This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Thick branes in Born-Infeld determinantal gravity in Weitzenböck spacetime

Ke Yanga111[email protected], Hao Yub222[email protected], Yi Zhongc333[email protected], corresponding author aSchool of Physical Science and Technology, Southwest University, Chongqing 400715, China
bPhysics Department, Chongqing University, Chongqing 401331, China
cSchool of Physics and Electronics Science,
Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, Hunan University, Changsha 410082, P. R. China
Abstract

By adopting the idea of Born-Infeld electromagnetism, the Born-Infeld determinantal gravity in Weitzenböck spacetime provides a way to smooth the Big Bang singularity at the classical level. We consider a thick braneworld scenario in the higher-dimensional extension of this gravity, and investigate the torsion effects on the brane structure and gravitational perturbation. For three particular parameter choices, analytic domain wall solutions are obtained. They have a similar brane configuration that the brane thickness becomes thinner as the spacetime torsion gets stronger. For each model, the massless graviton is localized on the brane with the width of localization decreasing with the enhancement of the spacetime torsion, while the massive gravitons propagate in the bulk and contribute a correction term proportional to 1/(kr)3{1}/{(kr)^{3}} to the Newtonian potential. A sparsity constraint on the fundamental 5-dimensional gravitational scale is estimated from the gravitational experiment. Moreover, the parameter ranges in which the Kaluza-Klein gravitons are tachyonic free are analyzed.

pacs:
04.50.+h, 04.50.Kd

I Introduction

Einstein’s general relativity (GR) is the cornerstone of modern cosmology, which provides the most accurate descriptions of a variety of phenomena in our universe. In GR, the gravitation is described by the curvature of spacetime, where the affine connection is symmetric and coincides uniquely with the Levi-Civita connection. A well-known alternative gravity theory dynamically equivalent to GR is the so-called teleparallel gravity Cho1976 ; Hayashi1979 , which allows us to interpret GR as a gauge theory for a translation group. In teleparallel gravity, the spacetime is characterized by the curvature-free Weitzenböck connection rather than the torsion-free Levi-Civita connection, and the dynamical field is the vielbein instead of metric in Weitzenböck spacetime Maluf2013 ; Bahamonde2021 . Following the spirit of the popular f(R)f(R) gravity which generalizes the Lagrangian of GR to be some functions of the Ricci scalar RR, the f(T)f(T) gravity generalizes the Lagrangian of teleparallel gravity to be some functions of the torsion scalar TT Ferraro2007 ; Bengochea2009 ; Linder2010 . This impactful modification of teleparallel gravity provides possible explanations for the accelerating expansion of the universe without invoking the dark energy Bengochea2009 ; Cardone2012 and for the inflation without resorting to the inflaton field Ferraro2007 ; Ferraro2008 .

It is well-known that GR suffers from the inevitable singularities at the beginning of Big Bang and the center of black holes Hawking1970 . Some attempts to solve the singularity problem of GR at the classical level were done by replacing the Einstein-Hilbert action with the Born-Infeld-type determinantal action Deser1998 ; Vollick2004 ; Banados2010 ; Chen2016 . The Born-Infeld determinantal gravity (BIDG) in Weitzenböck spacetime was also considered in Refs. Ferraro2010 ; Fiorini2013 ; Fiorini2016 . This theory leads to second-order field equations and supports some regular cosmological solutions by replacing the possible initial singularity with a de-Sitter phase or a bounce. The tensor evolution of these cosmological solutions can hold stability in a large parameter space in the early universe, and the theoretical parameter λ\lambda is constrained by the speed of gravitational waves Yang2019a . However, other cosmological singularities such as Big Rip, Big Bang, Big Freeze, and Sudden singularities may emerge in some regions of parameter space Bouhmadi-Lopez2014a . The Schwarzschild geometry was considered in this framework as well Fiorini2016a .

The idea that our spacetime may have hidden extra dimensions in ultraviolet regime is a long historical topic since the proposal of Kaluza-Klein (KK) theory in the 1920s. As the most plausible candidate for unifying all fundamental interactions, the superstring/M-theory requires extra dimensions for mathematical consistency. Instead of traditional compact extra dimension scenario, the braneworld scenario suggests that our universe is a 3-brane embedded into a higher-dimensional bulk, which opens a new way to solve some long-standing problems in particle physics and cosmology, such as the gauge hierarchy problem and cosmological constant problem Arkani-Hamed1998 ; Arkani-Hamed2000 ; Randall1999 ; Randall1999a ; Arvanitaki2016 . Thick brane scenario is considered as a smooth generalization of Randall-Sundrum-2 (RS2) model Randall1999a . The most interesting thick brane configuration is the domain wall, which is a global topological defect in a multidimensional bulk Dzhunushaliev2010 . The domain wall brane could be a potential carrier, onto which the Standard Model could possibly be transplanted Davies2008 .

The projected Gauss-Codazzi equations of RS2 model in the 5-dimensional teleparallel gravity contain two extra terms arising from the extra degrees of freedom in the teleparallel Lagrangian Nozari2013 . Furthermore, the brane cosmology provides an equivalent viewpoint as RS2 model in GR, however, the projected effect on the brane is determined by the projection of torsion tensor Geng2014a . The inflation and dark energy dominated stage were realized on the brane by generalizing RS2 model in 5-dimensional f(T)f(T) gravity Bamba2013 . Analytic thick brane solutions were obtained in the 5-dimensional f(T)f(T) gravity Yang2012b ; Menezes2014 ; Yang2018 ; Wang2018a . The gravitational perturbation against the thick branes and the corresponding resonance spectrum were investigated Guo2016 ; Tan2021 . Thick string-like brane-world models were constructed in the 6-dimensional f(T)f(T) gravity, where the torsion effects on the models were analyzed as well Moreira2021 .

In this work, we will consider the thick brane scenario in the higher-dimensional BIDG in Weitzenböck spacetime and analyze the torsion effects on the brane structure and gravitational perturbation. The layout of the paper is as follows: In Sec. II, the higher-dimensional BIDG in Weitzenböck spacetime is briefly introduced. In Sec. III, the thick brane scenario is constructed in (d+1)(d+1)-dimensional BIDG, and the first-order formalism is employed in order to solve the field equations analytically. Specifically, for d=4d=4, analytical 3-brane solutions are obtained for three particular parameter choices in Sec. IV. In Sec. V, the gravitational perturbation against the domain wall backgrounds is discussed. Finally, brief conclusions and discussions are presented. Throughout the paper, the capital Latin indices A,B,CA,B,C\cdots and small Latin indices a,b,ca,b,c\cdots label the (d+1)(d+1)-dimensional and dd-dimensional coordinates of tangent space, respectively, while the capital Latin letters K,L,M,N,K,L,M,N,\cdots and Greek letters μ,ν,ρ,σ\mu,\nu,\rho,\sigma\cdots label the (d+1)(d+1)-dimensional and dd-dimensional spacetime indices, respectively.

II Higher-dimensional BIDG in Weitzenböck spacetime

In Weitzenböck spacetime, the fundamental dynamic field is the vielbein eAM{e^{A}}_{M}, which refers to the metric through the relation gMN=eAMeBNηABg_{MN}={e^{A}}_{M}{e^{B}}_{N}\eta_{AB}, with ηAB=diag(1,1,,1)\eta_{AB}=\text{diag}(-1,1,\cdots,1) the Minkowski metric for the tangent space. The torsion tensor TPMN=ΓPNMΓPMN{T^{P}}_{MN}={\Gamma^{P}}_{NM}-{\Gamma^{P}}_{MN} is constructed in terms of the Weitzenböck connection ΓPMN=eAPNeAM{\Gamma^{P}}_{MN}={e_{A}}^{P}\partial_{N}{e^{A}}_{M}. With the torsion tensor, the contorsion tensor is defined as KPMN=12(TMPN+TNPMTPMN){K^{P}}_{MN}=\frac{1}{2}({{T_{M}}^{P}}_{N}+{{T_{N}}^{P}}_{M}-{{T^{P}}_{M}}_{N}). By defining the superpotential torsion tensor SPMN=12(KMN+PδPNTQQMδPMTQ)QN{S_{P}}^{MN}=\frac{1}{2}(K^{MN}{}_{P}+\delta^{N}_{P}T_{Q}{}^{QM}-\delta^{M}_{P}T_{Q}{}^{QN}), the torsion scalar is given by T=SPMNTPMNT={S_{P}}^{MN}{T^{P}}_{MN}.

The action of (d+1)(d+1)-dimensional BIDG in Weitzenböck spacetime takes the form Fiorini2013

S=λ16πGd+1dd+1x[|gMN+2λ1FMN|\displaystyle S=-\frac{\lambda}{16\pi G_{d+1}}\int{}d^{d+1}x\left[\sqrt{-|g_{MN}+{2}{\lambda}^{-1}F_{MN}|}\right.
|gMN|]+dd+1x|gMN|M,\displaystyle\left.-\sqrt{-|g_{MN}|}\right]+\int{}d^{d+1}x\sqrt{-|g_{MN}|}\mathcal{L}_{\text{M}}, (1)

where the rank-2 tensor FMNF_{MN} is a function of vielbein field eAM{e^{A}}_{M} and its derivatives, λ\lambda the Born-Infeld constant with mass dimension 2, and M\mathcal{L}_{\text{M}} the Lagrangian of matter fields. The (d+1)(d+1)-dimensional gravitational constant Gd+1G_{d+1} will be set to 4πGd+1=14\pi G_{d+1}=1 for later convenience.

In the low-energy limit λ\lambda\rightarrow\infty, the above action approximates to

S14dd+1xeTr(FMN)+dd+1xeM,S\approx-\frac{1}{4}\int{}d^{d+1}x~{}e\text{Tr}(F_{MN})+\int{}d^{d+1}x~{}e\mathcal{L}_{\text{M}}, (2)

where e=|eAM|=|gMN|e=|{e^{A}}_{M}|=\sqrt{-|g_{MN}|}. Thus, the teleparallel gravity can be recovered in the case of Tr(FMN)=T\text{Tr}(F_{MN})=T. Generally, FMNF_{MN} is given by FMN=αFMN(1)+βFMN(2)+γFMN(3)F_{MN}=\alpha F^{(1)}_{MN}+\beta F^{(2)}_{MN}+\gamma F^{(3)}_{MN} with FMN(1)=SMPQTNPQF^{(1)}_{MN}={S_{M}}^{PQ}T_{NPQ}, FMN(2)=SPMQTPNQF^{(2)}_{MN}={S_{PM}}^{Q}{T^{P}}_{NQ}, and FMN(3)=gMNTF^{(3)}_{MN}=g_{MN}T Fiorini2013 . The three dimensionless parameters α\alpha, β\beta and γ\gamma satisfy the condition α+β+(d+1)γ=1\alpha+\beta+(d+1)\gamma=1 in order to yield Tr(FMN)=T\text{Tr}(F_{MN})=T.

By varying the action with respect to the vielbein, one gets the Euler-Lagrange equation

GeAMS(G(SeA)M)=4eλΘAM,\frac{\partial\mathcal{L}_{\text{G}}}{\partial e^{A}{}_{M}}-\partial_{S}\left(\frac{\partial\mathcal{L}_{\text{G}}}{\partial(\partial_{S}e^{A}{}_{M})}\right)=\frac{4e}{\lambda}{\Theta_{A}}^{M}, (3)

with each term written explicitly as

GeAM\displaystyle\frac{\partial\mathcal{L}_{\text{G}}}{\partial e^{A}{}_{M}} =\displaystyle= |𝒰KL|12(𝒰1)QP2(eA(PδM+Q)2FPQλeAM)\displaystyle\frac{|\mathcal{U}_{KL}|^{\frac{1}{2}}(\mathcal{U}^{-1})^{QP}}{2}\left(e_{A(P}\delta^{M}{}_{Q)}+\frac{2\partial F_{PQ}}{\lambda\partial e^{A}{}_{M}}\right) (4)
\displaystyle- eAMe,\displaystyle{e_{A}}^{M}e,
G(SeA)M\displaystyle\frac{\partial\mathcal{L}_{\text{G}}}{\partial(\partial_{S}e^{A}{}_{M})} =\displaystyle= |𝒰KL|12(𝒰1)QPλFPQ(SeA)M,\displaystyle\frac{|\mathcal{U}_{KL}|^{\frac{1}{2}}(\mathcal{U}^{-1})^{QP}}{\lambda}\frac{\partial F_{PQ}}{\partial(\partial_{S}e^{A}{}_{M})}, (5)
ΘAM\displaystyle{\Theta_{A}}^{M} =\displaystyle= 1e(eM)eAM,\displaystyle\frac{1}{e}\frac{\partial(e\mathcal{L}_{\text{M}})}{\partial e^{A}{}_{M}}, (6)

where G\mathcal{L}_{\text{G}} represents the gravitational Lagrangian and 𝒰KL=gKL+2λ1FKL\mathcal{U}_{KL}=g_{KL}+2\lambda^{-1}F_{KL}. After contracting the index AA of tangent space via multiplying a vielbein eAN{e^{A}}_{N}, the equations of motion read Fiorini2016a

|𝒰KL|12(𝒰1)QP2[δM(PgNQ)+2eANλFPQeAM]δMNe\displaystyle\frac{|\mathcal{U}_{KL}|^{\frac{1}{2}}\left({\mathcal{U}}^{-1}\right)^{QP}}{2}\left[{\delta^{M}}_{(P}g_{NQ)}+\frac{2e^{A}{}_{N}}{\lambda}\frac{\partial F_{PQ}}{\partial{e^{A}}_{M}}\right]-{\delta^{M}}_{N}e
eANλS[|𝒰KL|12(𝒰1)QPFPQ(SeAM)]=4eλΘNM,\displaystyle-\frac{e^{A}{}_{N}}{\lambda}\partial_{S}\left[|\mathcal{U}_{KL}|^{\frac{1}{2}}\left({\mathcal{U}}^{-1}\right)^{QP}\frac{\partial F_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})}\right]\!=\!\frac{4e}{\lambda}{\Theta_{N}}^{M}, (7)

where the symbol ()(~{}) denotes the symmetric tensor components. The energy-momentum tensor ΘN=MeANΘAM{\Theta}_{N}{}^{M}={e^{A}}_{N}{\Theta_{A}}^{M} is symmetric and conserved if the action of the matter fields is local Lorentz invariant Li2011d . With some algebra, these two partial derivative terms are written explicitly as

FPQeAM\displaystyle\frac{\partial F_{PQ}}{\partial{e^{A}}_{M}} =\displaystyle= α(δMPFAQ(1)+δMQFPA(1)\displaystyle\alpha\left({\delta^{M}}_{P}F^{(1)}_{AQ}+{\delta^{M}}_{Q}F^{(1)}_{PA}\right. (8)
+\displaystyle+ QMAPKLTQKL2SPK(ATQKM))\displaystyle\left.{Q^{M}}_{APKL}{T_{Q}}^{KL}-2S_{PK(A}{T_{Q}}^{KM)}\right)
+\displaystyle+ β(QMAKPLTKQLSKP(MTKQA))\displaystyle\beta\left({Q^{M}}_{AKPL}{T^{K}}_{Q}{}^{L}-{S_{KP}}^{(M}{T^{K}}_{QA)}\right)
+\displaystyle+ γ(δM(PeAQ)T4gPQF(2)MA),\displaystyle\gamma\left({\delta^{M}}_{(P}e_{AQ)}T-4g_{PQ}{F^{(2)M}}_{A}\right),
FPQ(SeAM)\displaystyle\frac{\partial F_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})} =\displaystyle= α(2eAQSPSM+DPKLATQKL[SM])\displaystyle\alpha\left(2e_{AQ}{S_{P}}^{SM}+D_{PKLA}{}^{[SM]}{T_{Q}}^{KL}\right) (9)
+\displaystyle+ β(SAP[MδS]Q+DKPLATKQ[SM])L\displaystyle\beta\left({S_{AP}}^{[M}{\delta^{S]}}_{Q}+D_{KPLA}{}^{[SM]}{T^{K}}_{Q}{}^{L}\right)
+\displaystyle+ 4γgPQSASM,\displaystyle 4\gamma g_{PQ}{S_{A}}^{SM},

where [][~{}] denotes the skew-symmetric tensor components, and the tensors DCPQBKL{D^{C}}_{PQB}{}^{KL} and QKAPQC{Q^{K}}_{A}{}^{C}{}_{PQ} are expressed as

DCPQBKL\displaystyle{D^{C}}_{PQB}{}^{KL} =14(δPKδQLδBCeCLeB[PδQ])K\displaystyle=\frac{1}{4}\left({\delta_{P}}^{K}{\delta_{Q}}^{L}{\delta_{B}}^{C}-e^{CL}e_{B[P}\delta_{Q]}{}^{K}\right)
+12eBLeC[PδQ]K,\displaystyle+\frac{1}{2}{e_{B}}^{L}{e^{C}}_{[P}\delta_{Q]}^{K}, (10)
QKAPQC\displaystyle{Q^{K}}_{A}{}^{C}{}_{PQ} =14(eCKT[PQ]AδK[PTAQ]C)\displaystyle=\frac{1}{4}\left(e^{CK}T_{[PQ]A}-{\delta^{K}}_{[P}{T_{AQ]}}^{C}\right)
12(δACδK[PTLLQ]eC[PTKAQ]).\displaystyle-\frac{1}{2}\left({\delta_{A}}^{C}{\delta^{K}}_{[P}{T^{L}}_{LQ]}-{e^{C}}_{[P}{T^{K}}_{AQ]}\right). (11)

III Thick brane scenario and first-order formalism

To investigate the braneworld scenario, the (d+1)(d+1)-dimensional line element is described by

ds2=a2(y)ημνdxμdxν+dy2,ds^{2}=a^{2}(y)\eta_{\mu\nu}dx^{\mu}dx^{\nu}+dy^{2}, (12)

where yy denotes the extra dimension coordinate perpendicular to the brane, and a(y)a(y) is the so-called warp factor. Correspondingly, the proper vielbein reads eAM=diag(a(y),,{e^{A}}_{M}=\text{diag}\left(a(y),\cdots,\right. a(y),1)\left.a(y),1\right).

In order to construct a braneworld configuration, a single background scalar field is included, of which the Lagrangian reads

M=12MϕMϕV(ϕ).\mathcal{L}_{\text{M}}=-\frac{1}{2}\partial^{M}\phi\partial_{M}\phi-V(\phi). (13)

The scalar field should depend on the coordinate yy only, to be consistent with the dd-dimensional Poincaré invariance of the metric ansatz. Then, the energy-momentum tensor is written explicitly as

Qμν\displaystyle Q^{\mu}{}_{\nu} =\displaystyle= (12ϕ2V)δμ,ν\displaystyle\left(-\frac{1}{2}\phi^{\prime 2}-V\right)\delta^{\mu}{}_{\nu},
Qyy\displaystyle Q^{y}{}_{y} =\displaystyle= 12ϕ2V,\displaystyle\frac{1}{2}\phi^{\prime 2}-V, (14)

where the prime denotes the derivative with respect to the coordinate yy. Since the brane is constructed by the scalar field, the brane configuration is more easily seen from its effective energy density, which is defined as Liu2012 ; Yang2012a

ρ(y)=Q00V0,\rho(y)=-Q^{0}{}_{0}-V_{0}, (15)

where V0V_{0} is the vacuum energy of the scalar potential.

With the vielbein and matter energy-momentum tensor, the field equations (7) become

(1BH2)d22(1AH2)12[1+(d1)BH2dABH4]1\displaystyle\frac{\left(1-BH^{2}\right)^{\frac{d-2}{2}}}{(1-AH^{2})^{\frac{1}{2}}}\left[1+(d-1)BH^{2}-dABH^{4}\right]-1
=4λ(ϕ22V),\displaystyle=\frac{4}{\lambda}\left(\frac{\phi^{\prime 2}}{2}-V\right),\qquad (16a)
(1BH2)d42(1AH2)32[1+A+dBdH(A(d2)B)H2\displaystyle\frac{\left(1-BH^{2}\right)^{\frac{d-4}{2}}}{\left(1-AH^{2}\right)^{\frac{3}{2}}}\bigg{[}1+\frac{A+dB}{d}H^{\prime}-(A-(d-2)B)H^{2}
2(2d+1)A+d(d1)BdBH2H(d+1)A2B2H6H\displaystyle-\frac{2(2d+1)A+d(d-1)B}{d}BH^{2}H^{\prime}-(d+1)A^{2}B^{2}H^{6}H^{\prime}
(2(d1)A+(d1)B)BH4+(dA+(2d1)B)ABH6\displaystyle-(2(d-1)A+(d-1)B)BH^{4}+(dA+(2d-1)B)ABH^{6}
+(2d2+1)B+3dAdABH4HdA2B2H8]1\displaystyle+\frac{(2d^{2}+1)B+3dA}{d}ABH^{4}H^{\prime}-dA^{2}B^{2}H^{8}\bigg{]}-1
=4λ(ϕ22V),\displaystyle=\frac{4}{\lambda}\left(-\frac{\phi^{\prime 2}}{2}-V\right),\quad (16b)
ϕ′′+4Hϕ=Vϕ,\displaystyle\phi^{\prime\prime}+4H\phi^{\prime}=V_{\phi},\qquad\qquad\qquad~{} (16c)

where Ha/aH\equiv a^{\prime}/a, VϕdVdϕV_{\phi}\equiv\frac{dV}{d\phi}, A=d(d1)(β+2γ)/λA=d(d-1)(\beta+2\gamma)/\lambda, and B=(d1)(2α+β+2dγ)/λB=(d-1)(2\alpha+\beta+2d\gamma)/\lambda.

It is noted that the system is underdetermined since there are only two of the three equations of motion are independent, but we have three unknown variables aa, ϕ\phi, and V(ϕ)V(\phi). In order to solve the system analytically, we employ the first-order formalism DeWolfe2000 ; Gremm2000a ; Afonso2006 , which can transform the equations of motion (16) into first-order equations by introducing a superpotential W(ϕ)W(\phi), namely,

H\displaystyle H\! =\displaystyle\!=\! W3,\displaystyle\!-\frac{W}{3}, (17a)
ϕ\displaystyle\phi^{\prime}\! =\displaystyle\!=\! λ4d(9BW2)d423d(9AW2)32[729(A+dB)81((4d+2)A\displaystyle\!\frac{\lambda}{4d}\frac{(9-BW^{2})^{\frac{d-4}{2}}}{3^{d}(9-AW^{2})^{\frac{3}{2}}}\Big{[}729(A+dB)-81((4d+2)A (17b)
+\displaystyle+ (d1)dB)BW2+9(3Ad+2Bd2+B)ABW4\displaystyle(d-1)dB)BW^{2}+9(3Ad+2Bd^{2}+B)ABW^{4}
\displaystyle- d(d+1)A2B2W6]Wϕ,\displaystyle d(d+1)A^{2}B^{2}W^{6}\Big{]}W_{\phi},
V\displaystyle V\! =\displaystyle\!=\! λ4λ3d+1[(9BW2)d224(9AW2)12[81+9(d1)BW2\displaystyle\!\frac{\lambda}{4}-\frac{\lambda}{3^{d+1}}\bigg{[}\frac{\left(9-BW^{2}\right)^{\frac{d-2}{2}}}{4(9-AW^{2})^{\frac{1}{2}}}\big{[}81+9(d-1)BW^{2} (17c)
\displaystyle- dABW4]+(9BW2)d428d(9AW2)32[2187(A+dB)\displaystyle dABW^{4}\big{]}+\frac{(9-BW^{2})^{\frac{d-4}{2}}}{8d(9-AW^{2})^{\frac{3}{2}}}\Big{[}2187(A+dB)
\displaystyle- 243[(4d+2)A+d(d1)B]BW2\displaystyle 243\big{[}(4d+2)A+d(d-1)B\big{]}BW^{2}
+\displaystyle+ 27[3dA+(2d2+1)B]ABW4\displaystyle 27\big{[}3dA+(2d^{2}+1)B\big{]}ABW^{4}
\displaystyle- 3d(d+1)A2B2W6]ϕWϕ].\displaystyle 3d(d+1)A^{2}B^{2}W^{6}\Big{]}\phi^{\prime}W_{\phi}\bigg{]}.

where WϕdWdϕW_{\phi}\equiv\frac{dW}{d\phi}.

In order to recover the massless chiral fermions on the brane, the bulk should be Z2Z_{2}-symmetric along the coordinate yy. Thus, the warp factor a(y)a(y) must be an even function of extra dimension. From Eq. (17a), the superpotential W(ϕ)W(\phi) must be chosen as an odd function of the scalar ϕ\phi. With an appropriate ansatz of superpotential, the variables can be solved directly from the above equations.

IV Analytic 3-brane solutions

Specifically, we focus on solving the 3-brane solutions in a 5-dimensional bulk (d=4d=4) in the rest of the work. The higher-dimensional brane solutions can be solved similarly. However, Eqs. (17a) and (17b) can not be integrated out generally due to their complicated form. Therefore, it is convenient to consider some particular cases by fixing the values of free parameters, which can simplify the equations greatly.

IV.1 Case A=BA=B

The first interesting case is A=BA=B. Then from A=12(β+2γ)/λA=12(\beta+2\gamma)/\lambda, B=3(2α+β+8γ)/λB=3(2\alpha+\beta+8\gamma)/\lambda, and α+β+5γ=1\alpha+\beta+5\gamma=1, the parameters are fixed as α=353γ\alpha=\frac{3}{5}-3\gamma and β=252γ\beta=\frac{2}{5}-2\gamma, yet γ\gamma left as a free parameter. It leads to A=B=245λA=B=\frac{24}{5\lambda}. So the Eqs. (17) reduce to

a\displaystyle a^{\prime}\! =\displaystyle\!=\! aW3,\displaystyle\!-\frac{aW}{3}, (18a)
ϕ\displaystyle\phi^{\prime}\! =\displaystyle\!=\! (1216W215λ)(18W215λ)12Wϕ,\displaystyle\!\left(\frac{1}{2}-\frac{16W^{2}}{15\lambda}\right)\left(1-\frac{8W^{2}}{15\lambda}\right)^{\frac{1}{2}}W_{\phi}, (18b)
V\displaystyle V\! =\displaystyle\!=\! λ4(λ4+2W2564W4225λϕWϕ4+8ϕWϕW215λ)\displaystyle\!\frac{\lambda}{4}-\left(\frac{\lambda}{4}+\frac{2W^{2}}{5}-\frac{64W^{4}}{225\lambda}-\frac{\phi^{\prime}W_{\phi}}{4}+\frac{8\phi^{\prime}W_{\phi}W^{2}}{15\lambda}\right) (18c)
×\displaystyle\!\times\! (18W215λ)12.\displaystyle\!\left(1-\frac{8W^{2}}{15\lambda}\right)^{\frac{1}{2}}.
Refer to caption
(a) a(y)~{}a(y)
Refer to caption
(b) ϕ(y)~{}\phi(y)
Refer to caption
(c) V(ϕ)~{}V(\phi)
Refer to caption
(d) ρ(y)~{}\rho(y)
Figure 1: The profiles of the warp factor a(y)a(y), scalar field ϕ(y)\phi(y), scalar potential V(ϕ)V(\phi), and energy density ρ(y)\rho(y) for the case of A=BA=B.

A set of analytical solutions can be obtained with the superpotential ansatz W(ϕ)=2k3ϕW(\phi)=\frac{2k}{\sqrt{3}}\phi, where the mass dimension one parameter kk is defined as λ3245k2\lambda\equiv\frac{32}{45}k^{2}. Then taking W(ϕ)W(\phi) into Eqs. (18), the set of analytical solutions are obtained as

a(y)\displaystyle a(y)\! =\displaystyle\!=\! sech133(ky)[(23)(2+4sech2(ky))]133,\displaystyle\!\frac{\text{sech}^{\frac{1}{3\sqrt{3}}}(ky)}{\left[\big{(}2-\sqrt{3}\big{)}\left(2+\sqrt{4-\text{sech}^{2}(ky)}\right)\right]^{\frac{1}{3\sqrt{3}}}}, (19a)
ϕ(y)\displaystyle\phi(y)\! =\displaystyle\!=\! tanh(ky)3+tanh2(ky),\displaystyle\!\frac{\tanh(ky)}{\sqrt{3+\tanh^{2}(ky)}}, (19b)
V(ϕ)\displaystyle V(\phi)\! =\displaystyle\!=\! k290[ϕ2(4ϕ23)(4560ϕ2+161ϕ2)\displaystyle\!\frac{k^{2}}{90}\Big{[}\phi^{2}\left(4\phi^{2}-3\right)\left(45-60\phi^{2}+16\sqrt{1-\phi^{2}}\right) (19c)
\displaystyle- 161ϕ2+31],\displaystyle 16\sqrt{1-\phi^{2}}+31\Big{]},

where the integration constants have been chosen such that a(0)=1a(0)=1 and ϕ(0)=0\phi(0)=0. The solutions of the warp factor a(y)a(y), scalar field ϕ(y)\phi(y), and scalar potential V(ϕ)V(\phi) are illustrated in Figs. 1(a), 1(b), and 1(c). As shown in Fig. 1(a), the warp factor holds the Z2Z_{2} symmetry and has a typical bell shape profile. As y±y\to\pm\infty, the scalar field ϕ(±)±12\phi(\pm\infty)\to\pm\frac{1}{2}, which just correspond to the two local minima of the scalar potential, i.e., V0=V(±12)=(863)k2/45V_{0}=V(\pm\frac{1}{2})=(8-6\sqrt{3})k^{2}/45. Since the scalar field non-trivially maps the boundaries of extra dimension into two scalar vacua, it is a kink soliton Dzhunushaliev2010 .

With the solution (19a), the torsion scalar reads T=16k2tanh2(ky)9(4sech2(ky))T=-\frac{16k^{2}\tanh^{2}(ky)}{9\left(4-\text{sech}^{2}(ky)\right)}. It approaches 4k29-\frac{4k^{2}}{9} at the vacua y±y\to\pm\infty. Since the absolute value of the torsion scalar is monotonically increasing with the parameter kk (or λ\lambda), the torsion of spacetime is enhanced as the parameter kk goes larger. As shown in Fig. 1(d), the energy density of the brane is localized at the origin of the extra dimension, and the brane thickness becomes thinner as the background torsion gets stronger.

By choosing the free parameter γ=1/5\gamma=1/5, one has α=β=0\alpha=\beta=0. Then, the action (1) reduces to a Born-Infeld-f(T)f(T)-type one Fiorini2013 ; Yang2018 , i.e.,

SBI\displaystyle S_{\text{BI}} =\displaystyle= 14d5xef(T)\displaystyle-\frac{1}{4}\int{}d^{5}x~{}ef(T) (20)
=\displaystyle= λ4d5xe[(1+2T5λ)5/21].\displaystyle-\frac{\lambda}{4}\int{}d^{5}x~{}e\left[\left(1+\frac{2T}{5\lambda}\right)^{5/2}-1\right].

In addition, the same analytic solutions (19) were obtained and the issue about trapping fermions on the domain wall was considered in Ref. Yang2018 .

IV.2 Case A=0A=0

Refer to caption
(a) a(y)~{}a(y)
Refer to caption
(b) ϕ(y)~{}\phi(y)
Refer to caption
(c) V(ϕ)~{}V(\phi)
Refer to caption
(d) ρ(y)~{}\rho(y)
Figure 2: The profiles of the warp factor a(y)a(y), scalar field ϕ(y)\phi(y), scalar potential V(ϕ)V(\phi), and energy density ρ(y)\rho(y) for the case of A=0A=0.

The second interesting case is A=0A=0. Then from A=12(β+2γ)/λA=12(\beta+2\gamma)/\lambda, B=3(2α+β+8γ)/λB=3(2\alpha+\beta+8\gamma)/\lambda, and α+β+5γ=1\alpha+\beta+5\gamma=1, one gets B=6/λB={6}/{\lambda}, α=13γ\alpha=1-3\gamma, and β=2γ\beta=-2\gamma, with γ\gamma a free parameter. Now the equations (17) reduce to

a\displaystyle a^{\prime} =\displaystyle= aW3,\displaystyle-\frac{aW}{3}, (21a)
ϕ\displaystyle\phi^{\prime} =\displaystyle= (12W2λ)Wϕ,\displaystyle\left(\frac{1}{2}-\frac{W^{2}}{\lambda}\right)W_{\phi}, (21b)
V\displaystyle V =\displaystyle= (14W22λ)ϕWϕ(13W23λ)W2.\displaystyle\left(\frac{1}{4}-\frac{W^{2}}{2\lambda}\right)\phi^{\prime}W_{\phi}-\left(\frac{1}{3}-\frac{W^{2}}{3\lambda}\right)W^{2}. (21c)

For the superpotential ansatz W(ϕ)=2kϕW(\phi)=2k\phi with λ8k2\lambda\equiv 8k^{2}, a set of analytical solutions are obtained

a(y)\displaystyle a(y) =\displaystyle= sech23(ky),\displaystyle\text{sech}^{\frac{2}{3}}(ky), (22a)
ϕ(y)\displaystyle\phi(y) =\displaystyle= tanh(ky),\displaystyle\tanh(ky), (22b)
V(ϕ)\displaystyle V(\phi) =\displaystyle= k26(332ϕ2+64ϕ4),\displaystyle\frac{k^{2}}{6}\left(3-32\phi^{2}+64\phi^{4}\right), (22c)

where the integration constants have been chosen such that a(0)=1a(0)=1 and ϕ(0)=0\phi(0)=0. The solutions of a(y)a(y), ϕ(y)\phi(y), and V(ϕ)V(\phi) are illustrated in Figs. 2(a), 2(b), and 2(c), respectively. The warp factor is Z2Z_{2} symmetric, and the scalar field is a kink with ϕ(±)±1\phi(\pm\infty)\to\pm 1, which connects two local minima of the scalar potential, i.e., V0=V(±1)=k2/96V_{0}=V(\pm 1)=-{k^{2}}/{96}.

In this case, the torsion scalar reads T=16k23tanh2(ky)T=-\frac{16k^{2}}{3}\tanh^{2}(ky), and it approaches 16k23-\frac{16k^{2}}{3} at the vacua y±y\to\pm\infty. Therefore, the spacetime torsion is also enhanced as the parameter kk goes larger. As shown in Fig. 2(d), the energy density of the brane is localized at y=0y=0, and its thickness becomes thinner as the spacetime torsion gets stronger as well.

IV.3 Case B=0B=0

Refer to caption
(a) a(y)~{}a(y)
Refer to caption
(b) ϕ(y)~{}\phi(y)
Refer to caption
(c) V(ϕ)~{}V(\phi)
Refer to caption
(d) ρ(y)~{}\rho(y)
Figure 3: The profiles of the warp factor a(y)a(y), scalar field ϕ(y)\phi(y), scalar potential V(ϕ)V(\phi), and energy density ρ(y)\rho(y) for the case of B=0B=0.

The last interesting case is B=0B=0. Then from A=12(β+2γ)/λA=12(\beta+2\gamma)/\lambda, B=3(2α+β+8γ)/λB=3(2\alpha+\beta+8\gamma)/\lambda, and α+β+5γ=1\alpha+\beta+5\gamma=1, one has A=24/λA={24}/{\lambda}, α=(1+3γ)\alpha=-(1+3\gamma), and β=2(1γ)\beta=2(1-\gamma), with γ\gamma a free parameter. In this case, the equations (17) become

a\displaystyle a^{\prime} =\displaystyle= aW3,\displaystyle-\frac{aW}{3}, (23a)
ϕ\displaystyle\phi^{\prime} =\displaystyle= Wϕ2(18W23λ)32,\displaystyle\frac{W_{\phi}}{2}\left(1-\frac{8W^{2}}{3\lambda}\right)^{-\frac{3}{2}}, (23b)
V\displaystyle V =\displaystyle= 14[ϕWϕ(λ8W23)(118W23λ)]\displaystyle\frac{1}{4}\Bigg{[}\phi^{\prime}W_{\phi}-\left(\lambda-\frac{8W^{2}}{3}\right)\left(1-\sqrt{1-\frac{8W^{2}}{3\lambda}}\right)\Bigg{]} (23c)
×\displaystyle\times (18W23λ)32.\displaystyle\left(1-\frac{8W^{2}}{3\lambda}\right)^{-\frac{3}{2}}.

By assuming the superpotential as the form W(ϕ)=3ksinϕ1+sin2ϕW(\phi)=\frac{3k\sin\phi}{\sqrt{1+\sin^{2}\phi}}, a set of analytical solutions can be achieved as

a(y)\displaystyle a(y)\! =\displaystyle= (1+2)23(cosh12(3ky)+2cosh(3ky/2))23,\displaystyle\!\frac{\left(1+\sqrt{2}\right)^{\frac{\sqrt{2}}{3}}}{\left({\cosh^{\frac{1}{2}}(3ky)+\sqrt{2}\cosh\left(3ky/2\right)}\right)^{\frac{\sqrt{2}}{3}}}, (24a)
ϕ(y)\displaystyle\phi(y)\! =\displaystyle= arcsin[tanh(3ky/2)],\displaystyle\!\arcsin\left[\tanh\left(3ky/2\right)\right], (24b)
V(ϕ)\displaystyle V(\phi)\! =\displaystyle= 3k216[35+3cos(2ϕ)32(1+sin2ϕ)12],\displaystyle\!\frac{3k^{2}}{16}\left[35+3\cos(2\phi)-32\left(1+\sin^{2}\phi\right)^{\frac{1}{2}}\right],\qquad (24c)

where the integration constants have been chosen such that a(0)=1a(0)=1 and ϕ(0)=0\phi(0)=0 as well. As shown in Fig. 3, the warp factor a(y)a(y), scalar field ϕ(y)\phi(y), scalar potential V(ϕ)V(\phi), and brane energy density ρ(y)\rho(y) have similar shapes with the previous two cases. The scalar field exhibits a kink profile, whose two ends ϕ(±)±π/2\phi(\pm\infty)\to\pm\pi/2 connect two vacua of the scalar potential, i.e., V0=V(±π/2)=6(12)k2V_{0}=V(\pm\pi/2)=6\left(1-\sqrt{2}\right)k^{2}.

Now the torsion scalar reads T=6k2[1sech(3ky)]T=-6k^{2}[1-\text{sech}(3ky)], and T6k2T\to-6k^{2} as y±y\to\pm\infty. The bulk torsion also gets stronger as the parameter kk goes larger. As shown in Fig. 3(d), the energy density of the brane is localized at the origin, and its thickness becomes thinner as the torsion becomes stronger as the previous cases.

V Gravitational perturbation

The full perturbed metric against the domain wall backgrounds takes the form

ds2\displaystyle ds^{2} =\displaystyle= gMNdxMdxN\displaystyle g_{MN}dx^{M}dx^{N} (25)
=\displaystyle= a2(y)[ημν+2hμν+2ημνφ+2μνB\displaystyle a^{2}(y)\big{[}\eta_{\mu\nu}+2h_{\mu\nu}+2\eta_{\mu\nu}\varphi+2\partial_{\mu}\partial_{\nu}B
+\displaystyle+ 2(μCν)]dxμdxν+a(y)(μF+Gμ)dxμdy\displaystyle 2\partial_{(\mu}C_{\nu)}\big{]}dx^{\mu}dx^{\nu}+a(y)(\partial_{\mu}F+G_{\mu})dx^{\mu}dy
+\displaystyle+ (1+2ψ)dy2,\displaystyle(1+2\psi)dy^{2},

where hμνh_{\mu\nu} is the transverse-traceless (TT) tensor mode, GμG_{\mu} and CνC_{\nu} are the transverse vector modes, and ψ\psi, φ\varphi, FF, and BB are the scalar modes. Due to the broken 5-dimensional local Lorentz invariance of current theory, the broken gauge freedom in tangent frame will release 10 extra degrees of freedom in the vielbein Li2011d . Thus, one can generally write the perturbed vielbein as the form eA=Me¯A+MæAMe^{A}{}_{M}=\bar{e}^{A}{}_{M}+\ae^{A}{}_{M} Wu2012a ; Izumi2013 . The degrees of freedom of the perturbed metric gMNg_{MN} are encoded in e¯AM{\bar{e}}^{A}{}_{M}, satisfying the condition gMN=ηABe¯Ae¯AMNg_{MN}=\eta_{AB}{\bar{e}}^{A}{}_{M}{\bar{e}}^{A}{}_{N}. Then, all the 10 extra degrees of freedom are included in æAM{\ae^{A}}_{M}, which can be decomposed explicitly as æ55=0{\ae^{5}}_{5}=0, æa5=δaμ(μβ+Dμ){\ae^{a}}_{5}=\delta^{a\mu}(\partial_{\mu}\beta+D_{\mu}), æ5μ=0{\ae^{5}}_{\mu}=0, æaμ=δaνϵμνλ(λσ+Vλ){\ae^{a}}_{\mu}=\delta^{a\nu}\epsilon_{\mu\nu\lambda}(\partial^{\lambda}\sigma+V^{\lambda}), with β\beta a scalar, DμD_{\mu} a transverse vector, σ\sigma a pseudo-scalar, and VλV^{\lambda} a transverse pseudo-vector. After taking the scalar-vector-tensor decomposition in the linear perturbed equations of motion, the TT tensor, transverse (pseu-)vector, and (pseu-)scalar modes can be decoupled from each other, and they can be dealt with separately.

Here, we focus on studying the property of 4-dimensional KK gravitons in current models. This is done by considering the TT tensor perturbation against the domain wall backgrounds. So we close all the transverse (pseu-)vector and (pseu-)scalar modes in the perturbed metric (25). Now, the non-vanishing components of the perturbed inverse metric are gμν=a2(ημν2hμν)g^{\mu\nu}=a^{-2}\left(\eta^{\mu\nu}-2h^{\mu\nu}\right) and g55=1g^{55}=1.

Correspondingly, the perturbed vielbein with respect to the perturbed metric reads

eAM=(a(y)(δa+μηaνhνμ)001).{e^{A}}_{M}=\left({\begin{array}[]{*{20}{c}}a(y)\left(\delta^{a}{}_{\mu}+\eta^{a\nu}{h_{\nu\mu}}\right)&0\\ 0&1\end{array}}\right). (26)

Then, the inverse of the vielbein is given by

eAM=(a1(y)(δaμηaνhνμ)001).{e_{A}}^{M}=\left({\begin{array}[]{*{20}{c}}a^{-1}(y)\left(\delta_{a}{}^{\mu}-\eta_{a\nu}{h^{\nu\mu}}\right)&0\\ 0&1\end{array}}\right). (27)

With the perturbed vielbein and metric, the expressions for the non-vanishing components of the perturbed torsion tensor TPMNT^{P}{}_{MN} read

Tλ5ν\displaystyle{T^{\lambda}}_{5\nu} =\displaystyle= Tλν5=Hδλν+hλ,ν\displaystyle-{T^{\lambda}}_{\nu 5}=H{\delta^{\lambda}}_{\nu}+{h^{\prime}}^{\lambda}{}_{\nu}, (28a)
Tλμν\displaystyle{T^{\lambda}}_{\mu\nu} =\displaystyle= [μhλ.ν]\displaystyle\partial_{[\mu}h^{\lambda}{}_{\nu]}. (28b)

Then, the non-vanishing components of the perturbed contorsion tensor KPMNK^{P}{}_{MN} are given by

Kλ5ν\displaystyle{K^{\lambda}}_{5\nu} =\displaystyle= Hδλνhλ,ν\displaystyle-H{\delta^{\lambda}}_{\nu}-{h^{\prime}}^{\lambda}{}_{\nu}, (29a)
K5μν\displaystyle{K^{5}}_{\mu\nu} =\displaystyle= a2(Hημν+2Hhμν+hμν),\displaystyle a^{2}\left(H\eta_{\mu\nu}+2Hh_{\mu\nu}+{h^{\prime}}_{\mu\nu}\right), (29b)
Kλμν\displaystyle{K^{\lambda}}_{\mu\nu} =\displaystyle= λhμνμhλν.\displaystyle\partial^{\lambda}h_{\mu\nu}-\partial_{\mu}{h^{\lambda}}_{\nu}. (29c)

With the expressions of the perturbed torsion tensor TPMNT^{P}{}_{MN} and contorsion tensor KPMNK^{P}{}_{MN}, the non-vanishing components of the perturbed superpotential torsion tensor SPMN{S_{P}}^{MN} read

Sλμ0\displaystyle{S_{\lambda}}^{\mu 0} =\displaystyle= Sλ0μ=12[(d1)Hδμλhμ]λ,\displaystyle-{S_{\lambda}}^{0\mu}=\frac{1}{2}\left[(d-1)H\delta^{\mu}{}_{\lambda}-{h^{\prime}}^{\mu}{}_{\lambda}\right], (30a)
Sλμν\displaystyle{S_{\lambda}}^{\mu\nu} =\displaystyle= 12a2[μhν].λ\displaystyle\frac{1}{2a^{2}}\partial^{[\mu}h^{\nu]}{}_{\lambda}. (30b)

By taking the torsion tensor TPMNT^{P}{}_{MN} and superpotential torsion tensor SPMN{S_{P}}^{MN} into consideration, the perturbed tensor FPQ=αFPQ(1)+βFPQ(2)+γFPQ(3)F_{PQ}=\alpha F^{(1)}_{PQ}+\beta F^{(2)}_{PQ}+\gamma F^{(3)}_{PQ} can be calculated by the non-vanishing components of FPQ(1)F^{(1)}_{PQ}, FPQ(2)F^{(2)}_{PQ}, and FPQ(3)F^{(3)}_{PQ}, given by

Fμν(1)\displaystyle F^{(1)}_{\mu\nu} =\displaystyle= (1d)a2H2[ημν+2hμν+d2d1hμνH],\displaystyle(1-d)a^{2}H^{2}\left[\eta_{\mu\nu}+2h_{\mu\nu}+\frac{d-2}{d-1}\frac{h^{\prime}_{\mu\nu}}{H}\right],\qquad (31a)
Fμν(2)\displaystyle F^{(2)}_{\mu\nu} =\displaystyle= 1d2a2H2[ημν+2hμν+d2d1hμνH],\displaystyle\frac{1-d}{2}a^{2}H^{2}\left[\eta_{\mu\nu}+2h_{\mu\nu}+\frac{d-2}{d-1}\frac{h^{\prime}_{\mu\nu}}{H}\right], (31b)
F55(2)\displaystyle F^{(2)}_{55} =\displaystyle= d(1d)2H2,\displaystyle\frac{d(1-d)}{2}H^{2}, (31c)
Fμν(3)\displaystyle F^{(3)}_{\mu\nu} =\displaystyle= d(1d)a2H2(ημν+2hμν),\displaystyle d(1-d)a^{2}H^{2}\left(\eta_{\mu\nu}+2h_{\mu\nu}\right), (31d)
F55(3)\displaystyle F^{(3)}_{55} =\displaystyle= T=d(1d)H2.\displaystyle T=d(1-d)H^{2}. (31e)

Further, the perturbations of FPQeAM\frac{\partial F_{PQ}}{\partial{e^{A}}_{M}} and FPQ(SeAM)\frac{\partial F_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})} can be assembled by FPQeAM=αFPQ(1)eAM+βFPQ(2)eAM+γFPQ(3)eAM\frac{\partial F_{PQ}}{\partial{e^{A}}_{M}}=\alpha\frac{\partial F^{(1)}_{PQ}}{\partial{e^{A}}_{M}}+\beta\frac{\partial F^{(2)}_{PQ}}{\partial{e^{A}}_{M}}+\gamma\frac{\partial F^{(3)}_{PQ}}{\partial{e^{A}}_{M}} and FPQ(SeAM)=αFPQ(1)(SeAM)+βFPQ(2)(SeAM)+γFPQ(3)(SeAM)\frac{\partial F_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})}=\alpha\frac{\partial F^{(1)}_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})}+\beta\frac{\partial F^{(2)}_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})}+\gamma\frac{\partial F^{(3)}_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})}. Because there are too many items, the non-vanishing components of FPQ(i)eAM\frac{\partial F^{(i)}_{PQ}}{\partial{e^{A}}_{M}} and FPQ(i)(SeAM)\frac{\partial F^{(i)}_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})} are listed in A.

With all of these perturbed terms, the linear perturbation of the field equations (7) is obtained finally

F2h′′μν+F1hμν+F0(4)hμν=0,F_{2}{h^{\prime\prime}}_{\mu\nu}+F_{1}{h^{\prime}}_{\mu\nu}+F_{0}\Box^{(4)}h_{\mu\nu}=0, (32)

where (4)=ηρσρσ\Box^{(4)}=\eta^{\rho\sigma}\partial_{\rho}\partial_{\sigma} is the 4-dimensional d’Alembert operator, and the functions F2F_{2}, F1F_{1} and F0F_{0} are defined as

F2\displaystyle F_{2}\! =\displaystyle\!=\! Ad(1AH2)+B1BH2(d1)C2H22(1BH2)2,\displaystyle\!\frac{A}{d\left(1-AH^{2}\right)}+\frac{B}{1-BH^{2}}-\frac{(d-1)C^{2}H^{2}}{2\left(1-BH^{2}\right)^{2}}, (33a)
F1\displaystyle F_{1}\! =\displaystyle\!=\! AH1AH2(d1)[2(2BdC)H2]CH2(1BH2)2\displaystyle\!\frac{AH}{1-AH^{2}}-\frac{(d-1)\left[2-(2B-dC)H^{2}\right]CH}{2\left(1-BH^{2}\right)^{2}} (33b)
+\displaystyle\!+\! [dB+(d1)C]H1BH22ABHH(1AH2)(1BH2)\displaystyle\!\frac{\left[dB+(d-1)C\right]H}{1-BH^{2}}-\frac{2ABHH^{\prime}}{\left(1-AH^{2}\right)\left(1-BH^{2}\right)}
+\displaystyle\!+\! A2HHd(1AH2)2[(d2)B2+(d1)C2]HH(1BH2)2\displaystyle\!\frac{A^{2}HH^{\prime}}{d\left(1-AH^{2}\right)^{2}}-\frac{\left[(d-2)B^{2}+(d-1)C^{2}\right]HH^{\prime}}{\left(1-BH^{2}\right)^{2}}
+\displaystyle\!+\! [AC22(1AH2)+(d4)BC22(1BH2)](d1)H3H(1BH2)2,\displaystyle\!\left[\frac{AC^{2}}{2\left(1-AH^{2}\right)}+\frac{(d-4)BC^{2}}{2\left(1-BH^{2}\right)}\right]\frac{(d-1)H^{3}H^{\prime}}{\left(1-BH^{2}\right)^{2}},\qquad
F0\displaystyle F_{0}\! =\displaystyle\!=\! 2(d1)λa2(γ1AH2+1γ1BH2),\displaystyle\!\frac{2(d-1)}{\lambda a^{2}}\left(\frac{\gamma}{1-AH^{2}}+\frac{1-\gamma}{1-BH^{2}}\right), (33c)

with C=(d2)(2α+β)/λC=(d-2)(2\alpha+\beta)/\lambda.

In the low energy regime λ\lambda\to\infty, the leading orders of the coefficient functions F2F_{2}, F1F_{1} and F0F_{0} read F22(d1)λ1F_{2}\to{2(d-1)}{\lambda}^{-1}, F12(d1)dHλ1F_{1}\to{2(d-1)dH}{\lambda}^{-1}, and F02(d1)λ1a2F_{0}\to{2(d-1)}{\lambda}^{-1}a^{-2}, respectively. Then, the evolution equation (32) reduces to the standard form in GR, i.e.,

h′′μν4Hhμν+a2(4)hμν=0.{h^{\prime\prime}}_{\mu\nu}-4H{h^{\prime}}_{\mu\nu}+a^{-2}\Box^{(4)}h_{\mu\nu}=0. (34)

If F2/F0>0F_{2}/F_{0}>0, we can make a coordinate transformation dz=dy/F2/F0dz=dy/\sqrt{F_{2}/F_{0}} to eliminate the prefactors F2F_{2} and F0F_{0} in Eq. (32). Then, the evolution equation (32) is recast as

h¨μν+F3h˙μν+(4)hμν=0,\ddot{h}_{\mu\nu}+F_{3}\dot{h}_{\mu\nu}+\Box^{(4)}h_{\mu\nu}=0, (35)

where the dot denotes the derivative with respect to the coordinate zz, and F3=F1F0F2+12(F˙0F0F˙2F2)F_{3}=\frac{F_{1}}{\sqrt{F_{0}F_{2}}}+\frac{1}{2}\left(\frac{\dot{F}_{0}}{F_{0}}-\frac{\dot{F}_{2}}{F_{2}}\right).

In order to get a Schrödinger-like equation, we employ a KK decomposition as the from hμν=ϵμν(xμ)Φ(z)eF32𝑑zh_{\mu\nu}=\epsilon_{\mu\nu}(x^{\mu})\Phi(z)e^{-\int{\frac{F_{3}}{2}dz}}. Then, the evolution equation (35) can be decompose into two equations. The first one is a Klein-Gordon equation ((4)m2)ϵμν=0(\Box^{(4)}-m^{2})\epsilon_{\mu\nu}=0 owing to the preserved 4-dimensional Poincaré invariance, where mm is the observed 4-dimensional effective mass of KK gravitons. The other is the aimed Schrödinger-like equation

Φ¨(z)+U(z)Φ(z)=m2Φ(z),-\ddot{\Phi}(z)+U(z)\Phi(z)=m^{2}\Phi(z), (36)

where the effective potential U(z)U(z) is given by

U(z)=F˙32+F324.U(z)=\frac{\dot{F}_{3}}{2}+\frac{F_{3}^{2}}{4}. (37)

The Hamiltonian can be further factorized as a supersymmetric quantum mechanics form, i.e., =𝒜𝒜=\mathcal{H}=\mathcal{A}^{\dagger}\mathcal{A}=
(z+F32)(z+F32)\left(\partial_{z}+\frac{F_{3}}{2}\right)\left(-\partial_{z}+\frac{F_{3}}{2}\right). With the Neumann boundary condition zhμν=0\partial_{z}h_{\mu\nu}=0, the self-adjoint Hamiltonian leads to non-negative eigenvalues m20m^{2}\geq 0 Yang2017 . Therefore, the KK gravitons are tachyonic free. The wave function of the massless graviton can be directly derived from the equation (z+F32)Φ0(z)=0\left(-\partial_{z}+\frac{F_{3}}{2}\right)\Phi_{0}(z)=0, yielding

Φ0(z)=N0eF32𝑑z,\Phi_{0}(z)=N_{0}e^{\int{\frac{F_{3}}{2}dz}}, (38)

where N0N_{0} is the normalization constant.

V.1 Case A=BA=B

Refer to caption
(a) U(z)~{}U(z)
Refer to caption
(b) Φ0(z)~{}\Phi_{0}(z)
Figure 4: The profiles of the effective potential U(z)U(z) and gravitational zero mode Φ0(z)\Phi_{0}(z) for the case of A=BA=B.

In this case, the parameters are A=B=245λA=B=\frac{24}{5\lambda} and C=1680γ5λC=\frac{16-80\gamma}{5\lambda}, with γ\gamma a free parameter. It is easily verified that

F2F0=a21ϕ2[1(40γ2316γ3+2315)ϕ2]a2.\frac{F_{2}}{F_{0}}=\frac{a^{2}}{1-\phi^{2}}\left[1-\left(\frac{40\gamma^{2}}{3}-\frac{16\gamma}{3}+\frac{23}{15}\right)\phi^{2}\right]\geq a^{2}. (39)

So the coordinate transformation dz=dy/F2/F0dz=dy/\sqrt{F_{2}/F_{0}} is robust. Following the above procedure, the KK gravitons are tachyonic free. This conclusion can also be seen directly by recasting Eq. (32) into the form, h′′μν+F1F2hμν+2hμν=0{h^{\prime\prime}}_{\mu\nu}+\frac{F_{1}}{F_{2}}{h^{\prime}}_{\mu\nu}+\mathcal{M}^{2}h_{\mu\nu}=0, with 2m2F0/F2\mathcal{M}^{2}\equiv m^{2}{F_{0}}/{F_{2}} acting as an effective squared mass Fukushima2019 .

Due to the free parameter γ\gamma, the expressions can be simplified a lot by fixing γ=1/5\gamma=1/5, which corresponds to C=0C=0. In this case, F2/F0=a2F_{2}/F_{0}=a^{2}. With the domain wall solutions (19), the functions F2F_{2}, F1F_{1} and F0F_{0} in Eqs. (33) are given explicitly as

F2\displaystyle F_{2}\!\! =\displaystyle\!=\! 4516k2(3+tanh2(ky)),\displaystyle\!\!\frac{45}{16k^{2}}\left(3+\tanh^{2}(ky)\right), (40)
F1\displaystyle F_{1}\!\! =\displaystyle\!=\! 516k[27sech2(ky)+89+3tanh2(ky)]\displaystyle\!\!-\frac{5}{16k}\left[27\text{sech}^{2}(ky)+8\sqrt{9+3\tanh^{2}(ky)}\right] (41)
×\displaystyle\times tanh(ky),\displaystyle\tanh(ky),
F0\displaystyle F_{0}\!\! =\displaystyle\!=\! 45(3+tanh2(ky))16k2[(23)cosh(ky)\displaystyle\!\!\frac{45\left(3+\tanh^{2}(ky)\right)}{16k^{2}}\left[\left(2-\sqrt{3}\right)\cosh(ky)\right. (42)
×(2+4sech2(ky))]233.\displaystyle\times\left.\left(2+\sqrt{4-\text{sech}^{2}(ky)}\right)\right]^{\frac{2}{3\sqrt{3}}}.

Since the coordinate transformation dz=dy/a(y)dz=dy/a(y) cannot be integrated out analytically in this case, we cannot obtain the analytical expression of the effective potential in zz coordinate. However, the effective potential in yy coordinate can be expressed explicitly as

U(y)\displaystyle U(y)\! =\displaystyle\!=\! 3a24(4k227H2)2[5H2(16k4+729H4)\displaystyle\!\frac{3a^{2}}{4\left(4k^{2}-27H^{2}\right)^{2}}\Big{[}5H^{2}\left(16k^{4}+729H^{4}\right) (43)
\displaystyle- 270H4(4k227H)+8k2(4k227H)H\displaystyle 270H^{4}\left(4k^{2}-27H^{\prime}\right)+8k^{2}\left(4k^{2}-27H^{\prime}\right)H^{\prime}
\displaystyle\!-\! 81H2H(16k29H)54(4k227H2)HH′′]\displaystyle\!81H^{2}H^{\prime}\left(16k^{2}-9H^{\prime}\right)-54\left(4k^{2}-27H^{2}\right)HH^{\prime\prime}\Big{]}
=\displaystyle= k2sech8(ky)724sech2(ky)(3+tanh2(ky))2\displaystyle-\frac{k^{2}\text{sech}^{8}(ky)}{72\sqrt{4-\text{sech}^{2}(ky)}\left(3+\tanh^{2}(ky)\right)^{2}}
×\displaystyle\times cosh(ky)233(2+4sech2(ky))233(23)233(2+4sech2(ky))2\displaystyle\frac{\cosh(ky)^{-\frac{2}{3\sqrt{3}}}\left(2+\sqrt{4-\text{sech}^{2}(ky)}\right)^{-\frac{2}{3\sqrt{3}}}}{\left(2-\sqrt{3}\right)^{\frac{2}{3\sqrt{3}}}\left(2+\sqrt{4-\text{sech}^{2}(ky)}\right)^{2}}
×\displaystyle\times [4(1+2cosh(2ky))[5(28+153)cosh(2ky)\displaystyle\Bigg{[}4\left(1+2\cosh(2ky)\right)\Big{[}5\left(28+15\sqrt{3}\right)\cosh(2ky)
\displaystyle- (113+63)cosh(4ky)5cosh(6ky)+302\displaystyle\left(113+6\sqrt{3}\right)\cosh(4ky)-5\cosh(6ky)+302
+\displaystyle+ 573]+4sech2(ky)[2(593+1503)\displaystyle 57\sqrt{3}\Big{]}+\sqrt{4-\text{sech}^{2}(ky)}\Big{[}2\left(593+150\sqrt{3}\right)
+\displaystyle+ 2(701+2223)cosh(2ky)10cosh(8ky)\displaystyle 2\left(701+222\sqrt{3}\right)\cosh(2ky)-10\cosh(8ky)
\displaystyle- 3(23443)cosh(4ky)(123+241)\displaystyle 3\left(23-44\sqrt{3}\right)\cosh(4ky)-\left(12\sqrt{3}+241\right)
×\displaystyle\times cosh(6ky)]].\displaystyle\cosh(6ky)\Big{]}\Bigg{]}.

Correspondingly, the wave function of the massless graviton in yy coordinate is given by

Φ0(y)\displaystyle\!\!\!\!\Phi_{0}(y) =\displaystyle= N0a32(127H24k2)3/4\displaystyle N_{0}a^{\frac{3}{2}}\left(1-\frac{27H^{2}}{4k^{2}}\right)^{3/4} (44)
=\displaystyle= N033/4cosh32(ky)(23)123(1+2cosh(2ky))3/4\displaystyle\frac{N_{0}3^{3/4}\cosh^{\frac{3}{2}}(ky)}{\left(2-\sqrt{3}\right)^{\frac{1}{2\sqrt{3}}}\left(1+2\cosh(2ky)\right)^{3/4}}
×\displaystyle\times (2cosh(ky)+1+2cosh(2ky))123.\displaystyle\left(2\cosh(ky)+\sqrt{1+2\cosh(2ky)}\right)^{-\frac{1}{2\sqrt{3}}}.

By numerically integrating out the coordinate transformation, the effective potential U(z)U(z) and the wave function Φ0(z)\Phi_{0}(z) of the massless graviton in zz coordinate are illustrated in Fig. 4. As shown in Fig. 4(b), the massless graviton is normalizable and its width decreases with the enhancement of the spacetime torsion. With the normalization condition Φ02𝑑z=Φ02dyF2/F0=1\int^{\infty}_{-\infty}{\Phi_{0}^{2}dz}=\int^{\infty}_{-\infty}{\frac{\Phi_{0}^{2}dy}{\sqrt{F_{2}/F_{0}}}}=1, the normalization constant can be approximately calculated, yielding N0k4.681N_{0}\approx\sqrt{\frac{k}{4.681}}. The normalizable massless mode ensures that the effective 4-dimensional gravity can be recovered on the brane. Further, by counting the contribution of the massless mode sector in the action (1), the 4-dimensional gravitational constant can be derived from the reduction 1G4=1G5N02Φ02𝑑z\frac{1}{G_{4}}=\frac{1}{G_{5}N_{0}^{2}}\int^{\infty}_{-\infty}{\Phi_{0}^{2}dz}. So the fundamental 5-dimensional gravitational constant G5G_{5} reads G5=G4/N024.681G4/kG_{5}={G_{4}}/N_{0}^{2}\approx 4.681{G_{4}}/{k}.

As shown in Fig. 4(a), the effective potential is volcano-like and the width of potential well decreases with the enhancement of the spacetime torsion. Therefore, the massless graviton is the only bound state, and the massive excited states possess a continuous mass spectrum. The massive states will contribute a correction to the Newtonian potential at short distance. Quantitatively, for two point-like sources separated by a distance rr on the brane, a volcano-like potential with U(z)α(α+1)/z2U(z)\sim\alpha(\alpha+1)/z^{2} for z1z\gg 1 will yield a correction proportional to 1/(kr)2α{1}/{(kr)^{2\alpha}} to the Newtonian potential Csaki2000 ; Bazeia2009 . For the current case, the effective potential behaves like U(z)154z2U(z)\sim\frac{15}{4z^{2}} for z1z\gg 1, so it leads to a correction proportional to 1/(kr)3{1}/{(kr)^{3}} to the Newtonian potential.

V.2 Case A=0A=0

For case A=0A=0, the parameters are B=6λB=\frac{6}{\lambda} and C=416γλC=\frac{4-16\gamma}{\lambda}, with γ\gamma a free parameter. It is easily shown that

F2F0=9(32γ216γ+5)ϕ2(3ϕ2)(3γϕ2)a2.\frac{F_{2}}{F_{0}}=\frac{9-\left(32\gamma^{2}-16\gamma+5\right)\phi^{2}}{\left(3-\phi^{2}\right)\left(3-\gamma\phi^{2}\right)}a^{2}. (45)

Due to 1ϕ(y)1-1\leq\phi(y)\leq 1, the ratio F2/F0F_{2}/F_{0} is positive everywhere in the intervals 134<γ<1+34\frac{1-\sqrt{3}}{4}<\gamma<\frac{1+\sqrt{3}}{4} or γ>3\gamma>3. So the coordinate transformation dz=dy/F2/F0dz=dy/\sqrt{F_{2}/F_{0}} is robust and the KK gravitons are tachyonic free in these parameter intervals.

The corresponding expressions can be simplified a lot by setting C=0C=0, which is realized by fixing the free parameter γ=1/4\gamma=1/4. In this case, F2/F0=12a212ϕ2F_{2}/F_{0}=\frac{12a^{2}}{12-\phi^{2}}. With the solutions (22), the functions F2F_{2}, F1F_{1} and F0F_{0} in Eqs. (33) are written explicitly as

F2\displaystyle F_{2} =\displaystyle= 94k2(3tanh2(ky)),\displaystyle\frac{9}{4k^{2}\left(3-\tanh^{2}(ky)\right)}, (46)
F1\displaystyle F_{1} =\displaystyle= 3(11+4cosh(2ky))sinh(2ky)4k(2+cosh(2ky))2,\displaystyle-\frac{3(11+4\cosh(2ky))\sinh(2ky)}{4k(2+\cosh(2ky))^{2}}, (47)
F0\displaystyle F_{0} =\displaystyle= 3(13+11cosh(2ky))32k2(2+cosh(2ky))sech43(ky).\displaystyle\frac{3(13+11\cosh(2ky))}{32k^{2}(2+\cosh(2ky))\text{sech}^{\frac{4}{3}}(ky)}. (48)

Then, the effective potential in yy coordinate is given by

U(y)\displaystyle U(y)\! =\displaystyle\!=\! 12a2k2[5H216k23H2\displaystyle\!12a^{2}k^{2}\bigg{[}\frac{5H^{2}}{16k^{2}-3H^{2}} (49)
\displaystyle\!-\! 9(512k6240k4H2+24k2H4+9H6)H2(4k23H2)2(16k23H2)3\displaystyle\!\frac{9\left(512k^{6}-240k^{4}H^{2}+24k^{2}H^{4}+9H^{6}\right)H^{\prime 2}}{\left(4k^{2}-3H^{2}\right)^{2}\left(16k^{2}-3H^{2}\right)^{3}}
+\displaystyle\!+\! 8(16k448k2H2+9H4)H(4k23H2)(16k23H2)2\displaystyle\!\frac{8\left(16k^{4}-48k^{2}H^{2}+9H^{4}\right)H^{\prime}}{\left(4k^{2}-3H^{2}\right)\left(16k^{2}-3H^{2}\right)^{2}}
\displaystyle\!-\! 18(4k2H2)HH′′(4k23H2)(16k23H2)2]\displaystyle\!\frac{18\left(4k^{2}-H^{2}\right)HH^{\prime\prime}}{\left(4k^{2}-3H^{2}\right)\left(16k^{2}-3H^{2}\right)^{2}}\bigg{]}
=\displaystyle\!=\! k2sech43(ky)4(2+cosh(2ky))2(13+11cosh(2ky))3\displaystyle\!-\frac{k^{2}\text{sech}^{\frac{4}{3}}(ky)}{4(2+\cosh(2ky))^{2}(13+11\cosh(2ky))^{3}}
×\displaystyle\times\! [295290+365898cosh(2ky)+56976cosh(4ky)\displaystyle\!\Big{[}295290+365898\cosh(2ky)+56976\cosh(4ky)
\displaystyle\!-\! 24669cosh(6ky)8602cosh(8ky)\displaystyle\!24669\cosh(6ky)-8602\cosh(8ky)
\displaystyle\!-\! 605cosh(10ky)].\displaystyle\!605\cosh(10ky)\Big{]}.
Refer to caption
(a) U(z)~{}U(z)
Refer to caption
(b) Φ0(z)~{}\Phi_{0}(z)
Figure 5: The profiles of the effective potential U(z)U(z) and gravitational zero mode Φ0(z)\Phi_{0}(z) for the case of A=0A=0.

Moreover, the wave function of the massless graviton in yy coordinate is obtained as

Φ0(y)\displaystyle\Phi_{0}(y) =\displaystyle= N0a32(13H24k2)12(13H216k2)14\displaystyle N_{0}a^{\frac{3}{2}}\left(1-\frac{3H^{2}}{4k^{2}}\right)^{\frac{1}{2}}\left(1-\frac{3H^{2}}{16k^{2}}\right)^{\frac{1}{4}} (50)
=\displaystyle= N0sech(ky)(1tanh2(ky)3)12\displaystyle N_{0}\text{sech}(ky)\left(1-\frac{\tanh^{2}(ky)}{3}\right)^{\frac{1}{2}}
×\displaystyle\times (1tanh2(ky)12)14,\displaystyle\left(1-\frac{\tanh^{2}(ky)}{12}\right)^{\frac{1}{4}},

where the normalization constant reads N0=91k453πΓ(1/6)Γ(2/3)k2.146N_{0}=\sqrt{\frac{91k}{453\sqrt{\pi}}\frac{\Gamma\left({1}/{6}\right)}{\Gamma\left({2}/{3}\right)}}\approx\sqrt{\frac{k}{2.146}}. Therefore, the fundamental 5-dimensional gravitational constant is G5=G4/N022.146G4/k{G_{5}}=G_{4}/N_{0}^{2}\approx 2.146{G_{4}}/{k} in this model. The effective potential U(z)U(z) and the wave function of the massless graviton Φ0(z)\Phi_{0}(z) in zz coordinate are illustrated in Fig. 5. It is shown that the widths of the potential well and wave function are both decreasing with the enhancement of the spacetime torsion. The volcano-like effective potential also behaves like U(z)154z2U(z)\sim\frac{15}{4z^{2}} for z1z\gg 1, so it leads to a correction proportional to 1/(kr)3{1}/{(kr)^{3}} to the Newtonian potential as the previous case.

V.3 Case B=0B=0

In this case, the parameters are A=24λA=\frac{24}{\lambda} and C=16γλC=-\frac{16\gamma}{\lambda}, with γ\gamma a free parameter. Then, the ratio F2/F0F_{2}/F_{0} reads

F2F0=3+(68γ2)sin2ϕ+3sin4ϕ3(1+sin2ϕ)(1+γsin2ϕ)a2.\frac{F_{2}}{F_{0}}=\frac{3+\left(6-8\gamma^{2}\right)\sin^{2}\phi+3\sin^{4}\phi}{3\left(1+\sin^{2}\phi\right)\left(1+\gamma\sin^{2}\phi\right)}a^{2}. (51)

Due to π2ϕ(y)π2-\frac{\pi}{2}\leq\phi(y)\leq\frac{\pi}{2}, one has 0sin2ϕ(y)10\leq\sin^{2}\phi(y)\leq 1. Thus, the ratio F2/F0F_{2}/F_{0} is positive everywhere only if γ<32\gamma<-\sqrt{\frac{3}{2}} or 1<γ<32-1<\gamma<\sqrt{\frac{3}{2}}. The coordinate transformation dz=dy/F2/F0dz=dy/\sqrt{F_{2}/F_{0}} is robust and the KK gravitons are tachyonic free in these two parameter intervals.

In order to simplify the expressions, it is convenient to set γ=0\gamma=0, which vanishes the parameter CC. Now the ratio (51) reduces to F2/F0=a2(1+sin2ϕ)F_{2}/F_{0}=a^{2}\left(1+\sin^{2}\phi\right). With the solutions (24), the functions F2F_{2}, F1F_{1} and F0F_{0} are written explicitly as

F2\displaystyle F_{2} =\displaystyle= 1+tanh2(3ky/2)4k2,\displaystyle\frac{1+\tanh^{2}\left(3ky/2\right)}{4k^{2}}, (52)
F1\displaystyle F_{1} =\displaystyle= tanh(3ky/2)8k[8(1+tanh2(3ky/2))12\displaystyle-\frac{\tanh\left(3ky/2\right)}{8k}\Big{[}8\left(1+\tanh^{2}\left(3ky/2\right)\right)^{\frac{1}{2}} (53)
\displaystyle- 3sech2(3ky/2)],\displaystyle 3\text{sech}^{2}\left(3ky/2\right)\Big{]},
F0\displaystyle F_{0} =\displaystyle= 14k2(cosh12(3ky)+2cosh(3ky/2))223\displaystyle\frac{1}{4k^{2}}\left(\cosh^{\frac{1}{2}}(3ky)+\sqrt{2}\cosh\left(3ky/2\right)\right)^{\frac{2\sqrt{2}}{3}} (54)
×\displaystyle\times (21)223.\displaystyle\left(\sqrt{2}-1\right)^{\frac{2\sqrt{2}}{3}}.
Refer to caption
(a) U(z)~{}U(z)
Refer to caption
(b) Φ0(z)~{}\Phi_{0}(z)
Figure 6: The profiles of the effective potential U(z)U(z) and gravitational zero mode Φ0(z)\Phi_{0}(z) for the case of B=0B=0.

Then, the effective potential in yy coordinate can be expressed explicitly as

U(y)\displaystyle\!\!U(y)\!\! =\displaystyle= 3k2a2(5k2H25H4+2k2H)4(k2H2)2\displaystyle\!\!\frac{3k^{2}a^{2}\left(5k^{2}H^{2}-5H^{4}+2k^{2}H^{\prime}\right)}{4\left(k^{2}-H^{2}\right)^{2}} (55)
=\displaystyle= 55cosh(3ky)+6(1+tanh2(3ky/2))(cosh12(3ky)+2cosh(3ky/2))223\displaystyle-\frac{5-5\cosh(3ky)+6\left(1+\tanh^{2}\left(3ky/2\right)\right)}{\left(\cosh^{\frac{1}{2}}(3ky)+\sqrt{2}\cosh\left(3ky/2\right)\right)^{\frac{2\sqrt{2}}{3}}}
×\displaystyle\times 3k2(1+2)2234(1+cosh(3ky)).\displaystyle\frac{3k^{2}\left(1+\sqrt{2}\right)^{\frac{2\sqrt{2}}{3}}}{4(1+\cosh(3ky))}.

Correspondingly, the wave function of the massless graviton in yy coordinate is obtained as

Φ0(y)\displaystyle\Phi_{0}(y)\! =\displaystyle= N0a32\displaystyle\!N_{0}a^{\frac{3}{2}} (56)
=\displaystyle= N0(1+2)12(cosh12(3ky)+2cosh(3ky/2))12,\displaystyle\!\frac{N_{0}\left(1+\sqrt{2}\right)^{\frac{1}{\sqrt{2}}}}{\left(\cosh^{\frac{1}{2}}(3ky)+\sqrt{2}\cosh\left(3ky/2\right)\right)^{\frac{1}{\sqrt{2}}}},

where the normalization constant is estimated as N0k1.684N_{0}\approx\sqrt{\frac{k}{1.684}}. Hence, the fundamental 5-dimensional gravitational constant reads G5=G4/N021.684G4/k{G_{5}}=G_{4}/N_{0}^{2}\approx 1.684{G_{4}}/{k}. The effective potential U(z)U(z) and the wave function of the massless graviton Φ0(z)\Phi_{0}(z) in zz coordinate are illustrated in Fig. 6. It is shown that the widths of the potential well and wave function are both decreasing with the enhancement of the spacetime torsion as the previous cases. The volcano-like effective potential behaves like U(z)154z2U(z)\sim\frac{15}{4z^{2}} for z1z\gg 1 as well, which contributes a correction proportional to 1/(kr)3{1}/{(kr)^{3}} to the Newtonian potential.

VI Conclusions

We studied thick brane scenario in the context of the higher-dimensional BIDG in Weitzenböck spacetime. In order to solve the equations of motion (7) analytically, we resorted to the first-order formalism, which transforms the equations of motion into first-order equations by introducing a superpotential. Three analytic 3-brane solutions were obtained corresponding to some particular cases of parameter choices. It was found that all the three models describe the domain wall braneworld, where the kink scalar maps the boundaries of the extra dimension into two scalar vacua non-trivially. In every model, the thickness of the domain wall brane becomes thinner as the spacetime torsion gets stronger. Furthermore, by introducing a Yukawa coupling between the Dirac field and scalar field in the bulk, the massless chiral fermion can be localized on the domain wall brane Yang2018 ; Liu2017 .

Further, we analyzed the tensor perturbation against the domain wall backgrounds and derived the Schrödinger-like equation (36) of KK modes. The effective potential of the Schrödinger-like equation is volcano-like, which is universal in flat brane scenario. The wave functions of the massless graviton are localized on the brane, so the effective 4-dimensional gravity can be recovered in each model. The widths of the potential well and wave function decrease with the enhancement of the spacetime torsion. The KK gravitons are tachyonic free for any γ\gamma in the first model (A=BA=B), for γ(134,1+34)(3,)\gamma\in\left(\frac{1-\sqrt{3}}{4},\frac{1+\sqrt{3}}{4}\right)\cup(3,\infty) in the second model (A=0A=0), and for γ(,32)(1,32)\gamma\in\left(-\infty,-\sqrt{\frac{3}{2}}\right)\cup\left(-1,\sqrt{\frac{3}{2}}\right) in the third model (B=0B=0).

Since the effective potentials of the Schrödinger-like equation have the same behavior like U(z)154z2U(z)\sim\frac{15}{4z^{2}} for z1z\gg 1, the correction to the Newtonian potential is proportional to 1/(kr)3{1}/{(kr)^{3}} in all modes. This is the same as the correction generated by RS2 model, but is different from the correction generated by domain wall branes in Eddington-inspired Born-Infeld gravity, where the correction is proportional to 1/(kr)3+4n{1}/{(kr)^{3+4n}} with nn a positive integer Liu2012 ; Fu2014 . The experimental test suggests that the length scale deviating from the gravitational inverse-square law is at least less than 48 μ\mum Tan2020 , so the parameter kk is roughly estimated to be k>103k>10^{-3}eV. From the relations G5G4/k{G_{5}}\sim{G_{4}}/{k} and Gd+1=(1/Md+1)d1G_{d+1}=\left(1/M_{d+1}\right)^{d-1}, a sparsity constraint on the fundamental 5-dimensional gravitational scale is obtained as M5>105{M_{5}}>10^{5}TeV.

Although the current scope of this works is to build the braneworld models and investigate the gravitational perturbation, the (pseudo-)scalar and (pseudo-)vector perturbations are also interesting and important. Due to the complexity of the field equations (7), the calculation and analysis on these modes are left for our further investigation.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China under Grant No. 12005174. K. Yang acknowledges the support of Natural Science Foundation of Chongqing, China under Grant No. cstc2020jcyj-msxmX0370. H. Yu acknowledges the support of the Postdoctoral Science Foundation of Chongqing, China under Grant No. tc2021jcyj-bsh0124. Y. Zhong acknowledges the supported of the Natural Science Foundation of Hunan Province, China (Grant No. 2022JJ40033) and the Fundamental Research Funds for the Central Universities (Grants No.531118010195).

Appendix A Perturbations of FPQeAM\frac{\partial F_{PQ}}{\partial{e^{A}}_{M}} and FPQ(SeAM)\frac{\partial F_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})}

The perturbation of FPQeAM\frac{\partial F_{PQ}}{\partial{e^{A}}_{M}} can be assembled by FPQeAM=αFPQ(1)eAM+βFPQ(2)eAM+γFPQ(3)eAM\frac{\partial F_{PQ}}{\partial{e^{A}}_{M}}=\alpha\frac{\partial F^{(1)}_{PQ}}{\partial{e^{A}}_{M}}+\beta\frac{\partial F^{(2)}_{PQ}}{\partial{e^{A}}_{M}}+\gamma\frac{\partial F^{(3)}_{PQ}}{\partial{e^{A}}_{M}}, with the non-vanishing components of FPQ(1)eAM\frac{\partial F^{(1)}_{PQ}}{\partial{e^{A}}_{M}}, FPQ(2)eAM\frac{\partial F^{(2)}_{PQ}}{\partial{e^{A}}_{M}}, and FPQ(3)eAM\frac{\partial F^{(3)}_{PQ}}{\partial{e^{A}}_{M}} given by

Fμν(1)e55\displaystyle\frac{\partial{F}^{(1)}_{\mu\nu}}{\partial e^{5}{}_{5}}\! =\displaystyle\!=\! 2(d1)a2H2[ημν+2hμν+d2d1hμνH],\displaystyle\!2(d-1)a^{2}H^{2}\Big{[}\eta_{\mu\nu}+2h_{\mu\nu}+\frac{d-2}{d-1}\frac{{h^{\prime}}_{\mu\nu}}{H}\Big{]}, (57)
F5ν(1)e5λ\displaystyle\frac{\partial{F}^{(1)}_{5\nu}}{\partial{e}^{5}{}_{\lambda}}\! =\displaystyle\!=\! (1d)H2δλ+ν(2d)Hhλ,ν\displaystyle\!(1-d)H^{2}\delta^{\lambda}{}_{\nu}+(2-d)H{h^{\prime}}^{\lambda}{}_{\nu}, (58)
Fμ5(1)ea5\displaystyle\frac{\partial{F}^{(1)}_{\mu 5}}{\partial{e}^{a}{}_{5}}\! =\displaystyle\!=\! F5μ(1)ea5=(1d)aH2[ηaμ+haμ+d2d1haμH],\displaystyle\!\frac{\partial{F}^{(1)}_{5\mu}}{\partial{e}^{a}{}_{5}}=(1-d)aH^{2}\Big{[}\eta_{a\mu}+h_{a\mu}+\frac{d-2}{d-1}\frac{{h^{\prime}}_{a\mu}}{H}\Big{]},
Fμν(1)e0λ\displaystyle\frac{\partial{F}^{(1)}_{\mu\nu}}{\partial{e}^{0}{}_{\lambda}}\! =\displaystyle\!=\! H[νhλμ(d2)μhλ+ν(d3)λhμν],\displaystyle\!H\left[{\partial_{\nu}h^{\lambda}{}_{\mu}}-(d-2){\partial_{\mu}h^{\lambda}{}_{\nu}}+(d-3)\partial^{\lambda}h_{\mu\nu}\right], (60)
Fμν(1)ea5\displaystyle\frac{\partial{F}^{(1)}_{\mu\nu}}{\partial{e}^{a}{}_{5}}\! =\displaystyle\!=\! aH[(32d)μhaν+12νhaμ+(d2)ahμν],\displaystyle\!aH\left[\Big{(}\frac{3}{2}-d\Big{)}{\partial_{\mu}h_{a\nu}}+\frac{1}{2}{\partial_{\nu}h_{a\mu}}+(d-2){\partial_{a}h_{\mu\nu}}\right],
F5ν(1)eaλ\displaystyle\frac{\partial{F}^{(1)}_{5\nu}}{\partial{e}^{a}{}_{\lambda}}\! =\displaystyle\!=\! Ha(12λhaν+12ahλννha)λ,\displaystyle\!\frac{H}{a}\left(\frac{1}{2}\partial^{\lambda}h_{a\nu}+\frac{1}{2}{\partial_{a}h^{\lambda}{}_{\nu}}-{\partial_{\nu}h_{a}{}^{\lambda}}\right), (62)
Fμν(1)eaλ\displaystyle\frac{\partial{F}^{(1)}_{\mu\nu}}{\partial{e}^{a}{}_{\lambda}}\! =\displaystyle\!=\! aH2[(12d)δληaμν12δληaνμ+δaημνλ]\displaystyle\!aH^{2}\left[\Big{(}\frac{1}{2}-d\Big{)}\delta^{\lambda}{}_{\nu}\eta_{a\mu}-\frac{1}{2}\delta^{\lambda}{}_{\mu}\eta_{a\nu}+\delta_{a}{}^{\lambda}\eta_{\mu\nu}\right] (63)
+\displaystyle\!+\! aH2[(12d)δλhaμν12δλhaνμδμνhaλ\displaystyle\!aH^{2}\Bigg{[}\Big{(}\frac{1}{2}-d\Big{)}\delta^{\lambda}{}_{\nu}h_{a\mu}-\frac{1}{2}\delta^{\lambda}{}_{\mu}h_{a\nu}-\delta_{\mu\nu}h_{a}{}^{\lambda}
+\displaystyle\!+\! 2δahμνλ]aH[12ηaμhλ+νηaνhλμ\displaystyle\!2\delta_{a}{}^{\lambda}h_{\mu\nu}\Bigg{]}-aH\Bigg{[}\frac{1}{2}\eta_{a\mu}{h^{\prime}}^{\lambda}{}_{\nu}+\eta_{a\nu}{h^{\prime}}^{\lambda}{}_{\mu}
\displaystyle\!-\! ημνhaλδahμνλ+(d32)δλhaμν],\displaystyle\!\eta_{\mu\nu}{h^{\prime}}_{a}{}^{\lambda}-\delta_{a}{}^{\lambda}{h^{\prime}}_{\mu\nu}+\Big{(}d-\frac{3}{2}\Big{)}\delta^{\lambda}{}_{\nu}{h^{\prime}}_{a\mu}\Bigg{]},
Fμν(2)e55\displaystyle\frac{\partial F^{(2)}_{\mu\nu}}{\partial{e}^{5}{}_{5}}\! =\displaystyle\!=\! (d1)a2H2[ημν+2hμν+d2d1hμνH],\displaystyle\!(d-1)a^{2}H^{2}\left[\eta_{\mu\nu}+2h_{\mu\nu}+\frac{d-2}{d-1}\frac{{h^{\prime}}_{\mu\nu}}{H}\right], (64)
F5ν(2)e5λ\displaystyle\frac{\partial F^{(2)}_{5\nu}}{\partial{e}^{5}{}_{\lambda}}\! =\displaystyle\!=\! 12[(1d)H2δλ+ν(2d)Hhλ]ν,\displaystyle\!\frac{1}{2}\left[(1-d)H^{2}\delta^{\lambda}{}_{\nu}+(2-d)H{h^{\prime}}^{\lambda}{}_{\nu}\right], (65)
Fμ5(2)e5λ\displaystyle\frac{\partial F^{(2)}_{\mu 5}}{\partial{e}^{5}{}_{\lambda}}\! =\displaystyle\!=\! (1d)H2δλ+μ(2d)Hhλ,μ\displaystyle\!(1-d)H^{2}\delta^{\lambda}{}_{\mu}+(2-d)H{h^{\prime}}^{\lambda}{}_{\mu}, (66)
Fμ5(2)ea5\displaystyle\frac{\partial F^{(2)}_{\mu 5}}{\partial e^{a}{}_{5}}\! =\displaystyle\!=\! F5μ(2)ea5=1d2aH2[ηaμ+haμ+d2d1haμH],\displaystyle\!\frac{\partial F^{(2)}_{5\mu}}{\partial e^{a}{}_{5}}=\frac{1-d}{2}aH^{2}\Big{[}\eta_{a\mu}+h_{a\mu}+\frac{d-2}{d-1}\frac{{h^{\prime}}_{a\mu}}{H}\Big{]},
F55(2)eaλ\displaystyle\frac{\partial F^{(2)}_{55}}{\partial e^{a}{}_{\lambda}}\! =\displaystyle\!=\! (d1)H2a[δaλhaλ+d2d1haλH],\displaystyle\!(d-1)\frac{H^{2}}{a}\left[{\delta_{a}}^{\lambda}-{h_{a}}^{\lambda}+\frac{d-2}{d-1}\frac{{h^{\prime}}_{a}{}^{\lambda}}{H}\right], (68)
Fμν(2)e5λ\displaystyle\frac{\partial F^{(2)}_{\mu\nu}}{\partial e^{5}{}_{\lambda}}\! =\displaystyle\!=\! H2[μhλν(d2)νhλ+μ(d3)λhμν],\displaystyle\!\frac{H}{2}\bigg{[}{\partial_{\mu}h^{\lambda}{}_{\nu}}-(d-2){\partial_{\nu}h^{\lambda}{}_{\mu}}+(d-3)\partial^{\lambda}h_{\mu\nu}\bigg{]},
Fμν(2)ea5\displaystyle\frac{\partial F^{(2)}_{\mu\nu}}{\partial e^{a}{}_{5}}\! =\displaystyle\!=\! aH2[(32d)νhaμ+12μhaν+(d2)ahμν],\displaystyle\!\frac{aH}{2}\bigg{[}\Big{(}\frac{3}{2}-d\Big{)}{\partial_{\nu}h_{a\mu}}+\frac{1}{2}{\partial_{\mu}h_{a\nu}}+(d-2){\partial_{a}h_{\mu\nu}}\bigg{]},
Fμ5(2)eaλ\displaystyle\frac{\partial F^{(2)}_{\mu 5}}{\partial{e^{a}}_{\lambda}}\! =\displaystyle\!=\! H2a[(d3)μhaλ(d2)ahλ+μλhaμ],\displaystyle\!\frac{H}{2a}\left[(d-3){\partial_{\mu}{h_{a}}^{\lambda}}-(d-2){\partial_{a}h^{\lambda}{}_{\mu}}+\partial^{\lambda}h_{a\mu}\right],
F5ν(2)eaλ\displaystyle\frac{\partial F^{(2)}_{5\nu}}{\partial e^{a}{}_{\lambda}}\! =\displaystyle\!=\! H2a[(d2)νhaλ(d32)ahλ+ν12λhaν],\displaystyle\!\frac{H}{2a}\bigg{[}(d-2){\partial_{\nu}h_{a}{}^{\lambda}}-\left(d-\frac{3}{2}\right){\partial_{a}h^{\lambda}{}_{\nu}}+\frac{1}{2}\partial^{\lambda}h_{a\nu}\bigg{]},
Fμν(2)eaλ\displaystyle\frac{\partial F^{(2)}_{\mu\nu}}{\partial{e}^{a}{}_{\lambda}}\! =\displaystyle\!=\! aH24[2δaλημν(2d1)δμηaνλδνηaμλ]\displaystyle\!\frac{aH^{2}}{4}\Big{[}2{\delta_{a}}^{\lambda}\eta_{\mu\nu}-(2d-1)\delta_{\mu}{}^{\lambda}\eta_{a\nu}-\delta_{\nu}{}^{\lambda}\eta_{a\mu}\Big{]} (73)
\displaystyle- aH24[(2d1)δμλhaν+δνλhaμ+2ημνhaλ\displaystyle\frac{aH^{2}}{4}\Big{[}(2d-1){\delta_{\mu}}^{\lambda}h_{a\nu}+{\delta_{\nu}}^{\lambda}h_{a\mu}+2\eta_{\mu\nu}{h_{a}}^{\lambda}
\displaystyle- 4δaλhμν]aH4[ηaμhλ+ν2(d1)δμλhaν\displaystyle 4{\delta_{a}}^{\lambda}h_{\mu\nu}\Big{]}-\frac{aH}{4}\Big{[}\eta_{a\mu}{h^{\prime}}^{\lambda}{}_{\nu}+2(d-1){\delta_{\mu}}^{\lambda}{h^{\prime}}_{a\nu}
+\displaystyle+ δνλhaμ2ημνhaλ2δaλhμν],\displaystyle{\delta_{\nu}}^{\lambda}{h^{\prime}}_{a\mu}-2\eta_{\mu\nu}{h^{\prime}}_{a}{}^{\lambda}-2{\delta_{a}}^{\lambda}{h^{\prime}}_{\mu\nu}\Big{]},
Fμν(3)e55\displaystyle\frac{\partial F^{(3)}_{\mu\nu}}{\partial{e^{5}}_{5}}\! =\displaystyle\!=\! 2d(d1)a2H2(ημν+2hμν),\displaystyle\!2d(d-1)a^{2}H^{2}\left(\eta_{\mu\nu}+2h_{\mu\nu}\right), (74)
Fμ5(3)e5λ\displaystyle\frac{\partial F^{(3)}_{\mu 5}}{\partial{e^{5}}_{\lambda}}\! =\displaystyle\!=\! F5μ(3)e5λ=d(1d)H2δλ,μ\displaystyle\!\frac{\partial F^{(3)}_{5\mu}}{\partial{e^{5}}_{\lambda}}=d(1-d)H^{2}\delta^{\lambda}{}_{\mu}, (75)
Fμ5(3)ea5\displaystyle\frac{\partial F^{(3)}_{\mu 5}}{{\partial e}^{a}{}_{5}}\! =\displaystyle\!=\! F5μ(3)ea5=d(1d)aH2(ηaμ+haμ),\displaystyle\!\frac{\partial F^{(3)}_{5\mu}}{{\partial e}^{a}{}_{5}}=d(1-d)aH^{2}\left(\eta_{a\mu}+h_{a\mu}\right), (76)
F55(3)eaλ\displaystyle\frac{\partial F^{(3)}_{55}}{{\partial e}^{a}{}_{\lambda}}\! =\displaystyle\!=\! 2(d1)H2a[δaλha+λd2d1haλH],\displaystyle\!2(d-1)\frac{H^{2}}{a}\left[\delta_{a}{}^{\lambda}-h_{a}{}^{\lambda}+\frac{d-2}{d-1}\frac{{h^{\prime}}_{a}{}^{\lambda}}{H}\right], (77)
Fμν(3)eaλ\displaystyle\frac{\partial F^{(3)}_{\mu\nu}}{\partial{e^{a}}_{\lambda}}\! =\displaystyle\!=\! (1d)aH2(dδλην)a(μ2δλημνa)\displaystyle\!(1-d)aH^{2}\left(d\delta^{\lambda}{}_{(\mu}\eta_{\nu)a}-2\delta^{\lambda}{}_{a}\eta_{\mu\nu}\right) (78)
+\displaystyle+ (1d)aH2(dδλhν)a(μ+2ημνhaλ4δahμνλ)\displaystyle(1-d)aH^{2}\left(d\delta^{\lambda}{}_{(\mu}h_{\nu)a}+2\eta_{\mu\nu}h_{a}{}^{\lambda}-4\delta_{a}{}^{\lambda}h_{\mu\nu}\right)
+\displaystyle+ 2(d2)aHημνha.λ\displaystyle 2(d-2)aH\eta_{\mu\nu}{h^{\prime}}_{a}{}^{\lambda}.

The perturbation of FPQ(SeAM)\frac{\partial F_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})} can be assembled by FPQ(SeAM)=αFPQ(1)(SeAM)+βFPQ(2)(SeAM)+γFPQ(3)(SeAM)\frac{\partial F_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})}=\alpha\frac{\partial F^{(1)}_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})}+\beta\frac{\partial F^{(2)}_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})}+\gamma\frac{\partial F^{(3)}_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})},where the non-vanishing components of FPQ(1)(SeAM)\frac{\partial F^{(1)}_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})}, FPQ(2)(SeAM)\frac{\partial F^{(2)}_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})}, and FPQ(3)(SeAM)\frac{\partial F^{(3)}_{PQ}}{\partial(\partial_{S}{e^{A}}_{M})} are given by

Fμ5(1)(5e5)λ\displaystyle\frac{\partial{F}^{(1)}_{\mu 5}}{\partial(\partial_{5}e^{5}{}_{\lambda})}\! =\displaystyle\!=\! (1d)Hδλ+μhλ,μ\displaystyle\!(1-d)H\delta^{\lambda}{}_{\mu}+{h^{\prime}}^{\lambda}{}_{\mu}, (79)
Fμ5(1)(γe5)5\displaystyle\frac{\partial F^{(1)}_{\mu 5}}{\partial({\partial_{\gamma}e^{5}{}_{5}})}\! =\displaystyle\!=\! (d1)Hδγμhγ,μ\displaystyle\!(d-1)H\delta^{\gamma}{}_{\mu}-{h^{\prime}}^{\gamma}{}_{\mu}, (80)
Fμν(1)(5e5)λ\displaystyle\frac{\partial{F}^{(1)}_{\mu\nu}}{\partial({\partial_{5}e^{5}{}_{\lambda})}}\! =\displaystyle\!=\! λhμνμhλ,ν\displaystyle\!\partial^{\lambda}h_{\mu\nu}-{\partial_{\mu}h^{\lambda}{}_{\nu}}, (81)
Fμν(1)(γe5)5\displaystyle\frac{\partial F^{(1)}_{\mu\nu}}{\partial({\partial_{\gamma}e^{5}{}_{5}})}\! =\displaystyle\!=\! μhγνγhμν,\displaystyle\!{\partial_{\mu}h^{\gamma}{}_{\nu}}-\partial^{\gamma}h_{\mu\nu}, (82)
F5ν(1)(5ea)λ\displaystyle\frac{\partial F^{(1)}_{5\nu}}{\partial({\partial_{5}e^{a}{}_{\lambda}})}\! =\displaystyle\!=\! 12a(ahλνλhaν),\displaystyle\!\frac{1}{2a}\left({\partial_{a}h^{\lambda}{}_{\nu}}-\partial^{\lambda}h_{a\nu}\right), (83)
F5ν(1)(γea)5\displaystyle\frac{\partial F^{(1)}_{5\nu}}{\partial(\partial_{\gamma}e^{a}{}_{5})}\! =\displaystyle\!=\! 12a(γhaνahγ)ν,\displaystyle\!\frac{1}{2a}\left(\partial^{\gamma}h_{a\nu}-{\partial_{a}h^{\gamma}{}_{\nu}}\right), (84)
Fμ5(1)(γe5)λ\displaystyle\frac{\partial F^{(1)}_{\mu 5}}{\partial(\partial_{\gamma}e^{5}{}_{\lambda})}\! =\displaystyle\!=\! 1a2(γhλμλhγ)μ,\displaystyle\!\frac{1}{a^{2}}\left(\partial^{\gamma}h^{\lambda}{}_{\mu}-\partial^{\lambda}h^{\gamma}{}_{\mu}\right), (85)
F5ν(1)(γe5)λ\displaystyle\frac{\partial F^{(1)}_{5\nu}}{\partial(\partial_{\gamma}e^{5}{}_{\lambda})}\! =\displaystyle\!=\! 12a2(γhλνλhγ)ν,\displaystyle\!\frac{1}{2a^{2}}\left(\partial^{\gamma}h^{\lambda}{}_{\nu}-\partial^{\lambda}h^{\gamma}{}_{\nu}\right), (86)
Fμν(1)(5ea)λ\displaystyle\frac{\partial F^{(1)}_{\mu\nu}}{\partial({\partial_{5}e^{a}{}_{\lambda}})}\! =\displaystyle\!=\! a[Hδaημνλ+(d32)Hδληaνμ\displaystyle\!-a\bigg{[}H\delta_{a}{}^{\lambda}\eta_{\mu\nu}+\left(d-\frac{3}{2}\right)H\delta^{\lambda}{}_{\mu}\eta_{a\nu} (87)
\displaystyle- 12Hδληaμν]+a[Hημνhaλ2Hδahμνλ\displaystyle\frac{1}{2}H\delta^{\lambda}{}_{\nu}\eta_{a\mu}\bigg{]}+a\bigg{[}H\eta_{\mu\nu}h_{a}{}^{\lambda}-2H\delta_{a}{}^{\lambda}h_{\mu\nu}
+\displaystyle+ 12Hδνhaμλ(d32)Hδλhaνμ+ηaνhλμ\displaystyle\frac{1}{2}H\delta_{\nu}{}^{\lambda}h_{a\mu}-\left(d-\frac{3}{2}\right)H\delta^{\lambda}{}_{\mu}h_{a\nu}+\eta_{a\nu}{h^{\prime}}^{\lambda}{}_{\mu}
\displaystyle- δahμνλ+12δλhaνμ+12ηaμhλ]ν,\displaystyle\delta_{a}{}^{\lambda}{h^{\prime}}_{\mu\nu}+\frac{1}{2}\delta^{\lambda}{}_{\mu}{h^{\prime}}_{a\nu}+\frac{1}{2}\eta_{a\mu}{h^{\prime}}^{\lambda}{}_{\nu}\bigg{]},
Fμν(1)(γea)5\displaystyle\frac{\partial F^{(1)}_{\mu\nu}}{\partial(\partial_{\gamma}e^{a}{}_{5})}\! =\displaystyle\!=\! aH[δaημνγ12δγηaμν+(d32)δγηaνμ]\displaystyle\!-aH\bigg{[}\delta_{a}{}^{\gamma}\eta_{\mu\nu}-\frac{1}{2}\delta^{\gamma}{}_{\nu}\eta_{a\mu}+\left(d-\frac{3}{2}\right)\delta^{\gamma}{}_{\mu}\eta_{a\nu}\bigg{]} (88)
+\displaystyle+ a[Hημνhaγ2Hδahμνγ+12Hδγhaμν\displaystyle a\bigg{[}H\eta_{\mu\nu}h_{a}{}^{\gamma}-2H\delta_{a}{}^{\gamma}h_{\mu\nu}+\frac{1}{2}H\delta^{\gamma}{}_{\nu}h_{a\mu}
\displaystyle- (d32)Hδγhaνμ+ηaνhγμδahμνγ\displaystyle\Big{(}d-\frac{3}{2}\Big{)}H\delta^{\gamma}{}_{\mu}h_{a\nu}+\eta_{a\nu}{h^{\prime}}^{\gamma}{}_{\mu}-\delta_{a}{}^{\gamma}{h^{\prime}}_{\mu\nu}
+\displaystyle+ 12δμhaνγ+12ηaμhγ]ν,\displaystyle\frac{1}{2}\delta_{\mu}{}^{\gamma}{h^{\prime}}_{a\nu}+\frac{1}{2}\eta_{a\mu}{h^{\prime}}^{\gamma}{}_{\nu}\bigg{]},
Fμν(1)(γe5)λ\displaystyle\frac{\partial F^{(1)}_{\mu\nu}}{\partial(\partial_{\gamma}e^{5}{}_{\lambda})}\! =\displaystyle\!=\! 12(HδγδλμνHδγδλν+μδγhλμν\displaystyle\!\frac{1}{2}\Big{(}H\delta^{\gamma}{}_{\mu}\delta^{\lambda}{}_{\nu}-H\delta^{\gamma}{}_{\nu}\delta^{\lambda}{}_{\mu}+\delta^{\gamma}{}_{\mu}{h^{\prime}}^{\lambda}{}_{\nu} (89)
\displaystyle- δλhγμ)ν,\displaystyle\delta^{\lambda}{}_{\mu}{h^{\prime}}^{\gamma}{}_{\nu}\Big{)},
F5ν(1)(γea)λ\displaystyle\frac{\partial F^{(1)}_{5\nu}}{\partial(\partial_{\gamma}e^{a}{}_{\lambda})}\! =\displaystyle\!=\! 1a(HδaδγλνHδaδλγ+νHδνhγλa\displaystyle\!\frac{1}{a}\Big{(}H\delta_{a}{}^{\lambda}\delta^{\gamma}{}_{\nu}-H\delta_{a}{}^{\gamma}\delta^{\lambda}{}_{\nu}+H\delta_{\nu}{}^{\lambda}h^{\gamma}{}_{a} (90)
\displaystyle- Hδνhλγ+aδahγλνδahλγ)ν,\displaystyle H\delta_{\nu}{}^{\gamma}h^{\lambda}{}_{a}+\delta_{a}{}^{\lambda}{h^{\prime}}^{\gamma}{}_{\nu}-\delta_{a}{}^{\gamma}{h^{\prime}}^{\lambda}{}_{\nu}\Big{)},
Fμν(1)(γea)λ\displaystyle\frac{\partial F^{(1)}_{\mu\nu}}{\partial(\partial_{\gamma}e^{a}{}_{\lambda})}\! =\displaystyle\!=\! 1a[12δλ(γhaνahγ)νμ\displaystyle\!\frac{1}{a}\bigg{[}\frac{1}{2}\delta^{\lambda}{}_{\mu}\left(\partial^{\gamma}h_{a\nu}-{\partial_{a}h^{\gamma}{}_{\nu}}\right) (91)
\displaystyle- 12δγ(λhaνahλ)νμ\displaystyle\frac{1}{2}\delta^{\gamma}{}_{\mu}\big{(}\partial^{\lambda}h_{a\nu}-{\partial_{a}h^{\lambda}{}_{\nu}}\big{)}
+\displaystyle+ 12ηaμ(γhλνλhγ)ν\displaystyle\frac{1}{2}\eta_{a\mu}\left(\partial^{\gamma}h^{\lambda}{}_{\nu}-\partial^{\lambda}h^{\gamma}{}_{\nu}\right)
+ηaν(γhλμλhγ)μ\displaystyle+\eta_{a\nu}\big{(}\partial^{\gamma}h^{\lambda}{}_{\mu}-\partial^{\lambda}h^{\gamma}{}_{\mu}\big{)}
+\displaystyle+ δa(μhγνγhμν)λ\displaystyle\delta_{a}{}^{\lambda}\left({\partial_{\mu}h^{\gamma}{}_{\nu}}-\partial^{\gamma}h_{\mu\nu}\right)
\displaystyle- δa(μhλνλhμν)γ],\displaystyle\delta_{a}{}^{\gamma}\left({\partial_{\mu}h^{\lambda}{}_{\nu}}-\partial^{\lambda}h_{\mu\nu}\right)\bigg{]},
Fμ5(2)(5e5)λ\displaystyle\frac{\partial F^{(2)}_{\mu 5}}{\partial(\partial_{5}e^{5}{}_{\lambda})}\! =\displaystyle\!=\! 12[(d1)Hδλμhλ]μ,\displaystyle\!\frac{1}{2}\left[(d-1)H\delta^{\lambda}{}_{\mu}-{h^{\prime}}^{\lambda}{}_{\mu}\right], (92)
Fμ5(2)(γe5)5\displaystyle\frac{\partial F^{(2)}_{\mu 5}}{\partial(\partial_{\gamma}e^{5}{}_{5})}\! =\displaystyle\!=\! 12[(1d)Hδγ+μhγ]μ,\displaystyle\!\frac{1}{2}\left[(1-d)H\delta^{\gamma}{}_{\mu}+{h^{\prime}}^{\gamma}{}_{\mu}\right], (93)
F55(2)(5ea)λ\displaystyle\frac{\partial F^{(2)}_{55}}{\partial(\partial_{5}e^{a}{}_{\lambda})}\! =\displaystyle\!=\! 1da(HδaλHhaλhaλd1),\displaystyle\!\frac{1-d}{a}\left(H\delta_{a}{}^{\lambda}-Hh_{a}{}^{\lambda}-\frac{{h^{\prime}}_{a}{}^{\lambda}}{d-1}\right), (94)
F55(2)(γea)5\displaystyle\frac{\partial F^{(2)}_{55}}{\partial(\partial_{\gamma}e^{a}{}_{5})}\! =\displaystyle\!=\! d1a(HδaγHhaγhaγd1),\displaystyle\!\frac{d-1}{a}\left(H\delta_{a}{}^{\gamma}-Hh_{a}{}^{\gamma}-\frac{{h^{\prime}}_{a}{}^{\gamma}}{d-1}\right), (95)
Fμν(2)(5e5)λ\displaystyle\frac{\partial F^{(2)}_{\mu\nu}}{\partial(\partial_{5}e^{5}{}_{\lambda})}\! =\displaystyle\!=\! 12(λhμννhλ)μ,\displaystyle\!\frac{1}{2}\left(\partial^{\lambda}h_{\mu\nu}-{\partial_{\nu}h^{\lambda}{}_{\mu}}\right), (96)
Fμν(2)(γe5)5\displaystyle\frac{\partial F^{(2)}_{\mu\nu}}{\partial(\partial_{\gamma}e^{5}{}_{5})}\! =\displaystyle\!=\! 12(γhμννhγ)μ,\displaystyle\!\frac{1}{2}\left(\partial^{\gamma}h_{\mu\nu}-{\partial_{\nu}h^{\gamma}{}_{\mu}}\right), (97)
Fμ5(2)(5ea)λ\displaystyle\frac{\partial F^{(2)}_{\mu 5}}{\partial({\partial_{5}e^{a}{}_{\lambda}})}\! =\displaystyle\!=\! 12a(μhaλλhaμ),\displaystyle\!\frac{1}{2a}\left({\partial_{\mu}h_{a}{}^{\lambda}}-\partial^{\lambda}h_{a\mu}\right), (98)
F5ν(2)(5ea)λ\displaystyle\frac{\partial{F}^{(2)}_{5\nu}}{\partial(\partial_{5}e^{a}{}_{\lambda})}\! =\displaystyle\!=\! 14a(2νhaλλhaνahλ)ν,\displaystyle\!\frac{1}{4a}\left(2{\partial_{\nu}h_{a}{}^{\lambda}}-\partial^{\lambda}h_{a\nu}-{\partial_{a}h^{\lambda}{}_{\nu}}\right), (99)
Fμ5(2)(γea)5\displaystyle\frac{\partial F^{(2)}_{\mu 5}}{\partial(\partial_{\gamma}e^{a}{}_{5})}\! =\displaystyle\!=\! 12a(γhaμμha)γ,\displaystyle\!\frac{1}{2a}\left(\partial^{\gamma}h_{a\mu}-{\partial_{\mu}h_{a}{}^{\gamma}}\right), (100)
F5ν(2)(γea)5\displaystyle\frac{\partial F^{(2)}_{5\nu}}{\partial(\partial_{\gamma}e^{a}{}_{5})}\! =\displaystyle\!=\! 14a(γhaν+ahγν2νha)γ,\displaystyle\!\frac{1}{4a}\left(\partial^{\gamma}h_{a\nu}+{\partial_{a}h^{\gamma}{}_{\nu}}-2{\partial_{\nu}h_{a}{}^{\gamma}}\right), (101)
F5ν(2)(γe5)λ\displaystyle\frac{\partial F^{(2)}_{5\nu}}{\partial(\partial_{\gamma}e^{5}{}_{\lambda})}\! =\displaystyle\!=\! 14a2(γhλνλhγ)ν,\displaystyle\!\frac{1}{4a^{2}}\left(\partial^{\gamma}h^{\lambda}{}_{\nu}-\partial^{\lambda}h^{\gamma}{}_{\nu}\right), (102)
Fμν(2)(γe5)λ\displaystyle\frac{\partial F^{(2)}_{\mu\nu}}{\partial(\partial_{\gamma}e^{5}{}_{\lambda})}\! =\displaystyle\!=\! 14(HδμδνλγHδμδνγ+λδμhγλ,ν\displaystyle\!\frac{1}{4}\Big{(}H\delta_{\mu}{}^{\lambda}\delta_{\nu}{}^{\gamma}-H\delta_{\mu}{}^{\gamma}\delta_{\nu}{}^{\lambda}+\delta_{\mu}{}^{\lambda}{h^{\prime}}^{\gamma}{}_{\nu}, (103)
\displaystyle- δμhλγ)ν\displaystyle\delta_{\mu}{}^{\gamma}{h^{\prime}}^{\lambda}{}_{\nu}\Big{)}
Fμν(2)(5ea)λ\displaystyle\frac{\partial{F}^{(2)}_{\mu\nu}}{\partial(\partial_{5}e^{a}{}_{\lambda})}\! =\displaystyle\!=\! a2[Hδaημνλ+(d32)Hδληaμν\displaystyle\!-\frac{a}{2}\bigg{[}H\delta_{a}{}^{\lambda}\eta_{\mu\nu}+\Big{(}d-\frac{3}{2}\Big{)}H\delta^{\lambda}{}_{\nu}\eta_{a\mu} (104)
\displaystyle- 12Hδληaνμ]a2[2HδahμνλHημνhaλ\displaystyle\frac{1}{2}H\delta^{\lambda}{}_{\mu}\eta_{a\nu}\bigg{]}-\frac{a}{2}\bigg{[}2H\delta_{a}{}^{\lambda}h_{\mu\nu}-H\eta_{\mu\nu}h_{a}{}^{\lambda}
\displaystyle- 12Hδλhaνμ+(d32)Hδλhaμν+δahμνλ\displaystyle\frac{1}{2}H\delta^{\lambda}{}_{\mu}h_{a\nu}+\Big{(}d-\frac{3}{2}\Big{)}H\delta^{\lambda}{}_{\nu}h_{a\mu}+\delta_{a}{}^{\lambda}{h^{\prime}}_{\mu\nu}
δλhaμν12δλhaνμ12ηaμhλ]ν,\displaystyle-\delta^{\lambda}{}_{\nu}{h^{\prime}}_{a\mu}-\frac{1}{2}\delta^{\lambda}{}_{\mu}{h^{\prime}}_{a\nu}-\frac{1}{2}\eta_{a\mu}{h^{\prime}}^{\lambda}{}_{\nu}\bigg{]},
Fμν(2)(γea)5\displaystyle\frac{\partial F^{(2)}_{\mu\nu}}{\partial(\partial_{\gamma}e^{a}{}_{5})}\! =\displaystyle\!=\! a2[Hδaημνγ+(d32)Hδγηaμν\displaystyle\!\frac{a}{2}\bigg{[}H\delta_{a}{}^{\gamma}\eta_{\mu\nu}+\left(d-\frac{3}{2}\right)H\delta^{\gamma}{}_{\nu}\eta_{a\mu} (105)
\displaystyle- 12Hδγηaνμ]+a2[2HδahμνγHημνhaγ\displaystyle\frac{1}{2}H\delta^{\gamma}{}_{\mu}\eta_{a\nu}\bigg{]}+\frac{a}{2}\bigg{[}2H\delta_{a}{}^{\gamma}h_{\mu\nu}-H\eta_{\mu\nu}h_{a}{}^{\gamma}
\displaystyle- 12Hδμhaνγ+(d32)Hδνhaμγ+δahμνγ\displaystyle\frac{1}{2}H\delta_{\mu}{}^{\gamma}h_{a\nu}+\left(d-\frac{3}{2}\right)H\delta_{\nu}{}^{\gamma}h_{a\mu}+\delta_{a}{}^{\gamma}{h^{\prime}}_{\mu\nu}
\displaystyle- δνhaμγ12δμhaνγ12ηaμhγ]ν,\displaystyle\delta_{\nu}{}^{\gamma}{h^{\prime}}_{a\mu}-\frac{1}{2}\delta_{\mu}{}^{\gamma}{h^{\prime}}_{a\nu}-\frac{1}{2}\eta_{a\mu}{h^{\prime}}^{\gamma}{}_{\nu}\bigg{]},
Fμν(2)(γea)λ\displaystyle\frac{\partial F^{(2)}_{\mu\nu}}{\partial(\partial_{\gamma}e^{a}{}_{\lambda})}\! =\displaystyle\!=\! 14a[2δa(νhγμγhμν)λ\displaystyle\!\frac{1}{4a}\Big{[}2\delta_{a}{}^{\lambda}\big{(}{\partial_{\nu}h^{\gamma}{}_{\mu}}-\partial^{\gamma}h_{\mu\nu}\big{)} (106)
\displaystyle- 2δa(νhλμλhμν)γ\displaystyle 2\delta_{a}{}^{\gamma}\big{(}{\partial_{\nu}h^{\lambda}{}_{\mu}}-\partial^{\lambda}h_{\mu\nu}\big{)}
+\displaystyle+ ηaμ(γhλνλhγ)ν\displaystyle\eta_{a\mu}\big{(}\partial^{\gamma}h^{\lambda}{}_{\nu}-\partial^{\lambda}h^{\gamma}{}_{\nu}\big{)}
+δμ(2νhaλλhaνahλ)νγ\displaystyle+\delta_{\mu}{}^{\gamma}\big{(}2{\partial_{\nu}h_{a}{}^{\lambda}}-\partial^{\lambda}h_{a\nu}-{\partial_{a}h^{\lambda}{}_{\nu}}\big{)}
\displaystyle- δμ(2νhaγγhaνahγ)νλ\displaystyle\delta_{\mu}{}^{\lambda}\big{(}2{\partial_{\nu}h_{a}{}^{\gamma}}-\partial^{\gamma}h_{a\nu}-{\partial_{a}h^{\gamma}{}_{\nu}}\big{)}
+\displaystyle+ 2δγ(μhaλλhaμ)ν\displaystyle 2\delta^{\gamma}{}_{\nu}\big{(}{\partial_{\mu}h_{a}{}^{\lambda}}-\partial^{\lambda}h_{a\mu}\big{)}
\displaystyle- 2δλ(μhaγγhaμ)ν],\displaystyle 2\delta^{\lambda}{}_{\nu}\big{(}{\partial_{\mu}h_{a}{}^{\gamma}}-\partial^{\gamma}h_{a\mu}\big{)}\Big{]},
F55(3)(5ea)λ\displaystyle\frac{\partial F^{(3)}_{55}}{\partial({\partial_{5}e^{a}{}_{\lambda}})}\! =\displaystyle\!=\! 2(1d)a[HδaλHhaλhaλd1],\displaystyle\!\frac{2(1-d)}{a}\left[H\delta_{a}{}^{\lambda}-Hh_{a}{}^{\lambda}-\frac{{h^{\prime}}_{a}{}^{\lambda}}{d-1}\right], (107)
F55(3)(γea)5\displaystyle\frac{\partial F^{(3)}_{55}}{\partial(\partial_{\gamma}e^{a}{}_{5})}\! =\displaystyle\!=\! 2(d1)a[HδaγHhaγhaγd1],\displaystyle\!\frac{2(d-1)}{a}\left[H\delta_{a}{}^{\gamma}-Hh_{a}{}^{\gamma}-\frac{{h^{\prime}}_{a}{}^{\gamma}}{d-1}\right], (108)
F55(3)(γea)λ\displaystyle\frac{\partial F^{(3)}_{55}}{\partial({\partial_{\gamma}e^{a}{}_{\lambda}})}\! =\displaystyle\!=\! 2a3(γhaλλha)γ,\displaystyle\!\frac{2}{a^{3}}\left(\partial^{\gamma}h_{a}{}^{\lambda}-\partial^{\lambda}h_{a}{}^{\gamma}\right), (109)
Fμν(3)(5ea)λ\displaystyle\frac{\partial F^{(3)}_{\mu\nu}}{\partial({\partial_{5}e^{a}{}_{\lambda}})}\! =\displaystyle\!=\! 2aημν[(1d)Hδaλ(1d)Hha+λha]λ\displaystyle\!2a\eta_{\mu\nu}\left[(1-d)H\delta_{a}{}^{\lambda}-(1-d)Hh_{a}{}^{\lambda}+{h^{\prime}}_{a}{}^{\lambda}\right] (110)
+\displaystyle+ 4(1d)aHδahμνλ,\displaystyle 4(1-d)aH\delta_{a}{}^{\lambda}h_{\mu\nu},
Fμν(3)(γea)5\displaystyle\frac{\partial F^{(3)}_{\mu\nu}}{\partial({\partial_{\gamma}e^{a}{}_{5}})}\! =\displaystyle\!=\! 2aημν[(d1)Hδaγ(d1)Hhaγha]γ\displaystyle\!2a\eta_{\mu\nu}\left[(d-1)H\delta_{a}{}^{\gamma}-(d-1)Hh_{a}{}^{\gamma}-{h^{\prime}}_{a}{}^{\gamma}\right] (111)
+\displaystyle+ 4(d1)aHδahμνγ,\displaystyle 4(d-1)aH\delta_{a}{}^{\gamma}h_{\mu\nu},
Fμν(3)(γea)λ\displaystyle\frac{\partial F^{(3)}_{\mu\nu}}{\partial({\partial_{\gamma}e^{a}{}_{\lambda}})}\! =\displaystyle\!=\! 2aημν(γhaλλha)γ.\displaystyle\!\frac{2}{a}\eta_{\mu\nu}\left(\partial^{\gamma}h_{a}{}^{\lambda}-\partial^{\lambda}h_{a}{}^{\gamma}\right). (112)

References

  • (1) Y. M. Cho, Einstein Lagrangian as the Translational Yang-Mills Lagrangian, Phys. Rev. D 14 (1976) 2521.
  • (2) K. Hayashi and T. Shirafuji, New general relativity, Phys. Rev. D 19 (1979) 3524.
  • (3) J. W. Maluf, The teleparallel equivalent of general relativity, Annalen Phys. 525 (2013) 339–357, [arXiv:1303.3897].
  • (4) S. Bahamonde, K. F. Dialektopoulos, C. Escamilla-Rivera, G. Farrugia, V. Gakis, M. Hendry, M. Hohmann, J. L. Said, J. Mifsud, and E. Di Valentino, Teleparallel Gravity: From Theory to Cosmology, arXiv:2106.13793.
  • (5) R. Ferraro and F. Fiorini, Modified teleparallel gravity: Inflation without inflaton, Phys. Rev. D 75 (2007) 084031, [gr-qc/0610067].
  • (6) G. R. Bengochea and R. Ferraro, Dark torsion as the cosmic speed-up, Phys. Rev. D 79 (2009) 124019, [arXiv:0812.1205].
  • (7) E. V. Linder, Einstein’s Other Gravity and the Acceleration of the Universe, Phys. Rev. D 81 (2010) 127301, [arXiv:1005.3039]. [Erratum: Phys. Rev. D 82, 109902 (2010)].
  • (8) V. F. Cardone, N. Radicella, and S. Camera, Accelerating f(T) gravity models constrained by recent cosmological data, Phys. Rev. D 85 (2012) 124007, [arXiv:1204.5294].
  • (9) R. Ferraro and F. Fiorini, On Born-Infeld Gravity in Weitzenböck spacetime, Phys. Rev. D 78 (2008) 124019, [arXiv:0812.1981].
  • (10) S. W. Hawking and R. Penrose, The singularities of gravitational collapse and cosmology, Proc. R. Soc. Lond. A 314 (1970) 529.
  • (11) S. Deser and G. W. Gibbons, Born-infeld-einstein actions?, Class. Quant. Grav. 15 (1998) L35, [hep-th/9803049].
  • (12) D. N. Vollick, Palatini approach to born-infeld-einstein theory and a geometric description of electrodynamics, Phys. Rev. D 69 (2004) 064030, [gr-qc/0309101].
  • (13) M. Bañados and P. G. Ferreira, Eddington’s theory of gravity and its progeny, Phys. Rev. Lett. 105 (2010) 011101, [arXiv:1006.1769]. Erratum: Phys. Rev. Lett. 113 (2014) 119901.
  • (14) C.-Y. Chen, M. Bouhmadi-López, and P. Chen, Modified eddington-inspired-born-infeld gravity with a trace term, Eur. Phys. J. C 76 (2016) 40, [arXiv:1507.00028].
  • (15) R. Ferraro and F. Fiorini, Born-Infeld Determinantal gravity and the taming of the conical singularity in 3-dimensional spacetime, Phys. Lett. B 692 (2010) 206, [arXiv:0910.4693].
  • (16) F. Fiorini, Nonsingular promises from born-infeld gravity, Phys. Rev. Lett. 111 (2013) 041104, [arXiv:1306.4392].
  • (17) F. Fiorini, Primordial brusque bounce in Born-Infeld determinantal gravity, Phys. Rev. D 94 (2016) 024030, [arXiv:1511.03227].
  • (18) K. Yang, Y.-P. Zhang, and Y.-X. Liu, Tensor stability in Born-Infeld determinantal gravity, Eur. Phys. J. C 79 (2019), no. 9 736, [arXiv:1812.07348].
  • (19) M. Bouhmadi-López, C.-Y. Chen, and P. Chen, Cosmological singularities in Born-Infeld determinantal gravity, Phys. Rev. D 90 (2014) 123518, [arXiv:1407.5114].
  • (20) F. Fiorini and N. Vattuone, An analysis of born-infeld determinantal gravity in weitzenböck spacetime, Phys. Lett. B 763 (2016) 45, [arXiv:1608.02622].
  • (21) N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263, [hep-ph/9803315].
  • (22) N. Arkani-Hamed, S. Dimopoulos, N. Kaloper, and R. Sundrum, A small cosmological constant from a large extra dimension, Phys. Lett. B 480 (2000) 193, [hep-th/0001197].
  • (23) L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370, [hep-ph/9905221].
  • (24) L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690, [hep-th/9906064].
  • (25) A. Arvanitaki, S. Dimopoulos, V. Gorbenko, J. Huang, and K. Van Tilburg, A small weak scale from a small cosmological constant, JHEP 05 (2017) 071, [arXiv:1609.06320].
  • (26) V. Dzhunushaliev, V. Folomeev, and M. Minamitsuji, Thick brane solutions, Rept. Prog. Phys. 73 (2010) 066901, [arXiv:0904.1775].
  • (27) R. Davies, D. P. George, and R. R. Volkas, The standard model on a domain-wall brane, Phys. Rev. D 77 (2008) 124038, [arXiv:0705.1584].
  • (28) A. Behboodi, S. Akhshabi, and K. Nozari, Braneworld Teleparallel Gravity, Phys. Lett. B 723 (2013) 201, [arXiv:1212.5772].
  • (29) C.-Q. Geng, L.-W. Luo, and H.-H. Tseng, Teleparallel Gravity in Five Dimensional Theories, Class. Quant. Grav. 31 (2014) 185004, [arXiv:1403.3161].
  • (30) K. Bamba, S. Nojiri, and S. D. Odintsov, Effective F(T)F(T) gravity from the higher-dimensional Kaluza-Klein and Randall-Sundrum theories, Phys. Lett. B 725 (2013) 368, [arXiv:1304.6191].
  • (31) J. Yang, Y.-L. Li, Y. Zhong, and Y. Li, Thick brane split caused by spacetime torsion, Phys. Rev. D 85 (2012) 084033, [arXiv:1202.0129].
  • (32) R. Menezes, First order formalism for thick branes in modified teleparallel gravity, Phys. Rev. D 89 (2014) 125007, [arXiv:1403.5587].
  • (33) K. Yang, W.-D. Guo, Z.-C. Lin, and Y.-X. Liu, Domain wall brane in a reduced Born-Infeld-f(T)f(T) theory, Phys. Lett. B 782 (2018) 170, [arXiv:1709.01047].
  • (34) J. Wang, W.-D. Guo, Z.-C. Lin, and Y.-X. Liu, Braneworld in f(T)f(T) Gravity Theory with Noncanonical Scalar Matter Field, Phys. Rev. D 98 (2018) 084046, [arXiv:1808.00771].
  • (35) W.-D. Guo, Q.-M. Fu, Y.-P. Zhang, and Y.-X. Liu, Tensor perturbations of f(t)f(t)-branes, Phys. Rev. D 93 (2016) 044002, [arXiv:1511.07143].
  • (36) Q. Tan, W.-D. Guo, Y.-P. Zhang, and Y.-X. Liu, Gravitational resonances on f(T)f(T)-branes, Eur. Phys. J. C 81 (2021) 373, [arXiv:2008.08440].
  • (37) A. R. P. Moreira, J. E. G. Silva, D. F. S. Veras, and C. A. S. Almeida, Thick string-like braneworlds in f(T) gravity, Int. J. Mod. Phys. D 30 (2021) 2150047, [arXiv:2006.06891].
  • (38) B. Li, T. P. Sotiriou, and J. D. Barrow, f(T)f(T) gravity and local Lorentz invariance, Phys. Rev. D 83 (2011) 064035, [arXiv:1010.1041].
  • (39) Y.-X. Liu, K. Yang, H. Guo, and Y. Zhong, Domain wall brane in eddington inspired born-infeld gravity, Phys. Rev. D 85 (2012) 124053, [arXiv:1203.2349].
  • (40) K. Yang, Y.-X. Liu, Y. Zhong, X.-L. Du, and S.-W. Wei, Gravity localization and mass hierarchy in scalar-tensor branes, Phys. Rev. D 86 (2012) 127502, [arXiv:1212.2735].
  • (41) O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch, Modeling the fifth dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008, [hep-th/9909134].
  • (42) M. Gremm, Four-dimensional gravity on a thick domain wall, Phys. Lett. B 478 (2000) 434, [hep-th/9912060].
  • (43) V. Afonso, D. Bazeia, and L. Losano, First-order formalism for bent brane, Phys. Lett. B 634 (2006) 526, [hep-th/0601069].
  • (44) Y.-P. Wu and C.-Q. Geng, Matter Density Perturbations in Modified Teleparallel Theories, JHEP 11 (2012) 142, [arXiv:1211.1778].
  • (45) K. Izumi and Y. C. Ong, Cosmological perturbation in f(t) gravity revisited, JCAP 06 (2013) 029, [arXiv:1212.5774].
  • (46) K. Yang, Y.-X. Liu, B. Guo, and X.-L. Du, Scalar perturbations of Eddington-inspired Born-Infeld braneworld, Phys. Rev. D 96 (2017) 064039, [arXiv:1706.04818].
  • (47) M. Fukushima, Y. Misonoh, S. Miyashita, and S. Sato, Stable singularity-free cosmological solutions in nonprojectable Hořava-Lifshitz gravity, Phys. Rev. D 99 (2019) 064004, [arXiv:1812.10295].
  • (48) C. Csaki, J. Erlich, T. J. Hollowood, and Y. Shirman, Universal aspects of gravity localized on thick branes, Nucl. Phys. B 581 (2000) 309, [hep-th/0001033].
  • (49) D. Bazeia, A. R. Gomes, and L. Losano, Gravity localization on thick branes: a numerical approach, Int. J. Mod. Phys. A 24 (2009) 1135, [arXiv:0708.3530].
  • (50) Y.-X. Liu, Introduction to Extra Dimensions and Thick Braneworlds, Memorial Volume for Yi-Shi Duan Chapter 8 (2018) 211, [arXiv:1707.08541].
  • (51) Q.-M. Fu, L. Zhao, K. Yang, B.-M. Gu, and Y.-X. Liu, Stability and (quasi)localization of gravitational fluctuations in an eddington-inspired born-infeld brane system, Phys. Rev. D 90 (2014) 104007, [arXiv:1407.6107].
  • (52) W.-H. Tan, A.-B. Du, W.-C. Dong, S.-Q. Yang, C.-G. Shao, S.-G. Guan, Q.-L. Wang, B.-F. Zhan, P.-S. Luo, L.-C. Tu, and J. Luo, Improvement for Testing the Gravitational Inverse-Square Law at the Submillimeter Range, Phys. Rev. Lett. 124 (2020) 051301.