This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\thankstext

e1email: [email protected] 11institutetext: Department of Domestic Science, Koriyama Women’s University, Koriyama, Fukushima, 963-8503, JAPAN

\abstractdc

We study the thermodynamic quantities in the system of the NN independent harmonic oscillators with different frequencies in the Tsallis statistics of the entropic parameter qq (1<q<21<q<2) with escort average. The self-consistent equation is derived, and the physical quantities are calculated with the physical temperature. It is found that the number of oscillators is restricted below 1/(q1)1/(q-1). The energy, the Rényi entropy, and the Tsallis entropy are obtained by solving the self-consistent equation approximately at high physical temperature and/or for small deviation q1q-1. The energy is qq-independent at high physical temperature when the physical temperature is adopted, and the energy is proportional to the number of oscillators and physical temperature at high physical temperature. The form of the Rényi entropy is similar to that of von-Neumann entropy, and the Tsallis entropy is given through the Rényi entropy. The physical temperature dependence of the Tsallis entropy is different from that of Rényi entropy. The Tsallis entropy is bounded from the above, while the Rényi entropy increases with the physical temperature. The ratio of the Tsallis entropy to the Rényi entropy is small at high physical temperature.

Thermodynamics of the independent harmonic oscillators with different frequencies in the Tsallis statistics

Masamichi Ishihara\thanksrefe1,addr1

1 Introduction

The various statistics have been proposed to describe the phenomena which show power-like distributions. An extension of the Boltzmann-Gibbs statistics is the Tsallis statistics, and the statistics has been applied in various branches of science TsallisBook . The escort average is often adopted to calculate the physical quantities in the Tsallis statistics. The Tsallis statistics has the entropic parameter qq, and the statistics approaches the Boltzmann-Gibbs statistic as qq approaches one.

The entropic parameter qq is often restricted. The normalizability of the probability requires that qq is less than two Tsallis-BJP39-overview . The parameter qq is also restricted because physical quantities are restricted Tsallis-BJP39-overview ; Ishihara2016:IJMPE ; Bhattacharyya:2016 ; Bhattacharyya . For example, the energy density should be finite and the number of particles should be positive, and these requirements show that the maximum value of qq is smaller than two. The limitation of qq was also derived by using the conjugate variables theorem Umpierrez2021 .

Simple systems have been adopted to study the effects of statistics. The classical gas model was adopted, and it was found that the energy is proportional to the number of particles and the physical temperature Kalyana:2000 ; Abe-PLA:2001 ; S.Abe:physicaA:2001 ; Aragao:2003 ; Ruthotto:2003 ; Toral:2003 ; Suyari:2006 ; Ishihara:phi4 ; Ishihara:free-field ; Ishihara:Thermodyn-rel in the Tsallis statistics. It is also found that the number of the particles are restricted Abe-PLA:2001 . The thermodynamic quantities for a classical harmonic oscillator was also calculated in the Tsallis statistics with escort average. The partition function was calculated and the energy was obtained Tsallis1998 .

The calculations of the thermodynamic quantities for the harmonic oscillators are required in the Tsallis statistics. A field is decomposed into harmonic oscillators with different frequencies to calculate physical quantities. The results for the harmonic oscillators with different frequencies in the Tsallis statistics will be helpful to calculate physical quantities in various systems.

In this paper, we study the thermodynamic quantities in the system of the NN independent harmonic oscillators in the Tsallis statistics of the entropic parameter qq. The range of qq is set between one and two in this study. The escort average is employed to obtain physical values. In Sec. 2, we briefly review the Tsallis statistics. In Sec. 3, we study the NN independent harmonic oscillators with different frequencies. The self-consistent equation is derived, and the equation is solved approximately. The expression of the energy is obtained with physical temperature. The expressions of Tsallis and Rényi entropies are also obtained. The last section is assigned for conclusion.

2 Brief review of the Tsallis statistics

The Tsallis statistics TsallisBook is based on the Tsallis entropy Sq(T)S_{q}^{(T)} with the entropic parameter qq. The entropy Sq(T)S_{q}^{(T)} is defined by

Sq(T)=1Tr[ρ^q]q1,\displaystyle S_{q}^{(T)}=\frac{1-\mathrm{Tr}\left[\hat{\rho}^{q}\right]}{q-1}, (1)

where ρ^\hat{\rho} is the density operator. The density operator ρ^\hat{\rho} is obtained by extremizing Sq(T)S_{q}^{(T)} under the normalization condition Tr[ρ^]=1\mathrm{Tr}\left[\hat{\rho}\right]=1 and the energy constraint:

U=Tr[ρ^qH^]Tr[ρ^q],\displaystyle U=\frac{\mathrm{Tr}\left[\hat{\rho}^{q}\hat{H}\right]}{\mathrm{Tr}\left[\hat{\rho}^{q}\right]}, (2)

where UU is the energy. The right-hand side of Eq. (2) is the escort average of the Hamiltonian H^\hat{H}.

The density operator ρ^\hat{\rho} in the Tsallis statistics with the escort average is obtained:

ρ^=1Z(1(1q)βcq(H^U))11q,\displaystyle\hat{\rho}=\frac{1}{Z}\left(1-(1-q)\frac{\beta}{c_{q}}(\hat{H}-U)\right)^{\frac{1}{1-q}}, (3a)
Z=Tr[(1(1q)βcq(H^U))11q],\displaystyle Z=\mathrm{Tr}\left[\left(1-(1-q)\frac{\beta}{c_{q}}(\hat{H}-U)\right)^{\frac{1}{1-q}}\right], (3b)
cq=Tr[ρ^q],\displaystyle c_{q}=\mathrm{Tr}\left[\hat{\rho}^{q}\right], (3c)

where β\beta is the inverse temperature. The partition function ZZ is related to cqc_{q}:

cq=Z1q.\displaystyle c_{q}=Z^{1-q}. (4)

The inverse physical temperature is given by

βph=β/cq.\displaystyle\beta_{\mathrm{ph}}=\beta/c_{q}. (5)

The physical temperature TphT_{\mathrm{ph}} is given as 1/βph1/\beta_{\mathrm{ph}}.

The thermodynamic quantities are calculated with the above density operator for the NN independent harmonic oscillators with different frequencies in the following section.

3 The independent harmonic oscillators with different frequencies

3.1 Derivation of self-consistent equation

We attempt to derive the self-consistent equation by calculating cqc_{q} in two ways. One way is the method by using the relation cq=Z1qc_{q}=Z^{1-q} and the other way is the method by calculating cq=Tr[ρ^q]c_{q}=\mathrm{Tr}\left[\hat{\rho}^{q}\right] directly. We obtain the self-consistent equation by equating these results.

We treat the NN independent harmonic oscillators with different frequencies. The Hamiltonian H^\hat{H} is

H^=j=1Nωj(n^j+12),\displaystyle\hat{H}=\sum_{j=1}^{N}\omega_{j}\left(\hat{n}_{j}+\frac{1}{2}\right), (6)

where n^j\hat{n}_{j} is the number operator with the subscript jj. We treat the above Hamiltonian in the Tsallis statistics of 1<q<21<q<2: (2q)/(q1)(2-q)/(q-1), 1/(q1)1/(q-1), and q/(q1)q/(q-1) are positive.

We introduce a parameter ErefE_{\mathrm{ref}} and calculate the partition function ZZ:

Z\displaystyle Z =n1,,nN=0{1+(q1)βph(2(ω1++ωN)U)+(q1)βph(ω1n1++ωNnN)}11q\displaystyle=\sum_{n_{1},\cdots,n_{N}=0}^{\infty}\left\{1+(q-1)\beta_{\mathrm{ph}}\Bigg{(}\frac{\hbar}{2}(\omega_{1}+\cdots+\omega_{N})-U\Bigg{)}+(q-1)\beta_{\mathrm{ph}}\Bigg{(}\hbar\omega_{1}n_{1}+\cdots+\hbar\omega_{N}n_{N}\Bigg{)}\right\}^{\frac{1}{1-q}}
=((q1)βphEref)11qn1,,nN=0(λN+a1n1++aNnN)11q,\displaystyle=\left((q-1)\beta_{\mathrm{ph}}E_{\mathrm{ref}}\right)^{\frac{1}{1-q}}\sum_{n_{1},\cdots,n_{N}=0}^{\infty}(\lambda_{N}+a_{1}n_{1}+\cdots+a_{N}n_{N})^{\frac{1}{1-q}}, (7)

where

λN=1+(q1)βph(12(i=1Nωi)U)(q1)βphEref,\displaystyle\lambda_{N}=\frac{1+(q-1)\beta_{\mathrm{ph}}\Bigg{(}\displaystyle\frac{1}{2}\left(\displaystyle\sum_{i=1}^{N}\hbar\omega_{i}\right)-U\Bigg{)}}{(q-1)\beta_{\mathrm{ph}}E_{\mathrm{ref}}}, (8a)
aj:=ωjEref.\displaystyle a_{j}:=\frac{\hbar\omega_{j}}{E_{\mathrm{ref}}}. (8b)

Equation (7) is represented with Barnes zeta function ζB(s,α|ωN)\zeta_{\mathrm{B}}(s,\alpha|\vec{\omega}_{N}) (See Eq. (38)):

Z\displaystyle Z =((q1)βphEref)11qζB(1/(q1),λN|aN)aN=(a1,a2,,aN).\displaystyle=\left((q-1)\beta_{\mathrm{ph}}E_{\mathrm{ref}}\right)^{\frac{1}{1-q}}\zeta_{\mathrm{B}}\left(1/(q-1),\lambda_{N}|\vec{a}_{N}\right)\qquad\vec{a}_{N}=(a_{1},a_{2},\cdots,a_{N}). (9)

The condition s>Ns>N for the parameters of the Barnes zeta function in the present case is

1q1>N.\displaystyle\frac{1}{q-1}>N. (10)

This means that the number of the oscillators is restricted. We also calculate cqc_{q} directly as

cq=Tr[ρ^q]=Zq((q1)βphEref)q1qζB(q/(q1),λN|aN).\displaystyle c_{q}=\mathrm{Tr}\left[\hat{\rho}^{q}\right]=Z^{-q}\left((q-1)\beta_{\mathrm{ph}}E_{\mathrm{ref}}\right)^{\frac{q}{1-q}}\zeta_{\mathrm{B}}\left(q/(q-1),\lambda_{N}|\vec{a}_{N}\right). (11)

From Eqs. (4), (9), and (11), we have the following self-consistent equation:

((q1)βphEref)ζB(1/(q1),λN|aN)=ζB(q/(q1),λN|aN).\displaystyle\left((q-1)\beta_{\mathrm{ph}}E_{\mathrm{ref}}\right)\zeta_{\mathrm{B}}\left(1/(q-1),\lambda_{N}|\vec{a}_{N}\right)=\zeta_{\mathrm{B}}\left(q/(q-1),\lambda_{N}|\vec{a}_{N}\right). (12)

We attempt to obtain the physical quantities by solving the self-consistent equation in the next subsection.

3.2 Energy and entropies

We attempt to find the expressions of physical quantities in this subsection. For λN1\lambda_{N}\gg 1, we have the following expressions by using Eq. (42).

ζB(1/(q1),λN|aN)(q1)N(j=0N1((2q)j(q1)))(j=1Naj)(λN)1(q1)N,\displaystyle\zeta_{\mathrm{B}}\left(1/(q-1),\lambda_{N}|\vec{a}_{N}\right)\sim\frac{(q-1)^{N}}{\left(\displaystyle\prod_{j=0}^{N-1}((2-q)-j(q-1))\right)\left(\displaystyle\prod_{j=1}^{N}a_{j}\right)(\lambda_{N})^{\frac{1}{(q-1)}-N}}, (13a)
ζB(q/(q1),λN|aN)(q1)N(j=0N1(1j(q1)))(j=1Naj)(λN)q(q1)N.\displaystyle\zeta_{\mathrm{B}}\left(q/(q-1),\lambda_{N}|\vec{a}_{N}\right)\sim\frac{(q-1)^{N}}{\left(\displaystyle\prod_{j=0}^{N-1}(1-j(q-1))\right)\left(\displaystyle\prod_{j=1}^{N}a_{j}\right)(\lambda_{N})^{\frac{q}{(q-1)}-N}}. (13b)

In B, the above approximated expression for the Barnes zeta function is given by using the approximated expression for the Hurwitz zeta function given in A. We use these expressions of ζB\zeta_{\mathrm{B}} to solve Eq. (12) approximately.

3.2.1 Expression of the energy

We attempt to calculate the energy UU by solving Eq. (12). Substituting Eqs.(13a) and (13b) into Eq. (12), we have

U=Tph(q1)(1j=0N1((2q)j(q1))j=0N1(1j(q1)))+i=1Nωi2,N<1(q1).\displaystyle U=\frac{T_{\mathrm{ph}}}{(q-1)}\left(1-\frac{\displaystyle\prod_{j=0}^{N-1}((2-q)-j(q-1))}{\displaystyle\prod_{j=0}^{N-1}(1-j(q-1))}\right)+\sum_{i=1}^{N}\frac{\hbar\omega_{i}}{2},\qquad N<\frac{1}{(q-1)}. (14)

It is noted that Eq. (14) does not contain ErefE_{\mathrm{ref}}. We obtain easily

j=0N1((2q)j(q1))j=0N1(1j(q1))=1N(q1).\displaystyle\frac{\displaystyle\prod_{j=0}^{N-1}((2-q)-j(q-1))}{\displaystyle\prod_{j=0}^{N-1}(1-j(q-1))}=1-N(q-1). (15)

By substituting the above expression, we have the following expression of UU:

U=NTph+12i=1Nωi,N<1(q1).\displaystyle U=NT_{\mathrm{ph}}+\frac{1}{2}\sum_{i=1}^{N}\hbar\omega_{i},\qquad N<\frac{1}{(q-1)}. (16)

Equation (16) is the well-known form of the energy UU in the Boltzmann-Gibbs statistics. It is possible to evaluate λN\lambda_{N} by using Eq. (16):

λN=1N(q1)(q1)βphEref.\displaystyle\lambda_{N}=\frac{1-N(q-1)}{(q-1)\beta_{\mathrm{ph}}E_{\mathrm{ref}}}. (17)

The numerator of the right-hand side of Eq. (17) is positive, because N(q1)N(q-1) is less than one. Therefore the condition λN1\lambda_{N}\gg 1 is satisfied for (q1)βphEref1(q-1)\beta_{\mathrm{ph}}E_{\mathrm{ref}}\ll 1: the condition is satisfied at high physical temperature TphT_{\mathrm{ph}} and/or for small deviation (q1)(q-1).

3.2.2 Expressions of the entropies

The Tsallis entropy Sq(T)S_{q}^{(T)} is represented as

Sq(T)=1cqq1=1Z1qq1.\displaystyle S_{q}^{(T)}=\frac{1-c_{q}}{q-1}=\frac{1-Z^{1-q}}{q-1}. (18)

The Rényi entropy Sq(R)S_{q}^{(R)} is related to the Tsallis entropy:

Sq(R)=11qln(1+(1q)Sq(T)).\displaystyle S_{q}^{(R)}=\frac{1}{1-q}\ln(1+(1-q)S_{q}^{(T)}). (19)

This equation is represented with cqc_{q} as

Sq(R)=11qlncq=11qlne(1q)lnZ=lnZ.\displaystyle S_{q}^{(R)}=\frac{1}{1-q}\ln c_{q}=\frac{1}{1-q}\ln e^{(1-q)\ln Z}=\ln Z. (20)

We calculate ZZ approximately by using Eq. (13a).

Z=1(j=0N1((2q)j(q1)))(j=1N(βphωj))(1+(q1)βph(12i=1N(ωi)U))1q1N.\displaystyle Z=\frac{1}{\left(\displaystyle\prod_{j=0}^{N-1}((2-q)-j(q-1))\right)\left(\displaystyle\prod_{j=1}^{N}(\beta_{\mathrm{ph}}\hbar\omega_{j})\right)\left(1+(q-1)\beta_{\mathrm{ph}}\left(\displaystyle\frac{1}{2}\displaystyle\sum_{i=1}^{N}(\hbar\omega_{i})-U\right)\right)^{\frac{1}{q-1}-N}}. (21)

Substituting Eq. (14) into Eq. (21), we obtain

Z=(j=0N1(1j(q1)))11qN(j=1N(βphωj))(j=0N1((2q)j(q1)))q1qN.\displaystyle Z=\frac{\Bigg{(}\displaystyle\prod_{j=0}^{N-1}(1-j(q-1))\Bigg{)}^{\frac{1}{1-q}-N}}{\Bigg{(}\displaystyle\prod_{j=1}^{N}(\beta_{\mathrm{ph}}\hbar\omega_{j})\Bigg{)}\Bigg{(}\displaystyle\prod_{j=0}^{N-1}((2-q)-j(q-1))\Bigg{)}^{\frac{q}{1-q}-N}}. (22)

We find the relation between dUdU and dSq(R)dS_{q}^{(R)}. The Rényi entropy is given by lnZ\ln Z. For the fixed NN and qq, we have

dSq(R)=dlnZ=NdTphTph.\displaystyle dS_{q}^{(R)}=d\ln Z=N\frac{dT_{\mathrm{ph}}}{T_{\mathrm{ph}}}. (23)

With Eqs. (16) and (23), we have

dU=NdTph=TphdSq(R).\displaystyle dU=NdT_{\mathrm{ph}}=T_{\mathrm{ph}}dS_{q}^{(R)}. (24)

The qq-dependence of Sq(R)S_{q}^{(R)} for small q1q-1 is obtained by expanding the logarithm of Eq. (22) with respect to q1q-1. We have

Sq(R)=lnZ=LN(Tph)+N+12N(q1)+O((q1)2),\displaystyle S_{q}^{(R)}=\ln Z=L_{N}(T_{\mathrm{ph}})+N+\frac{1}{2}N(q-1)+O((q-1)^{2}), (25)

where LN(Tph)L_{N}(T_{\mathrm{ph}}) is defined by

LN(Tph):=j=1Nln(Tphωj).\displaystyle L_{N}(T_{\mathrm{ph}}):=\sum_{j=1}^{N}\ln\Big{(}\frac{T_{\mathrm{ph}}}{\hbar\omega_{j}}\Big{)}. (26)

The same equation can be obtained by substituting Eq. (16) into Eq. (21). We remember that N(q1)N(q-1) is less than one.

We obtain the ratio of Sq(T)S_{q}^{(T)} to Sq(R)S_{q}^{(R)}. Hereafter we omit the argument TphT_{\mathrm{ph}} of LnL_{n} for simplicity. For LNNL_{N}\gg N, we have

Sq(R)LN,\displaystyle S_{q}^{(R)}\sim L_{N}, (27a)
Sq(T)1e(q1)LNq1.\displaystyle S_{q}^{(T)}\sim\frac{1-e^{-(q-1)L_{N}}}{q-1}. (27b)

The ratio Sq(T)/Sq(R)S_{q}^{(T)}/S_{q}^{(R)} is

Sq(T)Sq(R)1e(q1)LN(q1)LN.\displaystyle\frac{S_{q}^{(T)}}{S_{q}^{(R)}}\sim\frac{1-e^{-(q-1)L_{N}}}{(q-1)L_{N}}. (28)

The ratio Sq(T)/Sq(R)S_{q}^{(T)}/S_{q}^{(R)} is approximately 1/((q1)LN)1/((q-1)L_{N}) at sufficiently high physical temperature which satisfies (q1)LN1(q-1)L_{N}\gg 1. This ratio is 1(q1)LN/21-(q-1)L_{N}/2 for (q1)LN1(q-1)L_{N}\ll 1, though the condition LNNL_{N}\gg N is required to obtain the expressions, Eqs. (27a) and (27b).

4 Conclusions

We studied the thermodynamic quantities in the system of the NN independent harmonic oscillators with different frequencies ωj\omega_{j} in the Tsallis statistics of the entropic parameter qq (1<q<21<q<2). The number of the oscillators NN was fixed and the escort average was adopted in this study. We derived the self-consistent equation, and the expressions of physical quantities with the physical temperature were obtained. We obtained the partition function ZZ, the energy UU, the Rényi entropy Sq(R)S_{q}^{(R)}, and the Tsallis entropy Sq(T)S_{q}^{(T)} by solving the self-consistent equation approximately at high physical temperature TphT_{\mathrm{ph}} and/or for small deviation q1q-1.

It was found from the condition for the parameters of the Barnes zeta function that the number of harmonics oscillators NN is less than 1/(q1)1/(q-1). The restriction of the number of the harmonic oscillators exists, as the restriction was previously given for the classical gas Abe-PLA:2001 . As expected, the supremum 1/(q1)1/(q-1) goes to infinity when qq approaches one.

The energy UU is qq-independent at high physical temperature when the physical temperature is adopted. The energy is proportional to the number of harmonic oscillators NN and the physical temperature TphT_{\mathrm{ph}} at high physical temperature when the vacuum term is ignored: the expression of the energy is the well known expression, U=NTph+jωj/2{U=NT_{\mathrm{ph}}+\sum_{j}\hbar\omega_{j}/2}. The Rényi entropy Sq(R)S_{q}^{(R)} is the sum of the values for the independent harmonic oscillators at high physical temperature. The Rényi entropy with the same frequency, ωω1==ωN\omega\equiv\omega_{1}=\cdots=\omega_{N}, is given by Nln(Tph/(ω))N\ln(T_{\mathrm{ph}}/(\hbar\omega)) which is well-known expression for the NN independent harmonic oscillators with the same frequency. The Tsallis entropy Sq(T)S_{q}^{(T)} was obtained through the Rényi entropy. The variation for the Rényi entropy is simply given as dSq(R)=NdTphdS_{q}^{(R)}=NdT_{\mathrm{ph}} for the fixed NN, and the well-known relation between dUdU and dSq(R)dS_{q}^{(R)} is also obtained: dU=TphdSq(R)dU=T_{\mathrm{ph}}dS_{q}^{(R)}.

The physical temperature dependence of the Tsallis entropy is different from that of the Rényi entropy. The Rényi entropy contains the term that is j=1Nln(Tph/(ωj))\sum_{j=1}^{N}\ln(T_{\mathrm{ph}}/(\hbar\omega_{j})). Therefore, the Rényi entropy increases with the physical temperature, and is unbounded from the above. In contrast, the Tsallis entropy increases with the physical temperature, and is bounded from the above. The ratio of the Tsallis entropy to the Rényi entropy, Sq(T)/Sq(R)S_{q}^{(T)}/S_{q}^{(R)}, is small at high physical temperature. The difference between the Tsallis and Rényi entropies is large at high physical temperature.

The system of the independent harmonic oscillators with different frequencies is basic, and the results in this study will give the insight on other physical systems. The author believes that the present study will be helpful for the reader to study the system represented with oscillators in unconventional statistics such as the Tsallis statistics.

Appendix A Approximate expression of Hurwitz zeta function

The Hurwitz zeta function Espinosa ; Bordag ; Shpot is defined by

ζH(s,α):=n=01(α+n)s.\displaystyle\zeta_{\mathrm{H}}(s,\alpha):=\sum_{n=0}^{\infty}\frac{1}{(\alpha+n)^{s}}. (29)

We treat the case of s>1s>1 and α>0\alpha>0 in this appendix.

Let Bn(x)B_{n}(x) be Bernoulli polynomials which are defined by

textet1=n=0Bn(x)tnn!.\displaystyle\frac{te^{xt}}{e^{t}-1}=\sum_{n=0}^{\infty}B_{n}(x)\frac{t^{n}}{n!}. (30)

The Bernoulli number BnB_{n} in this paper is defined 111 The Bernoulli number BnB_{n} is often defined as Bn(x=0)B_{n}(x=0). It may worth to mention that Bn(x=0)=Bn(x=1)B_{n}(x=0)=B_{n}(x=1) for n1n\neq 1. by

Bn:=Bn(x=1).\displaystyle B_{n}:=B_{n}(x=1). (31)

We use the Euler-Maclaurin formula. Let aa and bb be integer with a<ba<b and let f(x)f(x) be continuously differentiable for MM-times. The Euler-Maclaurin formula is

n=abf(n)=\displaystyle\sum_{n=a}^{b}f(n)= ab𝑑xf(x)+12(f(b)+f(a))+k=1M1Bk+1(k+1)!(f(k)(b)f(k)(a))\displaystyle\int_{a}^{b}dxf(x)+\frac{1}{2}(f(b)+f(a))+\sum_{k=1}^{M-1}\frac{B_{k+1}}{(k+1)!}(f^{(k)}(b)-f^{(k)}(a))
(1)MM!ab𝑑xBM(x[x])f(M)(x),\displaystyle-\frac{(-1)^{M}}{M!}\int_{a}^{b}dxB_{M}(x-[x])f^{(M)}(x), (32)

where f(k)f^{(k)} is kk-th derivative and [x][x] is the Gauss symbol (the floor function).

We attempt to find the expression of ζH(1+z,α)\zeta_{\mathrm{H}}(1+z,\alpha) for z>0z>0 by using the Euler-Maclaurin formula. The right-hand side of Eq. (29) is an infinite series. Therefore, we first consider the following finite series:

ζH,m(s,α)=n=0m1(α+n)s.\displaystyle\zeta_{H,m}(s,\alpha)=\sum_{n=0}^{m}\frac{1}{(\alpha+n)^{s}}. (33)

We set f(x)f(x) as 1/(α+x)1+z1/(\alpha+x)^{1+z} and apply the Euler-Maclaurin formula. By taking the limit mm\rightarrow\infty, we have the expression of ζH(1+z,α)\zeta_{\mathrm{H}}(1+z,\alpha). The integral part converges when α\alpha is positive. We finally obtain

ζH(1+z,α)\displaystyle\zeta_{\mathrm{H}}(1+z,\alpha) =1zαz+12α1+z+k=1M1(1)k+1Bk+1(k+1)!Γ(z+k+1)Γ(z+1)1αz+k+1\displaystyle=\frac{1}{z\alpha^{z}}+\frac{1}{2\alpha^{1+z}}+\sum_{k=1}^{M-1}\frac{(-1)^{k+1}B_{k+1}}{(k+1)!}\frac{\Gamma(z+k+1)}{\Gamma(z+1)}\frac{1}{\alpha^{z+k+1}}
(1)MM!0𝑑xBM(x[x])f(M)(x)(z>0,α>0).\displaystyle\quad-\frac{(-1)^{M}}{M!}\int_{0}^{\infty}dxB_{M}(x-[x])f^{(M)}(x)\qquad(z>0,\alpha>0). (34)

The function ζH(1+z,α)\zeta_{\mathrm{H}}(1+z,\alpha) can be rewritten Boumali2014 . For example, ζH(1+z,α)\zeta_{\mathrm{H}}(1+z,\alpha) is given by

ζH(1+z,α)\displaystyle\zeta_{\mathrm{H}}(1+z,\alpha) =1zαz+12α1+z+1zk=2MBkk!Γ(z+k)Γ(z)1αz+k\displaystyle=\frac{1}{z\alpha^{z}}+\frac{1}{2\alpha^{1+z}}+\frac{1}{z}\sum_{k=2}^{M}\frac{B_{k}}{k!}\frac{\Gamma(z+k)}{\Gamma(z)}\frac{1}{\alpha^{z+k}}
(1)MM!0𝑑xBM(x[x])f(M)(x)(z>0,α>0),\displaystyle\quad-\frac{(-1)^{M}}{M!}\int_{0}^{\infty}dxB_{M}(x-[x])f^{(M)}(x)\qquad(z>0,\alpha>0), (35)

because B2n+1B_{2n+1} is zero for n1n\geq 1 and Γ(z+1)=zΓ(z)\Gamma(z+1)=z\Gamma(z).

It is possible to estimate the integral of Eq. (34) by setting MM. For example, the upper value of the integral with M=2M=2 is estimated:

|12!0B2(x[x])f(2)(x)|C22!0|f(2)(x)|,\displaystyle\left|\frac{1}{2!}\int_{0}^{\infty}B_{2}(x-[x])f^{(2)}(x)\right|\leq\frac{C_{2}}{2!}\int_{0}^{\infty}\left|f^{(2)}(x)\right|, (36)

where C2C_{2} is the maximum value of |B2(x)||B_{2}(x)| in the range of 0x10\leq x\leq 1.

From Eq. (34), we find that the ζH(1+z,α)\zeta_{\mathrm{H}}(1+z,\alpha) for α1\alpha\gg 1 behaves

ζH(1+z,α)1zαz.\displaystyle\zeta_{\mathrm{H}}(1+z,\alpha)\sim\frac{1}{z\alpha^{z}}. (37)

Appendix B Approximate expression of Barnes zeta function

The Barnes zeta function Ruijsenaars:2000 ; Kirsten:2010 is defined by

ζB(s,α|ωN):=n1,,nN=01(α+ω1n1++ωNnN)sωN=(ω1,ω2,,ωN),\displaystyle\zeta_{\mathrm{B}}(s,\alpha|\vec{\omega}_{N}):=\sum_{n_{1},\cdots,n_{N}=0}^{\infty}\frac{1}{(\alpha+\omega_{1}n_{1}+\cdots+\omega_{N}n_{N})^{s}}\qquad\vec{\omega}_{N}=(\omega_{1},\omega_{2},\cdots,\omega_{N}), (38)

where s>Ns>N, α>0\alpha>0, and ωj>0\omega_{j}>0.

We define ΩN\Omega_{N} as

ΩN:=α+ω1n1++ωNnN.\displaystyle\Omega_{N}:=\alpha+\omega_{1}n_{1}+\cdots+\omega_{N}n_{N}. (39)

The function ζB\zeta_{\mathrm{B}} is represented as

ζB(s,α|ωN)\displaystyle\zeta_{\mathrm{B}}(s,\alpha|\vec{\omega}_{N}) =n1,,nN=01(ΩN)s=1(ωN)sn1,,nN1=0nN=01((ΩN1/ωN)+nN)s\displaystyle=\sum_{n_{1},\cdots,n_{N}=0}^{\infty}\frac{1}{(\Omega_{N})^{s}}=\frac{1}{(\omega_{N})^{s}}\sum_{n_{1},\cdots,n_{N-1}=0}^{\infty}\sum_{n_{N}=0}^{\infty}\frac{1}{((\Omega_{N-1}/\omega_{N})+n_{N})^{s}}
=1(ωN)sn1,,nN1=0ζH(s,ΩN1/ωN).\displaystyle=\frac{1}{(\omega_{N})^{s}}\sum_{n_{1},\cdots,n_{N-1}=0}^{\infty}\zeta_{\mathrm{H}}(s,\Omega_{N-1}/\omega_{N}). (40)

We have ζH(1+z,α)1/(zαz)\zeta_{\mathrm{H}}(1+z,\alpha)\sim 1/(z\alpha^{z}) for α1\alpha\gg 1. Therefore, for sufficiently large α\alpha, we have

ζB(1+z,α|ωN)1(ωN)1+zn1,,nN1=01z(ΩN1/ωN)z=1zωNζB(z,α|ωN1).\displaystyle\zeta_{\mathrm{B}}(1+z,\alpha|\vec{\omega}_{N})\sim\frac{1}{(\omega_{N})^{1+z}}\sum_{n_{1},\cdots,n_{N-1}=0}^{\infty}\frac{1}{z(\Omega_{N-1}/\omega_{N})^{z}}=\frac{1}{z\omega_{N}}\zeta_{\mathrm{B}}(z,\alpha|\vec{\omega}_{N-1}). (41)

By using the recurrence relation, Eq. (41), we have the approximate expression of ζB\zeta_{\mathrm{B}} for α1\alpha\gg 1:

ζB(1+z,α|ωN)\displaystyle\zeta_{\mathrm{B}}(1+z,\alpha|\vec{\omega}_{N}) 1z(z1)(z(N1))1ω1ω2ωN1αz(N1)\displaystyle\sim\frac{1}{z(z-1)\cdots(z-(N-1))}\frac{1}{\omega_{1}\omega_{2}\cdots\omega_{N}}\frac{1}{\alpha^{z-(N-1)}}
=1(j=0N1(zj))(j=1Nωj)αz(N1)(z(N1)>0).\displaystyle=\frac{1}{\Bigg{(}\displaystyle\prod_{j=0}^{N-1}(z-j)\Bigg{)}\Bigg{(}\displaystyle\prod_{j=1}^{N}\omega_{j}\Bigg{)}\alpha^{z-(N-1)}}\qquad\qquad(z-(N-1)>0). (42)

The condition z(N1)>0z-(N-1)>0 is rewritten as 1+zN>01+z-N>0. This condition is equivalent to the condition s>Ns>N with s=1+zs=1+z for ζB(s,α|ωN)\zeta_{\mathrm{B}}(s,\alpha|\vec{\omega}_{N}).

References

  • (1) C. Tsallis, “Introduction to Nonextensive Statistical Mechanics”, Springer Science + Business Media, LLC, 2010.
  • (2) C. Tsallis, “Nonadditive entropy and nonextensive statistical mechanics - An overview after 20 years”, Braz. J. Phys. 39, 337 (2009).
  • (3) M. Ishihara, “Chiral phase transitions in the linear sigma model in the Tsallis nonextensive statistics” Int. J. Mod. Phys. E 25, 1650066 (2016).
  • (4) T. Bhattacharyya, J. Cleymans, and S. Mogliacci, “Analytic results for the Tsallis thermodynamic variables”, Phys. Rev. D 94, 094026 (2016).
  • (5) T. Bhattacharyya, J. Cleymans, L. Marques, and S. Mogliacci, “On the precise determination of the Tsallis parameters in proton - proton collisions at LHC energies.” J. Phys. G: Nucl. Part. Phys. 45, 055001 (2018)
  • (6) H. Umpierrez and S. Davis, ”Fluctuation theorems in qq-canonical ensembles”, Physica A 563, 125337 (2021).
  • (7) S. Kalyana Rama, “Tsallis statistics: averages and a physical interpretation of the Lagrange multiplier β\beta”, Phys. Lett. A 276, 103 (2000).
  • (8) S. Abe, S. Martinez, F. Pennini, and A. Plastino, “Nonextensive thermodynamic relations”, Phys. Lett. A 281, 126 (2001).
  • (9) S. Abe, “Heat and entropy in nonextensive thermodynamics: transmutation from Tsallis theory to Rényi-entropy-based theory”, Physica A 300, 417 (2001).
  • (10) H. H. Aragão-Rêgo, D. J. Soares, L. S. Lucena, L. R. da Silva, E. K. Lenzi, Kwok Sau Fa, “Bose-Einstein and Fermi-Dirac distributions in nonextensive Tsallis statistics: an exact study”, Physica A 317, 199 (2003).
  • (11) E. Ruthotto, “Physical temperature and the meaning of the qq parameter in Tsallis statistics”, arXiv:cond-mat/0310413.
  • (12) R. Toral, “On the definition of physical temperature and pressure for nonextensive thermodynamics”, Physica A 317, 209 (2003).
  • (13) H. Suyari, “The Unique Non Self-Referential qq-Canonical Distribution and the Physical Temperature Derived from the Maximum Entropy Principle in Tsallis Statistics”, Prog. Theor. Phys. Suppl. 162, 79 (2006).
  • (14) M. Ishihara, “Phase transition for the system of finite volume in the ϕ4\phi^{4} theory in the Tsallis nonextensive statistics”, Int. J. of Mod. Phys. A 33, 1850067 (2018).
  • (15) M. Ishihara, “Momentum distribution and correlation for a free scalar field in the Tsallis nonextensive statistics based on density operator”, Eur. Phys. J. A 54, 164 (2018).
  • (16) M. Ishihara, “Thermodynamic relations and fluctuations with physical quantities in the Tsallis statistics”, arXiv:2104.11427.
  • (17) C. Tsallis, R. S. Mendes, and A. R. Plastino, “The role of constraints within generalized nonextensive statistics”, Physica A 261, 534 (1998).
  • (18) O. Espinosa and V. H. Moll, “On some integrals involving the Hurwitz zeta function: Part 1”, The Ramanujan Journal 6, 159 (2002).
  • (19) M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, “Advances in the Casimir Effect”, Clarendon Press, Oxford (2015).
  • (20) M. A. Shpot, M. P. Chaudhary, and R. B. Paris, “Integrals of products of Hurwitz zeta functions and the casimir effect in ϕ4\phi^{4} field theories”, Journal of Classical Analysis 9, 99 (2016),
  • (21) A. Boumali, “The one-dimensional thermal properties for the relativistic harmonic oscillators”, arXiv:1409.6205v1.
  • (22) S. N. M. Ruijsenaars, “On Barnes’ Multiple Zeta and Gamma Functions”, Advances in Mathematics 156, 107 (2000).
  • (23) K. Kirsten, “Basic zeta functions and some applications in physics”, from A Window into Zeta and Modular Physics, Editors K. Kirsten and F. Williams, MSRI Pub. 57 and Cambridge University Press, 101 (2010).