This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The X0(2900)X_{0}(2900) and its heavy quark spin partners in molecular picture

Mei-Wei Hu Guangdong Provincial Key Laboratory of Nuclear Science,
Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
   Xue-Yi Lao Guangdong Provincial Key Laboratory of Nuclear Science,
Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
   Pan Ling Guangdong Provincial Key Laboratory of Nuclear Science,
Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
   Qian Wang [email protected] Guangdong Provincial Key Laboratory of Nuclear Science,
Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
Guangdong-Hong Kong Joint Laboratory of Quantum Matter,
Southern Nuclear Science Computing Center, South China Normal University, Guangzhou 510006, China
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract

The X0(2900)X_{0}(2900) observed by the LHCb Collaboration recently in the DK+D^{-}K^{+} invariant mass of the B+D+DK+B^{+}\to D^{+}D^{-}K^{+} process is the first exotic candidate with four different flavors, which opens a new era for the hadron community. Under the assumption that the X0(2900)X_{0}(2900) is a I(JP)=0(0+)I(J^{P})=0(0^{+}) D¯K\bar{D}^{*}K^{*} hadronic molecule, we extract the whole heavy-quark symmetry multiplet formed by the (D¯,D¯)\left(\bar{D},\bar{D}^{*}\right) doublet and the KK^{*} meson. For the bound state case, there would be two additional I(JP)=0(1+)I(J^{P})=0(1^{+}) hadronic molecules associated with the D¯K\bar{D}K^{*} and D¯K\bar{D}^{*}K^{*} channels as well as one additional I(JP)=0(2+)I(J^{P})=0(2^{+}) D¯K\bar{D}^{*}K^{*} molecule. In the light quark limit, they are 36.66MeV36.66~{}\mathrm{MeV} and 34.22MeV34.22~{}\mathrm{MeV} below the D¯K\bar{D}K^{*} and D¯K\bar{D}^{*}K^{*} thresholds, respectively, which are unambiguously fixed by the mass position of the X0(2900)X_{0}(2900). For the virtual state case, there would be one additional I(JP)=0(1+)I(J^{P})=0(1^{+}) hadronic molecule strongly coupling to the D¯K\bar{D}K^{*} channel and one additional I(JP)=0(2+)I(J^{P})=0(2^{+}) D¯K\bar{D}^{*}K^{*} molecule. Searching for these heavy quark spin partners will help shed light on the nature of the X0(2900)X_{0}(2900).

Introduction.   The conventional quark model GellMann:1964nj ; Zweig:1981pd , which inherits part of the properties of Quantum Chromo-Dynamics (QCD), has made a great success to understand hadrons before 2003. Quark model tells us that hadrons can be classified as either mesons made of qq¯q\bar{q} or baryons made of three quarks. However, QCD tells us that any color neutral configuration (especaily exotics) could exist upon the two configurations mentioned above. That leaves us two questions: where to find these exotic candidates and how to understand the underlying mechanism. The observation of the first exotic candidate X(3872)X(3872) Choi:2003ue in 2003 and the succeed tremendous experimental measurements  Olsen:2017bmm ; Yuan:2019zfo partly answer the first question. Among these, the observation of the first pentaquarks Aaij:2015tga ; Aaij:2019vzc , the first fully heavy four quark states  LHCb-X6900 and the first exotic candidates with four different flavors i.e. the X0(2900)X_{0}(2900) Aaij:2020hon ; Aaij:2020ypa reported by the LHCb Collaboration recently, set milestones from experimental side. Different prescriptions from theoretical side are put forward for understanding the nature of these exotic candidates  Guo:2017jvc ; Chen:2016qju ; Esposito:2016noz ; Ali:2017jda ; Liu:2019zoy ; Brambilla:2019esw ; Bondar:2016hva ; Lebed:2016hpi . Among them, hadronic molecule Guo:2017jvc , as an analogy of deuteron formed by a proton and a neutron, is proposed due to the fact that they are with a few MeV below the nearby SS-wave threshold.

However, one have to confront one problem that different configurations with the same quantum number can mix with each other and cannot be well isolated. For instance, although the X(3872)X(3872) is proposed as a hadronic molecule at the very beginning Tornqvist:2004qy due to its closeness to the DD¯+c.c.D\bar{D}^{*}+c.c. threshold, it still could be or mix with the normal charmonium χc1(2P)\chi_{c1}(2P) Meng:2007cx ; Kalashnikova:2005ui ; Zhang:2009bv ; Danilkin:2010cc ; Li:2009zu ; Li:2009ad ; Coito:2010if ; Coito:2012vf . Another typical example is the Ds0(2317)D^{*}_{s0}(2317) and the Ds1(2460)D_{s1}(2460) which are about 160MeV160~{}\mathrm{MeV} and 70MeV70~{}\mathrm{MeV} below the JP=0+J^{P}=0^{+} and JP=1+J^{P}=1^{+} cs¯c\bar{s} charmed-strange mesons of Godfrey-Isgur quark model Godfrey:1985xj . Meanwhile, they are about 45MeV45~{}\mathrm{MeV} below the DKDK and DKD^{*}K, thresholds, respectively, which can be explained naturally if the systems are bound states of the DKDK and DKD^{*}K meson pairs  Barnes:2003dj ; vanBeveren:2003kd ; vanBeveren:2003jv ; Kolomeitsev:2003ac ; Guo:2006fu ; Zhang:2006ix ; Guo:2006rp ; Guo:2009id . However, because the light quark and anti-quark in the isosinglet D()KD^{(*)}K system are of the same flavor, despite of those comprehensive studies, one still cannot avoid the possibility of the mixture with the normal cs¯c\bar{s} configurations  vanBeveren:2003kd ; vanBeveren:2003jv ; Coito:2011qn ; Hwang:2004cd ; Simonov:2004ar ; Lee:2004gt ; Zhou:2011sp . Fortunately, the LHCb Collaboration reported a JP=0+J^{P}=0^{+} Aaij:2020hon ; Aaij:2020ypa narrow state X0(2900)X_{0}(2900) with mass 2866±7MeV2866\pm 7~{}\mathrm{MeV} and width Γ0=57±13MeV\Gamma_{0}=57\pm 13~{}\mathrm{MeV} as well as another broader JP=1J^{P}=1^{-} state with mass 2904±7MeV2904\pm 7~{}\mathrm{MeV} and width Γ1=110±12MeV\Gamma_{1}=110\pm 12~{}\mathrm{MeV} in the D¯K\bar{D}K invariant mass distribution. They are the first exotic states with four different flavors, which brings us a potential ultimate solution for the problem from different aspects.

In this letter, we solve the Lippmann-Schwinger Equation (LSE) with leading order contact potentials of the D¯()K()\bar{D}^{(*)}K^{(*)} system, in the heavy quark limit, to extract the mass position of the spin partners of the X0(2900)X_{0}(2900). That the X0(2900)X_{0}(2900) exists as a I(JP)=0(0+)I(J^{P})=0(0^{+}) D¯K\bar{D}^{*}K^{*} hadronic molecule is an input in our framework. With that assumption, we predict the masses of its heavy quark spin partners. Searching for those spin partners could help to understand the nature of the X0(2900)X_{0}(2900).

Framework.   The heavy quark spin structure Bondar:2011ev could reexpress of the hadron basis by the heavy-light basis. One could find an example for the Zc()Z^{(\prime)}_{c} and Zb()Z_{b}^{(\prime)} case with two heavy quarks in Refs. Hanhart:2015cua ; Guo:2016bjq ; Wang:2018jlv ; Baru:2019xnh ; Voloshin:2011qa ; Baru:2017gwo . Along the same line, the SS-wave D¯()K()\bar{D}^{(*)}K^{(*)} system with only one heavy quark can be written in terms of the heavy degree of freedom 12\frac{1}{2} and light degree of freedom sls_{l} as the following Yasui:2013vca

|(c¯j1qj2)j12(s¯q)j3J=sl(1)j2+j3+j12+sl{j1j2j12Jj3sl}j12^sl^|c¯j1(qj2(s¯q)j3)sl|(\bar{c}_{j_{1}}q_{j_{2}})_{j_{12}}(\bar{s}q^{\prime})_{j_{3}}\rangle_{J}=\sum_{s_{l}}\left(-1\right)^{j_{2}+j_{3}+j_{12}+s_{l}}\left\{\begin{array}[]{ccc}j_{1}&j_{2}&j_{12}\\ J&j_{3}&s_{l}\end{array}\right\}\hat{j_{12}}\hat{s_{l}}|\bar{c}_{j_{1}}(q_{j_{2}}(\bar{s}q^{\prime})_{j_{3}})_{s_{l}}\rangle (1)

with j^=2j+1\hat{j}=\sqrt{2j+1}. Here, j1=12j_{1}=\frac{1}{2}, j2=12j_{2}=\frac{1}{2} and j12=0,1j_{12}=0,1 are spins of anti-charm quark c¯\bar{c}, light quark qq and the sum of them in the D¯()\bar{D}^{(*)} meson. j3=0,1j_{3}=0,1 and J=0,1,2J=0,1,2 are the spins of the K()K^{(*)} meson and the total spin of the D¯()K()\bar{D}^{(*)}K^{(*)} system. sls_{l} on the right hand side of Eq. (1) is the light degree of freedom of the system, which is the only relevant quantity for the dynamics in the heavy quark limit. Following Eq. (1), one can obtain the decompositions of the D¯()K()\bar{D}^{(*)}K^{(*)} system as

|D¯K0+\displaystyle|\bar{D}K\rangle_{0^{+}} =\displaystyle= |12\displaystyle|\frac{1}{2}\rangle (2)
|D¯K1+\displaystyle|\bar{D}^{*}K\rangle_{1^{+}} =\displaystyle= |12\displaystyle|\frac{1}{2}\rangle (3)
|D¯K1+\displaystyle|\bar{D}K^{*}\rangle_{1^{+}} =\displaystyle= 13|12+23|32\displaystyle\frac{1}{\sqrt{3}}|\frac{1}{2}\rangle^{*}+\sqrt{\frac{2}{3}}|\frac{3}{2}\rangle^{*} (4)
|D¯K0+\displaystyle|\bar{D}^{*}K^{*}\rangle_{0^{+}} =\displaystyle= |12\displaystyle-|\frac{1}{2}\rangle^{*} (5)
|D¯K1+\displaystyle|\bar{D}^{*}K^{*}\rangle_{1^{+}} =\displaystyle= 23|1213|32\displaystyle\sqrt{\frac{2}{3}}|\frac{1}{2}\rangle^{*}-\frac{1}{\sqrt{3}}|\frac{3}{2}\rangle^{*} (6)
|D¯K2+\displaystyle|\bar{D}^{*}K^{*}\rangle_{2^{+}} =\displaystyle= |32.\displaystyle|\frac{3}{2}\rangle^{*}. (7)

Here the heavy degree of freedom is suppressed due to the same value, leaving only the light degrees of freedom sls_{l} in ||\dots\rangle. Although the KK and KK^{*} have the same quark content, the light degrees of freedoms in the first two equations and those in the last four equations can be distinguishable due to the large scale separation of the KK and KK^{*} masses. Analogous to those in Refs. Guo:2013sya , by defining the contact potential

C2l()()l|H^HQS|l(),\displaystyle C_{2l}^{(*)}\equiv^{(*)}\langle l|\hat{H}_{\mathrm{HQS}}|l\rangle^{(*)}, (8)

the potentials of the D¯()K\bar{D}^{(*)}K and and D¯()K\bar{D}^{(*)}K^{*} systems are

V0+\displaystyle V_{0^{+}} =\displaystyle= C1\displaystyle C_{1} (9)
V1+\displaystyle V_{1^{+}} =\displaystyle= C1\displaystyle C_{1}\ (10)

and

V0+\displaystyle V^{*}_{0^{+}} =\displaystyle= C1\displaystyle C^{*}_{1} (11)
V1+\displaystyle V^{*}_{1^{+}} =\displaystyle= (13C1+23C323(C1C3)23(C1C3)23C1+13C3)\displaystyle\left(\begin{array}[]{cc}\frac{1}{3}C^{*}_{1}+\frac{2}{3}C^{*}_{3}&\frac{\sqrt{2}}{3}\left(C^{*}_{1}-C^{*}_{3}\right)\\ \frac{\sqrt{2}}{3}\left(C^{*}_{1}-C^{*}_{3}\right)&\frac{2}{3}C^{*}_{1}+\frac{1}{3}C^{*}_{3}\end{array}\right) (14)
V2+\displaystyle V^{*}_{2^{+}} =\displaystyle= C3,\displaystyle C^{*}_{3}, (15)

respectively. VJ+V_{J^{+}} and VJ+V^{*}_{J^{+}} are for the potentials of the D¯()K\bar{D}^{(*)}K and D¯()K\bar{D}^{(*)}K^{*} systems, respectively. The subindex J+J^{+} presents the total spin and parity of the corresponding system. The transition between |l|l\rangle and |l|l\rangle^{*} is the higher order contribution, which is set to zero in this work 111The observation of the X0(2900)X_{0}(2900) in the D¯K\bar{D}K channel is due to this higher order contribution, i.e. the mixing between the |12|\frac{1}{2}\rangle and the |12|\frac{1}{2}\rangle^{*} compoments.. The above decomposition and the corresponding potentials also work for the D()K()D^{(*)}K^{(*)} systems, but with different values of C2l()C_{2l}^{(*)}.

Refer to caption
Refer to caption
Figure 1: The X0(2900)X_{0}(2900) is assumed to be a I(JP)=0(0+)I(J^{P})=0(0^{+}) D¯K\bar{D}^{*}K^{*} bound state. The values C1=33.56GeV2C_{1}^{*}=33.56~{}\mathrm{GeV}^{-2} and C1=102.09GeV2C_{1}^{*}=102.09~{}\mathrm{GeV}^{-2} are obtained for Λ=0.05GeV\Lambda=0.05~{}\mathrm{GeV} and Λ=0.03GeV\Lambda=0.03~{}\mathrm{GeV}, respectively. The 2+2^{+} (red circles) and the lower 1+1^{+} (blue triangles) behave as bound states. The higher 1+1^{+} (green squares) is a resonance between the D¯K\bar{D}K^{*} and D¯K\bar{D}^{*}K^{*} thresholds. The pole trajectories of these three states with the increasing C3C_{3}^{*} are shown in the figures. The black arrows indicate the direction of the increasing C3C_{3}^{*}. The black stars are the mass positions in the light quark spin symmetry.

With the above potentials, one can solve LSE

T=V+VGTT=V+VGT (16)

with VV the potentials for specific channels of a given quantum number. Here two-body non-relativistic propagator is

GΛ(M,m1,m2)=d3q(2π)31Mm1m2𝒒2/(2μ)\displaystyle G_{\Lambda}(M,m_{1},m_{2})=\int\frac{\mathrm{d}^{3}q}{(2\pi)^{3}}\frac{1}{M-m_{1}-m_{2}-\bm{q}^{2}/(2\mu)}
=Λ+im1m22π(m1+m2)2μ(Mm1m2)\displaystyle=\Lambda+i\frac{m_{1}m_{2}}{2\pi(m_{1}+m_{2})}\sqrt{2\mu(M-m_{1}-m_{2})}

with power divergence subtraction Kaplan:1998tg to regularize the ultraviolet (UV) divergence. The value of Λ\Lambda should be smaller enough to preserve heavy quark symmetry, leaving the physics insensitive to the details of short-distance dynamics Guo:2013sya . Here m1m_{1}, m2m_{2} and μ\mu are the masses of the intermediated two particles and their reduced mass, respectively. MM is the total energy of the system. The expression of the second Riemann sheet GΛII(M,m1,m2)G^{\mathrm{II}}_{\Lambda}(M,m_{1},m_{2}) can be obtained by changing the sign of the second term of GΛ(M,m1,m2)G_{\Lambda}(M,m_{1},m_{2}).

Results and Discussions.   Before the numerical results, we estimate the values of the contact potential C1C_{1}. The leading contact terms between heavy-light mesons and Goldstone bosons can be obtained by the following Lagrangian  Guo:2008gp ; Du:2017ttu ; Burdman:1992gh ; Wise:1992hn ; Yan:1992gz ; Yao:2015qia

Dϕ(1)=𝒟μD𝒟μDM02DD,\displaystyle\mathcal{L}_{D\phi}^{(1)}=\mathcal{D}_{\mu}D\mathcal{D}^{\mu}D^{\dagger}-M_{0}^{2}DD^{\dagger}, (17)

where

𝒟μH=H(μ+Γμ),𝒟μH=(μ+Γμ)H,\displaystyle\mathcal{D}_{\mu}H=H\left(\overset{\leftarrow}{\partial}_{\mu}+\Gamma_{\mu}^{\dagger}\right),\quad\mathcal{D}_{\mu}H^{\dagger}=\left(\partial_{\mu}+\Gamma_{\mu}\right)H^{\dagger}, (18)

with

H{D,D},D()=(D()0,D()+,Ds()+)\displaystyle H\in\left\{D,D^{*}\right\},\quad D^{(*)}=\left(D^{(*)0},D^{(*)+},D_{s}^{(*)+}\right) (19)

and chiral connection

Γμ=(uμu+uμu)/2.\displaystyle\Gamma_{\mu}=\left(u^{\dagger}\partial_{\mu}u+u\partial_{\mu}u^{\dagger}\right)/2. (20)

Here the chiral building blocks are

uμ=i[uμuuμu],U=u2,χ±=uχu±uχu.\displaystyle u_{\mu}=i\left[u^{\dagger}\partial_{\mu}u-u\partial_{\mu}u^{\dagger}\right],\quad U=u^{2},\quad\chi^{\pm}=u^{\dagger}\chi u^{\dagger}\pm u\chi^{\dagger}u.

Here U=exp(i2ϕ/f0)U=\exp\left(i\sqrt{2}\phi/f_{0}\right) with ϕ\phi the Goldstone boson octet. To the leading order, f0f_{0} is the pion decay constant. The isospin singlet JP=0+J^{P}=0^{+} DKDK and D¯K\bar{D}K systems are defined as

Ds0+(2317)12(D0K+D+K0),\displaystyle D_{s0}^{*+}(2317)\equiv\frac{1}{\sqrt{2}}\left(D^{0}K^{+}-D^{+}K^{0}\right), (21)

which is associated with the Ds0+(2317)D_{s0}^{*+}(2317) and

X012(D0K¯0+D+K).\displaystyle X^{\prime}_{0}\equiv\frac{1}{\sqrt{2}}\left(D^{0}\bar{K}^{0}+D^{+}K^{-}\right). (22)

The definitions of the isospin singlet JP=1+J^{P}=1^{+} DKD^{*}K and D¯K\bar{D}^{*}K systems are analogous. From Eq. (17), we obtain

VDs0+(2317)\displaystyle V_{D_{s0}^{*+}(2317)} =\displaystyle= VDs1+(2460)\displaystyle V_{D_{s1}^{+}(2460)} (23)

which agrees with those obtained from the heavy-light decomposition, i.e. Eqs. (9), (10), and

VDs0+(2317)\displaystyle V_{D_{s0}^{*+}(2317)} =\displaystyle= 2VX0.\displaystyle 2V_{X_{0}}. (24)

As the result, the value of C1C_{1} for the D¯()K\bar{D}^{(*)}K system is half of that for the D()KD^{(*)}K system. We find that any parameter set, i.e. (Λ,C1)(\Lambda,C_{1}), for the existence of the Ds0(2317)D_{s0}^{*}(2317) and Ds1(2460)D_{s1}(2460) as DKDK and DKD^{*}K molecular states (both bound states and virtual states) does not indicate the existence of the analogous D¯K\bar{D}K and D¯K\bar{D}^{*}K molecules. Here and in what follows, we focus on the discussion of the formation of the D¯()K()\bar{D}^{(*)}K^{(*)} molecule instead of their isospin breaking effect. As the result, the isospin average masses

mD\displaystyle m_{D} =\displaystyle= 1.867GeV,mD=2.009GeV\displaystyle 1.867~{}\mathrm{GeV},\quad m_{D^{*}}=2.009~{}\mathrm{GeV} (25)
mK\displaystyle m_{K} =\displaystyle= 0.496GeV,mK=0.892GeV\displaystyle 0.496~{}\mathrm{GeV},\quad m_{K^{*}}=0.892~{}\mathrm{GeV} (26)

are implemented in this letter.

Refer to caption
Refer to caption
Figure 2: The X0(2900)X_{0}(2900) is assumed to be a I(JP)=0(0+)I(J^{P})=0(0^{+}) D¯K\bar{D}^{*}K^{*} virtual state. The values C1=14.24GeV2C_{1}^{*}=14.24~{}\mathrm{GeV}^{-2} and C1=19.92GeV2C_{1}^{*}=19.92~{}\mathrm{GeV}^{-2} are obtained for Λ=0.05GeV\Lambda=0.05~{}\mathrm{GeV} and Λ=0.03GeV\Lambda=0.03~{}\mathrm{GeV}, respectively. The 2+2^{+} (red circles) and the lower 1+1^{+} (blue triangles) behave as bound states for the former case. They behave as virtual states for the later case. The higher 1+1^{+} (green squares) is far away from the physical sheet and has marginal physical impact for both cases. The pole trajectories of the two states with the increasing C3C_{3}^{*} are shown in the figures. The black arrows indicate the direction of the increasing C3C_{3}^{*}.

For the D¯()K\bar{D}^{(*)}K^{*} interaction, the X0(2900)X_{0}(2900) recently observed by the LHCb collaboration is assumed to be a I(JP)=0(0+)I(J^{P})=0(0^{+}) D¯K\bar{D}^{*}K^{*} molecular state Molina:2010tx . We consider the two cases for the X0(2900)X_{0}(2900)

  • a bound state with the X0(2900)X_{0}(2900) mass mX0(2900)m_{X_{0}(2900)} satisfying

    1C1GΛ(mX0(2900),mD¯,mK)=01-C_{1}^{*}G_{\Lambda}(m_{X_{0}(2900)},m_{\bar{D}^{*}},m_{K^{*}})=0 (27)
  • a virtual state with the X0(2900)X_{0}(2900) mass mX0(2900)m_{X_{0}(2900)} satisfying

    1C1GΛII(mX0(2900),mD¯,mK)=01-C_{1}^{*}G^{\mathrm{II}}_{\Lambda}(m_{X_{0}(2900)},m_{\bar{D}^{*}},m_{K^{*}})=0 (28)

We take Λ=0.05GeV\Lambda=0.05~{}\mathrm{GeV} and Λ=0.03GeV\Lambda=0.03~{}\mathrm{GeV} to illustrate the mass positions of its heavy quark spin partners and the corresponding properties.

For the bound state solution of the X0(2900)X_{0}(2900), C1=33.56GeV2C_{1}^{*}=33.56~{}\mathrm{GeV}^{-2} and C1=102.09GeV2C_{1}^{*}=102.09~{}\mathrm{GeV}^{-2} correspond to Λ=0.05GeV\Lambda=0.05~{}\mathrm{GeV} and Λ=0.03GeV\Lambda=0.03~{}\mathrm{GeV}, respectively. Fig. 1 shows how the poles move with the variation of the two parameter sets. The blue triangle and green square curves show the pole trajectory of the bound state and resonance in the 1+1^{+} channel. One can see that, with C3C^{*}_{3} variation between 40GeV240~{}\mathrm{GeV}^{-2} and 170GeV2170~{}\mathrm{GeV}^{-2}, one bound state and one resonance emerge with tens of MeV below the D¯K\bar{D}K^{*} and D¯K\bar{D}^{*}K^{*} thresholds, respectively. The bound state in the 2+2^{+} channel is more sensitive to the parameter C3C_{3}^{*}. If one would expect that light quark spin symmetry also works here as that for the two ZbZ_{b} states Voloshin:2016cgm , i.e. C3=C1C^{*}_{3}=C^{*}_{1}, we find the pole position of the above three states are

m2+=2.866GeV,\displaystyle m_{2^{+}}=2.866~{}\mathrm{GeV}, (29)
m1+=2.722GeV,m1+=2.866GeV\displaystyle m_{1^{+}}=2.722~{}\mathrm{GeV},\quad m_{1^{+}}=2.866~{}\mathrm{GeV} (30)

The vanishing imaginary part of the higher 1+1^{+} state is because of the degenerance of the two 1+1^{+} states.

For the virtual state solution of the X0(2900)X_{0}(2900), C1=14.24GeV2C_{1}^{*}=14.24~{}\mathrm{GeV}^{-2} and C1=19.92GeV2C_{1}^{*}=19.92~{}\mathrm{GeV}^{-2} correspond to Λ=0.05GeV\Lambda=0.05~{}\mathrm{GeV} and Λ=0.03GeV\Lambda=0.03~{}\mathrm{GeV}, respectively. Fig. 2 shows how the poles move with C3C^{*}_{3} variation between 22GeV222~{}\mathrm{GeV}^{-2} and 36GeV236~{}\mathrm{GeV}^{-2} for the two Λ\Lambda values. For the former case, the blue triangles and red circles show the pole trajectories of the bound states for the 1+1^{+} and 2+2^{+} channels, respectively. For the later case, both of them become virtual states. As the result, whether the higher 1+1^{+} D¯K\bar{D}^{*}K^{*} molecule exists or not depends on the nature of the X0(2900)X_{0}(2900), i.e. either a bound state or a virtual state, which can be studied by the further detailed scan of its line shape. Thus, searching for these heavy quark spin partners would help to reveal the nature of the X0(2900)X_{0}(2900).

Summary and Outlook.   Under the assumption that the LHCb Collaboration recently reported X0(2900)X_{0}(2900) is a I(JP)=0(0+)I(J^{P})=0(0^{+}) D¯K\bar{D}^{*}K^{*} hadronic molecule, we extract the pole trajectories of its heavy quark spin partners with the variation of the parameter C3C_{3}^{*}. The parameter C1C_{1}^{*} is fixed by the mass position of the X0(2900)X_{0}(2900) (either a bound state or a virtual state). For the bound state case, in the light quark spin symmetry, we extract the mass positions of its heavy quark spin partners, i.e. 2.722GeV2.722~{}\mathrm{GeV} and 2.866GeV2.866~{}\mathrm{GeV} for 1+1^{+} state, and 2.866GeV2.866~{}\mathrm{GeV} for 2+2^{+} state. For the virtual state case, the higher 1+1^{+} state is far away from the physical region and will not have large impact on the physical observables. Searching for those states would help to shed light on the nature of the X0(2900)X_{0}(2900).

During the update of this manuscript, several works He:2020jna ; Liu:2020orv ; Zhang:2020oze ; Lu:2020qmp ; Liu:2020nil ; Chen:2020aos ; Wang:2020xyc ; Huang:2020ptc ; Qin:2020zlg appear to discuss the relevant topics.

Acknowledgements.
The discussions with Tim Burns, M.L. Du, Li-Sheng Geng, Ming-Zhu Liu, Eulogio Oset, Jun-Jun Xie are appreciated. A special acknowledgement to C. Hanhart for pointing out the relation between the C1C_{1} and the potential of the Ds0(2317)D_{s0}(2317) in hadronic molecular picture to the leading order. This work is partly supported by the National Natural Science Foundation of China (NSFC) and the Deutsche Forschungsgemeinschaft (DFG) through the funds provided to the Sino-German Collaborative Research Center “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11621131001 and DFG Grant No. TRR110), Science and Technology Program of Guangzhou (No. 2019050001), NSFC Grant No. 12035007, Guangdong Provincial funding with Grant No. 2019QN01X172. MWH and XYL are also supported by Entrepreneurship competition for College Students of SCNU.

References

  • (1) M. Gell-Mann, Phys. Lett. 8, 214-215 (1964) doi:10.1016/S0031-9163(64)92001-3
  • (2) G. Zweig, CERN-TH-401.
  • (3) S. K. Choi et al. [Belle], Phys. Rev. Lett. 91, 262001 (2003) doi:10.1103/PhysRevLett.91.262001 [arXiv:hep-ex/0309032 [hep-ex]].
  • (4) S. L. Olsen, T. Skwarnicki and D. Zieminska, Rev. Mod. Phys. 90, no.1, 015003 (2018) doi:10.1103/RevModPhys.90.015003 [arXiv:1708.04012 [hep-ph]].
  • (5) C. Z. Yuan and S. L. Olsen, Nature Rev. Phys. 1, no.8, 480-494 (2019) doi:10.1038/s42254-019-0082-y [arXiv:2001.01164 [hep-ex]].
  • (6) R. Aaij et al. [LHCb], Phys. Rev. Lett. 115, 072001 (2015) doi:10.1103/PhysRevLett.115.072001 [arXiv:1507.03414 [hep-ex]].
  • (7) R. Aaij et al. [LHCb], Phys. Rev. Lett. 122, no.22, 222001 (2019) doi:10.1103/PhysRevLett.122.222001 [arXiv:1904.03947 [hep-ex]].
  • (8) LHC Seminar, Latest results on exotic hadrons at LHCb, by Liupan An, June 16, 2020, https://indico.cern.ch/event/900972/
  • (9) R. Aaij et al. [LHCb], [arXiv:2009.00025 [hep-ex]].
  • (10) R. Aaij et al. [LHCb], [arXiv:2009.00026 [hep-ex]].
  • (11) F. K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao and B. S. Zou, Rev. Mod. Phys. 90, no.1, 015004 (2018) doi:10.1103/RevModPhys.90.015004 [arXiv:1705.00141 [hep-ph]].
  • (12) H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Phys. Rept. 639, 1-121 (2016) doi:10.1016/j.physrep.2016.05.004 [arXiv:1601.02092 [hep-ph]].
  • (13) A. Esposito, A. Pilloni and A. D. Polosa, Phys. Rept. 668, 1-97 (2017) doi:10.1016/j.physrep.2016.11.002 [arXiv:1611.07920 [hep-ph]].
  • (14) A. Ali, J. S. Lange and S. Stone, Prog. Part. Nucl. Phys. 97, 123-198 (2017) doi:10.1016/j.ppnp.2017.08.003 [arXiv:1706.00610 [hep-ph]].
  • (15) Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Prog. Part. Nucl. Phys. 107, 237-320 (2019) doi:10.1016/j.ppnp.2019.04.003 [arXiv:1903.11976 [hep-ph]].
  • (16) N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, Phys. Rept. 873, 1-154 (2020) [arXiv:1907.07583 [hep-ex]].
  • (17) A. E. Bondar, R. V. Mizuk and M. B. Voloshin, Mod. Phys. Lett. A 32, no.04, 1750025 (2017) doi:10.1142/S0217732317500250 [arXiv:1610.01102 [hep-ph]].
  • (18) R. F. Lebed, R. E. Mitchell and E. S. Swanson, Prog. Part. Nucl. Phys. 93, 143-194 (2017) doi:10.1016/j.ppnp.2016.11.003 [arXiv:1610.04528 [hep-ph]].
  • (19) N. A. Tornqvist, Phys. Lett. B 590, 209-215 (2004) doi:10.1016/j.physletb.2004.03.077 [arXiv:hep-ph/0402237 [hep-ph]].
  • (20) C. Meng and K. T. Chao, Phys. Rev. D 75, 114002 (2007) doi:10.1103/PhysRevD.75.114002 [arXiv:hep-ph/0703205 [hep-ph]].
  • (21) Y. S. Kalashnikova, Phys. Rev. D 72, 034010 (2005) doi:10.1103/PhysRevD.72.034010 [arXiv:hep-ph/0506270 [hep-ph]].
  • (22) O. Zhang, C. Meng and H. Q. Zheng, Phys. Lett. B 680, 453-458 (2009) doi:10.1016/j.physletb.2009.09.033 [arXiv:0901.1553 [hep-ph]].
  • (23) I. V. Danilkin and Y. A. Simonov, Phys. Rev. Lett. 105, 102002 (2010) doi:10.1103/PhysRevLett.105.102002 [arXiv:1006.0211 [hep-ph]].
  • (24) B. Q. Li and K. T. Chao, Phys. Rev. D 79, 094004 (2009) doi:10.1103/PhysRevD.79.094004 [arXiv:0903.5506 [hep-ph]].
  • (25) B. Q. Li, C. Meng and K. T. Chao, Phys. Rev. D 80, 014012 (2009) doi:10.1103/PhysRevD.80.014012 [arXiv:0904.4068 [hep-ph]].
  • (26) S. Coito, G. Rupp and E. van Beveren, Eur. Phys. J. C 71, 1762 (2011) doi:10.1140/epjc/s10052-011-1762-7 [arXiv:1008.5100 [hep-ph]].
  • (27) S. Coito, G. Rupp and E. van Beveren, Eur. Phys. J. C 73, no.3, 2351 (2013) doi:10.1140/epjc/s10052-013-2351-8 [arXiv:1212.0648 [hep-ph]].
  • (28) S. Godfrey and N. Isgur, Phys. Rev. D 32, 189-231 (1985) doi:10.1103/PhysRevD.32.189
  • (29) T. Barnes, F. E. Close and H. J. Lipkin, Phys. Rev. D 68, 054006 (2003) doi:10.1103/PhysRevD.68.054006 [arXiv:hep-ph/0305025 [hep-ph]].
  • (30) E. van Beveren and G. Rupp, Phys. Rev. Lett. 91, 012003 (2003) doi:10.1103/PhysRevLett.91.012003 [arXiv:hep-ph/0305035 [hep-ph]].
  • (31) E. van Beveren and G. Rupp, Eur. Phys. J. C 32, 493-499 (2004) doi:10.1140/epjc/s2003-01465-0 [arXiv:hep-ph/0306051 [hep-ph]].
  • (32) E. E. Kolomeitsev and M. F. M. Lutz, Phys. Lett. B 582, 39-48 (2004) doi:10.1016/j.physletb.2003.10.118 [arXiv:hep-ph/0307133 [hep-ph]].
  • (33) F. K. Guo, P. N. Shen, H. C. Chiang, R. G. Ping and B. S. Zou, Phys. Lett. B 641, 278-285 (2006) doi:10.1016/j.physletb.2006.08.064 [arXiv:hep-ph/0603072 [hep-ph]].
  • (34) Y. J. Zhang, H. C. Chiang, P. N. Shen and B. S. Zou, Phys. Rev. D 74, 014013 (2006) doi:10.1103/PhysRevD.74.014013 [arXiv:hep-ph/0604271 [hep-ph]].
  • (35) F. K. Guo, P. N. Shen and H. C. Chiang, Phys. Lett. B 647, 133-139 (2007) doi:10.1016/j.physletb.2007.01.050 [arXiv:hep-ph/0610008 [hep-ph]].
  • (36) F. K. Guo, C. Hanhart and U.-G. Meißner, Phys. Rev. Lett. 102, 242004 (2009) doi:10.1103/PhysRevLett.102.242004 [arXiv:0904.3338 [hep-ph]].
  • (37) S. Coito, G. Rupp and E. van Beveren, Phys. Rev. D 84, 094020 (2011) doi:10.1103/PhysRevD.84.094020 [arXiv:1106.2760 [hep-ph]].
  • (38) D. S. Hwang and D. W. Kim, Phys. Lett. B 601, 137-143 (2004) doi:10.1016/j.physletb.2004.09.040 [arXiv:hep-ph/0408154 [hep-ph]].
  • (39) Y. A. Simonov and J. A. Tjon, Phys. Rev. D 70, 114013 (2004) doi:10.1103/PhysRevD.70.114013 [arXiv:hep-ph/0409361 [hep-ph]].
  • (40) I. W. Lee, T. Lee, D. P. Min and B. Y. Park, Eur. Phys. J. C 49, 737-741 (2007) doi:10.1140/epjc/s10052-006-0149-7 [arXiv:hep-ph/0412210 [hep-ph]].
  • (41) Z. Y. Zhou and Z. Xiao, Phys. Rev. D 84, 034023 (2011) doi:10.1103/PhysRevD.84.034023 [arXiv:1105.6025 [hep-ph]].
  • (42) A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk and M. B. Voloshin, Phys. Rev. D 84, 054010 (2011) doi:10.1103/PhysRevD.84.054010 [arXiv:1105.4473 [hep-ph]].
  • (43) C. Hanhart, Y. S. Kalashnikova, P. Matuschek, R. V. Mizuk, A. V. Nefediev and Q. Wang, Phys. Rev. Lett. 115, no.20, 202001 (2015) doi:10.1103/PhysRevLett.115.202001 [arXiv:1507.00382 [hep-ph]].
  • (44) F. K. Guo, C. Hanhart, Y. S. Kalashnikova, P. Matuschek, R. V. Mizuk, A. V. Nefediev, Q. Wang and J. L. Wynen, Phys. Rev. D 93, no.7, 074031 (2016) doi:10.1103/PhysRevD.93.074031 [arXiv:1602.00940 [hep-ph]].
  • (45) Q. Wang, V. Baru, A. A. Filin, C. Hanhart, A. V. Nefediev and J. L. Wynen, Phys. Rev. D 98, no.7, 074023 (2018) doi:10.1103/PhysRevD.98.074023 [arXiv:1805.07453 [hep-ph]].
  • (46) V. Baru, E. Epelbaum, A. A. Filin, C. Hanhart, A. V. Nefediev and Q. Wang, Phys. Rev. D 99, no.9, 094013 (2019) doi:10.1103/PhysRevD.99.094013 [arXiv:1901.10319 [hep-ph]].
  • (47) M. B. Voloshin, Phys. Rev. D 84, 031502 (2011) doi:10.1103/PhysRevD.84.031502 [arXiv:1105.5829 [hep-ph]].
  • (48) V. Baru, E. Epelbaum, A. A. Filin, C. Hanhart and A. V. Nefediev, JHEP 06, 158 (2017) doi:10.1007/JHEP06(2017)158 [arXiv:1704.07332 [hep-ph]].
  • (49) S. Yasui, K. Sudoh, Y. Yamaguchi, S. Ohkoda, A. Hosaka and T. Hyodo, Phys. Lett. B 727, 185-189 (2013) doi:10.1016/j.physletb.2013.10.019 [arXiv:1304.5293 [hep-ph]].
  • (50) F. K. Guo, C. Hidalgo-Duque, J. Nieves and M. P. Valderrama, Phys. Rev. D 88, 054007 (2013) doi:10.1103/PhysRevD.88.054007 [arXiv:1303.6608 [hep-ph]].
  • (51) D. B. Kaplan, M. J. Savage and M. B. Wise, Phys. Lett. B 424, 390-396 (1998) doi:10.1016/S0370-2693(98)00210-X [arXiv:nucl-th/9801034 [nucl-th]].
  • (52) F. K. Guo, C. Hanhart, S. Krewald and U.-G. Meißner, Phys. Lett. B 666, 251-255 (2008) doi:10.1016/j.physletb.2008.07.060 [arXiv:0806.3374 [hep-ph]].
  • (53) M. L. Du, F. K. Guo, U.-G. Meißner and D. L. Yao, Eur. Phys. J. C 77, no.11, 728 (2017) doi:10.1140/epjc/s10052-017-5287-6 [arXiv:1703.10836 [hep-ph]].
  • (54) G. Burdman and J. F. Donoghue, Phys. Lett. B 280, 287-291 (1992) doi:10.1016/0370-2693(92)90068-F
  • (55) M. B. Wise, Phys. Rev. D 45, no.7, 2188 (1992) doi:10.1103/PhysRevD.45.R2188
  • (56) T. M. Yan, H. Y. Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin and H. L. Yu, Phys. Rev. D 46, 1148-1164 (1992) [erratum: Phys. Rev. D 55, 5851 (1997)] doi:10.1103/PhysRevD.46.1148
  • (57) D. L. Yao, M. L. Du, F. K. Guo and U.-G. Meißner, JHEP 11, 058 (2015) doi:10.1007/JHEP11(2015)058 [arXiv:1502.05981 [hep-ph]].
  • (58) R. Molina, T. Branz and E. Oset, Phys. Rev. D 82, 014010 (2010) doi:10.1103/PhysRevD.82.014010 [arXiv:1005.0335 [hep-ph]].
  • (59) M. B. Voloshin, Phys. Rev. D 93, no.7, 074011 (2016) doi:10.1103/PhysRevD.93.074011 [arXiv:1601.02540 [hep-ph]].
  • (60) X. G. He, W. Wang and R. Zhu, [arXiv:2008.07145 [hep-ph]].
  • (61) X. H. Liu, M. J. Yan, H. W. Ke, G. Li and J. J. Xie, [arXiv:2008.07190 [hep-ph]].
  • (62) J. R. Zhang, [arXiv:2008.07295 [hep-ph]].
  • (63) Q. F. Lü, D. Y. Chen and Y. B. Dong, [arXiv:2008.07340 [hep-ph]].
  • (64) M. Z. Liu, J. J. Xie and L. S. Geng, [arXiv:2008.07389 [hep-ph]].
  • (65) H. X. Chen, W. Chen, R. R. Dong and N. Su, Chin. Phys. Lett. 37, 101201 (2020) doi:10.1088/0256-307X/37/10/101201 [arXiv:2008.07516 [hep-ph]].
  • (66) Z. G. Wang, [arXiv:2008.07833 [hep-ph]].
  • (67) Y. Huang, J. X. Lu, J. J. Xie and L. S. Geng, [arXiv:2008.07959 [hep-ph]].
  • (68) Q. Qin and F. S. Yu, [arXiv:2008.08026 [hep-ph]].