\|h\|^{2},\forall h\in\mathcal{H} (resp. ΩβΩα|h,vα,β|2dμ(α)dh2,h\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}|\langle h,v_{\alpha,\beta}\rangle|^{2}\,d\mu(\alpha)\leq d\|h\|^{2},\forall h\in\mathcal{H}).

  4. (iv)

    Similar to (iii).

Similarity

Definition 3.3.

A continuous (ovf) ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is said to be right-similar to a continuous (ovf) ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if there exist invertible RA,B,RΨ,Φ()R_{A,B},R_{\Psi,\Phi}\in\mathcal{B}(\mathcal{H}) such that Bα=AαRA,B,Φα=ΨαRΨ,ΦB_{\alpha}=A_{\alpha}R_{A,B},\Phi_{\alpha}=\Psi_{\alpha}R_{\Psi,\Phi}, αΩ\forall\alpha\in\Omega.

Proposition 3.4.

Let {Aα}αΩΨ\{A_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\Psi} with frame bounds a,b,a,b, let RA,B,RΨ,Φ()R_{A,B},R_{\Psi,\Phi}\in\mathcal{B}(\mathcal{H}) be positive, invertible, commute with each other, commute with SA,ΨS_{A,\Psi}, and let Bα=AαRA,B,Φα=ΨαRΨ,Φ,αΩ.B_{\alpha}=A_{\alpha}R_{A,B},\Phi_{\alpha}=\Psi_{\alpha}R_{\Psi,\Phi},\forall\alpha\in\Omega. Then

  1. (i)

    {Bα}αΩΦ\{B_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\Phi} and aRA,B1RΨ,Φ1SB,ΦbRA,BRΨ,Φ.\frac{a}{\|R_{A,B}^{-1}\|\|R_{\Psi,\Phi}^{-1}\|}\leq S_{B,\Phi}\leq b\|R_{A,B}R_{\Psi,\Phi}\|. Assuming that ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is Parseval, then ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) is Parseval if and only if RΨ,ΦRA,B=I.R_{\Psi,\Phi}R_{A,B}=I_{\mathcal{H}}.

  2. (ii)

    θB=θARA,B,θΦ=θΨRΨ,Φ,SB,Φ=RΨ,ΦSA,ΨRA,B,PB,Φ=PA,Ψ.\theta_{B}=\theta_{A}R_{A,B},\theta_{\Phi}=\theta_{\Psi}R_{\Psi,\Phi},S_{B,\Phi}=R_{\Psi,\Phi}S_{A,\Psi}R_{A,B},P_{B,\Phi}=P_{A,\Psi}.

Proof.

For all h,gh,g\in\mathcal{H},

RΨ,ΦSA,ΨRA,Bh,g=SA,ΨRA,Bh,RΨ,Φg=SA,ΨRA,Bh,RΨ,Φg\displaystyle\langle R_{\Psi,\Phi}S_{A,\Psi}R_{A,B}h,g\rangle=\langle S_{A,\Psi}R_{A,B}h,R_{\Psi,\Phi}^{*}g\rangle=\langle S_{A,\Psi}R_{A,B}h,R_{\Psi,\Phi}g\rangle
=ΩAαRA,Bh,ΨαRΨ,Φg𝑑μ(α)=Ω(ΨαRΨ,Φ)AαRA,Bh,g𝑑μ(α)=SB,Φh,g.\displaystyle=\int_{\Omega}\langle A_{\alpha}R_{A,B}h,\Psi_{\alpha}R_{\Psi,\Phi}g\rangle\,d\mu(\alpha)=\int_{\Omega}\langle(\Psi_{\alpha}R_{\Psi,\Phi})^{*}A_{\alpha}R_{A,B}h,g\rangle\,d\mu(\alpha)=\langle S_{B,\Phi}h,g\rangle.

Lemma 3.5.

Let {Aα}αΩΨ,\{A_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\Psi}, {Bα}αΩΦ\{B_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\Phi} and Bα=AαRA,B,Φα=ΨαRΨ,Φ,αΩB_{\alpha}=A_{\alpha}R_{A,B},\Phi_{\alpha}=\Psi_{\alpha}R_{\Psi,\Phi},\forall\alpha\in\Omega, for some invertible RA,B,RΨ,Φ().R_{A,B},R_{\Psi,\Phi}\in\mathcal{B}(\mathcal{H}). Then θB=θARA,B,θΦ=θΨRΨ,Φ,SB,Φ=RΨ,ΦSA,ΨRA,B,PB,Φ=PA,Ψ.\theta_{B}=\theta_{A}R_{A,B},\theta_{\Phi}=\theta_{\Psi}R_{\Psi,\Phi},S_{B,\Phi}=R_{\Psi,\Phi}^{*}S_{A,\Psi}R_{A,B},P_{B,\Phi}=P_{A,\Psi}. Assuming that ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is Parseval, then ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) is Parseval if and only if RΨ,ΦRA,B=I.R_{\Psi,\Phi}^{*}R_{A,B}=I_{\mathcal{H}}.

Proof.

θBh(α)=Bαh=(AαRA,B)h=Aα(RA,Bh)=θA(RA,Bh)(α)=(θARA,B)h(α),αΩ,h\theta_{B}h(\alpha)=B_{\alpha}h=(A_{\alpha}R_{A,B})h=A_{\alpha}(R_{A,B}h)=\theta_{A}(R_{A,B}h)(\alpha)=(\theta_{A}R_{A,B})h(\alpha),\forall\alpha\in\Omega,\forall h\in\mathcal{H} \Rightarrow θB=θARA,B,αΩ\theta_{B}=\theta_{A}R_{A,B},\forall\alpha\in\Omega. Similarly θΦ=θΨRΨ,Φ\theta_{\Phi}=\theta_{\Psi}R_{\Psi,\Phi}. ∎

Theorem 3.6.

Let {Aα}αΩΨ,\{A_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\Psi}, {Bα}αΩΦ.\{B_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\Phi}. The following are equivalent.

  1. (i)

    Bα=AαRA,B,Φα=ΨαRΨ,Φ,αΩ,B_{\alpha}=A_{\alpha}R_{A,B},\Phi_{\alpha}=\Psi_{\alpha}R_{\Psi,\Phi},\forall\alpha\in\Omega, for some invertible RA,B,RΨ,Φ().R_{A,B},R_{\Psi,\Phi}\in\mathcal{B}(\mathcal{H}).

  2. (ii)

    θB=θARA,B,θΦ=θΨRΨ,Φ\theta_{B}=\theta_{A}R_{A,B}^{\prime},\theta_{\Phi}=\theta_{\Psi}R_{\Psi,\Phi}^{\prime} for some invertible RA,B,RΨ,Φ().R_{A,B}^{\prime},R_{\Psi,\Phi}^{\prime}\in\mathcal{B}(\mathcal{H}).

  3. (iii)

    PB,Φ=PA,Ψ.P_{B,\Phi}=P_{A,\Psi}.

If one of the above conditions is satisfied, then invertible operators in (i)\operatorname{(i)} and (ii)\operatorname{(ii)} are unique and are given by RA,B=SA,Ψ1θΨθB,RΨ,Φ=SA,Ψ1θAθΦ.R_{A,B}=S_{A,\Psi}^{-1}\theta_{\Psi}^{*}\theta_{B},R_{\Psi,\Phi}=S_{A,\Psi}^{-1}\theta_{A}^{*}\theta_{\Phi}. In the case that ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is Parseval, then ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) is Parseval if and only if RΨ,ΦRA,BR_{\Psi,\Phi}^{*}R_{A,B} is the identity operator if and only if RA,BRΨ,ΦR_{A,B}R_{\Psi,\Phi}^{*} is the identity operator.

Proof.

(ii) \Rightarrow (i) Bαh=θBh(α)=θBh(α)=(θARA,B)h(α)=θA(RA,Bh)(α)=Aα(RA,Bh)=(AαRA,B)hB_{\alpha}h=\theta_{B}h(\alpha)=\theta_{B}h(\alpha)=(\theta_{A}R_{A,B}^{\prime})h(\alpha)=\theta_{A}(R_{A,B}^{\prime}h)(\alpha)=A_{\alpha}(R_{A,B}^{\prime}h)=(A_{\alpha}R_{A,B}^{\prime})h, αΩ,h\forall\alpha\in\Omega,\forall h\in\mathcal{H} \Rightarrow Bα=AαRA,B,αΩB_{\alpha}=A_{\alpha}R_{A,B}^{\prime},\forall\alpha\in\Omega. Similarly Φα=ΨαRΨ,Φ,αΩ\Phi_{\alpha}=\Psi_{\alpha}R_{\Psi,\Phi}^{\prime},\forall\alpha\in\Omega. Other arguments are similar to that in the proof of Theorem 4.4 in [36]. ∎

Corollary 3.7.

For any given continuous (ovf) ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}), the canonical dual of ({Aα}αΩ(\{A_{\alpha}\}_{\alpha\in\Omega}, {Ψα}αΩ)\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is the only dual continuous (ovf) that is right-similar to ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}).

Proof.

Similar to the proof of Corollary 4.5 in [36]. ∎

Corollary 3.8.

Two right-similar continuous operator-valued frames cannot be orthogonal.

Proof.

Similar to the proof of Corollary 4.6 in [36]. ∎

Remark 3.9.

For every continuous (ovf) ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}), each of ‘continuous operator-valued frames’ ({AαSA,Ψ1}αΩ,{Ψα}αΩ),(\{A_{\alpha}S_{A,\Psi}^{-1}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}), ({AαSA,Ψ1/2}αΩ,{ΨαSA,Ψ1/2}αΩ),(\{A_{\alpha}S_{A,\Psi}^{-1/2}\}_{\alpha\in\Omega},\{\Psi_{\alpha}S_{A,\Psi}^{-1/2}\}_{\alpha\in\Omega}), and ({Aα}αΩ,{ΨαSA,Ψ1}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}S_{A,\Psi}^{-1}\}_{\alpha\in\Omega}) is a Parseval continuous (ovf) which is right-similar to ({Aα}αΩ,{Ψα}αΩ).(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}). Thus every continuous (ovf) is right-similar to Parseval continuous operator-valued frames.

4. Continuous frames and representations of locally compact groups

Let GG be a locally compact group, μG\mu_{G} be a left-invariant Haar measure on GG (we refer [17, 28, 13, 43, 4] for locally compact groups and Haar measures). Let λ\lambda be the left regular representation of GG defined by λgf(x)=f(g1x),g,xG,f(2(G,0))\lambda_{g}f(x)=f(g^{-1}x),\forall g,x\in G,\forall f\in\mathcal{B}(\mathcal{L}^{2}(G,\mathcal{H}_{0})); ρ\rho be the right regular representation of GG defined by ρgf(x)=ΔG(g)1/2f(xg),g,xG,f(2(G,0))\rho_{g}f(x)=\Delta_{G}(g)^{1/2}f(xg),\forall g,x\in G,\forall f\in\mathcal{B}(\mathcal{L}^{2}(G,\mathcal{H}_{0})), where ΔG\Delta_{G} is the modular function associated with GG [49].

Definition 4.1.

Let π\pi be a unitary representation of a locally compact group GG on a Hilbert space .\mathcal{H}. An operator AA in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is called a continuous operator-valued frame generator (resp. a Parseval frame generator) w.r.t. an operator Ψ\Psi in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if ({AgAπg1}gG,{ΨgΨπg1}gG)(\{A_{g}\coloneqq A\pi_{g^{-1}}\}_{g\in G},\{\Psi_{g}\coloneqq\Psi\pi_{g^{-1}}\}_{g\in G}) is a continuous (ovf) (resp. a Parseval continuous (ovf)) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) (where the measure on GG is a left invariant Haar measure μG\mu_{G}). In this case, we write (A,Ψ)(A,\Psi) is a continuous operator-valued frame generator for π\pi.

Proposition 4.2.

Let (A,Ψ)(A,\Psi) and (B,Φ)(B,\Phi) be continuous operator-valued frame generators in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) for a unitary representation π\pi of a locally compact group GG on .\mathcal{H}. Then

  1. (i)

    θAπg=λgθA,θΨπg=λgθΨ,gG.\theta_{A}\pi_{g}=\lambda_{g}\theta_{A},\theta_{\Psi}\pi_{g}=\lambda_{g}\theta_{\Psi},\forall g\in G.

  2. (ii)

    θAθB,θΨθΦ,θAθΦ\theta_{A}^{*}\theta_{B},\theta_{\Psi}^{*}\theta_{\Phi},\theta_{A}^{*}\theta_{\Phi} are in the commutant π(G)\pi(G)^{\prime} of π(G)′′.\pi(G)^{\prime\prime}. Further, SA,Ψπ(G)S_{A,\Psi}\in\pi(G)^{\prime} and (ASA,Ψ1/2,ΨSA,Ψ1/2)(AS_{A,\Psi}^{-{1/2}},\Psi S_{A,\Psi}^{-{1/2}}) is a Parseval frame generator.

Proof.
  1. (i)

    For all hh\in\mathcal{H} and f2(G,0)f\in\mathcal{L}^{2}(G,\mathcal{H}_{0}),

    λgθAh,f\displaystyle\langle\lambda_{g}\theta_{A}h,f\rangle =GλgθAh(α),f(α)𝑑μG(α)=GθAh(g1α),f(α)𝑑μG(α)\displaystyle=\int_{G}\langle\lambda_{g}\theta_{A}h(\alpha),f(\alpha)\rangle\,d\mu_{G}(\alpha)=\int_{G}\langle\theta_{A}h(g^{-1}\alpha),f(\alpha)\rangle\,d\mu_{G}(\alpha)
    =GAg1αh,f(α)𝑑μG(α)=GAπ(g1α)1h,f(α)𝑑μG(α)\displaystyle=\int_{G}\langle A_{g^{-1}\alpha}h,f(\alpha)\rangle\,d\mu_{G}(\alpha)=\int_{G}\langle A\pi_{(g^{-1}\alpha)^{-1}}h,f(\alpha)\rangle\,d\mu_{G}(\alpha)
    =πgh,G(Aπα1)f(α)𝑑μG(α)=πgh,GAαf(α)𝑑μG(α)\displaystyle=\left\langle\pi_{g}h,\int_{G}(A\pi_{\alpha^{-1}})^{*}f(\alpha)\,d\mu_{G}(\alpha)\right\rangle=\left\langle\pi_{g}h,\int_{G}A_{\alpha}^{*}f(\alpha)\,d\mu_{G}(\alpha)\right\rangle
    =πgh,θAf=θAπgh,f\displaystyle=\langle\pi_{g}h,\theta_{A}^{*}f\rangle=\langle\theta_{A}\pi_{g}h,f\rangle

    λgθA=θAπg\Rightarrow\lambda_{g}\theta_{A}=\theta_{A}\pi_{g}. Similarly θΨπg=λgθΨ.\theta_{\Psi}\pi_{g}=\lambda_{g}\theta_{\Psi}.

  2. (ii)

    θAθBπg=θAλgθB=(λg1θA)θB=(θAπg1)θB=πgθAθB\theta_{A}^{*}\theta_{B}\pi_{g}=\theta_{A}^{*}\lambda_{g}\theta_{B}=(\lambda_{g^{-1}}\theta_{A})^{*}\theta_{B}=(\theta_{A}\pi_{g^{-1}})^{*}\theta_{B}=\pi_{g}\theta_{A}^{*}\theta_{B} and for all x,yx,y\in\mathcal{H}

    G(ΨSA,Ψ12πg1)(ASA,Ψ12πg1)x𝑑μG(g),y\displaystyle\left\langle\int_{G}(\Psi S_{A,\Psi}^{-\frac{1}{2}}\pi_{g^{-1}})^{*}(AS_{A,\Psi}^{-\frac{1}{2}}\pi_{g^{-1}})x\,d\mu_{G}(g),y\right\rangle =G(ΨSA,Ψ12πg1)(ASA,Ψ12πg1)x,y𝑑μG(g)\displaystyle=\int_{G}\langle(\Psi S_{A,\Psi}^{-\frac{1}{2}}\pi_{g^{-1}})^{*}(AS_{A,\Psi}^{-\frac{1}{2}}\pi_{g^{-1}})x,y\rangle\,d\mu_{G}(g)
    =GπgSA,Ψ12ΨASA,Ψ12πg1x,y𝑑μG(g)\displaystyle=\int_{G}\langle\pi_{g}S_{A,\Psi}^{-\frac{1}{2}}\Psi^{*}AS_{A,\Psi}^{-\frac{1}{2}}\pi_{g^{-1}}x,y\rangle\,d\mu_{G}(g)
    =GSA,Ψ12πgΨAπg1SA,Ψ12x,y𝑑μG(g)\displaystyle=\int_{G}\langle S_{A,\Psi}^{-\frac{1}{2}}\pi_{g}\Psi^{*}A\pi_{g^{-1}}S_{A,\Psi}^{-\frac{1}{2}}x,y\rangle\,d\mu_{G}(g)
    =G(Ψπg1)(Aπg1)SA,Ψ12x,SA,Ψ12y𝑑μG(g)\displaystyle=\int_{G}\langle(\Psi\pi_{g^{-1}})^{*}(A\pi_{g^{-1}})S_{A,\Psi}^{-\frac{1}{2}}x,S_{A,\Psi}^{-\frac{1}{2}}y\rangle\,d\mu_{G}(g)
    =GΨgAg(SA,Ψ12x)𝑑μG(g),SA,Ψ12y\displaystyle=\left\langle\int_{G}\Psi_{g}^{*}A_{g}(S_{A,\Psi}^{-\frac{1}{2}}x)\,d\mu_{G}(g),S_{A,\Psi}^{-\frac{1}{2}}y\right\rangle
    =SA,Ψ(SA,Ψ12x),SA,Ψ12y=x,y\displaystyle=\langle S_{A,\Psi}(S_{A,\Psi}^{-\frac{1}{2}}x),S_{A,\Psi}^{-\frac{1}{2}}y\rangle=\langle x,y\rangle

    \Rightarrow G(ΨSA,Ψ12πg1)(ASA,Ψ12πg1)x𝑑μ(g)=x,x\int_{G}(\Psi S_{A,\Psi}^{-\frac{1}{2}}\pi_{g^{-1}})^{*}(AS_{A,\Psi}^{-\frac{1}{2}}\pi_{g^{-1}})x\,d\mu(g)=x,\forall x\in\mathcal{H} and hence the last part.

Theorem 4.3.

Let GG be a locally compact group with identity ee and ({Ag}gG,{Ψg}gG)(\{A_{g}\}_{g\in G},\{\Psi_{g}\}_{g\in G}) be a Parseval continuous (ovf) in (,0).\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). Then there is a unitary representation π\pi of GG on \mathcal{H} for which

Ag=Aeπg1,Ψg=Ψeπg1,gGA_{g}=A_{e}\pi_{g^{-1}},~{}\Psi_{g}=\Psi_{e}\pi_{g^{-1}},\quad\forall g\in G

if and only if

AgpAgq=ApAq,AgpΨgq=ApΨq,ΨgpΨgq=ΨpΨq,g,p,qG.A_{gp}A_{gq}^{*}=A_{p}A_{q}^{*},~{}A_{gp}\Psi_{gq}^{*}=A_{p}\Psi_{q}^{*},~{}\Psi_{gp}\Psi_{gq}^{*}=\Psi_{p}\Psi_{q}^{*},\quad\forall g,p,q\in G.
Proof.

()(\Rightarrow) Similar to the proof of ‘only if’ part of Theorem 5.3 in [36].

()(\Leftarrow) We claim the following three equalities among them we derive the second, two others are similar. For all gG,g\in G,

λgθAθA=θAθAλg,λgθAθΨ=θAθΨλg,λgθΨθΨ=θΨθΨλg.\displaystyle\lambda_{g}\theta_{A}\theta_{A}^{*}=\theta_{A}\theta_{A}^{*}\lambda_{g},~{}\lambda_{g}\theta_{A}\theta_{\Psi}^{*}=\theta_{A}\theta_{\Psi}^{*}\lambda_{g},~{}\lambda_{g}\theta_{\Psi}\theta_{\Psi}^{*}=\theta_{\Psi}\theta_{\Psi}^{*}\lambda_{g}.

Let u,v2(G,0)u,v\in\mathcal{L}^{2}(G,\mathcal{H}_{0}). Then

λgθAθΨλgu,v\displaystyle\langle\lambda_{g}\theta_{A}\theta_{\Psi}^{*}\lambda_{g}^{*}u,v\rangle =θΨλgu,θAλgv\displaystyle=\langle\theta_{\Psi}^{*}\lambda_{g}^{*}u,\theta_{A}^{*}\lambda_{g}^{*}v\rangle
=GΨαλgu(α)𝑑μG(α),GAβλgv(β)𝑑μG(β)\displaystyle=\left\langle\int_{G}\Psi_{\alpha}^{*}\lambda_{g}^{*}u(\alpha)\,d\mu_{G}(\alpha),\int_{G}A_{\beta}^{*}\lambda_{g}^{*}v(\beta)\,d\mu_{G}(\beta)\right\rangle
=GΨαλg1u(α)𝑑μG(α),GAβλg1v(β)𝑑μG(β)\displaystyle=\left\langle\int_{G}\Psi_{\alpha}^{*}\lambda_{g^{-1}}u(\alpha)\,d\mu_{G}(\alpha),\int_{G}A_{\beta}^{*}\lambda_{g^{-1}}v(\beta)\,d\mu_{G}(\beta)\right\rangle
=GΨαu(gα)𝑑μG(α),GAβv(gβ)𝑑μG(β)\displaystyle=\left\langle\int_{G}\Psi_{\alpha}^{*}u(g\alpha)\,d\mu_{G}(\alpha),\int_{G}A_{\beta}^{*}v(g\beta)\,d\mu_{G}(\beta)\right\rangle
=GΨg1pu(p)𝑑μG(g1p),GAg1qv(q)𝑑μG(g1q)\displaystyle=\left\langle\int_{G}\Psi_{g^{-1}p}^{*}u(p)\,d\mu_{G}(g^{-1}p),\int_{G}A_{g^{-1}q}^{*}v(q)\,d\mu_{G}(g^{-1}q)\right\rangle
=GΨg1pu(p)𝑑μG(p),GAg1qv(q)𝑑μG(q)\displaystyle=\left\langle\int_{G}\Psi_{g^{-1}p}^{*}u(p)\,d\mu_{G}(p),\int_{G}A_{g^{-1}q}^{*}v(q)\,d\mu_{G}(q)\right\rangle
=GGAg1qΨg1pu(p),v(q)𝑑μG(q)𝑑μG(p)\displaystyle=\int_{G}\int_{G}\langle A_{g^{-1}q}\Psi_{g^{-1}p}^{*}u(p),v(q)\rangle\,d\mu_{G}(q)\,d\mu_{G}(p)
=GGAqΨpu(p),v(q)𝑑μG(q)𝑑μG(p)\displaystyle=\int_{G}\int_{G}\langle A_{q}\Psi_{p}^{*}u(p),v(q)\rangle\,d\mu_{G}(q)\,d\mu_{G}(p)
=GΨpu(p)𝑑μG(p),GAqv(q)𝑑μG(q)=θΨu,θAv=θAθΨu,v.\displaystyle=\left\langle\int_{G}\Psi_{p}^{*}u(p)\,d\mu_{G}(p),\int_{G}A_{q}^{*}v(q)\,d\mu_{G}(q)\right\rangle=\langle\theta_{\Psi}^{*}u,\theta_{A}^{*}v\rangle=\langle\theta_{A}\theta_{\Psi}^{*}u,v\rangle.

Define π:GgπgθΨλgθA().\pi:G\ni g\mapsto\pi_{g}\coloneqq\theta_{\Psi}^{*}\lambda_{g}\theta_{A}\in\mathcal{B}(\mathcal{H}). Using the fact that frame is Parseval, πgπh=θΨλgθAθΨλhθA=θΨθAθΨλgλhθA=θΨλghθA=πgh\pi_{g}\pi_{h}=\theta_{\Psi}^{*}\lambda_{g}\theta_{A}\theta_{\Psi}^{*}\lambda_{h}\theta_{A}=\theta_{\Psi}^{*}\theta_{A}\theta_{\Psi}^{*}\lambda_{g}\lambda_{h}\theta_{A}=\theta_{\Psi}^{*}\lambda_{gh}\theta_{A}=\pi_{gh} for all g,hG,g,h\in G, and πgπg=θΨλgθAθAλg1θΨ=θΨθAθAλgλg1θΨ=I,πgπg=θAλg1θΨθΨλgθA=θAλg1λgθΨθΨθA=I\pi_{g}\pi_{g}^{*}=\theta_{\Psi}^{*}\lambda_{g}\theta_{A}\theta_{A}^{*}\lambda_{g^{-1}}\theta_{\Psi}=\theta_{\Psi}^{*}\theta_{A}\theta_{A}^{*}\lambda_{g}\lambda_{g^{-1}}\theta_{\Psi}=I_{\mathcal{H}},\pi_{g}^{*}\pi_{g}=\theta_{A}^{*}\lambda_{g^{-1}}\theta_{\Psi}\theta_{\Psi}^{*}\lambda_{g}\theta_{A}=\theta_{A}^{*}\lambda_{g^{-1}}\lambda_{g}\theta_{\Psi}\theta_{\Psi}^{*}\theta_{A}=I_{\mathcal{H}} for all gGg\in G. We next prove that, for each fixed hh\in\mathcal{H}, the map ϕh:Ggπgh\phi_{h}:G\ni g\mapsto\pi_{g}h\in\mathcal{H} is continuous. So, let hh\in\mathcal{H} be fixed. Then θAh\theta_{A}h is fixed. Since λ\lambda is a unitary representation, the map Ggλg(θAh)2(G,𝕂)G\ni g\mapsto\lambda_{g}(\theta_{A}h)\in\mathcal{L}^{2}(G,\mathbb{K}) is continuous. Continuity of θΨ\theta_{\Psi}^{*} now gives that the map GgθΨ(λg(θAh))G\ni g\mapsto\theta_{\Psi}^{*}(\lambda_{g}(\theta_{A}h))\in\mathcal{H} is continuous, i.e., ϕh\phi_{h} is continuous. This proves π\pi is a unitary representation. We now prove Ag=Aeπg1,Ψg=Ψeπg1A_{g}=A_{e}\pi_{g^{-1}},\Psi_{g}=\Psi_{e}\pi_{g^{-1}} for all gGg\in G. For all hh\in\mathcal{H} and for all f2(G,0)f\in\mathcal{L}^{2}(G,\mathcal{H}_{0}),

Aeπg1h,f\displaystyle\langle A_{e}\pi_{g^{-1}}h,f\rangle =πg1h,Aef=θΨλg1θAh,Aef\displaystyle=\langle\pi_{g^{-1}}h,A_{e}^{*}f\rangle=\langle\theta_{\Psi}^{*}\lambda_{g^{-1}}\theta_{A}h,A_{e}^{*}f\rangle
=GΨαλg1θAh(α)𝑑μG(α),Aef=GΨαθAh(gα)𝑑μG(α),Aef\displaystyle=\left\langle\int_{G}\Psi_{\alpha}^{*}\lambda_{g^{-1}}\theta_{A}h(\alpha)\,d\mu_{G}(\alpha),A_{e}^{*}f\right\rangle=\left\langle\int_{G}\Psi_{\alpha}^{*}\theta_{A}h(g\alpha)\,d\mu_{G}(\alpha),A_{e}^{*}f\right\rangle
=GΨαAgαh𝑑μG(α),Aef=GΨg1βAβh𝑑μG(g1β),Aef\displaystyle=\left\langle\int_{G}\Psi_{\alpha}^{*}A_{g\alpha}h\,d\mu_{G}(\alpha),A_{e}^{*}f\right\rangle=\left\langle\int_{G}\Psi_{g^{-1}\beta}^{*}A_{\beta}h\,d\mu_{G}(g^{-1}\beta),A_{e}^{*}f\right\rangle
=GΨg1βAβh𝑑μG(β),Aef=GAg1gΨg1βAβh,f𝑑μG(β)\displaystyle=\left\langle\int_{G}\Psi_{g^{-1}\beta}^{*}A_{\beta}h\,d\mu_{G}(\beta),A_{e}^{*}f\right\rangle=\int_{G}\langle A_{g^{-1}g}\Psi_{g^{-1}\beta}^{*}A_{\beta}h,f\rangle\,d\mu_{G}(\beta)
=GAgΨβAβh,f𝑑μG(β)=GΨβAβh𝑑μG(β),Agf\displaystyle=\int_{G}\langle A_{g}\Psi_{\beta}^{*}A_{\beta}h,f\rangle\,d\mu_{G}(\beta)=\left\langle\int_{G}\Psi_{\beta}^{*}A_{\beta}h\,d\mu_{G}(\beta),A_{g}^{*}f\right\rangle
=h,Agf=Agh,f,\displaystyle=\langle h,A_{g}^{*}f\rangle=\langle A_{g}h,f\rangle,

and

Ψeπg1h,f\displaystyle\langle\Psi_{e}\pi_{g^{-1}}h,f\rangle =πg1h,Ψef=θΨλg1θAh,Ψef\displaystyle=\langle\pi_{g^{-1}}h,\Psi_{e}^{*}f\rangle=\langle\theta_{\Psi}^{*}\lambda_{g^{-1}}\theta_{A}h,\Psi_{e}^{*}f\rangle
=GΨαλg1θAh(α)𝑑μG(α),Ψef=GΨαθAh(gα)𝑑μG(α),Ψef\displaystyle=\left\langle\int_{G}\Psi_{\alpha}^{*}\lambda_{g^{-1}}\theta_{A}h(\alpha)\,d\mu_{G}(\alpha),\Psi_{e}^{*}f\right\rangle=\left\langle\int_{G}\Psi_{\alpha}^{*}\theta_{A}h(g\alpha)\,d\mu_{G}(\alpha),\Psi_{e}^{*}f\right\rangle
=GΨαAgαh𝑑μG(α),Ψef=GΨg1βAβh𝑑μG(g1β),Ψef\displaystyle=\left\langle\int_{G}\Psi_{\alpha}^{*}A_{g\alpha}h\,d\mu_{G}(\alpha),\Psi_{e}^{*}f\right\rangle=\left\langle\int_{G}\Psi_{g^{-1}\beta}^{*}A_{\beta}h\,d\mu_{G}(g^{-1}\beta),\Psi_{e}^{*}f\right\rangle
=GΨg1βAβh𝑑μG(β),Ψef=GΨg1gΨg1βAβh,f𝑑μG(β)\displaystyle=\left\langle\int_{G}\Psi_{g^{-1}\beta}^{*}A_{\beta}h\,d\mu_{G}(\beta),\Psi_{e}^{*}f\right\rangle=\int_{G}\langle\Psi_{g^{-1}g}\Psi_{g^{-1}\beta}^{*}A_{\beta}h,f\rangle\,d\mu_{G}(\beta)
=GΨgΨβAβh,f𝑑μG(β)=GΨβAβh𝑑μG(β),Ψgf\displaystyle=\int_{G}\langle\Psi_{g}\Psi_{\beta}^{*}A_{\beta}h,f\rangle\,d\mu_{G}(\beta)=\left\langle\int_{G}\Psi_{\beta}^{*}A_{\beta}h\,d\mu_{G}(\beta),\Psi_{g}^{*}f\right\rangle
=h,Ψgf=Ψgh,f.\displaystyle=\langle h,\Psi_{g}^{*}f\rangle=\langle\Psi_{g}h,f\rangle.

Corollary 4.4.

Let GG be a locally compact group with identity ee and ({Ag}gG,{Ψg}gG)(\{A_{g}\}_{g\in G},\{\Psi_{g}\}_{g\in G}) be a continuous (ovf) in (,0).\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). Then there is a unitary representation π\pi of GG on \mathcal{H} for which

  1. (i)

    Ag=AeSA,Ψ1πg1SA,Ψ,Ψg=Ψeπg1A_{g}=A_{e}S_{A,\Psi}^{-1}\pi_{g^{-1}}S_{A,\Psi},\Psi_{g}=\Psi_{e}\pi_{g^{-1}} for all gGg\in G if and only if AgpSA,Ψ2Agq=ApSA,Ψ2Aq,AgpSA,Ψ1ΨgqA_{gp}S_{A,\Psi}^{-2}A_{gq}^{*}=A_{p}S_{A,\Psi}^{-2}A_{q}^{*},A_{gp}S_{A,\Psi}^{-1}\Psi_{gq}^{*} =ApSA,Ψ1Ψq,ΨgpΨgq=ΨpΨq=A_{p}S_{A,\Psi}^{-1}\Psi_{q}^{*},\Psi_{gp}\Psi_{gq}^{*}=\Psi_{p}\Psi_{q}^{*} for all g,p,qG.g,p,q\in G.

  2. (ii)

    Ag=AeSA,Ψ1/2πg1SA,Ψ1/2,Ψg=ΨeSA,Ψ1/2πg1SA,Ψ1/2A_{g}=A_{e}S_{A,\Psi}^{-1/2}\pi_{g^{-1}}S_{A,\Psi}^{1/2},\Psi_{g}=\Psi_{e}S_{A,\Psi}^{-1/2}\pi_{g^{-1}}S_{A,\Psi}^{1/2} for all gGg\in G if and only if AgpSA,Ψ1Agq=ApSA,Ψ1Aq,AgpSA,Ψ1Ψgq=ApSA,Ψ1Ψq,ΨgpSA,Ψ1Ψgq=ΨpSA,Ψ1ΨqA_{gp}S_{A,\Psi}^{-1}A_{gq}^{*}=A_{p}S_{A,\Psi}^{-1}A_{q}^{*},A_{gp}S_{A,\Psi}^{-1}\Psi_{gq}^{*}=A_{p}S_{A,\Psi}^{-1}\Psi_{q}^{*},\Psi_{gp}S_{A,\Psi}^{-1}\Psi_{gq}^{*}=\Psi_{p}S_{A,\Psi}^{-1}\Psi_{q}^{*} for all g,p,qG.g,p,q\in G.

  3. (iii)

    Ag=Aeπg1,Ψg=ΨeSA,Ψ1πg1SA,ΨA_{g}=A_{e}\pi_{g^{-1}},\Psi_{g}=\Psi_{e}S_{A,\Psi}^{-1}\pi_{g^{-1}}S_{A,\Psi} for all gGg\in G if and only if AgpAgq=ApAq,AgpSA,Ψ1Ψgq=ApSA,Ψ1Ψq,ΨgpSA,Ψ2Ψgq=ΨpSA,Ψ2ΨqA_{gp}A_{gq}^{*}=A_{p}A_{q}^{*},A_{gp}S_{A,\Psi}^{-1}\Psi_{gq}^{*}=A_{p}S_{A,\Psi}^{-1}\Psi_{q}^{*},\Psi_{gp}S_{A,\Psi}^{-2}\Psi_{gq}^{*}=\Psi_{p}S_{A,\Psi}^{-2}\Psi_{q}^{*} for all g,p,qG.g,p,q\in G.

Proof.

We apply Theorem 4.3 to the Parseval continuous (ovf)

  1. (i)

    ({AgSA,Ψ1}gG,{Ψg}gG)(\{A_{g}S_{A,\Psi}^{-1}\}_{g\in G},\{\Psi_{g}\}_{g\in G}) to get: there is a unitary representation π\pi of GG on \mathcal{H} for which AgSA,Ψ1=(AeSA,Ψ1)πg1,Ψg=Ψeπg1A_{g}S_{A,\Psi}^{-1}=(A_{e}S_{A,\Psi}^{-1})\pi_{g^{-1}},\Psi_{g}=\Psi_{e}\pi_{g^{-1}} for all gGg\in G if and only if (AgpSA,Ψ1)(AgqSA,Ψ1)=(ApSA,Ψ1)(AqSA,Ψ1)(A_{gp}S_{A,\Psi}^{-1})(A_{gq}S_{A,\Psi}^{-1})^{*}=(A_{p}S_{A,\Psi}^{-1})(A_{q}S_{A,\Psi}^{-1})^{*}, (AgpSA,Ψ1)Ψgq=(ApSA,Ψ1)Ψq(A_{gp}S_{A,\Psi}^{-1})\Psi_{gq}^{*}=(A_{p}S_{A,\Psi}^{-1})\Psi_{q}^{*}, ΨgpΨgq=ΨpΨq\Psi_{gp}\Psi_{gq}^{*}=\Psi_{p}\Psi_{q}^{*} for all g,p,qG.g,p,q\in G.

  2. (ii)

    ({AgSA,Ψ1/2}gG,{ΨgSA,Ψ1/2}gG)(\{A_{g}S_{A,\Psi}^{-1/2}\}_{g\in G},\{\Psi_{g}S_{A,\Psi}^{-1/2}\}_{g\in G}) to get: there is a unitary representation π\pi of GG on \mathcal{H} for which AgSA,Ψ1/2=(AeSA,Ψ1/2)πg1,ΨgSA,Ψ1/2=(ΨeSA,Ψ1/2)πg1A_{g}S_{A,\Psi}^{-1/2}=(A_{e}S_{A,\Psi}^{-1/2})\pi_{g^{-1}},\Psi_{g}S_{A,\Psi}^{-1/2}=(\Psi_{e}S_{A,\Psi}^{-1/2})\pi_{g^{-1}} for all gGg\in G if and only if (AgpSA,Ψ1/2)(AgqSA,Ψ1/2)(A_{gp}S_{A,\Psi}^{-1/2})(A_{gq}S_{A,\Psi}^{-1/2})^{*} =(ApSA,Ψ1/2)(AqSA,Ψ1/2),(AgpSA,Ψ1/2)(ΨgqSA,Ψ1/2)=(ApSA,Ψ1/2)(ΨqSA,Ψ1/2),=(A_{p}S_{A,\Psi}^{-1/2})(A_{q}S_{A,\Psi}^{-1/2})^{*},(A_{gp}S_{A,\Psi}^{-1/2})(\Psi_{gq}S_{A,\Psi}^{-1/2})^{*}=(A_{p}S_{A,\Psi}^{-1/2})(\Psi_{q}S_{A,\Psi}^{-1/2})^{*}, (ΨgpSA,Ψ1/2)(ΨgqSA,Ψ1/2)(\Psi_{gp}S_{A,\Psi}^{-1/2})(\Psi_{gq}S_{A,\Psi}^{-1/2})^{*} =(ΨpSA,Ψ1/2)(ΨqSA,Ψ1/2)=(\Psi_{p}S_{A,\Psi}^{-1/2})(\Psi_{q}S_{A,\Psi}^{-1/2})^{*} for all g,p,qG.g,p,q\in G.

  3. (iii)

    ({Ag}gG,{ΨgSA,Ψ1}gG)(\{A_{g}\}_{g\in G},\{\Psi_{g}S_{A,\Psi}^{-1}\}_{g\in G}) to get: there is a unitary representation π\pi of GG on \mathcal{H} for which Ag=Aeπg1,ΨgSA,Ψ1=(ΨeSA,Ψ1)πg1A_{g}=A_{e}\pi_{g^{-1}},\Psi_{g}S_{A,\Psi}^{-1}=(\Psi_{e}S_{A,\Psi}^{-1})\pi_{g^{-1}} for all gGg\in G if and only if AgpAgq=ApAq,Agp(ΨgqSA,Ψ1)=Ap(ΨqSA,Ψ1),(ΨgpSA,Ψ1)(ΨgqSA,Ψ1)A_{gp}A_{gq}^{*}=A_{p}A_{q}^{*},A_{gp}(\Psi_{gq}S_{A,\Psi}^{-1})^{*}=A_{p}(\Psi_{q}S_{A,\Psi}^{-1})^{*},(\Psi_{gp}S_{A,\Psi}^{-1})(\Psi_{gq}S_{A,\Psi}^{-1})^{*} =(ΨpSA,Ψ1)(ΨqSA,Ψ1)=(\Psi_{p}S_{A,\Psi}^{-1})(\Psi_{q}S_{A,\Psi}^{-1})^{*} for all g,p,qG.g,p,q\in G.

Corollary 4.5.

Let GG be a locally compact group with identity ee and {Ag}gG\{A_{g}\}_{g\in G} be a

  1. (i)

    Parseval continuous (ovf) (w.r.t. itself) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). Then there is a unitary representation π\pi of GG on \mathcal{H} for which

    Ag=Aeπg1,gGA_{g}=A_{e}\pi_{g^{-1}},\quad\forall g\in G

    if and only if

    AgpAgq=ApAq,g,p,qG.A_{gp}A_{gq}^{*}=A_{p}A_{q}^{*},\quad\forall g,p,q\in G.
  2. (ii)

    continuous (ovf) (w.r.t. itself) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). Then there is a unitary representation π\pi of GG on \mathcal{H} for which

    Ag=AeSA,Ψ1/2πg1SA,Ψ1/2,gGA_{g}=A_{e}S_{A,\Psi}^{-1/2}\pi_{g^{-1}}S_{A,\Psi}^{1/2},\quad\forall g\in G

    if and only if

    AgpSA,A1Agq=ApSA,A1Aq,g,p,qG.A_{gp}S_{A,A}^{-1}A_{gq}^{*}=A_{p}S_{A,A}^{-1}A_{q}^{*},\quad\forall g,p,q\in G.

5. Perturbations

Theorem 5.1.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) be a continuous (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). Suppose {Bα}αΩ\{B_{\alpha}\}_{\alpha\in\Omega} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is such that

  1. (i)

    ΨαBα0,αΩ\Psi_{\alpha}^{*}B_{\alpha}\geq 0,\forall\alpha\in\Omega,

  2. (ii)

    for each hh\in\mathcal{H}, the map ΩαBαh0\Omega\ni\alpha\mapsto B_{\alpha}h\in\mathcal{H}_{0} is measurable,

  3. (iii)

    there exist α,β,γ0\alpha,\beta,\gamma\geq 0 with max{α+γθΨSA,Ψ1,β}<1\max\{\alpha+\gamma\|\theta_{\Psi}S_{A,\Psi}^{-1}\|,\beta\}<1 such that

    (2) Ω(AαBα)f(α)𝑑μ(α)αΩAαf(α)𝑑μ(α)+βΩBαf(α)𝑑μ(α)+γf,f2(Ω,0).\left\|\int_{\Omega}(A_{\alpha}^{*}-B_{\alpha}^{*})f(\alpha)\,d\mu(\alpha)\right\|\leq\alpha\left\|\int_{\Omega}A_{\alpha}^{*}f(\alpha)\,d\mu(\alpha)\right\|+\beta\left\|\int_{\Omega}B_{\alpha}^{*}f(\alpha)\,d\mu(\alpha)\right\|+\gamma\|f\|,\quad\forall f\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}).

Then ({Bα}αΩ,{Ψα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is a continuous (ovf) with bounds 1(α+γθΨSA,Ψ1)(1+β)SA,Ψ1\frac{1-(\alpha+\gamma\|\theta_{\Psi}S_{A,\Psi}^{-1}\|)}{(1+\beta)\|S_{A,\Psi}^{-1}\|} and θΨ((1+α)θA+γ)1β\frac{\|\theta_{\Psi}\|((1+\alpha)\|\theta_{A}\|+\gamma)}{1-\beta}.

Proof.

Define T:2(Ω,0)fΩBαf(α)𝑑μ(α)T:\mathcal{L}^{2}(\Omega,\mathcal{H}_{0})\ni f\mapsto\int_{\Omega}B_{\alpha}^{*}f(\alpha)\,d\mu(\alpha)\in\mathcal{H}. Then for all f2(Ω,0)f\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}),

Tf\displaystyle\|Tf\| =ΩBαf(α)𝑑μ(α)Ω(BαAα)f(α)𝑑μ(α)+ΩAαf(α)𝑑μ(α)\displaystyle=\left\|\int_{\Omega}B_{\alpha}^{*}f(\alpha)\,d\mu(\alpha)\right\|\leq\left\|\int_{\Omega}(B_{\alpha}^{*}-A_{\alpha}^{*})f(\alpha)\,d\mu(\alpha)\right\|+\left\|\int_{\Omega}A_{\alpha}^{*}f(\alpha)\,d\mu(\alpha)\right\|
(1+α)ΩAαf(α)𝑑μ(α)+βΩBαf(α)𝑑μ(α)+γf\displaystyle\leq(1+\alpha)\left\|\int_{\Omega}A_{\alpha}^{*}f(\alpha)\,d\mu(\alpha)\right\|+\beta\left\|\int_{\Omega}B_{\alpha}^{*}f(\alpha)\,d\mu(\alpha)\right\|+\gamma\|f\|
=(1+α)θAf+βTf+γf.\displaystyle=(1+\alpha)\left\|\theta_{A}^{*}f\right\|+\beta\left\|Tf\right\|+\gamma\|f\|.

Hence

Tf1+α1βθAf+γ1βf,f2(Ω,0).\displaystyle\|Tf\|\leq\frac{1+\alpha}{1-\beta}\left\|\theta_{A}^{*}f\right\|+\frac{\gamma}{1-\beta}\|f\|,\quad f\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}).

Thus TT is bounded, therefore its adjoint exists, which is θB\theta_{B}. Inequality (2) now gives

θAfθBfαθAf+βθBf+γf,f2(Ω,0).\|\theta_{A}^{*}f-\theta_{B}^{*}f\|\leq\alpha\|\theta_{A}^{*}f\|+\beta\|\theta_{B}^{*}f\|+\gamma\|f\|,\quad\forall f\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}).

Other arguments are similar to the corresponding arguments used in the proof of Theorem 7.6 in [36]. (we note that Theorem 1 in [9] (we also refer [30, 7]) was used in the proof of Theorem 7.6 in [36]). ∎

Corollary 5.2.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) be a continuous (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). Suppose {Bα}αΩ\{B_{\alpha}\}_{\alpha\in\Omega} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is such that

  1. (i)

    ΨαBα0,αΩ\Psi_{\alpha}^{*}B_{\alpha}\geq 0,\forall\alpha\in\Omega,

  2. (ii)

    for each hh\in\mathcal{H}, the map ΩαBαh0\Omega\ni\alpha\mapsto B_{\alpha}h\in\mathcal{H}_{0} is measurable,

  3. (iii)

    The map ΩαAαBα\Omega\ni\alpha\mapsto\|A_{\alpha}-B_{\alpha}\|\in\mathbb{R} is measurable,

  4. (iv)
    rΩAαBα2𝑑μ(α)<1θΨSA,Ψ12.r\coloneqq\int_{\Omega}\|A_{\alpha}-B_{\alpha}\|^{2}\,d\mu(\alpha)<\frac{1}{\|\theta_{\Psi}S_{A,\Psi}^{-1}\|^{2}}.

Then ({Bα}αΩ,{Ψα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is a continuous (ovf) with bounds 1rθΨSA,Ψ1SA,Ψ1\frac{1-\sqrt{r}\|\theta_{\Psi}S_{A,\Psi}^{-1}\|}{\|S_{A,\Psi}^{-1}\|} and θΨ(θA+r){\|\theta_{\Psi}\|(\|\theta_{A}\|+\sqrt{r})}.

Proof.

Set α=0,β=0,γ=r\alpha=0,\beta=0,\gamma=\sqrt{r}. Then max{α+γθΨSA,Ψ1,β}<1\max\{\alpha+\gamma\|\theta_{\Psi}S_{A,\Psi}^{-1}\|,\beta\}<1 and

Ω(AαBα)f(α)𝑑μ(α)(ΩAαBα2𝑑μ(α))12(Ωf(α)2𝑑μ(α))12=γf,f2(Ω,0).\left\|\int_{\Omega}(A_{\alpha}^{*}-B_{\alpha}^{*})f(\alpha)\,d\mu(\alpha)\right\|\leq\left(\int_{\Omega}\|A_{\alpha}^{*}-B_{\alpha}^{*}\|^{2}\,d\mu(\alpha)\right)^{\frac{1}{2}}\left(\int_{\Omega}\|f(\alpha)\|^{2}\,d\mu(\alpha)\right)^{\frac{1}{2}}=\gamma\|f\|,\quad\forall f\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}).

Theorem 5.1 applies now. ∎

Theorem 5.3.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) be a continuous (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with bounds aa and bb. Suppose {Bα}αΩ\{B_{\alpha}\}_{\alpha\in\Omega} is continuous Bessel (w.r.t. itself) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) such that θΨθB0\theta_{\Psi}^{*}\theta_{B}\geq 0 and there exist α,β,γ0\alpha,\beta,\gamma\geq 0 with max{α+γa,β}<1\max\{\alpha+\frac{\gamma}{\sqrt{a}},\beta\}<1 and for all hh\in\mathcal{H},

(3) |Ω(AαBα)h,Ψαh𝑑μ(α)|12α(ΩAαh,Ψαh𝑑μ(α))12+β(ΩBαh,Ψαh𝑑μ(α))12+γh.\left|\int_{\Omega}\langle(A_{\alpha}-B_{\alpha})h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right|^{\frac{1}{2}}\leq\alpha\left(\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}}+\beta\left(\int_{\Omega}\langle B_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}}+\gamma\|h\|.

Then ({Bα}αΩ,{Ψα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is a continuous (ovf) with bounds a(1α+β+γa1+β)2a\left(1-\frac{\alpha+\beta+\frac{\gamma}{\sqrt{a}}}{1+\beta}\right)^{2} and b(1+α+β+γb1β)2.b\left(1+\frac{\alpha+\beta+\frac{\gamma}{\sqrt{b}}}{1-\beta}\right)^{2}.

Proof.

For all hh in \mathcal{H},

(ΩBαh,Ψαh𝑑μ(α))12\displaystyle\left(\int_{\Omega}\langle B_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}} |Ω(BαAα)h,Ψαh𝑑μ(α)|12+(ΩAαh,Ψαh𝑑μ(α))12\displaystyle\leq\left|\int_{\Omega}\langle(B_{\alpha}-A_{\alpha})h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right|^{\frac{1}{2}}+\left(\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}}
(1+α)(ΩAαh,Ψαh𝑑μ(α))12+β(ΩBαh,Ψαh𝑑μ(α))12+γh\displaystyle\leq(1+\alpha)\left(\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}}+\beta\left(\int_{\Omega}\langle B_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}}+\gamma\|h\|

which implies, for all hh\in\mathcal{H},

(1β)(ΩBαh,Ψαh𝑑μ(α))12\displaystyle(1-\beta)\left(\int_{\Omega}\langle B_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}} (1+α)(ΩAαh,Ψαh𝑑μ(α))12+γh\displaystyle\leq(1+\alpha)\left(\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}}+\gamma\|h\|
(1+α)bh+γh.\displaystyle\leq(1+\alpha)\sqrt{b}\|h\|+\gamma\|h\|.

From Inequality (3), for all hh\in\mathcal{H},

(ΩAαh,Ψαh𝑑μ(α))12\displaystyle\left(\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}} |Ω(AαBα)h,Ψαh𝑑μ(α)|12+(ΩBαh,Ψαh𝑑μ(α))12\displaystyle\leq\left|\int_{\Omega}\langle(A_{\alpha}-B_{\alpha})h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right|^{\frac{1}{2}}+\left(\int_{\Omega}\langle B_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}}
α(ΩAαh,Ψαh𝑑μ(α))12+(1+β)(ΩBαh,Ψαh𝑑μ(α))12+γh\displaystyle\leq\alpha\left(\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}}+(1+\beta)\left(\int_{\Omega}\langle B_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}}+\gamma\|h\|
(α+γa)(ΩAαh,Ψαh𝑑μ(α))12+(1+β)(ΩBαh,Ψαh𝑑μ(α))12\displaystyle\leq\left(\alpha+\frac{\gamma}{\sqrt{a}}\right)\left(\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}}+(1+\beta)\left(\int_{\Omega}\langle B_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}}

which produces

(1(α+γa))(ΩAαh,Ψαh𝑑μ(α))12(1+β)(ΩBαh,Ψαh𝑑μ(α))12,h.\displaystyle\left(1-\left(\alpha+\frac{\gamma}{\sqrt{a}}\right)\right)\left(\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}}\leq(1+\beta)\left(\int_{\Omega}\langle B_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}},\quad\forall h\in\mathcal{H}.

But ah(ΩAαh,Ψαh𝑑μ(α))1/2,h.\sqrt{a}\|h\|\leq\left(\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\right)^{1/2},\forall h\in\mathcal{H}. Thus ({Bα}αΩ,{Ψα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is a continuous (ovf) with bounds a(1α+β+γa1+β)2a\left(1-\frac{\alpha+\beta+\frac{\gamma}{\sqrt{a}}}{1+\beta}\right)^{2} and b(1+α+β+γb1β)2.b\left(1+\frac{\alpha+\beta+\frac{\gamma}{\sqrt{b}}}{1-\beta}\right)^{2}.

Theorem 5.4.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) be a continuous (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). Suppose {Bα}αΩ\{B_{\alpha}\}_{\alpha\in\Omega} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is such that

  1. (i)

    ΨαBα0,αΩ\Psi_{\alpha}^{*}B_{\alpha}\geq 0,\forall\alpha\in\Omega,

  2. (ii)

    for each hh\in\mathcal{H}, the map ΩαBαh0\Omega\ni\alpha\mapsto B_{\alpha}h\in\mathcal{H}_{0} is measurable,

  3. (iii)

    The map ΩαAαBα\Omega\ni\alpha\mapsto\|A_{\alpha}-B_{\alpha}\|\in\mathbb{R} is measurable and ΩAαBα𝑑μ(α)\int_{\Omega}\|A_{\alpha}-B_{\alpha}\|\,d\mu(\alpha)\in\mathbb{R},

  4. (iv)

    The map ΩαΨαSA,Ψ1\Omega\ni\alpha\mapsto\|\Psi_{\alpha}S_{A,\Psi}^{-1}\|\in\mathbb{R} is measurable and ΩAαBαΨαSA,Ψ1𝑑μ(α)\int_{\Omega}\|A_{\alpha}-B_{\alpha}\|\|\Psi_{\alpha}S_{A,\Psi}^{-1}\|\,d\mu(\alpha)\in\mathbb{R},

  5. (v)

    ΩAαBαΨαSA,Ψ1𝑑μ(α)<1.\int_{\Omega}\|A_{\alpha}-B_{\alpha}\|\|\Psi_{\alpha}S_{A,\Psi}^{-1}\|\,d\mu(\alpha)<1.

Then ({Bα}αΩ,{Ψα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is a continuous (ovf) with bounds 1ΩAαBαΨαSA,Ψ1𝑑μ(α)SA,Ψ1\frac{1-\int_{\Omega}\|A_{\alpha}-B_{\alpha}\|\|\Psi_{\alpha}S_{A,\Psi}^{-1}\|\,d\mu(\alpha)}{\|S_{A,\Psi}^{-1}\|} and θΨ((ΩAαBα2𝑑μ(α))1/2+θA)\|\theta_{\Psi}\|((\int_{\Omega}\|A_{\alpha}-B_{\alpha}\|^{2}\,d\mu(\alpha))^{1/2}+\|\theta_{A}\|).

Proof.

Let α=(ΩAαBα2𝑑μ(α))1/2\alpha=(\int_{\Omega}\|A_{\alpha}-B_{\alpha}\|^{2}\,d\mu(\alpha))^{1/2} and β=ΩAαBαΨαSA,Ψ1𝑑μ(α)\beta=\int_{\Omega}\|A_{\alpha}-B_{\alpha}\|\|\Psi_{\alpha}S_{A,\Psi}^{-1}\|\,d\mu(\alpha). Fix f2(Ω,0)f\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}). Then for all hh\in\mathcal{H}

|ΩBαf(α),h𝑑μ(α)|\displaystyle\left|\int_{\Omega}\langle B_{\alpha}^{*}f(\alpha),h\rangle\,d\mu(\alpha)\right| |Ω(BαAα)f(α),h𝑑μ(α)|+|ΩAαf(α),h𝑑μ(α)|\displaystyle\leq\left|\int_{\Omega}\langle(B_{\alpha}^{*}-A_{\alpha}^{*})f(\alpha),h\rangle\,d\mu(\alpha)\right|+\left|\int_{\Omega}\langle A_{\alpha}^{*}f(\alpha),h\rangle\,d\mu(\alpha)\right|
=|Ωf(α),(BαAα)h𝑑μ(α)|+|θAf,h|\displaystyle=\left|\int_{\Omega}\langle f(\alpha),(B_{\alpha}-A_{\alpha})h\rangle\,d\mu(\alpha)\right|+|\langle\theta_{A}^{*}f,h\rangle|
Ωf(α)(BαAα)h𝑑μ(α)+fθAh\displaystyle\leq\int_{\Omega}\|f(\alpha)\|\|(B_{\alpha}-A_{\alpha})h\|\,d\mu(\alpha)+\|f\|\|\theta_{A}h\|
hΩf(α)BαAα𝑑μ(α)+fθAh\displaystyle\leq\|h\|\int_{\Omega}\|f(\alpha)\|\|B_{\alpha}-A_{\alpha}\|\,d\mu(\alpha)+\|f\|\|\theta_{A}\|\|h\|
h(Ωf(α)2𝑑μ(α))12(ΩBαAα2𝑑μ(α))12+fθAh\displaystyle\leq\|h\|\left(\int_{\Omega}\|f(\alpha)\|^{2}\,d\mu(\alpha)\right)^{\frac{1}{2}}\left(\int_{\Omega}\|B_{\alpha}-A_{\alpha}\|^{2}\,d\mu(\alpha)\right)^{\frac{1}{2}}+\|f\|\|\theta_{A}\|\|h\|
=hfα+fθAh=(fα+fθA)h.\displaystyle=\|h\|\|f\|\alpha+\|f\|\|\theta_{A}\|\|h\|=(\|f\|\alpha+\|f\|\|\theta_{A}\|)\|h\|.

Hence θB\theta_{B} exists and θB=θB=sup{|θBf,h|:f2(Ω,0),h,f1,h1}sup{hfα+fθAh:f2(Ω,0),h,f1,h1}=α+θA\|\theta_{B}\|=\|\theta_{B}^{*}\|=\sup\{|\langle\theta_{B}^{*}f,h\rangle|:f\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}),h\in\mathcal{H},\|f\|\leq 1,\|h\|\leq 1\}\leq\sup\{\|h\|\|f\|\alpha+\|f\|\|\theta_{A}\|\|h\|:f\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}),h\in\mathcal{H},\|f\|\leq 1,\|h\|\leq 1\}=\alpha+\|\theta_{A}\|. Therefore SB,Ψ=θΨθBS_{B,\Psi}=\theta_{\Psi}^{*}\theta_{B} exists and is positive. Now

ISB,ΨSA,Ψ1\displaystyle\|I_{\mathcal{H}}-S_{B,\Psi}S_{A,\Psi}^{-1}\| =suph,g,h=1=g|(ISB,ΨSA,Ψ1)h,g|\displaystyle=\sup_{h,g\in\mathcal{H},\|h\|=1=\|g\|}|\langle(I_{\mathcal{H}}-S_{B,\Psi}S_{A,\Psi}^{-1})h,g\rangle|
=suph,g,h=1=g|ΩAαΨαSA,Ψ1h,g𝑑μ(α)ΩBαΨαSA,Ψ1h,g𝑑μ(α)|\displaystyle=\sup_{h,g\in\mathcal{H},\|h\|=1=\|g\|}\left|\int_{\Omega}\langle A_{\alpha}^{*}\Psi_{\alpha}S_{A,\Psi}^{-1}h,g\rangle\,d\mu(\alpha)-\int_{\Omega}\langle B_{\alpha}^{*}\Psi_{\alpha}S_{A,\Psi}^{-1}h,g\rangle\,d\mu(\alpha)\right|
=suph,g,h=1=g|Ω(AαBα)ΨαSA,Ψ1h,g𝑑μ(α)|\displaystyle=\sup_{h,g\in\mathcal{H},\|h\|=1=\|g\|}\left|\int_{\Omega}\langle(A_{\alpha}^{*}-B_{\alpha}^{*})\Psi_{\alpha}S_{A,\Psi}^{-1}h,g\rangle\,d\mu(\alpha)\right|
suph,g,h=1=gΩ|(AαBα)ΨαSA,Ψ1h,g|𝑑μ(α)\displaystyle\leq\sup_{h,g\in\mathcal{H},\|h\|=1=\|g\|}\int_{\Omega}|\langle(A_{\alpha}^{*}-B_{\alpha}^{*})\Psi_{\alpha}S_{A,\Psi}^{-1}h,g\rangle|\,d\mu(\alpha)
suph,g,h=1=gΩAαBαΨαSA,Ψ1hg𝑑μ(α)\displaystyle\leq\sup_{h,g\in\mathcal{H},\|h\|=1=\|g\|}\int_{\Omega}\|A_{\alpha}^{*}-B_{\alpha}^{*}\|\|\Psi_{\alpha}S_{A,\Psi}^{-1}\|\|h\|\|g\|\,d\mu(\alpha)
=ΩAαBαΨαSA,Ψ1𝑑μ(α)=β<1.\displaystyle=\int_{\Omega}\|A_{\alpha}-B_{\alpha}\|\|\Psi_{\alpha}S_{A,\Psi}^{-1}\|\,d\mu(\alpha)=\beta<1.

Other arguments are similar to the corresponding arguments used in the proof of Theorem 5.1. ∎

6. Case 0=𝕂\mathcal{H}_{0}=\mathbb{K}

Definition 6.1.

A set of vectors {xα}αΩ\{x_{\alpha}\}_{\alpha\in\Omega} in a Hilbert space \mathcal{H} is said to be a continuous frame w.r.t. a set {τα}αΩ\{\tau_{\alpha}\}_{\alpha\in\Omega} in \mathcal{H} if

  1. (i)

    for each hh\in\mathcal{H}, both maps Ωαh,xα𝕂\Omega\ni\alpha\mapsto\langle h,x_{\alpha}\rangle\in\mathbb{K} and Ωαh,τα𝕂\Omega\ni\alpha\mapsto\langle h,\tau_{\alpha}\rangle\in\mathbb{K} are measurable,

  2. (ii)

    the map (we call as frame operator) Sx,τ:hΩh,xατα𝑑μ(α)S_{x,\tau}:\mathcal{H}\ni h\mapsto\int_{\Omega}\langle h,x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha)\in\mathcal{H} (the integral is in the weak-sense) is a well-defined bounded positive invertible operator,

  3. (iii)

    both maps (we call as analysis operator and its adjoint as synthesis operator) θx:hθxh2(Ω,𝕂)\theta_{x}:\mathcal{H}\ni h\mapsto\theta_{x}h\in\mathcal{L}^{2}(\Omega,\mathbb{K}), θxh:Ωαh,xα𝕂\theta_{x}h:\Omega\ni\alpha\mapsto\langle h,x_{\alpha}\rangle\in\mathbb{K}, θτ:hθτh2(Ω,0)\theta_{\tau}:\mathcal{H}\ni h\mapsto\theta_{\tau}h\in\mathcal{L}^{2}(\Omega,\mathcal{H}_{0}), θτh:Ωαh,τα𝕂\theta_{\tau}h:\Omega\ni\alpha\mapsto\langle h,\tau_{\alpha}\rangle\in\mathbb{K} are well-defined bounded linear operators.

We note that θx:2(Ω,𝕂)fΩf(α)xα𝑑μ(α)\theta_{x}^{*}:\mathcal{L}^{2}(\Omega,\mathbb{K})\ni f\mapsto\int_{\Omega}f(\alpha)x_{\alpha}\,d\mu(\alpha)\in\mathcal{H}, θτ:2(Ω,𝕂)fΩf(α)τα𝑑μ(α)\theta_{\tau}^{*}:\mathcal{L}^{2}(\Omega,\mathbb{K})\ni f\mapsto\int_{\Omega}f(\alpha)\tau_{\alpha}\,d\mu(\alpha)\in\mathcal{H}(both integrals are in the weak-sense). Notions of frame bounds, Parseval frame are similar to the same in Definition 8.1 in [36]. If the condition (ii) is replaced by “the map Sx,τ:hΩh,xατα𝑑μ(α)S_{x,\tau}:\mathcal{H}\ni h\mapsto\int_{\Omega}\langle h,x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha)\in\mathcal{H} is a well-defined bounded positive operator”, then we say {xα}αΩ\{x_{\alpha}\}_{\alpha\in\Omega} w.r.t. {τα}αΩ\{\tau_{\alpha}\}_{\alpha\in\Omega} is Bessel. If {xα}αΩ\{x_{\alpha}\}_{\alpha\in\Omega} is continuous frame (resp. Bessel) w.r.t. {τα}αΩ\{\tau_{\alpha}\}_{\alpha\in\Omega}, then we write ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a continuous frame (resp. Bessel).

For fixed Ω,,\Omega,\mathcal{H}, and {τα}αΩ\{\tau_{\alpha}\}_{\alpha\in\Omega}, the set of all continuous frames for \mathcal{H} w.r.t. {τα}αΩ\{\tau_{\alpha}\}_{\alpha\in\Omega} is denoted by τ.\mathscr{F}_{\tau}.

We note that (ii) in Definition 6.1 implies that there are real a,b>0a,b>0 such that

ah2Sx,τh,h=Ωh,xατα𝑑μ(α),h=Ωh,xατα,h𝑑μ(α)bh2,h,\displaystyle a\|h\|^{2}\leq\langle S_{x,\tau}h,h\rangle=\left\langle\int_{\Omega}\langle h,x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha),h\right\rangle=\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha)\leq b\|h\|^{2},\quad\forall h\in\mathcal{H},

and (iii) implies that there exist c,d>0c,d>0 such that

θxh2=θxh,θxh=Ωθxh(α),θxh(α)𝑑μ(α)=Ω|h,xα|2𝑑μ(α)ch2,h;\displaystyle\|\theta_{x}h\|^{2}=\langle\theta_{x}h,\theta_{x}h\rangle=\int_{\Omega}\langle\theta_{x}h(\alpha),\theta_{x}h(\alpha)\rangle\,d\mu(\alpha)=\int_{\Omega}|\langle h,x_{\alpha}\rangle|^{2}\,d\mu(\alpha)\leq c\|h\|^{2},\quad\forall h\in\mathcal{H};
θτh2=θτh,θτh=Ωθτh(α),θτh(α)𝑑μ(α)=Ω|h,τα|2𝑑μ(α)dh2,h.\displaystyle\|\theta_{\tau}h\|^{2}=\langle\theta_{\tau}h,\theta_{\tau}h\rangle=\int_{\Omega}\langle\theta_{\tau}h(\alpha),\theta_{\tau}h(\alpha)\rangle\,d\mu(\alpha)=\int_{\Omega}|\langle h,\tau_{\alpha}\rangle|^{2}\,d\mu(\alpha)\leq d\|h\|^{2},\quad\forall h\in\mathcal{H}.

We note, whenever ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a continuous frame for \mathcal{H}, then span¯{xα}αΩ==span¯{τα}αΩ.\overline{\operatorname{span}}\{x_{\alpha}\}_{\alpha\in\Omega}=\mathcal{H}=\overline{\operatorname{span}}\{\tau_{\alpha}\}_{\alpha\in\Omega}.

Theorem 6.2.

Let {xα}αΩ,{τα}αΩ\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega} be in \mathcal{H}. Define Aα:hh,xα𝕂A_{\alpha}:\mathcal{H}\ni h\mapsto\langle h,x_{\alpha}\rangle\in\mathbb{K}, Ψα:hh,τα𝕂,αΩ\Psi_{\alpha}:\mathcal{H}\ni h\mapsto\langle h,\tau_{\alpha}\rangle\in\mathbb{K},\forall\alpha\in\Omega. Then ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a continuous frame for \mathcal{H} if and only if ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is a continuous operator-valued frame in (,𝕂)\mathcal{B}(\mathcal{H},\mathbb{K}).

Proof.

ΩΨαAαh𝑑μ(α),g=ΩΨαAαh,g𝑑μ(α)=ΩAαh,Ψαg𝑑μ(α)=Ωh,xατα,h𝑑μ(α)=Ωh,xατα𝑑μ(α),g,h,g\langle\int_{\Omega}\Psi^{*}_{\alpha}A_{\alpha}h\,d\mu(\alpha),g\rangle=\int_{\Omega}\langle\Psi^{*}_{\alpha}A_{\alpha}h,g\rangle\,d\mu(\alpha)=\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}g\rangle\,d\mu(\alpha)=\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha)=\langle\int_{\Omega}\langle h,x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha),g\rangle,\forall h,g\in\mathcal{H}. ∎

Proposition 6.3.

Definition 6.1 holds if and only if there are a,b,c,d>0a,b,c,d>0 such that

  1. (i)

    for each hh\in\mathcal{H}, both maps Ωαh,xα𝕂\Omega\ni\alpha\mapsto\langle h,x_{\alpha}\rangle\in\mathbb{K}, Ωαh,τα𝕂\Omega\ni\alpha\mapsto\langle h,\tau_{\alpha}\rangle\in\mathbb{K} are measurable,

  2. (ii)

    ah2Ωh,xατα,h𝑑μ(α)bh2,h,a\|h\|^{2}\leq\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha)\leq b\|h\|^{2},\forall h\in\mathcal{H},

  3. (iii)

    Ω|h,xα|2𝑑μ(α)ch2,h;Ω|h,τα|2𝑑μ(α)dh2,h,\int_{\Omega}|\langle h,x_{\alpha}\rangle|^{2}\,d\mu(\alpha)\leq c\|h\|^{2},\forall h\in\mathcal{H};\int_{\Omega}|\langle h,\tau_{\alpha}\rangle|^{2}\,d\mu(\alpha)\leq d\|h\|^{2},\forall h\in\mathcal{H},

  4. (iv)

    Ωh,xατα𝑑μ(α)=Ωh,ταxα𝑑μ(α),h\int_{\Omega}\langle h,x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha)=\int_{\Omega}\langle h,\tau_{\alpha}\rangle x_{\alpha}\,d\mu(\alpha),\forall h\in\mathcal{H}.

If the space is over ,\mathbb{C}, then (iv) can be omitted.

Proposition 6.4.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a continuous frame for \mathcal{H} with upper frame bound bb. If for some αΩ\alpha\in\Omega we have {α}\{\alpha\} is measurable and xα,xβτβ,xα0,βΩ\langle x_{\alpha},x_{\beta}\rangle\langle\tau_{\beta},x_{\alpha}\rangle\geq 0,\forall\beta\in\Omega, then μ({α})xα,ταb\mu(\{\alpha\})\langle x_{\alpha},\tau_{\alpha}\rangle\leq b for that α.\alpha.

Proof.
μ({α})xα,xατα,xα\displaystyle\mu(\{\alpha\})\langle x_{\alpha},x_{\alpha}\rangle\langle\tau_{\alpha},x_{\alpha}\rangle {α}xα,xβτβ,xα𝑑μ(β)+Ω{α}xα,xβτβ,xα𝑑μ(β)\displaystyle\leq\int_{\{\alpha\}}\langle x_{\alpha},x_{\beta}\rangle\langle\tau_{\beta},x_{\alpha}\rangle\,d\mu(\beta)+\int_{\Omega\setminus\{\alpha\}}\langle x_{\alpha},x_{\beta}\rangle\langle\tau_{\beta},x_{\alpha}\rangle\,d\mu(\beta)
=Ωxα,xβτβ,xα𝑑μ(β)bxα2.\displaystyle=\int_{\Omega}\langle x_{\alpha},x_{\beta}\rangle\langle\tau_{\beta},x_{\alpha}\rangle\,d\mu(\beta)\leq b\|x_{\alpha}\|^{2}.

Proposition 6.5.

For every {xα}αΩτ\{x_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\tau},

  1. (i)

    θxθxh=Ωh,xαxα𝑑μ(α),θτθτh=Ωh,τατα𝑑μ(α),h.\theta_{x}^{*}\theta_{x}h=\int_{\Omega}\langle h,x_{\alpha}\rangle x_{\alpha}\,d\mu(\alpha),\theta_{\tau}^{*}\theta_{\tau}h=\int_{\Omega}\langle h,\tau_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha),\forall h\in\mathcal{H}.

  2. (ii)

    Sx,τ=θτθx=θxθτ.S_{x,\tau}=\theta_{\tau}^{*}\theta_{x}=\theta_{x}^{*}\theta_{\tau}. In particular,

    Sx,τh=Ωh,xατα𝑑μ(α)=Ωh,ταxα𝑑μ(α),handS_{x,\tau}h=\int_{\Omega}\langle h,x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha)=\int_{\Omega}\langle h,\tau_{\alpha}\rangle x_{\alpha}\,d\mu(\alpha),\quad\forall h\in\mathcal{H}~{}\operatorname{and}~{}
    Sx,τh,g=Ωh,xατα,g𝑑μ(α)=Ωh,ταxα,g𝑑μ(α),h,g.\langle S_{x,\tau}h,g\rangle=\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},g\rangle\,d\mu(\alpha)=\int_{\Omega}\langle h,\tau_{\alpha}\rangle\langle x_{\alpha},g\rangle\,d\mu(\alpha),\quad\forall h,g\in\mathcal{H}.
  3. (iii)

    Every hh\in\mathcal{H} can be written as

    h\displaystyle h =Ωh,Sx,τ1ταxα𝑑μ(α)=Ωh,ταSx,τ1xα𝑑μ(α)\displaystyle=\int_{\Omega}\langle h,S^{-1}_{x,\tau}\tau_{\alpha}\rangle x_{\alpha}\,d\mu(\alpha)=\int_{\Omega}\langle h,\tau_{\alpha}\rangle S^{-1}_{x,\tau}x_{\alpha}\,d\mu(\alpha)
    =Ωh,Sx,τ1xατα𝑑μ(α)=Ωh,xαSx,τ1τα𝑑μ(α).\displaystyle=\int_{\Omega}\langle h,S^{-1}_{x,\tau}x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha)=\int_{\Omega}\langle h,x_{\alpha}\rangle S^{-1}_{x,\tau}\tau_{\alpha}\,d\mu(\alpha).
  4. (iv)

    ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is Parseval if and only if θτθx=I.\theta_{\tau}^{*}\theta_{x}=I_{\mathcal{H}}.

  5. (v)

    ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is Parseval if and only if θxθτ\theta_{x}\theta_{\tau}^{*} is idempotent.

  6. (vi)

    Px,τθxSx,τ1θτP_{x,\tau}\coloneqq\theta_{x}S_{x,\tau}^{-1}\theta_{\tau}^{*} is idempotent.

  7. (vii)

    θx\theta_{x} and θτ\theta_{\tau} are injective and their ranges are closed.

  8. (viii)

    θx\theta_{x}^{*} and θτ\theta_{\tau}^{*} are surjective.

Definition 6.6.

A continuous frame ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} is called a Riesz frame if Px,τ=I2(Ω,𝕂)P_{x,\tau}=I_{\mathcal{L}^{2}(\Omega,\mathbb{K})}.

Proposition 6.7.

A continuous frame ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} is a Riesz continuous frame if and only if θx()=2(Ω,𝕂)\theta_{x}(\mathcal{H})=\mathcal{L}^{2}(\Omega,\mathbb{K}) if and only if θτ()=2(Ω,𝕂).\theta_{\tau}(\mathcal{H})=\mathcal{L}^{2}(\Omega,\mathbb{K}).

Proof.

Similar to the proof of Proposition 8.20 in [36]. ∎

Definition 6.8.

A continuous frame ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} is said to be a dual of a continuous frame ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} if θωθx=θyθτ=I\theta_{\omega}^{*}\theta_{x}=\theta_{y}^{*}\theta_{\tau}=I_{\mathcal{H}}. The ‘continuous frame’ ({x~αSx,τ1xα}αΩ,{τ~αSx,τ1τα}αΩ)(\{\widetilde{x}_{\alpha}\coloneqq S_{x,\tau}^{-1}x_{\alpha}\}_{\alpha\in\Omega},\{\widetilde{\tau}_{\alpha}\coloneqq S_{x,\tau}^{-1}\tau_{\alpha}\}_{\alpha\in\Omega}), which is a ‘dual’ of ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is called the canonical dual of ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}).

Proposition 6.9.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a continuous frame for .\mathcal{H}. If hh\in\mathcal{H} has representation h=Ωf(α)xα𝑑μ(α)=Ωg(α)τα𝑑μ(α),h=\int_{\Omega}f(\alpha)x_{\alpha}\,d\mu(\alpha)=\int_{\Omega}g(\alpha)\tau_{\alpha}\,d\mu(\alpha), for some measurable f,g:Ω𝕂f,g:\Omega\rightarrow\mathbb{K}, then

Ωf(α)g(α)¯𝑑μ(α)=Ωh,τ~αx~α,h𝑑μ(α)+Ω(f(α)h,τ~α)(g(α)¯x~α,h)𝑑μ(α).\int_{\Omega}f(\alpha)\overline{g(\alpha)}\,d\mu(\alpha)=\int_{\Omega}\langle h,\widetilde{\tau}_{\alpha}\rangle\langle\widetilde{x}_{\alpha},h\rangle\,d\mu(\alpha)+\int_{\Omega}(f(\alpha)-\langle h,\widetilde{\tau}_{\alpha}\rangle)(\overline{g(\alpha)}-\langle\widetilde{x}_{\alpha},h\rangle)\,d\mu(\alpha).
Proof.

Right side ==

ΩSx,τ1h,ταxα,Sx,τ1h𝑑μ(α)+Ωf(α)g(α)¯𝑑μ(α)Ωf(α)xα,Sx,τ1h𝑑μ(α)\displaystyle\int_{\Omega}\langle S_{x,\tau}^{-1}h,\tau_{\alpha}\rangle\langle x_{\alpha},S_{x,\tau}^{-1}h\rangle\,d\mu(\alpha)+\int_{\Omega}f(\alpha)\overline{g(\alpha)}\,d\mu(\alpha)-\int_{\Omega}f(\alpha)\langle x_{\alpha},S_{x,\tau}^{-1}h\rangle\,d\mu(\alpha)
Ωg(α)¯Sx,τ1h,τα𝑑μ(α)+ΩSx,τ1h,ταxα,Sx,τ1h𝑑μ(α)\displaystyle~{}-\int_{\Omega}\overline{g(\alpha)}\langle S_{x,\tau}^{-1}h,\tau_{\alpha}\rangle\,d\mu(\alpha)+\int_{\Omega}\langle S_{x,\tau}^{-1}h,\tau_{\alpha}\rangle\langle x_{\alpha},S_{x,\tau}^{-1}h\rangle\,d\mu(\alpha)
=2Sx,τSx,τ1h,Sx,τ1h+Ωf(α)g(α)¯𝑑μ(α)Ωf(α)xα𝑑μ(α),Sx,τ1hSx,τ1h,Ωg(α)τα𝑑μ(α)\displaystyle=2\langle S_{x,\tau}S_{x,\tau}^{-1}h,S_{x,\tau}^{-1}h\rangle+\int_{\Omega}f(\alpha)\overline{g(\alpha)}\,d\mu(\alpha)-\left\langle\int_{\Omega}f(\alpha)x_{\alpha}\,d\mu(\alpha),S_{x,\tau}^{-1}h\right\rangle-\left\langle S_{x,\tau}^{-1}h,\int_{\Omega}g(\alpha)\tau_{\alpha}\,d\mu(\alpha)\right\rangle
=2h,Sx,τ1h+Ωf(α)g(α)¯𝑑μ(α)h,Sx,τ1hSx,τ1h,h=Left side.\displaystyle=2\langle h,S_{x,\tau}^{-1}h\rangle+\int_{\Omega}f(\alpha)\overline{g(\alpha)}\,d\mu(\alpha)-\langle h,S_{x,\tau}^{-1}h\rangle-\langle S_{x,\tau}^{-1}h,h\rangle=\text{Left side.}

Theorem 6.10.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a continuous frame for \mathcal{H} with frame bounds aa and b.b. Then the following statements are true.

  1. (i)

    The canonical dual continuous frame of the canonical dual continuous frame of ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is itself.

  2. (ii)

    1b,1a\frac{1}{b},\frac{1}{a} are frame bounds for the canonical dual of ({xα}αΩ,{τα}αΩ).(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}).

  3. (iii)

    If a,ba,b are optimal frame bounds for ({xα}αΩ,{τα}αΩ),(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}), then 1b,1a\frac{1}{b},\frac{1}{a} are optimal frame bounds for its canonical dual.

Proof.

For h,g,h,g\in\mathcal{H},

Ωh,x~ατ~α𝑑μ(α),g\displaystyle\left\langle\int_{\Omega}\langle h,\widetilde{x}_{\alpha}\rangle\widetilde{\tau}_{\alpha}\,d\mu(\alpha),g\right\rangle =Ωh,Sx,τ1xαSx,τ1τα,g𝑑μ(α)\displaystyle=\int_{\Omega}\left\langle h,S_{x,\tau}^{-1}x_{\alpha}\rangle\langle S_{x,\tau}^{-1}\tau_{\alpha},g\right\rangle\,d\mu(\alpha)
=ΩSx,τ1h,xατα𝑑μ(α),Sx,τ1g=Sx,τSx,τ1h,Sx,τ1g=Sx,τ1h,g.\displaystyle=\left\langle\int_{\Omega}\langle S_{x,\tau}^{-1}h,x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha),S_{x,\tau}^{-1}g\right\rangle=\left\langle S_{x,\tau}S_{x,\tau}^{-1}h,S_{x,\tau}^{-1}g\right\rangle=\left\langle S_{x,\tau}^{-1}h,g\right\rangle.

Thus the frame operator for the canonical dual ({x~α}αΩ,{τ~α}αΩ)(\{\widetilde{x}_{\alpha}\}_{\alpha\in\Omega},\{\widetilde{\tau}_{\alpha}\}_{\alpha\in\Omega}) is Sx,τ1.S_{x,\tau}^{-1}. Therefore, its canonical dual is ({Sx,τSx,τ1xα}αΩ,{Sx,τSx,τ1τα}αΩ).(\{S_{x,\tau}S_{x,\tau}^{-1}x_{\alpha}\}_{\alpha\in\Omega},\{S_{x,\tau}S_{x,\tau}^{-1}\tau_{\alpha}\}_{\alpha\in\Omega}). Others can be proved as in the earlier consideration ‘continuous operator-valued frame’. ∎

Proposition 6.11.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) and ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) be continuous frames for \mathcal{H}. Then the following are equivalent.

  1. (i)

    ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) is dual of ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}).

  2. (ii)

    Ωh,xαωα𝑑μ(α)=Ωh,ταyα𝑑μ(α)=h,h.\int_{\Omega}\langle h,x_{\alpha}\rangle\omega_{\alpha}\,d\mu(\alpha)=\int_{\Omega}\langle h,\tau_{\alpha}\rangle y_{\alpha}\,d\mu(\alpha)=h,\forall h\in\mathcal{H}.

Proof.

θωθxh,g=θxh,θωg=Ωθxh(α)θωg(α)¯𝑑μ(α)=Ωh,xαωα,g𝑑μ(α)=Ωh,xαωα𝑑μ(α),g,\langle\theta_{\omega}^{*}\theta_{x}h,g\rangle=\langle\theta_{x}h,\theta_{\omega}g\rangle=\int_{\Omega}\theta_{x}h(\alpha)\overline{\theta_{\omega}g(\alpha)}\,d\mu(\alpha)=\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\omega_{\alpha},g\rangle\,d\mu(\alpha)=\langle\int_{\Omega}\langle h,x_{\alpha}\rangle\omega_{\alpha}\,d\mu(\alpha),g\rangle, h,g\forall h,g\in\mathcal{H}. Similarly θyθτh,g=Ωh,ταyα𝑑μ(α),g\langle\theta_{y}^{*}\theta_{\tau}h,g\rangle=\langle\int_{\Omega}\langle h,\tau_{\alpha}\rangle y_{\alpha}\,d\mu(\alpha),g\rangle, h,g\forall h,g\in\mathcal{H}. ∎

Theorem 6.12.

If ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a Riesz continuous frame for \mathcal{H}, then it has unique dual.

Proof.

Let ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) and ({zα}αΩ,{ρα}αΩ)(\{z_{\alpha}\}_{\alpha\in\Omega},\{\rho_{\alpha}\}_{\alpha\in\Omega}) be dual continuous frames of ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}). Then θxθω=θτθy=θxθρ=θτθz=I\theta_{x}^{*}\theta_{\omega}=\theta_{\tau}^{*}\theta_{y}=\theta_{x}^{*}\theta_{\rho}=\theta_{\tau}^{*}\theta_{z}=I_{\mathcal{H}} \Rightarrow θx(θωθρ)=0=θτ(θyθz)\theta_{x}^{*}(\theta_{\omega}-\theta_{\rho})=0=\theta_{\tau}^{*}(\theta_{y}-\theta_{z}) \Rightarrow I(θωθρ)=Pτ,x(θωθρ)=θτSx,τ1θx(θωθρ)=0=θxSx,τ1θτ(θyθz)=Px,τ(θyθz)=I(θyθz)I_{\mathcal{H}}(\theta_{\omega}-\theta_{\rho})=P_{\tau,x}(\theta_{\omega}-\theta_{\rho})=\theta_{\tau}S_{x,\tau}^{-1}\theta_{x}^{*}(\theta_{\omega}-\theta_{\rho})=0=\theta_{x}S_{x,\tau}^{-1}\theta_{\tau}^{*}(\theta_{y}-\theta_{z})=P_{x,\tau}(\theta_{y}-\theta_{z})=I_{\mathcal{H}}(\theta_{y}-\theta_{z}) \Rightarrow θω=θρ\theta_{\omega}=\theta_{\rho}, θy=θz\theta_{y}=\theta_{z} \Rightarrow h,ωα=θωh(α)=θρh(α)=h,ρα\langle h,\omega_{\alpha}\rangle=\theta_{\omega}h(\alpha)=\theta_{\rho}h(\alpha)=\langle h,\rho_{\alpha}\rangle, h,yα=θyh(α)=θzh(α)=h,zα\langle h,y_{\alpha}\rangle=\theta_{y}h(\alpha)=\theta_{z}h(\alpha)=\langle h,z_{\alpha}\rangle, h,αΩ\forall h\in\mathcal{H},\forall\alpha\in\Omega \Rightarrow ωα=ρα,yα=zα,αΩ\omega_{\alpha}=\rho_{\alpha},y_{\alpha}=z_{\alpha},\forall\alpha\in\Omega. Hence the dual of ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is unique. ∎

Proposition 6.13.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a continuous frame for \mathcal{H}. If ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) is a dual of ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}), then there exist continuous Bessel {zα}αΩ\{z_{\alpha}\}_{\alpha\in\Omega} and {ρα}αΩ\{\rho_{\alpha}\}_{\alpha\in\Omega} (w.r.t. themselves) for \mathcal{H} such that yα=Sx,τ1xα+zα,ωα=Sx,τ1τα+ρα,αΩy_{\alpha}=S_{x,\tau}^{-1}x_{\alpha}+z_{\alpha},\omega_{\alpha}=S_{x,\tau}^{-1}\tau_{\alpha}+\rho_{\alpha},\forall\alpha\in\Omega, and θz()θτ(),θρ()θx()\theta_{z}(\mathcal{H})\perp\theta_{\tau}(\mathcal{H}),\theta_{\rho}(\mathcal{H})\perp\theta_{x}(\mathcal{H}). Converse holds if θρθz0\theta_{\rho}^{*}\theta_{z}\geq 0.

Proof.

Similar to the proof of Proposition 8.28 in [36]. ∎

Proposition 6.14.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a continuous frame for \mathcal{H}. Then the bounded left-inverses of

  1. (i)

    θx\theta_{x} are precisely Sx,τ1θτ+U(I2(Ω,𝕂)θxSx,τ1θτ)S_{x,\tau}^{-1}\theta_{\tau}^{*}+U(I_{\mathcal{L}^{2}(\Omega,\mathbb{K})}-\theta_{x}S_{x,\tau}^{-1}\theta_{\tau}^{*}), where U(2(Ω,𝕂),)U\in\mathcal{B}(\mathcal{L}^{2}(\Omega,\mathbb{K}),\mathcal{H}).

  2. (ii)

    θτ\theta_{\tau} are precisely Sx,τ1θx+V(I2(Ω,𝕂)θτSx,τ1θx)S_{x,\tau}^{-1}\theta_{x}^{*}+V(I_{\mathcal{L}^{2}(\Omega,\mathbb{K})}-\theta_{\tau}S_{x,\tau}^{-1}\theta_{x}^{*}), where V(2(Ω,𝕂),)V\in\mathcal{B}(\mathcal{L}^{2}(\Omega,\mathbb{K}),\mathcal{H}).

Proof.

Similar to the proof of Lemma 8.30 in [36]. ∎

Definition 6.15.

A continuous frame ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} is said to be orthogonal to a continuous frame ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} if θωθx=θyθτ=0.\theta_{\omega}^{*}\theta_{x}=\theta_{y}^{*}\theta_{\tau}=0.

Proposition 6.16.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}), ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) be continuous frames for \mathcal{H}. Then the following are equivalent.

  1. (i)

    ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) is orthogonal to ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}).

  2. (ii)

    Ωh,xαωα𝑑μ(α)=0=Ωg,ταyα𝑑μ(α),h\int_{\Omega}\langle h,x_{\alpha}\rangle\omega_{\alpha}\,d\mu(\alpha)=0=\int_{\Omega}\langle g,\tau_{\alpha}\rangle y_{\alpha}\,d\mu(\alpha),\forall h\in\mathcal{H}.

Proposition 6.17.

Two orthogonal continuous frames have a common dual continuous frame.

Proof.

Similar to the proof of Proposition 8.34 in [36]. ∎

Proposition 6.18.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) and ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) be two Parseval continuous frames for \mathcal{H} which are orthogonal. If A,B,C,D()A,B,C,D\in\mathcal{B}(\mathcal{H}) are such that AC+BD=IAC^{*}+BD^{*}=I_{\mathcal{H}}, then ({Axα+Byα}αΩ,{Cτα+Dωα}αΩ)(\{Ax_{\alpha}+By_{\alpha}\}_{\alpha\in\Omega},\{C\tau_{\alpha}+D\omega_{\alpha}\}_{\alpha\in\Omega}) is a Parseval continuous frame for \mathcal{H}. In particular, if scalars a,b,c,da,b,c,d satisfy ac¯+bd¯=1a\bar{c}+b\bar{d}=1, then ({axα+byα}αΩ,{cτj+dωα}αΩ)(\{ax_{\alpha}+by_{\alpha}\}_{\alpha\in\Omega},\{c\tau_{j}+d\omega_{\alpha}\}_{\alpha\in\Omega}) is a Parseval continuous frame for \mathcal{H}.

Proof.

For all hh\in\mathcal{H} and αΩ\alpha\in\Omega we see θAx+Byh(α)=h,Axα+Byα=Ah,xα+Bh,yα=θx(Ah)(α)+θy(Bh)(α)=(θxA+θyB)h(α).\theta_{Ax+By}h(\alpha)=\langle h,Ax_{\alpha}+By_{\alpha}\rangle=\langle A^{*}h,x_{\alpha}\rangle+\langle B^{*}h,y_{\alpha}\rangle=\theta_{x}(A^{*}h)(\alpha)+\theta_{y}(B^{*}h)(\alpha)=(\theta_{x}A^{*}+\theta_{y}B^{*})h(\alpha). Similarly θCτ+Dω=θτC+θωD\theta_{C\tau+D\omega}=\theta_{\tau}C^{*}+\theta_{\omega}D^{*}. Other arguments are similar to that in the proof of Proposition 8.35 in [36]. ∎

Definition 6.19.

Two continuous frames ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) and ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} are called disjoint if ({xαyα}αΩ,{ταωα}αΩ)(\{x_{\alpha}\oplus y_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\oplus\omega_{\alpha}\}_{\alpha\in\Omega}) is a continuous frame for \mathcal{H}\oplus\mathcal{H}.

Proposition 6.20.

If ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) and ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) are orthogonal continuous frames for \mathcal{H}, then they are disjoint. Further, if both ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) and ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) are Parseval, then ({xαyα}αΩ,{ταωα}αΩ)(\{x_{\alpha}\oplus y_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\oplus\omega_{\alpha}\}_{\alpha\in\Omega}) is Parseval.

Proof.

For all hgh\oplus g\in\mathcal{H}\oplus\mathcal{H}, θxy(hg)(α)=hg,xαyα=h,xα+g,yα=θxh(α)+θyg(α)=(θxh+θyg)(α)\theta_{x\oplus y}(h\oplus g)(\alpha)=\langle h\oplus g,x_{\alpha}\oplus y_{\alpha}\rangle=\langle h,x_{\alpha}\rangle+\langle g,y_{\alpha}\rangle=\theta_{x}h(\alpha)+\theta_{y}g(\alpha)=(\theta_{x}h+\theta_{y}g)(\alpha) and for all f2(Ω,𝕂)f\in\mathcal{L}^{2}(\Omega,\mathbb{K}), θτωf,hg=f,θτω(hg)=θτf,h+θωf,g=θτfθωf,hg.\langle\theta_{\tau\oplus\omega}^{*}f,h\oplus g\rangle=\langle f,\theta_{\tau\oplus\omega}(h\oplus g)\rangle=\langle\theta_{\tau}^{*}f,h\rangle+\langle\theta_{\omega}^{*}f,g\rangle=\langle\theta_{\tau}^{*}f\oplus\theta_{\omega}^{*}f,h\oplus g\rangle. Thus Sxy,τω(hg)=θτωθxy(hg)=θτω(θxh+θyg)=θτ(θxh+θyg)θω(θxh+θyg)=(Sx,τ+0)(0+Sy,ω)=Sx,τSy,ωS_{x\oplus y,\tau\oplus\omega}(h\oplus g)=\theta^{*}_{\tau\oplus\omega}\theta_{x\oplus y}(h\oplus g)=\theta^{*}_{\tau\oplus\omega}(\theta_{x}h+\theta_{y}g)=\theta_{\tau}^{*}(\theta_{x}h+\theta_{y}g)\oplus\theta_{\omega}^{*}(\theta_{x}h+\theta_{y}g)=(S_{x,\tau}+0)\oplus(0+S_{y,\omega})=S_{x,\tau}\oplus S_{y,\omega}, which is bounded positive invertible with Sxy,τω1=Sx,τ1Sy,ω1S_{x\oplus y,\tau\oplus\omega}^{-1}=S_{x,\tau}^{-1}\oplus S_{y,\omega}^{-1}. ∎

Characterization

Theorem 6.21.

Let {xα}αΩ,{τα}αΩ\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega} be in \mathcal{H} such that for each hh\in\mathcal{H}, both maps Ωαh,xα𝕂\Omega\ni\alpha\mapsto\langle h,x_{\alpha}\rangle\in\mathbb{K}, Ωαh,τα𝕂\Omega\ni\alpha\mapsto\langle h,\tau_{\alpha}\rangle\in\mathbb{K} are measurable. Then ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a continuous frame with bounds aa and bb (resp. Bessel with bound bb)

  1. (i)

    if and only if

    U:2(Ω,𝕂)fΩf(α)xαdμ(α),andV:2(Ω,𝕂)gΩg(α)ταdμ(α)U:\mathcal{L}^{2}(\Omega,\mathbb{K})\ni f\mapsto\int_{\Omega}f(\alpha)x_{\alpha}\,d\mu(\alpha)\in\mathcal{H},~{}\text{and}~{}V:\mathcal{L}^{2}(\Omega,\mathbb{K})\ni g\mapsto\int_{\Omega}g(\alpha)\tau_{\alpha}\,d\mu(\alpha)\in\mathcal{H}

    are well-defined, U,V(2(Ω,𝕂),)U,V\in\mathcal{B}(\mathcal{L}^{2}(\Omega,\mathbb{K}),\mathcal{H}) such that aIVUbIaI_{\mathcal{H}}\leq VU^{*}\leq bI_{\mathcal{H}} (resp. 0VUbI).0\leq VU^{*}\leq bI_{\mathcal{H}}).

  2. (ii)

    if and only if

    U:2(Ω,𝕂)fΩf(α)xαdμ(α),andS:xSx2(Ω,𝕂),Sx:Ωαx,τα𝕂U:\mathcal{L}^{2}(\Omega,\mathbb{K})\ni f\mapsto\int_{\Omega}f(\alpha)x_{\alpha}\,d\mu(\alpha)\in\mathcal{H},~{}\text{and}~{}S:\mathcal{H}\ni x\mapsto Sx\in\mathcal{L}^{2}(\Omega,\mathbb{K}),~{}Sx:\Omega\ni\alpha\mapsto\langle x,\tau_{\alpha}\rangle\in\mathbb{K}

    are well-defined, U(2(Ω,𝕂),)U\in\mathcal{B}(\mathcal{L}^{2}(\Omega,\mathbb{K}),\mathcal{H}), S(,2(Ω,𝕂))S\in\mathcal{B}(\mathcal{H},\mathcal{L}^{2}(\Omega,\mathbb{K})) such that aISUbIaI_{\mathcal{H}}\leq S^{*}U^{*}\leq bI_{\mathcal{H}} (resp. 0SUbI).0\leq S^{*}U^{*}\leq bI_{\mathcal{H}}).

  3. (iii)

    if and only if

    R:hRh2(Ω,𝕂),Rh:Ωαh,xα𝕂,andV:2(Ω,𝕂)gΩg(α)ταdμ(α)R:\mathcal{H}\ni h\mapsto Rh\in\mathcal{L}^{2}(\Omega,\mathbb{K}),Rh:\Omega\ni\alpha\mapsto\langle h,x_{\alpha}\rangle\in\mathbb{K},~{}\text{and}~{}V:\mathcal{L}^{2}(\Omega,\mathbb{K})\ni g\mapsto\int_{\Omega}g(\alpha)\tau_{\alpha}\,d\mu(\alpha)\in\mathcal{H}

    are well-defined, R(,2(Ω,𝕂))R\in\mathcal{B}(\mathcal{H},\mathcal{L}^{2}(\Omega,\mathbb{K})), V(2(Ω,𝕂),)V\in\mathcal{B}(\mathcal{L}^{2}(\Omega,\mathbb{K}),\mathcal{H}) such that aIVRbIaI_{\mathcal{H}}\leq VR\leq bI_{\mathcal{H}} (resp. 0VRbI).0\leq VR\leq bI_{\mathcal{H}}).

  4. (iv)

    if and only if

    R:hRh2(Ω,𝕂),Rh:Ωαh,xα𝕂,andS:xSx2(Ω,𝕂),Sx:Ωαx,τα𝕂R:\mathcal{H}\ni h\mapsto Rh\in\mathcal{L}^{2}(\Omega,\mathbb{K}),Rh:\Omega\ni\alpha\mapsto\langle h,x_{\alpha}\rangle\in\mathbb{K},~{}\text{and}~{}S:\mathcal{H}\ni x\mapsto Sx\in\mathcal{L}^{2}(\Omega,\mathbb{K}),~{}Sx:\Omega\ni\alpha\mapsto\langle x,\tau_{\alpha}\rangle\in\mathbb{K}

    are well-defined, R,S(,2(Ω,𝕂))R,S\in\mathcal{B}(\mathcal{H},\mathcal{L}^{2}(\Omega,\mathbb{K})) such that aISRbIaI_{\mathcal{H}}\leq S^{*}R\leq bI_{\mathcal{H}} (resp. 0SRbI).0\leq S^{*}R\leq bI_{\mathcal{H}}).

Proof.

We prove the first one for continuous Bessel, others are similar.

()(\Rightarrow) U=θxU=\theta_{x}^{*}, V=θτV=\theta_{\tau}^{*} and VU=θτθx=Sx,τVU^{*}=\theta_{\tau}^{*}\theta_{x}=S_{x,\tau}. ()(\Leftarrow) θx=U\theta_{x}=U^{*}, θτ=V\theta_{\tau}=V^{*} and Sx,τ=θτθx=VUS_{x,\tau}=\theta_{\tau}^{*}\theta_{x}=VU^{*}. ∎

Similarity

Definition 6.22.

A continuous frame ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} is said to be similar to a continuous frame ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} if there are invertible operators Tx,y,Tτ,ω()T_{x,y},T_{\tau,\omega}\in\mathcal{B}(\mathcal{H}) such that yα=Tx,yxα,ωα=Tτ,ωτα,αΩ.y_{\alpha}=T_{x,y}x_{\alpha},\omega_{\alpha}=T_{\tau,\omega}\tau_{\alpha},\forall\alpha\in\Omega.

Proposition 6.23.

Let {xα}αΩτ\{x_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\tau} with frame bounds a,b,a,b, let Tx,y,Tτ,ω()T_{x,y},T_{\tau,\omega}\in\mathcal{B}(\mathcal{H}) be positive, invertible, commute with each other, commute with Sx,τS_{x,\tau}, and let yα=Tx,yxα,ωα=Tτ,ωτα,αΩ.y_{\alpha}=T_{x,y}x_{\alpha},\omega_{\alpha}=T_{\tau,\omega}\tau_{\alpha},\forall\alpha\in\Omega. Then

  1. (i)

    {yα}αΩτ\{y_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\tau} and aTx,y1Tτ,ω1Sy,ωbTx,yTτ,ω.\frac{a}{\|T_{x,y}^{-1}\|\|T_{\tau,\omega}^{-1}\|}\leq S_{y,\omega}\leq b\|T_{x,y}T_{\tau,\omega}\|. Assuming that ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is Parseval, then ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) is Parseval if and only if Tτ,ωTx,y=I.T_{\tau,\omega}T_{x,y}=I_{\mathcal{H}}.

  2. (ii)

    θy=θxTx,y,θω=θτTτ,ω,Sy,ω=Tτ,ωSx,τTx,y,Py,ω=Px,τ.\theta_{y}=\theta_{x}T_{x,y},\theta_{\omega}=\theta_{\tau}T_{\tau,\omega},S_{y,\omega}=T_{\tau,\omega}S_{x,\tau}T_{x,y},P_{y,\omega}=P_{x,\tau}.

Proof.

For all h,g,h,g\in\mathcal{H},

Tτ,ωSx,τTx,yh,g=Sx,τTx,yh,Tτ,ωg=ΩTx,yh,xατα,Tτ,ωg𝑑μ(α)\displaystyle\langle T_{\tau,\omega}S_{x,\tau}T_{x,y}h,g\rangle=\langle S_{x,\tau}T_{x,y}h,T_{\tau,\omega}^{*}g\rangle=\int_{\Omega}\langle T_{x,y}h,x_{\alpha}\rangle\langle\tau_{\alpha},T_{\tau,\omega}^{*}g\rangle\,d\mu(\alpha)
=Ωh,Tx,yxαTτ,ωτα,g𝑑μ(α)=Ωh,yαωα,g𝑑μ(α)=Sy,ωh,g.\displaystyle=\int_{\Omega}\langle h,T_{x,y}x_{\alpha}\rangle\langle T_{\tau,\omega}\tau_{\alpha},g\rangle\,d\mu(\alpha)=\int_{\Omega}\langle h,y_{\alpha}\rangle\langle\omega_{\alpha},g\rangle\,d\mu(\alpha)=\langle S_{y,\omega}h,g\rangle.

Lemma 6.24.

Let {xα}αΩτ,\{x_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\tau}, {yα}αΩω\{y_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\omega} and yα=Tx,yxα,ωα=Tτ,ωτα,αΩy_{\alpha}=T_{x,y}x_{\alpha},\omega_{\alpha}=T_{\tau,\omega}\tau_{\alpha},\forall\alpha\in\Omega, for some invertible Tx,y,Tτ,ω().T_{x,y},T_{\tau,\omega}\in\mathcal{B}(\mathcal{H}). Then θy=θxTx,y,θω=θτTτ,ω,Sy,ω=Tτ,ωSx,τTx,y,Py,ω=Px,τ.\theta_{y}=\theta_{x}T^{*}_{x,y},\theta_{\omega}=\theta_{\tau}T^{*}_{\tau,\omega},S_{y,\omega}=T_{\tau,\omega}S_{x,\tau}T_{x,y}^{*},P_{y,\omega}=P_{x,\tau}. Assuming that ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is Parseval, then ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) is Parseval if and only if Tτ,ωTx,y=I.T_{\tau,\omega}T_{x,y}^{*}=I_{\mathcal{H}}.

Proof.

θyh(α)=h,yα=h,Tx,yxα=Tx,yh,xα=θx(Tx,yh)(α)\theta_{y}h(\alpha)=\langle h,y_{\alpha}\rangle=\langle h,T_{x,y}x_{\alpha}\rangle=\langle T_{x,y}^{*}h,x_{\alpha}\rangle=\theta_{x}(T_{x,y}^{*}h)(\alpha) \Rightarrow θy=θxTx,y\theta_{y}=\theta_{x}T^{*}_{x,y}. Similarly θω=θτTτ,ω\theta_{\omega}=\theta_{\tau}T^{*}_{\tau,\omega}. ∎

Theorem 6.25.

Let {xα}αΩτ,\{x_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\tau}, {yα}αΩω.\{y_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}_{\omega}. The following are equivalent.

  1. (i)

    yα=Tx,yxα,ωα=Tτ,ωτα,αΩ,y_{\alpha}=T_{x,y}x_{\alpha},\omega_{\alpha}=T_{\tau,\omega}\tau_{\alpha},\forall\alpha\in\Omega, for some invertible Tx,y,Tτ,ω().T_{x,y},T_{\tau,\omega}\in\mathcal{B}(\mathcal{H}).

  2. (ii)

    θy=θxTx,y,θω=θτTτ,ω\theta_{y}=\theta_{x}{T^{\prime}}_{x,y}^{*},\theta_{\omega}=\theta_{\tau}{T^{\prime}}_{\tau,\omega}^{*} for some invertible Tx,y,Tτ,ω().{T^{\prime}}_{x,y},{T^{\prime}}_{\tau,\omega}\in\mathcal{B}(\mathcal{H}).

  3. (iii)

    Py,ω=Px,τ.P_{y,\omega}=P_{x,\tau}.

If one of the above conditions is satisfied, then invertible operators in (i)\operatorname{(i)} and (ii)\operatorname{(ii)} are unique and are given by Tx,y=θyθτSx,τ1,Tτ,ω=θωθxSx,τ1.T_{x,y}=\theta_{y}^{*}\theta_{\tau}S_{x,\tau}^{-1},T_{\tau,\omega}=\theta_{\omega}^{*}\theta_{x}S_{x,\tau}^{-1}. In the case that ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is Parseval, then ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) is Parseval if and only if Tτ,ωTx,y=IT_{\tau,\omega}T_{x,y}^{*}=I_{\mathcal{H}} if and only if Tx,yTτ,ω=IT_{x,y}^{*}T_{\tau,\omega}=I_{\mathcal{H}}.

Proof.

(ii) \Rightarrow (i) For all hh\in\mathcal{H} and αΩ\alpha\in\Omega, h,yα=θyh(α)=θx(Tx,yh)(α)=Tx,yh,yα=h,Tx,yyα\langle h,y_{\alpha}\rangle=\theta_{y}h(\alpha)=\theta_{x}({T^{\prime}}_{x,y}^{*}h)(\alpha)=\langle{T^{\prime}}_{x,y}^{*}h,y_{\alpha}\rangle=\langle h,{T^{\prime}}_{x,y}y_{\alpha}\rangle which implies yα=Tx,yxα,ωα=Tτ,ωτα,αΩy_{\alpha}={T^{\prime}}_{x,y}x_{\alpha},\omega_{\alpha}={T^{\prime}}_{\tau,\omega}\tau_{\alpha},\forall\alpha\in\Omega. Other arguments are similar to that in the proof of Theorem 8.45 in [36]. ∎

Corollary 6.26.

For any given continuous frame ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}), the canonical dual of ({xα}αΩ(\{x_{\alpha}\}_{\alpha\in\Omega}, {τα}αΩ)\{\tau_{\alpha}\}_{\alpha\in\Omega}) is the only dual continuous frame that is similar to ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}).

Proof.

Similar to the proof of Corollary 8.46 in [36]. ∎

Corollary 6.27.

Two similar continuous frames cannot be orthogonal.

Proof.

Similar to the proof of Corollary 8.47 in [36]. ∎

Remark 6.28.

For every continuous frame ({xα}αΩ,{τα}αΩ),(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}), each of ‘continuous frames’ ({Sx,τ1xα}αΩ(\{S_{x,\tau}^{-1}x_{\alpha}\}_{\alpha\in\Omega}, {τα}αΩ)\{\tau_{\alpha}\}_{\alpha\in\Omega}), ({Sx,τ1/2xα}αΩ,{Sx,τ1/2τα}αΩ),(\{S_{x,\tau}^{-1/2}x_{\alpha}\}_{\alpha\in\Omega},\{S_{x,\tau}^{-1/2}\tau_{\alpha}\}_{\alpha\in\Omega}), and ({xα}αΩ,{Sx,τ1τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{S_{x,\tau}^{-1}\tau_{\alpha}\}_{\alpha\in\Omega}) is a Parseval continuous frame which is similar to ({xα}αΩ,{τα}αΩ).(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}). Hence each continuous frame is similar to Parseval continuous frames.

Continuous frames and representations of locally compact groups

Let GG, dμGd\mu_{G}, λ\lambda, ρ\rho be as in Section 4 and 0=𝕂\mathcal{H}_{0}=\mathbb{K}. We denote the von Neumann algebra generated by unitaries {λg}gG\{\lambda_{g}\}_{g\in G} (resp. {ρg}gG\{\rho_{g}\}_{g\in G} ) in (2(G,𝕂))\mathcal{B}(\mathcal{L}^{2}(G,\mathbb{K})) by (G)\mathscr{L}(G) (resp. (G)\mathscr{R}(G)). Then (G)=(G)\mathscr{L}(G)^{\prime}=\mathscr{R}(G) and (G)=(G)\mathscr{R}(G)^{\prime}=\mathscr{L}(G) [49].

Definition 6.29.

Let π\pi be a unitary representation of a locally compact group GG on a Hilbert space .\mathcal{H}. An element xx in \mathcal{H} is called a continuous frame generator (resp. a Parseval frame generator) w.r.t. τ\tau in \mathcal{H} if ({xgπgx}gG,{τgπgτ}gG)(\{x_{g}\coloneqq\pi_{g}x\}_{g\in G},\{\tau_{g}\coloneqq\pi_{g}\tau\}_{g\in G}) is a continuous frame (resp. Parseval frame) for \mathcal{H}. In this case we write (x,τ)(x,\tau) is a frame generator for π\pi.

Proposition 6.30.

Let (x,τ)(x,\tau) and (y,ω)(y,\omega) be frame generators in \mathcal{H} for a unitary representation π\pi of GG on .\mathcal{H}. Then

  1. (i)

    θxπg=λgθx,θτπg=λgθτ,gG.\theta_{x}\pi_{g}=\lambda_{g}\theta_{x},\theta_{\tau}\pi_{g}=\lambda_{g}\theta_{\tau},\forall g\in G.

  2. (ii)

    θxθy,θτθω,θxθω\theta_{x}^{*}\theta_{y},\theta_{\tau}^{*}\theta_{\omega},\theta_{x}^{*}\theta_{\omega} are in the commutant π(G)\pi(G)^{\prime} of π(G)′′.\pi(G)^{\prime\prime}. Further, Sx,τπ(G)S_{x,\tau}\in\pi(G)^{\prime} and (Sx,τ1/2x,Sx,τ1/2τ)(S_{x,\tau}^{-1/2}x,S_{x,\tau}^{-1/2}\tau) is a Parseval frame generator.

  3. (iii)

    θxTθτ,θxTθy,θτTθω(G),Tπ(G).\theta_{x}T\theta_{\tau}^{*},\theta_{x}T\theta_{y}^{*},\theta_{\tau}T\theta_{\omega}^{*}\in\mathscr{R}(G),\forall T\in\pi(G)^{\prime}. In particular, Px,τ(G).P_{x,\tau}\in\mathscr{R}(G).

Proof.
  1. (i)

    For all hh\in\mathcal{H} and f2(G,𝕂)f\in\mathcal{L}^{2}(G,\mathbb{K}),

    λgθxh,f\displaystyle\langle\lambda_{g}\theta_{x}h,f\rangle =Gλg(θxh)(α)f(α)¯𝑑μG(α)=G(θxh)(g1α)f(α)¯𝑑μG(α)\displaystyle=\int_{G}\lambda_{g}(\theta_{x}h)(\alpha)\overline{f(\alpha)}\,d\mu_{G}(\alpha)=\int_{G}(\theta_{x}h)(g^{-1}\alpha)\overline{f(\alpha)}\,d\mu_{G}(\alpha)
    =Gh,xg1αf(α)¯𝑑μG(α)=Gh,πg1αxf(α)¯𝑑μG(α)\displaystyle=\int_{G}\langle h,x_{g^{-1}\alpha}\rangle\overline{f(\alpha)}\,d\mu_{G}(\alpha)=\int_{G}\langle h,\pi_{g^{-1}\alpha}x\rangle\overline{f(\alpha)}\,d\mu_{G}(\alpha)
    =Gπgh,παxf(α)¯𝑑μG(α)=Gπgh,xαf(α)¯𝑑μG(α)\displaystyle=\int_{G}\langle\pi_{g}h,\pi_{\alpha}x\rangle\overline{f(\alpha)}\,d\mu_{G}(\alpha)=\int_{G}\langle\pi_{g}h,x_{\alpha}\rangle\overline{f(\alpha)}\,d\mu_{G}(\alpha)
    =Gθx(πgh)(α)f(α)¯𝑑μG(α)=θxπgh,f.\displaystyle=\int_{G}\theta_{x}(\pi_{g}h)(\alpha)\overline{f(\alpha)}\,d\mu_{G}(\alpha)=\langle\theta_{x}\pi_{g}h,f\rangle.
  2. (ii)

    First part is similar to the proof of (ii) in Proposition 8.51 in [36]. For second, let h,gh,g\in\mathcal{H}. Then

    SSx,τ12x,Sx,τ12τh,g\displaystyle\left\langle S_{S_{x,\tau}^{-\frac{1}{2}}x,S_{x,\tau}^{-\frac{1}{2}}\tau}h,g\right\rangle =Gh,παSx,τ12xπαSx,τ12τ,g𝑑μG(α)\displaystyle=\int_{G}\langle h,\pi_{\alpha}S_{x,\tau}^{-\frac{1}{2}}x\rangle\langle\pi_{\alpha}S_{x,\tau}^{-\frac{1}{2}}\tau,g\rangle\,d\mu_{G}(\alpha)
    =Gh,Sx,τ12παxSx,τ12πατ,g𝑑μG(α)\displaystyle=\int_{G}\langle h,S_{x,\tau}^{-\frac{1}{2}}\pi_{\alpha}x\rangle\langle S_{x,\tau}^{-\frac{1}{2}}\pi_{\alpha}\tau,g\rangle\,d\mu_{G}(\alpha)
    =GSx,τ12h,παxπατ,Sx,τ12g𝑑μG(α)\displaystyle=\int_{G}\langle S_{x,\tau}^{-\frac{1}{2}}h,\pi_{\alpha}x\rangle\langle\pi_{\alpha}\tau,S_{x,\tau}^{-\frac{1}{2}}g\rangle\,d\mu_{G}(\alpha)
    =Sx,τ(Sx,τ12h),Sx,τ12g=h,g.\displaystyle=\langle S_{x,\tau}(S_{x,\tau}^{-\frac{1}{2}}h),S_{x,\tau}^{-\frac{1}{2}}g\rangle=\langle h,g\rangle.
  3. (iii)

    Similar to the proof of (iii) in Proposition 8.51 in [36].

Theorem 6.31.

Let GG be a locally compact group with identity ee and ({xg}gG,{τg}gG)(\{x_{g}\}_{g\in G},\{\tau_{g}\}_{g\in G}) be a Parseval continuous frame for .\mathcal{H}. Then there is a unitary representation π\pi of GG on \mathcal{H} for which

xg=πgxe,τg=πgτe,gGx_{g}=\pi_{g}x_{e},~{}\tau_{g}=\pi_{g}\tau_{e},\quad\forall g\in G

if and only if

xgp,xgq=xp,xq,xgp,τgq=xp,τq,τgp,τgq=τp,τq,g,p,qG.\langle x_{gp},x_{gq}\rangle=\langle x_{p},x_{q}\rangle,~{}\langle x_{gp},\tau_{gq}\rangle=\langle x_{p},\tau_{q}\rangle,~{}\langle\tau_{gp},\tau_{gq}\rangle=\langle\tau_{p},\tau_{q}\rangle,\quad\forall g,p,q\in G.
Proof.

Proof 1. ()(\Rightarrow) Similar to the proof of ‘only if’ part of Theorem 8.52 in [36].

()(\Leftarrow) We state the following three, among them we prove third, others are similar.

λgθxθx=θxθxλg,λgθxθτ=θxθτλg,λgθτθτ=θτθτλg,gG.\lambda_{g}\theta_{x}\theta_{x}^{*}=\theta_{x}\theta_{x}^{*}\lambda_{g},~{}\lambda_{g}\theta_{x}\theta_{\tau}^{*}=\theta_{x}\theta_{\tau}^{*}\lambda_{g},~{}\lambda_{g}\theta_{\tau}\theta_{\tau}^{*}=\theta_{\tau}\theta_{\tau}^{*}\lambda_{g},\quad\forall g\in G.

For all u,v2(G,𝕂)u,v\in\mathcal{L}^{2}(G,\mathbb{K}),

λgθτθτλgu,v\displaystyle\langle\lambda_{g}\theta_{\tau}\theta_{\tau}^{*}\lambda_{g}^{*}u,v\rangle =θτλgu,θτλgv=θτλg1u,θτλg1v\displaystyle=\langle\theta_{\tau}^{*}\lambda_{g}^{*}u,\theta_{\tau}^{*}\lambda_{g}^{*}v\rangle=\langle\theta_{\tau}^{*}\lambda_{g^{-1}}u,\theta_{\tau}^{*}\lambda_{g^{-1}}v\rangle
=Gλg1u(α)τα𝑑μG(α),Gλg1v(β)τβ𝑑μG(β)\displaystyle=\left\langle\int_{G}\lambda_{g^{-1}}u(\alpha)\tau_{\alpha}\,d\mu_{G}(\alpha),\int_{G}\lambda_{g^{-1}}v(\beta)\tau_{\beta}\,d\mu_{G}(\beta)\right\rangle
=Gu(gα)τα𝑑μG(α),Gv(gβ)τβ𝑑μG(β)\displaystyle=\left\langle\int_{G}u(g\alpha)\tau_{\alpha}\,d\mu_{G}(\alpha),\int_{G}v(g\beta)\tau_{\beta}\,d\mu_{G}(\beta)\right\rangle
=Gu(p)τg1p𝑑μG(g1p),Gv(q)τg1q𝑑μG(g1q)\displaystyle=\left\langle\int_{G}u(p)\tau_{g^{-1}p}\,d\mu_{G}(g^{-1}p),\int_{G}v(q)\tau_{g^{-1}q}\,d\mu_{G}(g^{-1}q)\right\rangle
=Gu(p)τg1p𝑑μG(p),Gv(q)τg1q𝑑μG(q)\displaystyle=\left\langle\int_{G}u(p)\tau_{g^{-1}p}\,d\mu_{G}(p),\int_{G}v(q)\tau_{g^{-1}q}\,d\mu_{G}(q)\right\rangle
=GGu(p)v(q)¯τg1p,τg1q𝑑μG(q)𝑑μG(p)\displaystyle=\int_{G}\int_{G}u(p)\overline{v(q)}\langle\tau_{g^{-1}p},\tau_{g^{-1}q}\rangle\,d\mu_{G}(q)\,d\mu_{G}(p)
=GGu(p)v(q)¯τp,τq𝑑μG(q)𝑑μG(p)\displaystyle=\int_{G}\int_{G}u(p)\overline{v(q)}\langle\tau_{p},\tau_{q}\rangle\,d\mu_{G}(q)\,d\mu_{G}(p)
=Gu(p)τp𝑑μG(p),Gv(q)τq𝑑μG(q)=θτu,θτv=θτθτu,v.\displaystyle=\left\langle\int_{G}u(p)\tau_{p}\,d\mu_{G}(p),\int_{G}v(q)\tau_{q}\,d\mu_{G}(q)\right\rangle=\langle\theta_{\tau}^{*}u,\theta_{\tau}^{*}v\rangle=\langle\theta_{\tau}\theta_{\tau}^{*}u,v\rangle.

Define π:Ggπgθτλgθx().\pi:G\ni g\mapsto\pi_{g}\coloneqq\theta_{\tau}^{*}\lambda_{g}\theta_{x}\in\mathcal{B}(\mathcal{H}). Using the Parsevalness of given frame, we get πgπh=θτλgθxθτλhθx=θτλgλhθxθτθx=θτλgλhθx=θτλghθx=πgh\pi_{g}\pi_{h}=\theta_{\tau}^{*}\lambda_{g}\theta_{x}\theta_{\tau}^{*}\lambda_{h}\theta_{x}=\theta_{\tau}^{*}\lambda_{g}\lambda_{h}\theta_{x}\theta_{\tau}^{*}\theta_{x}=\theta_{\tau}^{*}\lambda_{g}\lambda_{h}\theta_{x}=\theta_{\tau}^{*}\lambda_{gh}\theta_{x}=\pi_{gh} for all g,hG,g,h\in G, and πgπg=θτλgθxθxλg1θτ\pi_{g}\pi_{g}^{*}=\theta_{\tau}^{*}\lambda_{g}\theta_{x}\theta_{x}^{*}\lambda_{g^{-1}}\theta_{\tau} =θτθxθxλgλg1θτ=I,πgπg=θxλg1θτθτλgθx=θxλg1λgθτθτθx=I=\theta_{\tau}^{*}\theta_{x}\theta_{x}^{*}\lambda_{g}\lambda_{g^{-1}}\theta_{\tau}=I_{\mathcal{H}},\pi_{g}^{*}\pi_{g}=\theta_{x}^{*}\lambda_{g^{-1}}\theta_{\tau}\theta_{\tau}^{*}\lambda_{g}\theta_{x}=\theta_{x}^{*}\lambda_{g^{-1}}\lambda_{g}\theta_{\tau}\theta_{\tau}^{*}\theta_{x}=I_{\mathcal{H}} for all gGg\in G. To prove π\pi is a unitary representation we use the same idea used in the proof of Theorem 4.3. Let hh\in\mathcal{H} be fixed. Then θxh\theta_{x}h is fixed. Since λ\lambda is a unitary representation, the map Ggλg(θxh)2(G,𝕂)G\ni g\mapsto\lambda_{g}(\theta_{x}h)\in\mathcal{L}^{2}(G,\mathbb{K}) is continuous. Continuity of θτ\theta_{\tau}^{*} now gives that the map Ggθτ(λg(θxh))G\ni g\mapsto\theta_{\tau}^{*}(\lambda_{g}(\theta_{x}h))\in\mathcal{H} is continuous. We now establish xg=πgxe,τg=πgτex_{g}=\pi_{g}x_{e},\tau_{g}=\pi_{g}\tau_{e} for all gGg\in G. For all hh\in\mathcal{H},

πgxe,h\displaystyle\langle\pi_{g}x_{e},h\rangle =θτλgθxxe,h\displaystyle=\langle\theta_{\tau}^{*}\lambda_{g}\theta_{x}x_{e},h\rangle
=Gλgθxxe(α)τα𝑑μG(α),h=Gθxxe(g1α)τα𝑑μG(α),h\displaystyle=\left\langle\int_{G}\lambda_{g}\theta_{x}x_{e}(\alpha)\tau_{\alpha}\,d\mu_{G}(\alpha),h\right\rangle=\left\langle\int_{G}\theta_{x}x_{e}(g^{-1}\alpha)\tau_{\alpha}\,d\mu_{G}(\alpha),h\right\rangle
=Gθxxe(g1α)τα,h𝑑μG(α)=Gxe,xg1ατα,h𝑑μG(α)\displaystyle=\int_{G}\langle\theta_{x}x_{e}(g^{-1}\alpha)\tau_{\alpha},h\rangle\,d\mu_{G}(\alpha)=\int_{G}\langle\langle x_{e},x_{g^{-1}\alpha}\rangle\tau_{\alpha},h\rangle\,d\mu_{G}(\alpha)
=Gxg1g,xg1ατα,h𝑑μG(α)=Gxg,xατα,h𝑑μG(α)\displaystyle=\int_{G}\langle x_{g^{-1}g},x_{g^{-1}\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu_{G}(\alpha)=\int_{G}\langle x_{g},x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu_{G}(\alpha)
=Gxg,xατα𝑑μG(α),h=xg,h,\displaystyle=\left\langle\int_{G}\langle x_{g},x_{\alpha}\rangle\tau_{\alpha}\,d\mu_{G}(\alpha),h\right\rangle=\langle x_{g},h\rangle,

and

πgτe,h\displaystyle\langle\pi_{g}\tau_{e},h\rangle =θτλgθxτe,h\displaystyle=\langle\theta_{\tau}^{*}\lambda_{g}\theta_{x}\tau_{e},h\rangle
=Gλgθxτe(α)τα𝑑μG(α),h=Gθxτe(g1α)τα𝑑μG(α),h\displaystyle=\left\langle\int_{G}\lambda_{g}\theta_{x}\tau_{e}(\alpha)\tau_{\alpha}\,d\mu_{G}(\alpha),h\right\rangle=\left\langle\int_{G}\theta_{x}\tau_{e}(g^{-1}\alpha)\tau_{\alpha}\,d\mu_{G}(\alpha),h\right\rangle
=Gθxτe(g1α)τα,h𝑑μG(α)=Gτe,xg1ατα,h𝑑μG(α)\displaystyle=\int_{G}\langle\theta_{x}\tau_{e}(g^{-1}\alpha)\tau_{\alpha},h\rangle\,d\mu_{G}(\alpha)=\int_{G}\langle\langle\tau_{e},x_{g^{-1}\alpha}\rangle\tau_{\alpha},h\rangle\,d\mu_{G}(\alpha)
=Gτg1g,xg1ατα,h𝑑μG(α)=Gτg,xατα,h𝑑μG(α)\displaystyle=\int_{G}\langle\tau_{g^{-1}g},x_{g^{-1}\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu_{G}(\alpha)=\int_{G}\langle\tau_{g},x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu_{G}(\alpha)
=Gτg,xατα𝑑μG(α),h=τg,h.\displaystyle=\left\langle\int_{G}\langle\tau_{g},x_{\alpha}\rangle\tau_{\alpha}\,d\mu_{G}(\alpha),h\right\rangle=\langle\tau_{g},h\rangle.

Proof 2. Define Ag:hh,xg𝕂A_{g}:\mathcal{H}\ni h\mapsto\langle h,x_{g}\rangle\in\mathbb{K}, Ψg:hh,τg𝕂,gG\Psi_{g}:\mathcal{H}\ni h\mapsto\langle h,\tau_{g}\rangle\in\mathbb{K},\forall g\in G. Then, from Theorem 6.2, ({xg}gG,{τg}gG)(\{x_{g}\}_{g\in G},\{\tau_{g}\}_{g\in G}) is a continuous frame for \mathcal{H} if and only if ({Ag}gG,{Ψg}gG)(\{A_{g}\}_{g\in G},\{\Psi_{g}\}_{g\in G}) is a continuous (ovf) in (,𝕂)\mathcal{B}(\mathcal{H},\mathbb{K}). Further, from the proof of Theorem 6.2, we also see that ({xg}gG,{τg}gG)(\{x_{g}\}_{g\in G},\{\tau_{g}\}_{g\in G}) is a Parseval continuous frame if and only if ({Ag}gG,{Ψg}gG)(\{A_{g}\}_{g\in G},\{\Psi_{g}\}_{g\in G}) is a Parseval continuous (ovf). Now applying Theorem 4.3 to the Parseval continuous (ovf) ({Ag}gG,{Ψg}gG)(\{A_{g}\}_{g\in G},\{\Psi_{g}\}_{g\in G}) yields - there is a unitary representation π\pi of GG on \mathcal{H} for which

(4) Ag=Aeπg1,Ψg=Ψeπg1,gG\displaystyle A_{g}=A_{e}\pi_{g^{-1}},~{}\Psi_{g}=\Psi_{e}\pi_{g^{-1}},\quad\forall g\in G

if and only if

(5) AgpAgq=ApAq,AgpΨgq=ApΨq,ΨgpΨgq=ΨpΨq,g,p,qG.\displaystyle A_{gp}A_{gq}^{*}=A_{p}A_{q}^{*},~{}A_{gp}\Psi_{gq}^{*}=A_{p}\Psi_{q}^{*},~{}\Psi_{gp}\Psi_{gq}^{*}=\Psi_{p}\Psi_{q}^{*},\quad\forall g,p,q\in G.

But Equation (4) holds if and only if

h,xg=Agh=Aeπg1h=πg1h,xe=h,πgxe,\displaystyle\langle h,x_{g}\rangle=A_{g}h=A_{e}\pi_{g^{-1}}h=\langle\pi_{g^{-1}}h,x_{e}\rangle=\langle h,\pi_{g}x_{e}\rangle,
h,τg=Ψgh=Ψeπg1h=πg1h,τg=h,πgτe,gG,h\displaystyle\langle h,\tau_{g}\rangle=\Psi_{g}h=\Psi_{e}\pi_{g^{-1}}h=\langle\pi_{g^{-1}}h,\tau_{g}\rangle=\langle h,\pi_{g}\tau_{e}\rangle,\quad\forall g\in G,\forall h\in\mathcal{H}
xg=πgxe,τg=πgτe,gG.\displaystyle\iff x_{g}=\pi_{g}x_{e},~{}\tau_{g}=\pi_{g}\tau_{e},\quad\forall g\in G.

Also, Equation (5) holds if and only if

αxgq,xgp=AgpAgqα=ApAqα=αxq,xp,\displaystyle\langle\alpha x_{gq},x_{gp}\rangle=A_{gp}A_{gq}^{*}\alpha=A_{p}A_{q}^{*}\alpha=\langle\alpha x_{q},x_{p}\rangle,
ατgq,xgp=AgpΨgqα=ApΨqα=ατq,xp,\displaystyle\langle\alpha\tau_{gq},x_{gp}\rangle=A_{gp}\Psi_{gq}^{*}\alpha=A_{p}\Psi_{q}^{*}\alpha=\langle\alpha\tau_{q},x_{p}\rangle,
ατgq,τgp=ΨgpΨgqα=ΨpΨqα=ατq,τp,α𝕂\displaystyle\langle\alpha\tau_{gq},\tau_{gp}\rangle=\Psi_{gp}\Psi_{gq}^{*}\alpha=\Psi_{p}\Psi_{q}^{*}\alpha=\langle\alpha\tau_{q},\tau_{p}\rangle,\quad\forall\alpha\in\mathbb{K}
xgp,xgq=xp,xq,xgp,τgq=xp,τq,τgp,τgq=τp,τq,g,p,qG.\displaystyle\iff\langle x_{gp},x_{gq}\rangle=\langle x_{p},x_{q}\rangle,~{}\langle x_{gp},\tau_{gq}\rangle=\langle x_{p},\tau_{q}\rangle,~{}\langle\tau_{gp},\tau_{gq}\rangle=\langle\tau_{p},\tau_{q}\rangle,\quad\forall g,p,q\in G.

Corollary 6.32.

Let GG be a locally compact group with identity ee and ({xg}gG,{τg}gG)(\{x_{g}\}_{g\in G},\{\tau_{g}\}_{g\in G}) be a continuous frame for .\mathcal{H}. Then there is a unitary representation π\pi of GG on \mathcal{H} for which

  1. (i)

    xg=Sx,τπgSx,τ1xe,τg=πgτex_{g}=S_{x,\tau}\pi_{g}S_{x,\tau}^{-1}x_{e},\tau_{g}=\pi_{g}\tau_{e} for all gGg\in G if and only if Sx,τ2xgp,xgq=Sx,τ2xp,xq,Sx,τ1xgp,τgq=Sx,τ1xp,τq,τgp,τgq=τp,τq\langle S_{x,\tau}^{-2}x_{gp},x_{gq}\rangle=\langle S_{x,\tau}^{-2}x_{p},x_{q}\rangle,\langle S_{x,\tau}^{-1}x_{gp},\tau_{gq}\rangle=\langle S_{x,\tau}^{-1}x_{p},\tau_{q}\rangle,\langle\tau_{gp},\tau_{gq}\rangle=\langle\tau_{p},\tau_{q}\rangle for all g,p,qG.g,p,q\in G.

  2. (ii)

    xg=Sx,τ1/2πgSx,τ1/2xe,τg=Sx,τ1/2πgSx,τ1/2τex_{g}=S_{x,\tau}^{1/2}\pi_{g}S_{x,\tau}^{-1/2}x_{e},\tau_{g}=S_{x,\tau}^{1/2}\pi_{g}S_{x,\tau}^{-1/2}\tau_{e} for all gGg\in G if and only if Sx,τ1xgp,xgq=Sx,τ1xp,xq\langle S_{x,\tau}^{-1}x_{gp},x_{gq}\rangle=\langle S_{x,\tau}^{-1}x_{p},x_{q}\rangle, Sx,τ1xgp,τgq=Sx,τ1xp,τq,Sx,τ1τgp,τgq=Sx,τ1τp,τq\langle S_{x,\tau}^{-1}x_{gp},\tau_{gq}\rangle=\langle S_{x,\tau}^{-1}x_{p},\tau_{q}\rangle,\langle S_{x,\tau}^{-1}\tau_{gp},\tau_{gq}\rangle=\langle S_{x,\tau}^{-1}\tau_{p},\tau_{q}\rangle for all g,p,qG.g,p,q\in G.

  3. (iii)

    xg=πgxe,τg=Sx,τπgSx,τ1τex_{g}=\pi_{g}x_{e},\tau_{g}=S_{x,\tau}\pi_{g}S_{x,\tau}^{-1}\tau_{e} for all gGg\in G if and only if xgp,xgq=xp,xq,xgp,Sx,τ1τgq=xp,Sx,τ1τq,τgp,Sx,τ2τgq=τp,Sx,τ2τq\langle x_{gp},x_{gq}\rangle=\langle x_{p},x_{q}\rangle,\langle x_{gp},S_{x,\tau}^{-1}\tau_{gq}\rangle=\langle x_{p},S_{x,\tau}^{-1}\tau_{q}\rangle,\langle\tau_{gp},S_{x,\tau}^{-2}\tau_{gq}\rangle=\langle\tau_{p},S_{x,\tau}^{-2}\tau_{q}\rangle for all g,p,qG.g,p,q\in G.

Proof.

Apply Theorem 6.31 to

  1. (i)

    ({Sx,τ1xg}gG,{τg}gG)(\{S^{-1}_{x,\tau}x_{g}\}_{g\in G},\{\tau_{g}\}_{g\in G}) to get: there is a unitary representation π\pi of GG on \mathcal{H} for which Sx,τ1xg=πgSx,τ1xe,τg=πgτeS_{x,\tau}^{-1}x_{g}=\pi_{g}S_{x,\tau}^{-1}x_{e},\tau_{g}=\pi_{g}\tau_{e} for all gGg\in G if and only if Sx,τ1xgp,Sx,τ1xgq=Sx,τ1xp,Sx,τ1xq,Sx,τ1xgp,τgq=Sx,τ1xp,τq,τgp,τgq=τp,τq\langle S_{x,\tau}^{-1}x_{gp},S_{x,\tau}^{-1}x_{gq}\rangle=\langle S_{x,\tau}^{-1}x_{p},S_{x,\tau}^{-1}x_{q}\rangle,\langle S_{x,\tau}^{-1}x_{gp},\tau_{gq}\rangle=\langle S_{x,\tau}^{-1}x_{p},\tau_{q}\rangle,\langle\tau_{gp},\tau_{gq}\rangle=\langle\tau_{p},\tau_{q}\rangle for all g,p,qG.g,p,q\in G.

  2. (ii)

    ({Sx,τ1/2xg}gG,{Sx,τ1/2τg}gG)(\{S^{-1/2}_{x,\tau}x_{g}\}_{g\in G},\{S^{-1/2}_{x,\tau}\tau_{g}\}_{g\in G}) to get: there is a unitary representation π\pi of GG on \mathcal{H} for which Sx,τ1/2xg=πg(Sx,τ1/2xe),Sx,τ1/2τg=πg(Sx,τ1/2τe)S_{x,\tau}^{-1/2}x_{g}=\pi_{g}(S_{x,\tau}^{-1/2}x_{e}),S_{x,\tau}^{-1/2}\tau_{g}=\pi_{g}(S_{x,\tau}^{-1/2}\tau_{e}) for all gGg\in G if and only if Sx,τ1/2xgp,Sx,τ1/2xgq=Sx,τ1/2xp,Sx,τ1/2xq,Sx,τ1/2xgp,Sx,τ1/2τgq=Sx,τ1/2xp,Sx,τ1/2τq,Sx,τ1/2τgp,Sx,τ1/2τgq=Sx,τ1/2τp,\langle S_{x,\tau}^{-1/2}x_{gp},S_{x,\tau}^{-1/2}x_{gq}\rangle=\langle S_{x,\tau}^{-1/2}x_{p},S_{x,\tau}^{-1/2}x_{q}\rangle,\langle S_{x,\tau}^{-1/2}x_{gp},S_{x,\tau}^{-1/2}\tau_{gq}\rangle=\langle S_{x,\tau}^{-1/2}x_{p},S_{x,\tau}^{-1/2}\tau_{q}\rangle,\langle S_{x,\tau}^{-1/2}\tau_{gp},S_{x,\tau}^{-1/2}\tau_{gq}\rangle=\langle S_{x,\tau}^{-1/2}\tau_{p}, Sx,τ1/2τqS_{x,\tau}^{-1/2}\tau_{q}\rangle for all g,p,qG.g,p,q\in G.

  3. (iii)

    ({xg}gG,{Sx,τ1τg}gG)(\{x_{g}\}_{g\in G},\{S^{-1}_{x,\tau}\tau_{g}\}_{g\in G}) to get: there is a unitary representation π\pi of GG on \mathcal{H} for which xg=πgxe,Sx,τ1τg=πg(Sx,τ1τe)x_{g}=\pi_{g}x_{e},S_{x,\tau}^{-1}\tau_{g}=\pi_{g}(S_{x,\tau}^{-1}\tau_{e}) for all gGg\in G if and only if xgp,xgq=xp,xq,xgp,Sx,τ1τgq=xp,Sx,τ1τq,Sx,τ1τgp,Sx,τ1τgq=Sx,τ1τp,Sx,τ1τq\langle x_{gp},x_{gq}\rangle=\langle x_{p},x_{q}\rangle,\langle x_{gp},S_{x,\tau}^{-1}\tau_{gq}\rangle=\langle x_{p},S_{x,\tau}^{-1}\tau_{q}\rangle,\langle S_{x,\tau}^{-1}\tau_{gp},S_{x,\tau}^{-1}\tau_{gq}\rangle=\langle S_{x,\tau}^{-1}\tau_{p},S_{x,\tau}^{-1}\tau_{q}\rangle for all g,p,qG.g,p,q\in G.

Corollary 6.33.

Let GG be a locally compact group with identity ee and {xg}gG\{x_{g}\}_{g\in G} be a

  1. (i)

    Parseval continuous frame (w.r.t. itself) for \mathcal{H}. Then there is a unitary representation π\pi of GG on \mathcal{H} for which

    xg=πgxe,gGx_{g}=\pi_{g}x_{e},\quad\forall g\in G

    if and only if

    xgp,xgq=xp,xq,g,p,qG.\langle x_{gp},x_{gq}\rangle=\langle x_{p},x_{q}\rangle,\quad\forall g,p,q\in G.
  2. (ii)

    continuous frame (w.r.t. itself) for \mathcal{H}. Then there is a unitary representation π\pi of GG on \mathcal{H} for which

    xg=Sx,x1/2πgSx,x1/2xe,gGx_{g}=S_{x,x}^{1/2}\pi_{g}S_{x,x}^{-1/2}x_{e},\quad\forall g\in G

    if and only if

    Sx,x1xgp,xgq=Sx,x1xp,xq,g,p,qG.\langle S_{x,x}^{-1}x_{gp},x_{gq}\rangle=\langle S_{x,x}^{-1}x_{p},x_{q}\rangle,\quad\forall g,p,q\in G.

Perturbations

Theorem 6.34.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a continuous frame for .\mathcal{H}. Suppose {yα}αΩ\{y_{\alpha}\}_{\alpha\in\Omega} in \mathcal{H} is such that

  1. (i)

    h,yατα=h,ταyα,h,yατα,h0,h,αΩ\langle h,y_{\alpha}\rangle\tau_{\alpha}=\langle h,\tau_{\alpha}\rangle y_{\alpha},\langle h,y_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\geq 0,\forall h\in\mathcal{H},\forall\alpha\in\Omega,

  2. (ii)

    for each hh\in\mathcal{H}, the map Ωαh,yα𝕂\Omega\ni\alpha\mapsto\langle h,y_{\alpha}\rangle\in\mathbb{K} is measurable,

  3. (iii)

    there exist α,β,γ0\alpha,\beta,\gamma\geq 0 with max{α+γθτSx,τ1,β}<1\max\{\alpha+\gamma\|\theta_{\tau}S_{x,\tau}^{-1}\|,\beta\}<1 such that

    Ωf(α)(xαyα)𝑑μ(α)αΩf(α)xα𝑑μ(α)+βΩf(α)yα𝑑μ(α)+γf,f2(Ω,𝕂).\displaystyle\left\|\int_{\Omega}f(\alpha)(x_{\alpha}-y_{\alpha})\,d\mu(\alpha)\right\|\leq\alpha\left\|\int_{\Omega}f(\alpha)x_{\alpha}\,d\mu(\alpha)\right\|+\beta\left\|\int_{\Omega}f(\alpha)y_{\alpha}\,d\mu(\alpha)\right\|+\gamma\|f\|,\quad\forall f\in\mathcal{L}^{2}(\Omega,\mathbb{K}).

Then ({yα}αΩ,{τα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a continuous frame with bounds 1(α+γθτSx,τ1)(1+β)Sx,τ1\frac{1-(\alpha+\gamma\|\theta_{\tau}S_{x,\tau}^{-1}\|)}{(1+\beta)\|S_{x,\tau}^{-1}\|} and θτ((1+α)θx+γ)1β\frac{\|\theta_{\tau}\|((1+\alpha)\|\theta_{x}\|+\gamma)}{1-\beta}.

Proof.

Define T:2(Ω,𝕂)fΩf(α)yα𝑑μ(α)T:\mathcal{L}^{2}(\Omega,\mathbb{K})\ni f\mapsto\int_{\Omega}f(\alpha)y_{\alpha}\,d\mu(\alpha)\in\mathcal{H}. Then for all f2(Ω,𝕂)f\in\mathcal{L}^{2}(\Omega,\mathbb{K}),

Tf\displaystyle\|Tf\| =Ωf(α)yα𝑑μ(α)Ωf(α)(yαxα)𝑑μ(α)+Ωf(α)xα𝑑μ(α)\displaystyle=\left\|\int_{\Omega}f(\alpha)y_{\alpha}\,d\mu(\alpha)\right\|\leq\left\|\int_{\Omega}f(\alpha)(y_{\alpha}-x_{\alpha})\,d\mu(\alpha)\right\|+\left\|\int_{\Omega}f(\alpha)x_{\alpha}\,d\mu(\alpha)\right\|
=(1+α)Ωf(α)xα𝑑μ(α)+βΩf(α)yα𝑑μ(α)+γf\displaystyle=(1+\alpha)\left\|\int_{\Omega}f(\alpha)x_{\alpha}\,d\mu(\alpha)\right\|+\beta\left\|\int_{\Omega}f(\alpha)y_{\alpha}\,d\mu(\alpha)\right\|+\gamma\|f\|
=(1+α)θxf+βTf+γf,\displaystyle=(1+\alpha)\left\|\theta_{x}^{*}f\right\|+\beta\left\|Tf\right\|+\gamma\|f\|,

which implies

Tf1+α1βθxf+γ1βf,f2(Ω,𝕂) and\displaystyle\|Tf\|\leq\frac{1+\alpha}{1-\beta}\left\|\theta_{x}^{*}f\right\|+\frac{\gamma}{1-\beta}\|f\|,\quad\forall f\in\mathcal{L}^{2}(\Omega,\mathbb{K})\text{ and }
θxfθyfαθxf+βθyf+γf,f2(Ω,𝕂).\|\theta_{x}^{*}f-\theta_{y}^{*}f\|\leq\alpha\|\theta_{x}^{*}f\|+\beta\|\theta_{y}^{*}f\|+\gamma\|f\|,\quad\forall f\in\mathcal{L}^{2}(\Omega,\mathbb{K}).

Other arguments are similar to the corresponding arguments used in the proof of Theorem 5.1. ∎

Corollary 6.35.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a continuous frame for .\mathcal{H}. Suppose {yα}αΩ\{y_{\alpha}\}_{\alpha\in\Omega} in \mathcal{H} is such that

  1. (i)

    h,yατα=h,ταyα,h,yατα,h0,h,αΩ\langle h,y_{\alpha}\rangle\tau_{\alpha}=\langle h,\tau_{\alpha}\rangle y_{\alpha},\langle h,y_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\geq 0,\forall h\in\mathcal{H},\forall\alpha\in\Omega,

  2. (ii)

    for each hh\in\mathcal{H}, the map Ωαh,yα𝕂\Omega\ni\alpha\mapsto\langle h,y_{\alpha}\rangle\in\mathbb{K} is measurable,

  3. (iii)

    The map Ωαxαyα\Omega\ni\alpha\mapsto\|x_{\alpha}-y_{\alpha}\|\in\mathbb{R} is measurable,

  4. (iv)
    rΩxαyα2𝑑μ(α)<1θτSx,τ12.r\coloneqq\int_{\Omega}\|x_{\alpha}-y_{\alpha}\|^{2}\,d\mu(\alpha)<\frac{1}{\|\theta_{\tau}S_{x,\tau}^{-1}\|^{2}}.

Then ({yα}αΩ,{τα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a continuous frame with bounds 1rθτSx,τ1Sx,τ1\frac{1-\sqrt{r}\|\theta_{\tau}S_{x,\tau}^{-1}\|}{\|S_{x,\tau}^{-1}\|} and θτ(θx+r)\|\theta_{\tau}\|(\|\theta_{x}\|+\sqrt{r}).

Proof.

Take α=0,β=0,γ=r\alpha=0,\beta=0,\gamma=\sqrt{r}. Then max{α+γθτSx,τ1,β}<1\max\{\alpha+\gamma\|\theta_{\tau}S_{x,\tau}^{-1}\|,\beta\}<1 and

Ωf(α)(xαyα)𝑑μ(α)(Ω|f(α)|2𝑑μ(α))12(Ωxαyα2𝑑μ(α))12γf,f2(Ω,𝕂).\left\|\int_{\Omega}f(\alpha)(x_{\alpha}-y_{\alpha})\,d\mu(\alpha)\right\|\leq\left(\int_{\Omega}|f(\alpha)|^{2}\,d\mu(\alpha)\right)^{\frac{1}{2}}\left(\int_{\Omega}\|x_{\alpha}-y_{\alpha}\|^{2}\,d\mu(\alpha)\right)^{\frac{1}{2}}\leq\gamma\|f\|,\quad\forall f\in\mathcal{L}^{2}(\Omega,\mathbb{K}).

Now we can apply Theorem 6.34. ∎

Theorem 6.36.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a continuous frame for \mathcal{H} with bounds aa and b.b. Suppose {yα}αΩ\{y_{\alpha}\}_{\alpha\in\Omega} in \mathcal{H} is such that Ωh,yατα,h𝑑μ(α)\int_{\Omega}\langle h,y_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha) exists for all hh\in\mathcal{H} and is nonnegative for all hh\in\mathcal{H} and there exist α,β,γ0\alpha,\beta,\gamma\geq 0 with max{α+γa,β}<1\max\{\alpha+\frac{\gamma}{\sqrt{a}},\beta\}<1 and for all hh\in\mathcal{H},

|Ωh,xαyατα,h𝑑μ(α)|12α(Ωh,xατα,h𝑑μ(α))12+β(Ωh,yατα,h𝑑μ(α))12+γh.\displaystyle\left|\int_{\Omega}\langle h,x_{\alpha}-y_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha)\right|^{\frac{1}{2}}\leq\alpha\left(\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}}+\beta\left(\int_{\Omega}\langle h,y_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha)\right)^{\frac{1}{2}}+\gamma\|h\|.

Then ({yα}αΩ,{τα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a continuous frame with bounds a(1α+β+γa1+β)2a\left(1-\frac{\alpha+\beta+\frac{\gamma}{\sqrt{a}}}{1+\beta}\right)^{2} and b(1+α+β+γb1β)2.b\left(1+\frac{\alpha+\beta+\frac{\gamma}{\sqrt{b}}}{1-\beta}\right)^{2}.

Proof.

Similar to the proof of Theorem 5.3. ∎

Theorem 6.37.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a continuous frame for \mathcal{H}. Suppose {yα}αΩ\{y_{\alpha}\}_{\alpha\in\Omega} in \mathcal{H} is such that

  1. (i)

    h,yατα=h,ταyα,h,yατα,h0,h,αΩ\langle h,y_{\alpha}\rangle\tau_{\alpha}=\langle h,\tau_{\alpha}\rangle y_{\alpha},\langle h,y_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\geq 0,\forall h\in\mathcal{H},\forall\alpha\in\Omega,

  2. (ii)

    for each hh\in\mathcal{H}, the map Ωαh,yα𝕂\Omega\ni\alpha\mapsto\langle h,y_{\alpha}\rangle\in\mathbb{K} is measurable,

  3. (iii)

    The map Ωαxαyα\Omega\ni\alpha\mapsto\|x_{\alpha}-y_{\alpha}\|\in\mathbb{R} is measurable and Ωxαyα𝑑μ(α)\int_{\Omega}\|x_{\alpha}-y_{\alpha}\|\,d\mu(\alpha)\in\mathbb{R},

  4. (iv)

    The map ΩαSx,τ1τα\Omega\ni\alpha\mapsto\|S_{x,\tau}^{-1}\tau_{\alpha}\|\in\mathbb{R} is measurable and ΩxαyαSx,τ1τα𝑑μ(α)\int_{\Omega}\|x_{\alpha}-y_{\alpha}\|\|S_{x,\tau}^{-1}\tau_{\alpha}\|\,d\mu(\alpha)\in\mathbb{R},

  5. (v)

    ΩxαyαSx,τ1τα𝑑μ(α)<1.\int_{\Omega}\|x_{\alpha}-y_{\alpha}\|\|S_{x,\tau}^{-1}\tau_{\alpha}\|\,d\mu(\alpha)<1.

Then ({yα}αΩ,{τα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a continuous frame with bounds 1ΩxαyαSx,τ1τα𝑑μ(α)Sx,τ1\frac{1-\int_{\Omega}\|x_{\alpha}-y_{\alpha}\|\|S_{x,\tau}^{-1}\tau_{\alpha}\|\,d\mu(\alpha)}{\|S_{x,\tau}^{-1}\|} and θτ((Ωxαyα2𝑑μ(α))1/2+θx)\|\theta_{\tau}\|((\int_{\Omega}\|x_{\alpha}-y_{\alpha}\|^{2}\,d\mu(\alpha))^{1/2}+\|\theta_{x}\|).

Proof.

Let α=(Ωxαyα2𝑑μ(α))1/2\alpha=(\int_{\Omega}\|x_{\alpha}-y_{\alpha}\|^{2}\,d\mu(\alpha))^{1/2}, β=ΩxαyαSx,τ1τα𝑑μ(α)\beta=\int_{\Omega}\|x_{\alpha}-y_{\alpha}\|\|S_{x,\tau}^{-1}\tau_{\alpha}\|\,d\mu(\alpha). Fix f2(Ω,𝕂)f\in\mathcal{L}^{2}(\Omega,\mathbb{K}). Then for all hh\in\mathcal{H},

|Ωf(α)yα,h𝑑μ(α)|\displaystyle\left|\int_{\Omega}\langle f(\alpha)y_{\alpha},h\rangle\,d\mu(\alpha)\right| |Ωf(α)(yαxα),h𝑑μ(α)|+|Ωf(α)xα,h𝑑μ(α)|\displaystyle\leq\left|\int_{\Omega}\langle f(\alpha)(y_{\alpha}-x_{\alpha}),h\rangle\,d\mu(\alpha)\right|+\left|\int_{\Omega}\langle f(\alpha)x_{\alpha},h\rangle\,d\mu(\alpha)\right|
=|Ωf(α)(yαxα),h𝑑μ(α)|+|θxf,h|\displaystyle=\left|\int_{\Omega}\langle f(\alpha)(y_{\alpha}-x_{\alpha}),h\rangle\,d\mu(\alpha)\right|+|\langle\theta_{x}^{*}f,h\rangle|
Ω|f(α)|yαxαh𝑑μ(α)+fθxh\displaystyle\leq\int_{\Omega}|f(\alpha)|\|y_{\alpha}-x_{\alpha}\|\|h\|\,d\mu(\alpha)+\|f\|\|\theta_{x}h\|
hΩ|f(α)|yαxα𝑑μ(α)+fθxh\displaystyle\leq\|h\|\int_{\Omega}|f(\alpha)|\|y_{\alpha}-x_{\alpha}\|\,d\mu(\alpha)+\|f\|\|\theta_{x}\|\|h\|
h(Ω|f(α)|2𝑑μ(α))12(Ωyαxα2𝑑μ(α))12+fθxh\displaystyle\leq\|h\|\left(\int_{\Omega}|f(\alpha)|^{2}\,d\mu(\alpha)\right)^{\frac{1}{2}}\left(\int_{\Omega}\|y_{\alpha}-x_{\alpha}\|^{2}\,d\mu(\alpha)\right)^{\frac{1}{2}}+\|f\|\|\theta_{x}\|\|h\|
=hfα+fθxh=(fα+fθx)h\displaystyle=\|h\|\|f\|\alpha+\|f\|\|\theta_{x}\|\|h\|=(\|f\|\alpha+\|f\|\|\theta_{x}\|)\|h\|

and hence

ISy,τSx,τ1\displaystyle\|I_{\mathcal{H}}-S_{y,\tau}S_{x,\tau}^{-1}\| =suph,g,h=1=g|(ISy,τSx,τ1)h,g|\displaystyle=\sup_{h,g\in\mathcal{H},\|h\|=1=\|g\|}|\langle(I_{\mathcal{H}}-S_{y,\tau}S_{x,\tau}^{-1})h,g\rangle|
=suph,g,h=1=g|ΩSx,τ1h,ταxα,g𝑑μ(α)ΩSx,τ1h,ταyα,g𝑑μ(α)|\displaystyle=\sup_{h,g\in\mathcal{H},\|h\|=1=\|g\|}\left|\int_{\Omega}\langle S_{x,\tau}^{-1}h,\tau_{\alpha}\rangle\langle x_{\alpha},g\rangle\,d\mu(\alpha)-\int_{\Omega}\langle S_{x,\tau}^{-1}h,\tau_{\alpha}\rangle\langle y_{\alpha},g\rangle\,d\mu(\alpha)\right|
=suph,g,h=1=g|ΩSx,τ1h,ταxαyα,g𝑑μ(α)|\displaystyle=\sup_{h,g\in\mathcal{H},\|h\|=1=\|g\|}\left|\int_{\Omega}\langle S_{x,\tau}^{-1}h,\tau_{\alpha}\rangle\langle x_{\alpha}-y_{\alpha},g\rangle\,d\mu(\alpha)\right|
=suph,g,h=1=g|Ωh,Sx,τ1ταxαyα,g𝑑μ(α)|\displaystyle=\sup_{h,g\in\mathcal{H},\|h\|=1=\|g\|}\left|\int_{\Omega}\langle h,S_{x,\tau}^{-1}\tau_{\alpha}\rangle\langle x_{\alpha}-y_{\alpha},g\rangle\,d\mu(\alpha)\right|
suph,g,h=1=gΩxαyαSx,τ1ταhg𝑑μ(α)\displaystyle\leq\sup_{h,g\in\mathcal{H},\|h\|=1=\|g\|}\int_{\Omega}\|x_{\alpha}-y_{\alpha}\|\|S_{x,\tau}^{-1}\tau_{\alpha}\|\|h\|\|g\|\,d\mu(\alpha)
=ΩxαyαSx,τ1τα𝑑μ(α)=β<1.\displaystyle=\int_{\Omega}\|x_{\alpha}-y_{\alpha}\|\|S_{x,\tau}^{-1}\tau_{\alpha}\|\,d\mu(\alpha)=\beta<1.

Other arguments are similar to the corresponding arguments in the proof of Theorem 5.4.

7. The finite dimensional case

Theorem 7.1.

Let \mathcal{H} be a finite dimensional Hilbert space, GG be a locally compact group, {xα}αG,{τα}αG\{x_{\alpha}\}_{\alpha\in G},\{\tau_{\alpha}\}_{\alpha\in G} be a set of vectors in \mathcal{H} such that

  1. (i)

    h,xατα=h,ταxα,h,αG\langle h,x_{\alpha}\rangle\tau_{\alpha}=\langle h,\tau_{\alpha}\rangle x_{\alpha},\forall h\in\mathcal{H},\forall\alpha\in G.

  2. (ii)

    h,xατα,h0,h,αG.\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\geq 0,\forall h\in\mathcal{H},\forall\alpha\in G.

  3. (iii)

    for each hh\in\mathcal{H}, both maps Gαh,xα𝕂G\ni\alpha\mapsto\langle h,x_{\alpha}\rangle\in\mathbb{K}, Gαh,τα𝕂G\ni\alpha\mapsto\langle h,\tau_{\alpha}\rangle\in\mathbb{K} are measurable.

  4. (iv)

    the map Gαxατα𝕂G\ni\alpha\mapsto\|x_{\alpha}\|\|\tau_{\alpha}\|\in\mathbb{K} is in 2(G,𝕂)\mathcal{L}^{2}(G,\mathbb{K}).

  5. (v)

    for each hh\in\mathcal{H}, the map Gαh,xατα,h𝕂G\ni\alpha\mapsto\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\in\mathbb{K} is continuous.

Then ({xα}αG,{τα}αG)(\{x_{\alpha}\}_{\alpha\in G},\{\tau_{\alpha}\}_{\alpha\in G}) is a continuous frame for \mathcal{H} if and only if for every pair Gx,GτG_{x},G_{\tau} of subsets of GG satisfying GxGτ=G_{x}\cap G_{\tau}=\emptyset and GxGτ=GG_{x}\cup G_{\tau}=G one has span{xα,τβ:αGx,βGτ}=.\operatorname{span}\{x_{\alpha},\tau_{\beta}:\alpha\in G_{x},\beta\in G_{\tau}\}=\mathcal{H}.

Proof.

We can assume {0}\mathcal{H}\neq\{0\}.

()(\Leftarrow) There exists αG\alpha\in G such that xα0ταx_{\alpha}\neq 0\neq\tau_{\alpha} (else Sx,τS_{x,\tau} is zero). Hence Gxατα𝑑μG(α)>0\int_{G}\|x_{\alpha}\|\|\tau_{\alpha}\|\,d\mu_{G}(\alpha)>0. Clearly Sx,τS_{x,\tau} is self-adjoint and positive. Now

Gh,xατα,h𝑑μG(α)G|h,xατα,h|𝑑μG(α)(Gxατα𝑑μG(α))h2.\displaystyle\int_{G}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu_{G}(\alpha)\leq\int_{G}|\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle|\,d\mu_{G}(\alpha)\leq\left(\int_{G}\|x_{\alpha}\|\|\tau_{\alpha}\|\,d\mu_{G}(\alpha)\right)\|h\|^{2}.

Hence the upper frame bound condition is satisfied. Define ϕ:hGh,xατα,h𝑑μ(α).\phi:\mathcal{H}\ni h\mapsto\int_{G}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha)\in\mathbb{R}. We argue that ϕ\phi is continuous. Let hnhh_{n}\to h in \mathcal{H} as n.n\to\infty. Then

|ϕ(hn)ϕ(h)|\displaystyle|\phi(h_{n})-\phi(h)| =|Ghn,xατα,hn𝑑μG(α)Gh,xατα,h𝑑μG(α)|\displaystyle=\left|\int_{G}\langle h_{n},x_{\alpha}\rangle\langle\tau_{\alpha},h_{n}\rangle\,d\mu_{G}(\alpha)-\int_{G}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu_{G}(\alpha)\right|
=|Ghn,xατα,hndμG(α)Gh,xατα,hndμG(α)\displaystyle=\bigg{|}\int_{G}\langle h_{n},x_{\alpha}\rangle\langle\tau_{\alpha},h_{n}\rangle\,d\mu_{G}(\alpha)-\int_{G}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h_{n}\rangle\,d\mu_{G}(\alpha)
+Gh,xατα,hndμG(α)Gh,xατα,hdμG(α)|\displaystyle\quad+\int_{G}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h_{n}\rangle\,d\mu_{G}(\alpha)-\int_{G}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu_{G}(\alpha)\bigg{|}
=|Ghnh,xατα,hn𝑑μG(α)+Gh,xατα,hnh𝑑μG(α)|\displaystyle=\left|\int_{G}\langle h_{n}-h,x_{\alpha}\rangle\langle\tau_{\alpha},h_{n}\rangle\,d\mu_{G}(\alpha)+\int_{G}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h_{n}-h\rangle\,d\mu_{G}(\alpha)\right|
GhnhxαταhndμG(α)+GhxαταhnhdμG(α)\displaystyle\leq\int_{G}\|h_{n}-h\|\|x_{\alpha}\|\|\|\tau_{\alpha}\|\|h_{n}\|\,d\mu_{G}(\alpha)+\int_{G}\|h\|\|x_{\alpha}\|\|\tau_{\alpha}\|\|h_{n}-h\|\,d\mu_{G}(\alpha)
((supnhn+h)Gxατα𝑑μG(α))hnh0 as n.\displaystyle\leq\left(\left(\sup_{n\in\mathbb{N}}\|h_{n}\|+\|h\|\right)\int_{G}\|x_{\alpha}\|\|\tau_{\alpha}\|\,d\mu_{G}(\alpha)\right)\|h_{n}-h\|\to 0\text{ as }n\to\infty.

Compactness of the unit sphere of \mathcal{H} gives the existence of gg\in\mathcal{H} with g=1\|g\|=1 such that aGg,xατα,g𝑑μG(α)=inf{Gh,xατα,h𝑑μG(α):h,h=1}.a\coloneqq\int_{G}\langle g,x_{\alpha}\rangle\langle\tau_{\alpha},g\rangle\,d\mu_{G}(\alpha)=\inf\{\int_{G}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu_{G}(\alpha):h\in\mathcal{H},\|h\|=1\}. We claim that a>0.a>0. If this fails: since g,xατα,g0,αG\langle g,x_{\alpha}\rangle\langle\tau_{\alpha},g\rangle\geq 0,\forall\alpha\in G, GG is a locally compact group and the map Gαg,xατα,g𝕂G\ni\alpha\mapsto\langle g,x_{\alpha}\rangle\langle\tau_{\alpha},g\rangle\in\mathbb{K} is continuous, from [28] we must have g,xατα,g=0,αG.\langle g,x_{\alpha}\rangle\langle\tau_{\alpha},g\rangle=0,\forall\alpha\in G. Define Gx{αG:g,xα=0}G_{x}\coloneqq\{\alpha\in G:\langle g,x_{\alpha}\rangle=0\} and Gτ{αG:τα,g=0}GxG_{\tau}\coloneqq\{\alpha\in G:\langle\tau_{\alpha},g\rangle=0\}\setminus G_{x}. Now using g,xατα,g=0,αG\langle g,x_{\alpha}\rangle\langle\tau_{\alpha},g\rangle=0,\forall\alpha\in G we get GxGτ=GG_{x}\cup G_{\tau}=G. Clearly GxGτ=G_{x}\cap G_{\tau}=\emptyset. Then gspan{xα,τβ:αGx,βGτ}=g\perp\operatorname{span}\{x_{\alpha},\tau_{\beta}:\alpha\in G_{x},\beta\in G_{\tau}\}=\mathcal{H} which implies g=0g=0 which is forbidden. We claim that aa is a lower frame bound. For all nonzero hh\in\mathcal{H},

ah2(Ghh,xατα,hh𝑑μG(α))h2=Gh,xατα,h𝑑μG(α).\displaystyle a\|h\|^{2}\leq\left(\int_{G}\left\langle\frac{h}{\|h\|},x_{\alpha}\right\rangle\left\langle\tau_{\alpha},\frac{h}{\|h\|}\right\rangle\,d\mu_{G}(\alpha)\right)\|h\|^{2}=\int_{G}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu_{G}(\alpha).

()(\Rightarrow) We prove by contrapositive. Suppose there are subsets Gx,GτG_{x},G_{\tau} of GG satisfying GxGτ=G_{x}\cap G_{\tau}=\emptyset and GxGτ=GG_{x}\cup G_{\tau}=G such that span{xα,τβ:αGx,βGτ}.\operatorname{span}\{x_{\alpha},\tau_{\beta}:\alpha\in G_{x},\beta\in G_{\tau}\}\subsetneq\mathcal{H}. Let hh\in\mathcal{H} be nonzero such that hspan{xα,τβ:αGx,βGτ}.h\perp\operatorname{span}\{x_{\alpha},\tau_{\beta}:\alpha\in G_{x},\beta\in G_{\tau}\}. Now because of GxGτ=G_{x}\cap G_{\tau}=\emptyset and GxGτ=GG_{x}\cup G_{\tau}=G we get Gh,xατα,h𝑑μG(α)=0\int_{G}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu_{G}(\alpha)=0 which says that the lower frame bound condition fails. ∎

Proposition 7.2.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a continuous frame for \mathcal{H} with a lower frame bound aa and h,xατα,h0,h,αΩ.\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\geq 0,\forall h\in\mathcal{H},\forall\alpha\in\Omega. If Δ\Delta is any measurable subset of Ω\Omega such that Δαxατα𝕂\Delta\ni\alpha\mapsto\|x_{\alpha}\|\|\tau_{\alpha}\|\in\mathbb{K} is measurable and Δxατα𝑑μ(α)<a,\int_{\Delta}\|x_{\alpha}\|\|\tau_{\alpha}\|\,d\mu(\alpha)<a, then ({xα}αΩΔ,{τα}αΩΔ)(\{x_{\alpha}\}_{\alpha\in\Omega\setminus\Delta},\{\tau_{\alpha}\}_{\alpha\in\Omega\setminus\Delta}) is a continuous frame for \mathcal{H} with lower frame bound aΔxατα𝑑μ(α)a-\int_{\Delta}\|x_{\alpha}\|\|\tau_{\alpha}\|\,d\mu(\alpha).

Proof.
ah2\displaystyle a\|h\|^{2} Ωh,xατα,h𝑑μ(α)=Δh,xατα,h𝑑μ(α)+ΩΔh,xατα,h𝑑μ(α)\displaystyle\leq\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha)=\int_{\Delta}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha)+\int_{\Omega\setminus\Delta}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha)
h2Δxατα𝑑μ(α)+ΩΔh,xατα,h𝑑μ(α),h.\displaystyle\leq\|h\|^{2}\int_{\Delta}\|x_{\alpha}\|\|\tau_{\alpha}\|\,d\mu(\alpha)+\int_{\Omega\setminus\Delta}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha),\quad\forall h\in\mathcal{H}.

Theorem 7.3.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a continuous frame for a finite dimensional complex Hilbert space \mathcal{H} of dimension mm. Then we have the following.

  1. (i)

    The optimal lower frame bound (resp. optimal upper frame bound) is the smallest (resp. largest) eigenvalue for Sx,τ.S_{x,\tau}.

  2. (ii)

    If {λj}j=1m\{\lambda_{j}\}_{j=1}^{m} denotes the eigenvalues for Sx,τ,S_{x,\tau}, each appears as many times as its algebraic multiplicity, then

    j=1mλj=Ωxα,τα𝑑μ(α)=Ωτα,xα𝑑μ(α).\sum_{j=1}^{m}\lambda_{j}=\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)=\int_{\Omega}\langle\tau_{\alpha},x_{\alpha}\rangle\,d\mu(\alpha).
  3. (iii)

    Condition number for Sx,τS_{x,\tau} is equal to the ratio between the optimal upper frame bound and the optimal lower frame bound.

  4. (iv)

    If the optimal upper frame bound is b,b, then

    bΩxα,τα𝑑μ(α)=Ωτα,xα𝑑μ(α)mb.b\leq\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)=\int_{\Omega}\langle\tau_{\alpha},x_{\alpha}\rangle\,d\mu(\alpha)\leq mb.
  5. (v)
    Trace(Sx,τ)=Ωxα,τα𝑑μ(α)=Ωτα,xα𝑑μ(α);\displaystyle\operatorname{Trace}(S_{x,\tau})=\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)=\int_{\Omega}\langle\tau_{\alpha},x_{\alpha}\rangle\,d\mu(\alpha);
    Trace(Sx,τ2)=ΩΩτα,xβτβ,xα𝑑μ(β)𝑑μ(α)=ΩΩτα,τβxβ,xα𝑑μ(β)𝑑μ(α).\displaystyle\operatorname{Trace}(S^{2}_{x,\tau})=\int_{\Omega}\int_{\Omega}\langle\tau_{\alpha},x_{\beta}\rangle\langle\tau_{\beta},x_{\alpha}\rangle\,d\mu(\beta)\,d\mu(\alpha)=\int_{\Omega}\int_{\Omega}\langle\tau_{\alpha},\tau_{\beta}\rangle\langle x_{\beta},x_{\alpha}\rangle\,d\mu(\beta)\,d\mu(\alpha).
  6. (vi)

    If the frame is tight, then the optimal frame bound b=1mΩxα,τα𝑑μ(α)=1mΩτα,xα𝑑μ(α).b=\frac{1}{m}\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)=\frac{1}{m}\int_{\Omega}\langle\tau_{\alpha},x_{\alpha}\rangle\,d\mu(\alpha). In particular, if xα,τα=1,αΩ,\langle x_{\alpha},\tau_{\alpha}\rangle=1,\forall\alpha\in\Omega, then b=μ(Ω)/m.b={\mu(\Omega)}/m. Further,

    h\displaystyle h =1bΩh,xατα𝑑μ(α)=1bΩh,ταxα𝑑μ(α),h;\displaystyle=\frac{1}{b}\int_{\Omega}\langle h,x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha)=\frac{1}{b}\int_{\Omega}\langle h,\tau_{\alpha}\rangle x_{\alpha}\,d\mu(\alpha),\quad\forall h\in\mathcal{H};
    h2\displaystyle\|h\|^{2} =1bΩh,xατα,h𝑑μ(α)=1bΩh,ταxα,h𝑑μ(α),h.\displaystyle=\frac{1}{b}\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha)=\frac{1}{b}\int_{\Omega}\langle h,\tau_{\alpha}\rangle\langle x_{\alpha},h\rangle\,d\mu(\alpha),\quad\forall h\in\mathcal{H}.
  7. (vii)

    If the frame is tight, then

    (Extended variation formula) ΩΩτα,xβτβ,xα𝑑μ(β)𝑑μ(α)=1dim(Ωxα,τα𝑑μ(α))2\displaystyle\int_{\Omega}\int_{\Omega}\langle\tau_{\alpha},x_{\beta}\rangle\langle\tau_{\beta},x_{\alpha}\rangle\,d\mu(\beta)\,d\mu(\alpha)=\frac{1}{\dim\mathcal{H}}\left(\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)\right)^{2}
    =1dim(Ωτα,xα𝑑μ(α))2=ΩΩτα,τβxβ,xα𝑑μ(β)𝑑μ(α).\displaystyle=\frac{1}{\dim\mathcal{H}}\left(\int_{\Omega}\langle\tau_{\alpha},x_{\alpha}\rangle\,d\mu(\alpha)\right)^{2}=\int_{\Omega}\int_{\Omega}\langle\tau_{\alpha},\tau_{\beta}\rangle\langle x_{\beta},x_{\alpha}\rangle\,d\mu(\beta)\,d\mu(\alpha).
  8. (viii)

    If the frame is Parseval, then

    (Extended dimension formula)dim=Ωxα,τα𝑑μ(α)=Ωτα,xα𝑑μ(α).\text{(Extended dimension formula)}\quad\quad\dim\mathcal{H}=\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)=\int_{\Omega}\langle\tau_{\alpha},x_{\alpha}\rangle\,d\mu(\alpha).
  9. (ix)

    If the frame is Parseval, then for every T(),T\in\mathcal{B}(\mathcal{H}),

    (Extended trace formula)Trace(T)=ΩTxα,τα𝑑μ(α)=ΩTτα,xα𝑑μ(α).\text{(Extended trace formula)}\quad\quad\operatorname{Trace}(T)=\int_{\Omega}\langle Tx_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)=\int_{\Omega}\langle T\tau_{\alpha},x_{\alpha}\rangle\,d\mu(\alpha).
Proof.
  1. (i)

    Using spectral theorem, \mathcal{H} has an orthonormal basis {ej}j=1m\{e_{j}\}_{j=1}^{m} consisting of eigenvectors for Sx,τ.S_{x,\tau}. Let {λj}j=1m\{\lambda_{j}\}_{j=1}^{m} denote the corresponding eigenvalues. Then Sx,τh=j=1mh,ejSx,τej=j=1mλjh,ejej,h.S_{x,\tau}h=\sum_{j=1}^{m}\langle h,e_{j}\rangle S_{x,\tau}e_{j}=\sum_{j=1}^{m}\lambda_{j}\langle h,e_{j}\rangle e_{j},\forall h\in\mathcal{H}. Since Sx,τS_{x,\tau} is positive invertible, λj>0,j=1,,m.\lambda_{j}>0,\forall j=1,...,m. Therefore

    min{λj}j=1mh2\displaystyle\min\{\lambda_{j}\}_{j=1}^{m}\|h\|^{2} j=1mλj|h,ej|2=Sx,τh,h\displaystyle\leq\sum_{j=1}^{m}\lambda_{j}|\langle h,e_{j}\rangle|^{2}=\langle S_{x,\tau}h,h\rangle
    =Ωh,xατα,hdμ(α)max{λj}j=1mh2,h.\displaystyle=\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha)\leq\max\{\lambda_{j}\}_{j=1}^{m}\|h\|^{2},\quad\forall h\in\mathcal{H}.

    To get optimal frame bounds we take eigenvectors corresponding to min{λj}j=1m\min\{\lambda_{j}\}_{j=1}^{m} and max{λj}j=1m.\max\{\lambda_{j}\}_{j=1}^{m}.

  2. (ii)
    j=1mλj\displaystyle\sum_{j=1}^{m}\lambda_{j} =j=1mλjej2=j=1mSx,τej,ej=j=1mΩej,xατα,ej𝑑μ(α)\displaystyle=\sum_{j=1}^{m}\lambda_{j}\|e_{j}\|^{2}=\sum_{j=1}^{m}\langle S_{x,\tau}e_{j},e_{j}\rangle=\sum_{j=1}^{m}\int_{\Omega}\langle e_{j},x_{\alpha}\rangle\langle\tau_{\alpha},e_{j}\rangle\,d\mu(\alpha)
    =Ω(j=1mτα,ejej,xα)𝑑μ(α)=Ωτα,xα𝑑μ(α).\displaystyle=\int_{\Omega}(\sum_{j=1}^{m}\langle\tau_{\alpha},e_{j}\rangle\langle e_{j},x_{\alpha}\rangle)\,d\mu(\alpha)=\int_{\Omega}\langle\tau_{\alpha},x_{\alpha}\rangle\,d\mu(\alpha).

    Since Sx,τ=Sτ,xS_{x,\tau}=S_{\tau,x}, we get j=1mλj=Ωxα,τα𝑑μ(α).\sum_{j=1}^{m}\lambda_{j}=\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha).

  3. (iii)

    This follows from (i).

  4. (iv)

    Let {ej}j=1m\{e_{j}\}_{j=1}^{m} and {λj}j=1m\{\lambda_{j}\}_{j=1}^{m} be as in (i). We may assume λ1λm\lambda_{1}\geq\cdots\geq\lambda_{m}. Then (i) gives b=λ1.b=\lambda_{1}. Now use (ii): b=λ1j=1mλj=Ωxα,τα𝑑μ(α)=Ωτα,xα𝑑μ(α)λ1m=bm.b=\lambda_{1}\leq\sum_{j=1}^{m}\lambda_{j}=\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)=\int_{\Omega}\langle\tau_{\alpha},x_{\alpha}\rangle\,d\mu(\alpha)\leq\lambda_{1}m=bm.

  5. (v)

    Let {fj}j=1m\{f_{j}\}_{j=1}^{m} be an orthonormal basis for \mathcal{H}. Then

    Trace(Sx,τ)\displaystyle\operatorname{Trace}(S_{x,\tau}) =j=1mSx,τfj,fj=j=1mΩfj,xατα𝑑μ(α),fj\displaystyle=\sum_{j=1}^{m}\langle S_{x,\tau}f_{j},f_{j}\rangle=\sum_{j=1}^{m}\left\langle\int_{\Omega}\langle f_{j},x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha),f_{j}\right\rangle
    =Ω(j=1mfj,xατα,fj)𝑑μ(α)=Ωτα,xα𝑑μ(α),and\displaystyle=\int_{\Omega}\left(\sum_{j=1}^{m}\langle f_{j},x_{\alpha}\rangle\langle\tau_{\alpha},f_{j}\rangle\right)\,d\mu(\alpha)=\int_{\Omega}\langle\tau_{\alpha},x_{\alpha}\rangle\,d\mu(\alpha),~{}\text{and}
    Trace(Sx,τ2)\displaystyle\operatorname{Trace}(S^{2}_{x,\tau}) =j=1mSx,τfj,Sx,τfj=j=1mΩfj,xατα𝑑μ(α),Ωfj,τβxβ𝑑μ(β)\displaystyle=\sum_{j=1}^{m}\langle S_{x,\tau}f_{j},S_{x,\tau}f_{j}\rangle=\sum_{j=1}^{m}\left\langle\int_{\Omega}\langle f_{j},x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha),\int_{\Omega}\langle f_{j},\tau_{\beta}\rangle x_{\beta}\,d\mu(\beta)\right\rangle
    =ΩΩτα,xβj=1mfj,xατβ,fjdμ(β)dμ(α)=ΩΩτα,xβτβ,xα𝑑μ(β)𝑑μ(α),\displaystyle=\int_{\Omega}\int_{\Omega}\langle\tau_{\alpha},x_{\beta}\rangle\sum_{j=1}^{m}\langle f_{j},x_{\alpha}\rangle\langle\tau_{\beta},f_{j}\rangle\,d\mu(\beta)\,d\mu(\alpha)=\int_{\Omega}\int_{\Omega}\langle\tau_{\alpha},x_{\beta}\rangle\langle\tau_{\beta},x_{\alpha}\rangle\,d\mu(\beta)\,d\mu(\alpha),
    Trace(Sx,τ2)\displaystyle\operatorname{Trace}(S^{2}_{x,\tau}) =j=1mSx,τfj,Sx,τfj=j=1mΩfj,xατα𝑑μ(α),Ωfj,xβτβ𝑑μ(β)\displaystyle=\sum_{j=1}^{m}\langle S_{x,\tau}f_{j},S_{x,\tau}f_{j}\rangle=\sum_{j=1}^{m}\left\langle\int_{\Omega}\langle f_{j},x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha),\int_{\Omega}\langle f_{j},x_{\beta}\rangle\tau_{\beta}\,d\mu(\beta)\right\rangle
    =ΩΩτα,τβj=1mfj,xαxβ,fjdμ(β)dμ(α)=ΩΩτα,τβxβ,xα𝑑μ(β)𝑑μ(α).\displaystyle=\int_{\Omega}\int_{\Omega}\langle\tau_{\alpha},\tau_{\beta}\rangle\sum_{j=1}^{m}\langle f_{j},x_{\alpha}\rangle\langle x_{\beta},f_{j}\rangle\,d\mu(\beta)\,d\mu(\alpha)=\int_{\Omega}\int_{\Omega}\langle\tau_{\alpha},\tau_{\beta}\rangle\langle x_{\beta},x_{\alpha}\rangle\,d\mu(\beta)\,d\mu(\alpha).
  6. (vi)

    Now Sx,τ=λI,S_{x,\tau}=\lambda I_{\mathcal{H}}, for some positive λ.\lambda. This gives λ1==λm=λ=b.\lambda_{1}=\cdots=\lambda_{m}=\lambda=b. From (ii) we get the conclusions.

  7. (vii)

    Let the optimal frame bound be bb. From (v) and (vi),

    ΩΩτα,τβxβ,xα𝑑μ(β)𝑑μ(α)\displaystyle\int_{\Omega}\int_{\Omega}\langle\tau_{\alpha},\tau_{\beta}\rangle\langle x_{\beta},x_{\alpha}\rangle\,d\mu(\beta)\,d\mu(\alpha) =ΩΩτα,xβτβ,xα𝑑μ(β)𝑑μ(α)\displaystyle=\int_{\Omega}\int_{\Omega}\langle\tau_{\alpha},x_{\beta}\rangle\langle\tau_{\beta},x_{\alpha}\rangle\,d\mu(\beta)\,d\mu(\alpha)
    =Trace(Sx,τ2)=Trace(b2I)=b2m\displaystyle=\operatorname{Trace}(S^{2}_{x,\tau})=\operatorname{Trace}(b^{2}I_{\mathcal{H}})=b^{2}m
    =(1mΩxα,τα𝑑μ(α))2m=1m(Ωxα,τα𝑑μ(α))2.\displaystyle=\left(\frac{1}{m}\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)\right)^{2}m=\frac{1}{m}\left(\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)\right)^{2}.
  8. (viii)

    Let {fj}j=1m\{f_{j}\}_{j=1}^{m} be as in (v). Then

    dim\displaystyle\dim\mathcal{H} =j=1mfj2=j=1mΩfj,xατα,fj𝑑μ(α)\displaystyle=\sum_{j=1}^{m}\|f_{j}\|^{2}=\sum_{j=1}^{m}\int_{\Omega}\langle f_{j},x_{\alpha}\rangle\langle\tau_{\alpha},f_{j}\rangle\,d\mu(\alpha)
    =j=1mΩfj,ταxα,fj𝑑μ(α)=Ωj=1mfj,xατα,fjdμ(α)\displaystyle=\sum_{j=1}^{m}\int_{\Omega}\langle f_{j},\tau_{\alpha}\rangle\langle x_{\alpha},f_{j}\rangle\,d\mu(\alpha)=\int_{\Omega}\sum_{j=1}^{m}\langle f_{j},x_{\alpha}\rangle\langle\tau_{\alpha},f_{j}\rangle\,d\mu(\alpha)
    =Ωj=1mfj,ταxα,fjdμ(α)=Ωxα,τα𝑑μ(α)=Ωτα,xα𝑑μ(α).\displaystyle=\int_{\Omega}\sum_{j=1}^{m}\langle f_{j},\tau_{\alpha}\rangle\langle x_{\alpha},f_{j}\rangle\,d\mu(\alpha)=\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)=\int_{\Omega}\langle\tau_{\alpha},x_{\alpha}\rangle\,d\mu(\alpha).
  9. (ix)

    Let {fj}j=1m\{f_{j}\}_{j=1}^{m} be as in (v). Then

    Trace(T)\displaystyle\operatorname{Trace}(T) =j=1mTfj,fj=j=1mΩTfj,xατα𝑑μ(α),fj\displaystyle=\sum_{j=1}^{m}\langle Tf_{j},f_{j}\rangle=\sum_{j=1}^{m}\left\langle\int_{\Omega}\langle Tf_{j},x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha),f_{j}\right\rangle
    =Ωj=1mτα,fjTfj,xαdμ(α)=Ωj=1mτα,fjfj,Txαdμ(α)\displaystyle=\int_{\Omega}\sum_{j=1}^{m}\langle\tau_{\alpha},f_{j}\rangle\langle Tf_{j},x_{\alpha}\rangle\,d\mu(\alpha)=\int_{\Omega}\sum_{j=1}^{m}\langle\tau_{\alpha},f_{j}\rangle\langle f_{j},T^{*}x_{\alpha}\rangle\,d\mu(\alpha)
    =Ωτα,Txα𝑑μ(α)=ΩTτα,xα𝑑μ(α).\displaystyle=\int_{\Omega}\langle\tau_{\alpha},T^{*}x_{\alpha}\rangle\,d\mu(\alpha)=\int_{\Omega}\langle T\tau_{\alpha},x_{\alpha}\rangle\,d\mu(\alpha).

    Similarly by using Tfj=ΩTfj,ταxα𝑑μ(α)Tf_{j}=\int_{\Omega}\langle Tf_{j},\tau_{\alpha}\rangle x_{\alpha}\,d\mu(\alpha), we get Trace(T)=ΩTxα,τα𝑑μ(α).\operatorname{Trace}(T)=\int_{\Omega}\langle Tx_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha).

Theorem 7.4.

If a continuous frame ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) for m\mathbb{R}^{m} is such that

Ωh,xατα,g𝑑μ(α)=Ωg,xατα,h𝑑μ(α),h,gn,\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},g\rangle\,d\mu(\alpha)=\int_{\Omega}\langle g,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha),\quad\forall h,g\in\mathbb{R}^{n},

then it is also a continuous frame for m.\mathbb{C}^{m}. Further, if ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a tight (resp. Parseval) continuous frame for m\mathbb{R}^{m}, then it is also a tight (resp. Parseval) continuous frame for m.\mathbb{C}^{m}.

Proof.

Let a,ba,b be lower and upper frame bounds, in order. For zmz\in\mathbb{C}^{m} we write z=Rez+iImz,Rez,Imzz=\operatorname{Re}z+i\operatorname{Im}z,\operatorname{Re}z,\operatorname{Im}z m.\in\mathbb{R}^{m}. Then

az2\displaystyle a\|z\|^{2} =aRez2+aImz2ΩRez,xατα,Rez𝑑μ(α)+ΩImz,xατα,Imz𝑑μ(α)\displaystyle=a\|\operatorname{Re}z\|^{2}+a\|\operatorname{Im}z\|^{2}\leq\int_{\Omega}\langle\operatorname{Re}z,x_{\alpha}\rangle\langle\tau_{\alpha},\operatorname{Re}z\rangle\,d\mu(\alpha)+\int_{\Omega}\langle\operatorname{Im}z,x_{\alpha}\rangle\langle\tau_{\alpha},\operatorname{Im}z\rangle\,d\mu(\alpha)
=(ΩRez,xατα,Rez𝑑μ(α)+iΩImz,xατα,Rez𝑑μ(α))\displaystyle=\left(\int_{\Omega}\langle\operatorname{Re}z,x_{\alpha}\rangle\langle\tau_{\alpha},\operatorname{Re}z\rangle\,d\mu(\alpha)+i\int_{\Omega}\langle\operatorname{Im}z,x_{\alpha}\rangle\langle\tau_{\alpha},\operatorname{Re}z\rangle\,d\mu(\alpha)\right)
i(ΩRez,xατα,Imz𝑑μ(α)+iΩImz,xατα,Imz𝑑μ(α))\displaystyle\quad-i\left(\int_{\Omega}\langle\operatorname{Re}z,x_{\alpha}\rangle\langle\tau_{\alpha},\operatorname{Im}z\rangle\,d\mu(\alpha)+i\int_{\Omega}\langle\operatorname{Im}z,x_{\alpha}\rangle\langle\tau_{\alpha},\operatorname{Im}z\rangle\,d\mu(\alpha)\right)
=ΩRez+iImz,xατα,Rez𝑑μ(α)iΩRez+iImz,xατα,Imz𝑑μ(α)\displaystyle=\int_{\Omega}\langle\operatorname{Re}z+i\operatorname{Im}z,x_{\alpha}\rangle\langle\tau_{\alpha},\operatorname{Re}z\rangle\,d\mu(\alpha)-i\int_{\Omega}\langle\operatorname{Re}z+i\operatorname{Im}z,x_{\alpha}\rangle\langle\tau_{\alpha},\operatorname{Im}z\rangle\,d\mu(\alpha)
=Ωz,xατα,Rez𝑑μ(α)+Ωz,xατα,iImz𝑑μ(α)=Ωz,xατα,z𝑑μ(α)\displaystyle=\int_{\Omega}\langle z,x_{\alpha}\rangle\langle\tau_{\alpha},\operatorname{Re}z\rangle\,d\mu(\alpha)+\int_{\Omega}\langle z,x_{\alpha}\rangle\langle\tau_{\alpha},i\operatorname{Im}z\rangle\,d\mu(\alpha)=\int_{\Omega}\langle z,x_{\alpha}\rangle\langle\tau_{\alpha},z\rangle\,d\mu(\alpha)
bRez2+bImz2=bz2.\displaystyle\leq b\|\operatorname{Re}z\|^{2}+b\|\operatorname{Im}z\|^{2}=b\|z\|^{2}.

Theorem 7.5.

If ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a continuous frame for m\mathbb{C}^{m} such that

Ωh,RexαImτα,h𝑑μ(α)=Ωh,ImxαReτα,h𝑑μ(α),hm,\int_{\Omega}\langle h,\operatorname{Re}x_{\alpha}\rangle\langle\operatorname{Im}\tau_{\alpha},h\rangle\,d\mu(\alpha)=\int_{\Omega}\langle h,\operatorname{Im}x_{\alpha}\rangle\langle\operatorname{Re}\tau_{\alpha},h\rangle\,d\mu(\alpha),\quad\forall h\in\mathbb{C}^{m},

then ({Rexα}αΩ{Imxα}αΩ,{Reτα}αΩ{Imτα}αΩ)(\{\operatorname{Re}x_{\alpha}\}_{\alpha\in\Omega}\cup\{\operatorname{Im}x_{\alpha}\}_{\alpha\in\Omega},\{\operatorname{Re}\tau_{\alpha}\}_{\alpha\in\Omega}\cup\{\operatorname{Im}\tau_{\alpha}\}_{\alpha\in\Omega}) is a continuous frame for m.\mathbb{R}^{m}. Further, if ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a tight (resp. Parseval) continuous frame for m\mathbb{C}^{m}, then ({Rexα}αΩ{Imxα}αΩ(\{\operatorname{Re}x_{\alpha}\}_{\alpha\in\Omega}\cup\{\operatorname{Im}x_{\alpha}\}_{\alpha\in\Omega}, {Reτα}αΩ{Imτα}αΩ)\{\operatorname{Re}\tau_{\alpha}\}_{\alpha\in\Omega}\cup\{\operatorname{Im}\tau_{\alpha}\}_{\alpha\in\Omega}) is a tight (resp. Parseval) continuous frame for m.\mathbb{R}^{m}.

Proof.

Consider

Ωh,xατα,h𝑑μ(α)\displaystyle\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha) =Ωh,Rexα+iImxαReτα+iImτα,h𝑑μ(α)\displaystyle=\int_{\Omega}\langle h,\operatorname{Re}x_{\alpha}+i\operatorname{Im}x_{\alpha}\rangle\langle\operatorname{Re}\tau_{\alpha}+i\operatorname{Im}\tau_{\alpha},h\rangle\,d\mu(\alpha)
=Ωh,RexαReτα,h𝑑μ(α)+iΩh,RexαImτα,h𝑑μ(α)\displaystyle=\int_{\Omega}\langle h,\operatorname{Re}x_{\alpha}\rangle\langle\operatorname{Re}\tau_{\alpha},h\rangle\,d\mu(\alpha)+i\int_{\Omega}\langle h,\operatorname{Re}x_{\alpha}\rangle\langle\operatorname{Im}\tau_{\alpha},h\rangle\,d\mu(\alpha)
iΩh,ImxαReτα,h𝑑μ(α)+Ωh,ImxαImτα,h𝑑μ(α)\displaystyle\quad-i\int_{\Omega}\langle h,\operatorname{Im}x_{\alpha}\rangle\langle\operatorname{Re}\tau_{\alpha},h\rangle\,d\mu(\alpha)+\int_{\Omega}\langle h,\operatorname{Im}x_{\alpha}\rangle\langle\operatorname{Im}\tau_{\alpha},h\rangle\,d\mu(\alpha)
=Ωh,RexαReτα,h𝑑μ(α)+Ωh,ImxαImτα,h𝑑μ(α),hm.\displaystyle=\int_{\Omega}\langle h,\operatorname{Re}x_{\alpha}\rangle\langle\operatorname{Re}\tau_{\alpha},h\rangle\,d\mu(\alpha)+\int_{\Omega}\langle h,\operatorname{Im}x_{\alpha}\rangle\langle\operatorname{Im}\tau_{\alpha},h\rangle\,d\mu(\alpha),\quad\forall h\in\mathbb{R}^{m}.

Therefore, if a,ba,b are lower and upper frame bounds, respectively, then ah2Ωh,RexαReτα,h𝑑μ(α)a\|h\|^{2}\leq\int_{\Omega}\langle h,\operatorname{Re}x_{\alpha}\rangle\langle\operatorname{Re}\tau_{\alpha},h\rangle\,d\mu(\alpha) +Ωh,ImxαImτα,h𝑑μ(α)bh2,hm.+\int_{\Omega}\langle h,\operatorname{Im}x_{\alpha}\rangle\langle\operatorname{Im}\tau_{\alpha},h\rangle\,d\mu(\alpha)\leq b\|h\|^{2},\forall h\in\mathbb{R}^{m}.

Proposition 7.6.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a continuous frame for .\mathcal{H}. Then \mathcal{H} is finite dimensional if and only if

Ωxα,τα𝑑μ(α)=Ωτα,xα𝑑μ(α)<.\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)=\int_{\Omega}\langle\tau_{\alpha},x_{\alpha}\rangle\,d\mu(\alpha)<\infty.

In particular, if dimension of \mathcal{H} is finite, xα,τα>0,αΩ\langle x_{\alpha},\tau_{\alpha}\rangle>0,\forall\alpha\in\Omega and infαΩxα,τα\inf_{\alpha\in\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle is positive, then μ(Ω)<.\mu(\Omega)<\infty.

Proof.

Let {ek}k𝕃\{e_{k}\}_{k\in\mathbb{L}} be an orthonormal basis for \mathcal{H}, and a,ba,b be frame bounds for ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}).

()(\Rightarrow) Now 𝕃\mathbb{L} is finite. Then

Ωxα,τα𝑑μ(α)\displaystyle\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha) =Ωk𝕃xα,ekek,ταdμ(α)=k𝕃Ωxα,ekek,τα𝑑μ(α)\displaystyle=\int_{\Omega}\sum_{k\in\mathbb{L}}\langle x_{\alpha},e_{k}\rangle\langle e_{k},\tau_{\alpha}\rangle\,d\mu(\alpha)=\sum_{k\in\mathbb{L}}\int_{\Omega}\langle x_{\alpha},e_{k}\rangle\langle e_{k},\tau_{\alpha}\rangle\,d\mu(\alpha)
bk𝕃ek2=bCard(𝕃)<.\displaystyle\leq b\sum_{k\in\mathbb{L}}\|e_{k}\|^{2}=b\operatorname{Card}(\mathbb{L})<\infty.

Since ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a continuous frame, we must have

Ωxα,ekek,τα𝑑μ(α)=Ωxα,ekek,τα¯dμ(α).\int_{\Omega}\langle x_{\alpha},e_{k}\rangle\langle e_{k},\tau_{\alpha}\rangle\,d\mu(\alpha)=\overline{\int_{\Omega}\langle x_{\alpha},e_{k}\rangle\langle e_{k},\tau_{\alpha}\rangle}\,d\mu(\alpha).

Therefore Ωxα,τα𝑑μ(α)=Ωτα,xα𝑑μ(α)<.\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)=\int_{\Omega}\langle\tau_{\alpha},x_{\alpha}\rangle\,d\mu(\alpha)<\infty.

()(\Leftarrow) dim=k𝕃ek2(1/a)k𝕃Ωek,xατα,ek𝑑μ(α)=(1/a)Ωk𝕃ek,xατα,ekdμ(α)=(1/a)Ωxα,τα𝑑μ(α)<.\operatorname{dim}\mathcal{H}=\sum_{k\in\mathbb{L}}\|e_{k}\|^{2}\leq(1/a)\sum_{k\in\mathbb{L}}\int_{\Omega}\langle e_{k},x_{\alpha}\rangle\langle\tau_{\alpha},e_{k}\rangle\,d\mu(\alpha)=(1/a)\int_{\Omega}\sum_{k\in\mathbb{L}}\langle e_{k},x_{\alpha}\rangle\langle\tau_{\alpha},e_{k}\rangle\,d\mu(\alpha)=(1/a)\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)<\infty.

For the second, 0<infαΩxα,ταμ(Ω)=ΩinfαΩxα,ταdμ(α)Ωxα,τα𝑑μ(α)<.0<\inf_{\alpha\in\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\mu(\Omega)=\int_{\Omega}\inf_{\alpha\in\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)\leq\int_{\Omega}\langle x_{\alpha},\tau_{\alpha}\rangle\,d\mu(\alpha)<\infty.

Proposition 7.7.

Let II\subseteq\mathbb{R} be a bounded interval. Let aα,bα0,θα,ϕα,αIa_{\alpha},b_{\alpha}\geq 0,\theta_{\alpha},\phi_{\alpha}\in\mathbb{R},\forall\alpha\in I and IαθαI\ni\alpha\mapsto\theta_{\alpha}\in\mathbb{R}, IαϕαI\ni\alpha\mapsto\phi_{\alpha}\in\mathbb{R} be continuous. Then {xα[aαcosθαaαsinθα]}αI\left\{x_{\alpha}\coloneqq\begin{bmatrix}a_{\alpha}\cos\theta_{\alpha}\\ a_{\alpha}\sin\theta_{\alpha}\end{bmatrix}\right\}_{\alpha\in I} is a tight continuous frame for 2\mathbb{R}^{2} w.r.t. {τα[bαcosϕαbαsinϕα]}αI\left\{\tau_{\alpha}\coloneqq\begin{bmatrix}b_{\alpha}\cos\phi_{\alpha}\\ b_{\alpha}\sin\phi_{\alpha}\end{bmatrix}\right\}_{\alpha\in I} if and only if I[aαbαcos(θα+ϕα)aαbαsin(θα+ϕα)aαbαsin(θαϕα)]𝑑α=[000].\int_{I}\begin{bmatrix}a_{\alpha}b_{\alpha}\cos(\theta_{\alpha}+\phi_{\alpha})\\ a_{\alpha}b_{\alpha}\sin(\theta_{\alpha}+\phi_{\alpha})\\ a_{\alpha}b_{\alpha}\sin(\theta_{\alpha}-\phi_{\alpha})\end{bmatrix}\,d\alpha=\begin{bmatrix}0\\ 0\\ 0\end{bmatrix}.

Proof.

Matrix of Sx,τS_{x,\tau} is

[IaαbαcosθαcosϕαdαIaαbαsinθαcosϕαdαIaαbαcosθαsinϕαdαIaαbαsinθαsinϕαdα].\displaystyle\begin{bmatrix}\int_{I}a_{\alpha}b_{\alpha}\cos\theta_{\alpha}\cos\phi_{\alpha}\,d\alpha&\int_{I}a_{\alpha}b_{\alpha}\sin\theta_{\alpha}\cos\phi_{\alpha}\,d\alpha\\ \int_{I}a_{\alpha}b_{\alpha}\cos\theta_{\alpha}\sin\phi_{\alpha}\,d\alpha&\int_{I}a_{\alpha}b_{\alpha}\sin\theta_{\alpha}\sin\phi_{\alpha}\,d\alpha\\ \end{bmatrix}.

We next observe that Sx,τ=aI2S_{x,\tau}=aI_{\mathbb{R}^{2}} for some a>0a>0 if and only if

I[aαbαcos(θα+ϕα)aαbαsin(θα+ϕα)aαbαsin(θαϕα)]𝑑α=[000].\displaystyle\int_{I}\begin{bmatrix}a_{\alpha}b_{\alpha}\cos(\theta_{\alpha}+\phi_{\alpha})\\ a_{\alpha}b_{\alpha}\sin(\theta_{\alpha}+\phi_{\alpha})\\ a_{\alpha}b_{\alpha}\sin(\theta_{\alpha}-\phi_{\alpha})\end{bmatrix}\,d\alpha=\begin{bmatrix}0\\ 0\\ 0\end{bmatrix}.

8. Further extension

Definition 8.1.

A collection {Aα}αΩ\{A_{\alpha}\}_{\alpha\in\Omega} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is said to be a weak continuous operator-valued frame (we write weak continuous (ovf)) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with respect to a collection {Ψα}αΩ\{\Psi_{\alpha}\}_{\alpha\in\Omega} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if

  1. (i)

    for each hh\in\mathcal{H}, both maps ΩαAαh0\Omega\ni\alpha\mapsto A_{\alpha}h\in\mathcal{H}_{0} and ΩαΨαh0\Omega\ni\alpha\mapsto\Psi_{\alpha}h\in\mathcal{H}_{0} are measurable,

  2. (ii)

    the map (we call as frame operator) SA,Ψ:hΩΨαAαh𝑑μ(α)S_{A,\Psi}:\mathcal{H}\ni h\mapsto\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha)\in\mathcal{H} is a well-defined bounded positive invertible operator.

Notions of frame bounds, optimal bounds, tight frame, Parseval frame, Bessel are in same fashion as in Definition 2.2.

For fixed Ω\Omega, ,0,\mathcal{H},\mathcal{H}_{0}, and {Ψα}αΩ\{\Psi_{\alpha}\}_{\alpha\in\Omega}, the set of all weak continuous operator-valued frames in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with respect to collection {Ψα}αΩ\{\Psi_{\alpha}\}_{\alpha\in\Omega} is denoted by Ψw.\mathscr{F}^{\text{w}}_{\Psi}.

Proposition 8.2.

A collection {Aα}αΩ\{A_{\alpha}\}_{\alpha\in\Omega} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is a weak continuous (ovf) w.r.t. {Ψα}αΩ\{\Psi_{\alpha}\}_{\alpha\in\Omega} in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if and only if there exist a,b,r>0a,b,r>0 such that

  1. (i)

    for each hh\in\mathcal{H}, both maps ΩαAαh0\Omega\ni\alpha\mapsto A_{\alpha}h\in\mathcal{H}_{0}, ΩαΨαh0\Omega\ni\alpha\mapsto\Psi_{\alpha}h\in\mathcal{H}_{0} are measurable,

  2. (ii)

    ΩΨαAαh𝑑μ(α)rh,h,\|\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha)\|\leq r\|h\|,\forall h\in\mathcal{H},

  3. (iii)

    ah2ΩAαh,Ψαh𝑑μ(α)bh2,h,a\|h\|^{2}\leq\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}h\rangle\,d\mu(\alpha)\leq b\|h\|^{2},\forall h\in\mathcal{H},

  4. (iv)

    ΩΨαAαh𝑑μ(α)=ΩAαΨαh𝑑μ(α),h\int_{\Omega}\Psi_{\alpha}^{*}A_{\alpha}h\,d\mu(\alpha)=\int_{\Omega}A_{\alpha}^{*}\Psi_{\alpha}h\,d\mu(\alpha),\forall h\in\mathcal{H}.

If the Hilbert space is complex, then condition (iv) can be dropped.

Proposition 8.3.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) be a weak continuous (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with an upper frame bound bb. If {α}\{\alpha\} is measurable and ΨαAα0,αΩ,\Psi_{\alpha}^{*}A_{\alpha}\geq 0,\forall\alpha\in\Omega, then μ({α})ΨαAαb,αΩ.\mu(\{\alpha\})\|\Psi_{\alpha}^{*}A_{\alpha}\|\leq b,\forall\alpha\in\Omega.

Definition 8.4.

A weak continuous (ovf) ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is said to be dual of a weak continuous (ovf) ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if ΩBαΨαh𝑑μ(α)=ΩΦαAαh𝑑μ(α)=h,h\int_{\Omega}B_{\alpha}^{*}\Psi_{\alpha}h\,d\mu(\alpha)=\int_{\Omega}\Phi^{*}_{\alpha}A_{\alpha}h\,d\mu(\alpha)=h,\forall h\in\mathcal{H}. The ‘weak continuous (ovf)’ ({A~αAαSA,Ψ1}αΩ,{Ψ~αΨαSA,Ψ1}αΩ)(\{\widetilde{A}_{\alpha}\coloneqq A_{\alpha}S_{A,\Psi}^{-1}\}_{\alpha\in\Omega},\{\widetilde{\Psi}_{\alpha}\coloneqq\Psi_{\alpha}S_{A,\Psi}^{-1}\}_{\alpha\in\Omega}), which is a ‘dual’ of ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is called the canonical dual of ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}).

Proposition 8.5.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) be a weak continuous (ovf) in (,0).\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). If hh\in\mathcal{H} has representation h=ΩAαf(α)𝑑μ(α)=ΩΨαg(α)𝑑μ(α),h=\int_{\Omega}A_{\alpha}^{*}f(\alpha)\,d\mu(\alpha)=\int_{\Omega}\Psi_{\alpha}^{*}g(\alpha)\,d\mu(\alpha), for some measurable f,g:Ω0f,g:\Omega\rightarrow\mathcal{H}_{0}, then

Ωf(α),g(α)𝑑μ(α)=ΩΨ~αh,A~αh𝑑μ(α)+Ωf(α)Ψ~αh,g(α)A~αh𝑑μ(α).\int_{\Omega}\langle f(\alpha),g(\alpha)\rangle\,d\mu(\alpha)=\int_{\Omega}\langle\widetilde{\Psi}_{\alpha}h,\widetilde{A}_{\alpha}h\rangle\,d\mu(\alpha)+\int_{\Omega}\langle f(\alpha)-\widetilde{\Psi}_{\alpha}h,g(\alpha)-\widetilde{A}_{\alpha}h\rangle\,d\mu(\alpha).
Theorem 8.6.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) be a weak continuous (ovf) with frame bounds aa and b.b. Then the following statements are true.

  1. (i)

    The canonical dual weak continuous (ovf) of the canonical dual weak continuous (ovf) of ({Aα}αΩ(\{A_{\alpha}\}_{\alpha\in\Omega}, {Ψα}αΩ)\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is itself.

  2. (ii)

    1b,1a\frac{1}{b},\frac{1}{a} are frame bounds for the canonical dual of ({Aα}αΩ,{Ψα}αΩ).(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}).

  3. (iii)

    If a,ba,b are optimal frame bounds for ({Aα}αΩ,{Ψα}αΩ),(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}), then 1b,1a\frac{1}{b},\frac{1}{a} are optimal frame bounds for its canonical dual.

Definition 8.7.

A weak continuous (ovf) ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is said to be orthogonal to a weak continuous (ovf) ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if ΩBαΨαh𝑑μ(α)=ΩΦαAαh𝑑μ(α)=0,h\int_{\Omega}B_{\alpha}^{*}\Psi_{\alpha}h\,d\mu(\alpha)=\int_{\Omega}\Phi^{*}_{\alpha}A_{\alpha}h\,d\mu(\alpha)=0,\forall h\in\mathcal{H}.

Proposition 8.8.

Two orthogonal weak continuous operator-valued frames have common dual weak continuous (ovf).

Proof.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) and ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) be two orthogonal weak continuous operator-valued frames in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). Define CαAαSA,Ψ1+BαSB,Φ1,ΞαΨαSA,Ψ1+ΦαSB,Φ1,αΩC_{\alpha}\coloneqq A_{\alpha}S_{A,\Psi}^{-1}+B_{\alpha}S_{B,\Phi}^{-1},\Xi_{\alpha}\coloneqq\Psi_{\alpha}S_{A,\Psi}^{-1}+\Phi_{\alpha}S_{B,\Phi}^{-1},\forall\alpha\in\Omega. Then for all h,gh,g\in\mathcal{H},

SC,Ξh,g\displaystyle\langle S_{C,\Xi}h,g\rangle =ΩCαh,Ξαg𝑑μ(α)\displaystyle=\int_{\Omega}\langle C_{\alpha}h,\Xi_{\alpha}g\rangle\,d\mu(\alpha)
=Ω(AαSA,Ψ1+BαSB,Φ1)h,(ΨαSA,Ψ1+ΦαSB,Φ1)g𝑑μ(α)\displaystyle=\int_{\Omega}\langle(A_{\alpha}S_{A,\Psi}^{-1}+B_{\alpha}S_{B,\Phi}^{-1})h,(\Psi_{\alpha}S_{A,\Psi}^{-1}+\Phi_{\alpha}S_{B,\Phi}^{-1})g\rangle\,d\mu(\alpha)
=ΩAαSA,Ψ1h,ΨαSA,Ψ1g𝑑μ(α)+ΩAαSA,Ψ1h,ΦαSB,Φ1g𝑑μ(α)\displaystyle=\int_{\Omega}\langle A_{\alpha}S_{A,\Psi}^{-1}h,\Psi_{\alpha}S_{A,\Psi}^{-1}g\rangle\,d\mu(\alpha)+\int_{\Omega}\langle A_{\alpha}S_{A,\Psi}^{-1}h,\Phi_{\alpha}S_{B,\Phi}^{-1}g\rangle\,d\mu(\alpha)
+ΩBαSB,Φ1h,ΨαSA,Ψ1g𝑑μ(α)+ΩBαSB,Φ1h,ΦαSB,Φ1g𝑑μ(α)\displaystyle\quad+\int_{\Omega}\langle B_{\alpha}S_{B,\Phi}^{-1}h,\Psi_{\alpha}S_{A,\Psi}^{-1}g\rangle\,d\mu(\alpha)+\int_{\Omega}\langle B_{\alpha}S_{B,\Phi}^{-1}h,\Phi_{\alpha}S_{B,\Phi}^{-1}g\rangle\,d\mu(\alpha)
=SA,Ψ(SA,Ψ1h),SA,Ψ1g+0,SB,Φ1g+0,SA,Ψ1g+SB,Φ(SB,Φ1h),SB,Φ1g\displaystyle=\langle S_{A,\Psi}(S_{A,\Psi}^{-1}h),S_{A,\Psi}^{-1}g\rangle+\langle 0,S_{B,\Phi}^{-1}g\rangle+\langle 0,S_{A,\Psi}^{-1}g\rangle+\langle S_{B,\Phi}(S_{B,\Phi}^{-1}h),S_{B,\Phi}^{-1}g\rangle
=(SA,Ψ1+SB,Φ1)h,g.\displaystyle=\langle(S_{A,\Psi}^{-1}+S_{B,\Phi}^{-1})h,g\rangle.

Hence SC,Ξ=SA,Ψ1+SB,Φ1S_{C,\Xi}=S_{A,\Psi}^{-1}+S_{B,\Phi}^{-1} which is positive invertible. Therefore ({Cα}αΩ,{Ξα}αΩ)(\{C_{\alpha}\}_{\alpha\in\Omega},\{\Xi_{\alpha}\}_{\alpha\in\Omega}) is a weak continuous (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). Further, for all h,gh,g\in\mathcal{H},

ΩΨαCαh,g𝑑μ(α)\displaystyle\int_{\Omega}\langle\Psi_{\alpha}^{*}C_{\alpha}h,g\rangle\,d\mu(\alpha) =Ω(AαSA,Ψ1+BαSB,Φ1)h,Ψαg𝑑μ(α)\displaystyle=\int_{\Omega}\langle(A_{\alpha}S_{A,\Psi}^{-1}+B_{\alpha}S_{B,\Phi}^{-1})h,\Psi_{\alpha}g\rangle\,d\mu(\alpha)
=ΩAαSA,Ψ1h,Ψαg𝑑μ(α)+ΩBαSB,Φ1h,Ψαg𝑑μ(α)=h,g+0,g,\displaystyle=\int_{\Omega}\langle A_{\alpha}S_{A,\Psi}^{-1}h,\Psi_{\alpha}g\rangle\,d\mu(\alpha)+\int_{\Omega}\langle B_{\alpha}S_{B,\Phi}^{-1}h,\Psi_{\alpha}g\rangle\,d\mu(\alpha)=\langle h,g\rangle+\langle 0,g\rangle,
ΩAαΞαh,g𝑑μ(α)\displaystyle\int_{\Omega}\langle A_{\alpha}^{*}\Xi_{\alpha}h,g\rangle\,d\mu(\alpha) =Ω(ΨαSA,Ψ1+ΦαSB,Φ1)h,Aαg𝑑μ(α)\displaystyle=\int_{\Omega}\langle(\Psi_{\alpha}S_{A,\Psi}^{-1}+\Phi_{\alpha}S_{B,\Phi}^{-1})h,A_{\alpha}g\rangle\,d\mu(\alpha)
=ΩΨαSA,Ψ1h,Aαg𝑑μ(α)+ΩΦαSB,Φ1h,Aαg𝑑μ(α)=h,g+0,g,\displaystyle=\int_{\Omega}\langle\Psi_{\alpha}S_{A,\Psi}^{-1}h,A_{\alpha}g\rangle\,d\mu(\alpha)+\int_{\Omega}\langle\Phi_{\alpha}S_{B,\Phi}^{-1}h,A_{\alpha}g\rangle\,d\mu(\alpha)=\langle h,g\rangle+\langle 0,g\rangle,

and

ΩΦαCαh,g𝑑μ(α)\displaystyle\int_{\Omega}\langle\Phi_{\alpha}^{*}C_{\alpha}h,g\rangle\,d\mu(\alpha) =Ω(AαSA,Ψ1+BαSB,Φ1)h,Φαg𝑑μ(α)\displaystyle=\int_{\Omega}\langle(A_{\alpha}S_{A,\Psi}^{-1}+B_{\alpha}S_{B,\Phi}^{-1})h,\Phi_{\alpha}g\rangle\,d\mu(\alpha)
=ΩAαSA,Ψ1h,Φαg𝑑μ(α)+ΩBαSB,Φ1h,Φαg𝑑μ(α)=0,g+h,g,\displaystyle=\int_{\Omega}\langle A_{\alpha}S_{A,\Psi}^{-1}h,\Phi_{\alpha}g\rangle\,d\mu(\alpha)+\int_{\Omega}\langle B_{\alpha}S_{B,\Phi}^{-1}h,\Phi_{\alpha}g\rangle\,d\mu(\alpha)=\langle 0,g\rangle+\langle h,g\rangle,
ΩBαΞαh,g𝑑μ(α)\displaystyle\int_{\Omega}\langle B_{\alpha}^{*}\Xi_{\alpha}h,g\rangle\,d\mu(\alpha) =Ω(ΨαSA,Ψ1+ΦαSB,Φ1)h,Bαg𝑑μ(α)\displaystyle=\int_{\Omega}\langle(\Psi_{\alpha}S_{A,\Psi}^{-1}+\Phi_{\alpha}S_{B,\Phi}^{-1})h,B_{\alpha}g\rangle\,d\mu(\alpha)
=ΩΨαSA,Ψ1h,Bαg𝑑μ(α)+ΩΦαSB,Φ1h,Bαg𝑑μ(α)=0,g+h,g.\displaystyle=\int_{\Omega}\langle\Psi_{\alpha}S_{A,\Psi}^{-1}h,B_{\alpha}g\rangle\,d\mu(\alpha)+\int_{\Omega}\langle\Phi_{\alpha}S_{B,\Phi}^{-1}h,B_{\alpha}g\rangle\,d\mu(\alpha)=\langle 0,g\rangle+\langle h,g\rangle.

Thus ({Cα}αΩ,{Ξα}αΩ)(\{C_{\alpha}\}_{\alpha\in\Omega},\{\Xi_{\alpha}\}_{\alpha\in\Omega}) is a common dual of ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) and ({Bα}αΩ,{Φα}αΩ).(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}).

Proposition 8.9.

Let ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) and ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) be two Parseval weak continuous operator-valued frames in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) which are orthogonal. If C,D,E,F()C,D,E,F\in\mathcal{B}(\mathcal{H}) are such that CE+DF=IC^{*}E+D^{*}F=I_{\mathcal{H}}, then ({AαC+BαD}αΩ,{ΨαE+ΦαF}αΩ)(\{A_{\alpha}C+B_{\alpha}D\}_{\alpha\in\Omega},\{\Psi_{\alpha}E+\Phi_{\alpha}F\}_{\alpha\in\Omega}) is a Parseval weak continuous (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). In particular, if scalars c,d,e,fc,d,e,f satisfy c¯e+d¯f=1\bar{c}e+\bar{d}f=1, then ({cAα+dBα}αΩ,{eΨα+fΦα}αΩ)(\{cA_{\alpha}+dB_{\alpha}\}_{\alpha\in\Omega},\{e\Psi_{\alpha}+f\Phi_{\alpha}\}_{\alpha\in\Omega}) is a Parseval weak continuous (ovf).

Proof.

For all h,gh,g\in\mathcal{H},

SAC+BD,ΨE+ΦFh,g\displaystyle\langle S_{AC+BD,\Psi E+\Phi F}h,g\rangle =Ω(AαC+BαD)h,(ΨαE+ΦαF)g𝑑μ(α)\displaystyle=\int_{\Omega}\langle(A_{\alpha}C+B_{\alpha}D)h,(\Psi_{\alpha}E+\Phi_{\alpha}F)g\rangle\,d\mu(\alpha)
=ΩAα(Ch),Ψα(Eg)𝑑μ(α)+ΩAα(Ch),Φα(Fg)𝑑μ(α)\displaystyle=\int_{\Omega}\langle A_{\alpha}(Ch),\Psi_{\alpha}(Eg)\rangle\,d\mu(\alpha)+\int_{\Omega}\langle A_{\alpha}(Ch),\Phi_{\alpha}(Fg)\rangle\,d\mu(\alpha)
+ΩBα(Dh),Ψα(Eg)𝑑μ(α)+ΩBα(Dh),Φα(Fg)𝑑μ(α)\displaystyle\quad+\int_{\Omega}\langle B_{\alpha}(Dh),\Psi_{\alpha}(Eg)\rangle\,d\mu(\alpha)+\int_{\Omega}\langle B_{\alpha}(Dh),\Phi_{\alpha}(Fg)\rangle\,d\mu(\alpha)
=Ch,Eg+0,Fg+0,Eg+Dh,Fg\displaystyle=\langle Ch,Eg\rangle+\langle 0,Fg\rangle+\langle 0,Eg\rangle+\langle Dh,Fg\rangle
=ECh,g+FDh,g=(EC+FD)h,g=h,g.\displaystyle=\langle E^{*}Ch,g\rangle+\langle F^{*}Dh,g\rangle=\langle(E^{*}C+F^{*}D)h,g\rangle=\langle h,g\rangle.

Definition 8.10.

Two weak continuous operator-valued frames ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) and ({Bα}αΩ(\{B_{\alpha}\}_{\alpha\in\Omega}, {Φα}αΩ)\{\Phi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) are called disjoint if ({AαBα}αΩ,{ΨαΦα}αΩ)(\{A_{\alpha}\oplus B_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\oplus\Phi_{\alpha}\}_{\alpha\in\Omega}) is a weak continuous (ovf) in (,0).\mathcal{B}(\mathcal{H}\oplus\mathcal{H},\mathcal{H}_{0}).

Proposition 8.11.

If ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) and ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) are orthogonal weak continuous operator-valued frames in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}), then they are disjoint. Further, if both ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) and ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) are Parseval weak, then ({AαBα}αΩ,{ΨαΦα}αΩ)(\{A_{\alpha}\oplus B_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\oplus\Phi_{\alpha}\}_{\alpha\in\Omega}) is Parseval weak.

Proof.

Let hg,uvh\oplus g,u\oplus v\in\mathcal{H}\oplus\mathcal{H}. Then

SAB,ΨΦ(hg),uv=Ω(AαBα)(hg),(ΨαΦα)(uv)𝑑μ(α)\displaystyle\langle S_{A\oplus B,\Psi\oplus\Phi}(h\oplus g),u\oplus v\rangle=\int_{\Omega}\langle(A_{\alpha}\oplus B_{\alpha})(h\oplus g),(\Psi_{\alpha}\oplus\Phi_{\alpha})(u\oplus v)\rangle\,d\mu(\alpha)
=ΩAαh+Bαg,Ψαu+Φαv𝑑μ(α)=ΩAαh,Ψαu𝑑μ(α)+ΩAαh,Φαv𝑑μ(α)\displaystyle=\int_{\Omega}\langle A_{\alpha}h+B_{\alpha}g,\Psi_{\alpha}u+\Phi_{\alpha}v\rangle\,d\mu(\alpha)=\int_{\Omega}\langle A_{\alpha}h,\Psi_{\alpha}u\rangle\,d\mu(\alpha)+\int_{\Omega}\langle A_{\alpha}h,\Phi_{\alpha}v\rangle\,d\mu(\alpha)
+ΩBαg,Ψαu𝑑μ(α)+ΩBαg,Φαv𝑑μ(α)\displaystyle\quad+\int_{\Omega}\langle B_{\alpha}g,\Psi_{\alpha}u\rangle\,d\mu(\alpha)+\int_{\Omega}\langle B_{\alpha}g,\Phi_{\alpha}v\rangle\,d\mu(\alpha)
=SA,Ψh,u+0,u+0,v+SB,Φg,v=SA,ΨhSB,Φg,uv\displaystyle=\langle S_{A,\Psi}h,u\rangle+\langle 0,u\rangle+\langle 0,v\rangle+\langle S_{B,\Phi}g,v\rangle=\langle S_{A,\Psi}h\oplus S_{B,\Phi}g,u\oplus v\rangle
=(SA,ΨSB,Φ)(hg),uvSAB,ΨΦ=SA,ΨSB,Φ.\displaystyle=\langle(S_{A,\Psi}\oplus S_{B,\Phi})(h\oplus g),u\oplus v\rangle\quad\implies S_{A\oplus B,\Psi\oplus\Phi}=S_{A,\Psi}\oplus S_{B,\Phi}.

Characterization

Theorem 8.12.

Let {Aα}αΩ,{Ψα}αΩ\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega} be in (,0).\mathcal{B}(\mathcal{H},\mathcal{H}_{0}). Suppose {eα,β}βΩα\{e_{\alpha,\beta}\}_{\beta\in\Omega_{\alpha}} is an orthonormal basis for 0,\mathcal{H}_{0}, for each αΩ.\alpha\in\Omega. Let uα,β=Aαeα,β,vα,β=Ψαeα,β,βΩα,αΩ.u_{\alpha,\beta}=A_{\alpha}^{*}e_{\alpha,\beta},v_{\alpha,\beta}=\Psi_{\alpha}^{*}e_{\alpha,\beta},\forall\beta\in\Omega_{\alpha},\forall\alpha\in\Omega. Then ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is a weak continuous

  1. (i)

    (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with bounds aa and bb if and only if for each hh\in\mathcal{H}, both maps ΩαβΩαh,uα,βeα,β0\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle e_{\alpha,\beta}\in\mathcal{H}_{0}, ΩαβΩαh,vα,βeα,β0\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle e_{\alpha,\beta}\in\mathcal{H}_{0} are measurable and the map

    T:hΩβΩαh,uα,βvα,βdμ(α)T:\mathcal{H}\ni h\mapsto\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha)\in\mathcal{H}

    is a well-defined bounded positive invertible operator such that ah2Th,hbh2,h.a\|h\|^{2}\leq\langle Th,h\rangle\leq b\|h\|^{2},\forall h\in\mathcal{H}.

  2. (ii)

    Bessel in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with bound bb if and only if for each hh\in\mathcal{H}, both maps ΩαβΩαh,uα,βeα,β\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle e_{\alpha,\beta} 0\in\mathcal{H}_{0}, ΩαβΩαh,vα,βeα,β0\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle e_{\alpha,\beta}\in\mathcal{H}_{0} are measurable and the map

    T:hΩβΩαh,uα,βvα,βdμ(α)T:\mathcal{H}\ni h\mapsto\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha)\in\mathcal{H}

    is a well-defined bounded positive operator such that 0Th,hbh2,h.0\leq\langle Th,h\rangle\leq b\|h\|^{2},\forall h\in\mathcal{H}.

  3. (iii)

    (ovf) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with bounds aa and bb if and only if for each hh\in\mathcal{H}, both maps ΩαβΩαh,uα,βeα,β0\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle e_{\alpha,\beta}\in\mathcal{H}_{0}, ΩαβΩαh,vα,βeα,β0\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle e_{\alpha,\beta}\in\mathcal{H}_{0} are measurable and there exists r>0r>0 such that

    ΩβΩαh,uα,βvα,βdμ(α)rh,h;\left\|\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha)\right\|\leq r\|h\|,~{}\forall h\in\mathcal{H};
    ΩβΩαh,uα,βvα,βdμ(α)=ΩβΩαh,vα,βuα,βdμ(α),h;\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha)=\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle u_{\alpha,\beta}\,d\mu(\alpha),~{}\forall h\in\mathcal{H};
    ah2ΩβΩαh,uα,βvα,β,hdμ(α)bh2,h.a\|h\|^{2}\leq\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle\langle v_{\alpha,\beta},h\rangle\,d\mu(\alpha)\leq b\|h\|^{2},~{}\forall h\in\mathcal{H}.
  4. (iv)

    Bessel in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) with bound bb if and only if for each hh\in\mathcal{H}, both maps ΩαβΩαh,uα,βeα,β\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle e_{\alpha,\beta} 0\in\mathcal{H}_{0}, ΩαβΩαh,vα,βeα,β0\Omega\ni\alpha\mapsto\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle e_{\alpha,\beta}\in\mathcal{H}_{0} are measurable and there exists r>0r>0 such that

    ΩβΩαh,uα,βvα,βdμ(α)rh,h;\left\|\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha)\right\|\leq r\|h\|,~{}\forall h\in\mathcal{H};
    ΩβΩαh,uα,βvα,βdμ(α)=ΩβΩαh,vα,βuα,βdμ(α),h;\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle v_{\alpha,\beta}\,d\mu(\alpha)=\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,v_{\alpha,\beta}\rangle u_{\alpha,\beta}\,d\mu(\alpha),~{}\forall h\in\mathcal{H};
    0ΩβΩαh,uα,βvα,β,hdμ(α)bh2,h.0\leq\int_{\Omega}\sum_{\beta\in\Omega_{\alpha}}\langle h,u_{\alpha,\beta}\rangle\langle v_{\alpha,\beta},h\rangle\,d\mu(\alpha)\leq b\|h\|^{2},~{}\forall h\in\mathcal{H}.

Similarity of weak continuous operator-valued frames

Definition 8.13.

A weak continuous (ovf) ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) is said to be right-similar to a weak continuous (ovf) ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) in (,0)\mathcal{B}(\mathcal{H},\mathcal{H}_{0}) if there exist invertible RA,B,RΨ,Φ()R_{A,B},R_{\Psi,\Phi}\in\mathcal{B}(\mathcal{H}) such that Bα=AαRA,B,Φα=ΨαRΨ,Φ,αΩ.B_{\alpha}=A_{\alpha}R_{A,B},\Phi_{\alpha}=\Psi_{\alpha}R_{\Psi,\Phi},\forall\alpha\in\Omega.

Proposition 8.14.

Let {Aα}αΩΨw\{A_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}^{\text{w}}_{\Psi} with frame bounds a,b,a,b, let RA,B,RΨ,Φ()R_{A,B},R_{\Psi,\Phi}\in\mathcal{B}(\mathcal{H}) be positive, invertible, commute with each other, commute with SA,ΨS_{A,\Psi}, and let Bα=AαRA,B,Φα=ΨαRΨ,Φ,αΩ.B_{\alpha}=A_{\alpha}R_{A,B},\Phi_{\alpha}=\Psi_{\alpha}R_{\Psi,\Phi},\forall\alpha\in\Omega. Then {Bα}αΩΦw,\{B_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}^{\text{w}}_{\Phi}, SB,Φ=RΨ,ΦSA,ΨRA,BS_{B,\Phi}=R_{\Psi,\Phi}S_{A,\Psi}R_{A,B}, and aRA,B1RΨ,Φ1SB,ΦbRA,BRΨ,Φ.\frac{a}{\|R_{A,B}^{-1}\|\|R_{\Psi,\Phi}^{-1}\|}\leq S_{B,\Phi}\leq b\|R_{A,B}R_{\Psi,\Phi}\|. Assuming that ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is a Parseval weak continuous (ovf), then ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) is a Parseval weak continuous (ovf) if and only if RΨ,ΦRA,B=I.R_{\Psi,\Phi}R_{A,B}=I_{\mathcal{H}}.

Proposition 8.15.

Let {Aα}αΩΨw,\{A_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}^{\text{w}}_{\Psi}, {Bα}αΩΦw\{B_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}^{\text{w}}_{\Phi} and Bα=AαRA,B,Φα=ΨαRΨ,Φ,αΩB_{\alpha}=A_{\alpha}R_{A,B},\Phi_{\alpha}=\Psi_{\alpha}R_{\Psi,\Phi},\forall\alpha\in\Omega, for some invertible RA,B,RΨ,Φ().R_{A,B},R_{\Psi,\Phi}\in\mathcal{B}(\mathcal{H}). Then SB,Φ=RΨ,ΦSA,ΨRA,B.S_{B,\Phi}=R_{\Psi,\Phi}^{*}S_{A,\Psi}R_{A,B}. Assuming that ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is a Parseval weak continuous (ovf), then ({Bα}αΩ,{Φα}αΩ)(\{B_{\alpha}\}_{\alpha\in\Omega},\{\Phi_{\alpha}\}_{\alpha\in\Omega}) is a Parseval weak continuous (ovf) if and only if RΨ,ΦRA,B=I.R_{\Psi,\Phi}^{*}R_{A,B}=I_{\mathcal{H}}.

Proof.

For all h,gh,g\in\mathcal{H},

SB,Φh,g\displaystyle\langle S_{B,\Phi}h,g\rangle =ΩBαh,Φαg𝑑μ(α)=ΩAα(RA,Bh),Ψα(RΨ,Φg)𝑑μ(α)\displaystyle=\int_{\Omega}\langle B_{\alpha}h,\Phi_{\alpha}g\rangle\,d\mu(\alpha)=\int_{\Omega}\langle A_{\alpha}(R_{A,B}h),\Psi_{\alpha}(R_{\Psi,\Phi}g)\rangle\,d\mu(\alpha)
=SA,Ψ(RA,B),RΨ,Φg=RΨ,ΦSA,ΨRA,Bh,g.\displaystyle=\langle S_{A,\Psi}(R_{A,B}),R_{\Psi,\Phi}g\rangle=\langle R_{\Psi,\Phi}^{*}S_{A,\Psi}R_{A,B}h,g\rangle.

Remark 8.16.

For every weak continuous (ovf) ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}), each of ‘weak continuous operator-valued frames’ ({AαSA,Ψ1}αΩ,{Ψα}αΩ),(\{A_{\alpha}S_{A,\Psi}^{-1}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}), ({AαSA,Ψ1/2}αΩ,{ΨαSA,Ψ1/2}αΩ),(\{A_{\alpha}S_{A,\Psi}^{-1/2}\}_{\alpha\in\Omega},\{\Psi_{\alpha}S_{A,\Psi}^{-1/2}\}_{\alpha\in\Omega}), and ({Aα}αΩ,{ΨαSA,Ψ1}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}S_{A,\Psi}^{-1}\}_{\alpha\in\Omega}) is a Parseval weak continuous (ovf) which is right-similar to ({Aα}αΩ,{Ψα}αΩ).(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}).

The case 0=𝕂\mathcal{H}_{0}=\mathbb{K} of weak continuous operator-valued frames

Definition 8.17.

A set of vectors {xα}αΩ\{x_{\alpha}\}_{\alpha\in\Omega} in a Hilbert space \mathcal{H} is said to be a weak continuous frame w.r.t. a set {τα}αΩ\{\tau_{\alpha}\}_{\alpha\in\Omega} in \mathcal{H} if

  1. (i)

    for each hh\in\mathcal{H}, both maps Ωαh,xα𝕂\Omega\ni\alpha\mapsto\langle h,x_{\alpha}\rangle\in\mathbb{K} and Ωαh,τα𝕂\Omega\ni\alpha\mapsto\langle h,\tau_{\alpha}\rangle\in\mathbb{K} are measurable,

  2. (ii)

    the map (we call as frame operator) Sx,τ:hΩh,xαταdμ(α)S_{x,\tau}:\mathcal{H}\ni h\mapsto\int_{\Omega}\langle h,x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha)\in\mathcal{H} is a well-defined bounded positive invertible operator.

Notions of frame bounds, optimal bounds, tight frame, Parseval frame, Bessel are similar to the same in Definition 6.1.

For fixed Ω,,\Omega,\mathcal{H}, and {τα}αΩ\{\tau_{\alpha}\}_{\alpha\in\Omega}, the set of all weak continuous frames for \mathcal{H} w.r.t. {τα}αΩ\{\tau_{\alpha}\}_{\alpha\in\Omega} is denoted by wτ.\mathscr{F}^{w}_{\tau}.

Proposition 8.18.

A set of vectors {xα}αΩ\{x_{\alpha}\}_{\alpha\in\Omega} in \mathcal{H} is a weak continuous frame w.r.t. a set {τα}αΩ\{\tau_{\alpha}\}_{\alpha\in\Omega} in \mathcal{H} if and only if there are a,b,r>0a,b,r>0 such that

  1. (i)

    for each hh\in\mathcal{H}, both maps Ωαh,xα𝕂\Omega\ni\alpha\mapsto\langle h,x_{\alpha}\rangle\in\mathbb{K}, Ωαh,τα𝕂\Omega\ni\alpha\mapsto\langle h,\tau_{\alpha}\rangle\in\mathbb{K} are measurable,

  2. (ii)

    Ωh,xαταdμ(α)rh,h,\|\int_{\Omega}\langle h,x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha)\|\leq r\|h\|,\forall h\in\mathcal{H},

  3. (iii)

    ah2Ωh,xατα,hdμ(α)bh2,h,a\|h\|^{2}\leq\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},h\rangle\,d\mu(\alpha)\leq b\|h\|^{2},\forall h\in\mathcal{H},

  4. (iv)

    Ωh,xαταdμ(α)=Ωh,ταxαdμ(α),h.\int_{\Omega}\langle h,x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha)=\int_{\Omega}\langle h,\tau_{\alpha}\rangle x_{\alpha}\,d\mu(\alpha),\forall h\in\mathcal{H}.

If the space is over ,\mathbb{C}, then (iv) can be omitted.

Theorem 8.19.

Let {xα}αΩ,{τα}αΩ\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega} be in \mathcal{H}. Define Aα:hh,xα𝕂A_{\alpha}:\mathcal{H}\ni h\mapsto\langle h,x_{\alpha}\rangle\in\mathbb{K}, Ψα:hh,τα𝕂,αΩ\Psi_{\alpha}:\mathcal{H}\ni h\mapsto\langle h,\tau_{\alpha}\rangle\in\mathbb{K},\forall\alpha\in\Omega. Then ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a weak continuous frame for \mathcal{H} if and only if ({Aα}αΩ,{Ψα}αΩ)(\{A_{\alpha}\}_{\alpha\in\Omega},\{\Psi_{\alpha}\}_{\alpha\in\Omega}) is a weak continuous operator-valued frame in (,𝕂)\mathcal{B}(\mathcal{H},\mathbb{K}).

Proposition 8.20.

If ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is a weak continuous frame for \mathcal{H}, then every hh\in\mathcal{H} can be written as

h=Ωh,S1x,τταxαdμ(α)=Ωh,ταS1x,τxαdμ(α)=Ωh,S1x,τxαταdμ(α)=Ωh,xαS1x,τταdμ(α).h=\int_{\Omega}\langle h,S^{-1}_{x,\tau}\tau_{\alpha}\rangle x_{\alpha}\,d\mu(\alpha)=\int_{\Omega}\langle h,\tau_{\alpha}\rangle S^{-1}_{x,\tau}x_{\alpha}\,d\mu(\alpha)=\int_{\Omega}\langle h,S^{-1}_{x,\tau}x_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha)=\int_{\Omega}\langle h,x_{\alpha}\rangle S^{-1}_{x,\tau}\tau_{\alpha}\,d\mu(\alpha).
Proof.

For all h,gh,g\in\mathcal{H}, h,g=Sx,τh,S1x,τg=Ωh,xατα,S1x,τgdμ(α)=Ωh,xαS1x,ττα,gdμ(α)=Ωh,xαS1x,τταdμ(α),g\langle h,g\rangle=\langle S_{x,\tau}h,S^{-1}_{x,\tau}g\rangle=\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},S^{-1}_{x,\tau}g\rangle\,d\mu(\alpha)=\int_{\Omega}\langle h,x_{\alpha}\rangle\langle S^{-1}_{x,\tau}\tau_{\alpha},g\rangle\,d\mu(\alpha)=\langle\int_{\Omega}\langle h,x_{\alpha}\rangle S^{-1}_{x,\tau}\tau_{\alpha}\,d\mu(\alpha),g\rangle, h,g=Sx,τSx,τ1h,g=ΩS1x,τh,ταxα,gdμ(α)=Ωh,S1x,τταxα,gdμ(α)\langle h,g\rangle=\langle S_{x,\tau}S_{x,\tau}^{-1}h,g\rangle=\int_{\Omega}\langle S^{-1}_{x,\tau}h,\tau_{\alpha}\rangle\langle x_{\alpha},g\rangle\,d\mu(\alpha)=\int_{\Omega}\langle h,S^{-1}_{x,\tau}\tau_{\alpha}\rangle\langle x_{\alpha},g\rangle\,d\mu(\alpha) =Ωh,S1x,τταxαdμ(α),g=\langle\int_{\Omega}\langle h,S^{-1}_{x,\tau}\tau_{\alpha}\rangle x_{\alpha}\,d\mu(\alpha),g\rangle. ∎

Proposition 8.21.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a weak continuous frame for \mathcal{H} with upper frame bound bb. If for some αΩ\alpha\in\Omega we have {α}\{\alpha\} is measurable and xα,xβτβ,xα0,βΩ\langle x_{\alpha},x_{\beta}\rangle\langle\tau_{\beta},x_{\alpha}\rangle\geq 0,\forall\beta\in\Omega, then μ({α})xα,ταb\mu(\{\alpha\})\langle x_{\alpha},\tau_{\alpha}\rangle\leq b for that α.\alpha.

Definition 8.22.

A weak continuous frame ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} is said to be a dual of weak continuous frame ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} if Ωh,xαωαdμ(α)=Ωh,ταyαdμ(α)=h,h\int_{\Omega}\langle h,x_{\alpha}\rangle\omega_{\alpha}\,d\mu(\alpha)=\int_{\Omega}\langle h,\tau_{\alpha}\rangle y_{\alpha}\,d\mu(\alpha)=h,\forall h\in\mathcal{H}. The ‘weak continuous frame’ ({x~αSx,τ1xα}αΩ,{τ~αSx,τ1τα}αΩ)(\{\widetilde{x}_{\alpha}\coloneqq S_{x,\tau}^{-1}x_{\alpha}\}_{\alpha\in\Omega},\{\widetilde{\tau}_{\alpha}\coloneqq S_{x,\tau}^{-1}\tau_{\alpha}\}_{\alpha\in\Omega}), which is a ‘dual’ of ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is called the canonical dual of ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}).

Proposition 8.23.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a weak continuous frame for .\mathcal{H}. If hh\in\mathcal{H} has representation h=Ωf(α)xαdμ(α)=Ωg(α)ταdμ(α),h=\int_{\Omega}f(\alpha)x_{\alpha}\,d\mu(\alpha)=\int_{\Omega}g(\alpha)\tau_{\alpha}\,d\mu(\alpha), for some measurable f,g:Ω𝕂f,g:\Omega\rightarrow\mathbb{K}, then

Ωf(α)g(α)¯dμ(α)=Ωh,τ~αx~α,hdμ(α)+Ω(f(α)h,τ~α)(g(α)¯x~α,h)dμ(α).\int_{\Omega}f(\alpha)\overline{g(\alpha)}\,d\mu(\alpha)=\int_{\Omega}\langle h,\widetilde{\tau}_{\alpha}\rangle\langle\widetilde{x}_{\alpha},h\rangle\,d\mu(\alpha)+\int_{\Omega}(f(\alpha)-\langle h,\widetilde{\tau}_{\alpha}\rangle)(\overline{g(\alpha)}-\langle\widetilde{x}_{\alpha},h\rangle)\,d\mu(\alpha).
Theorem 8.24.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) be a weak continuous frame for \mathcal{H} with frame bounds aa and b.b. Then

  1. (i)

    The canonical dual weak continuous frame of the canonical dual weak continuous frame of ({xα}αΩ(\{x_{\alpha}\}_{\alpha\in\Omega}, {τα}αΩ)\{\tau_{\alpha}\}_{\alpha\in\Omega}) is itself.

  2. (ii)

    1b,1a\frac{1}{b},\frac{1}{a} are frame bounds for the canonical dual of ({xα}αΩ,{τα}αΩ).(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}).

  3. (iii)

    If a,ba,b are optimal frame bounds for ({xα}αΩ,{τα}αΩ),(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}), then 1b,1a\frac{1}{b},\frac{1}{a} are optimal frame bounds for its canonical dual.

Definition 8.25.

A weak continuous frame ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} is said to be orthogonal to a weak continuous frame ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} if Ωh,xαωαdμ(α)=Ωh,ταyαdμ(α)=0,h.\int_{\Omega}\langle h,x_{\alpha}\rangle\omega_{\alpha}\,d\mu(\alpha)=\int_{\Omega}\langle h,\tau_{\alpha}\rangle y_{\alpha}\,d\mu(\alpha)=0,\forall h\in\mathcal{H}.

Proposition 8.26.

Two orthogonal weak continuous frames have a common dual weak continuous frame.

Proof.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) and ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) be orthogonal weak continuous frames for \mathcal{H}. Define zαSx,τ1xα+Sy,ω1yα,ραSx,τ1τα+Sy,ω1ωα,αΩz_{\alpha}\coloneqq S_{x,\tau}^{-1}x_{\alpha}+S_{y,\omega}^{-1}y_{\alpha},\rho_{\alpha}\coloneqq S_{x,\tau}^{-1}\tau_{\alpha}+S_{y,\omega}^{-1}\omega_{\alpha},\forall\alpha\in\Omega. For h,gh,g\in\mathcal{H},

Sz,ρh,g\displaystyle\langle S_{z,\rho}h,g\rangle =Ωh,zαρα,gdμ(α)\displaystyle=\int_{\Omega}\langle h,z_{\alpha}\rangle\langle\rho_{\alpha},g\rangle\,d\mu(\alpha)
=Ωh,Sx,τ1xα+Sy,ω1yαSx,τ1τα+Sy,ω1ωα,gdμ(α)\displaystyle=\int_{\Omega}\langle h,S_{x,\tau}^{-1}x_{\alpha}+S_{y,\omega}^{-1}y_{\alpha}\rangle\langle S_{x,\tau}^{-1}\tau_{\alpha}+S_{y,\omega}^{-1}\omega_{\alpha},g\rangle\,d\mu(\alpha)
=ΩSx,τ1h,xατα,Sx,τ1gdμ(α)+ΩSx,τ1h,xαωα,Sy,ω1gdμ(α)\displaystyle=\int_{\Omega}\langle S_{x,\tau}^{-1}h,x_{\alpha}\rangle\langle\tau_{\alpha},S_{x,\tau}^{-1}g\rangle\,d\mu(\alpha)+\int_{\Omega}\langle S_{x,\tau}^{-1}h,x_{\alpha}\rangle\langle\omega_{\alpha},S_{y,\omega}^{-1}g\rangle\,d\mu(\alpha)
+ΩSy,ω1h,yατα,Sx,τ1gdμ(α)+ΩSy,ω1h,yαωα,Sy,ω1gdμ(α)\displaystyle\quad+\int_{\Omega}\langle S_{y,\omega}^{-1}h,y_{\alpha}\rangle\langle\tau_{\alpha},S_{x,\tau}^{-1}g\rangle\,d\mu(\alpha)+\int_{\Omega}\langle S_{y,\omega}^{-1}h,y_{\alpha}\rangle\langle\omega_{\alpha},S_{y,\omega}^{-1}g\rangle\,d\mu(\alpha)
=Sx,τSx,τ1h,Sx,τ1g+ΩSx,τ1h,xαωαdμ(α),Sy,ω1g\displaystyle=\langle S_{x,\tau}S_{x,\tau}^{-1}h,S_{x,\tau}^{-1}g\rangle+\left\langle\int_{\Omega}\langle S_{x,\tau}^{-1}h,x_{\alpha}\rangle\omega_{\alpha}\,d\mu(\alpha),S_{y,\omega}^{-1}g\right\rangle
+ΩSy,ω1h,yαταdμ(α),Sx,τ1g+Sy,ωSy,ω1h,Sy,ω1g\displaystyle\quad+\left\langle\int_{\Omega}\langle S_{y,\omega}^{-1}h,y_{\alpha}\rangle\tau_{\alpha}\,d\mu(\alpha),S_{x,\tau}^{-1}g\right\rangle+\langle S_{y,\omega}S_{y,\omega}^{-1}h,S_{y,\omega}^{-1}g\rangle
=Sx,τ1h,g+0,Sy,ω1g+0,Sx,τ1g+Sy,ω1h,g=Sx,τ1h+Sy,ω1h,g.\displaystyle=\langle S_{x,\tau}^{-1}h,g\rangle+\langle 0,S_{y,\omega}^{-1}g\rangle+\langle 0,S_{x,\tau}^{-1}g\rangle+\langle S_{y,\omega}^{-1}h,g\rangle=\langle S_{x,\tau}^{-1}h+S_{y,\omega}^{-1}h,g\rangle.

Therefore Sz,ρ=Sx,τ1+Sy,ω1S_{z,\rho}=S_{x,\tau}^{-1}+S_{y,\omega}^{-1} which tells that ({zα}αΩ,{ρα}αΩ)(\{z_{\alpha}\}_{\alpha\in\Omega},\{\rho_{\alpha}\}_{\alpha\in\Omega}) is a weak continuous frame for \mathcal{H}. For duality, let h,gh,g\in\mathcal{H}. Then

Ωh,xαραdμ(α),g\displaystyle\left\langle\int_{\Omega}\langle h,x_{\alpha}\rangle\rho_{\alpha}\,d\mu(\alpha),g\right\rangle =Ωh,xα(Sx,τ1τα+Sy,ω1ωα)dμ(α),g\displaystyle=\left\langle\int_{\Omega}\langle h,x_{\alpha}\rangle(S_{x,\tau}^{-1}\tau_{\alpha}+S_{y,\omega}^{-1}\omega_{\alpha})\,d\mu(\alpha),g\right\rangle
=Ωh,xατα,Sx,τ1gdμ(α)+Ωh,xαωα,Sy,ω1gdμ(α)=h,g+0,Sy,ω1g,\displaystyle=\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},S_{x,\tau}^{-1}g\rangle\,d\mu(\alpha)+\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\omega_{\alpha},S_{y,\omega}^{-1}g\rangle\,d\mu(\alpha)=\langle h,g\rangle+\langle 0,S_{y,\omega}^{-1}g\rangle,
Ωh,ταzαdμ(α),g\displaystyle\left\langle\int_{\Omega}\langle h,\tau_{\alpha}\rangle z_{\alpha}\,d\mu(\alpha),g\right\rangle =Ωh,τα(Sx,τ1xα+Sy,ω1yα)dμ(α),g\displaystyle=\left\langle\int_{\Omega}\langle h,\tau_{\alpha}\rangle(S_{x,\tau}^{-1}x_{\alpha}+S_{y,\omega}^{-1}y_{\alpha})\,d\mu(\alpha),g\right\rangle
=Ωh,ταxα,Sx,τ1gdμ(α)+Ωh,ταyα,Sy,ω1gdμ(α)=h,g+0,Sy,ω1g,\displaystyle=\int_{\Omega}\langle h,\tau_{\alpha}\rangle\langle x_{\alpha},S_{x,\tau}^{-1}g\rangle\,d\mu(\alpha)+\int_{\Omega}\langle h,\tau_{\alpha}\rangle\langle y_{\alpha},S_{y,\omega}^{-1}g\rangle\,d\mu(\alpha)=\langle h,g\rangle+\langle 0,S_{y,\omega}^{-1}g\rangle,

and

Ωh,yαραdμ(α),g\displaystyle\left\langle\int_{\Omega}\langle h,y_{\alpha}\rangle\rho_{\alpha}\,d\mu(\alpha),g\right\rangle =Ωh,yα(Sx,τ1τα+Sy,ω1ωα)dμ(α),g\displaystyle=\left\langle\int_{\Omega}\langle h,y_{\alpha}\rangle(S_{x,\tau}^{-1}\tau_{\alpha}+S_{y,\omega}^{-1}\omega_{\alpha})\,d\mu(\alpha),g\right\rangle
=Ωh,yατα,Sx,τ1gdμ(α)+Ωh,yαωα,Sy,ω1gdμ(α)=0,Sy,ω1g+h,g,\displaystyle=\int_{\Omega}\langle h,y_{\alpha}\rangle\langle\tau_{\alpha},S_{x,\tau}^{-1}g\rangle\,d\mu(\alpha)+\int_{\Omega}\langle h,y_{\alpha}\rangle\langle\omega_{\alpha},S_{y,\omega}^{-1}g\rangle\,d\mu(\alpha)=\langle 0,S_{y,\omega}^{-1}g\rangle+\langle h,g\rangle,
Ωh,ωαzαdμ(α),g\displaystyle\left\langle\int_{\Omega}\langle h,\omega_{\alpha}\rangle z_{\alpha}\,d\mu(\alpha),g\right\rangle =Ωh,ωα(Sx,τ1xα+Sy,ω1yα)dμ(α),g\displaystyle=\left\langle\int_{\Omega}\langle h,\omega_{\alpha}\rangle(S_{x,\tau}^{-1}x_{\alpha}+S_{y,\omega}^{-1}y_{\alpha})\,d\mu(\alpha),g\right\rangle
=Ωh,ωαxα,Sx,τ1gdμ(α)+Ωh,ωαyα,Sy,ω1gdμ(α)=0,Sx,τ1g+h,g.\displaystyle=\int_{\Omega}\langle h,\omega_{\alpha}\rangle\langle x_{\alpha},S_{x,\tau}^{-1}g\rangle\,d\mu(\alpha)+\int_{\Omega}\langle h,\omega_{\alpha}\rangle\langle y_{\alpha},S_{y,\omega}^{-1}g\rangle\,d\mu(\alpha)=\langle 0,S_{x,\tau}^{-1}g\rangle+\langle h,g\rangle.

Proposition 8.27.

Let ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) and ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) be two Parseval weak continuous frames for \mathcal{H} which are orthogonal. If A,B,C,D()A,B,C,D\in\mathcal{B}(\mathcal{H}) are such that AC+BD=IAC^{*}+BD^{*}=I_{\mathcal{H}}, then ({Axα+Byα}αΩ,{Cτα+Dωα}αΩ)(\{Ax_{\alpha}+By_{\alpha}\}_{\alpha\in\Omega},\{C\tau_{\alpha}+D\omega_{\alpha}\}_{\alpha\in\Omega}) is a Parseval weak continuous frame for \mathcal{H}. In particular, if scalars a,b,c,da,b,c,d satisfy ac¯+bd¯=1a\bar{c}+b\bar{d}=1, then ({axα+byα}αΩ,{cτα+dωα}αΩ)(\{ax_{\alpha}+by_{\alpha}\}_{\alpha\in\Omega},\{c\tau_{\alpha}+d\omega_{\alpha}\}_{\alpha\in\Omega}) is a Parseval weak continuous frame for \mathcal{H}.

Proof.

For all h,gh,g\in\mathcal{H},

SAx+By,Cτ+Dωh,g=Ωh,Axα+ByαCτα+Dωα,gdμ(α)\displaystyle\langle S_{Ax+By,C\tau+D\omega}h,g\rangle=\int_{\Omega}\langle h,Ax_{\alpha}+By_{\alpha}\rangle\langle C\tau_{\alpha}+D\omega_{\alpha},g\rangle\,d\mu(\alpha)
=ΩAh,xατα,Cgdμ(α)+ΩAh,xαωα,Dgdμ(α)\displaystyle=\int_{\Omega}\langle A^{*}h,x_{\alpha}\rangle\langle\tau_{\alpha},C^{*}g\rangle\,d\mu(\alpha)+\int_{\Omega}\langle A^{*}h,x_{\alpha}\rangle\langle\omega_{\alpha},D^{*}g\rangle\,d\mu(\alpha)
+ΩBh,yατα,Cgdμ(α)+ΩBh,yαωα,Dgdμ(α)\displaystyle\quad+\int_{\Omega}\langle B^{*}h,y_{\alpha}\rangle\langle\tau_{\alpha},C^{*}g\rangle\,d\mu(\alpha)+\int_{\Omega}\langle B^{*}h,y_{\alpha}\rangle\langle\omega_{\alpha},D^{*}g\rangle\,d\mu(\alpha)
=Ah,Cg+0,Dg+0,Cg+Bh,Dg\displaystyle=\langle A^{*}h,C^{*}g\rangle+\langle 0,D^{*}g\rangle+\langle 0,C^{*}g\rangle+\langle B^{*}h,D^{*}g\rangle
=CAh,g+DBh,g=(CA+DB)h,g=h,g.\displaystyle=\langle CA^{*}h,g\rangle+\langle DB^{*}h,g\rangle=\langle(CA^{*}+DB^{*})h,g\rangle=\langle h,g\rangle.

Definition 8.28.

Two weak continuous frames ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) and ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} are called disjoint if ({xαyα}αΩ,{ταωα}αΩ)(\{x_{\alpha}\oplus y_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\oplus\omega_{\alpha}\}_{\alpha\in\Omega}) is a weak continuous frame for \mathcal{H}\oplus\mathcal{H}.

Proposition 8.29.

If ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) and ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) are orthogonal weak continuous frames for \mathcal{H}, then they are disjoint. Further, if both ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) and ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) are Parseval weak, then ({xαyα}αΩ,{ταωα}αΩ)(\{x_{\alpha}\oplus y_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\oplus\omega_{\alpha}\}_{\alpha\in\Omega}) is Parseval weak.

Proof.

Let hg,uvh\oplus g,u\oplus v\in\mathcal{H}\oplus\mathcal{H}. Then

Sxy,τω(hg),uv=Ωhg,xαyαταωα,uvdμ(α)\displaystyle\langle S_{x\oplus y,\tau\oplus\omega}(h\oplus g),u\oplus v\rangle=\int_{\Omega}\langle h\oplus g,x_{\alpha}\oplus y_{\alpha}\rangle\langle\tau_{\alpha}\oplus\omega_{\alpha},u\oplus v\rangle\,d\mu(\alpha)
=Ω(h,xα+g,yα)(τα,u+ωα,v)dμ(α)=Ωh,xατα,udμ(α)\displaystyle=\int_{\Omega}(\langle h,x_{\alpha}\rangle+\langle g,y_{\alpha}\rangle)(\langle\tau_{\alpha},u\rangle+\langle\omega_{\alpha},v\rangle)\,d\mu(\alpha)=\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\tau_{\alpha},u\rangle\,d\mu(\alpha)
+Ωh,xαωα,vdμ(α)+Ωg,yατα,udμ(α)+Ωg,yαωα,vdμ(α)\displaystyle\quad+\int_{\Omega}\langle h,x_{\alpha}\rangle\langle\omega_{\alpha},v\rangle\,d\mu(\alpha)+\int_{\Omega}\langle g,y_{\alpha}\rangle\langle\tau_{\alpha},u\rangle\,d\mu(\alpha)+\int_{\Omega}\langle g,y_{\alpha}\rangle\langle\omega_{\alpha},v\rangle\,d\mu(\alpha)
=Sx,τh,u+0,v+0,u+Sy,ωg,v=Sx,τhSy,ωg,uv\displaystyle=\langle S_{x,\tau}h,u\rangle+\langle 0,v\rangle+\langle 0,u\rangle+\langle S_{y,\omega}g,v\rangle=\langle S_{x,\tau}h\oplus S_{y,\omega}g,u\oplus v\rangle
=(Sx,τSy,ω)(hg),uvSxy,τω=Sx,τSy,ω.\displaystyle=\langle(S_{x,\tau}\oplus S_{y,\omega})(h\oplus g),u\oplus v\rangle\quad\implies S_{x\oplus y,\tau\oplus\omega}=S_{x,\tau}\oplus S_{y,\omega}.

Similarity

Definition 8.30.

A weak continuous frame ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} is said to be similar to a weak continuous frame ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) for \mathcal{H} if there are invertible Tx,y,Tτ,ω()T_{x,y},T_{\tau,\omega}\in\mathcal{B}(\mathcal{H}) such that yα=Tx,yxα,ωα=Tτ,ωτα,αΩ.y_{\alpha}=T_{x,y}x_{\alpha},\omega_{\alpha}=T_{\tau,\omega}\tau_{\alpha},\forall\alpha\in\Omega.

Proposition 8.31.

Let {xα}αΩwτ\{x_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}^{w}_{\tau} with frame bounds a,b,a,b, let Tx,y,Tτ,ω()T_{x,y},T_{\tau,\omega}\in\mathcal{B}(\mathcal{H}) be positive, invertible, commute with each other, commute with Sx,τS_{x,\tau}, and let yα=Tx,yxα,ωα=Tτ,ωτα,αΩ.y_{\alpha}=T_{x,y}x_{\alpha},\omega_{\alpha}=T_{\tau,\omega}\tau_{\alpha},\forall\alpha\in\Omega. Then {yα}αΩwτ\{y_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}^{w}_{\tau}, Sy,ω=Tτ,ωSx,τTx,yS_{y,\omega}=T_{\tau,\omega}S_{x,\tau}T_{x,y}, and aTx,y1Tτ,ω1Sy,ωbTx,yTτ,ω\frac{a}{\|T_{x,y}^{-1}\|\|T_{\tau,\omega}^{-1}\|}\leq S_{y,\omega}\leq b\|T_{x,y}T_{\tau,\omega}\|. Assuming that ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is Parseval weak continuous, then ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) is Parseval weak continuous if and only if Tτ,ωTx,y=I.T_{\tau,\omega}T_{x,y}=I_{\mathcal{H}}.

Proposition 8.32.

Let {xα}αΩwτ,\{x_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}^{w}_{\tau}, {yα}αΩwω\{y_{\alpha}\}_{\alpha\in\Omega}\in\mathscr{F}^{w}_{\omega} and yα=Tx,yxα,ωα=Tτ,ωτα,αΩy_{\alpha}=T_{x,y}x_{\alpha},\omega_{\alpha}=T_{\tau,\omega}\tau_{\alpha},\forall\alpha\in\Omega, for some invertible Tx,y,Tτ,ω().T_{x,y},T_{\tau,\omega}\in\mathcal{B}(\mathcal{H}). Then Sy,ω=Tτ,ωSx,τTx,y.S_{y,\omega}=T_{\tau,\omega}S_{x,\tau}T_{x,y}^{*}. Assuming that ({xα}αΩ,{τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}) is Parseval weak continuous frame, then ({yα}αΩ,{ωα}αΩ)(\{y_{\alpha}\}_{\alpha\in\Omega},\{\omega_{\alpha}\}_{\alpha\in\Omega}) is Parseval weak continuous frame if and only if Tτ,ωTx,y=I.T_{\tau,\omega}T_{x,y}^{*}=I_{\mathcal{H}}.

Proof.

For all h,gh,g\in\mathcal{H},

Sy,ωh,g\displaystyle\langle S_{y,\omega}h,g\rangle =Ωh,yαωα,gdμ(α)=Ωh,Tx,yxαTτ,ωτα,gdμ(α)\displaystyle=\int_{\Omega}\langle h,y_{\alpha}\rangle\langle\omega_{\alpha},g\rangle\,d\mu(\alpha)=\int_{\Omega}\langle h,T_{x,y}x_{\alpha}\rangle\langle T_{\tau,\omega}\tau_{\alpha},g\rangle\,d\mu(\alpha)
=ΩTx,yh,xατα,Tτ,ωgdμ(α)=Sx,τ(Tx,yh),Tτ,ωg=Tτ,ωSx,τTx,yh,g.\displaystyle=\int_{\Omega}\langle T_{x,y}^{*}h,x_{\alpha}\rangle\langle\tau_{\alpha},T_{\tau,\omega}^{*}g\rangle\,d\mu(\alpha)=\langle S_{x,\tau}(T^{*}_{x,y}h),T^{*}_{\tau,\omega}g\rangle=\langle T_{\tau,\omega}S_{x,\tau}T^{*}_{x,y}h,g\rangle.

Remark 8.33.

For every weak continuous frame ({xα}αΩ,{τα}αΩ),(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}), each of ‘weak continuous frames’ ({Sx,τ1xα}αΩ,{τα}αΩ)(\{S_{x,\tau}^{-1}x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}), ({Sx,τ1/2xα}αΩ,{Sx,τ1/2τα}αΩ),(\{S_{x,\tau}^{-1/2}x_{\alpha}\}_{\alpha\in\Omega},\{S_{x,\tau}^{-1/2}\tau_{\alpha}\}_{\alpha\in\Omega}), and ({xα}αΩ,{Sx,τ1τα}αΩ)(\{x_{\alpha}\}_{\alpha\in\Omega},\{S_{x,\tau}^{-1}\tau_{\alpha}\}_{\alpha\in\Omega}) is a Parseval weak continuous frame which is similar to ({xα}αΩ,{τα}αΩ).(\{x_{\alpha}\}_{\alpha\in\Omega},\{\tau_{\alpha}\}_{\alpha\in\Omega}).

9. Acknowledgments

The first author thanks the National Institute of Technology Karnataka (NITK), Surathkal for giving financial support and the present work of the second author was partially supported by National Board for Higher Mathematics (NBHM), Ministry of Atomic Energy, Government of India (Reference No.2/48(16)/2012/NBHM(R.P.)/R&D 11/9133).

References

  • [1] M. R. Abdollahpour and M. H. Faroughi. Continuous GG-frames in Hilbert spaces. Southeast Asian Bull. Math., 32(1):1–19, 2008.
  • [2] S. Twareque Ali, J.-P. Antoine, and J.-P. Gazeau. Continuous frames in Hilbert space. Ann. Physics, 222(1):1–37, 1993.
  • [3] Syed Twareque Ali, Jean-Pierre Antoine, and Jean-Pierre Gazeau. Coherent states, wavelets, and their generalizations. Theoretical and Mathematical Physics. Springer, New York, second edition, 2014.
  • [4] W. Ambrose. Measures on locally compact topological groups. Trans. Amer. Math. Soc., 61:106–121, 1947.
  • [5] Radu Balan. Equivalence relations and distances between Hilbert frames. Proc. Amer. Math. Soc., 127(8):2353–2366, 1999.
  • [6] Peter G. Casazza. The art of frame theory. Taiwanese J. Math., 4(2):129–201, 2000.
  • [7] Peter G. Casazza and Nigel J. Kalton. Generalizing the Paley-Wiener perturbation theory for Banach spaces. Proc. Amer. Math. Soc., 127(2):519–527, 1999.
  • [8] Peter G. Casazza and Gitta Kutyniok, editors. Finite frames. Theory and applications. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2013.
  • [9] Peter G. Cazassa and Ole Christensen. Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl., 3(5):543–557, 1997.
  • [10] Ole Christensen. An introduction to frames and Riesz bases. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, [Cham], second edition, 2016.
  • [11] Wojciech Czaja. Remarks on Naimark’s duality. Proc. Amer. Math. Soc., 136(3):867–871, 2008.
  • [12] Xin-Rong Dai and Qiyu Sun. The abcabc-problem for Gabor systems. Mem. Amer. Math. Soc., 244(1152):ix+99, 2016.
  • [13] Joe Diestel and Angela Spalsbury. The joys of Haar measure, volume 150 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2014.
  • [14] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72:341–366, 1952.
  • [15] G. A. Edgar. Measurability in a Banach space. II. Indiana Univ. Math. J., 28(4):559–579, 1979.
  • [16] Hans G. Feichtinger, Franz Luef, and Tobias Werther. A guided tour from linear algebra to the foundations of Gabor analysis. In Gabor and wavelet frames, volume 10 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., pages 1–49. World Sci. Publ., Hackensack, NJ, 2007.
  • [17] Gerald B. Folland. A course in abstract harmonic analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.
  • [18] Massimo Fornasier and Holger Rauhut. Continuous frames, function spaces, and the discretization problem. J. Fourier Anal. Appl., 11(3):245–287, 2005.
  • [19] Michael Frank, Vern I. Paulsen, and Terry R. Tiballi. Symmetric approximation of frames and bases in Hilbert spaces. Trans. Amer. Math. Soc., 354(2):777–793, 2002.
  • [20] Daniel Freeman and Darrin Speegle. The discretization problem for continuous frames. Adv. Math., 345:784–813, 2019.
  • [21] Jean-Pierre Gabardo and Deguang Han. Frames associated with measurable spaces. Adv. Comput. Math., 18(2-4):127–147, 2003.
  • [22] Philipp Grohs. Continuous shearlet tight frames. J. Fourier Anal. Appl., 17(3):506–518, 2011.
  • [23] Deguang Han, Keri Kornelson, David Larson, and Eric Weber. Frames for undergraduates, volume 40 of Student Mathematical Library. American Mathematical Society, Providence, RI, 2007.
  • [24] Deguang Han and David R. Larson. Frames, bases and group representations. Mem. Amer. Math. Soc., 147(697):x+94, 2000.
  • [25] Deguang Han, David R. Larson, Bei Liu, and Rui Liu. Operator-valued measures, dilations, and the theory of frames. Mem. Amer. Math. Soc., 229(1075):viii+84, 2014.
  • [26] DeGuang Han, PengTong Li, Bin Meng, and WaiShing Tang. Operator valued frames and structured quantum channels. Sci. China Math., 54(11):2361–2372, 2011.
  • [27] Christopher Heil. A basis theory primer. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2011.
  • [28] Edwin Hewitt and Kenneth A. Ross. Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations. Academic Press, Inc., Publishers, New York, 1963.
  • [29] T. H. Hildebrandt. Integration in abstract spaces. Bull. Amer. Math. Soc., 59:111–139, 1953.
  • [30] Sven H. Hilding. Note on completeness theorems of Paley-Wiener type. Ann. of Math. (2), 49:953–955, 1948.
  • [31] Joseph W. Iverson. Subspaces of L2(G)L^{2}(G) invariant under translation by an abelian subgroup. J. Funct. Anal., 269(3):865–913, 2015.
  • [32] Joseph W. Iverson. Frames generated by compact group actions. Trans. Amer. Math. Soc., 370(1):509–551, 2018.
  • [33] Victor Kaftal, David R. Larson, and Shuang Zhang. Operator-valued frames. Trans. Amer. Math. Soc., 361(12):6349–6385, 2009.
  • [34] Gerald Kaiser. A friendly guide to wavelets. Birkhäuser Boston, Inc., Boston, MA, 1994.
  • [35] B. S. Kashin and T. Yu. Kulikova. A note on the description of frames of general form. Mathematical Notes, 72:863–867, 2002.
  • [36] K. Mahesh Krishna and P. Sam Johnson. Extension of frames and bases - I. arXiv.org/1810.01629v1 [math.OA], 3 October 2018.
  • [37] Aleksandr Krivoshein, Vladimir Protasov, and Maria Skopina. Multivariate wavelet frames. Industrial and Applied Mathematics. Springer, Singapore, 2016.
  • [38] P. Masani. Measurability and Pettis integration in Hilbert spaces. J. Reine Angew. Math., 297:92–135, 1978.
  • [39] P. R. Masani and H. Niemi. The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. II. Pettis integration. Adv. Math., 75(2):121–167, 1989.
  • [40] Bin Meng. Operator-valued frame generators for group-like unitary systems. Oper. Matrices, 7(2):441–464, 2013.
  • [41] Kazimierz Musial. Topics in the theory of Pettis integration. volume 23, pages 177–262 (1993). 1991. School on Measure Theory and Real Analysis (Grado, 1991).
  • [42] Kazimierz Musial. Pettis integral. In Handbook of measure theory, Vol. I, II, pages 531–586. North-Holland, Amsterdam, 2002.
  • [43] Leopoldo Nachbin. The Haar integral. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965.
  • [44] Joaquim Ortega-Cerda and Kristian Seip. Fourier frames. Ann. of Math. (2), 155(3):789–806, 2002.
  • [45] B. J. Pettis. On integration in vector spaces. Trans. Amer. Math. Soc., 44(2):277–304, 1938.
  • [46] A. Rahimi, A. Najati, and Y. N. Dehghan. Continuous frames in Hilbert spaces. Methods Funct. Anal. Topology, 12(2):170–182, 2006.
  • [47] Wenchang Sun. GG-frames and gg-Riesz bases. J. Math. Anal. Appl., 322(1):437–452, 2006.
  • [48] Wenchang Sun. Stability of gg-frames. J. Math. Anal. Appl., 326(2):858–868, 2007.
  • [49] M. Takesaki. Theory of operator algebras. II, volume 125 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2003.
  • [50] Michel Talagrand. Pettis integral and measure theory. Mem. Amer. Math. Soc., 51(307):ix+224, 1984.
  • [51] Robert M. Young. An introduction to nonharmonic Fourier series, volume 93 of Pure and Applied Mathematics. Academic Press, Inc., New York-London, 1980.