This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Vector Balancing Constant for Zonotopes

Laurel Heck University of Washington, Seattle. Email: [email protected]. Supported by an NSF Graduate Research Fellowship.    Victor Reis University of Washington, Seattle. Email: [email protected]    Thomas Rothvoss University of Washington, Seattle. Email: [email protected]. Supported by NSF CAREER grant 1651861 and a David & Lucile Packard Foundation Fellowship.
Abstract

The vector balancing constant vb(K,Q)\textrm{vb}(K,Q) of two symmetric convex bodies K,QK,Q is the minimum r0r\geq 0 so that any number of vectors from KK can be balanced into an rr-scaling of QQ. A question raised by Schechtman is whether for any zonotope KdK\subseteq\mathbb{R}^{d} one has vb(K,K)d\textrm{vb}(K,K)\lesssim\sqrt{d}. Intuitively, this asks whether a natural geometric generalization of Spencer’s Theorem (for which K=BdK=B^{d}_{\infty}) holds. We prove that for any zonotope KdK\subseteq\mathbb{R}^{d} one has vb(K,K)dlogloglogd\textrm{vb}(K,K)\lesssim\sqrt{d}\log\log\log d. Our main technical contribution is a tight lower bound on the Gaussian measure of any section of a normalized zonotope, generalizing Vaaler’s Theorem for cubes. We also prove that for two different normalized zonotopes KK and QQ one has vb(K,Q)dlogd\textrm{vb}(K,Q)\lesssim\sqrt{d\log d}. All the bounds are constructive and the corresponding colorings can be computed in polynomial time.

1 Introduction

Discrepancy theory is a subfield of combinatorics where one is given a set system (X,F)(X,\pazocal{F}) with a ground set XX and a family of sets F2X\pazocal{F}\subseteq 2^{X}, and the goal is to find the coloring that minimizes the maximum imbalance, i.e.

disc(F)=minx{1,1}XmaxSF|jSxj|.\textrm{disc}(\pazocal{F})=\min_{x\in\{-1,1\}^{X}}\max_{S\in\pazocal{F}}\Big{|}\sum_{j\in S}x_{j}\Big{|}.

A slightly more general linear-algebraic view is that one is given a matrix A[1,1]d×nA\in[-1,1]^{d\times n} and its discrepancy is defined as minx{1,1}nAx\min_{x\in\{-1,1\}^{n}}\|Ax\|_{\infty}. The best known result in this area is certainly Spencer’s Theorem [Spe85] which states that for any ndn\leq d one has disc(A)O(nlog(2dn))\textrm{disc}(A)\leq O(\sqrt{n\log(\frac{2d}{n})}). The challenging aspect of that Theorem is that — say for n=dn=d — a uniform random coloring x{1,1}nx\sim\{-1,1\}^{n} will only give a Θ(nlogn)\Theta(\sqrt{n\log n}) bound. Instead, Spencer [Spe85] applied the partial coloring method which had been first used by Beck [Bec81].

The original proofs of the partial coloring method are based on the pigeonhole principle and are non-constructive. The first polynomial time algorithm to actually find the coloring guaranteed by Spencer [Spe85] is due to Bansal [Ban10], followed by a sequence of algorithms [LM12, Rot14, LRR16, ES18] that either work in more general settings or are simpler.

Discrepancy theory is an extensively studied topic with many applications in mathematics and computer science. To give two concrete examples, Nikolov, Talwar and Zhang [NTZ13] showed a connection between differential privacy and hereditary discrepancy, and the best known approximation algorithm for Bin Packing uses a discrepancy-based rounding [HR17]. Other applications can be found in data structure lower bounds, communication complexity and pseudorandomness; we refer to the book of Chazelle [Cha00] for a more detailed account. The seminal result of Batson, Spielman and Srivastava [BSS09] on the existence of linear-size spectral sparsifiers for graphs can also be interpreted as a discrepancy-theoretic result, see [RR20] for details.

For the purpose of this paper, it will be convenient to introduce more general notation. For two symmetric convex bodies K,QdK,Q\subseteq\mathbb{R}^{d} we define the vector balancing constant vb(K,Q)\textrm{vb}(K,Q) as the smallest number r0r\geq 0 so that for any vectors u1,,unKu_{1},\ldots,u_{n}\in K one can find signs x{1,1}nx\in\{-1,1\}^{n} so that the signed sum x1u1++xnunx_{1}u_{1}+\cdots+x_{n}u_{n} is in rQrQ. We also denote vbn(K,Q)\textrm{vb}_{n}(K,Q) as the same quantity where we fix the number of vectors to be nn. For example, Spencer’s Theorem [Spe85] can then be rephrased as vb(Bd,Bd)=Θ(d)\textrm{vb}(B_{\infty}^{d},B_{\infty}^{d})=\Theta(\sqrt{d}) and as vbn(Bd,Bd)=Θ(nlog(2dn))\textrm{vb}_{n}(B_{\infty}^{d},B_{\infty}^{d})=\Theta(\sqrt{n\log(\frac{2d}{n})}) for ndn\leq d. Here we denote BpdB_{p}^{d} as the dd-dimensional unit ball of the norm p\|\cdot\|_{p}. Moreover for a Euclidean ball one can easily prove that vb(B2d,B2d)=Θ(d)\textrm{vb}(B_{2}^{d},B_{2}^{d})=\Theta(\sqrt{d}) and for the 1\ell_{1}-ball we have vb(B1d,B1d)=Θ(d)\textrm{vb}(B_{1}^{d},B_{1}^{d})=\Theta(d).

While Spencer’s Theorem itself is tight, at least three candidate generalizations have been suggested in the literature — all three are unsolved so far.

The Beck-Fiala Conjecture.

Suppose we have a set system (X,F)(X,\pazocal{F}) in which every element is in at most tt sets. Beck and Fiala [BF81] proved using a linear-algebraic argument that in this case the discrepancy is bounded by 2t2t and they state the conjecture that the correct dependence should be O(t)O(\sqrt{t}). The same proof of [BF81] also shows that vb(B1d,Bd)2\textrm{vb}(B_{1}^{d},B_{\infty}^{d})\leq 2. However, the Beck-Fiala Conjecture is wide open and the best known bounds are O(tlogn)O(\sqrt{t\log n}) [Ban98, BDGL18] and 2tlog(t)2t-\log^{*}(t) [Buk16]. In fact, Komlós Conjecture of vb(B2d,Bd)O(1)\textrm{vb}(B_{2}^{d},B_{\infty}^{d})\leq O(1) is even more general; here the best known bound is vb(B2d,Bd)O(log(d))\textrm{vb}(B_{2}^{d},B_{\infty}^{d})\leq O(\sqrt{\log(d)}) [Ban98].

The Matrix Spencer Conjecture.

A conjecture popularized by Zouzias [Zou12] and Meka [Mek14] claims that for any symmetric matrices A1,,Ann×nA_{1},\ldots,A_{n}\in\mathbb{R}^{n\times n} with all eigenvalues in [1,1][-1,1], there are signs x{1,1}nx\in\{-1,1\}^{n} so that the maximum singular value of i=1nxiAi\sum_{i=1}^{n}x_{i}A_{i} is at most O(n)O(\sqrt{n}). Using standard matrix concentration bounds, one can prove that a random coloring attains a value of at most O(nlogn)O(\sqrt{n\log n}). Moreover, one can prove the conjectured upper bound of O(n)O(\sqrt{n}) under the additional assumption that the matrices are block-diagonal with constant size blocks [DJR22], or have rank O(n)O(\sqrt{n}) [HRS22]. Based on recent progress on matrix concentration, it is possible to obtain the same under the weaker condition that they have rank at most nlog3(n)\frac{n}{\log^{3}(n)} [BJM22].

The vector balancing constant of zonotopes.

A zonotope is defined as the linear image of a cube. If Am×dA\in\mathbb{R}^{m\times d} is a matrix with mdm\geq d, we can write a dd-dimensional zonotope in the form K={i=1myiAiy[1,1]m}=ABmdK=\{\sum_{i=1}^{m}y_{i}A_{i}\mid y\in[-1,1]^{m}\}=A^{\top}B_{\infty}^{m}\subseteq\mathbb{R}^{d}. Note that mm is the number of segments of the zonotope. The cube BdB_{\infty}^{d} is trivially a zonotope, and it is known that for every p2p\geq 2, the ball BpnB_{p}^{n} is the limit of a sequence of zonotopes, called a zonoid [BLM89]. Schechtman [Sch07] raised the question whether it is true that for any zonotope KdK\subseteq\mathbb{R}^{d} one has vb(K,K)d\textrm{vb}(K,K)\lesssim\sqrt{d} where we write ABA\lesssim B if ACBA\leq C\cdot B for a universal constant C>0C>0. The best known bound of vb(K,K)dloglogd\textrm{vb}(K,K)\lesssim\sqrt{d\log\log d} is a direct consequence of Spencer’s theorem and the fact that zonotopes can be sparsified up to a constant factor with only O(dlogd)O(d\log d) segments [Tal90]. An affirmative answer to Schechtman’s question would follow from an O(d)O(d) bound, or equivalently whether an 1\ell_{1}-analogue of [BSS09] is true. We defer to Section 6 for details.

1.1 Our contributions

Our main result is an almost-proof of Schechtman’s conjecture (falling short only by a logloglogd\log\log\log d term).

Theorem 1.

For any zonotope KdK\subseteq\mathbb{R}^{d} one has vb(K,K)dlogloglogd\textrm{vb}(K,K)\lesssim\sqrt{d}\log\log\log d. Moreover, for any v1,,vnKv_{1},\ldots,v_{n}\in K one can find in randomized polynomial time a coloring x{1,1}nx\in\{-1,1\}^{n} with i=1nxiviKdlogloglogd\|\sum_{i=1}^{n}x_{i}v_{i}\|_{K}\lesssim\sqrt{d}\log\log\log d.

The claim is invariant under linear transformations to KK and so it will be useful to place KK in a normalized position. For this sake, we make the following definition:

Definition 2.

A matrix Am×dA\in\mathbb{R}^{m\times d} is called approximately regular if the following holds: {enumerate*}

The columns A1,,AdA^{1},\ldots,A^{d} are orthonormal.

The rows satisfy Ai22dm\|A_{i}\|_{2}\leq 2\sqrt{\frac{d}{m}} for all i=1,,mi=1,\ldots,m.

Then we call a zonotope KdK\subseteq\mathbb{R}^{d} normalized if there exists a matrix Am×dA\in\mathbb{R}^{m\times d} that is approximately regular so that K=dmABmK=\sqrt{\frac{d}{m}}A^{\top}B_{\infty}^{m}. We choose the scaling so that any cube BdB_{\infty}^{d} is indeed normalized and zonotopes with any number of segments are comparable to BdB_{\infty}^{d} in terms of volume and radius.

Our main technical contribution is a tight lower bound for the Gaussian measure of sections of any normalized zonotope.

Theorem 3.

For any normalized zonotope KdK\subseteq\mathbb{R}^{d}, any subspace HdH\subseteq\mathbb{R}^{d} with n:=dim(H)n:=\dim(H) and any t1t\geq 1, one has γH(tCKH)exp(et2/2n)\gamma_{H}(t\cdot C\cdot K\cap H)\geq\exp(-e^{-t^{2}/2}\cdot n) where C>0C>0 is a universal constant.

In order to prove Theorem 3, we show that a normalized zonotope can be decomposed into Θ(md)\Theta(\frac{m}{d}) many smaller zonotopes with Θ(d)\Theta(d) many segments each. This decomposition requires an iterative application of the Kadison-Singer theorem by Marcus, Spielman and Srivastava [MSS15]. Then we prove the statement of Theorem 3 for such simpler zonotopes and derive the lower bound on γH(tCKH)\gamma_{H}(t\cdot C\cdot K\cap H) by using log-concavity of the Gaussian measure.

We can also use Theorem 3 to show how to balance vectors between different normalized zonotopes:

Theorem 4.

For any normalized zonotopes K,QdK,Q\subseteq\mathbb{R}^{d} one has vb(K,Q)dlogd\textrm{vb}(K,Q)\lesssim\sqrt{d\log d}. Moreover, for any v1,,vnKv_{1},\ldots,v_{n}\in K one can find in randomized polynomial time a coloring x{1,1}nx\in\{-1,1\}^{n} such that i=1nxiviQdlogmin{d,n}{\|\sum_{i=1}^{n}x_{i}v_{i}\|_{Q}\lesssim\sqrt{d\cdot\log\min\{d,n\}}} .

2 Preliminaries

We review a few facts that we rely on later.

Probability.

By γn\gamma_{n} we denote the (standard) Gaussian density 1(2π)n/2ex22/2\frac{1}{(2\pi)^{n/2}}e^{-\|x\|_{2}^{2}/2}. For the corresponding distribution we will write N(0,In)N(0,I_{n}). For a subspace FnF\subseteq\mathbb{R}^{n} we write IFn×nI_{F}\in\mathbb{R}^{n\times n} as the identity on the subspace; in particular IF=i=1dim(F)uiuiTI_{F}=\sum_{i=1}^{\dim(F)}u_{i}u_{i}^{T} where u1,,udim(F)u_{1},\ldots,u_{\dim(F)} is any orthonormal basis of FF. A strip is a symmetric convex body of the form P={xn:|a,x|1}P=\{x\in\mathbb{R}^{n}:|\left<a,x\right>|\leq 1\} with ana\in\mathbb{R}^{n}.

Theorem 5 (Šidák-Khatri).

For any two symmetric convex bodies P,QnP,Q\subseteq\mathbb{R}^{n} where at least one is a strip, one has γn(PQ)γn(P)γn(Q)\gamma_{n}(P\cap Q)\geq\gamma_{n}(P)\cdot\gamma_{n}(Q).

More recently, Royen [Roy14] proved that this is indeed true for any pair of symmetric convex bodies, but the weaker result suffices for us.

Lemma 6.

For any symmetric convex body KK and any subspace HnH\subseteq\mathbb{R}^{n} one has γH(KH)γn(K)\gamma_{H}(K\cap H)\geq\gamma_{n}(K).

We will use the following convenient estimate on the Gaussian measure of a strip:

Lemma 7.

For any ana\in\mathbb{R}^{n} with a21\|a\|_{2}\leq 1 and t1t\geq 1 one has

PryN(0,In)[|a,y|t]exp(et2/2a22).\Pr_{y\sim N(0,I_{n})}[|\left<a,y\right>|\leq t]\geq\exp(-e^{-t^{2}/2}\cdot\|a\|_{2}^{2}).

The following comparison inequality (see e.g. Ledoux and Talagrand [LT11]) will also be useful:

Lemma 8.

Let KK be a symmetric convex body and let 0AB0\preceq A\preceq B. Then

PryN(0,A)[yK]PryN(0,B)[yK].\Pr_{y\sim N(0,A)}[y\in K]\geq\Pr_{y\sim N(0,B)}[y\in K].

We prove these lemmas in Appendix B. The following lemma allows us to dismiss constant scaling factors, see  [Tko15]:

Lemma 9.

Let KnK\subset\mathbb{R}^{n} be a measurable set and BB be an Euclidean ball centered at the origin such that γn(K)=γn(B)\gamma_{n}(K)=\gamma_{n}(B). Then γn(tK)γn(tB)\gamma_{n}(tK)\geq\gamma_{n}(tB) for all t[0,1]t\in[0,1]. In particular, if γn(C1K)eC1n\gamma_{n}(C_{1}\cdot K)\geq e^{-C_{1}n} for some constant C11C_{1}\geq 1 then also γn(K)eC2n\gamma_{n}(K)\geq e^{-C_{2}n} for some C2:=C2(C1)>0C_{2}:=C_{2}(C_{1})>0.

Discrepancy theory.

First we give a full statement of Spencer’s theorem that we mentioned earlier:

Theorem 10 (Spencer’s Theorem [Spe85, LM12]).

For any A[1,1]m×nA\in[-1,1]^{m\times n} with mnm\geq n there are polynomial time computable signs x{1,1}nx\in\{-1,1\}^{n} so that Axnlog(2mn)\|Ax\|_{\infty}\lesssim\sqrt{n\log(\frac{2m}{n})}. More generally, for any shift x0[1,1]nx_{0}\in[-1,1]^{n}, there is a polynomial time computable xnx\in\mathbb{R}^{n} so that x+x0{1,1}nx+x_{0}\in\{-1,1\}^{n} and A(x+x0)nlog(2mn)\|A(x+x_{0})\|_{\infty}\lesssim\sqrt{n\log(\frac{2m}{n})}.

To be exact, the first algorithm giving a bound of O(nlog(2mn))O(\sqrt{n}\log(\frac{2m}{n})) is due to Bansal [Ban10] and the tight algorithmic bound is due to Lovett and Meka [LM12].

We say that a vector xnx\in\mathbb{R}^{n} is a good partial coloring if x[1,1]nx\in[-1,1]^{n} with |{j[n]:xj{1,1}}|n/2|\{j\in[n]:x_{j}\in\{-1,1\}\}|\geq n/2. We will need a connection between good partial colorings and Gaussian measure lower bounds.

Theorem 11 ([RR22], special case of Theorem 6).

For any α>0\alpha>0, there is a constant c:=c(α)>0c:=c(\alpha)>0 and a randomized polynomial time algorithm that for a symmetric convex body KnK\subseteq\mathbb{R}^{n}, a 2n/32n/3-dimensional subspace FnF\subseteq\mathbb{R}^{n} with γF(KF)eαn\gamma_{F}(K\cap F)\geq e^{-\alpha n} and a shift y(1,1)ny\in(-1,1)^{n}, finds xcKFx\in c\cdot K\cap F so that x+yx+y is a good partial coloring.

We will also need a theorem of Banaszczyk [Ban98] (whose algorithmic version is due to [BDGL18]).

Theorem 12 (Banaszczyk’s Theorem).

Let KdK\subseteq\mathbb{R}^{d} be a convex set with γd(K)12\gamma_{d}(K)\geq\frac{1}{2} and let v1,,vnB2dv_{1},\ldots,v_{n}\in B_{2}^{d}. Then there is a randomized polynomial time algorithm to compute signs x{1,1}nx\in\{-1,1\}^{n} so that j=1nxjvjCK\sum_{j=1}^{n}x_{j}v_{j}\in CK where C>0C>0 is a universal constant.

For many decades, the Kadison-Singer problem was an open question in operator theory. It was finally resolved in 2015:

Theorem 13 (Marcus, Spielman, Srivastava [MSS15]).

Let v1,,vmnv_{1},\ldots,v_{m}\in\mathbb{R}^{n} so that i=1mvivi=Id\sum_{i=1}^{m}v_{i}v_{i}^{\top}=I_{d} and let ε>0\varepsilon>0 so that vi22ε\|v_{i}\|_{2}^{2}\leq\varepsilon for all i[m]i\in[m]. Then there is a partition [m]=S1˙S2[m]=S_{1}\dot{\cup}S_{2} so that for both j{1,2}j\in\{1,2\} one has

iSjvivi12Idop3ε\Big{\|}\sum_{i\in S_{j}}v_{i}v_{i}^{\top}-\frac{1}{2}I_{d}\Big{\|}_{\mathrm{op}}\leq 3\sqrt{\varepsilon}

In the definition of vb(K,Q)\textrm{vb}(K,Q), there is no upper bound on the number of vectors to be balanced. But it is well-known that up to a constant factor, the worst-case is attained for dd many vectors. Let

vbn(K,Q):=inf{r0u1,,unK:x{1,1}n:j=1nxjvjrQ}\textrm{vb}_{n}(K,Q):=\inf\Big{\{}r\geq 0\mid\forall u_{1},\ldots,u_{n}\in K:\exists x\in\{-1,1\}^{n}:\sum_{j=1}^{n}x_{j}v_{j}\in rQ\Big{\}}

be the vector balancing variant with nn vectors, so that vb(K,Q):=supnvbn(K,Q).\textrm{vb}(K,Q):=\sup_{n\in\mathbb{N}}\textrm{vb}_{n}(K,Q).

Theorem 14 ([LSV86]).

For any symmetric convex K,QdK,Q\subseteq\mathbb{R}^{d}, vb(K,Q)2vbd(K,Q)\mathrm{vb}(K,Q)\leq 2\cdot\mathrm{vb}_{d}(K,Q).

The reduction underlying the inequality is algorithmic as well.

Zonotopes.

A substantial amount of work in the literature has been done on the question of how one can sparsify an arbitrary zonotope with another zonotope that has fewer segments, while losing only a constant factor approximation. The first bound of O(d2)O(d^{2}) [Sch87] was improved to O(dlog3d)O(d\log^{3}d) [BLM89]. We highlight the current best known bound:

Theorem 15 (Talagrand [Tal90]).

For any zonotope KdK\subseteq\mathbb{R}^{d} and 0<ε120<\varepsilon\leq\frac{1}{2}, there is a zonotope QQ with at most O(dε2logd)O(\frac{d}{\varepsilon^{2}}\log d) segments so that QK(1+ε)QQ\subseteq K\subseteq(1+\varepsilon)Q.

We refer to the approach of Cohen and Peng [CP15] for an elementary exposition of the O(dlogd)O(d\log d) bound.

Finally, we justify why it suffices to consider normalized zonotopes:

Lemma 16.

For any full-dimensional zonotope K=ABmdK=A^{\top}B^{m}_{\infty}\subseteq\mathbb{R}^{d}, there is a normalized zonotope K~\tilde{K} and an invertible linear map TT so that 45K~T(K)K~\frac{4}{5}\tilde{K}\subseteq T(K)\subseteq\tilde{K}. In particular, 45vb(K~,K~)vb(K,K)54vb(K~,K~)\frac{4}{5}\textrm{vb}(\tilde{K},\tilde{K})\leq\textrm{vb}(K,K)\leq\frac{5}{4}\textrm{vb}(\tilde{K},\tilde{K}).

We show the argument in Appendix A.

Lemma 17.

Any normalized zonotope KdK\subseteq\mathbb{R}^{d} satisfies KdB2dK\subseteq\sqrt{d}B_{2}^{d}.

Proof.

We write K=dmABmK=\sqrt{\frac{d}{m}}A^{\top}B_{\infty}^{m} where Am×dA\in\mathbb{R}^{m\times d}. Note that AA=IdA^{\top}A=I_{d} by orthonormality of the columns of AA and so Aop=AAop1/2=1\|A\|_{\textrm{op}}=\|A^{\top}A\|_{\textrm{op}}^{1/2}=1. By definition, for any xKx\in K there is a yBmy\in B_{\infty}^{m} with x=dmAyx=\sqrt{\frac{d}{m}}A^{\top}y, so that

x2=dmAy2dmAopy2d.\|x\|_{2}=\sqrt{\frac{d}{m}}\|A^{\top}y\|_{2}\leq\sqrt{\frac{d}{m}}\|A^{\top}\|_{\textrm{op}}\cdot\|y\|_{2}\leq\sqrt{d}.\qed

3 Sections of normalized zonotopes

In this section we prove Theorem 3, showing that all sections of zonotopes are large. To be be more precise, we prove the following more general measure lower bound:

Theorem 18.

For any normalized zonotope KdK\subseteq\mathbb{R}^{d}, any subspace HdH\subseteq\mathbb{R}^{d} with n:=dim(H)n:=\dim(H) and any t1t\geq 1, one has γH(tCKH)exp(et2/2n)\gamma_{H}(t\cdot C\cdot K\cap H)\geq\exp(-e^{-t^{2}/2}\cdot n) where C>0C>0 is a universal constant.

In the most basic form where K=BdK=B_{\infty}^{d} is a cube and t=1t=1, the statement is similar to a result of Vaaler [Vaa79] who proved that VolH(KH)2n\textrm{Vol}_{H}(K\cap H)\geq 2^{n} for any nn-dimensional subspace HdH\subseteq\mathbb{R}^{d}; though the geometry of a zonotope is more complex and the proof strategy is rather different.

3.1 A first direct lower bound

We begin with a simple estimate on the Gaussian measure of the section of a zonotope where we drop the scalar of dm\sqrt{\frac{d}{m}}. Hence this bound will be tight if the number of segments is close to dd but rather loose otherwise. We denote ΠH\Pi_{H} as the orthogonal projection into a subspace HH.

Lemma 19.

Let K:=ABmdK:=A^{\top}B_{\infty}^{m}\subseteq\mathbb{R}^{d} be a zonotope where Am×dA\in\mathbb{R}^{m\times d} is a matrix with orthonormal columns. Then for any subspace HdH\subseteq\mathbb{R}^{d} with n:=dim(H)n:=\dim(H) and any t1t\geq 1 one has γH(tKH)exp(et2/2n)\gamma_{H}(t\cdot K\cap H)\geq\exp(-e^{-t^{2}/2}\cdot n).

Proof.

Let Ud×nU\in\mathbb{R}^{d\times n} be a matrix with orthonormal columns U1,,UnU^{1},\dots,U^{n} spanning HH. Then if we draw yN(0,In)y\sim N(0,I_{n}), UyUy is indeed a standard Gaussian in the subspace HH. By assumption, i=1mAiAi=Id\sum_{i=1}^{m}A_{i}A_{i}^{\top}=I_{d}, and this can be used to write any outcome of the random process as

Uy=j=1nyjIdUj=i=1mAij=1nyjAi,Uj=i=1mAiy,UAi.Uy=\sum_{j=1}^{n}y_{j}I_{d}U^{j}=\sum_{i=1}^{m}A_{i}\sum_{j=1}^{n}y_{j}\left<A_{i},U^{j}\right>=\sum_{i=1}^{m}A_{i}\left<y,U^{\top}A_{i}\right>. (1)

Here one should think of UAinU^{\top}A_{i}\in\mathbb{R}^{n} as the coordinates of ΠH(Ai)\Pi_{H}(A_{i}) in terms of the basis UU of HH. From the expression in (1) we can draw the following conclusion:
Claim I. For any yny\in\mathbb{R}^{n} and s>0s>0 one has (|y,UAi|si[m])UysK(|\left<y,U^{\top}A_{i}\right>|\leq s\;\forall i\in[m])\Rightarrow Uy\in sK.
Then Claim I gives a simple sufficient (but in general not necessary) condition for UyUy to lie in the zonotope KK. Next, we can see that

i=1mUAi22=i=1mTr[UUAiAi]=Tr[UU]=n\sum_{i=1}^{m}\|U^{\top}A_{i}\|_{2}^{2}=\sum_{i=1}^{m}\textrm{Tr}\big{[}UU^{\top}A_{i}A_{i}^{\top}\big{]}=\textrm{Tr}[UU^{\top}]=n

Then we can use Claim I and the inequality of Šidák-Khatri to lower bound the Gaussian measure by

γH(tKH)\displaystyle\gamma_{H}(t\cdot K\cap H) =\displaystyle= PryN(0,In)[UytK]\displaystyle\Pr_{y\sim N(0,I_{n})}[Uy\in t\cdot K]
\displaystyle\geq PryN(0,In)[|UAi,y|ti[m]]\displaystyle\Pr_{y\sim N(0,I_{n})}\big{[}|\left<U^{\top}A_{i},y\right>|\leq t\;\;\forall i\in[m]\big{]}
Lem 5\displaystyle\stackrel{{\scriptstyle\textrm{Lem~{}}\ref{lem:SidakKhatri}}}{{\geq}} i=1mPryN(0,In)[|UAi,y|t]\displaystyle\prod_{i=1}^{m}\Pr_{y\sim N(0,I_{n})}\big{[}|\left<U^{\top}A_{i},y\right>|\leq t\big{]}
Lem 7\displaystyle\stackrel{{\scriptstyle\textrm{Lem~{}\ref{lem:GaussianMeasureOfStrip}}}}{{\geq}} i=1mexp(et2/2UAi22)\displaystyle\prod_{i=1}^{m}\exp\big{(}-e^{-t^{2}/2}\|U^{\top}A_{i}\|_{2}^{2}\big{)}
=\displaystyle= exp(et2/2i=1mUAi22)=exp(et2/2n)\displaystyle\exp\Big{(}-e^{-t^{2}/2}\sum_{i=1}^{m}\|U^{\top}A_{i}\|_{2}^{2}\Big{)}=\exp\big{(}-e^{t^{2}/2}n\big{)}

Here we have used that UAi2Ai21\|U^{\top}A_{i}\|_{2}\leq\|A_{i}\|_{2}\leq 1 which follows by the orthonormality of the columns of AA. ∎

It is somewhat unfortunate that Claim I shown above requires that i=1mAiAi\sum_{i=1}^{m}A_{i}A_{i}^{\top} is exactly the identity and an approximation is not enough. But we can fix this by a rescaling argument:

Lemma 20.

Let K=ABmdK=A^{\top}B_{\infty}^{m}\subseteq\mathbb{R}^{d} be a zonotope where Am×dA\in\mathbb{R}^{m\times d} is a matrix so that i=1mAiAiαId\sum_{i=1}^{m}A_{i}A_{i}^{\top}\succeq\alpha I_{d} for some α>0\alpha>0. Then for any nn-dimensional subspace HdH\subseteq\mathbb{R}^{d} and any t1t\geq 1 one has γH(tαKH)exp(et2/2n)\gamma_{H}(\frac{t}{\sqrt{\alpha}}\cdot K\cap H)\geq\exp\big{(}-e^{-t^{2}/2}\cdot n\big{)}.

Proof.

Scaling KK by 1α\frac{1}{\sqrt{\alpha}} is equivalent to scaling i=1mAiAi\sum_{i=1}^{m}A_{i}A_{i}^{\top} by 1α\frac{1}{\alpha}, hence we may assume that indeed α=1\alpha=1. Abbreviate M:=i=1mAiAiIdM:=\sum_{i=1}^{m}A_{i}A_{i}^{\top}\succeq I_{d} which is a symmetric positive definite matrix. Consider the matrix A~m×d\tilde{A}\in\mathbb{R}^{m\times d} with rescaled rows A~i:=M1/2Ai\tilde{A}_{i}:=M^{-1/2}A_{i}, so that i=1mA~iA~i=Id\sum_{i=1}^{m}\tilde{A}_{i}\tilde{A}_{i}^{\top}=I_{d}. Let K~:=A~Bm=M1/2(K)\tilde{K}:=\tilde{A}^{\top}B_{\infty}^{m}=M^{-1/2}(K) and H~:=M1/2(H)\tilde{H}:=M^{-1/2}(H) be the rescaled zonotope and subspace. Let U1,,UnU^{1},\ldots,U^{n} be an orthonormal basis of HH. Then with U~=M1/2U\tilde{U}=M^{-1/2}U, U~1,,U~n\tilde{U}^{1},\ldots,\tilde{U}^{n} will be the basis of H~\tilde{H}, but it will not be orthogonal in general. However, for yN(0,In)y\sim N(0,I_{n}) one has Cov(U~y)=U~U~=M1/2UUM1/2IH~\textrm{Cov}(\tilde{U}y)=\tilde{U}\tilde{U}^{\top}=M^{-1/2}UU^{\top}M^{-1/2}\preceq I_{\tilde{H}}. Then

PryN(0,Id)[UytK]=PryN(0,Id)[U~ytK~]Lem 8PryN(0,IH~)[ytK~]Lem 19exp(et2/2n).\Pr_{y\sim N(0,I_{d})}[Uy\in tK]=\Pr_{y\sim N(0,I_{d})}[\tilde{U}y\in t\tilde{K}]\stackrel{{\scriptstyle\textrm{Lem~{}\ref{lem:ComparisonGaussians}}}}{{\geq}}\Pr_{y\sim N(0,I_{\tilde{H}})}[y\in t\tilde{K}]\stackrel{{\scriptstyle\textrm{Lem~{}\ref{lem:MeasureOfSliceDirectProof}}}}{{\geq}}\exp\big{(}-e^{-t^{2}/2}n\big{)}.\qed

3.2 Decomposition of normalized zonotopes

The next step in our proof strategy is to decompose the rows of an approximately regular matrix Am×dA\in\mathbb{R}^{m\times d} into Θ(md)\Theta(\frac{m}{d}) many blocks J[m]J\subseteq[m] so that iJAiAiΩ(dm)Id\sum_{i\in J}A_{i}A_{i}^{\top}\succeq\Omega(\frac{d}{m})\cdot I_{d}. For this purpose, we formulate a slight variant of Theorem 13.

Lemma 21.

Let v1,,vmdv_{1},\ldots,v_{m}\in\mathbb{R}^{d} be vectors with i=1mviviLId\sum_{i=1}^{m}v_{i}v_{i}^{\top}\succeq L\cdot I_{d} for some L>0L>0 and let ε:=maxi=1,,mvi22\varepsilon:=\max_{i=1,\ldots,m}\|v_{i}\|_{2}^{2}. Then there is a partition [m]=S1˙S2[m]=S_{1}\dot{\cup}S_{2} so that

iSjvivi(L23Lε)Idj{1,2}\sum_{i\in S_{j}}v_{i}v_{i}^{\top}\succeq\Big{(}\frac{L}{2}-3\sqrt{L\varepsilon}\Big{)}I_{d}\quad\forall j\in\{1,2\}
Proof.

Abbreviate M:=i=1mviviM:=\sum_{i=1}^{m}v_{i}v_{i}^{\top} which is a PSD matrix with MLIdM\succeq L\cdot I_{d}. Define vi:=M1/2viv_{i}^{\prime}:=M^{-1/2}v_{i}. Then i=1mvi(vi)=M1/2(i=1mvivi)M1/2=Id\sum_{i=1}^{m}v_{i}^{\prime}(v_{i}^{\prime})^{\top}=M^{-1/2}\big{(}\sum_{i=1}^{m}v_{i}v_{i}^{\top}\Big{)}M^{-1/2}=I_{d}. We set ε:=εL\varepsilon^{\prime}:=\frac{\varepsilon}{L} and verify that for all ii one has vi22=viM1vivi(1LId)vi=vi22Lε.\|v_{i}^{\prime}\|_{2}^{2}=v_{i}^{\top}M^{-1}v_{i}\leq v_{i}^{\top}(\tfrac{1}{L}I_{d})v_{i}=\frac{\|v_{i}\|_{2}^{2}}{L}\leq\varepsilon^{\prime}. Then we apply Theorem 13 to the vectors {vi}i[m]\{v_{i}^{\prime}\}_{i\in[m]} and obtain a partition [m]=S1˙S2[m]=S_{1}\dot{\cup}S_{2} so that for j{1,2}j\in\{1,2\} one has

M1/2(iSjvivi)M1/2=iSjvi(vi)Thm 13(123ε/L)Id,\color[rgb]{0,0,0}{M^{-1/2}\Big{(}\sum_{i\in S_{j}}v_{i}v_{i}^{\top}\Big{)}M^{-1/2}=\sum_{i\in S_{j}}v_{i}^{\prime}(v_{i}^{\prime})^{\top}\stackrel{{\scriptstyle\textrm{Thm~{}\ref{thm:MSS}}}}{{\succeq}}\Big{(}\frac{1}{2}-3\sqrt{\varepsilon/L}\Big{)}I_{d}},

and using the fact that ABM1/2AM1/2M1/2BM1/2A\succeq B\implies M^{1/2}AM^{1/2}\succeq M^{1/2}BM^{1/2}, we conclude

iSjvivi(123ε/L)M1/2IdM1/2(L23Lε)Id.\sum_{i\in S_{j}}v_{i}v_{i}^{\top}\succeq\Big{(}\frac{1}{2}-3\sqrt{\varepsilon/L}\Big{)}M^{1/2}I_{d}M^{1/2}\succeq\Big{(}\frac{L}{2}-3\sqrt{L\varepsilon}\Big{)}I_{d}.\qed

Now to the main lemma of this section where we decompose an approximately regular matrix by iteratively applying Lemma 21.

Lemma 22.

There is a universal constant C>0C>0 so that the following holds. Let Am×dA\in\mathbb{R}^{m\times d} be an approximately regular matrix. Then there are disjoint subsets J1˙˙Jk[m]J_{1}\dot{\cup}\cdots\dot{\cup}J_{k}\subseteq[m] with kmCdk\geq\frac{m}{Cd} and |J|Cd|J_{\ell}|\leq Cd and iJAiAi1CkId\sum_{i\in J_{\ell}}A_{i}A_{i}^{\top}\succeq\frac{1}{Ck}I_{d} for all [k]\ell\in[k].

Proof.

If mdC\frac{m}{d}\leq C we may set k=1k=1 and J1=[m]J_{1}=[m], so assume mCdm\geq Cd. Set ε:=4dm\varepsilon:=4\frac{d}{m} so that Ai22ε\|A_{i}\|_{2}^{2}\leq\varepsilon for all i[m]i\in[m]. Let tt\in\mathbb{N} be a parameter that we choose later. For s{0,,t}s\in\{0,\ldots,t\} we will obtain partitions Ps\pazocal{P}_{s} of the row indices starting with P0:={[m]}\pazocal{P}_{0}:=\{[m]\} so that Ps+1\pazocal{P}_{s+1} is a refinement of Ps\pazocal{P}_{s} and moreover |Ps|=2s|\pazocal{P}_{s}|=2^{s}. More precisely, in each iteration s{0,,t1}s\in\{0,\ldots,t-1\} and for each SPsS\in\pazocal{P}_{s}, we apply Lemma 21 to the vectors {Ai}iS\{A_{i}\}_{i\in S}; if S=S1˙S2S=S_{1}\dot{\cup}S_{2} is the obtained partition, then we add {S1,S2}\{S_{1},S_{2}\} to Ps+1\pazocal{P}_{s+1}. We first analyze the corresponding eigenvalue lower bound. Define Ls:=2s152sεL_{s}:=2^{-s}-15\sqrt{2^{-s}\varepsilon}.
Claim. If 2tmCd2^{t}\leq\frac{m}{Cd} for a large enough constant C>0C>0, then for all s{0,,t}s\in\{0,\ldots,t\} one has iSAiAiLsId\sum_{i\in S}A_{i}A_{i}^{\top}\succeq L_{s}I_{d} for all SPsS\in\pazocal{P}_{s}.
Proof of Claim. Clearly Ls2sL_{s}\leq 2^{-s} all s0s\geq 0. We will prove the claim by induction on ss. For s=0s=0 one has P0={[m]}\pazocal{P}_{0}=\{[m]\} and the claim is true as L01L_{0}\leq 1. Now consider an iteration s{0,,t1}s\in\{0,\ldots,t-1\} and suppose SPsS\in\pazocal{P}_{s} is split into S=S1˙S2S=S_{1}\dot{\cup}S_{2}. Then iSjAiAi(Ls23Lsε)Id\sum_{i\in S_{j}}A_{i}A_{i}^{\top}\succeq(\frac{L_{s}}{2}-3\sqrt{L_{s}\varepsilon})I_{d} for both j{1,2}j\in\{1,2\}. This is at least Ls+1L_{s+1} as:

Ls23LsεLs2sLs232sε2(s+1)1522sε32sε2(s+1)152(s+1)ε.\frac{L_{s}}{2}-3\sqrt{L_{s}\varepsilon}\stackrel{{\scriptstyle L_{s}\leq 2^{-s}}}{{\geq}}\frac{L_{s}}{2}-3\sqrt{2^{-s}\varepsilon}\geq 2^{-(s+1)}-\frac{15}{2}\sqrt{2^{-s}\varepsilon}-3\sqrt{2^{-s}\varepsilon}\geq 2^{-(s+1)}-15\sqrt{2^{-(s+1)}\varepsilon}.

Here we use 15/2+3152115/2+3\leq 15\sqrt{2^{-1}}. This shows the claim. ∎

For a large enough constant CC, we pick tt\in\mathbb{N} so that m2Cd2tmCd\frac{m}{2Cd}\leq 2^{t}\leq\frac{m}{Cd}. Then LtCdm152Cdm4dm=dm(C158C)C2dmL_{t}\geq\frac{Cd}{m}-15\sqrt{\frac{2Cd}{m}\cdot 4\frac{d}{m}}=\frac{d}{m}\cdot(C-15\sqrt{8C})\geq\frac{C}{2}\cdot\frac{d}{m} for CC large enough. Moreover we know that 𝔼SPt[|S|]=m2t2Cd\mathop{\mathbb{E}}_{S\sim\pazocal{P}_{t}}[|S|]=\frac{m}{2^{t}}\leq 2Cd. Then by Markov’s inequality at least half the sets SPtS\in\pazocal{P}_{t} have at most 4Cd4Cd indices. Those sets will satisfy the statement. ∎

3.3 Proof of Theorem 3

Next we prove our main technical result, Theorem 3. Recall that a measure μ\mu on d\mathbb{R}^{d} is called log-concave if for all compact subsets S,TdS,T\subseteq\mathbb{R}^{d} and 0λ10\leq\lambda\leq 1 one has

μ(λS+(1λ)T)μ(S)λμ(T)1λ\mu(\lambda S+(1-\lambda)T)\geq\mu(S)^{\lambda}\cdot\mu(T)^{1-\lambda}

By induction one can verify that for any compact subsets S1,,SkdS_{1},\dots,S_{k}\subseteq\mathbb{R}^{d} and λ1,,λk0\lambda_{1},\ldots,\lambda_{k}\geq 0 with i=1kλi=1\sum_{i=1}^{k}\lambda_{i}=1 we have μ(λ1S1++λkSk)=1kμ(S)λ\mu(\lambda_{1}S_{1}+\cdots+\lambda_{k}S_{k})\geq\prod_{\ell=1}^{k}\mu(S_{\ell})^{\lambda_{\ell}}. Also recall that the Gaussian measure γd\gamma_{d} is indeed log-concave, see e.g. [AAGM15]. For a matrix Am×dA\in\mathbb{R}^{m\times d} and indices J[m]J\subseteq[m] we denote AJ|J|×dA_{J}\in\mathbb{R}^{|J|\times d} as the submatrix of AA with rows in JJ.

Proof of Theorem 3.

Let KdK\subseteq\mathbb{R}^{d} be a normalized zonotope and let HdH\subseteq\mathbb{R}^{d} be a subspace with dimension nn. Then we can write K=dmABmK=\sqrt{\frac{d}{m}}A^{\top}B_{\infty}^{m} where Am×dA\in\mathbb{R}^{m\times d} is approximately regular. We use Lemma 22 to obtain disjoint subsets J1˙˙Jk[m]J_{1}\dot{\cup}\cdots\dot{\cup}J_{k}\subseteq[m] with kmCdk\geq\frac{m}{Cd} so that iJAiAidCmId\sum_{i\in J_{\ell}}A_{i}A_{i}^{\top}\succeq\frac{d}{Cm}I_{d} where C>0C>0 is a constant. Consider the zonotope K:=dmAJB|J|K_{\ell}:=\sqrt{\frac{d}{m}}A_{J_{\ell}}^{\top}B_{\infty}^{|J_{\ell}|} generated by the rows with indices in JJ_{\ell}. Then we have K1++KkKK_{1}+\ldots+K_{k}\subseteq K and (K1H)++(KkH)KH(K_{1}\cap H)+\ldots+(K_{k}\cap H)\subseteq K\cap H. Note that for each [k]\ell\in[k] we have kKkCAJB|J|kK_{\ell}\supseteq\sqrt{\frac{k}{C}}A_{J_{\ell}}^{\top}B_{\infty}^{|J_{\ell}|}, so that iJ(kCAi)(kCAi)kCdCmId1C3Id\sum_{i\in J_{\ell}}(\sqrt{\tfrac{k}{C}}A_{i})(\sqrt{\tfrac{k}{C}}A_{i})^{\top}\succeq\frac{k}{C}\cdot\frac{d}{Cm}I_{d}\succeq\frac{1}{C^{3}}I_{d}. Then applying Lemma 20 with α:=1C3\alpha:=\frac{1}{C^{3}} we have

γH(tC3/2kKH)exp(et2/2n)\gamma_{H}\big{(}tC^{3/2}kK_{\ell}\cap H\big{)}\geq\exp\big{(}-e^{t^{2}/2}\cdot n\big{)}

for all t1t\geq 1. Finally, using log-concavity of the Gaussian measure we obtain

γH(tC3/2KH)\displaystyle\gamma_{H}\big{(}tC^{3/2}K\cap H\big{)} \displaystyle\geq γH((tC3/2K1H)++(tC3/2KkH))\displaystyle\gamma_{H}\big{(}(tC^{3/2}K_{1}\cap H)+\ldots+(tC^{3/2}K_{k}\cap H)\big{)}
\displaystyle\geq =1kγH(tC3/2kKH)1/kexp(et2/2n).\displaystyle\prod_{\ell=1}^{k}\gamma_{H}\big{(}tC^{3/2}\cdot kK_{\ell}\cap H\big{)}^{1/k}\geq\exp\big{(}-e^{-t^{2}/2}\cdot n\big{)}.\qed

4 The vector balancing constant vb(K,K)\mathrm{vb}(K,K)

Next, we show how to translate measure lower bounds for sections into an improved bounds on the vector balancing constant.

4.1 Tight partial colorings for zonotopes

First we prove a generalization of the constant discrepancy partial coloring for the Komlós setting:

Lemma 23.

Let v1,,vnB2dv_{1},\ldots,v_{n}\in B_{2}^{d} and let KdK\subseteq\mathbb{R}^{d} be a symmetric convex body with γH(KH)eαn\gamma_{H}(K\cap H)\geq e^{-\alpha n} for some α>0\alpha>0 where H=span{v1,,vn}H=\textrm{span}\{v_{1},\ldots,v_{n}\}. Then there is a randomized polynomial time algorithm that given a shift y(1,1)ny\in(-1,1)^{n} finds a good partial coloring x+y[1,1]nx+y\in[-1,1]^{n} with j=1nxjvjcK\sum_{j=1}^{n}x_{j}v_{j}\in cK where c:=c(α)c:=c(\alpha) is a constant.

Proof.

Let Zj=1nzjvjZ\sim\sum_{j=1}^{n}z_{j}v_{j} where ziN(0,1)z_{i}\sim N(0,1) are i.i.d. Gaussians so that 𝔼[ZZ]=j=1nvjvj\mathbb{E}[ZZ^{\top}]=\sum_{j=1}^{n}v_{j}v_{j}^{\top} has trace Tr[𝔼[ZZ]]=j=1nvj22n\textrm{Tr}\big{[}\mathbb{E}[ZZ^{\top}]\big{]}=\sum_{j=1}^{n}\|v_{j}\|_{2}^{2}\leq n. Let u1,,uru_{1},\dots,u_{r} be an orthonormal basis of HH with rnr\leq n, and write j=1nvjvj=j=1rσjujuj\sum_{j=1}^{n}v_{j}v_{j}^{\top}=\sum_{j=1}^{r}\sigma_{j}u_{j}u_{j}^{\top}. Since j=1nvjvj0\sum_{j=1}^{n}v_{j}v_{j}^{\top}\succeq 0, we have σj0\sigma_{j}\geq 0 for all jj. Then after reindexing we may assume that 0σ1σ2σr0\leq\sigma_{1}\leq\sigma_{2}\leq\dots\leq\sigma_{r}. Since j=1rσj=j=1nvj22n\sum_{j=1}^{r}\sigma_{j}=\sum_{j=1}^{n}\|v_{j}\|_{2}^{2}\leq n we know by Markov’s Inequality that σ2n/33/2\sigma_{2n/3}\leq 3/2, denoting σj=0\sigma_{j}=0 for j>rj>r. Thus restricting to the subspaces F:=span{u1,,u2n/3}F:=\textrm{span}\{u_{1},\dots,u_{2n/3}\} and V:={gnj=1ngjvjF}V:=\{g\in\mathbb{R}^{n}\mid\sum_{j=1}^{n}g_{j}v_{j}\in F\} with dim(V)23n\dim(V)\geq\frac{2}{3}n, we may lower bound

PrgN(0,IV)[j=1ngjvj3/2K]\displaystyle\Pr_{g\sim N(0,I_{V})}\Big{[}\sum_{j=1}^{n}g_{j}v_{j}\in 3/2\cdot K\Big{]} =\displaystyle= PrgN(0,I2n/3)[j=12n/3gjσjujuj3/2K]\displaystyle\Pr_{g\sim N(0,I_{2n/3})}\Big{[}\sum_{j=1}^{2n/3}g_{j}\cdot\sigma_{j}u_{j}u_{j}^{\top}\in 3/2\cdot K\Big{]}
()\displaystyle\stackrel{{\scriptstyle(*)}}{{\geq}} PrgN(0,I2n/3)[j=12n/3gj3/2ujuj3/2K]\displaystyle\Pr_{g\sim N(0,I_{2n/3})}\Big{[}\sum_{j=1}^{2n/3}g_{j}\cdot 3/2\cdot u_{j}u_{j}^{\top}\in 3/2\cdot K\Big{]}
=\displaystyle= γF(KF)\displaystyle\gamma_{F}(K\cap F)
Lem 6\displaystyle\stackrel{{\scriptstyle\textrm{Lem~{}\ref{lem:ProbOfSubspaceVsBody}}}}{{\geq}} γH(KH)\displaystyle\gamma_{H}(K\cap H)
\displaystyle\geq eαn,\displaystyle e^{-\alpha n},

where ()(*) follows by Lemma 8. Then by Theorem 11, the symmetric convex body Q:={xn:j=1nxjvjK}Q:=\{x\in\mathbb{R}^{n}:\sum_{j=1}^{n}x_{j}v_{j}\in K\} contains a good partial coloring in QFQ\cap F. ∎

Then Lemma 23 implies the existence of a partial coloring with optimal bounds as long as nn is of the order of dd:

Corollary 24.

Let KdK\subseteq\mathbb{R}^{d} be a normalized zonotope and let v1,,vnKv_{1},\ldots,v_{n}\in K. Then there is a randomized polynomial time algorithm to find a good partial coloring x[1,1]nx\in[-1,1]^{n} so that j=1nxjvjKd\|\sum_{j=1}^{n}x_{j}v_{j}\|_{K}\lesssim\sqrt{d}.

Proof.

By Theorem 3, denoting H:=span{v1,,vn}H:=\textrm{span}\{v_{1},\dots,v_{n}\}, we have γH(CKH)en\gamma_{H}(C\cdot K\cap H)\geq e^{-n}. By Lemma 9, there exists some constant α>0\alpha>0 such that γH(KH)eαn\gamma_{H}(K\cap H)\geq e^{-\alpha n}. By Lemma 17, vidB2dv_{i}\in\sqrt{d}B^{d}_{2}, so that the statement follows directly from Lemma 23. ∎

4.2 Proof of the main Theorem

Now we have all the ingredients to prove our main result, Theorem 1.

Proof of Theorem 1.

By Theorem 15, we may assume that KK is generated by only mdlogdm\lesssim d\log d segments, and by Lemma 16, we may assume that KK is a normalized zonotope K:=dmABmK:=\sqrt{\frac{d}{m}}A^{\top}B^{m}_{\infty} for some approximately regular Am×dA\in\mathbb{R}^{m\times d}. By Theorem 14, since vb(K,K)2vbd(K,K)\textrm{vb}(K,K)\leq 2\cdot\textrm{vb}_{d}(K,K), we may assume that n=dn=d, though for clarity we only use this in the final bound. As before we set Q:={xn:j=1nxjvjK}Q:=\{x\in\mathbb{R}^{n}:\sum_{j=1}^{n}x_{j}v_{j}\in K\}. We iteratively apply Lemma 23 for tt rounds to obtain a partial coloring xQ[1,1]nx^{\prime}\in Q\cap[-1,1]^{n}, so that the set I:={i:|xi|<1}I:=\{i:|x^{\prime}_{i}|<1\} of partially colored indices satisfies |I|n/2t|I|\leq n/2^{t}, and by the triangle inequality over the tt rounds j=1nxjvjKdt\|\sum_{j=1}^{n}x^{\prime}_{j}v_{j}\|_{K}\lesssim\sqrt{d}\cdot t.

For each jIj\in I, we may write vj=dmAuiv_{j}=\sqrt{\frac{d}{m}}A^{\top}u_{i} for some uiBmu_{i}\in B_{\infty}^{m}. By Theorem 10, we can find x~n\tilde{x}\in\mathbb{R}^{n} so that x:=x~+x{1,1}nx:=\tilde{x}+x^{\prime}\in\{-1,1\}^{n} and iIx~iui|I|log(2m|I|)cBm\sum_{i\in I}\tilde{x}_{i}u_{i}\in\sqrt{|I|\log(\frac{2m}{|I|})}\cdot c\cdot B^{m}_{\infty} where we set x~i=0\tilde{x}_{i}=0 for iIi\notin I. Therefore, setting t:=loglog(2mn)t:=\log\log(\frac{2m}{n}),

j=1nxjvjK\displaystyle\Big{\|}\sum_{j=1}^{n}x_{j}v_{j}\Big{\|}_{K} j=1nxjvjK+jIx~jvjK\displaystyle\leq\Big{\|}\sum_{j=1}^{n}x^{\prime}_{j}v_{j}\Big{\|}_{K}+\Big{\|}\sum_{j\in I}\tilde{x}_{j}v_{j}\Big{\|}_{K}
dt+n2tlog(2mn/2t)\displaystyle\lesssim\sqrt{d}\cdot t+\sqrt{\frac{n}{2^{t}}\cdot\log\Big{(}\frac{2m}{n/2^{t}}\Big{)}}
=dloglog(2mn)+nlog(2mn)log(2mnlog(2mn))nd\displaystyle=\sqrt{d}\log\log\Big{(}\frac{2m}{n}\Big{)}+\underbrace{\sqrt{\frac{n}{\log(\frac{2m}{n})}\cdot\log\Big{(}\frac{2m}{n}\cdot\log\Big{(}\frac{2m}{n}\Big{)}\Big{)}}}_{\lesssim\sqrt{n}\leq\sqrt{d}}
dloglog(2mn)\displaystyle\lesssim\sqrt{d}\log\log\Big{(}\frac{2m}{n}\Big{)}
dloglog(dlogdn).\displaystyle\lesssim\sqrt{d}\log\log\Big{(}\frac{d\log d}{n}\Big{)}.

We conclude that vb(K,K)vbd(K,K)dlogloglogd\textrm{vb}(K,K)\lesssim\textrm{vb}_{d}(K,K)\lesssim\sqrt{d}\log\log\log d. ∎

5 The vector balancing constant vb(K,Q)\mathrm{vb}(K,Q)

In this section we prove Theorem 4, stating that vb(K,Q)dlogd\textrm{vb}(K,Q)\lesssim\sqrt{d\log d} where KK and QQ are normalized zonotopes. First note that Cor 24 indeed generalizes and for any v1,,vnKv_{1},\ldots,v_{n}\in K there is a good partial coloring x[1,1]nx\in[-1,1]^{n} with j=1nxjvjQd\|\sum_{j=1}^{n}x_{j}v_{j}\|_{Q}\lesssim\sqrt{d}. On the other hand, in the proof of Theorem 1 we have also relied on Spencer’s Theorem which implies that vbn(K,K)nlog(2mn)\textrm{vb}_{n}(K,K)\lesssim\sqrt{n\log(\frac{2m}{n})}. In particular this gives a bound that improves as nn decreases. However in our setting with different zonotopes KK and QQ such a bound does not hold!

To see this, let H{1,1}d×dH\in\{-1,1\}^{d\times d} be a Hadamard matrix, meaning that all rows and columns are orthogonal. Then one can verify that K:=1dHBdK:=\frac{1}{\sqrt{d}}H^{\top}B_{\infty}^{d} is a normalized zonotope; in fact, KK is a rotated cube. Fix any ndn\leq d and consider the points v1,,vnKv_{1},\ldots,v_{n}\in K with vi=1dHHi=deiv_{i}=\frac{1}{\sqrt{d}}H^{\top}H^{i}=\sqrt{d}\cdot e_{i}. We choose Q:=BdQ:=B_{\infty}^{d} as the second normalized zonotope. Any good partial coloring x[1,1]nx\in[-1,1]^{n} must have a coordinate ii with |xi|12|x_{i}|\geq\frac{1}{2} and so j=1nxjvjQd|xi|d2\|\sum_{j=1}^{n}x_{j}v_{j}\|_{Q}\geq\sqrt{d}|x_{i}|\geq\frac{\sqrt{d}}{2}.

Hence instead of applying Cor 24 iteratively and obtaining a bound of vb(K,Q)dlogd\textrm{vb}(K,Q)\lesssim\sqrt{d}\log d, we use Banaszczyk’s Theorem together with Theorem 3:

Proof of Theorem 4.

Let K,QdK,Q\subseteq\mathbb{R}^{d} be normalized zonotopes, and let v1,,vnKv_{1},\ldots,v_{n}\in K be the vectors to be balanced. Define H:=span{v1,,vn}H:=\mathrm{span}\{v_{1},\ldots,v_{n}\} and let r:=dim(H)min{d,n}r:=\dim(H)\leq\min\{d,n\}. By applying Theorem 3 to the zonotope QQ, subspace HH, and t:=2log2rt:=\sqrt{2\log 2r}, we find that

γH(2log2rCQH)e12>12.\gamma_{H}\big{(}\sqrt{2\log 2r}C^{\prime}Q\cap H\big{)}\geq e^{-\frac{1}{2}}>\frac{1}{2}.

By Lemma 17 we know that vidB2dv_{i}\in\sqrt{d}B_{2}^{d} for each i[n]i\in[n], hence by Theorem 12, signs x{1,1}nx\in\{-1,1\}^{n} can be computed in polynomial time such that

j=1nxjvjdC′′(2log2rCQH)Cdlogmin{d,n}Q,\sum_{j=1}^{n}x_{j}v_{j}\in\sqrt{d}C^{\prime\prime}\left(\sqrt{2\log 2r}C^{\prime}Q\cap H\right)\subseteq C\sqrt{d\log\min\{d,n\}}Q,

as desired. In particular, vb(K,Q)dlogd\mathrm{vb}(K,Q)\lesssim\sqrt{d\log d}. ∎

6 Open problems

The main open question about zonotopes is whether a dd-dimensional zonotope can be approximated up to a constant factor using only a linear number of segments:

Conjecture 1 ([Sch07]).

For any zonotope KdK\subseteq\mathbb{R}^{d} and 0<ε120<\varepsilon\leq\frac{1}{2}, does there exist a zonotope QQ with O(dε2)O(\frac{d}{\varepsilon^{2}}) segments so that QK(1+ε)QQ\subseteq K\subseteq(1+\varepsilon)Q?

Equivalently, since the polar body of a zonotope ABmdA^{\top}B^{m}_{\infty}\subseteq\mathbb{R}^{d} is the preimage A1(B1m):={xd:Ax11}A^{-1}(B^{m}_{1}):=\{x\in\mathbb{R}^{d}:\|Ax\|_{1}\leq 1\}, we can restate the question as follows:

Conjecture 2.

Does there exist a universal constant C>0C>0 such that given any matrix Am×dA\in\mathbb{R}^{m\times d} with mdm\geq d and 0<ε120<\varepsilon\leq\frac{1}{2}, one can always find another matrix A~Cd/ε2×d\tilde{A}\in\mathbb{R}^{Cd/\varepsilon^{2}\times d} with A~x1Ax1(1+ε)A~x1\|\tilde{A}x\|_{1}\leq\|Ax\|_{1}\leq(1+\varepsilon)\|\tilde{A}x\|_{1} for all xdx\in\mathbb{R}^{d}?

We remark that if one replaces the 1\ell_{1} norm by the 2\ell_{2} norm, an analogue of Conjecture 2 holds as a direct corollary of a linear-size spectral sparsifier [BSS09]. In that setting, each row of A~\tilde{A} is a scalar multiple of a row of AA, and there is hope that another rescaling of the rows of AA may suffice for the 1\ell_{1} norm. Just as a spectral sparsifier can be found via spectral partial colorings [RR20], we also state the stronger conjecture of the existence of good partial colorings in the 1\ell_{1} setting:

Conjecture 3.

Given any matrix Am×dA\in\mathbb{R}^{m\times d}, does the set

K:={xm:|i=1mxi|Ai,z||dmAz1zd}K:=\Big{\{}x\in\mathbb{R}^{m}:\Big{|}\sum_{i=1}^{m}x_{i}|\langle A_{i},z\rangle|\Big{|}\leq\sqrt{\tfrac{d}{m}}\|Az\|_{1}\ \forall z\in\mathbb{R}^{d}\Big{\}}

have large Gaussian measure γm(K)eCm\gamma_{m}(K)\geq e^{-Cm} where C>0C>0 is a universal constant?

Finally, we restate Schechtman’s question, which would also follow from the above conjectures:

Conjecture 4 ([Sch07]).

Is it true that for any zonotope KdK\subseteq\mathbb{R}^{d}, vb(K,K)d\textrm{vb}(K,K)\lesssim\sqrt{d}?

References

  • [AAGM15] S. Artstein-Avidan, A. Giannopoulos, and V. Milman. Asymptotic Geometric Analysis. Part I. 2015.
  • [Ban98] W. Banaszczyk. Balancing vectors and Gaussian measures of nn-dimensional convex bodies. Random Struct. Algorithms, 12(4):351–360, 1998.
  • [Ban10] N. Bansal. Constructive algorithms for discrepancy minimization. In FOCS, pages 3–10. IEEE Computer Society, 2010.
  • [BDGL18] N. Bansal, D. Dadush, S. Garg, and S. Lovett. The Gram-Schmidt walk: a cure for the Banaszczyk blues. In STOC, pages 587–597. ACM, 2018.
  • [Bec81] J. Beck. Roth’s estimate of the discrepancy of integer sequences is nearly sharp. Combinatorica, 1(4):319–325, 1981.
  • [BF81] J. Beck and T. Fiala. “Integer-making” theorems. Discrete Appl. Math., 3(1):1–8, 1981.
  • [BJM22] N. Bansal, H. Jiang, and R. Meka. Resolving Matrix Spencer conjecture up to poly-logarithmic rank, 2022.
  • [BLM89] J. Bourgain, J. Lindenstrauss, and V. Milman. Approximation of zonoids by zonotopes. Acta Mathematica, 162:73 – 141, 1989.
  • [BSS09] J. Batson, D. Spielman, and N. Srivastava. Twice-Ramanujan sparsifiers. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 255–262, 2009.
  • [Buk16] B. Bukh. An improvement of the Beck-Fiala theorem. Combinatorics, Probability and Computing, 25(3):380–398, 2016.
  • [Cha00] B. Chazelle. The Discrepancy Method. Cambridge University Press, 2000.
  • [CP15] M. B. Cohen and R. Peng. p\ell_{p} row sampling by Lewis weights. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, pages 183–192, New York, NY, USA, 2015. Association for Computing Machinery.
  • [DJR22] D. Dadush, H. Jiang, and V. Reis. A new framework for matrix discrepancy: partial coloring bounds via mirror descent. In STOC, pages 649–658. ACM, 2022.
  • [ES18] R. Eldan and M. Singh. Efficient algorithms for discrepancy minimization in convex sets. Random Struct. Algorithms, 53(2):289–307, 2018.
  • [HR17] R. Hoberg and T. Rothvoss. A logarithmic additive integrality gap for bin packing. In SODA, pages 2616–2625. SIAM, 2017.
  • [HRS22] S. B. Hopkins, P. Raghavendra, and A. Shetty. Matrix discrepancy from quantum communication. STOC 2022, pages 637–648, New York, NY, USA, 2022. Association for Computing Machinery.
  • [LM12] S. Lovett and R. Meka. Constructive discrepancy minimization by walking on the edges. In FOCS, pages 61–67. IEEE Computer Society, 2012.
  • [LRR16] A. Levy, H. Ramadas, and T. Rothvoss. Deterministic discrepancy minimization via the multiplicative weight update method. CoRR, abs/1611.08752, 2016.
  • [LSV86] L. Lovász, J. Spencer, and K. Vesztergombi. Discrepancy of set-systems and matrices. Eur. J. Comb., 7(2):151–160, 1986.
  • [LT11] M. Ledoux and M. Talagrand. Probability in Banach spaces. Classics in Mathematics. Springer-Verlag, Berlin, 2011. Isoperimetry and processes, Reprint of the 1991 edition.
  • [Mek14] R. Meka. Discrepancy and beating the union bound (blog post), 2014.
  • [MSS15] A. W. Marcus, D. A. Spielman, and N. Srivastava. Interlacing families ii: Mixed characteristic polynomials and the Kadison-Singer problem. Annals of Mathematics, 182(1):327–350, 2015.
  • [NTZ13] A. Nikolov, K. Talwar, and L. Zhang. The geometry of differential privacy: the sparse and approximate cases. In STOC, pages 351–360. ACM, 2013.
  • [Rot14] T. Rothvoß. Constructive discrepancy minimization for convex sets. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 140–145, 2014.
  • [Roy14] T. Royen. A simple proof of the gaussian correlation conjecture extended to multivariate gamma distributions. arXiv: Probability, 2014.
  • [RR20] V. Reis and T. Rothvoss. Linear size sparsifier and the geometry of the operator norm ball. In SODA, pages 2337–2348. SIAM, 2020.
  • [RR22] V. Reis and T. Rothvoss. Vector balancing in Lebesgue spaces. Random Structures and Algorithms, 08 2022.
  • [Sch87] G. Schechtman. More on embedding subspaces of lpl_{p} in lrnl^{n}_{r}. Compositio Mathematica, 61(2):159–169, 1987.
  • [Sch07] G. Schechtman. Fourier analytic methods in convex geometry (workshop at the American Institute of Mathematics; http://aimpl.org/fourierconvex/1/), 2007.
  • [Spe85] J. Spencer. Six standard deviations suffice. Trans. Amer. Math. Soc., 289(2):679–706, 1985.
  • [SW99] S. J. Szarek and E. Werner. A nonsymmetric correlation inequality for gaussian measure. Journal of Multivariate Analysis, 68(2):193–211, 1999.
  • [Tal90] M. Talagrand. Embedding subspaces of L1{L}_{1} into 1N\ell_{1}^{{N}}. Proceedings of the American Mathematical Society, 108(2):363–369, 1990.
  • [Tko15] T. Tkocz. High-dimensional Phenomena: Dilations, Tensor Products and Geometry of L1L_{1}. University of Warwick, 2015.
  • [Vaa79] J. D. Vaaler. A geometric inequality with applications to linear forms. Pacific Journal of Mathematics, 83(2):543 – 553, 1979.
  • [Zou12] A. Zouzias. A matrix hyperbolic cosine algorithm and applications. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors, Automata, Languages, and Programming, pages 846–858, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

Appendix A Normalizing zonotopes

In this section, we show that for any full-dimensional zonotope KdK\subseteq\mathbb{R}^{d} there is a linear transformation T:ddT:\mathbb{R}^{d}\to\mathbb{R}^{d} and a normalized zonotope K~\tilde{K} so that 45K~T(K)K~\frac{4}{5}\tilde{K}\subseteq T(K)\subseteq\tilde{K}. For this result we will need the existence of Lewis weights [CP15]:

Theorem 25.

Given a matrix Am×dA\in\mathbb{R}^{m\times d}, there exists a unique vector w¯>0m\overline{w}\in\mathbb{R}^{m}_{>0} so that for all i[m]i\in[m] one has

w¯i2Ai(AW¯1A)1Ai=1,\overline{w}_{i}^{-2}A_{i}^{\top}(A^{\top}\overline{W}^{-1}A)^{-1}A_{i}=1,

where W¯:=diag(w¯)\overline{W}:=\operatorname{diag}(\overline{w}). Moreover, Tr[W¯]d\textrm{Tr}[\overline{W}]\leq d, with equality for full rank AA.

Now to the proof of Lemma 16.

Proof of Lemma 16.

Consider a full-dimensional zonotope K=ABmK=A^{\top}B_{\infty}^{m} with Am×dA\in\mathbb{R}^{m\times d}. Let W¯\overline{W} be the diagonal matrix corresponding to the Lewis weights of AA and let W:=DW¯W:=D\overline{W} where D>0D>0 is large enough so that wi:=Wi,i1w_{i}:=W_{i,i}\geq 1 for all ii. Define a matrix B:=A(AW1A)1/2m×dB:=A(A^{\top}W^{-1}A)^{-1/2}\in\mathbb{R}^{m\times d} and define a second matrix A~\tilde{A} where each row BiB_{i} is replaced by wi\lceil w_{i}\rceil many rows so that the first wi\lfloor w_{i}\rfloor rows are all copies of wi1Biw_{i}^{-1}B_{i}, and (if {wi}0\{w_{i}\}\neq 0) the last row is {wi}1/2wi1Bi\{w_{i}\}^{1/2}w_{i}^{-1}B_{i}, for a total of m:=i=1mwim^{\prime}:=\sum_{i=1}^{m}\lceil w_{i}\rceil many rows. We will show that the conditions of Lemma 16 hold with

T:dd,T(K)=dm(ATW1A)1/2K=dmBTBmT:\mathbb{R}^{d}\rightarrow\mathbb{R}^{d},\ \ T(K)=\sqrt{\tfrac{d}{m^{\prime}}}(A^{T}W^{-1}A)^{-1/2}K=\sqrt{\tfrac{d}{m^{\prime}}}\cdot B^{T}B_{\infty}^{m}

and K~:=dmA~TBm\widetilde{K}:=\sqrt{\tfrac{d}{m^{\prime}}}\widetilde{A}^{T}B_{\infty}^{m^{\prime}}.

First we show that K~\tilde{K} is normalized, or equivalently that A~\tilde{A} is approximately regular. Note that

(A~A~)j,k=i=1mA~i,jA~i,k=i=1mwi2(wi+{wi})Bi,jBi,k=i=1mwi1Bi,jBi,k,(\tilde{A}^{\top}\tilde{A})_{j,k}=\sum_{i=1}^{m^{\prime}}\tilde{A}_{i,j}\tilde{A}_{i,k}=\sum_{i=1}^{m}w_{i}^{-2}(\lfloor w_{i}\rfloor+\{w_{i}\})\cdot B_{i,j}B_{i,k}=\sum_{i=1}^{m}w_{i}^{-1}\cdot B_{i,j}B_{i,k},

so that by definition of BB,

A~A~=BW1B=(AW1A)1/2AW1A(AW1A)1/2=Id.\tilde{A}^{\top}\tilde{A}=B^{\top}W^{-1}B=(A^{\top}W^{-1}A)^{-1/2}A^{\top}W^{-1}A(A^{\top}W^{-1}A)^{-1/2}=I_{d}.

Moreover, by the definition of Lewis weights, for each row i[m]i^{\prime}\in[m^{\prime}] corresponding to a copy of BiB_{i} one has

A~i22wi2BiBi=wi2Ai(AW1A)1Ai=1D2dm,\|\tilde{A}_{i^{\prime}}\|_{2}^{2}\leq w_{i}^{-2}B_{i}^{\top}B_{i}=w_{i}^{-2}A_{i}^{\top}(A^{\top}W^{-1}A)^{-1}A_{i}=\frac{1}{D}\leq\frac{2d}{m^{\prime}},

where the last inequality follows since

m=i=1mwi2i=1mwi=2Di=1mw¯i2Dd.m^{\prime}=\sum_{i=1}^{m}\lceil w_{i}\rceil\leq 2\cdot\sum_{i=1}^{m}w_{i}=2D\sum_{i=1}^{m}\overline{w}_{i}\leq 2D\cdot d.

Thus A~\widetilde{A} is approximately regular, and K~\tilde{K} is normalized.

To see that 45K~T(K)K~\frac{4}{5}\tilde{K}\subseteq T(K)\subseteq\tilde{K}, take an arbitrary

y=45dmi=1m(p=1wixi,pwi1Bi+xi,wi{wi}1/2wi1Bi)45dmA~Bm=45K~,y=\tfrac{4}{5}\sqrt{\tfrac{d}{m^{\prime}}}\sum_{i=1}^{m}\Big{(}\sum_{p=1}^{\lfloor w_{i}\rfloor}x_{i,p}w^{-1}_{i}B_{i}+x_{i,\lceil w_{i}\rceil}\{w_{i}\}^{1/2}w^{-1}_{i}B_{i}\Big{)}\in\tfrac{4}{5}\sqrt{\tfrac{d}{m^{\prime}}}\tilde{A}^{\top}B^{m^{\prime}}_{\infty}=\tfrac{4}{5}\tilde{K},

and rewrite it as

45dmi=1m(wi1(i=1wixi,p+xi,wi{wi})[1,1]+xi,wi{wi}1/2{wi}wi[14,14])BidmBBm=T(K).\tfrac{4}{5}\sqrt{\tfrac{d}{m^{\prime}}}\sum_{i=1}^{m}\Big{(}\underbrace{w_{i}^{-1}\Big{(}\sum_{i=1}^{\lfloor w_{i}\rfloor}x_{i,p}+x_{i,\lceil w_{i}\rceil}\{w_{i}\}\Big{)}}_{\in[-1,1]}+\underbrace{x_{i,\lceil w_{i}\rceil}\tfrac{\{w_{i}\}^{1/2}-\{w_{i}\}}{w_{i}}}_{\in[-\frac{1}{4},\frac{1}{4}]}\Big{)}B_{i}\in\sqrt{\tfrac{d}{m^{\prime}}}B^{\top}B^{m}_{\infty}=T(K).

Now taking an arbitrary y:=dmi=1mxiBiBBm=T(K)y:=\sqrt{\tfrac{d}{m^{\prime}}}\sum_{i=1}^{m}x_{i}B_{i}\in B^{\top}B^{m}_{\infty}=T(K), we may write

y=dmi=1m(p=1wixiwi1Bi+xi{wi}wi1Bi)dmA~Bm=K~,y=\sqrt{\tfrac{d}{m^{\prime}}}\sum_{i=1}^{m}\Big{(}\sum_{p=1}^{\lfloor w_{i}\rfloor}x_{i}w^{-1}_{i}B_{i}+x_{i}\{w_{i}\}w^{-1}_{i}B_{i}\Big{)}\in\sqrt{\tfrac{d}{m^{\prime}}}\tilde{A}^{\top}B^{m^{\prime}}_{\infty}=\tilde{K},

completing the proof of the lemma. Finally, note that this result immediately implies that

45vb(K~,K~)vb(K,K)54vb(K~,K~).\tfrac{4}{5}\textrm{vb}(\tilde{K},\tilde{K})\leq\textrm{vb}(K,K)\leq\tfrac{5}{4}\textrm{vb}(\tilde{K},\tilde{K}).\qed

Appendix B Gaussian measure

Proof of Lemma 7.

We make use of the following tail inequality due to Szarek and Werner [SW99] which holds for t>1t>-1:

PrgN(0,1)[g>t]<12π4et2/23t+(t2+8)1/2.\Pr_{g\sim N(0,1)}[g>t]<\frac{1}{\sqrt{2\pi}}\frac{4e^{-t^{2}/2}}{3t+(t^{2}+8)^{1/2}}.

In particular, for t1t\geq 1 the right side is upper bounded by 12π4et2/26\frac{1}{\sqrt{2\pi}}\frac{4e^{-t^{2}/2}}{6}. Thus

PrgN(0,1)[|g|t]1432πet2/2.\Pr_{g\sim N(0,1)}[|g|\leq t]\geq 1-\frac{4}{3\sqrt{2\pi}}e^{-t^{2}/2}.

Since the function ze2z/3z\mapsto e^{-2z/3} is convex, we have 1432πze2z/31-\frac{4}{3\sqrt{2\pi}}z\geq e^{-2z/3} for all z[0,e1/2]z\in[0,e^{-1/2}] as it holds for the endpoints of the interval. Therefore for t1t\geq 1,

PrgN(0,1)[|g|t]exp(23et2/2).\Pr_{g\sim N(0,1)}[|g|\leq t]\geq\exp(-\tfrac{2}{3}e^{-t^{2}/2}).

We conclude that for any ana\in\mathbb{R}^{n} with a21\|a\|_{2}\leq 1 and t1t\geq 1 one has

PryN(0,In)[|a,y|t]=PrgN(0,1)[|g|ta2]exp(23et2/(2a22))exp(et2/2a22).\Pr_{y\sim N(0,I_{n})}[|\left<a,y\right>|\leq t]=\Pr_{g\sim N(0,1)}\Big{[}|g|\leq\frac{t}{\|a\|_{2}}\Big{]}\geq\exp(-\tfrac{2}{3}e^{-t^{2}/(2\|a\|_{2}^{2})})\geq\exp(-e^{-t^{2}/2}\cdot\|a\|_{2}^{2}).

Indeed, the last inequality follows because

23exp(t22t22a22)23exp(1212a22)23e1/22ea22a22,\frac{2}{3}\exp\Big{(}\frac{t^{2}}{2}-\frac{t^{2}}{2\|a\|_{2}^{2}}\Big{)}\leq\frac{2}{3}\exp\Big{(}\frac{1}{2}-\frac{1}{2\|a\|_{2}^{2}}\Big{)}\leq\frac{2}{3}\cdot e^{1/2}\cdot\frac{2}{e}\cdot\|a\|_{2}^{2}\leq\|a\|_{2}^{2},

where the second to last inequality follows from ezeze^{z}\geq ez for z:=1/(2a22)z:=1/(2\|a\|_{2}^{2}). ∎

Proof of Lemma 8.

Draw another random variable zN(0,BA)z\sim N(0,B-A) and note that by log-concavity we have

PryN(0,A)[yK]PryN(0,A)[PrzN(0,BA)[y+zK]]=PryN(0,B)[yK].\Pr_{y\sim N(0,A)}[y\in K]\geq\Pr_{y\sim N(0,A)}\Big{[}\Pr_{z\sim N(0,B-A)}[y+z\in K]\Big{]}=\Pr_{y\sim N(0,B)}[y\in K].\qed