This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Variety of Jordan Superalgebras of dimension four and even part of dimension two

Isabel Hernández Secretaría de Ciencia, Humanidades, Tecnología e Innovación and Centro de Investigación en Matemáticas, Unidad Mérida [email protected] María Eugenia Martin Federal University of Paraná – Curitiba, Brazil [email protected]  and  Rodrigo Lucas Rodrigues Federal University of Ceará - Fortaleza, Brazil [email protected]
Abstract.

We describe the variety of Jordan superalgebras of dimension 44 whose even part is a Jordan algebra of dimension 22 over an algebraically closed field 𝔽\mathbb{F} of characteristic 0. We prove that the variety has 2525 irreducible components, 2424 of them correspond to the Zariski closure of the GL2(𝔽)×GL2(𝔽)GL_{2}(\mathbb{F})\times GL_{2}(\mathbb{F})-orbits of rigid superalgebras and the other one is the Zariski closure of an union of orbits of an infinite family of superalgebras, none of them being rigid. Furthermore, it is known that the question of the existence of a rigid Jordan algebra whose second cohomology group does not vanish is still an open problem. We solve this problem in the context of superalgebras, showing a four-dimensional rigid Jordan superalgebra whose second cohomology group does not vanish.

Key words and phrases:
Jordan Superalgebras; Irreducible Components; Rigid Jordan Algebra; Second Cohomology Group
The first author was supported by Grant CONAHCYT A1-S-45886.

1. Introduction

Non-necessarily associative algebras have been extensively studied. Among the main classes are the Lie and Jordan algebras. It is essential to know examples of a given algebraic system, particularly in low dimensions.

In relation to finite-dimensional algebras over an arbitrary field, it is natural to study their algebraic classification, that is, to determine all that are not isomorphic. It is also of interest to determine the deformations between low-dimensional algebras in a variety defined by polynomial identities, in particular finding the rigid ones. The irreducible components within the regarded variety related to Zariski topology are constituted by the closure of their orbits under the action of the linear group.

We now briefly describe the progress of the geometric classification of Jordan algebras and superalgebras. In 20042004, I. Kashuba and I. Shestakov [9] investigated the variety Jor3{\rm Jor}_{3} of Jordan algebras of dimension 33, for 𝔽\mathbb{F} algebraically closed of characteristic 2,3\neq 2,3, listing all GL3(𝔽)\operatorname{GL}_{3}(\mathbb{F})-orbits of Jor3{\rm Jor}_{3} and establishing its 55 irreducible components. In 20062006, I. Kashuba [10] studied the variety Jorn{\rm Jor}_{n} of Jordan unitary algebras of dimension nn, for an algebraically closed field 𝔽\mathbb{F} with char 𝔽2\textrm{char\,}\mathbb{F}\neq 2, as well as infinitesimal deformations of Jordan algebras, establishing the list of GLn(𝔽)\operatorname{GL}_{n}(\mathbb{F})-orbits on Jorn{\rm Jor}_{n}, n=4,5n=4,5, under the “change of basis” action, finding the number of irreducible components as being 33 and 66 respectively, and a list of rigid algebras was included. In 20142014, I. Kashuba and M. E. Martin [11] studied the variety Jor4{\rm Jor}_{4} of four-dimensional Jordan algebras, for an algebraically closed field 𝔽\mathbb{F} of characteristic 2\neq 2, describing its irreducible components and proving that Jor4{\rm Jor}_{4} is the union of Zariski closures of the orbits of 10 rigid algebras. In 20162016, I. Kashuba and M. E. Martin [12] studied the variety Jor3{\rm Jor}_{3} of three-dimensional Jordan algebras over the field of real numbers, establishing the list of 2626 non-isomorphic Jordan algebras and describing the irreducible components of Jor3{\rm Jor}_{3}, proving that it is the union of Zariski closures of the orbits of eight rigid algebras. In 20182018, I. Kashuba and M. E. Martin [13] also investigated the variety JorN5{\rm JorN}_{5} of five-dimensional nilpotent Jordan algebras structures over an algebraically closed field, showing that JorN5{\rm JorN}_{5} is the union of five irreducible components, four of them correspond to the Zariski closure of the GL5(𝔽)\operatorname{GL}_{5}(\mathbb{F})-orbits of four rigid algebras and the other one is the Zariski closure of an union of orbits of an infinite family of algebras, none of them being rigid.

In the 2\mathbb{Z}_{2}-graded context, in 20192019, M. A. Alvarez et al. [2] described degenerations of three-dimensional Jordan superalgebras over the field of complex numbers \mathbb{C}. In particular, they describe all irreducible components in the corresponding varieties. Recently, we [7] described the variety of Jordan superalgebras of dimension 44 whose even part is a Jordan algebra of dimension 11 or 33, proving that the variety is the union of 1111 and 2121 rigid superalgebras, respectively, and in both cases the irreducible components of the varieties were also described.

In this article, we deal with the geometric classification of Jordan superalgebras of dimension four with even and odd parts of dimension 2 over an algebraically closed field 𝔽\mathbb{F} of characteristic 0. In Section 2, we set up notation and terminology, we indicated some useful invariants to guarantee the non-existence of a deformation between two superalgebras, and we introduce the notion of Jordan superalgebras. Section 3 provides a necessary condition for a superalgebra to be rigid and some examples are given. In particular, a rigid Jordan superalgebra whose second cohomology group does not vanish is constructed. In Section 4 we describe deformations between Jordan superalgebras of type (2,2) and characterize the irreducible components of such variety. As a direct consequence, we achieve the geometric classification of associative and supercommutative superalgebras of dimension four and type (2,2)(2,2), resulting in 6 irreducible components. Additionally, we determine that the subvariety of nilpotent Jordan superalgebras of dimension four and type (2,2)(2,2) has 3 irreducible components.

2. Preliminaries

Let 𝔽\mathbb{F} be any field of characteristic different from two. A superalgebra AA is just a 2\mathbb{Z}_{2}-graded algebra over 𝔽\mathbb{F}, that is, AA is decomposed into a direct sum of subspaces A=A0A1A=A_{0}\oplus A_{1} such that AiAjAi+jA_{i}A_{j}\subseteq A_{i+j}, for i,j2i,j\in\mathbb{Z}_{2}. Notice that A0A_{0} is a subalgebra and A1A_{1} is a A0A_{0}-bimodule. The elements in A0{0}A_{0}\setminus\{0\} (respectively, in A1{0}A_{1}\setminus\{0\}) are called even (respectively, odd) and the elements in Ai{0}A_{i}\setminus\{0\}, i2i\in\mathbb{Z}_{2}, are said to be homogeneous and of degree ii. The degree of a homogeneous element xx is denoted by |x|=i|x|=i. The pair (dim𝔽(A0),dim𝔽(A1))(\dim_{\mathbb{F}}(A_{0}),\dim_{\mathbb{F}}(A_{1})) is said to be the type of AA.

The morphisms in this category are defined as follows. Let AA and AA^{\prime} be superalgebras. A linear map Φ:AA\Phi\colon A\to A^{\prime} is a morphism of superalgebras if Φ\Phi is even (i.e., Φ(Ai)Ai\Phi(A_{i})\subset A^{\prime}_{i}, for i2i\in\mathbb{Z}_{2}) and Φ(xy)=Φ(x)Φ(y)\Phi(xy)=\Phi(x)\Phi(y), for all x,yAx,y\in A.

We now introduce the concept of the Grassmann envelope. Let 𝒢=alg{1,ei|1i,eiej=ejei}\mathcal{G}={\rm alg}\{1,e_{i}|1\leq i,\;e_{i}e_{j}=-e_{j}e_{i}\} be the Grassmann algebra. Then, 𝒢=𝒢0𝒢1\mathcal{G}=\mathcal{G}_{0}\oplus\mathcal{G}_{1} is an associative 2\mathbb{Z}_{2}-graded algebra, where 𝒢0\mathcal{G}_{0} (respectively, 𝒢1\mathcal{G}_{1}) are subspaces spanned by the products of even (respectively, odd) length. In addition, 𝒢\mathcal{G} is supercommutative, that is, uv=(1)|u||v|vuuv=(-1)^{|u||v|}vu, for all homogeneous elements u,v𝒢u,v\in\mathcal{G}. The Grassmann envelope of a superalgebra A=A0A1A=A_{0}\oplus A_{1} is the algebra

𝒢(A)=(𝒢0A0)(𝒢1A1),\mathcal{G}(A)=(\mathcal{G}_{0}\otimes A_{0})\oplus(\mathcal{G}_{1}\otimes A_{1}),

where the multiplication is defined by (xu)(yv):=xyuv(x\otimes u)(y\otimes v):=xy\otimes uv, for all xu𝒢iAix\otimes u\in\mathcal{G}_{i}\otimes A_{i}, yv𝒢jAjy\otimes v\in\mathcal{G}_{j}\otimes A_{j}, and i,j2i,j\in\mathbb{Z}_{2}.

Let 𝒱\mathcal{V} be a variety of algebras over 𝔽\mathbb{F} defined by a set of multilinear identities {Pλ}λΛ\{P_{\lambda}\}_{\lambda\in\Lambda}. A superalgebra A=A0A1A=A_{0}\oplus A_{1} is called a 𝒱\mathcal{V}-superalgebra if its Grassmann envelope 𝒢(A)\mathcal{G}(A) lies in 𝒱\mathcal{V}. In particular, if A=A0A1A=A_{0}\oplus A_{1} is a 𝒱\mathcal{V}-superalgebra, then the algebra A0A_{0} lies in 𝒱\mathcal{V} and A1A_{1} is a A0A_{0}-bimodule in the class 𝒱\mathcal{V}.

Let {Pλ}λΛ\{P_{\lambda}\}_{\lambda\in\Lambda} be the set of multilinear identities that defines the variety 𝒱\mathcal{V}. In general, the corresponding set of superidentities {Pλs}λΛ\{P^{s}_{\lambda}\}_{\lambda\in\Lambda} which defines the variety of 𝒱\mathcal{V}-superalgebras can be obtained following the Kaplansky Rule: If two homogeneous adjacent elements x,yx,y are exchanged, then the corresponding term is multiplied by (1)|x||y|(-1)^{|x||y|}.

Remark 2.1.

In some varieties of algebras, we impose some restrictions over the characteristic of the field 𝔽\mathbb{F} to obtain the multilinear identities. One of the most common conditions is char(𝔽)2{\rm char}(\mathbb{F})\neq 2, but in some cases we require others, as for example char(𝔽)2,3,5{\rm char}(\mathbb{F})\neq 2,3,5 in the class of commutative power-associative superalgebras.

The set of all 𝒱\mathcal{V}-superalgebras of type (m,n)(m,n) defines an affine variety in 𝔽m3+3mn2\mathbb{F}^{m^{3}+3mn^{2}} and it will be denoted by 𝒱𝒮(m,n)\mathcal{VS}^{(m,n)}. In fact, let V=V0V1V=V_{0}\oplus V_{1} be a 2\mathbb{Z}_{2}-graded vector space with a fixed homogeneous basis {e1,,em,f1,,fn}\left\{e_{1},\dots,e_{m},f_{1},\dots,f_{n}\right\}. Our goal is to provide a superalgebra structure for VV. To this end, the possible multiplication tables are given by

eiej=k=1mαijkek,\displaystyle e_{i}e_{j}=\sum_{k=1}^{m}\alpha_{ij}^{k}e_{k}, fifj=k=1mγijkek,\displaystyle f_{i}f_{j}=\sum_{k=1}^{m}\gamma_{ij}^{k}e_{k},
eifj=k=1nβijkfk,\displaystyle e_{i}f_{j}=\sum_{k=1}^{n}\beta_{ij}^{k}f_{k}, fiej=k=1nβijkfk.\displaystyle f_{i}e_{j}=\sum_{k=1}^{n}{\beta^{\prime}}_{ij}^{k}f_{k}.

where αijk,βijk,βijk,γijk𝔽\alpha_{ij}^{k},\beta_{ij}^{k},{\beta^{\prime}}_{ij}^{k},\gamma_{ij}^{k}\in\mathbb{F}, for all i,ji,j and kk. Notice that every set of structure constants must satisfy the polynomial identities PλsP^{s}_{\lambda}, for λΛ\lambda\in\Lambda. It follows that each point (αijk,βijk,βijk,γijk)𝒱𝒮(m,n)(\alpha_{ij}^{k},\beta_{ij}^{k},{\beta^{\prime}}_{ij}^{k},\gamma_{ij}^{k})\in\mathcal{VS}^{(m,n)} represents, in the fixed basis, a 𝒱\mathcal{V}-superalgebra AA over 𝔽\mathbb{F} of type (m,n)(m,n).

Since superalgebras morphisms are even maps, there is a natural “change of basis” action of the group G=GLm(𝔽)×GLn(𝔽)G=\operatorname{GL}_{m}(\mathbb{F})\times\operatorname{GL}_{n}(\mathbb{F}) on 𝒱𝒮(m,n)\mathcal{VS}^{(m,n)} which gives a one-to-one correspondence between GG-orbits AGA^{G} on 𝒱𝒮(m,n)\mathcal{VS}^{(m,n)} and the isomorphism classes of 𝒱\mathcal{V}-superalgebras of type (m,n)(m,n). Let AG¯\overline{A^{G}} be the Zariski closure of AGA^{G}. The superalgebra A𝒱𝒮(m,n)A\in\mathcal{VS}^{(m,n)} is said to be a deformation of B𝒱𝒮(m,n)B\in\mathcal{VS}^{(m,n)} if BGAG¯B^{G}\subseteq\overline{A^{G}}. We indicate it by ABA\to B. The superalgebra A𝒱𝒮(m,n)A\in\mathcal{VS}^{(m,n)} is called (geometrically) rigid if the orbit AGA^{G} is Zariski-open set in 𝒱𝒮(m,n)\mathcal{VS}^{(m,n)}. Hence, if AA is rigid, then AG¯\overline{A^{G}} is an irreducible component of the variety 𝒱𝒮(m,n)\mathcal{VS}^{(m,n)} and any deformation CC of AA satisfies CAC\simeq A.

The one-parameter family of deformations technique is used in order to describe the deformations on 𝒱\mathcal{V}-superalgebras of type (m,n)(m,n), and it consists of the following. Let A𝒱𝒮(m,n)A\in\mathcal{VS}^{(m,n)}, denote the Laurent polynomials in the variable tt by 𝔽(t)\mathbb{F}(t), and take g(t)Matm(𝔽(t))×Matn(𝔽(t))g(t)\in\operatorname{Mat}_{m}(\mathbb{F}(t))\times\operatorname{Mat}_{n}(\mathbb{F}(t)). For any 0t𝔽0\neq t\in\mathbb{F}, assume that g(t)Gg(t)\in G. If At=(αijk(t),βijk(t),βijk(t),γijk(t))A_{t}=(\alpha_{ij}^{k}(t),\beta_{ij}^{k}(t),{\beta^{\prime}}_{ij}^{k}(t),\gamma_{ij}^{k}(t)) is the 𝒱\mathcal{V}-superalgebra resulting from the application of the change of basis g(t)g(t) to AA, then AA is a deformation of the 𝒱\mathcal{V}-superalgebra B=(αijk(0),βijk(0),βijk(0),γijk(0))B=(\alpha_{ij}^{k}(0),\beta_{ij}^{k}(0),{\beta^{\prime}}_{ij}^{k}(0),\gamma_{ij}^{k}(0)). In particular, a 𝒱\mathcal{V}-superalgebra AA is rigid if any g(t)g(t) satisfying the above conditions defines the 𝒱\mathcal{V}-superalgebra AtA_{t} isomorphic to AA for every t𝔽t\in\mathbb{F}. In other words, the following result holds.

Lemma 2.2.

[15] A curve g(t)g(t) in 𝒱𝒮(m,n)\mathcal{VS}^{(m,n)} which generically lies in a subvariety UU and which cuts AGA^{G} in special points implies that AA belongs to U¯\overline{U} (and conversely).

The following results will be useful to guarantee the non-existence of a deformation between two superalgebras of 𝒱𝒮(m,n)\mathcal{VS}^{(m,n)}. They were demonstrated in [1] and [2] for the case of Lie and Jordan superalgebras, respectively, but the proofs can be easily adapted to any other variety.

Lemma 2.3.

Let A,B𝒱𝒮(m,n)A,B\in\mathcal{VS}^{(m,n)} be such that AA has structure constants (αijk,βijk,βijk,γijk)(\alpha_{ij}^{k},\beta_{ij}^{k},{\beta^{\prime}}_{ij}^{k},\gamma_{ij}^{k}) and ABA\to B. The following conditions hold:

  1. (i)

    dim(Aut(A))<dim(Aut(B))\dim(\operatorname{Aut}(A))<\dim(\operatorname{Aut}(B)).

  2. (ii)

    dim(Ar)idim(Br)i\dim(A^{r})_{i}\geq\dim(B^{r})_{i}, where i2i\in\mathbb{Z}_{2}, A1=AA^{1}=A, Ar=Ar1A++AAr1A^{r}=A^{r-1}A+\cdots+AA^{r-1}, for all rr\in\mathbb{N}, and Ar=(Ar)0(Ar)1A^{r}=(A^{r})_{0}\oplus(A^{r})_{1}.

  3. (iii)

    A0B0A_{0}\to B_{0}.

  4. (iv)

    ab(A)ab(B)ab(A)\to ab(B), where ab(A)𝒱𝒮(m,n)ab(A)\in\mathcal{VS}^{(m,n)} has structure constants (0,0,0,γijk)(0,0,0,\gamma_{ij}^{k}).

  5. (v)

    (A)(B)\mathcal{F}(A)\to\mathcal{F}(B), where (A)𝒱𝒮(m,n)\mathcal{F}(A)\in\mathcal{VS}^{(m,n)} has structure constants (αijk,βijk,βijk,0)(\alpha_{ij}^{k},\beta_{ij}^{k},{\beta^{\prime}}_{ij}^{k},0).

  6. (vi)

    If AA is associative, then BB is also associative. Furthermore, if AA satisfies a polynomial identity, then BB satisfies the same polynomial identity.

Remark 2.4.

Suppose that A,B𝒱𝒮(m,n)A,B\in\mathcal{VS}^{(m,n)} have structure of 𝒱\mathcal{V}-algebras. If A↛BA\not\to B as algebras, then A↛BA\not\to B as superalgebras.

In this article, we consider the variety 𝒱\mathcal{V} of Jordan algebras over an algebraically closed field 𝔽\mathbb{F} of char 𝔽=0\textrm{char\,}\mathbb{F}=0, i.e., the variety of algebras defined by the multilinear identities xy=yxxy=yx and

(wx)(yz)+(wy)(xz)+(wz)(xy)x(w(yz))y(w(xz))z(w(xy))=0.(wx)(yz)+(wy)(xz)+(wz)(xy)-x(w(yz))-y(w(xz))-z(w(xy))=0.

The last one is known as Jordan identity. We will work with the corresponding variety of 𝒱\mathcal{V}-superalgebras, called Jordan superalgebras, whose set of superidentities, obtained through Kaplansky’s Rule, are: the supercommutativity xy=(1)|x||y|yxxy=(-1)^{|x||y|}yx, and the Jordan superidentity:

(wx)(yz)+(1)|x||y|(wy)(xz)+(1)(|x|+|y|)|z|(wz)(xy)\displaystyle(wx)(yz)+(-1)^{|x||y|}(wy)(xz)+(-1)^{(|x|+|y|)|z|}(wz)(xy)
(1)|w||x|x(w(yz))(1)|y|(|w|+|x|)y(w(xz))(1)|z|(|w|+|x|+|y|)z(w(xy))=0,\displaystyle-(-1)^{|w||x|}x(w(yz))-(-1)^{|y|(|w|+|x|)}y(w(xz))-(-1)^{|z|(|w|+|x|+|y|)}z(w(xy))=0,

where x,y,z,wx,y,z,w are homogeneous elements. The variety of all Jordan superalgebras of type (m,n)(m,n) will be denoted by 𝒥𝒮(m,n)\mathcal{JS}^{(m,n)}.

In the next section we describe a powerful machinery to find rigid superalgebras. This technique is valid for other varieties, such as associative and Lie superalgebras. In order to be precise, we introduce it only for Jordan superalgebras.

3. Second cohomology group of finite-dimensional Jordan Superalgebras

The most known sufficient condition for a superalgebra to be rigid is given in terms of its cohomology group. We say that the second cohomology group H2(𝒥,𝒥)H^{2}(\mathcal{J},\mathcal{J}) of a Jordan superalgebra JJ with coefficients in itself vanishes if for every bilinear map h:𝒥×𝒥𝒥h\colon\mathcal{J}\times\mathcal{J}\to\mathcal{J} satisfying

(1) h(a,b)=(1)|a||b|h(b,a)h(a,b)=(-1)^{|a||b|}h(b,a)

and

F(a,b,c,d)+(1)|b|(|c|+|d|)+|c||d|F(a,d,c,b)+(1)|a|(|b|+|c|+|d|)+|c||d|F(b,d,c,a)\displaystyle F(a,b,c,d)+(-1)^{|b|(|c|+|d|)+|c||d|}F(a,d,c,b)+(-1)^{|a|(|b|+|c|+|d|)+|c||d|}F(b,d,c,a)
(2) =G(a,b,c,d)+(1)|b||c|G(a,c,b,d)+(1)|d|(|c|+|b|)G(a,d,b,c)\displaystyle=G(a,b,c,d)+(-1)^{|b||c|}G(a,c,b,d)+(-1)^{|d|(|c|+|b|)}G(a,d,b,c)

for all homogeneous elements a,b,c,da,b,c,d, where

F(a,b,c,d):=h((ab)c,d)+h(ab,c)d+(h(a,b)c)d,G(a,b,c,d):=h(ab,cd)+h(a,b)(cd)+(ab)h(c,d),\begin{array}[]{c}F(a,b,c,d):=h((ab)c,d)+h(ab,c)d+(h(a,b)c)d,\\ G(a,b,c,d):=h(ab,cd)+h(a,b)(cd)+(ab)h(c,d),\end{array}

there exists a linear map μ:𝒥𝒥\mu\colon\mathcal{J}\to\mathcal{J} such that

(3) h(a,b)=aμ(b)+μ(a)bμ(ab).h(a,b)=a\mu(b)+\mu(a)b-\mu(ab).

For the precise definition and properties of this group for Jordan superalgebras, we refer the reader to [5] and [6].

Proposition 3.1.

Let 𝒥𝒥𝒮(n,m)\mathcal{J}\in\mathcal{JS}^{(n,m)} be a Jordan superalgebra. If H2(𝒥,𝒥)=0H^{2}(\mathcal{J},\mathcal{J})=0, then 𝒥\mathcal{J} is a rigid superalgebra.

The last implication applies equally well to any category of algebras or superalgebras defined by superidentities with appropriate modifications. In fact, this result was originally obtained in [3] for associative and Lie algebras; for the case of Jordan algebras, see [10].The proof for Jordan superalgebras is analogous.

Example 3.2.

Consider 𝒥=(2,2)3𝒥𝒮(2,2)\mathcal{J}=(2,2)_{3}\in\mathcal{JS}^{(2,2)} whose multiplication table is given in Table LABEL:table:JSA_(2,2) and let h:𝒥×𝒥𝒥h:\mathcal{J}\times\mathcal{J}\to\mathcal{J} be a bilinear map satisfying the supersymmetry (1) and the condition (3), then

h(e1,e1)=αe1+βe2,h(e1,e2)=γe1βe2,h(e1,f1)=δe2+12αf1,\displaystyle h(e_{1},e_{1})=\alpha e_{1}+\beta e_{2},\quad h(e_{1},e_{2})=\gamma e_{1}-\beta e_{2},\quad h(e_{1},f_{1})=\delta e_{2}+\frac{1}{2}\alpha f_{1},
h(e1,f2)=ϵe2+12αf2,h(e2,e2)=γe1+λe2,h(e2,f1)=2δe2+12γf1,\displaystyle h(e_{1},f_{2})=\epsilon e_{2}+\frac{1}{2}\alpha f_{2},\quad h(e_{2},e_{2})=-\gamma e_{1}+\lambda e_{2},\quad h(e_{2},f_{1})=-2\delta e_{2}+\frac{1}{2}\gamma f_{1},
h(e2,f2)=2ϵe2+12γf2,h(f1,f2)=θe1+βe2,\displaystyle h(e_{2},f_{2})=-2\epsilon e_{2}+\frac{1}{2}\gamma f_{2},\quad h(f_{1},f_{2})=\theta e_{1}+\beta e_{2},

for any α,β,γ,δ,ϵ,λ,θ𝔽\alpha,\beta,\gamma,\delta,\epsilon,\lambda,\theta\in\mathbb{F}. Note that by supersymmetry, it follows that h(fi,fi)=0h(f_{i},f_{i})=0, for i=1,2i=1,2. Now, define a linear map μ:JJ\mu\colon J\to J by

μ(e1)=αe1βe2,μ(e2)=γe1+λe2,\displaystyle\mu(e_{1})=\alpha e_{1}-\beta e_{2},\quad\mu(e_{2})=\gamma e_{1}+\lambda e_{2},
μ(f1)=2δe2,μ(f2)=2ϵe2+(θ+α)f2.\displaystyle\mu(f_{1})=-2\delta e_{2},\quad\mu(f_{2})=-2\epsilon e_{2}+(\theta+\alpha)f_{2}.

Thus, we have that (3)\eqref{hmu} holds and then H2(𝒥,𝒥)=0H^{2}(\mathcal{J},\mathcal{J})=0, which implies that (2,2)3(2,2)_{3} is a rigid Jordan superalgebra.

Example 3.3.

Analogously, for 𝒥=(2,2)5\mathcal{J}=(2,2)_{5} (see Table LABEL:table:JSA_(2,2)) we will calculate the second cohomology group. Let h:𝒥×𝒥𝒥h:\mathcal{J}\times\mathcal{J}\to\mathcal{J} be a bilinear map as before, then

h(e1,e1)=αe1βe2,h(e1,e2)=γe1+βe2,h(e1,f1)=δe2+αf1,\displaystyle h(e_{1},e_{1})=\alpha e_{1}-\beta e_{2},\quad h(e_{1},e_{2})=\gamma e_{1}+\beta e_{2},\quad h(e_{1},f_{1})=\delta e_{2}+\alpha f_{1},
h(e1,f2)=ϵe2+αf2,h(e2,e2)=γe1+λe2,h(e2,f1)=δe2+γf1,\displaystyle h(e_{1},f_{2})=\epsilon e_{2}+\alpha f_{2},\quad h(e_{2},e_{2})=-\gamma e_{1}+\lambda e_{2},\quad h(e_{2},f_{1})=-\delta e_{2}+\gamma f_{1},
h(e2,f2)=ϵe2+γf2,h(f1,f2)=θe1βe2\displaystyle h(e_{2},f_{2})=-\epsilon e_{2}+\gamma f_{2},\quad h(f_{1},f_{2})=\theta e_{1}-\beta e_{2}

for any α,β,γ,δ,ϵ,λ,θ𝔽\alpha,\beta,\gamma,\delta,\epsilon,\lambda,\theta\in\mathbb{F}. Define a linear map μ:𝒥𝒥\mu\colon\mathcal{J}\to\mathcal{J} by

μ(e1)=αe1+βe2,μ(e2)=γe1+λe2,\displaystyle\mu(e_{1})=\alpha e_{1}+\beta e_{2},\quad\mu(e_{2})=\gamma e_{1}+\lambda e_{2},
μ(f1)=δe2,μ(f2)=ϵe2+(θ+α)f2.\displaystyle\mu(f_{1})=-\delta e_{2},\quad\mu(f_{2})=-\epsilon e_{2}+(\theta+\alpha)f_{2}.

Then (3)\eqref{hmu} holds and hence H2(𝒥,𝒥)=0H^{2}(\mathcal{J},\mathcal{J})=0. Therefore, (2,2)5(2,2)_{5} is a rigid Jordan superalgebra.

In positive characteristic, it has been shown that the reverse implication of Proposition 3.1 is false for finite-dimensional associative algebras. M. Gerstenhaber and S. Schack [4] constructed rigid high-dimensional associative algebras AA over a field of positive characteristic such that H2(A,A)0H^{2}(A,A)\neq 0. Furthermore, Richardson [16] showed that there exist complex Lie algebras in every even dimension greater than 1616 that are rigid but the second cohomology group does not vanish. The question of the existence of a rigid Jordan algebra 𝒥\mathcal{J} satisfying H2(𝒥,𝒥)0H^{2}(\mathcal{J},\mathcal{J})\neq 0 is still an open problem. In what follows, we will show that the converse does not hold for Jordan superalgebras. We will show an example of a Jordan superalgebra that is rigid (as shown in Theorem 4.5) but whose second cohomology group does not vanish.

Example 3.4.

Let 𝒥=(2,2)8\mathcal{J}=(2,2)_{8} (see Table LABEL:table:JSA_(2,2)) and consider a bilinear map h:𝒥×𝒥𝒥h:\mathcal{J}\times\mathcal{J}\to\mathcal{J} satisfying (1) and (3), then

h(e1,e1)=αe1+βe2+ωf2,h(e1,e2)=ηe1βe2+σf1,\displaystyle h(e_{1},e_{1})=\alpha e_{1}+\beta e_{2}+\omega f_{2},\quad h(e_{1},e_{2})=-\eta e_{1}-\beta e_{2}+\sigma f_{1},
h(e1,f1)=δe2+12αf1+ρf2,h(e1,f2)=πf1,\displaystyle h(e_{1},f_{1})=\delta e_{2}+\frac{1}{2}\alpha f_{1}+\rho f_{2},\quad h(e_{1},f_{2})=\pi f_{1},
h(e2,e2)=ηe1+λe22σf1+τf2,h(e2,f1)=2δe212ηf1,\displaystyle h(e_{2},e_{2})=\eta e_{1}+\lambda e_{2}-2\sigma f_{1}+\tau f_{2},\quad h(e_{2},f_{1})=-2\delta e_{2}-\frac{1}{2}\eta f_{1},
h(e2,f2)=νe2,h(f1,f2)=κf1\displaystyle h(e_{2},f_{2})=\nu e_{2},\quad h(f_{1},f_{2})=\kappa f_{1}

for any α,β,δ,λ,ω,η,σ,τ,ρ,π,ν,κ𝔽\alpha,\beta,\delta,\lambda,\omega,\eta,\sigma,\tau,\rho,\pi,\nu,\kappa\in\mathbb{F}. Suppose that there exists a linear map μ:𝒥𝒥\mu\colon\mathcal{J}\to\mathcal{J} where μ(ei)=j=14uijej\mu(e_{i})=\sum_{j=1}^{4}u_{ij}e_{j}, with e3=f1e_{3}=f_{1} and e4=f2e_{4}=f_{2}, and such that (3)\eqref{hmu} holds. Taking a=f1a=f_{1} and b=f2b=f_{2} in (3)\eqref{hmu}, we get

(κ12u41)f1=0,\left(\kappa-\frac{1}{2}u_{41}\right)f_{1}=0,

and on the other hand, setting a=f2a=f_{2} and b=f1b=f_{1} in (3)\eqref{hmu}, we obtain

(κ12u41)f1=0,\left(-\kappa-\frac{1}{2}u_{41}\right)f_{1}=0,

which implies κ=0\kappa=0. This means that if κ0\kappa\neq 0, then there is no such μ\mu, and therefore 𝒥\mathcal{J} is a rigid Jordan superalgebra such that H2(𝒥,𝒥)H^{2}(\mathcal{J},\mathcal{J}) does not vanish.

Analogously, we say that the even part of the second cohomology group H2(𝒥,𝒥)H^{2}(\mathcal{J},\mathcal{J}) of a Jordan superalgebra 𝒥\mathcal{J} with coefficients in itself vanishes (i.e., (H2(𝒥,𝒥))0=0(H^{2}(\mathcal{J},\mathcal{J}))_{0}=0) if for every even bilinear map h0:𝒥×𝒥𝒥h_{0}:\mathcal{J}\times\mathcal{J}\to\mathcal{J} (this means that h0(ei,ej),h0(fi,fj)J0h_{0}(e_{i},e_{j}),h_{0}(f_{i},f_{j})\in J_{0} and h0(ei,fj),h0(fi,ej)𝒥1h_{0}(e_{i},f_{j}),h_{0}(f_{i},e_{j})\in\mathcal{J}_{1} for i,j=1,2i,j=1,2) satisfying (1) and (3) there exists an even linear map μ0:𝒥𝒥\mu_{0}:\mathcal{J}\to\mathcal{J} (i.e., μ0(𝒥i)𝒥i\mu_{0}(\mathcal{J}_{i})\subseteq\mathcal{J}_{i} for i=1,2i=1,2) such that

(4)  h0(a,b)=aμ0(b)+μ0(a)bμ0(ab). h_{0}(a,b)=a\mu_{0}(b)+\mu_{0}(a)b-\mu_{0}(ab).

In [1], the authors proved that it suffices for the even part of the second cohomology group of a Lie superalgebra to vanish in order to conclude that it is rigid. The proof for Jordan superalgebras is analogous.

Proposition 3.5.

If 𝒥𝒥𝒮(n,m)\mathcal{J}\in\mathcal{JS}^{(n,m)} and the even part of the second cohomology group (H2(𝒥,𝒥))0(H^{2}(\mathcal{J},\mathcal{J}))_{0} vanishes, then 𝒥\mathcal{J} is a rigid Jordan superalgebra.

We leave open the natural question that arises from Proposition 3.5, namely whether there exists a rigid Jordan superalgebra 𝒥\mathcal{J} such that (H2(𝒥,𝒥))00(H^{2}(\mathcal{J},\mathcal{J}))_{0}\neq 0.

Example 3.6.

Consider 𝒥=(2,2)1𝒥𝒮(2,2)\mathcal{J}=(2,2)_{1}\in\mathcal{JS}^{(2,2)} (see Table LABEL:table:JSA_(2,2))  and let h0:𝒥×𝒥𝒥h_{0}\colon\mathcal{J}\times\mathcal{J}\to\mathcal{J} be an even bilinear map satisfying the above conditions, then

h0(e1,e1)=αe1+βe2,h0(e1,e2)=γe1βe2,h0(e1,f1)=0,\displaystyle h_{0}(e_{1},e_{1})=\alpha e_{1}+\beta e_{2},\quad h_{0}(e_{1},e_{2})=\gamma e_{1}-\beta e_{2},\quad h_{0}(e_{1},f_{1})=0,
h0(e1,f2)=0,h0(e2,e2)=γe1+δe2,h0(e2,f1)=0,\displaystyle h_{0}(e_{1},f_{2})=0,\quad h_{0}(e_{2},e_{2})=-\gamma e_{1}+\delta e_{2},\quad h_{0}(e_{2},f_{1})=0,
h0(e2,f2)=0,h0(f1,f2)=0\displaystyle h_{0}(e_{2},f_{2})=0,\quad h_{0}(f_{1},f_{2})=0

for any α,β,γ,δ𝔽\alpha,\beta,\gamma,\delta\in\mathbb{F}. Define an even linear map μ0:𝒥𝒥\mu_{0}\colon\mathcal{J}\to\mathcal{J} by

μ0(e1)=αe1βe2,μ0(e2)=γe1+δe2,\displaystyle\mu_{0}(e_{1})=\alpha e_{1}-\beta e_{2},\quad\mu_{0}(e_{2})=\gamma e_{1}+\delta e_{2},
μ0(f1)=0,μ0(f2)=0,\displaystyle\mu_{0}(f_{1})=0,\quad\mu_{0}(f_{2})=0,

thus we have that (4)\eqref{even-hmu} holds and then (H2(𝒥,𝒥))0=0(H^{2}(\mathcal{J},\mathcal{J}))_{0}=0 which implies (2,2)1(2,2)_{1} is a rigid Jordan superalgebra.

4. Jordan Superalgebras of Type (2,2)(2,2)

In this section, we investigate the variety 𝒥𝒮(2,2)\mathcal{JS}^{(2,2)} over an algebraically closed field of characteristic zero. I. Hernández et al. [8] have provided a concrete list of non-isomorphic commutative power-associative superalgebras up to dimension 44 over an algebraically closed field of characteristic prime to 3030. As a consequence of this classification, we see that there exist, up to isomorphism, 7272 Jordan superalgebras of type (2,2)(2,2) and an one parameter family over an algebraically closed field of characteristic zero (see [8], Tables 6, 8, 9, 10, 12, and 14). Table LABEL:table:JSA_(2,2) gives representatives for isomorphism classes and some additional useful information, namely the dimension of the automorphism group of each superalgebra, and we indicate by “A” if the superalgebra is associative and “NA” otherwise. The superscript “N” in (2,2)iN(2,2)_{i}^{N} indicates that the superalgebra is nilpotent.

Table 1. Jordan superalgebras of type (2,2)(2,2).
Label Multiplication table dim(Aut(𝒥))\dim(\operatorname{Aut}(\mathcal{J}))
(2,2)1(2,2)_{1}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}. 44 A
(2,2)2(2,2)_{2}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}. 44 NA
(2,2)3(2,2)_{3}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, f1f2=e1\;\;f_{1}f_{2}=e_{1}. 33 NA
(2,2)4(2,2)_{4}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}. 44 A
(2,2)5(2,2)_{5}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}, f1f2=e1\;\;f_{1}f_{2}=e_{1}. 33 NA
(2,2)6(2,2)_{6}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, e2f1=12f1\;\;e_{2}f_{1}=\frac{1}{2}f_{1}, 44 NA
e2f2=12f2\;\;e_{2}f_{2}=\frac{1}{2}f_{2}.
(2,2)7(2,2)_{7}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, e2f1=12f1\;\;e_{2}f_{1}=\frac{1}{2}f_{1}, 33 NA
e2f2=12f2\;\;e_{2}f_{2}=\frac{1}{2}f_{2}, f1f2=e2\;\;f_{1}f_{2}=e_{2}.
DγD_{\gamma}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, e2f1=12f1\;\;e_{2}f_{1}=\frac{1}{2}f_{1}, 33 NA
e2f2=12f2\;\;e_{2}f_{2}=\frac{1}{2}f_{2}, f1f2=e1+γe2\;\;f_{1}f_{2}=e_{1}+\gamma e_{2}, γ𝔽\;\gamma\in\mathbb{F}^{*}.
(2,2)8(2,2)_{8}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}. 2 NA
(2,2)9(2,2)_{9}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, e2f1=12f1\;\;e_{2}f_{1}=\frac{1}{2}f_{1}. 22 NA
(2,2)10(2,2)_{10}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e2f2=12f2\;\;e_{2}f_{2}=\frac{1}{2}f_{2}. 22 NA
(2,2)11(2,2)_{11}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e2f1=12f1\;\;e_{2}f_{1}=\frac{1}{2}f_{1}, e2f2=f2\;\;e_{2}f_{2}=f_{2}. 22 NA
(2,2)12(2,2)_{12}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}. 22 A
(2,2)13(2,2)_{13}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}. 22 NA
(2,2)14(2,2)_{14}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e2f2=f2\;\;e_{2}f_{2}=f_{2}. 22 A
(2,2)15(2,2)_{15}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e2f1=12f1\;\;e_{2}f_{1}=\frac{1}{2}f_{1}. 22 NA
(2,2)16(2,2)_{16}: e12=e1\;\;e^{2}_{1}=e_{1}, e22=e2\;\;e^{2}_{2}=e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1},e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, e2f1=12f1\;\;e_{2}f_{1}=\frac{1}{2}f_{1}. 22 NA
(2,2)17(2,2)_{17}: e12=e1\;\;e^{2}_{1}=e_{1}. 55 A
(2,2)18(2,2)_{18}: e12=e1\;\;e^{2}_{1}=e_{1}, f1f2=e2\;\;f_{1}f_{2}=e_{2}. 44 A
(2,2)19(2,2)_{19}: e12=e1\;\;e^{2}_{1}=e_{1}, e2f2=f1\;\;e_{2}f_{2}=f_{1}. 33 A
(2,2)20(2,2)_{20}: e12=e1\;\;e^{2}_{1}=e_{1}, e2f2=f1\;\;e_{2}f_{2}=f_{1}, f1f2=e2\;\;f_{1}f_{2}=e_{2}. 22 NA
(2,2)21(2,2)_{21}: e12=e1\;\;e^{2}_{1}=e_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}. 33 NA
(2,2)22(2,2)_{22}: e12=e1\;\;e^{2}_{1}=e_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}. 33 A
(2,2)23(2,2)_{23}: e12=e1\;\;e^{2}_{1}=e_{1}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}. 55 NA
(2,2)24(2,2)_{24}: e12=e1\;\;e^{2}_{1}=e_{1}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, f1f2=e1\;\;f_{1}f_{2}=e_{1}. 44 NA
(2,2)25(2,2)_{25}: e12=e1\;\;e^{2}_{1}=e_{1}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, f1f2=e2\;\;f_{1}f_{2}=e_{2}. 44 NA
(2,2)26(2,2)_{26}: e12=e1\;\;e^{2}_{1}=e_{1}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, f1f2=e1+e2\;\;f_{1}f_{2}=e_{1}+e_{2}. 33 NA
(2,2)27(2,2)_{27}: e12=e1\;\;e^{2}_{1}=e_{1}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, e2f2=f1\;\;e_{2}f_{2}=f_{1}. 33 NA
(2,2)28(2,2)_{28}: e12=e1\;\;e^{2}_{1}=e_{1}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, e2f2=f1\;\;e_{2}f_{2}=f_{1}, f1f2=e2\;\;f_{1}f_{2}=e_{2}. 22 NA
(2,2)29(2,2)_{29}: e12=e1\;\;e^{2}_{1}=e_{1}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}. 33 NA
(2,2)30(2,2)_{30}: e12=e1\;\;e^{2}_{1}=e_{1}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}. 55 A
(2,2)31(2,2)_{31}: e12=e1\;\;e^{2}_{1}=e_{1}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}, f1f2=e1\;\;f_{1}f_{2}=e_{1}. 44 NA
(2,2)32(2,2)_{32}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=e2\;\;e_{1}e_{2}=e_{2}. 55 A
(2,2)33(2,2)_{33}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=e2\;\;e_{1}e_{2}=e_{2}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}. 33 NA
(2,2)34(2,2)_{34}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=e2\;\;e_{1}e_{2}=e_{2}, e1f2=f2\;\;e_{1}f_{2}=f_{2}. 33 A
(2,2)35(2,2)_{35}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=e2\;\;e_{1}e_{2}=e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}. 55 NA
(2,2)36(2,2)_{36}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=e2\;\;e_{1}e_{2}=e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, f1f2=e2\;\;f_{1}f_{2}=e_{2}. 44 NA
(2,2)37(2,2)_{37}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=e2\;\;e_{1}e_{2}=e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, e2f2=f1\;\;e_{2}f_{2}=f_{1}. 33 NA
(2,2)38(2,2)_{38}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=e2\;\;e_{1}e_{2}=e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, e2f2=f1\;\;e_{2}f_{2}=f_{1}, 22 NA
f1f2=e2\;\;f_{1}f_{2}=e_{2}.
(2,2)39(2,2)_{39}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=e2\;\;e_{1}e_{2}=e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}. 33 NA
(2,2)40(2,2)_{40}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=e2\;\;e_{1}e_{2}=e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}. 55 A
(2,2)41(2,2)_{41}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=e2\;\;e_{1}e_{2}=e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}, f1f2=e1\;\;f_{1}f_{2}=e_{1}. 44 NA
(2,2)42(2,2)_{42}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=e2\;\;e_{1}e_{2}=e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}, f1f2=e2\;\;f_{1}f_{2}=e_{2}. 44 A
(2,2)43(2,2)_{43}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=e2\;\;e_{1}e_{2}=e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}, f1f2=e1+e2\;\;f_{1}f_{2}=e_{1}+e_{2}. 33 NA
(2,2)44(2,2)_{44}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=e2\;\;e_{1}e_{2}=e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}, e2f2=f1\;\;e_{2}f_{2}=f_{1}. 33 A
(2,2)45(2,2)_{45}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=e2\;\;e_{1}e_{2}=e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}, e2f2=f1\;\;e_{2}f_{2}=f_{1}, 22 NA
f1f2=e2\;\;f_{1}f_{2}=e_{2}.
(2,2)46N(2,2)^{N}_{46}: e12=e2\;\;e^{2}_{1}=e_{2}. 66 A
(2,2)47N(2,2)^{N}_{47}: e12=e2\;\;e^{2}_{1}=e_{2}, f1f2=e1\;\;f_{1}f_{2}=e_{1}. 44 NA
(2,2)48N(2,2)^{N}_{48}: e12=e2\;\;e^{2}_{1}=e_{2}, f1f2=e2\;\;f_{1}f_{2}=e_{2}. 55 A
(2,2)49N(2,2)^{N}_{49}: e12=e2\;\;e^{2}_{1}=e_{2}, e1f2=f1\;\;e_{1}f_{2}=f_{1}. 44 A
(2,2)50N(2,2)^{N}_{50}: e12=e2\;\;e^{2}_{1}=e_{2}, e1f2=f1\;\;e_{1}f_{2}=f_{1}, f1f2=e2\;\;f_{1}f_{2}=e_{2}. 33 NA
(2,2)51N(2,2)^{N}_{51}: e12=e2\;\;e^{2}_{1}=e_{2}, e2f2=f1\;\;e_{2}f_{2}=f_{1}. 33 NA
(2,2)52(2,2)_{52}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}. 66 NA
(2,2)53(2,2)_{53}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}. 44 NA
(2,2)54(2,2)_{54}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, f1f2=e2\;\;f_{1}f_{2}=e_{2}. 33 NA
(2,2)55(2,2)_{55}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, e2f2=f1\;\;e_{2}f_{2}=f_{1}. 33 NA
(2,2)56(2,2)_{56}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, e2f2=f1\;\;e_{2}f_{2}=f_{1}, f1f2=e2\;\;f_{1}f_{2}=e_{2}. 22 NA
(2,2)57(2,2)_{57}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f2=f2\;\;e_{1}f_{2}=f_{2}. 44 NA
(2,2)58(2,2)_{58}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e2f2=f1\;\;e_{2}f_{2}=f_{1}. 33 NA
(2,2)59(2,2)_{59}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e2f2=f1\;\;e_{2}f_{2}=f_{1}, f1f2=e2\;\;f_{1}f_{2}=e_{2}. 22 NA
(2,2)60(2,2)_{60}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}. 66 NA
(2,2)61(2,2)_{61}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}. 44 NA
(2,2)62(2,2)_{62}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}, f1f2=e2\;\;f_{1}f_{2}=e_{2}. 33 NA
(2,2)63(2,2)_{63}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}, e2f2=f1\;\;e_{2}f_{2}=f_{1}. 33 NA
(2,2)64(2,2)_{64}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f1=12f1\;\;e_{1}f_{1}=\frac{1}{2}f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}, e2f2=f1\;\;e_{2}f_{2}=f_{1}, 22 NA
f1f2=e2\;\;f_{1}f_{2}=e_{2}.
(2,2)65(2,2)_{65}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, e2f2=f1\;\;e_{2}f_{2}=f_{1}. 33 NA
(2,2)66(2,2)_{66}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e1f2=12f2\;\;e_{1}f_{2}=\frac{1}{2}f_{2}, e2f2=f1\;\;e_{2}f_{2}=f_{1}, 22 NA
f1f2=e2\;\;f_{1}f_{2}=e_{2}.
(2,2)67(2,2)_{67}: e12=e1\;\;e^{2}_{1}=e_{1}, e1e2=12e2\;\;e_{1}e_{2}=\frac{1}{2}e_{2}, e1f1=f1\;\;e_{1}f_{1}=f_{1}, e1f2=f2\;\;e_{1}f_{2}=f_{2}. 66 NA
(2,2)68N(2,2)^{N}_{68}: e2f2=f1\;\;e_{2}f_{2}=f_{1}. 55 A
(2,2)69N(2,2)^{N}_{69}: e2f2=f1\;\;e_{2}f_{2}=f_{1}, f1f2=e1\;\;f_{1}f_{2}=e_{1}. 44 NA
(2,2)70(2,2)_{70}: e2f2=f1\;\;e_{2}f_{2}=f_{1}, f1f2=e2\;\;f_{1}f_{2}=e_{2}. 33 NA
(2,2)71N(2,2)^{N}_{71}: f1f2=e1\;\;f_{1}f_{2}=e_{1}. 66 A
(2,2)72N(2,2)^{N}_{72}: eiej=0\;\;e_{i}e_{j}=0, eifj=0\;\;e_{i}f_{j}=0, fifj=0\;\;f_{i}f_{j}=0, i,j{1,2}\;\;i,j\in\{1,2\}. 88 A
Lemma 4.1.

Every superalgebra (2,2)i𝒥𝒮(2,2)(2,2)_{i}\in\mathcal{JS}^{(2,2)} belongs to γ𝔽DγG¯\overline{\bigcup_{\gamma\in\mathbb{F}^{*}}D_{\gamma}^{G}} or (2,2)jG¯\overline{(2,2)_{j}^{G}} for j{1,3,5,816,20,28,38,45,52,56,57,59,60,64,66,67}j\in\{1,3,5,8-16,20,28,38,45,52,56,57,59,60,64,66,67\}.

Proof.

We will show that (2,2)43γ𝔽DtG¯(2,2)_{43}\in\overline{\bigcup\limits_{\gamma\in\mathbb{F}^{*}}D_{t}^{G}}. Consider the “variable” change of basis g(t)g(t) of DγD_{\gamma}, where the parameter γ\gamma depends on tt, namely: γ(t)=1+t\gamma(t)=1+t and E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1} and F2=f2F_{2}=f_{2}. So the curve g(t)g(t) lies transversely to the orbits of DγD_{\gamma}, meaning that, for any t0t\neq 0, g(t)γ𝔽DγGg(t)\subset\bigcup\limits_{\gamma\in\mathbb{F}^{*}}D_{\gamma}^{G} and cuts (2,2)43G(2,2)_{43}^{G} in t=0t=0. Thus (2,2)43γ𝔽DtG¯(2,2)_{43}\in\overline{\bigcup\limits_{\gamma\in\mathbb{F}^{*}}D_{t}^{G}}. We will abuse the notation and will denote this fact by Dt(2,2)43D_{t}\to(2,2)_{43}. Observe that in the same way we obtain Dt(2,2)7D_{t}\to(2,2)_{7} and Dt(2,2)26D_{t}\to(2,2)_{26} with the “variable” change of basis given in Table 2.

Dγ(2,2)7,γ(t)=tD_{\gamma}\rightarrow(2,2)_{7},\;\gamma(t)=t E1=e2E_{1}=e_{2}, E2=e1E_{2}=e_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
Dγ(2,2)26,γ(t)=tD_{\gamma}\rightarrow(2,2)_{26},\;\gamma(t)=t E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
Dγ(2,2)43,γ(t)=1+tD_{\gamma}\rightarrow(2,2)_{43},\;\gamma(t)=1+t E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
Table 2. Change of basis of DγD_{\gamma}, where γ\gamma depends on tt

On the other hand, Table LABEL:table:change_bases_(2,2) gives all possible essential deformations between Jordan superalgebras of type (2,2)(2,2) and the other deformations can be obtained by transitivity.

Table 3. Deformations between Jordan Superalgebras of type (2,2)(2,2)
𝒥𝒥\mathcal{J}\rightarrow\mathcal{J}^{\prime} Change of basis
(2,2)1(2,2)17(2,2)_{1}\rightarrow(2,2)_{17} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)1(2,2)32(2,2)_{1}\rightarrow(2,2)_{32} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te1E_{2}=te_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)2(2,2)17(2,2)_{2}\rightarrow(2,2)_{17} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)2(2,2)23(2,2)_{2}\rightarrow(2,2)_{23} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)2(2,2)35(2,2)_{2}\rightarrow(2,2)_{35} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)3(2,2)2(2,2)_{3}\rightarrow(2,2)_{2} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=tf_{2}
(2,2)3(2,2)18(2,2)_{3}\rightarrow(2,2)_{18} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=tf_{2}
(2,2)3(2,2)24(2,2)_{3}\rightarrow(2,2)_{24} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)3(2,2)36(2,2)_{3}\rightarrow(2,2)_{36} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te1E_{2}=te_{1}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)4(2,2)17(2,2)_{4}\rightarrow(2,2)_{17} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)4(2,2)30(2,2)_{4}\rightarrow(2,2)_{30} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)4(2,2)40(2,2)_{4}\rightarrow(2,2)_{40} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)5(2,2)4(2,2)_{5}\rightarrow(2,2)_{4} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=tf_{2}
(2,2)5(2,2)18(2,2)_{5}\rightarrow(2,2)_{18} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=tf_{2}
(2,2)5(2,2)31(2,2)_{5}\rightarrow(2,2)_{31} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)5(2,2)41(2,2)_{5}\rightarrow(2,2)_{41} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)5(2,2)42(2,2)_{5}\rightarrow(2,2)_{42} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=t(e1e2)E_{2}=t(e_{1}-e_{2}), F1=2tf1F_{1}=2tf_{1}, F2=f2F_{2}=f_{2}
(2,2)6(2,2)23(2,2)_{6}\rightarrow(2,2)_{23} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)6(2,2)40(2,2)_{6}\rightarrow(2,2)_{40} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)7(2,2)6(2,2)_{7}\rightarrow(2,2)_{6} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)7(2,2)24(2,2)_{7}\rightarrow(2,2)_{24} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)7(2,2)25(2,2)_{7}\rightarrow(2,2)_{25} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)7(2,2)42(2,2)_{7}\rightarrow(2,2)_{42} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)8(2,2)19(2,2)_{8}\rightarrow(2,2)_{19} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=12tf1F_{1}=\frac{1}{2}tf_{1}, F2=f1+f2F_{2}=f_{1}+f_{2}
(2,2)8(2,2)21(2,2)_{8}\rightarrow(2,2)_{21} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}.
(2,2)8(2,2)33(2,2)_{8}\rightarrow(2,2)_{33} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}
(2,2)9(2,2)21(2,2)_{9}\rightarrow(2,2)_{21} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)9(2,2)37(2,2)_{9}\rightarrow(2,2)_{37} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te1E_{2}=te_{1}, F1=12tf2F_{1}=\frac{1}{2}tf_{2}, F2=f1+f2F_{2}=f_{1}+f_{2}
(2,2)10(2,2)21(2,2)_{10}\rightarrow(2,2)_{21} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)10(2,2)22(2,2)_{10}\rightarrow(2,2)_{22} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}
(2,2)10(2,2)39(2,2)_{10}\rightarrow(2,2)_{39} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}.
(2,2)10(2,2)51N(2,2)_{10}\rightarrow(2,2)^{N}_{51} E1=te1+2te2E_{1}=te_{1}+2te_{2}, E2=t2e1+4t2e2E_{2}=t^{2}e_{1}+4t^{2}e_{2}, F1=t2f1F_{1}=-t^{2}f_{1}, F2=f1+f2F_{2}=f_{1}+f_{2}
(2,2)11(2,2)21(2,2)_{11}\rightarrow(2,2)_{21} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}
(2,2)11(2,2)29(2,2)_{11}\rightarrow(2,2)_{29} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)11(2,2)44(2,2)_{11}\rightarrow(2,2)_{44} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=12tf1+tf2F_{1}=\frac{1}{2}tf_{1}+tf_{2}, F2=f1+f2F_{2}=f_{1}+f_{2}
(2,2)12(2,2)19(2,2)_{12}\rightarrow(2,2)_{19} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=tf1F_{1}=tf_{1}, F2=f1+f2F_{2}=f_{1}+f_{2}
(2,2)12(2,2)22(2,2)_{12}\rightarrow(2,2)_{22} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}
(2,2)12(2,2)34(2,2)_{12}\rightarrow(2,2)_{34} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}
(2,2)13(2,2)19(2,2)_{13}\rightarrow(2,2)_{19} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=tf1+12tf2F_{1}=tf_{1}+\frac{1}{2}tf_{2}, F2=f1+f2F_{2}=f_{1}+f_{2}
(2,2)13(2,2)29(2,2)_{13}\rightarrow(2,2)_{29} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}
(2,2)13(2,2)39(2,2)_{13}\rightarrow(2,2)_{39} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}
(2,2)14(2,2)22(2,2)_{14}\rightarrow(2,2)_{22} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}
(2,2)14(2,2)44(2,2)_{14}\rightarrow(2,2)_{44} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=tf2F_{1}=tf_{2}, F2=f1+f2F_{2}=f_{1}+f_{2}
(2,2)15(2,2)21(2,2)_{15}\rightarrow(2,2)_{21} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}
(2,2)15(2,2)34(2,2)_{15}\rightarrow(2,2)_{34} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}
(2,2)15(2,2)51N(2,2)_{15}\rightarrow(2,2)^{N}_{51} E1=te1+te2E_{1}=-te_{1}+te_{2}, E2=t2e1+t2e2E_{2}=t^{2}e_{1}+t^{2}e_{2}, F1=t2f1F_{1}=t^{2}f_{1}, F2=f1+f2F_{2}=f_{1}+f_{2}
(2,2)16(2,2)21(2,2)_{16}\rightarrow(2,2)_{21} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}
(2,2)16(2,2)27(2,2)_{16}\rightarrow(2,2)_{27} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=12tf1F_{1}=\frac{1}{2}tf_{1}, F2=f1+f2F_{2}=f_{1}+f_{2}
(2,2)16(2,2)39(2,2)_{16}\rightarrow(2,2)_{39} E1=e1+e2E_{1}=e_{1}+e_{2}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}
(2,2)17(2,2)46N(2,2)_{17}\rightarrow(2,2)^{N}_{46} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=t^{2}e_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)18(2,2)17(2,2)_{18}\rightarrow(2,2)_{17} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)18(2,2)48N(2,2)_{18}\rightarrow(2,2)^{N}_{48} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=t^{2}e_{1}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=-tf_{2}
(2,2)19(2,2)17(2,2)_{19}\rightarrow(2,2)_{17} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)19(2,2)49N(2,2)_{19}\rightarrow(2,2)^{N}_{49} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=t^{2}e_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)20(2,2)18(2,2)_{20}\rightarrow(2,2)_{18} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=tf_{2}
(2,2)20(2,2)19(2,2)_{20}\rightarrow(2,2)_{19} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)20(2,2)50N(2,2)_{20}\rightarrow(2,2)^{N}_{50} E1=t2e1+e2E_{1}=-t^{2}e_{1}+e_{2}, E2=t4e1E_{2}=t^{4}e_{1}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)20(2,2)70(2,2)_{20}\rightarrow(2,2)_{70} E1=te1E_{1}=te_{1}, E2=e2E_{2}=e_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)21(2,2)49N(2,2)_{21}\rightarrow(2,2)^{N}_{49} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=t^{2}e_{1}, F1=f2F_{1}=f_{2}, F2=f1+21tf2F_{2}=f_{1}+2\frac{1}{t}f_{2}
(2,2)22(2,2)49N(2,2)_{22}\rightarrow(2,2)^{N}_{49} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=t^{2}e_{1}, F1=tf2F_{1}=tf_{2}, F2=f1+f2F_{2}=f_{1}+f_{2}
(2,2)23(2,2)46N(2,2)_{23}\rightarrow(2,2)^{N}_{46} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=t^{2}e_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)24(2,2)23(2,2)_{24}\rightarrow(2,2)_{23} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)24(2,2)48N(2,2)_{24}\rightarrow(2,2)^{N}_{48} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=t^{2}e_{1}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)25(2,2)23(2,2)_{25}\rightarrow(2,2)_{23} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)25(2,2)48N(2,2)_{25}\rightarrow(2,2)^{N}_{48} E1=t2e1+e2E_{1}=-t^{2}e_{1}+e_{2}, E2=t4e1E_{2}=t^{4}e_{1}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)26(2,2)24(2,2)_{26}\rightarrow(2,2)_{24} E1=e1E_{1}=e_{1}, E2=1te2E_{2}=\frac{1}{t}e_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)26(2,2)25(2,2)_{26}\rightarrow(2,2)_{25} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)26(2,2)47N(2,2)_{26}\rightarrow(2,2)^{N}_{47} E1=t(e1+e2)E_{1}=t(e_{1}+e_{2}), E2=t2e1E_{2}=t^{2}e_{1}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)27(2,2)23(2,2)_{27}\rightarrow(2,2)_{23} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)27(2,2)49N(2,2)_{27}\rightarrow(2,2)^{N}_{49} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=t^{2}e_{1}, F1=tf2F_{1}=-tf_{2}, F2=1tf1+f2F_{2}=\frac{1}{t}f_{1}+f_{2}
(2,2)28(2,2)25(2,2)_{28}\rightarrow(2,2)_{25} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=tf_{2}
(2,2)28(2,2)27(2,2)_{28}\rightarrow(2,2)_{27} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)28(2,2)50N(2,2)_{28}\rightarrow(2,2)^{N}_{50} E1=t2e1+e2E_{1}=-t^{2}e_{1}+e_{2}, E2=t4e1E_{2}=t^{4}e_{1}, F1=tf1F_{1}=-tf_{1}, F2=tf2F_{2}=-tf_{2}
(2,2)28(2,2)70(2,2)_{28}\rightarrow(2,2)_{70} E1=te1E_{1}=te_{1}, E2=e2E_{2}=e_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)29(2,2)49N(2,2)_{29}\rightarrow(2,2)^{N}_{49} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=t^{2}e_{1}, F1=12tf1+t2f2F_{1}=\frac{1}{2}tf_{1}+t^{2}f_{2}, F2=f1+tf2F_{2}=f_{1}+tf_{2}
(2,2)30(2,2)46N(2,2)_{30}\rightarrow(2,2)^{N}_{46} E1=te1+te2E_{1}=te_{1}+te_{2}, E2=t2e1E_{2}=t^{2}e_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)31(2,2)30(2,2)_{31}\rightarrow(2,2)_{30} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)31(2,2)48N(2,2)_{31}\rightarrow(2,2)^{N}_{48} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=t^{2}e_{1}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)32(2,2)46N(2,2)_{32}\rightarrow(2,2)^{N}_{46} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=-t^{2}e_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)33(2,2)49N(2,2)_{33}\rightarrow(2,2)^{N}_{49} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=-t^{2}e_{1}, F1=f2F_{1}=f_{2}, F2=f1+21tf2F_{2}=f_{1}+2\frac{1}{t}f_{2}
(2,2)34(2,2)49N(2,2)_{34}\rightarrow(2,2)^{N}_{49} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=-t^{2}e_{1}, F1=f2F_{1}=f_{2}, F2=f1+1tf2F_{2}=f_{1}+\frac{1}{t}f_{2}
(2,2)35(2,2)46N(2,2)_{35}\rightarrow(2,2)^{N}_{46} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=-t^{2}e_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)36(2,2)35(2,2)_{36}\rightarrow(2,2)_{35} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)36(2,2)48N(2,2)_{36}\rightarrow(2,2)^{N}_{48} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1+2te2E_{2}=t^{2}e_{1}+2te_{2}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)37(2,2)35(2,2)_{37}\rightarrow(2,2)_{35} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)37(2,2)49N(2,2)_{37}\rightarrow(2,2)^{N}_{49} E1=t(e1+e2)E_{1}=t(e_{1}+e_{2}), E2=t2e1E_{2}=-t^{2}e_{1}, F1=tf1+12tf2F_{1}=tf_{1}+\frac{1}{2}tf_{2}, F2=f2F_{2}=f_{2}
(2,2)38(2,2)36(2,2)_{38}\rightarrow(2,2)_{36} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=tf_{2}
(2,2)38(2,2)37(2,2)_{38}\rightarrow(2,2)_{37} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)38(2,2)50N(2,2)_{38}\rightarrow(2,2)^{N}_{50} E1=t2e1+e2E_{1}=t^{2}e_{1}+e_{2}, E2=t4e1+2t2e2E_{2}=t^{4}e_{1}+2t^{2}e_{2}, F1=tf1F_{1}=tf_{1}, F2=t f2F_{2}=t f_{2}
(2,2)38(2,2)70(2,2)_{38}\rightarrow(2,2)_{70} E1=te1E_{1}=te_{1}, E2=e2E_{2}=e_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)39(2,2)49N(2,2)_{39}\rightarrow(2,2)^{N}_{49} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=-t^{2}e_{1}, F1=f1F_{1}=f_{1}, F2=21tf1+f2F_{2}=-2\frac{1}{t}f_{1}+f_{2}
(2,2)40(2,2)46N(2,2)_{40}\rightarrow(2,2)^{N}_{46} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1E_{2}=-t^{2}e_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)41(2,2)40(2,2)_{41}\rightarrow(2,2)_{40} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)41(2,2)48N(2,2)_{41}\rightarrow(2,2)^{N}_{48} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1+2te2E_{2}=t^{2}e_{1}+2te_{2}, F1=f2F_{1}=f_{2}, F2=t2f1F_{2}=t^{2}f_{1}
(2,2)42(2,2)40(2,2)_{42}\rightarrow(2,2)_{40} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)42(2,2)48N(2,2)_{42}\rightarrow(2,2)^{N}_{48} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t2e1+2te2E_{2}=t^{2}e_{1}+2te_{2}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=tf_{2}
(2,2)43(2,2)41(2,2)_{43}\rightarrow(2,2)_{41} E1=e1E_{1}=e_{1}, E2=1te2E_{2}=\frac{1}{t}e_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)43(2,2)42(2,2)_{43}\rightarrow(2,2)_{42} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)43(2,2)47N(2,2)_{43}\rightarrow(2,2)^{N}_{47} E1=t(e1+e2)E_{1}=t(e_{1}+e_{2}), E2=t2e1E_{2}=-t^{2}e_{1}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)44(2,2)40(2,2)_{44}\rightarrow(2,2)_{40} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)44(2,2)49N(2,2)_{44}\rightarrow(2,2)^{N}_{49} E1=t(e1+e2)E_{1}=t(e_{1}+e_{2}), E2=t2e1E_{2}=-t^{2}e_{1}, F1=f1F_{1}=f_{1}, F2=1tf2F_{2}=\frac{1}{t}f_{2}
(2,2)45(2,2)42(2,2)_{45}\rightarrow(2,2)_{42} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=tf_{2}
(2,2)45(2,2)44(2,2)_{45}\rightarrow(2,2)_{44} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)45(2,2)50N(2,2)_{45}\rightarrow(2,2)^{N}_{50} E1=t2e1+te2E_{1}=t^{2}e_{1}+te_{2}, E2=t4e1+2t2e2E_{2}=t^{4}e_{1}+2t^{2}e_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)45(2,2)70(2,2)_{45}\rightarrow(2,2)_{70} E1=te1E_{1}=te_{1}, E2=e2E_{2}=e_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)47N(2,2)48N(2,2)^{N}_{47}\rightarrow(2,2)^{N}_{48} E1=te1+e2E_{1}=te_{1}+e_{2}, E2=t3e1E_{2}=-t^{3}e_{1}, F1=tf1F_{1}=tf_{1}, F2=t2f2F_{2}=-t^{2}f_{2}
(2,2)48N(2,2)46N(2,2)^{N}_{48}\rightarrow(2,2)^{N}_{46} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)48N(2,2)71N(2,2)^{N}_{48}\rightarrow(2,2)^{N}_{71} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)49N(2,2)46N(2,2)^{N}_{49}\rightarrow(2,2)^{N}_{46} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=tf_{2}
(2,2)49N(2,2)68N(2,2)^{N}_{49}\rightarrow(2,2)^{N}_{68} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)50N(2,2)48N(2,2)^{N}_{50}\rightarrow(2,2)^{N}_{48} E1=te1E_{1}=te_{1}, E2=t2e2E_{2}=t^{2}e_{2}, F1=f1F_{1}=f_{1}, F2=t2f2F_{2}=t^{2}f_{2}
(2,2)50N(2,2)49N(2,2)^{N}_{50}\rightarrow(2,2)^{N}_{49} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)50N(2,2)69N(2,2)^{N}_{50}\rightarrow(2,2)^{N}_{69} E1=te2E_{1}=te_{2}, E2=te1E_{2}=te_{1}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)51N(2,2)49N(2,2)^{N}_{51}\rightarrow(2,2)^{N}_{49} E1=t(e1+e2)E_{1}=t(e_{1}+e_{2}), E2=t2e2E_{2}=t^{2}e_{2}, F1=f1F_{1}=f_{1}, F2=1tf2F_{2}=\frac{1}{t}f_{2}
(2,2)53(2,2)68N(2,2)_{53}\rightarrow(2,2)^{N}_{68} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=12tf2F_{1}=\frac{1}{2}tf_{2}, F2=f1+f2F_{2}=f_{1}+f_{2}
(2,2)54(2,2)53(2,2)_{54}\rightarrow(2,2)_{53} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=f2F_{2}=f_{2}
(2,2)54(2,2)69N(2,2)_{54}\rightarrow(2,2)^{N}_{69} E1=t2e2E_{1}=\frac{t}{2}e_{2}, E2=te1E_{2}=te_{1}, F1=t2f2F_{1}=\frac{t}{2}f_{2}, F2=f2f1F_{2}=f_{2}-f_{1}
(2,2)55(2,2)53(2,2)_{55}\rightarrow(2,2)_{53} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)56(2,2)54(2,2)_{56}\rightarrow(2,2)_{54} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=tf_{2}
(2,2)56(2,2)55(2,2)_{56}\rightarrow(2,2)_{55} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)56(2,2)70(2,2)_{56}\rightarrow(2,2)_{70} E1=te1E_{1}=te_{1}, E2=e2E_{2}=e_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)57(2,2)68N(2,2)_{57}\rightarrow(2,2)^{N}_{68} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=tf2F_{1}=tf_{2}, F2=f1+f2F_{2}=f_{1}+f_{2}
(2,2)58(2,2)53(2,2)_{58}\rightarrow(2,2)_{53} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}
(2,2)59(2,2)54(2,2)_{59}\rightarrow(2,2)_{54} E1=e1E_{1}=e_{1}, E2=t2e2E_{2}=t^{2}e_{2}, F1=tf2F_{1}=tf_{2}, F2=tf1F_{2}=tf_{1}
(2,2)59(2,2)58(2,2)_{59}\rightarrow(2,2)_{58} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)59(2,2)70(2,2)_{59}\rightarrow(2,2)_{70} E1=te1E_{1}=te_{1}, E2=e2E_{2}=e_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)61(2,2)68N(2,2)_{61}\rightarrow(2,2)^{N}_{68} E1=e2E_{1}=e_{2}, E2=te1E_{2}=te_{1}, F1=12tf1+tf2F_{1}=\frac{1}{2}tf_{1}+tf_{2}, F2=f1+f2F_{2}=f_{1}+f_{2}
(2,2)62(2,2)61(2,2)_{62}\rightarrow(2,2)_{61} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=tf_{2}
(2,2)62(2,2)69N(2,2)_{62}\rightarrow(2,2)^{N}_{69} E1=2te2E_{1}=-2te_{2}, E2=te1E_{2}=te_{1}, F1=tf2F_{1}=tf_{2}, F2=2(f1+f2)F_{2}=2(f_{1}+f_{2})
(2,2)63(2,2)61(2,2)_{63}\rightarrow(2,2)_{61} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)64(2,2)62(2,2)_{64}\rightarrow(2,2)_{62} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=tf_{2}
(2,2)64(2,2)63(2,2)_{64}\rightarrow(2,2)_{63} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)64(2,2)70(2,2)_{64}\rightarrow(2,2)_{70} E1=te1E_{1}=te_{1}, E2=e2E_{2}=e_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)65(2,2)61(2,2)_{65}\rightarrow(2,2)_{61} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f2F_{1}=f_{2}, F2=f1F_{2}=f_{1}
(2,2)66(2,2)62(2,2)_{66}\rightarrow(2,2)_{62} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=tf2F_{2}=tf_{2}
(2,2)66(2,2)65(2,2)_{66}\rightarrow(2,2)_{65} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)66(2,2)70(2,2)_{66}\rightarrow(2,2)_{70} E1=te1E_{1}=te_{1}, E2=e2E_{2}=e_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)69N(2,2)68N(2,2)^{N}_{69}\rightarrow(2,2)^{N}_{68} E1=e1E_{1}=e_{1}, E2=e2E_{2}=e_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)69N(2,2)71N(2,2)^{N}_{69}\rightarrow(2,2)^{N}_{71} E1=e1E_{1}=e_{1}, E2=te2E_{2}=te_{2}, F1=f1F_{1}=f_{1}, F2=f2F_{2}=f_{2}
(2,2)70(2,2)69N(2,2)_{70}\rightarrow(2,2)^{N}_{69} E1=t2e2E_{1}=t^{2}e_{2}, E2=e1+e2E_{2}=e_{1}+e_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}
(2,2)i(2,2)72N(2,2)_{i}\rightarrow(2,2)^{N}_{72} E1=te1E_{1}=te_{1}, E2=te2E_{2}=te_{2}, F1=tf1F_{1}=tf_{1}, F2=tf2F_{2}=tf_{2}

Lemma 4.2.

The infinite union γ𝔽DγG\bigcup_{\gamma\in\mathbb{F}^{*}}D_{\gamma}^{G} is not contained in the Zariski closure of the orbits of any superalgebra in 𝒥𝒮(2,2)\mathcal{JS}^{(2,2)}.

Proof.

Suppose, for the sake of contradiction, that γ𝔽DγG(2,2)jG¯\bigcup_{\gamma\in\mathbb{F}^{*}}D_{\gamma}^{G}\subseteq\overline{(2,2)_{j}^{G}} for some 1j721\leq j\leq 72. Hence, DγG(2,2)jG¯D_{\gamma}^{G}\subseteq\overline{(2,2)_{j}^{G}} for all γ𝔽\gamma\in\mathbb{F}^{*}, which means (2,2)jDγ(2,2)_{j}\to D_{\gamma}. Since dimAut(Dγ)=3\dim\operatorname{Aut}(D_{\gamma})=3, it follows from Lemma 2.3(i) that j{816,20,28,38,45,56,59,64,66}j\in\{8-16,20,28,38,45,56,59,64,66\}. Now, since (Dγ)0=𝔽e1𝔽e2(D_{\gamma})_{0}=\mathbb{F}e_{1}\oplus\mathbb{F}e_{2}, which is a semisimple Jordan algebra of dimension 22 and thus rigid, it follows from Lemma 2.3(iii) that j{8,,16}j\in\{8,\dots,16\}. However, ((2,2)j)12=0((2,2)_{j})_{1}^{2}=0 for all j{8,,16}j\in\{8,\dots,16\}, while dim(Dγ)12=1\dim(D_{\gamma})_{1}^{2}=1, which contradicts Lemma 2.3(ii). ∎

Corollary 4.3.

γ𝔽DγG¯\overline{\bigcup_{\gamma\in\mathbb{F}^{*}}D_{\gamma}^{G}} determines a component of the variety 𝒥𝒮(2,2)\mathcal{JS}^{(2,2)}.

Proof.

It follows from Lemma 4.2 that it is sufficient to show that all superalgebras in γ𝔽DγG¯\overline{\bigcup_{\gamma\in\mathbb{F}^{*}}D_{\gamma}^{G}} belong to the same component. Indeed, γ𝔽DγG¯\overline{\bigcup_{\gamma\in\mathbb{F}^{*}}D_{\gamma}^{G}} is the product of two irreducible varieties, DγGD_{\gamma}^{G} and 𝔽\mathbb{F}, and is therefore irreducible. ∎

Lemma 4.4.

Superalgebras (2,2)j(2,2)_{j} for j{1,3,5,816,20,28,38,45,52,56,57,59,60,64,66,67}j\in\{1,3,5,8-16,20,28,38,45,52,56,57,59,60,64,66,67\} are rigid.

Proof.

Examples 3.2, 3.3, and 3.6 show that the superalgebras (2,2)3(2,2)_{3}, (2,2)5(2,2)_{5} and (2,2)1(2,2)_{1} are rigid. Analogous calculations show that (2,2)52(2,2)_{52}, (2,2)60(2,2)_{60}, and (2,2)67(2,2)_{67} are also rigid.

Consider the superalgebras (2,2)j(2,2)_{j} where j{8,,16,20,28,38,45,56,59,64,66}j\in\{8,\dots,16,20,28,38,45,56,59,64,66\}. All of them have automorphism group dimension equal to 22, and thus dim(2,2)jG=dimγ𝔽DγG¯\dim(2,2)_{j}^{G}=\dim\overline{\bigcup_{\gamma\in\mathbb{F}^{*}}D_{\gamma}^{G}}. Suppose that (2,2)j(2,2)_{j} belongs to the component γ𝔽DγG¯=𝒞\overline{\bigcup_{\gamma\in\mathbb{F}^{*}}D_{\gamma}^{G}}=\mathcal{C}. Then we must have (2,2)jG¯=𝒞\overline{(2,2)_{j}^{G}}=\mathcal{C}, meaning (2,2)jG(2,2)_{j}^{G} is a dense subset of 𝒞\mathcal{C}, and γ𝔽DγG\bigcup_{\gamma\in\mathbb{F}^{*}}D_{\gamma}^{G} is open in 𝒞\mathcal{C}. Therefore, there exists J(2,2)jGJ\in(2,2)_{j}^{G} such that Jγ𝔽DγGJ\in\bigcup_{\gamma\in\mathbb{F}^{*}}D_{\gamma}^{G}, which implies there exists γ𝔽\gamma\in\mathbb{F}^{*} such that (2,2)jDγ(2,2)_{j}\simeq D_{\gamma}. This is a contradiction. Thus, (2,2)jGγ𝔽DγG¯(2,2)_{j}^{G}\not\subseteq\overline{\bigcup_{\gamma\in\mathbb{F}^{*}}D_{\gamma}^{G}}.

Let us also verify that (2,2)57G(2,2)_{57}^{G} is not contained in the component γ𝔽DγG¯\overline{\bigcup_{\gamma\in\mathbb{F}^{*}}D_{\gamma}^{G}}. Suppose it is; then, by Lemma 2.2, there exists a curve g(t)γ𝔽DγGg(t)\subset\bigcup_{\gamma\in\mathbb{F}^{*}}D_{\gamma}^{G} given by

E1t=a11(t)e1+a21(t)e2,E2t=a12(t)e1+a22(t)e2,E_{1}^{t}=a_{11}(t)e_{1}+a_{21}(t)e_{2},\quad E_{2}^{t}=a_{12}(t)e_{1}+a_{22}(t)e_{2},\\
F1t=a33(t)f1+a43(t)f2,F2t=a34(t)f1+a44(t)f2,F_{1}^{t}=a_{33}(t)f_{1}+a_{43}(t)f_{2},\quad F_{2}^{t}=a_{34}(t)f_{1}+a_{44}(t)f_{2},

such that for some t0𝔽t_{0}\in\mathbb{F}, we have g(t0)=(2,2)57g(t_{0})=(2,2)_{57}.

Observe that in (2,2)57(2,2)_{57}, we have e1f1=f1e_{1}f_{1}=f_{1} and e1f2=0e_{1}f_{2}=0. For g(t)g(t), we have

EitFjt=12(a1i(t)+a2i(t))Fjt,for i,j=1,2.E_{i}^{t}F_{j}^{t}=\frac{1}{2}(a_{1i}(t)+a_{2i}(t))F_{j}^{t},\quad\text{for }i,j=1,2.

This shows that for every t𝔽t\in\mathbb{F}, E1tF1tE_{1}^{t}F_{1}^{t} and E1tF2tE_{1}^{t}F_{2}^{t} are scalar multiples of F1tF_{1}^{t} and F2tF_{2}^{t}, respectively, with the same scalar for both products. Thus, there does not exist t0𝔽t_{0}\in\mathbb{F} such that g(t0)=(2,2)57g(t_{0})=(2,2)_{57}.

On the other hand, as a consequence of the information given in Table LABEL:table:JSA_(2,2), the lowest dimension of an automorphism group is 22 then it follows from Lemma 2.3(i) that all deformations of the superalgebras (2,2)j(2,2)_{j}, for j{8,,16,20,28,38,45,56,59,64,66}j\in\{8,\dots,16,20,28,38,45,56,59,64,66\} are trivial. Hence, they are rigid superalgebras. Finally, consider the superalgebra (2,2)57(2,2)_{57}. According to Table LABEL:table:non_deformations_(2,2), (2,2)j↛(2,2)57(2,2)_{j}\not\to(2,2)_{57} for j{1,,51}{68,,72}j\in\{1,\dots,51\}\cup\{68,\dots,72\} by Lemma 2.3(iii), also (2,2)j↛(2,2)57(2,2)_{j}\not\to(2,2)_{57} for j{54,56,58,59,62,64,66}j\in\{54,56,58,59,62,64,66\} by Lemma 2.3(v), (2,2)j↛(2,2)57(2,2)_{j}\not\to(2,2)_{57}  for j{55,63,65}j\in\{55,63,65\} by Remark 2.4 and the information given in [14]. Finally, (2,2)j↛(2,2)57(2,2)_{j}\not\to(2,2)_{57} for j{52,53,60,61,67}j\in\{52,53,60,61,67\} by Lemma 2.3(i) proving that (2,2)57(2,2)_{57} is a rigid Jordan superalgebra. ∎

To determine the associated Hasse diagram and describe the irreducible components of the variety 𝒥𝒮(2,2)\mathcal{JS}^{(2,2)}, we present Table LABEL:table:non_deformations_(2,2), which confirms the non-existence of deformations (2,2)i↛(2,2)j(2,2)_{i}\not\rightarrow(2,2)_{j}. For brevity, we denote this by i↛ji\not\rightarrow j.

Table 4. Non-deformations for Jordan Superalgebras of type (2,2)(2,2)
𝒥↛𝒥\mathcal{J}\not\rightarrow\mathcal{J}^{\prime} Reason
i↛ji\not\rightarrow j, i{1,,16}i\in\{1,\cdots,16\} and j{52,,67}j\in\{52,\cdots,67\};
i↛ji\not\rightarrow j, for i{17,,31}i\in\{17,\cdots,31\} and j{1,,16,32,,45,52,,67}j\in\{1,\cdots,16,32,\cdots,45,52,\cdots,67\};
i↛ji\not\rightarrow j, for i{32,,45}i\in\{32,\cdots,45\} and j{1,,31,52,,67}j\in\{1,\cdots,31,52,\cdots,67\}; 𝒥0↛𝒥0\mathcal{J}_{0}\not\rightarrow\mathcal{J}_{0}^{\prime}
i↛ji\not\rightarrow j, for i{46,,51}i\in\{46,\cdots,51\} and j{1,,45,52,,67}j\in\{1,\cdots,45,52,\cdots,67\};
i↛ji\not\rightarrow j, for i{52,,67}i\in\{52,\cdots,67\} and j{1,,51}j\in\{1,\cdots,51\};
i↛ji\not\rightarrow j, for i{68,,72}i\in\{68,\cdots,72\} and j{1,,67}j\in\{1,\cdots,67\}.
i↛ji\not\rightarrow j, for i{8,,16}i\in\{8,\cdots,16\} and
j{3,5,7,18,24,25,26,31,36,41,42,43,47,48,50,69,70,71}j\in\{3,5,7,18,24,25,26,31,36,41,42,43,47,48,50,69,70,71\};
i↛ji\not\rightarrow j, for i{19,21,22,27,29}i\in\{19,21,22,27,29\} and j{18,24,25,31,47,48,69,71}j\in\{18,24,25,31,47,48,69,71\};
i↛ji\not\rightarrow j, for i{33,34,37,39,44}i\in\{33,34,37,39,44\} and j{36,41,42,47,48,69,71}j\in\{36,41,42,47,48,69,71\}; ab(𝒥)↛ab(𝒥)\operatorname{ab}(\mathcal{J})\not\rightarrow\operatorname{ab}(\mathcal{J}^{\prime})
51↛j51\not\rightarrow j, for j{47,48,69,71}j\in\{47,48,69,71\};
i↛ji\not\rightarrow j, for i{55,58,63,65}i\in\{55,58,63,65\} and j{69,71}j\in\{69,71\};
i↛ji\not\rightarrow j, for i{1,2,4,6,49}i\in\{1,2,4,6,49\} and j{48,71}j\in\{48,71\};
i↛71i\not\rightarrow 71, for i{17,23,30,32,35,40,53,57,61,68}i\in\{17,23,30,32,35,40,53,57,61,68\}.
2↛{30,32,40}2\not\rightarrow\{30,32,40\};   4↛32\;\;4\not\rightarrow 32; 6↛{17,30,32,40}6\not\rightarrow\{17,30,32,40\};
8↛{1,2,4,6,22,23,27,30,32,34,35,37,39,40,44}8\not\rightarrow\{1,2,4,6,22,23,27,30,32,34,35,37,39,40,44\};
9↛{1,2,4,6,17,19,22,23,27,29,30,32,33,34,39,40,44,51}9\not\rightarrow\{1,2,4,6,17,19,22,23,27,29,30,32,33,34,39,40,44,51\};
10↛{1,2,4,6,17,19,23,27,29,30,33,34,35,37,40,44}10\not\rightarrow\{1,2,4,6,17,19,23,27,29,30,33,34,35,37,40,44\};
11↛{1,2,4,6,17,19,22,23,27,30,32,34,35,37,39}11\not\rightarrow\{1,2,4,6,17,19,22,23,27,30,32,34,35,37,39\};   12↛{1,4,40,44}\;\;12\not\rightarrow\{1,4,40,44\};
13↛{1,2,4,6,21,22,23,27,30,32,34,35,37,40,44}13\not\rightarrow\{1,2,4,6,21,22,23,27,30,32,34,35,37,40,44\}; 𝒥↛𝒥\mathcal{J}\not\rightarrow\mathcal{J}^{\prime}
14↛{1,4,17,19,30,34}14\not\rightarrow\{1,4,17,19,30,34\}; as algebras
15↛{1,2,4,6,17,19,22,23,27,29,32,33,35,37,39,40,44}15\not\rightarrow\{1,2,4,6,17,19,22,23,27,29,32,33,35,37,39,40,44\};
16↛{1,2,4,6,17,19,22,29,30,32,33,34,35,37,40,44,51}16\not\rightarrow\{1,2,4,6,17,19,22,29,30,32,33,34,35,37,40,44,51\};
21,29↛{17,23,30}21,29\not\rightarrow\{17,23,30\};   22,27↛{17,30}\;\;22,27\not\rightarrow\{17,30\};   33,39↛{32,35,40}\;\;33,39\not\rightarrow\{32,35,40\};
34,37↛{32,40}34,37\not\rightarrow\{32,40\};   44↛32\;\;44\not\rightarrow 32;   55↛{52,57,60,61,67}\;\;55\not\rightarrow\{52,57,60,61,67\};
i↛{52,60,67}i\not\rightarrow\{52,60,67\}, for i{53,57,58,61}i\in\{53,57,58,61\};   63,65↛{52,53,57,60,67}\;\;63,65\not\rightarrow\{52,53,57,60,67\}.
3↛{1,4,6,30,31,32,40,41,42,49,68,69}3\not\rightarrow\{1,4,6,30,31,32,40,41,42,49,68,69\};
5↛{1,2,6,23,24,25,32,35,36,49,68,69}5\not\rightarrow\{1,2,6,23,24,25,32,35,36,49,68,69\};
7↛{1,2,4,17,18,30,31,32,35,36,49,68,69}7\not\rightarrow\{1,2,4,17,18,30,31,32,35,36,49,68,69\};
20↛{21,,27,29,30,31,51}20\not\rightarrow\{21,\cdots,27,29,30,31,51\};   24,25↛{17,30}\;\;24,25\not\rightarrow\{17,30\};
26↛{17,18,30,31,49,68,69}26\not\rightarrow\{17,18,30,31,49,68,69\};   28↛{17,18,19,21,22,29,30,31,51}\;\;28\not\rightarrow\{17,18,19,21,22,29,30,31,51\}; (𝒥)↛(𝒥)\mathcal{F}(\mathcal{J})\not\rightarrow\mathcal{F}(\mathcal{J}^{\prime})
31↛{17,23}31\not\rightarrow\{17,23\};   36↛{32,40}\;\;36\not\rightarrow\{32,40\};   38↛{32,33,34,39,40,41,42,43,44,51}\;\;38\not\rightarrow\{32,33,34,39,40,41,42,43,44,51\};
41↛{32,35,68}41\not\rightarrow\{32,35,68\};   42↛{68}\;\;42\not\rightarrow\{68\};   43↛{32,35,36,49,68,69}\;\;43\not\rightarrow\{32,35,36,49,68,69\};
45↛{33,,37,39,51}45\not\rightarrow\{33,\cdots,37,39,51\};   47↛{33}\;\;47\not\rightarrow\{33\};   54↛{52,57,60,61,67}\;\;54\not\rightarrow\{52,57,60,61,67\};
56↛{52,57,58,60,61,62,63,65,67}56\not\rightarrow\{52,57,58,60,61,62,63,65,67\};  58↛{57}\;58\not\rightarrow\{57\};
59↛{52,55,57,58,60,61,62,63,65,67}59\not\rightarrow\{52,55,57,58,60,61,62,63,65,67\};   62↛{52,53,57,60,67}\;\;62\not\rightarrow\{52,53,57,60,67\};
64↛{52,,55,57,58,60,65,67}64\not\rightarrow\{52,\cdots,55,57,58,60,65,67\};   66↛{52,,55,57,58,60,63,67}\;\;66\not\rightarrow\{52,\cdots,55,57,58,60,63,67\}.
50↛4750\not\rightarrow 47. dim(𝒥2)0<dim((𝒥)2)0\dim(\mathcal{J}^{2})_{0}<\dim((\mathcal{J}^{\prime})^{2})_{0}
1↛{30,40,68}1\not\rightarrow\{30,40,68\};    8↛298\not\rightarrow 29;   18↛{30,68}\;\;18\not\rightarrow\{30,68\};
i↛30i\not\rightarrow 30 for i{12,19,15}i\in\{12,19,15\} ;   47↛68\;\;47\not\rightarrow 68   58↛61\;\;58\not\rightarrow 61. dim(𝒥2)1<dim((𝒥)2)1\dim(\mathcal{J}^{2})_{1}<\dim((\mathcal{J}^{\prime})^{2})_{1}
i↛68i\not\rightarrow 68, for i{2,4,6,24,25,31,36}i\in\{2,4,6,24,25,31,36\};
Dγ↛iD_{\gamma}\not\to i, for i{8,,16,19,,22,27,28,29,33,34,37,38,39,44,i\in\{8,\cdots,16,19,\cdots,22,27,28,29,33,34,37,38,39,44, “general basis”
45,49,50,51,53,,59,61,,66,68,69,70}45,49,50,51,53,\cdots,59,61,\cdots,66,68,69,70\}

Notice that the superalgebras (2,2)i(2,2)_{i} are not deformations of (2,2)68(2,2)_{68}, for i{2,4,6,24,25,31,36}i\in\{2,4,6,24,25,31,36\} according to a criterion we call the “general basis”. In fact, suppose that (2,2)i(2,2)68(2,2)_{i}\to(2,2)_{68}, for i{2,4,6,24,25,31,36}i\in\{2,4,6,24,25,31,36\}. Then, for each ii there exists a parameterized basis, namely:

E1t\displaystyle E_{1}^{t} =a11(t)e1+a21(t)e2,\displaystyle=a_{11}(t)e_{1}+a_{21}(t)e_{2}, E2t\displaystyle E_{2}^{t} =a12(t)e1+a22(t)e2,\displaystyle=a_{12}(t)e_{1}+a_{22}(t)e_{2},
F1t\displaystyle F_{1}^{t} =a33(t)f1+a43(t)f2,\displaystyle=a_{33}(t)f_{1}+a_{43}(t)f_{2}, F2t\displaystyle F_{2}^{t} =a34(t)f1+a44(t)f2,\displaystyle=a_{34}(t)f_{1}+a_{44}(t)f_{2},

such that for t=0t=0 we obtain 6868. Observe that in 6868 we have e2f2=f1e_{2}f_{2}=f_{1} and

E2tF2t\displaystyle E_{2}^{t}F_{2}^{t} =12a12(t)F2t, for i=2,24,25,36.\displaystyle=\frac{1}{2}a_{12}(t)F_{2}^{t},\,\text{ for }\,i=2,24,25,36.
E2tF2t\displaystyle E_{2}^{t}F_{2}^{t} =a12(t)F2t, for i=4,31.\displaystyle=a_{12}(t)F_{2}^{t},\,\text{ for }\,i=4,31.
E2tF2t\displaystyle E_{2}^{t}F_{2}^{t} =12(a12(t)+a22(t))F2t, for i=6.\displaystyle=\frac{1}{2}(a_{12}(t)+a_{22}(t))F_{2}^{t},\,\text{ for }\,i=6.

This shows that in all cases, E2tF2tE_{2}^{t}F_{2}^{t} is a multiple of F2tF_{2}^{t}, and by the linear independence of the basis, it follows that E2tF2tF1tE_{2}^{t}F_{2}^{t}\neq F_{1}^{t} for all t𝔽t\in\mathbb{F}, which implies that (2,2)i↛(2,2)68(2,2)_{i}\not\to(2,2)_{68}.

According to the above information, we deduce the principal result of this work.

Theorem 4.5.

The variety 𝒥𝒮(2,2)\mathcal{JS}^{(2,2)} has 2525 irreducible components, one of them is given by γDγG¯\overline{\bigcup_{\gamma}D^{G}_{\gamma}}, the others are given by the Zariski closure of orbits of rigid superalgebras and they are the following:

γDγG¯\overline{\bigcup_{\gamma}D^{G}_{\gamma}} == {Dγ,(2,2)2,(2,2)4,(2,2)6,(2,2)7,(2,2)17,(2,2)18,(2,2)23,(2,2)24,(2,2)25,\{D_{\gamma},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{2},(2,2)_{4}},(2,2)_{6},(2,2)_{7},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{17},(2,2)_{18}},(2,2)_{23},(2,2)_{24},(2,2)_{25},
(2,2)26,(2,2)30,(2,2)31,(2,2)32,(2,2)35,(2,2)36,(2,2)40,(2,2)41,(2,2)42,(2,2)_{26},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{30},(2,2)_{31},(2,2)_{32},(2,2)_{35},(2,2)_{36}},(2,2)_{40},(2,2)_{41},(2,2)_{42},
(2,2)43,(2,2)46N,(2,2)47N,(2,2)48N,(2,2)71N,(2,2)72N}(2,2)_{43},(2,2)^{N}_{46},(2,2)^{N}_{47},(2,2)^{N}_{48},(2,2)^{N}_{71},(2,2)^{N}_{72}\}.
(2,2)1G¯\overline{(2,2)^{G}_{1}} == {(2,2)1,(2,2)17,(2,2)32,(2,2)46N,(2,2)72N}\{(2,2)_{1},(2,2)_{17},(2,2)_{32},(2,2)^{N}_{46},(2,2)^{N}_{72}\}.
(2,2)3G¯\overline{(2,2)^{G}_{3}} == {(2,2)2,(2,2)3,(2,2)17,(2,2)18,(2,2)23,(2,2)24,(2,2)25,(2,2)35,(2,2)36,\{(2,2)_{2},(2,2)_{3},(2,2)_{17},(2,2)_{18},(2,2)_{23},(2,2)_{24},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{25}},(2,2)_{35},(2,2)_{36},
(2,2)46N,(2,2)47N,(2,2)48N,(2,2)71N,(2,2)72N}(2,2)^{N}_{46},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)^{N}_{47}},(2,2)^{N}_{48},(2,2)^{N}_{71},(2,2)^{N}_{72}\}.
(2,2)5G¯\overline{(2,2)^{G}_{5}} == {(2,2)4,(2,2)5,(2,2)17,(2,2)18,(2,2)30,(2,2)31,(2,2)40,(2,2)41,(2,2)42\{(2,2)_{4},(2,2)_{5},(2,2)_{17},(2,2)_{18},(2,2)_{30},(2,2)_{31},(2,2)_{40},(2,2)_{41},(2,2)_{42},
(2,2)46N,(2,2)47N,(2,2)48N,(2,2)71N,(2,2)72N}(2,2)^{N}_{46},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)^{N}_{47}},(2,2)^{N}_{48},(2,2)^{N}_{71},(2,2)^{N}_{72}\}.
(2,2)8G¯\overline{(2,2)^{G}_{8}} == {(2,2)8,(2,2)17,(2,2)19,(2,2)21,(2,2)33,(2,2)46N,(2,2)49N,(2,2)51N,\{(2,2)_{8},(2,2)_{17},(2,2)_{19},(2,2)_{21},(2,2)_{33},(2,2)^{N}_{46},(2,2)^{N}_{49},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)^{N}_{51}},
(2,2)68N,(2,2)72N}(2,2)^{N}_{68},(2,2)^{N}_{72}\}.
(2,2)9G¯\overline{(2,2)^{G}_{9}} == {(2,2)9,(2,2)21,(2,2)35,(2,2)37,(2,2)46N,(2,2)49N,(2,2)68N,(2,2)72N}\{(2,2)_{9},(2,2)_{21},(2,2)_{35},(2,2)_{37},(2,2)^{N}_{46},(2,2)^{N}_{49},(2,2)^{N}_{68},(2,2)^{N}_{72}\}.
(2,2)10G¯\overline{(2,2)^{G}_{10}} == {(2,2)10,(2,2)21,(2,2)22,(2,2)32,(2,2)39,(2,2)46N,(2,2)49N,(2,2)51N,(2,2)68N,\{(2,2)_{10},(2,2)_{21},(2,2)_{22},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{32}},(2,2)_{39},(2,2)^{N}_{46},(2,2)^{N}_{49},(2,2)^{N}_{51},(2,2)^{N}_{68},
(2,2)72N}(2,2)^{N}_{72}\}.
(2,2)11G¯\overline{(2,2)^{G}_{11}} == {(2,2)11,(2,2)21,(2,2)29,(2,2)33,(2,2)40,(2,2)44,(2,2)46N,(2,2)49N,(2,2)51,\{(2,2)_{11},(2,2)_{21},(2,2)_{29},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{33}},(2,2)_{40},(2,2)_{44},(2,2)^{N}_{46},(2,2)^{N}_{49},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{51}},
(2,2)68N,(2,2)72N}(2,2)^{N}_{68},(2,2)^{N}_{72}\}.
(2,2)12G¯\overline{(2,2)^{G}_{12}} == {(2,2)12,(2,2)17,(2,2)19,(2,2)22,(2,2)32,(2,2)34,(2,2)46N,(2,2)49N,\{(2,2)_{12},(2,2)_{17},(2,2)_{19},(2,2)_{22},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{32}},(2,2)_{34},(2,2)^{N}_{46},(2,2)^{N}_{49},
(2,2)68N,(2,2)72N}(2,2)^{N}_{68},(2,2)^{N}_{72}\}.
(2,2)13G¯\overline{(2,2)^{G}_{13}} == {(2,2)13,(2,2)17,(2,2)19,(2,2)29,(2,2)33,(2,2)39,(2,2)46N,(2,2)49N,(2,2)51,\{(2,2)_{13},(2,2)_{17},(2,2)_{19},(2,2)_{29},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{33}},(2,2)_{39},(2,2)^{N}_{46},(2,2)^{N}_{49},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{51}},
(2,2)68N,(2,2)72N}(2,2)^{N}_{68},(2,2)^{N}_{72}\}.
(2,2)14G¯\overline{(2,2)^{G}_{14}} == {(2,2)14,(2,2)22,(2,2)32,(2,2)40,(2,2)44,(2,2)46N,(2,2)49N,(2,2)68N,(2,2)72N}\{(2,2)_{14},(2,2)_{22},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{32}},(2,2)_{40},(2,2)_{44},(2,2)^{N}_{46},(2,2)^{N}_{49},(2,2)^{N}_{68},(2,2)^{N}_{72}\}.
(2,2)15G¯\overline{(2,2)^{G}_{15}} == {(2,2)15,(2,2)21,(2,2)34,(2,2)46N,(2,2)49N,(2,2)51N,(2,2)68N,(2,2)72N}\{(2,2)_{15},(2,2)_{21},(2,2)_{34},(2,2)^{N}_{46},(2,2)^{N}_{49},(2,2)^{N}_{51},(2,2)^{N}_{68},(2,2)^{N}_{72}\}.
(2,2)16G¯\overline{(2,2)^{G}_{16}} == {(2,2)16,(2,2)21,(2,2)23,(2,2)27,(2,2)39,(2,2)46N,(2,2)49N,(2,2)68N,(2,2)72N}\{(2,2)_{16},(2,2)_{21},(2,2)_{23},(2,2)_{27},(2,2)_{39},(2,2)^{N}_{46},(2,2)^{N}_{49},(2,2)^{N}_{68},(2,2)^{N}_{72}\}.
(2,2)20G¯\overline{(2,2)^{G}_{20}} == {(2,2)17,(2,2)18,(2,2)19,(2,2)20,(2,2)46N,(2,2)47N,(2,2)48N,(2,2)49N,(2,2)50N,\{(2,2)_{17},(2,2)_{18},(2,2)_{19},(2,2)_{20},(2,2)^{N}_{46},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)^{N}_{47}},(2,2)^{N}_{48},(2,2)^{N}_{49},(2,2)^{N}_{50},
(2,2)70,(2,2)71N,(2,2)72}(2,2)_{70},(2,2)^{N}_{71},(2,2)_{72}\}.
(2,2)28G¯\overline{(2,2)^{G}_{28}} == {(2,2)23,(2,2)24,(2,2)25,(2,2)26,(2,2)27,(2,2)28,(2,2)46N,(2,2))47N,(2,2)48N,\{(2,2)_{23},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{24}},(2,2)_{25},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{26}},(2,2)_{27},(2,2)_{28},(2,2)^{N}_{46},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2))^{N}_{47}},(2,2)^{N}_{48},
(2,2)49N,(2,2)50N,(2,2)70,(2,2)71N,(2,2)72N}(2,2)^{N}_{49},(2,2)^{N}_{50},(2,2)_{70},(2,2)^{N}_{71},(2,2)^{N}_{72}\}.
(2,2)38G¯\overline{(2,2)^{G}_{38}} == {(2,2)35,(2,2)36,(2,2)37,(2,2)38,(2,2)46N,(2,2)47N,(2,2)48N,(2,2)49N,(2,2)50N\{(2,2)_{35},(2,2)_{36},(2,2)_{37},(2,2)_{38},(2,2)^{N}_{46},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)^{N}_{47}},(2,2)^{N}_{48},(2,2)^{N}_{49},(2,2)^{N}_{50},
(2,2)68N,(2,2)69N,(2,2)70,(2,2)71N,(2,2)72N}(2,2)^{N}_{68},(2,2)^{N}_{69},(2,2)_{70},(2,2)^{N}_{71},(2,2)^{N}_{72}\}.
(2,2)45G¯\overline{(2,2)^{G}_{45}} == {(2,2)32,(2,2)40,(2,2)42,(2,2)41,(2,2)43,(2,2)44,(2,2)45,(2,2)46N,(2,2)47N,\{{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{32}},(2,2)_{40},(2,2)_{42},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{41}},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)_{43}},(2,2)_{44},(2,2)_{45},(2,2)^{N}_{46},{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(2,2)^{N}_{47}},
(2,2)48N,(2,2)50N,(2,2)69N,(2,2)49,(2,2)68N,(2,2)70,(2,2)71N,(2,2)72N}(2,2)^{N}_{48},(2,2)^{N}_{50},(2,2)^{N}_{69},(2,2)_{49},(2,2)^{N}_{68},(2,2)_{70},(2,2)^{N}_{71},(2,2)^{N}_{72}\}.
(2,2)52G¯\overline{(2,2)^{G}_{52}} == {(2,2)52,(2,2)72N}\{(2,2)_{52},(2,2)^{N}_{72}\}.
(2,2)56G¯\overline{(2,2)^{G}_{56}} == {(2,2)53,(2,2)54,(2,2)55,(2,2)56,(2,2)68N,(2,2)69N,(2,2)70,(2,2)71N,(2,2)72N}\{(2,2)_{53},(2,2)_{54},(2,2)_{55},(2,2)_{56},(2,2)^{N}_{68},(2,2)^{N}_{69},(2,2)_{70},(2,2)^{N}_{71},(2,2)^{N}_{72}\}.
(2,2)57G¯\overline{(2,2)^{G}_{57}} == {(2,2)57,(2,2)68N,(2,2)72N}\{(2,2)_{57},(2,2)^{N}_{68},(2,2)^{N}_{72}\}.
(2,2)59G¯\overline{(2,2)^{G}_{59}} == {(2,2)53,(2,2)54,(2,2)58,(2,2)59,(2,2)68N,(2,2)69N,(2,2)70,(2,2)71N,(2,2)72N}\{(2,2)_{53},(2,2)_{54},(2,2)_{58},(2,2)_{59},(2,2)^{N}_{68},(2,2)^{N}_{69},(2,2)_{70},(2,2)^{N}_{71},(2,2)^{N}_{72}\}.
(2,2)60G¯\overline{(2,2)^{G}_{60}} == {(2,2)60,(2,2)72N}\{(2,2)_{60},(2,2)^{N}_{72}\}.
(2,2)64G¯\overline{(2,2)^{G}_{64}} == {(2,2)61,(2,2)62,(2,2)63,(2,2)64,(2,2)68N,(2,2)69N,(2,2)70,(2,2)71N,(2,2)72N}\{(2,2)_{61},(2,2)_{62},(2,2)_{63},(2,2)_{64},(2,2)^{N}_{68},(2,2)^{N}_{69},(2,2)_{70},(2,2)^{N}_{71},(2,2)^{N}_{72}\}.
(2,2)66G¯\overline{(2,2)^{G}_{66}} == {(2,2)61,(2,2)62,(2,2)65,(2,2)66,(2,2)68N,(2,2)69N,(2,2)70,(2,2)71,(2,2)72}\{(2,2)_{61},(2,2)_{62},(2,2)_{65},(2,2)_{66},(2,2)^{N}_{68},(2,2)^{N}_{69},(2,2)_{70},(2,2)_{71},(2,2)_{72}\}.
(2,2)67G¯\overline{(2,2)^{G}_{67}} == {(2,2)67,(2,2)72N}\{(2,2)_{67},(2,2)^{N}_{72}\}.

The irreducible components of 𝒥𝒮(2,2)\mathcal{JS}^{(2,2)} are represented in Figure 1. In Hasse diagrams we adopt the following notation: the blue color indicates an associative superalgebra, and a square represents a nilpotent superalgebra. Furthermore, for abbreviation, let ii stand for either (2,2)i(2,2)_{i} or (2,2)iN(2,2)_{i}^{N}.

Refer to caption
Figure 1. Graphic (2|2)(2|2)

Finally, as a direct consequence of Theorem 4.5, we obtain the following results:

Corollary 4.6.

The subvariety 𝒜𝒮𝒞(2,2)𝒥𝒮(2,2)\mathcal{ASC}^{(2,2)}\subset\mathcal{JS}^{(2,2)} of supercommutative associative superalgebras of type (2,2)(2,2) has 66 irreducible components given by

(2,2)1G¯=\displaystyle\overline{(2,2)_{1}^{G}}= {(2,2)1,(2,2)17,(2,2)32,(2,2)46N,(2,2)72N}.\displaystyle\{(2,2)_{1},(2,2)_{17},(2,2)_{32},(2,2)^{N}_{46},(2,2)^{N}_{72}\}.
(2,2)4G¯=\displaystyle\overline{(2,2)_{4}^{G}}= {(2,2)4,(2,2)17,(2,2)30,(2,2)40,(2,2)46N,(2,2)72N}.\displaystyle\{(2,2)_{4},(2,2)_{17},(2,2)_{30},(2,2)_{40},(2,2)^{N}_{46},(2,2)^{N}_{72}\}.
(2,2)12G¯=\displaystyle\overline{(2,2)_{12}^{G}}= {(2,2)12,(2,2)17,(2,2)19,(2,2)22,(2,2)34,(2,2)46N,(2,2)49N,(2,2)68N,(2,2)72N}.\displaystyle\{(2,2)_{12},(2,2)_{17},(2,2)_{19},(2,2)_{22},(2,2)_{34},(2,2)^{N}_{46},(2,2)^{N}_{49},(2,2)^{N}_{68},(2,2)^{N}_{72}\}.
(2,2)14G¯=\displaystyle\overline{(2,2)_{14}^{G}}= {(2,2)14,(2,2)22,(2,2)40,(2,2)44,(2,2)46N,(2,2)49N,(2,2)68N,(2,2)72N}.\displaystyle\{(2,2)_{14},(2,2)_{22},(2,2)_{40},(2,2)_{44},(2,2)^{N}_{46},(2,2)^{N}_{49},(2,2)^{N}_{68},(2,2)^{N}_{72}\}.
(2,2)18G¯=\displaystyle\overline{(2,2)_{18}^{G}}= {(2,2)17,(2,2)18,(2,2)46N,(2,2)48N,(2,2)71N,(2,2)72N}.\displaystyle\{(2,2)_{17},(2,2)_{18},(2,2)^{N}_{46},(2,2)^{N}_{48},(2,2)^{N}_{71},(2,2)^{N}_{72}\}.
(2,2)42G¯=\displaystyle\overline{(2,2)_{42}^{G}}= {(2,2)40,(2,2)42,(2,2)46N,(2,2)48N,(2,2)71N,(2,2)72N}.\displaystyle\{(2,2)_{40},(2,2)_{42},(2,2)^{N}_{46},(2,2)^{N}_{48},(2,2)^{N}_{71},(2,2)^{N}_{72}\}.
Corollary 4.7.

The subvariety 𝒩𝒥𝒮(2,2)𝒥𝒮(2,2)\mathcal{NJS}^{(2,2)}\subset\mathcal{JS}^{(2,2)} of nilpotent Jordan superalgebras of type (2,2)(2,2) has 33 irreducible components given by

((2,2)47N)G¯=\displaystyle\overline{((2,2)^{N}_{47})^{G}}= {(2,2)46N,(2,2)47N,(2,2)48N,(2,2)71N,(2,2)72N}.\displaystyle\{(2,2)^{N}_{46},(2,2)^{N}_{47},(2,2)^{N}_{48},(2,2)^{N}_{71},(2,2)^{N}_{72}\}.
((2,2)50N)G¯=\displaystyle\overline{((2,2)^{N}_{50})^{G}}= {(2,2)46N,(2,2)48N,(2,2)49N,(2,2)50N,(2,2)68N,(2,2)69N,(2,2)71N,(2,2)72N}.\displaystyle\{(2,2)^{N}_{46},(2,2)^{N}_{48},(2,2)^{N}_{49},(2,2)^{N}_{50},(2,2)^{N}_{68},(2,2)^{N}_{69},(2,2)^{N}_{71},(2,2)^{N}_{72}\}.
((2,2)51N)G¯=\displaystyle\overline{((2,2)^{N}_{51})^{G}}= {(2,2)46N,(2,2)49N,(2,2)51N,(2,2)68N,(2,2)72N}.\displaystyle\{(2,2)^{N}_{46},(2,2)^{N}_{49},(2,2)^{N}_{51},(2,2)^{N}_{68},(2,2)^{N}_{72}\}.

We finish the paper with the open problems in the case (2,2).

325,473\rightarrow 25,47;   741,47\;\;7\rightarrow 41,47;   851\;\;8\rightarrow 51;
i47i\rightarrow 47, for i{5,20,38}i\in\{5,20,38\}; i32\;\;i\rightarrow 32, for i{10,14}i\in\{10,14\};
i{33,51}i\rightarrow\{33,51\}, for i{11,13}i\in\{11,13\};   1232\;\;12\rightarrow 32; Open Problems
28{24,26,47}28\rightarrow\{24,26,47\};   45{32,41,43,47}\;\;45\rightarrow\{32,41,43,47\}
DγiD_{\gamma}\to i, for i{2,4,17,18,30,31,32,35,36}i\in\{2,4,17,18,30,31,32,35,36\}
Table 6. Open Problems in the case (2,2)(2,2)

References

  • [1] María Alejandra Alvarez and Isabel Hernández, On degenerations of Lie superalgebras, Linear and Multilinear Algebra 68 (2020), no. 1, 29–44.
  • [2] María Alejandra Alvarez, Isabel Hernández, and Ivan Kaygorodov, Degenerations of Jordan superalgebras, Bulletin of the Malaysian Mathematical Sciences Society 42 (2019), 3289 – 3301.
  • [3] Murray Gerstenhaber, On the deformation of rings and algebras, The Annals of Mathematics 79 (1964), no. 1, 59–103.
  • [4] Murray Gerstenhaber and Samuel D. Schack, Relative Hochschild cohomology, rigid algebras, and the Bockstein, Journal of Pure and Applied Algebra 43 (1986), no. 1, 53–74.
  • [5] F. A. Gómez González and J. A. Ramírez Bermúdez, Second cohomology group of the finite-dimensional simple Jordan superalgebra 𝒟t\mathcal{D}_{t}, t0t\neq 0, Journal of Algebra and Its Applications 21 (2022), no. 05, 2250091.
  • [6] by same author, Corrigendum: Second cohomology group of the finite-dimensional simple Jordan superalgebra 𝒟t\mathcal{D}_{t}, t0t\neq 0, Journal of Algebra and Its Applications 0 (2024), no. 0, 2692002.
  • [7] Isabel Hernández, María Eugenia Martin, and Rodrigo Lucas Rodrigues, Irreducible components of the varieties of Jordan superalgebras of types (1,3)(1,3) and (3,1)(3,1), (to appear).
  • [8] Isabel Hernández, Rodrigo Lucas Rodrigues, and Elkin Oveimar Quintero Vanegas, Low-dimensional commutative power-associative superalgebras, International Journal of Algebra and Computation 31 (2021), 1613 – 1632.
  • [9] Iryna Kashuba, Variedades de álgebras de Jordan/Tipos de representações de álgebras de Jordan, Tese de doutorado, Universidade de São Paulo, 2004.
  • [10] by same author, Variety of Jordan algebras in small dimensions, Algebra and Discrete Mathematics 2 (2006), 62–76.
  • [11] Iryna Kashuba and María Eugenia Martin, Deformations of Jordan algebras of dimension four, Journal of Algebra 399 (2014), 277–289.
  • [12] by same author, The variety of three-dimensional real Jordan algebras, Journal of Algebra and its Applications 15 (2016), no. 8, 1650158 (17 pages).
  • [13] by same author, Geometric classification of nilpotent Jordan algebras of dimension five, Journal of Pure and Applied Algebra 222 (2018), no. 3, 546 – 559.
  • [14] María Eugenia Martin, Deformações e isotopias de álgebras de Jordan, Tese de doutorado, Instituto de Matemática e Estatística, Universidade de São Paulo, IME-USP, São Paulo, SP, 2013, p. 242.
  • [15] Guerino Mazzola, The algebraic and geometric classification of associative algebras of dimension five, Manuscripta Mathematica 27 (1979), 81–101.
  • [16] Roger Richardson, On the rigidity of semi-direct products of Lie algebras, Pacific Journal of Mathematics 22 (1967), 339–344.