This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\thankstext

e1email: [email protected] 11institutetext: Department of Food and Nutrition, Koriyama Women’s University, Koriyama, Fukushima, 963-8503, Japan

\abstractdc

The thermodynamic relations in the Tsallis statistics were studied with physical quantities. An additive entropic variable related to the Tsallis entropy was introduced by assuming the form of the first law of the thermodynamics. The fluctuations in the Tsallis statistics were derived with physical quantities with the help of the introduced entropic variable. It was shown that the mean squares of the fluctuations of the physical quantities in the Tsallis statistics are the same as those in the conventional statistics. The mean square of the fluctuation of the Tsallis entropy and the mean square of the fluctuation of the Tsallis temperature were also derived. The mean square of the relative fluctuation of the Tsallis entropy and the mean square of the relative fluctuation of the Tsallis temperature are represented with heat capacities. It was shown that these fluctuations of the Tsallis quantities have the qq-dependent terms in the Tsallis statistics of the entropic parameter qq.

Thermodynamic relations and fluctuations in the Tsallis statistics

Masamichi Ishihara\thanksrefe1,addr1

1 Introduction

The statistics which show power-like distributions have been interested in many branches of science. One of them is the Tsallis statistics which is an possible extension of the Boltzmann-Gibbs statistics, and the statistics has been applied in various fields TsallisBook ; Tsallis:Entropy:2019 . The entropy called Tsallis entropy and the escort average are employed in this statistics, and the probability distribution is obtained in the maximum entropy principle. The relations between thermodynamic quantities, such as internal energy and entropy, have been discussed. The statistics may describe the phenomena which show power-like distributions.

The physical temperature and the physical pressure were introduced with the Tsallis entropy Kalyana:2000 ; Abe-PLA:2001 ; S.Abe:physicaA:2001 ; Aragao:2003 ; Ruthotto:2003 ; Toral:2003 ; Suyari:2006 . In the Boltzmann-Gibbs statistics, the inverse temperature is given by the partial derivative of the entropy with respect to the internal energy. In the Tsallis statistics, the physical temperature was introduced in the similar way, though the inverse temperature-like parameter appears as a Lagrange multiplier in the maximum entropy principle. The physical temperature seems to be an appropriate variable to describe the system Ishihara:phi4 ; Ishihara:free-field ; Ishihara:2023 .

An entropic variable as a function of the Tsallis entropy was introduced by considering the Legendre transform structure in the Tsallis statistics S.Abe:physicaA:2001 . It is considered that the Legendre transform structure is an essential ingredient plastino1997 . In contrast, it is rarely noted that the Legendre transform structure may be unnecessary in the unconventional statistics C-Yepes . It was also shown that the Legendre transform structure is robust against the choice of entropy and the definition of mean value plastino1997 ; yamano2000 . The variables can not be determined uniquely by the Legendre transform structure, though the structure determines the conjugate variable for a given variable S.Abe:physicaA:2001 . Therefore, it may be better to introduce the entropic variable without using the Legendre transform structure explicitly when the variables can be determined by another consideration, though the structure is desirable. The entropic variable is useful in the description of the thermodynamics, because a temperature-like parameter is defined by using the entropy and because the Legendre transform structure is supported by the relation between the entropic variable and the temperature-like parameter.

It is considered that Tsallis-type distributions are related to fluctuations. The Tsallis-type distributions are often used to describe the phenomena, such as the momentum distributions Cleymans2012 ; Marques2015 ; Azmi2015 ; Thakur2016 ; Khuntia2017 ; Si2017 ; Bhattacharyya2018 ; Parvan2020 and fluctuations Osada:Isihara:2018 at high energies. The distribution was obtained by assuming that the heat capacity of the environment is exactly constant Watanabe2004 . The entropic parameter qq of the Tsallis statistics is related to the heat capacity which is connected with the fluctuation of the inverse temperature Wilk2009 . The relation between the fluctuation and the entropic parameter was discussed in the study of the time dependence of the entropic parameter Wilk2021 . This distribution was obtained for the system with fluctuation Wilk2000 ; Saha2021 . The distribution was derived in the studies of critical end point Ayala2020 , quantum entanglement Ourabah2017 ; Castano2021 , entropy exchange Castano2022 , and so on. The parameter qq is also related to the number of the configurations of intensive quantity Castano2021 . The property of the parameter qq should be important in the Tsallis statistics Parvan2006 .

The fluctuations of the thermodynamic quantities are significant in the Tsallis statistics. The fluctuation of the energy in the canonical ensemble was obtained Liyan:2008 by solving the differential equation for 0<q<10<q<1 in the optimal Lagrange multiplier formalism Martinez2000 . The fluctuations were also calculated by maximizing the entropy that is constructed from probabilities with the deviation parameter from the equilibrium value Vives:2002 . The calculations of the physical quantities and the calculations of the Tsallis quantities are required to clarify the effects of the statistics.

In this paper, we consider thermodynamic relations, and attempt to find the expressions of the fluctuations in the Tsallis statistics. In section 2, we consider the thermodynamic relations with physical quantities, such as physical temperature and physical pressure. In section 3, the fluctuations are discussed in the Tsallis statistics with the introduced entropic variable. The fluctuations of the physical quantities and the fluctuations of the Tsallis quantities are obtained. The last section is assigned for conclusions.

2 Thermodynamic relations with physical quantities

We treat a system and an environment. The system and the environment are labeled with the superscripts (S)(S) and (E)(E), respectively. The total system constructed from the system and the environment is labeled by the superscript (S+E)(S+E).

We attempt to find the relations among the internal energy UqU_{q}, the physical temperature TphT_{\mathrm{ph}}, the entropic variable XqX_{q}, the physical pressure PphP_{\mathrm{ph}}, and the volume VV. The entropic variable XqX_{q} was already introduced in the reference S.Abe:physicaA:2001 . This variable XqX_{q} is given below in this paper. The following discussion is based on the discussion given in the references Abe-PLA:2001 and S.Abe:physicaA:2001 .

The Tsallis entropy Sq(Uq,V)S_{q}(U_{q},V) with the entropic parameter qq satisfies the following relation:

Sq(S+E)=Sq(S)+Sq(E)+(1q)Sq(S)Sq(E).\displaystyle S_{q}^{(S+E)}=S_{q}^{(S)}+S_{q}^{(E)}+(1-q)S_{q}^{(S)}S_{q}^{(E)}. (1)

The additivity of the internal energy is assumed:

Uq(S+E)=Uq(S)+Uq(E).\displaystyle U_{q}^{(S+E)}=U_{q}^{(S)}+U_{q}^{(E)}. (2)

The total volume V(S+E)V^{(S+E)} is the sum of the volumes, V(S)V^{(S)} and V(E)V^{(E)}:

V(S+E)=V(S)+V(E).\displaystyle V^{(S+E)}=V^{(S)}+V^{(E)}. (3)

The maximum entropy principle requires δSq(S+E)=0\delta S_{q}^{(S+E)}=0, and the total internal energy and the total volume satisfy δUq(S+E)=0\delta U_{q}^{(S+E)}=0 and δV(S+E)=0\delta V^{(S+E)}=0. With these requirements, we define the physical temperature TphT_{\mathrm{ph}} and the physical pressure PphP_{\mathrm{ph}}:

1Tph(S)=11+(1q)Sq(S)(Sq(S)Uq(S))V(S),\displaystyle\frac{1}{T_{\mathrm{ph}}^{(S)}}=\frac{1}{1+(1-q)S_{q}^{(S)}}\left(\frac{\partial S_{q}^{(S)}}{\partial U_{q}^{(S)}}\right)_{V^{(S)}}, (4a)
1Tph(E)=11+(1q)Sq(E)(Sq(E)Uq(E))V(E),\displaystyle\frac{1}{T_{\mathrm{ph}}^{(E)}}=\frac{1}{1+(1-q)S_{q}^{(E)}}\left(\frac{\partial S_{q}^{(E)}}{\partial U_{q}^{(E)}}\right)_{V^{(E)}}, (4b)
Pph(S)Tph(S)=11+(1q)Sq(S)(Sq(S)V(S))Uq(S),\displaystyle\frac{P_{\mathrm{ph}}^{(S)}}{T_{\mathrm{ph}}^{(S)}}=\frac{1}{1+(1-q)S_{q}^{(S)}}\left(\frac{\partial S_{q}^{(S)}}{\partial V^{(S)}}\right)_{U_{q}^{(S)}}, (4c)
Pph(E)Tph(E)=11+(1q)Sq(E)(Sq(E)V(E))Uq(E).\displaystyle\frac{P_{\mathrm{ph}}^{(E)}}{T_{\mathrm{ph}}^{(E)}}=\frac{1}{1+(1-q)S_{q}^{(E)}}\left(\frac{\partial S_{q}^{(E)}}{\partial V^{(E)}}\right)_{U_{q}^{(E)}}. (4d)

We have the relations Tph(S)=Tph(E)T_{\mathrm{ph}}^{(S)}=T_{\mathrm{ph}}^{(E)} and Pph(S)=Pph(E)P_{\mathrm{ph}}^{(S)}=P_{\mathrm{ph}}^{(E)} from Eqs.(1), (2), and (3) with these definitions. These equations Tph(S)=Tph(E)T_{\mathrm{ph}}^{(S)}=T_{\mathrm{ph}}^{(E)} and Pph(S)=Pph(E)P_{\mathrm{ph}}^{(S)}=P_{\mathrm{ph}}^{(E)} indicate that the physical temperature and the physical pressure characterize the equilibrium. We use the names, physical temperature and physical pressure, in this paper, though names, equilibrium temperature and equilibrium pressure, might be adequate for the above introduced temperature and pressure.

The differential of the Tsallis entropy is

dSq(S)=(Sq(S)Uq(S))V(S)dUq(S)+(Sq(S)V(S))Uq(S)dV(S).\displaystyle dS_{q}^{(S)}=\left(\frac{\partial S_{q}^{(S)}}{\partial U_{q}^{(S)}}\right)_{V^{(S)}}dU_{q}^{(S)}+\left(\frac{\partial S_{q}^{(S)}}{\partial V^{(S)}}\right)_{U_{q}^{(S)}}dV^{(S)}. (5)

We have the following relation by using Eqs. (4a) and (4c):

dUq(S)=(Tph(S)1+(1q)Sq(S))dSq(S)PphdV(S).\displaystyle dU_{q}^{(S)}=\Bigg{(}\frac{T_{\mathrm{ph}}^{(S)}}{1+(1-q)S_{q}^{(S)}}\Bigg{)}dS_{q}^{(S)}-P_{\mathrm{ph}}dV^{(S)}. (6)

This is the first law of the thermodynamics in the Tsallis statistics. We introduce an entropic variable Xq(S)X_{q}^{(S)} by requiring that Eq. (6) has the following form:

dUq(S)=Tph(S)dXq(S)Pph(S)dV(S).\displaystyle dU_{q}^{(S)}=T_{\mathrm{ph}}^{(S)}dX_{q}^{(S)}-P_{\mathrm{ph}}^{(S)}dV^{(S)}. (7)

This requirement is satisfied by defining Xq(S)X_{q}^{(S)} as

Xq(S)=11qln(1+(1q)Sq(S)).\displaystyle X_{q}^{(S)}=\frac{1}{1-q}\ln(1+(1-q)S_{q}^{(S)}). (8)

The entropic variables Xq(E)X_{q}^{(E)} and Xq(S+E)X_{q}^{(S+E)} are defined in the same way. From Eq. (7), it is natural to define the heat transfer Q(S)Q^{(S)} as follows:

Q(S)=Tph(S)dXq(S).\displaystyle Q^{(S)}=T_{\mathrm{ph}}^{(S)}dX_{q}^{(S)}. (9)

The alternative definition of heat transfer is given as T(S)dSq(S)T^{(S)}dS_{q}^{(S)} by using the temperature T(S)T^{(S)} which is the inverse of the Lagrange multiplier C.Tsallis1998 . The temperature T(S)T^{(S)} is called the Tsallis temperature in this paper. It may be worth to mention that the relation, Tph(S)dXq(S)=T(S)dSq(S)T_{\mathrm{ph}}^{(S)}dX_{q}^{(S)}=T^{(S)}dS_{q}^{(S)}, is easily shown Ishihara:EPJB:95 . Similar relation between the heat transfer in the incomplete non-extensive statistics and that in the Rényi statistics was shown in the reference Parvan2004 .

As pointed by some researchers S.Abe:physicaA:2001 ; Wang:prepri:2003 , the introduced entropic variables, Xq(S)X_{q}^{(S)} and Xq(E)X_{q}^{(E)}, are additive:

Xq(S+E)=Xq(S)+Xq(E).\displaystyle X_{q}^{(S+E)}=X_{q}^{(S)}+X_{q}^{(E)}. (10)

This property is easily shown from the pseudo-additivity of the Tsallis entropy. The pseudo-additivity of the Tsallis entropy SqS_{q} is mapped to the additivity of the entropic variable XqX_{q}.

Equation (7) indicates that the variables Tph(S)T_{\mathrm{ph}}^{(S)} and Xq(S)X_{q}^{(S)} are a Legendre pair. Therefore, the free energy Fq(S)F_{q}^{(S)} in terms of Tph(S)T_{\mathrm{ph}}^{(S)} is naturally introduced by using the Legendre transformation of Uq(S)U_{q}^{(S)} Abe-PLA:2001 ; Ishihara:EPJB:95 :

Fq(S)=Uq(S)Tph(S)Xq(S).\displaystyle F_{q}^{(S)}=U_{q}^{(S)}-T_{\mathrm{ph}}^{(S)}X_{q}^{(S)}. (11)

There is another definition of the free energy F~(S)\tilde{F}^{(S)} C.Tsallis1998 ; Ishihara:EPJB:95 which is given by F~(S)=Uq(S)T(S)Sq(S)\tilde{F}^{(S)}=U_{q}^{(S)}-T^{(S)}S_{q}^{(S)}.

The entropic variable XqX_{q} is valid for the physical temperature TphT_{\mathrm{ph}} because of the relation among TphT_{\mathrm{ph}}, XqX_{q}, and UqU_{q}: 1/Tph=(Xq/Uq)V1/T_{\mathrm{ph}}=(\partial X_{q}/\partial U_{q})_{V}. The first law and the heat transfer are described with TphT_{\mathrm{ph}} and XqX_{q}, and the free energy is defined by using Legendre transformation with TphT_{\mathrm{ph}} and XqX_{q}, as shown above.

3 Fluctuations in the Tsallis statistics

3.1 The entropies and the number of states

The Tsallis entropies TsallisBook ; S.Abe:PRE:2002 ; Moyano:EurLett:73 are given by

Sq(S)=lnqW(S),\displaystyle S_{q}^{(S)}=\ln_{q}W^{(S)}, (12a)
Sq(E)=lnqW(E),\displaystyle S_{q}^{(E)}=\ln_{q}W^{(E)}, (12b)
Sq(S+E)=lnqW(S+E),\displaystyle S_{q}^{(S+E)}=\ln_{q}W^{(S+E)}, (12c)

where WW represents the number of states and lnqx\ln_{q}x is the qq-logarithm function. As for the number of states, we assume that the system SS and the environment EE are independent:

W(S+E)=W(S)W(E).\displaystyle W^{(S+E)}=W^{(S)}W^{(E)}. (13)

In such a case, the Tsallis entropy has the pseudo-additivity which is shown from Eqs. (12a), (12b), and (12c):

Sq(S+E)\displaystyle S_{q}^{(S+E)} =Sq(S)+Sq(E)+(1q)Sq(S)Sq(E).\displaystyle=S_{q}^{(S)}+S_{q}^{(E)}+(1-q)S_{q}^{(S)}S_{q}^{(E)}. (14)

By substituting Eq. (12c) into the definition of Xq(S+E)X_{q}^{(S+E)}, Xq(S+E)=(1q)1ln(1+(1q)Sq(S+E))X_{q}^{(S+E)}=(1-q)^{-1}\ln(1+(1-q)S_{q}^{(S+E)}), the entropic variable Xq(S+E)X_{q}^{(S+E)} has the following relation:

W(S+E)=exp(Xq(S+E)).\displaystyle W^{(S+E)}=\exp(X_{q}^{(S+E)}). (15)

We estimate fluctuations by using Eq. (15).

The entropic variable XqX_{q} is given by Xq=lnWX_{q}=\ln W as shown above, where we omit the superscript. As is well-known, the Boltzmann-Gibbs entropy SBGS_{\mathrm{BG}} is given by SBG=lnWS_{\mathrm{BG}}=\ln W: we have Xq=SBGX_{q}=S_{\mathrm{BG}}. Therefore, the quantity derived from XqX_{q} coincides with the quantity derived from SBGS_{\mathrm{BG}}. For example, 1/Tph=(Xq/Uq)V=(SBG/Uq)V=1/TBG1/T_{\mathrm{ph}}=(\partial X_{q}/\partial U_{q})_{V}=(\partial S_{\mathrm{BG}}/\partial U_{q})_{V}=1/T_{\mathrm{BG}}, where TBGT_{\mathrm{BG}} is the temperature in the Boltzmann-Gibbs statistics.

3.2 Fluctuations of the physical quantities

Equation (15) is the well-known form in the Boltzmann-Gibbs statistics. We note calculations to clarify the procedure, though the following procedure is standard in the conventional statistics. In the following calculations, we deal with the deviation Δf\Delta f of a function f(x,y)f(x,y). The deviation Δf\Delta f is defined as Δf=f(x+Δx,y+Δy)f(x,y)\Delta f=f(x+\Delta x,y+\Delta y)-f(x,y). We introduce the quantity ΔXq(S+E)\Delta X_{q}^{(S+E)} which is the deviation from the equilibrium value Xq(S+E)X_{q}^{(S+E)} of the isolated system S+ES+E, and introduce the probability Pr(ΔXq(S+E))P_{r}(\Delta X_{q}^{(S+E)}) which is the probability of the occurrence of ΔXq(S+E)\Delta X_{q}^{(S+E)}.

The probability Pr(ΔXq(S+E))P_{r}(\Delta X_{q}^{(S+E)}) is given by

Pr(ΔXq(S+E))=exp(Xq(S+E)+ΔXq(S+E))ΔXq(S+E)exp(Xq(S+E)+ΔXq(S+E))=exp(ΔXq(S+E))ΔXq(S+E)exp(ΔXq(S+E)).\displaystyle P_{r}(\Delta X_{q}^{(S+E)})=\frac{\exp(X_{q}^{(S+E)}+\Delta X_{q}^{(S+E)})}{\displaystyle\sum_{\Delta X_{q}^{(S+E)}}\exp(X_{q}^{(S+E)}+\Delta X_{q}^{(S+E)})}=\frac{\exp(\Delta X_{q}^{(S+E)})}{\displaystyle\sum_{\Delta X_{q}^{(S+E)}}\exp(\Delta X_{q}^{(S+E)})}. (16)

Therefore, we focus on ΔXq(S+E)\Delta X_{q}^{(S+E)}.

The quantity ΔXq(S+E)\Delta X_{q}^{(S+E)} is given by

ΔXq(S+E)\displaystyle\Delta X_{q}^{(S+E)} =ΔXq(S)+ΔXq(E).\displaystyle=\Delta X_{q}^{(S)}+\Delta X_{q}^{(E)}. (17)

The energy Uq(S)U_{q}^{(S)} and the volume V(S)V^{(S)} fluctuate, and the entropy Xq(S)X_{q}^{(S)} as a function of Uq(S)U_{q}^{(S)} and V(S)V^{(S)} fluctuate. The quantity ΔXq(S)\Delta X_{q}^{(S)} is expanded with Eqs. (4a), (4c), and (8) as follows:

ΔXq(S)(Uq(S),V(S))\displaystyle\Delta X_{q}^{(S)}(U_{q}^{(S)},V^{(S)}) =(1Tph(S))(ΔUq(S))+(Pph(S)Tph(S))(ΔV(S))\displaystyle=\Bigg{(}\frac{1}{T_{\mathrm{ph}}^{(S)}}\Bigg{)}(\Delta U_{q}^{(S)})+\Bigg{(}\frac{P_{\mathrm{ph}}^{(S)}}{T_{\mathrm{ph}}^{(S)}}\Bigg{)}(\Delta V^{(S)})
+12(Δ(1Tph(S)))(ΔUq(S))+12(Δ(Pph(S)Tph(S)))(ΔV(S))\displaystyle\quad+\frac{1}{2}\Bigg{(}\Delta\Bigg{(}\frac{1}{T_{\mathrm{ph}}^{(S)}}\Bigg{)}\Bigg{)}(\Delta U_{q}^{(S)})+\frac{1}{2}\Bigg{(}\Delta\Bigg{(}\frac{P_{\mathrm{ph}}^{(S)}}{T_{\mathrm{ph}}^{(S)}}\Bigg{)}\Bigg{)}(\Delta V^{(S)})
+O(Δ3).\displaystyle\quad+O(\Delta^{3}). (18)

The last term, O(Δ3)O(\Delta^{3}), represents (ΔUq(S))i(ΔV(S))j(\Delta U_{q}^{(S)})^{i}(\Delta V^{(S)})^{j} terms (i+j3)(i+j\geq 3). In the same way, we obtain ΔXq(E)\Delta X_{q}^{(E)}:

ΔXq(E)(Uq(E),V(E))\displaystyle\Delta X_{q}^{(E)}(U_{q}^{(E)},V^{(E)}) =(1Tph(E))(ΔUq(E))+(Pph(E)Tph(E))(ΔV(E))\displaystyle=\Bigg{(}\frac{1}{T_{\mathrm{ph}}^{(E)}}\Bigg{)}(\Delta U_{q}^{(E)})+\Bigg{(}\frac{P_{\mathrm{ph}}^{(E)}}{T_{\mathrm{ph}}^{(E)}}\Bigg{)}(\Delta V^{(E)})
+12(Δ(1Tph(E)))(ΔUq(E))+12(Δ(Pph(E)Tph(E)))(ΔV(E))\displaystyle\quad+\frac{1}{2}\Bigg{(}\Delta\Bigg{(}\frac{1}{T_{\mathrm{ph}}^{(E)}}\Bigg{)}\Bigg{)}(\Delta U_{q}^{(E)})+\frac{1}{2}\Bigg{(}\Delta\Bigg{(}\frac{P_{\mathrm{ph}}^{(E)}}{T_{\mathrm{ph}}^{(E)}}\Bigg{)}\Bigg{)}(\Delta V^{(E)})
+O(Δ3).\displaystyle\quad+O(\Delta^{3}). (19)

Hereafter, we treat the case that the environment is the bath with ΔTph(B)=ΔPph(B)=0\Delta T_{\mathrm{ph}}^{(B)}=\Delta P_{\mathrm{ph}}^{(B)}=0. We attach the superscript (B)(B) for the bath instead of (E)(E). For the bath, from Eq. (19), the quantity ΔXq(B)\Delta X_{q}^{(B)} is given by

ΔXq(B)(Uq(B),V(B))=(1Tph(B))(ΔUq(B))+(Pph(B)Tph(B))(ΔV(B))+O(Δ3).\displaystyle\Delta X_{q}^{(B)}(U_{q}^{(B)},V^{(B)})=\Bigg{(}\frac{1}{T_{\mathrm{ph}}^{(B)}}\Bigg{)}(\Delta U_{q}^{(B)})+\Bigg{(}\frac{P_{\mathrm{ph}}^{(B)}}{T_{\mathrm{ph}}^{(B)}}\Bigg{)}(\Delta V^{(B)})+O(\Delta^{3}). (20)

The deviation ΔXq(S+B)\Delta X_{q}^{(S+B)} with ΔUq(S+B)=ΔV(S+B)=0\Delta U_{q}^{(S+B)}=\Delta V^{(S+B)}=0 is given by

ΔXq(S+B)\displaystyle\Delta X_{q}^{(S+B)} =ΔXq(S)(Uq(S),V(S))+ΔXq(B)(Uq(B),V(B))\displaystyle=\Delta X_{q}^{(S)}(U_{q}^{(S)},V^{(S)})+\Delta X_{q}^{(B)}(U_{q}^{(B)},V^{(B)})
=12(Δ(1Tph(S)))(ΔUq(S))+12(Δ(Pph(S)Tph(S)))(ΔV(S))+O(Δ3).\displaystyle=\frac{1}{2}\Bigg{(}\Delta\Bigg{(}\frac{1}{T_{\mathrm{ph}}^{(S)}}\Bigg{)}\Bigg{)}(\Delta U_{q}^{(S)})+\frac{1}{2}\Bigg{(}\Delta\Bigg{(}\frac{P_{\mathrm{ph}}^{(S)}}{T_{\mathrm{ph}}^{(S)}}\Bigg{)}\Bigg{)}(\Delta V^{(S)})+O(\Delta^{3}). (21)

We expand ΔUq(S)(Xq(S),V(S))\Delta U_{q}^{(S)}(X_{q}^{(S)},V^{(S)}) in order to represent the right-hand side of Eq. (21) with the variables, Xq(S)X_{q}^{(S)} and V(S)V^{(S)}:

ΔUq(S)(Xq(S),V(S))=T~ph(S)ΔXq(S)P~ph(S)ΔV(S)+O(Δ2),\displaystyle\Delta U_{q}^{(S)}(X_{q}^{(S)},V^{(S)})=\tilde{T}_{\mathrm{ph}}^{(S)}\Delta X_{q}^{(S)}-\tilde{P}_{\mathrm{ph}}^{(S)}\Delta V^{(S)}+O(\Delta^{2}), (22)

where T~ph(S)\tilde{T}_{\mathrm{ph}}^{(S)} and P~ph(S)\tilde{P}_{\mathrm{ph}}^{(S)} are defined by

T~ph(S)=(Uq(S)Xq(S))V(S),\displaystyle\tilde{T}_{\mathrm{ph}}^{(S)}=\left.\Bigg{(}\frac{\partial U_{q}^{(S)}}{\partial X_{q}^{(S)}}\Bigg{)}\right._{V^{(S)}}, (23a)
P~ph(S)=(Uq(S)V(S))Xq(S).\displaystyle\tilde{P}_{\mathrm{ph}}^{(S)}=-\left.\Bigg{(}\frac{\partial U_{q}^{(S)}}{\partial V^{(S)}}\Bigg{)}\right._{X_{q}^{(S)}}. (23b)

Substituting Eq. (22) into Eq. (21) with Tph(S)=T~ph(S)T_{\mathrm{ph}}^{(S)}=\tilde{T}_{\mathrm{ph}}^{(S)} and Pph(S)=P~ph(S)P_{\mathrm{ph}}^{(S)}=\tilde{P}_{\mathrm{ph}}^{(S)}, we have

ΔXq(S+B)=12Tph(S)[(ΔTph(S))(ΔXq(S))(ΔPph(S))(ΔV(S))]+O(Δ3).\displaystyle\Delta{X_{q}^{(S+B)}}=-\frac{1}{2T_{\mathrm{ph}}^{(S)}}\left[(\Delta T_{\mathrm{ph}}^{(S)})(\Delta X_{q}^{(S)})-(\Delta P_{\mathrm{ph}}^{(S)})(\Delta V^{(S)})\right]+O(\Delta^{3}). (24)

As a result, the probability Pr(ΔXq(S+B))P_{r}(\Delta X_{q}^{(S+B)}) is approximately given by

Pr(ΔXq(S+B))=N1exp(12Tph(S)[(ΔTph(S))(ΔXq(S))(ΔPph(S))(ΔV(S))]),\displaystyle P_{r}(\Delta{X_{q}^{(S+B)}})=N^{-1}\exp\Bigg{(}-\frac{1}{2T_{\mathrm{ph}}^{(S)}}\left[(\Delta T_{\mathrm{ph}}^{(S)})(\Delta X_{q}^{(S)})-(\Delta P_{\mathrm{ph}}^{(S)})(\Delta V^{(S)})\right]\Bigg{)}, (25a)
where NN is the normalization constant. We can choose convenient variables for calculations. When the physical temperature and the volume are adopted as variables, the constant NN is given by
N=Dd(ΔTph(S))d(ΔV(S))Pr(ΔXq(S+B)),\displaystyle\qquad N=\int_{D}d(\Delta T_{\mathrm{ph}}^{(S)})d(\Delta V^{(S)})\ P_{r}(\Delta{X_{q}^{(S+B)}}), (25b)

where the notation DD represents the appropriate region of the integral. This region comes from the restrictions of the parameters. For example, the volume of the system is not less than zero.

It is possible to calculate the mean squares of the fluctuations with the probability. For example, the mean square of the fluctuation of the physical temperature is given by

(ΔTph(S))2=N1Dd(ΔTph(S))d(ΔV(S))Pr(ΔXq(S+B))(ΔTph(S))2.\displaystyle\langle(\Delta T_{\mathrm{ph}}^{(S)})^{2}\rangle=N^{-1}\int_{D}d(\Delta T_{\mathrm{ph}}^{(S)})d(\Delta V^{(S)})\ P_{r}(\Delta{X_{q}^{(S+B)}})\ (\Delta T_{\mathrm{ph}}^{(S)})^{2}. (26)

As we obtain the mean squares of the fluctuations in the conventional statistics, we have

(ΔTph(S))2\displaystyle\langle(\Delta T_{\mathrm{ph}}^{(S)})^{2}\rangle (Tph(S))2CqV(S),\displaystyle\sim\frac{(T_{\mathrm{ph}}^{(S)})^{2}}{C_{qV}^{(S)}}, (27a)
(ΔV(S))2\displaystyle\langle(\Delta V^{(S)})^{2}\rangle Tph(S)κT(S)V(S),\displaystyle\sim T_{\mathrm{ph}}^{(S)}\kappa_{T}^{(S)}V^{(S)}, (27b)
(ΔXq(S))2\displaystyle\langle(\Delta X_{q}^{(S)})^{2}\rangle CqP(S),\displaystyle\sim C_{qP}^{(S)}, (27c)
(ΔPph(S))2\displaystyle\langle(\Delta P_{\mathrm{ph}}^{(S)})^{2}\rangle Tph(S)V(S)κX(S),\displaystyle\sim\frac{T_{\mathrm{ph}}^{(S)}}{V^{(S)}\kappa_{X}^{(S)}}, (27d)

where CqV(S)C_{qV}^{(S)} is the heat capacity at constant volume, CqP(S)C_{qP}^{(S)} is the heat capacity at constant (physical) pressure, κT(S)\kappa_{T}^{(S)} is the isothermal compressibility, κX(S)\kappa_{X}^{(S)} is the adiabatic compressibility, and V(S)V^{(S)} is the volume of the system. The heat capacities, CqVC_{qV} and CqPC_{qP}, are given by

CqV\displaystyle C_{qV} =Tph(XqTph)V=(UqTph)V,\displaystyle=T_{\mathrm{ph}}\Bigg{(}\frac{\partial X_{q}}{\partial T_{\mathrm{ph}}}\Bigg{)}_{V}=\Bigg{(}\frac{\partial U_{q}}{\partial T_{\mathrm{ph}}}\Bigg{)}_{V}, (28a)
CqP\displaystyle C_{qP} =Tph(XqTph)Pph.\displaystyle=T_{\mathrm{ph}}\Bigg{(}\frac{\partial X_{q}}{\partial T_{\mathrm{ph}}}\Bigg{)}_{P_{\mathrm{ph}}}. (28b)
The compressibilities, κT\kappa_{T} and κX\kappa_{X}, are given by
κT\displaystyle\kappa_{T} =1V(VPph)Tph,\displaystyle=-\frac{1}{V}\Bigg{(}\frac{\partial V}{\partial P_{\mathrm{ph}}}\Bigg{)}_{T_{\mathrm{ph}}}, (28c)
κX\displaystyle\kappa_{X} =1V(VPph)Xq.\displaystyle=-\frac{1}{V}\Bigg{(}\frac{\partial V}{\partial P_{\mathrm{ph}}}\Bigg{)}_{X_{q}}. (28d)

We also calculate the mean square of the fluctuation of the energy. The quantity (ΔUq(S))2\langle(\Delta U_{q}^{(S)})^{2}\rangle is given by

(ΔUq(S))2=\displaystyle\langle(\Delta U_{q}^{(S)})^{2}\rangle= (Tph(S))(ΔXq(S))2+(Pph(S))2(ΔV(S))22Tph(S)Pph(S)(ΔXq(S))(ΔV(S))+O(Δ3)\displaystyle(T_{\mathrm{ph}}^{(S)})\langle(\Delta X_{q}^{(S)})^{2}\rangle+(P_{\mathrm{ph}}^{(S)})^{2}\langle(\Delta V^{(S)})^{2}\rangle-2T_{\mathrm{ph}}^{(S)}P_{\mathrm{ph}}^{(S)}\langle(\Delta X_{q}^{(S)})(\Delta V^{(S)})\rangle+O(\Delta^{3}) (29)

The average (ΔXq(S))(ΔV(S))\langle(\Delta X_{q}^{(S)})(\Delta V^{(S)})\rangle is given by

(ΔXq(S))(ΔV(S))\displaystyle\langle(\Delta X_{q}^{(S)})(\Delta V^{(S)})\rangle (Xq(S)V(S))|Tph(S)(ΔV(S))2=(Pph(S)Tph(S))|V(S)(ΔV(S))2=ηph(S)κT(S)(ΔV(S))2,\displaystyle\sim\left.\left(\frac{\partial X_{q}^{(S)}}{\partial V^{(S)}}\right)\right|_{T_{\mathrm{ph}}^{(S)}}\langle(\Delta V^{(S)})^{2}\rangle=\left.\left(\frac{\partial P_{\mathrm{ph}}^{(S)}}{\partial T_{\mathrm{ph}}^{(S)}}\right)\right|_{V^{(S)}}\langle(\Delta V^{(S)})^{2}\rangle=\frac{\eta_{\mathrm{ph}}^{(S)}}{\kappa_{T}^{(S)}}\langle(\Delta V^{(S)})^{2}\rangle, (30)

where we use the fact that the quantity (ΔTph(S))(ΔV(S))\langle(\Delta T_{\mathrm{ph}}^{(S)})(\Delta V^{(S)})\rangle is approximately zero. The quantity ηph\eta_{\mathrm{ph}} in Eq. (30) is defined by

ηph=1V(VTph)Pph.\displaystyle\eta_{\mathrm{ph}}=\frac{1}{V}\left(\frac{\partial V}{\partial T_{\mathrm{ph}}}\right)_{P_{\mathrm{ph}}}. (31)

With Eqs. (27) and (30), we have

(ΔUq(S))2(CqP(S)2Pph(S)V(S)ηph(S))(Tph(S))2+κT(S)(Pph(S))2V(S)Tph(S).\displaystyle\langle(\Delta U_{q}^{(S)})^{2}\rangle\sim\Big{(}C_{qP}^{(S)}-2P_{\mathrm{ph}}^{(S)}V^{(S)}\eta_{\mathrm{ph}}^{(S)}\Big{)}(T_{\mathrm{ph}}^{(S)})^{2}+\kappa_{T}^{(S)}(P_{\mathrm{ph}}^{(S)})^{2}V^{(S)}T_{\mathrm{ph}}^{(S)}. (32)

We calculate the quantity (ΔUq(S))2\langle(\Delta U_{q}^{(S)})^{2}\rangle for ideal gas to check Eq. (32). The energy and the equation of state for ideal gas are given by

Uq=32NTph(S),\displaystyle U_{q}=\frac{3}{2}NT_{\mathrm{ph}}^{(S)}, (33a)
Pph(S)V(S)=NTph(S).\displaystyle P_{\mathrm{ph}}^{(S)}V^{(S)}=NT_{\mathrm{ph}}^{(S)}. (33b)

The quantity (ΔUq(S))2\langle(\Delta U_{q}^{(S)})^{2}\rangle for ideal gas is obtained from Eq. (32) with Eqs. (33a) and (33b):

(ΔUq(S))232N(Tph(S))2.\displaystyle\langle(\Delta U_{q}^{(S)})^{2}\rangle\sim\frac{3}{2}N(T_{\mathrm{ph}}^{(S)})^{2}. (34)

Therefore, we obtain the following ratio:

(ΔUq(S))2Uq(S)23N.\displaystyle\frac{\sqrt{\langle(\Delta U_{q}^{(S)})^{2}\rangle}}{U_{q}^{(S)}}\sim\sqrt{\frac{2}{3N}}. (35)

The ratio given above for ideal gas is well-known in the Boltzmann-Gibbs statistics.

We obtain the quantity (ΔTph(S))(ΔXq(S))\langle(\Delta T_{\mathrm{ph}}^{(S)})(\Delta X_{q}^{(S)})\rangle for the calculation in the next subsection. With Eq. (28a), the quantity (ΔTph(S))(ΔXq(S))\langle(\Delta T_{\mathrm{ph}}^{(S)})(\Delta X_{q}^{(S)})\rangle is given by

(ΔTph(S))(ΔXq(S))=(CqV(S)Tph(S))(ΔTph(S))2+(Xq(S)V(S))(ΔTph(S))(ΔV(S))+O(Δ3).\displaystyle\langle(\Delta T_{\mathrm{ph}}^{(S)})(\Delta X_{q}^{(S)})\rangle=\left(\frac{C_{qV}^{(S)}}{T_{\mathrm{ph}}^{(S)}}\right)\langle(\Delta T_{\mathrm{ph}}^{(S)})^{2}\rangle+\left(\frac{\partial X_{q}^{(S)}}{\partial V^{(S)}}\right)\langle(\Delta T_{\mathrm{ph}}^{(S)})(\Delta V^{(S)})\rangle+O(\Delta^{3}). (36)

We have

(ΔTph(S))(ΔXq(S))(CqV(S)Tph(S))(ΔTph(S))2.\displaystyle\langle(\Delta T_{\mathrm{ph}}^{(S)})(\Delta X_{q}^{(S)})\rangle\sim\left(\frac{C_{qV}^{(S)}}{T_{\mathrm{ph}}^{(S)}}\right)\langle(\Delta T_{\mathrm{ph}}^{(S)})^{2}\rangle. (37)

The fluctuations of the physical quantities are obtained. In the next subsection, we calculate the fluctuations of the Tsallis quantities, the Tsallis entropy and the Tsallis temperature.

3.3 Fluctuations of the Tsallis quantities

In this subsection, we estimate the fluctuations of the quantities appeared in the Tsallis statistics. The fluctuation of the Tsallis entropy and the fluctuation of the Tsallis temperature are estimated in the following calculations. To proceed the calculations, we attempt to find the relations between the physical quantities and the Tsallis quantities.

The Tsallis temperature T(S)T^{(S)} in the system is given by

1T(S)=(Sq(S)Uq(S))V(S).\displaystyle\frac{1}{T^{(S)}}=\left(\frac{\partial S_{q}^{(S)}}{\partial U_{q}^{(S)}}\right)_{V^{(S)}}. (38)

With Eq. (4a), this equation leads to

Tph(S)=(1+(1q)Sq(S))T(S)=e(1q)Xq(S)T(S).\displaystyle T_{\mathrm{ph}}^{(S)}=(1+(1-q)S_{q}^{(S)})T^{(S)}=e^{(1-q)X_{q}^{(S)}}T^{(S)}. (39)

The pressure P(S)P^{(S)} in the system is defined by

P(S)T(S)=(Sq(S)V(S))Uq(S).\displaystyle\frac{P^{(S)}}{T^{(S)}}=\left(\frac{\partial S_{q}^{(S)}}{\partial V^{(S)}}\right)_{U_{q}^{(S)}}. (40)

From Eqs. (4c), (39), and (40), we have the relation Pph(S)=P(S)P_{\mathrm{ph}}^{(S)}=P^{(S)}. Therefore, we focus on (ΔSq(S))2\langle(\Delta S_{q}^{(S)})^{2}\rangle and (ΔT(S))2\langle(\Delta T^{(S)})^{2}\rangle.

It is possible to obtain the mean square of the relative fluctuation (ΔSq/Sq)2\langle(\Delta S_{q}/S_{q})^{2}\rangle for q1q\neq 1 from Eq. (27c) by using the relation between Xq(S)X_{q}^{(S)} and Sq(S)S_{q}^{(S)}, Eq. (8), when Sq(S)S_{q}^{(S)} is large enough. The mean square of the fluctuation of the entropic variable, (ΔXq(S))2\langle(\Delta X_{q}^{(S)})^{2}\rangle, is represented with (ΔSq(S))2\langle(\Delta S_{q}^{(S)})^{2}\rangle:

(ΔXq(S))2=(11+(1q)Sq(S))2(ΔSq(S))2+O((ΔSq(S))3).\displaystyle\langle(\Delta X_{q}^{(S)})^{2}\rangle=\Bigg{(}\frac{1}{1+(1-q)S_{q}^{(S)}}\Bigg{)}^{2}\langle(\Delta S_{q}^{(S)})^{2}\rangle+O(\langle(\Delta S_{q}^{(S)})^{3}\rangle). (41)

That is

(11+(1q)Sq(S))2(ΔSq(S))2CqP(S).\displaystyle\Bigg{(}\frac{1}{1+(1-q)S_{q}^{(S)}}\Bigg{)}^{2}\langle(\Delta S_{q}^{(S)})^{2}\rangle\sim C_{qP}^{(S)}. (42)

Equation (42) is also represented with Xq(S)X_{q}^{(S)}:

(ΔSq(S))2e2(1q)Xq(S)CqP(S).\displaystyle\langle(\Delta S_{q}^{(S)})^{2}\rangle\sim e^{2(1-q)X_{q}^{(S)}}C_{qP}^{(S)}. (43)

For sufficiently large Sq(S)S_{q}^{(S)} with q1q\neq 1, from Eq. (42), we have

(ΔSq(S)/Sq(S))2(1q)2CqP(S).\displaystyle\langle(\Delta S_{q}^{(S)}/S_{q}^{(S)})^{2}\rangle\sim(1-q)^{2}C_{qP}^{(S)}. (44)

The quantity (1q)2CqP(S)(1-q)^{2}C_{qP}^{(S)} gives the mean square of the relative fluctuation of the Tsallis entropy (ΔSq(S)/Sq(S))2\langle(\Delta S_{q}^{(S)}/S_{q}^{(S)})^{2}\rangle for sufficiently large Sq(S)S_{q}^{(S)} with q1q\neq 1.

The mean square of the fluctuation of the Tsallis temperature (ΔT(S))2\langle(\Delta T^{(S)})^{2}\rangle is calculated with Eq. (39).

(ΔT(S))2=\displaystyle\langle(\Delta T^{(S)})^{2}\rangle= e2(q1)Xq(S){(ΔTph(S))2+2(q1)Tph(S)(ΔTph(S))(ΔXq(S))\displaystyle e^{2(q-1)X_{q}^{(S)}}\Bigg{\{}\langle(\Delta T_{\mathrm{ph}}^{(S)})^{2}\rangle+2(q-1)T_{\mathrm{ph}}^{(S)}\langle(\Delta T_{\mathrm{ph}}^{(S)})(\Delta X_{q}^{(S)})\rangle
+(q1)2(Tph(S))2(ΔXq(S))2}+O(Δ3).\displaystyle+(q-1)^{2}(T_{\mathrm{ph}}^{(S)})^{2}\langle(\Delta X_{q}^{(S)})^{2}\rangle\Bigg{\}}+O(\Delta^{3}). (45)

Substituting Eq. (37) into Eq. (45), the quantity (ΔT(S))2\langle(\Delta T^{(S)})^{2}\rangle is given by

(ΔT(S))2\displaystyle\langle(\Delta T^{(S)})^{2}\rangle\sim e2(q1)Xq(S){(1+2(q1)CqV(S))(ΔTph(S))2+(q1)2(Tph(S))2(ΔXq(S))2}.\displaystyle e^{2(q-1)X_{q}^{(S)}}\Bigg{\{}(1+2(q-1)C_{qV}^{(S)})\langle(\Delta T_{\mathrm{ph}}^{(S)})^{2}\rangle+(q-1)^{2}(T_{\mathrm{ph}}^{(S)})^{2}\langle(\Delta X_{q}^{(S)})^{2}\rangle\Bigg{\}}. (46)

The quantities, (ΔTph(S))2\langle(\Delta T_{\mathrm{ph}}^{(S)})^{2}\rangle and (ΔXq(S))2\langle(\Delta X_{q}^{(S)})^{2}\rangle, are given by Eqs. (27a) and (27c). The quantity (ΔT(S))2\langle(\Delta T^{(S)})^{2}\rangle is represented as

(ΔT(S))2\displaystyle\langle(\Delta T^{(S)})^{2}\rangle e2(q1)Xq(S)(Tph(S))2{(1CqV(S))+2(q1)+(q1)2CqP(S)}\displaystyle\sim e^{2(q-1)X_{q}^{(S)}}(T_{\mathrm{ph}}^{(S)})^{2}\Bigg{\{}\left(\frac{1}{C_{qV}^{(S)}}\right)+2(q-1)+(q-1)^{2}C_{qP}^{(S)}\Bigg{\}} (47a)
=(T(S))2{(1CqV(S))+2(q1)+(q1)2CqP(S)}.\displaystyle=(T^{(S)})^{2}\Bigg{\{}\left(\frac{1}{C_{qV}^{(S)}}\right)+2(q-1)+(q-1)^{2}C_{qP}^{(S)}\Bigg{\}}. (47b)

Therefore, the mean square of the relative fluctuation of the Tsallis temperature (ΔT(S)/T(S))2\langle(\Delta T^{(S)}/T^{(S)})^{2}\rangle is given by

(ΔT(S)/T(S))2\displaystyle\langle(\Delta T^{(S)}/T^{(S)})^{2}\rangle 1CqV(S)+2(q1)+(q1)2CqP(S).\displaystyle\sim\frac{1}{C_{qV}^{(S)}}+2(q-1)+(q-1)^{2}C_{qP}^{(S)}. (48)

The fluctuations of the Tsallis quantities in the Tsallis statistics approach the fluctuations in the Boltzmann-Gibbs statistics as qq approaches one.

4 Conclusions

In this paper, we considered the thermodynamic relations in the Tsallis statistics by assuming the form of the first law with physical quantities. We also calculated the fluctuations of thermodynamic quantities by using the entropic variable defined with the Tsallis entropy.

The first law is naturally described with the physical temperature TphT_{\mathrm{ph}} and the physical pressure PphP_{\mathrm{ph}} by introducing the entropic variable XqX_{q} conjugate to the physical temperature. The requirement that the first law has the form dUq=TphdXqPphdVdU_{q}=T_{\mathrm{ph}}dX_{q}-P_{\mathrm{ph}}dV suggests the form of XqX_{q} as a function of the Tsallis entropy SqS_{q}, where UqU_{q} is the energy and VV is the volume.

We obtained the mean squares of the fluctuations of the physical quantities: the physical temperature TphT_{\mathrm{ph}}, the physical pressure PphP_{\mathrm{ph}}, the volume VV, and the entropic variable XqX_{q}. The mean squares of the fluctuations of physical quantities in the Tsallis statistics are the same as those in the conventional statistics. We also calculated the mean square of the fluctuation of the energy. The mean square of the relative fluctuation of the energy for ideal gas has the well-known expression.

The mean square of the fluctuation of the Tsallis entropy SqS_{q} and the mean square of the fluctuation of the Tsallis temperature TT are given with physical quantities. The mean square of the fluctuation of SqS_{q} is represented with the heat capacity at constant (physical) pressure CqPC_{qP} and the entropic variable XqX_{q}. The mean square of the fluctuation of TT is also represented with the physical temperature, heat capacities, and the entropic variable XqX_{q}. The mean square of the relative fluctuation of the Tsallis entropy (ΔSq/Sq)2\langle(\Delta S_{q}/S_{q})^{2}\rangle with q1q\neq 1 is given by (q1)2CqP(q-1)^{2}C_{qP} for large SqS_{q}. The mean square of the relative fluctuation of the Tsallis temperature (ΔT(S)/T(S))2\langle(\Delta T^{(S)}/T^{(S)})^{2}\rangle is represented with the deviation (q1)(q-1) and heat capacities. The fluctuations of the Tsallis quantities in the Tsallis statistics approach the fluctuations in the Boltzmann-Gibbs statistics as the entropic parameter qq approaches one.

It is possible to compare the results in this study with the results in other studies. The thermodynamic quantities in the Rényi statistics, in which the standard average is employed, were investigated, and it was shown that the thermodynamic quantities in the Rényi statistics are the same as those in the Boltzmann-Gibbs statistics Parvan:2010 . It was also shown that the physical quantities are qq-independent within the framework of Tsallis statistics Toral:2003 . This property is shown in the present study: the mean squares of the fluctuations of the physical quantities, TphT_{\mathrm{ph}}, VV, XqX_{q}, and PphP_{\mathrm{ph}}, are the same as those in the Boltzmann-Gibbs statistics. The fluctuations of the physical quantities do not contain the entropic parameter qq explicitly: the deviation q1q-1 does not appear. In contrast, the fluctuation of the Tsallis entropy SqS_{q} and the fluctuation of the Tsallis temperature TT contain the entropic parameter qq explicitly: the deviation q1q-1 appears in the fluctuations.

The fluctuations of the physical quantities do not contain the entropic parameter qq explicitly, and the fluctuations are the same as those in the Boltzmann-Gibbs statistics. This fact comes from the relation between the entropic variable XqX_{q} and the number of states WW: Xq=lnWX_{q}=\ln W. The fluctuation of the Tsallis entropy SqS_{q} and the fluctuation of the Tsallis temperature TT contain the entropic parameter qq explicitly. This fact comes from the relation between the entropy SqS_{q} and the number of states WW. The entropic parameter appears explicitly in the relation: Sq=lnqWS_{q}=\ln_{q}W.

The discussion above for the Tsallis entropy is extended to the discussions for other entropies. We have the equation, lnW=ln(finv(S))\ln W=\ln(f_{\mathrm{inv}}(S)), when an entropy SS and the number of states WW have the relation W=finv(S)W=f_{\mathrm{inv}}(S), where finvf_{\mathrm{inv}} is the inverse function of a function ff. The fluctuation of the physical variable is the same as the fluctuation of the corresponding variable in the Boltzmann-Gibbs statistics, when the physical variable is defined by using ln(finv(S))\ln(f_{\mathrm{inv}}(S)). However, as shown in this paper, the fluctuation of the variable defined directly from the entropy SS (for example, Tsallis entropy) is not the same as the fluctuation of the corresponding variable in the Boltzmann-Gibbs statistics: the fluctuation of the Tsallis temperature is not the same as the fluctuation of the temperature in the Boltzmann-Gibbs statistics.

The physical quantities such as physical temperature characterize the equilibrium. Therefore it might be better to use the name, equilibrium temperature, instead of physical temperature. It was pointed out that two temperatures are not the same for two finite systems Prosper1993 . Therefore, we may pay attention to the observed temperature. Whether the physical temperature is the observed temperature depends on the property of the thermometer.

The calculations of the fluctuations are based on the expression, W=exp(Xq)W=\exp(X_{q}). That is, the calculations depend on the property of the exponential function: exp(x+Δx)=exp(x)exp(Δx)\exp(x+\Delta x)=\exp(x)\exp(\Delta x). The calculations also depend on the division between the system and the environment represented as W(S+E)=W(S)W(E)W^{(S+E)}=W^{(S)}W^{(E)}, where W(S+E)W^{(S+E)}, W(S)W^{(S)}, and W(E)W^{(E)} are the number of states for the whole system, that for the system, and that for the environment. Therefore, the results in the present study will be modified in the case of W(S+E)W(S)W(E)W^{(S+E)}\neq W^{(S)}W^{(E)}.

In this paper, the thermodynamic relations were studied in the Tsallis statistics. The mean squares of the fluctuations of the physical quantities and the mean squares of the fluctuations of the Tsallis quantities were obtained. The results given in this paper will be helpful to study the phenomena described with the statistics related to power-like distributions.

Funding This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Data availability statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This study is theoretical, and no data is generated.]

Competing Interests The author declares no competing interest.

References

  • (1) C. Tsallis, Introduction to Nonextensive Statistical Mechanics (New York : Springer Science + Business Media, LLC, 2010).
  • (2) C. Tsallis, Entropy 21, 696 (2019) https:/doi.org/10.3390/e21070696
  • (3) S. Kalyana Rama, Phys. Lett. A 276, 103 (2000). https://doi.org/10.1016/S0375-9601(00)00634-4
  • (4) S. Abe, S. Martinez, F. Pennini, A. Plastino, Phys. Lett. A 281, 126 (2001) https://doi.org/10.1016/S0375-9601(01)00127-X
  • (5) S. Abe, Physica A 300, 417 (2001) https://doi.org/10.1016/S0378-4371(01)00348-X
  • (6) H. H. Aragão-Rêgo, D. J. Soares, L. S. Lucena, L. R. da Silva, E. K. Lenzi, Kwok Sau Fa, Physica A 317, 199 (2003) https://doi.org/10.1016/S0378-4371(02)01330-4
  • (7) E. Ruthotto, arXiv:cond-mat/0310413 https://doi.org/10.48550/arXiv.cond-mat/0310413
  • (8) R. Toral, Physica A 317, 209 (2003) https://doi.org/10.1016/S0378-4371(02)01313-4
  • (9) H. Suyari, Prog. Theor. Phys. Suppl. 162, 79 (2006) https://doi.org/10.1143/PTPS.162.79
  • (10) M. Ishihara, Int. J. of Mod. Phys. A 33, 1850067 (2018) https:/doi.org/10.1142/S0217751X18500677
  • (11) M. Ishihara, Eur. Phys. J. A 54, 164 (2018) https:/doi.org/10.1140/epja/i2018-12601-8
  • (12) M. Ishihara, Eur. Phys. J. B 96, 13 (2023) https://doi.org/10.1140/epjb/s10051-023-00481-7
  • (13) A. Plastino, A. R. Plastino, Phys. Lett. A 226, 257 (1997) https://doi.org/10.1016/S0375-9601(96)00942-5
  • (14) J. D. Castaño-Yepes, D. A. Amor-Quiroz, Physica A 548, 123871 (2020) https:/doi.org/10.1016/j.physa.2019.123871
  • (15) T. Yamano, Eur. Phys. J. B 18, 103 (2000) https://doi.org/10.1007/s100510070083
  • (16) J. Cleymans, D. Worku, J. Phys. G: Nucl. Part. Phys. 39, 025006 (2012) https://doi.org/10.1088/0954-3899/39/2/025006
  • (17) L. Marques, J. Cleymans, A. Deppman, Phys. Rev. D 91, 054025 (2015) https://doi.org/10.1103/PhysRevD.91.054025
  • (18) M. D. Azmi, J. Cleymans, Eur. Phys. J. C 75, 430 (2015) https://doi.org/10.1140/epjc/s10052-015-3629-9
  • (19) D. Thakur, S. Tripathy, P. Garg, R. Sahoo, J. Cleymans, Advances in High Energy Physics 2016, 4149352 (2016) http://doi.org/10.1155/2016/4149352
  • (20) A. Khuntia, S. Tripathy, R. Sahoo, J. Cleymans, Euro. Phys. J. A 53, 103 (2017) https://doi.org/10.1140/epja/i2017-12291-8
  • (21) R.-F. Si, H.-L. Li, F.-H. Liu, Advances in High Energy Physics 2018, 7895967 (2018)
    https://doi.org/10.1155/2018/7895967
  • (22) T. Bhattacharyya, J. Cleymans, L. Marques, S. Mogliacci, M. W. Paradza, J. Phys. G: Nucl. Part. Phys. 45, 055001 (2018) https://doi.org/10.1088/1361-6471/aaaea0
  • (23) A. S. Parvan, Eur. Phys. J. A 56, 106 (2020) https://doi.org/10.1140/epja/s10050-020-00117-9
  • (24) T. Osada, M. Ishihara, J. Phys. G: Nucl. Part. Phys. 45, 015104 (2018) https://doi.org/10.1088/1361-6471/aa9208
  • (25) T. Wada, Phys. Lett. A 318, 491 (2003) https://doi.org/10.1016/j.physleta.2003.09.056
  • (26) G. Wilk, Z. Włodarczyk, Eur. Phys. J. A 40, 299 (2009) https://doi.org/10.1140/epja/i2009-10803-9
  • (27) G. Wilk, Z. Włodarczyk, Eur. Phys. J. A 57, 221 (2021) https://doi.org/10.1140/epja/s10050-021-00538-0
  • (28) G. Wilk, Z. Włodarczyk, Phys. Rev. Lett. 84, 2770 (2000) https://doi.org/10.1103/PhysRevLett.84.2770
  • (29) A. Saha, S. Sanyal, Mod. Phys. Lett. A 36, 2150152 (2021) https://doi.org/10.1142/S0217732321501522
  • (30) A. Ayala, S. Hernández-Ortiz, L. A. Hernández, V. Knapp-Pérez, R. Zamora, Phys. Rev. D 101, 074023 (2020) https://doi.org/10.1103/PhysRevD.101.074023
  • (31) K. Ourabah, M. Tribeche, Phys. Rev. E 95, 042111 (2017) https://doi.org/10.1103/PhysRevE.95.042111
  • (32) J. D. Castaño-Yepes, C. F. Ramirez-Gutierrez, Phys. Rev. E 104, 024139 (2021)
    https://doi.org/10.1103/PhysRevE.104.024139
  • (33) J. D. Castaño-Yepes, Eur. Phys. J. Plus 137, 155 (2022) https://doi.org/10.1140/epjp/s13360-022-02382-7
  • (34) A. S. Parvan, Phys. Lett. A 350, 331 (2006) https://doi.org/10.1016/j.physleta.2005.09.082
  • (35) L. Liyan, D. Jiulin, Physica A 387, 5417 (2008) https://doi.org/10.1016/j.physa.2008.05.028
  • (36) S. Martínez, F. Pennini, A. Plastino, Phys. Lett. A 278, 47 (2000) https://doi.org/10.1016/S0375-9601(00)00768-4
  • (37) E. Vives, A. Planes, Phys. Rev. Lett. 88, 020601 (2001) https://doi.org/10.1103/PhysRevLett.88.020601
  • (38) C. Tsallis, R. S. Mendes, A. R. Plastino, Physica A 261, 534 (1998) https://doi.org/10.1016/S0378-4371(98)00437-3
  • (39) M. Ishihara, Eur. Phys. J. B 95, 53 (2022) https://doi.org/10.1140/epjb/s10051-022-00309-w
  • (40) A. S. Parvan, T. S. Biro, Phys. Lett. A 340, 375 (2005) https://doi.org/10.1016/j.physleta.2005.04.036
  • (41) Q. A. Wang, L. Nivanen, M. Pezeril, A. Le Méhauté, arXiv:cond-mat/0304178v4
    https://doi.org/10.48550/arXiv.cond-mat/0304178
  • (42) S. Abe, Phys. Rev. E 66, 046134 (2002) https://doi.org/10.1103/PhysRevE.66.046134
  • (43) L. G. Moyano, C. Tsallis, M. Gell-Mann, Europhys. Lett. 73, 813 (2006) https://doi.org/10.1209/epl/i2005-10487-1
  • (44) A. S. Parvan, T. S. Biró, Phys. Lett. A 374, 1951 (2010) https://doi.org/10.1016/j.physleta.2010.03.007
  • (45) H. B. Prosper, Am. J. Phys. 61, 54 (1993) https://doi.org/10.1119/1.17410