The and its heavy quark spin partners in molecular picture
Abstract
The observed by the LHCb Collaboration recently in the invariant mass of the process is the first exotic candidate with four different flavors, which opens a new era for the hadron community. Under the assumption that the is a hadronic molecule, we extract the whole heavy-quark symmetry multiplet formed by the doublet and the meson. For the bound state case, there would be two additional hadronic molecules associated with the and channels as well as one additional molecule. In the light quark limit, they are and below the and thresholds, respectively, which are unambiguously fixed by the mass position of the . For the virtual state case, there would be one additional hadronic molecule strongly coupling to the channel and one additional molecule. Searching for these heavy quark spin partners will help shed light on the nature of the .
Introduction. The conventional quark model GellMann:1964nj ; Zweig:1981pd , which inherits part of the properties of Quantum Chromo-Dynamics (QCD), has made a great success to understand hadrons before 2003. Quark model tells us that hadrons can be classified as either mesons made of or baryons made of three quarks. However, QCD tells us that any color neutral configuration (especaily exotics) could exist upon the two configurations mentioned above. That leaves us two questions: where to find these exotic candidates and how to understand the underlying mechanism. The observation of the first exotic candidate Choi:2003ue in 2003 and the succeed tremendous experimental measurements Olsen:2017bmm ; Yuan:2019zfo partly answer the first question. Among these, the observation of the first pentaquarks Aaij:2015tga ; Aaij:2019vzc , the first fully heavy four quark states LHCb-X6900 and the first exotic candidates with four different flavors i.e. the Aaij:2020hon ; Aaij:2020ypa reported by the LHCb Collaboration recently, set milestones from experimental side. Different prescriptions from theoretical side are put forward for understanding the nature of these exotic candidates Guo:2017jvc ; Chen:2016qju ; Esposito:2016noz ; Ali:2017jda ; Liu:2019zoy ; Brambilla:2019esw ; Bondar:2016hva ; Lebed:2016hpi . Among them, hadronic molecule Guo:2017jvc , as an analogy of deuteron formed by a proton and a neutron, is proposed due to the fact that they are with a few MeV below the nearby -wave threshold.
However, one have to confront one problem that different configurations with the same quantum number can mix with each other and cannot be well isolated. For instance, although the is proposed as a hadronic molecule at the very beginning Tornqvist:2004qy due to its closeness to the threshold, it still could be or mix with the normal charmonium Meng:2007cx ; Kalashnikova:2005ui ; Zhang:2009bv ; Danilkin:2010cc ; Li:2009zu ; Li:2009ad ; Coito:2010if ; Coito:2012vf . Another typical example is the and the which are about and below the and charmed-strange mesons of Godfrey-Isgur quark model Godfrey:1985xj . Meanwhile, they are about below the and , thresholds, respectively, which can be explained naturally if the systems are bound states of the and meson pairs Barnes:2003dj ; vanBeveren:2003kd ; vanBeveren:2003jv ; Kolomeitsev:2003ac ; Guo:2006fu ; Zhang:2006ix ; Guo:2006rp ; Guo:2009id . However, because the light quark and anti-quark in the isosinglet system are of the same flavor, despite of those comprehensive studies, one still cannot avoid the possibility of the mixture with the normal configurations vanBeveren:2003kd ; vanBeveren:2003jv ; Coito:2011qn ; Hwang:2004cd ; Simonov:2004ar ; Lee:2004gt ; Zhou:2011sp . Fortunately, the LHCb Collaboration reported a Aaij:2020hon ; Aaij:2020ypa narrow state with mass and width as well as another broader state with mass and width in the invariant mass distribution. They are the first exotic states with four different flavors, which brings us a potential ultimate solution for the problem from different aspects.
In this letter, we solve the Lippmann-Schwinger Equation (LSE) with leading order contact potentials of the system, in the heavy quark limit, to extract the mass position of the spin partners of the . That the exists as a hadronic molecule is an input in our framework. With that assumption, we predict the masses of its heavy quark spin partners. Searching for those spin partners could help to understand the nature of the .
Framework. The heavy quark spin structure Bondar:2011ev could reexpress of the hadron basis by the heavy-light basis. One could find an example for the and case with two heavy quarks in Refs. Hanhart:2015cua ; Guo:2016bjq ; Wang:2018jlv ; Baru:2019xnh ; Voloshin:2011qa ; Baru:2017gwo . Along the same line, the -wave system with only one heavy quark can be written in terms of the heavy degree of freedom and light degree of freedom as the following Yasui:2013vca
(1) |
with . Here, , and are spins of anti-charm quark , light quark and the sum of them in the meson. and are the spins of the meson and the total spin of the system. on the right hand side of Eq. (1) is the light degree of freedom of the system, which is the only relevant quantity for the dynamics in the heavy quark limit. Following Eq. (1), one can obtain the decompositions of the system as
(2) | |||||
(3) | |||||
(4) | |||||
(5) | |||||
(6) | |||||
(7) |
Here the heavy degree of freedom is suppressed due to the same value, leaving only the light degrees of freedom in . Although the and have the same quark content, the light degrees of freedoms in the first two equations and those in the last four equations can be distinguishable due to the large scale separation of the and masses. Analogous to those in Refs. Guo:2013sya , by defining the contact potential
(8) |
the potentials of the and and systems are
(9) | |||||
(10) |
and
(11) | |||||
(14) | |||||
(15) |
respectively. and are for the potentials of the and systems, respectively. The subindex presents the total spin and parity of the corresponding system. The transition between and is the higher order contribution, which is set to zero in this work 111The observation of the in the channel is due to this higher order contribution, i.e. the mixing between the and the compoments.. The above decomposition and the corresponding potentials also work for the systems, but with different values of .


With the above potentials, one can solve LSE
(16) |
with the potentials for specific channels of a given quantum number. Here two-body non-relativistic propagator is
with power divergence subtraction Kaplan:1998tg to regularize the ultraviolet (UV) divergence. The value of should be smaller enough to preserve heavy quark symmetry, leaving the physics insensitive to the details of short-distance dynamics Guo:2013sya . Here , and are the masses of the intermediated two particles and their reduced mass, respectively. is the total energy of the system. The expression of the second Riemann sheet can be obtained by changing the sign of the second term of .
Results and Discussions. Before the numerical results, we estimate the values of the contact potential . The leading contact terms between heavy-light mesons and Goldstone bosons can be obtained by the following Lagrangian Guo:2008gp ; Du:2017ttu ; Burdman:1992gh ; Wise:1992hn ; Yan:1992gz ; Yao:2015qia
(17) |
where
(18) |
with
(19) |
and chiral connection
(20) |
Here the chiral building blocks are
Here with the Goldstone boson octet. To the leading order, is the pion decay constant. The isospin singlet and systems are defined as
(21) |
which is associated with the and
(22) |
The definitions of the isospin singlet and systems are analogous. From Eq. (17), we obtain
(23) |
which agrees with those obtained from the heavy-light decomposition, i.e. Eqs. (9), (10), and
(24) |
As the result, the value of for the system is half of that for the system. We find that any parameter set, i.e. , for the existence of the and as and molecular states (both bound states and virtual states) does not indicate the existence of the analogous and molecules. Here and in what follows, we focus on the discussion of the formation of the molecule instead of their isospin breaking effect. As the result, the isospin average masses
(25) | |||||
(26) |
are implemented in this letter.


For the interaction, the recently observed by the LHCb collaboration is assumed to be a molecular state Molina:2010tx . We consider the two cases for the
-
•
a bound state with the mass satisfying
(27) -
•
a virtual state with the mass satisfying
(28)
We take and to illustrate the mass positions of its heavy quark spin partners and the corresponding properties.
For the bound state solution of the , and correspond to and , respectively. Fig. 1 shows how the poles move with the variation of the two parameter sets. The blue triangle and green square curves show the pole trajectory of the bound state and resonance in the channel. One can see that, with variation between and , one bound state and one resonance emerge with tens of MeV below the and thresholds, respectively. The bound state in the channel is more sensitive to the parameter . If one would expect that light quark spin symmetry also works here as that for the two states Voloshin:2016cgm , i.e. , we find the pole position of the above three states are
(29) | |||
(30) |
The vanishing imaginary part of the higher state is because of the degenerance of the two states.
For the virtual state solution of the , and correspond to and , respectively. Fig. 2 shows how the poles move with variation between and for the two values. For the former case, the blue triangles and red circles show the pole trajectories of the bound states for the and channels, respectively. For the later case, both of them become virtual states. As the result, whether the higher molecule exists or not depends on the nature of the , i.e. either a bound state or a virtual state, which can be studied by the further detailed scan of its line shape. Thus, searching for these heavy quark spin partners would help to reveal the nature of the .
Summary and Outlook. Under the assumption that the LHCb Collaboration recently reported is a hadronic molecule, we extract the pole trajectories of its heavy quark spin partners with the variation of the parameter . The parameter is fixed by the mass position of the (either a bound state or a virtual state). For the bound state case, in the light quark spin symmetry, we extract the mass positions of its heavy quark spin partners, i.e. and for state, and for state. For the virtual state case, the higher state is far away from the physical region and will not have large impact on the physical observables. Searching for those states would help to shed light on the nature of the .
During the update of this manuscript, several works He:2020jna ; Liu:2020orv ; Zhang:2020oze ; Lu:2020qmp ; Liu:2020nil ; Chen:2020aos ; Wang:2020xyc ; Huang:2020ptc ; Qin:2020zlg appear to discuss the relevant topics.
Acknowledgements.
The discussions with Tim Burns, M.L. Du, Li-Sheng Geng, Ming-Zhu Liu, Eulogio Oset, Jun-Jun Xie are appreciated. A special acknowledgement to C. Hanhart for pointing out the relation between the and the potential of the in hadronic molecular picture to the leading order. This work is partly supported by the National Natural Science Foundation of China (NSFC) and the Deutsche Forschungsgemeinschaft (DFG) through the funds provided to the Sino-German Collaborative Research Center “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11621131001 and DFG Grant No. TRR110), Science and Technology Program of Guangzhou (No. 2019050001), NSFC Grant No. 12035007, Guangdong Provincial funding with Grant No. 2019QN01X172. MWH and XYL are also supported by Entrepreneurship competition for College Students of SCNU.References
- (1) M. Gell-Mann, Phys. Lett. 8, 214-215 (1964) doi:10.1016/S0031-9163(64)92001-3
- (2) G. Zweig, CERN-TH-401.
- (3) S. K. Choi et al. [Belle], Phys. Rev. Lett. 91, 262001 (2003) doi:10.1103/PhysRevLett.91.262001 [arXiv:hep-ex/0309032 [hep-ex]].
- (4) S. L. Olsen, T. Skwarnicki and D. Zieminska, Rev. Mod. Phys. 90, no.1, 015003 (2018) doi:10.1103/RevModPhys.90.015003 [arXiv:1708.04012 [hep-ph]].
- (5) C. Z. Yuan and S. L. Olsen, Nature Rev. Phys. 1, no.8, 480-494 (2019) doi:10.1038/s42254-019-0082-y [arXiv:2001.01164 [hep-ex]].
- (6) R. Aaij et al. [LHCb], Phys. Rev. Lett. 115, 072001 (2015) doi:10.1103/PhysRevLett.115.072001 [arXiv:1507.03414 [hep-ex]].
- (7) R. Aaij et al. [LHCb], Phys. Rev. Lett. 122, no.22, 222001 (2019) doi:10.1103/PhysRevLett.122.222001 [arXiv:1904.03947 [hep-ex]].
- (8) LHC Seminar, Latest results on exotic hadrons at LHCb, by Liupan An, June 16, 2020, https://indico.cern.ch/event/900972/
- (9) R. Aaij et al. [LHCb], [arXiv:2009.00025 [hep-ex]].
- (10) R. Aaij et al. [LHCb], [arXiv:2009.00026 [hep-ex]].
- (11) F. K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao and B. S. Zou, Rev. Mod. Phys. 90, no.1, 015004 (2018) doi:10.1103/RevModPhys.90.015004 [arXiv:1705.00141 [hep-ph]].
- (12) H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Phys. Rept. 639, 1-121 (2016) doi:10.1016/j.physrep.2016.05.004 [arXiv:1601.02092 [hep-ph]].
- (13) A. Esposito, A. Pilloni and A. D. Polosa, Phys. Rept. 668, 1-97 (2017) doi:10.1016/j.physrep.2016.11.002 [arXiv:1611.07920 [hep-ph]].
- (14) A. Ali, J. S. Lange and S. Stone, Prog. Part. Nucl. Phys. 97, 123-198 (2017) doi:10.1016/j.ppnp.2017.08.003 [arXiv:1706.00610 [hep-ph]].
- (15) Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Prog. Part. Nucl. Phys. 107, 237-320 (2019) doi:10.1016/j.ppnp.2019.04.003 [arXiv:1903.11976 [hep-ph]].
- (16) N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, Phys. Rept. 873, 1-154 (2020) [arXiv:1907.07583 [hep-ex]].
- (17) A. E. Bondar, R. V. Mizuk and M. B. Voloshin, Mod. Phys. Lett. A 32, no.04, 1750025 (2017) doi:10.1142/S0217732317500250 [arXiv:1610.01102 [hep-ph]].
- (18) R. F. Lebed, R. E. Mitchell and E. S. Swanson, Prog. Part. Nucl. Phys. 93, 143-194 (2017) doi:10.1016/j.ppnp.2016.11.003 [arXiv:1610.04528 [hep-ph]].
- (19) N. A. Tornqvist, Phys. Lett. B 590, 209-215 (2004) doi:10.1016/j.physletb.2004.03.077 [arXiv:hep-ph/0402237 [hep-ph]].
- (20) C. Meng and K. T. Chao, Phys. Rev. D 75, 114002 (2007) doi:10.1103/PhysRevD.75.114002 [arXiv:hep-ph/0703205 [hep-ph]].
- (21) Y. S. Kalashnikova, Phys. Rev. D 72, 034010 (2005) doi:10.1103/PhysRevD.72.034010 [arXiv:hep-ph/0506270 [hep-ph]].
- (22) O. Zhang, C. Meng and H. Q. Zheng, Phys. Lett. B 680, 453-458 (2009) doi:10.1016/j.physletb.2009.09.033 [arXiv:0901.1553 [hep-ph]].
- (23) I. V. Danilkin and Y. A. Simonov, Phys. Rev. Lett. 105, 102002 (2010) doi:10.1103/PhysRevLett.105.102002 [arXiv:1006.0211 [hep-ph]].
- (24) B. Q. Li and K. T. Chao, Phys. Rev. D 79, 094004 (2009) doi:10.1103/PhysRevD.79.094004 [arXiv:0903.5506 [hep-ph]].
- (25) B. Q. Li, C. Meng and K. T. Chao, Phys. Rev. D 80, 014012 (2009) doi:10.1103/PhysRevD.80.014012 [arXiv:0904.4068 [hep-ph]].
- (26) S. Coito, G. Rupp and E. van Beveren, Eur. Phys. J. C 71, 1762 (2011) doi:10.1140/epjc/s10052-011-1762-7 [arXiv:1008.5100 [hep-ph]].
- (27) S. Coito, G. Rupp and E. van Beveren, Eur. Phys. J. C 73, no.3, 2351 (2013) doi:10.1140/epjc/s10052-013-2351-8 [arXiv:1212.0648 [hep-ph]].
- (28) S. Godfrey and N. Isgur, Phys. Rev. D 32, 189-231 (1985) doi:10.1103/PhysRevD.32.189
- (29) T. Barnes, F. E. Close and H. J. Lipkin, Phys. Rev. D 68, 054006 (2003) doi:10.1103/PhysRevD.68.054006 [arXiv:hep-ph/0305025 [hep-ph]].
- (30) E. van Beveren and G. Rupp, Phys. Rev. Lett. 91, 012003 (2003) doi:10.1103/PhysRevLett.91.012003 [arXiv:hep-ph/0305035 [hep-ph]].
- (31) E. van Beveren and G. Rupp, Eur. Phys. J. C 32, 493-499 (2004) doi:10.1140/epjc/s2003-01465-0 [arXiv:hep-ph/0306051 [hep-ph]].
- (32) E. E. Kolomeitsev and M. F. M. Lutz, Phys. Lett. B 582, 39-48 (2004) doi:10.1016/j.physletb.2003.10.118 [arXiv:hep-ph/0307133 [hep-ph]].
- (33) F. K. Guo, P. N. Shen, H. C. Chiang, R. G. Ping and B. S. Zou, Phys. Lett. B 641, 278-285 (2006) doi:10.1016/j.physletb.2006.08.064 [arXiv:hep-ph/0603072 [hep-ph]].
- (34) Y. J. Zhang, H. C. Chiang, P. N. Shen and B. S. Zou, Phys. Rev. D 74, 014013 (2006) doi:10.1103/PhysRevD.74.014013 [arXiv:hep-ph/0604271 [hep-ph]].
- (35) F. K. Guo, P. N. Shen and H. C. Chiang, Phys. Lett. B 647, 133-139 (2007) doi:10.1016/j.physletb.2007.01.050 [arXiv:hep-ph/0610008 [hep-ph]].
- (36) F. K. Guo, C. Hanhart and U.-G. Meißner, Phys. Rev. Lett. 102, 242004 (2009) doi:10.1103/PhysRevLett.102.242004 [arXiv:0904.3338 [hep-ph]].
- (37) S. Coito, G. Rupp and E. van Beveren, Phys. Rev. D 84, 094020 (2011) doi:10.1103/PhysRevD.84.094020 [arXiv:1106.2760 [hep-ph]].
- (38) D. S. Hwang and D. W. Kim, Phys. Lett. B 601, 137-143 (2004) doi:10.1016/j.physletb.2004.09.040 [arXiv:hep-ph/0408154 [hep-ph]].
- (39) Y. A. Simonov and J. A. Tjon, Phys. Rev. D 70, 114013 (2004) doi:10.1103/PhysRevD.70.114013 [arXiv:hep-ph/0409361 [hep-ph]].
- (40) I. W. Lee, T. Lee, D. P. Min and B. Y. Park, Eur. Phys. J. C 49, 737-741 (2007) doi:10.1140/epjc/s10052-006-0149-7 [arXiv:hep-ph/0412210 [hep-ph]].
- (41) Z. Y. Zhou and Z. Xiao, Phys. Rev. D 84, 034023 (2011) doi:10.1103/PhysRevD.84.034023 [arXiv:1105.6025 [hep-ph]].
- (42) A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk and M. B. Voloshin, Phys. Rev. D 84, 054010 (2011) doi:10.1103/PhysRevD.84.054010 [arXiv:1105.4473 [hep-ph]].
- (43) C. Hanhart, Y. S. Kalashnikova, P. Matuschek, R. V. Mizuk, A. V. Nefediev and Q. Wang, Phys. Rev. Lett. 115, no.20, 202001 (2015) doi:10.1103/PhysRevLett.115.202001 [arXiv:1507.00382 [hep-ph]].
- (44) F. K. Guo, C. Hanhart, Y. S. Kalashnikova, P. Matuschek, R. V. Mizuk, A. V. Nefediev, Q. Wang and J. L. Wynen, Phys. Rev. D 93, no.7, 074031 (2016) doi:10.1103/PhysRevD.93.074031 [arXiv:1602.00940 [hep-ph]].
- (45) Q. Wang, V. Baru, A. A. Filin, C. Hanhart, A. V. Nefediev and J. L. Wynen, Phys. Rev. D 98, no.7, 074023 (2018) doi:10.1103/PhysRevD.98.074023 [arXiv:1805.07453 [hep-ph]].
- (46) V. Baru, E. Epelbaum, A. A. Filin, C. Hanhart, A. V. Nefediev and Q. Wang, Phys. Rev. D 99, no.9, 094013 (2019) doi:10.1103/PhysRevD.99.094013 [arXiv:1901.10319 [hep-ph]].
- (47) M. B. Voloshin, Phys. Rev. D 84, 031502 (2011) doi:10.1103/PhysRevD.84.031502 [arXiv:1105.5829 [hep-ph]].
- (48) V. Baru, E. Epelbaum, A. A. Filin, C. Hanhart and A. V. Nefediev, JHEP 06, 158 (2017) doi:10.1007/JHEP06(2017)158 [arXiv:1704.07332 [hep-ph]].
- (49) S. Yasui, K. Sudoh, Y. Yamaguchi, S. Ohkoda, A. Hosaka and T. Hyodo, Phys. Lett. B 727, 185-189 (2013) doi:10.1016/j.physletb.2013.10.019 [arXiv:1304.5293 [hep-ph]].
- (50) F. K. Guo, C. Hidalgo-Duque, J. Nieves and M. P. Valderrama, Phys. Rev. D 88, 054007 (2013) doi:10.1103/PhysRevD.88.054007 [arXiv:1303.6608 [hep-ph]].
- (51) D. B. Kaplan, M. J. Savage and M. B. Wise, Phys. Lett. B 424, 390-396 (1998) doi:10.1016/S0370-2693(98)00210-X [arXiv:nucl-th/9801034 [nucl-th]].
- (52) F. K. Guo, C. Hanhart, S. Krewald and U.-G. Meißner, Phys. Lett. B 666, 251-255 (2008) doi:10.1016/j.physletb.2008.07.060 [arXiv:0806.3374 [hep-ph]].
- (53) M. L. Du, F. K. Guo, U.-G. Meißner and D. L. Yao, Eur. Phys. J. C 77, no.11, 728 (2017) doi:10.1140/epjc/s10052-017-5287-6 [arXiv:1703.10836 [hep-ph]].
- (54) G. Burdman and J. F. Donoghue, Phys. Lett. B 280, 287-291 (1992) doi:10.1016/0370-2693(92)90068-F
- (55) M. B. Wise, Phys. Rev. D 45, no.7, 2188 (1992) doi:10.1103/PhysRevD.45.R2188
- (56) T. M. Yan, H. Y. Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin and H. L. Yu, Phys. Rev. D 46, 1148-1164 (1992) [erratum: Phys. Rev. D 55, 5851 (1997)] doi:10.1103/PhysRevD.46.1148
- (57) D. L. Yao, M. L. Du, F. K. Guo and U.-G. Meißner, JHEP 11, 058 (2015) doi:10.1007/JHEP11(2015)058 [arXiv:1502.05981 [hep-ph]].
- (58) R. Molina, T. Branz and E. Oset, Phys. Rev. D 82, 014010 (2010) doi:10.1103/PhysRevD.82.014010 [arXiv:1005.0335 [hep-ph]].
- (59) M. B. Voloshin, Phys. Rev. D 93, no.7, 074011 (2016) doi:10.1103/PhysRevD.93.074011 [arXiv:1601.02540 [hep-ph]].
- (60) X. G. He, W. Wang and R. Zhu, [arXiv:2008.07145 [hep-ph]].
- (61) X. H. Liu, M. J. Yan, H. W. Ke, G. Li and J. J. Xie, [arXiv:2008.07190 [hep-ph]].
- (62) J. R. Zhang, [arXiv:2008.07295 [hep-ph]].
- (63) Q. F. Lü, D. Y. Chen and Y. B. Dong, [arXiv:2008.07340 [hep-ph]].
- (64) M. Z. Liu, J. J. Xie and L. S. Geng, [arXiv:2008.07389 [hep-ph]].
- (65) H. X. Chen, W. Chen, R. R. Dong and N. Su, Chin. Phys. Lett. 37, 101201 (2020) doi:10.1088/0256-307X/37/10/101201 [arXiv:2008.07516 [hep-ph]].
- (66) Z. G. Wang, [arXiv:2008.07833 [hep-ph]].
- (67) Y. Huang, J. X. Lu, J. J. Xie and L. S. Geng, [arXiv:2008.07959 [hep-ph]].
- (68) Q. Qin and F. S. Yu, [arXiv:2008.08026 [hep-ph]].