This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\jyear

2021

[3]\surDongkui Ma

1]\orgdivSchool of Mathematics, \orgnameSouth China University of Technology, \cityGuangzhou, \postcode510641, \countryP.R. China 2]\orgdivSchool of Mathematics, \orgnameSouth China University of Technology, \cityGuangzhou, \postcode510641, \countryP.R. China [3]\orgdivSchool of Mathematics, \orgnameSouth China University of Technology, \cityGuangzhou, \postcode510641, \countryP.R. China

The upper capacity topological entropy of free semigroup actions for certain non-compact sets, II

\surYanjie Tang [email protected]    \surXiaojiang Ye [email protected]    [email protected] [ [ *
Abstract

This paper’s major purpose is to continue the work of Zhu and Ma MR4200965 . To begin, the 𝐠\mathbf{g}-almost product property, more general irregular and regular sets, and some new notions of the Banach upper density recurrent points and transitive points of free semigroup actions are introduced. Furthermore, under the 𝐠\mathbf{g}-almost product property and other conditions, we coordinate the Banach upper recurrence, transitivity with (ir)regularity, and obtain lots of generalized multifractal analyses for general observable functions of free semigroup actions. Finally, statistical ω\omega-limit sets are used to consider the upper capacity topological entropy of the sets of Banach upper recurrent points and transitive points of free semigroup actions, respectively. Our analysis generalizes the results obtained by Huang, Tian and Wang MR3963890 , Pfister and Sullivan MR2322186 .

keywords:
Free semigroup actions; Upper capacity topological entropy; Multifractal analysis; 𝐠\mathbf{g}-almost product property; Banach upper recurrence
pacs:
[

MSC Classification]37B40, 37B20, 37C45, 37B05

1 Introduction

A dynamical system (X,d,f)(X,d,f) means always that (X,d)(X,d) is a compact metric space and ff is a continuous self map on XX. One of the fundamental issues in dynamical systems is how points with similar asymptotic behavior influence or determine the system’s complexity. Topological entropy is a term used to describe the dynamical complexity of a dynamical system. Using a similar defining way as the Hausdorff dimension, Bowen MR338317 and Pesin MR1489237 extended the concept of topological entropy to non-compact sets. On the basis of this theory, researchers are paying more attention to study Hausdorff dimension or topological entropy for non-compact sets, for example, multifractal spectra and saturated sets of dynamical systems, see, MR2322186 ; MR3436391 ; MR1971209 ; MR1439805 ; MR2931333 ; MR1759398 ; MR3963890 ; MR3833343 ; MR2158401 . In particular, recent work about non-compact sets with full entropy has attracted greater attention than before, see MR4200965 ; MR3963890 ; MR3833343 ; MR3436391 ; MR2158401 . As a result, the size of the topological entropy of the ‘periodic-like’ recurrent level sets is always in focus, see MR3963890 ; DongandTian1 ; DongandTian2 ; MR3436391 ; MR4200965 .

Most of different recurrent level sets are considered. The concepts of periodic point, recurrent point, almost periodic point and non-wandering point are described, see MR648108 , the concepts of (quai)weakly almost periodic point (sometimes called (upper)lower density recurrent point) can be see in MR1223083 ; MR2039054 ; 1993Measure ; 1995Level . Moreover, Zhou 1995Level firstly linked the recurrent frequency with the support of invariant measures which are the limit points of the empirical measure, which provided a tremendous benefit to researchers.

Birkhoff ergodic average MR1439805 ; MR1489237 (or Lyapunov exponents MR2645746 ) is a well-known method to distinguish the asymptotic behavior of a dynamical orbit. Let φ:X\varphi:X\to\mathbb{R} be a continuous function and aa a real number. Consider a level set of Birkhoff averages

Rφ(a):={xX:limn1nj=0n1φ(fj(x))=a}.R_{\varphi}(a):=\left\{x\in X:\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\varphi\left(f^{j}(x)\right)=a\right\}.

These Rφ(a)R_{\varphi}(a) form a multifractal decomposition and the function

ahRφ(a)(f)a\to h_{R_{\varphi}(a)}(f)

is a entropy spectrum, where hRφ(a)(f)h_{R_{\varphi}(a)}(f) denotes the topological entropy of Rφ(a)R_{\varphi}(a) defined by MR338317 . Takens and Verbitskiy MR1971209 proved that transformations satisfying the specification has the following variational principle

hRφ(a)(f)=sup{hμ(f):μ is invariant and φ𝑑μ=a}h_{R_{\varphi}(a)}\left(f\right)=\sup\left\{h_{\mu}(f):\mu\text{ is invariant and }\int\varphi d\mu=a\right\} (1)

where hμ(f)h_{\mu}(f) is the measure-theoretic (or Kolmogorov-Sinai) entropy of the invariant measure μ\mu. In MR2322186 , the formula (1) holds under the conditions of the 𝐠\mathbf{g}-almost product property which was introduced by Pfister and Sullivan. Consider φ\varphi-irregular set as follows:

Iφ:={xX:limn1nj=0n1φ(fj(x)) diverges}.I_{\varphi}:=\left\{x\in X:\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\varphi\left(f^{j}(x)\right)\text{ diverges}\right\}.

The irregular set is not detectable from the standpoint of invariant measures, according to Birkhoff’s ergodic theorem. However, in systems with certain properties, the irregular set may carry full topological entropy, see MR2931333 ; MR3833343 ; MR2158401 ; MR775933 ; MR1759398 and references therein.

Based on these results, Tian MR3436391 distinguished various periodic-like recurrences and discovered that they all carry full topological entropy, as do their gap-sets, under the 𝐠\mathbf{g}-almost product property and other conditions. Furthermore, the author MR3436391 combined the periodic-like recurrences with (ir)regularity to obtain a large number of generalized multifractal analyses for all continuous observable functions. Later on, Huang, Tian and Wang MR3963890 introduced an abstract version of multifractal analysis for possible applicability to more general function. Let α:(X,f)\alpha:\mathcal{M}(X,f)\to\mathbb{R} be a continuous function where (X,f)\mathcal{M}(X,f) denotes the set of all ff-invariant probability measures on XX. Define more general regular and irregular sets as follows

Rα:={xX:infμMxα(μ)=supμMxα(μ)},R_{\alpha}:=\left\{x\in X:\inf_{\mu\in M_{x}}\alpha(\mu)=\sup_{\mu\in M_{x}}\alpha(\mu)\right\},
Iα:={xX:infμMxα(μ)<supμMxα(μ)},I_{\alpha}:=\left\{x\in X:\inf_{\mu\in M_{x}}\alpha(\mu)<\sup_{\mu\in M_{x}}\alpha(\mu)\right\},

respectively, where MxM_{x} stands for the set of all limit points of the empirical measure. Furthermore, the authors MR3963890 established an abstract framework on the combination of Banach upper recurrence, transitivity and multifractal analysis of general observable functions. Learned from MR1601486 for maps and MR1716564 for flows, Dong and Tian DongandTian1 defined the statistical ω\omega-limit sets to describe different statistical structure of dynamical orbits using concepts of density, and considered multifractal analysis on various non-recurrence and Birkhoff ergodic averages. Furthermore, the authors MR3963890 used statistical ω\omega-limit sets to obtain the results of topological entropy on the refined orbit distribution of Banach upper recurrence.

On the other hand, Ghys et al MR926526 proposed a definition of topological entropy for finitely generated pseudo-groups of continuous maps. Later on, the topological entropy of free semigroup actions on a compact metric space defined by Biś MR2083436 and Bufetov MR1681003 , respectively. Rodrigues and Varandas MR3503951 and Lin et al MR3774838 extended the work of Bufetov MR1681003 from various perspectives. Similar to the methods of Bowen MR338317 and Pesin MR1489237 , Ju et al MR3918203 introduced topological entropy and upper capacity topological entropy of free semigroup actions on non-compact sets which extended the results obtained by MR1681003 ; MR338317 ; MR1489237 . Zhu and Ma MR4200965 investigated the upper capacity topological entropy of free semigroup actions for certain non-compact sets. More relevant results are obtained, see MR3503951 ; MR3828742 ; MR3784991 ; MR3774838 ; MR3918203 ; MR4200965 ; MR3592853 ; MR1767945 .

The above results raise the question of whether similar sets exist in dynamical system of free semigroup actions. Further, one can ask if the sets have full topological entropy or full upper capacity topological entropy, and if an abstract framework of general observable functions can be established. To answer the above questions, we introduce different asymptotic behavior of points and more general irregular set. Our results show that various subsets characterized by distinct asymptotic behavior may carry full upper capacity topological entropy of free semigroup actions. Our analysis is to continue the work of MR4200965 and generalize the results obtained by MR3963890 and MR2322186 .

This paper is organized as follows. In Sec. 2, we give our main results. In Sec. 3, we give some preliminaries. In Sec. 4, we introduce some concepts of transitive points, quasiregular points, upper recurrent points and Banach upper recurrent points with respect to a certain orbit of free semigroup actions. On the other hand, the g-almost product property of free semigroup actions, which is weaker than the specification property of free semigroup actions, is introduced. In Sec. 5, the upper capacity topological entropy of free semigroup actions on the more general irregular and regular sets is considered, and some examples satisfying the assumptions of our main results are described. In Sec. 6, we give the proofs of our main results.

2 Statement of main results

Let (X,d)(X,d) be a compact metric space and GG the free semigroup generated by mm generators f0,,fm1f_{0},\cdots,f_{m-1} which are continuous maps on XX. Let Σm+\Sigma^{+}_{m} denote the one-side symbol space generated by the digits {0,1,,m1}\{0,1,\cdots,m-1\}. Recall that the skew product transformation is given as follows:

F:Σm+×XΣm+×X,(ι,x)(σ(ι),fi0(x)),F:\Sigma^{+}_{m}\times X\to\Sigma^{+}_{m}\times X,\>\,(\iota,x)\mapsto\big{(}\sigma(\iota),f_{i_{0}}(x)\big{)},

where ι=(i0,i1,)Σm+\iota=(i_{0},i_{1},\cdots)\in\Sigma_{m}^{+}, xXx\in X and σ\sigma is the shift map of Σm+\Sigma^{+}_{m}. Let (Σm+×X,F)\mathcal{M}(\Sigma_{m}^{+}\times X,F) denote the set of invariant measures of the skew product FF. Denote by Tran(ι,G)\mathrm{Tran}(\iota,G), QR(ι,G)\mathrm{QR}(\iota,G), QW(ι,G)\mathrm{QW}(\iota,G) and BR(ι,G)\mathrm{BR}(\iota,G) the sets of the transitive points, the quasiregular points, the upper recurrent points and the Banach upper recurrent points of free semigroup action GG with respect to ιΣm+\iota\in\Sigma_{m}^{+}, respectively (see Sec. 4).

Let α:(Σm+×X,F)\alpha:\mathcal{M}(\Sigma_{m}^{+}\times X,F)\to\mathbb{R} be a continuous function. Given (ι,x)Σm+×X(\iota,x)\in\Sigma_{m}^{+}\times X, let M(ι,x)(F)M_{(\iota,x)}(F) be the set of all limit points of {1nj=0n1δFj(ι,x)}\{\frac{1}{n}\sum_{j=0}^{n-1}\delta_{F^{j}(\iota,x)}\} in weak topology. Let Lα:=[infνM(ι,x)(F)α(ν),supνM(ι,x)(F)α(ν)]L_{\alpha}:=[\inf_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu),\,\sup_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu)] and Int(Lα)\mathrm{Int}(L_{\alpha}) denote the interior of interval LαL_{\alpha}. For possibly applicability to more general functions, MR3963890 defined three conditions for α\alpha to introduce an abstract version of multifractal analysis. To understand our main results, we list the three conditions(see MR3963890 for details):

  • A.1

    For any μ,ν(Σm+×X,F)\mu,\nu\in\mathcal{M}(\Sigma_{m}^{+}\times X,F), β(θ):=α(θμ+(1θ)ν)\beta(\theta):=\alpha(\theta\mu+(1-\theta)\nu) is strictly monotonic on [0,1][0,1] when α(μ)α(ν)\alpha(\mu)\neq\alpha(\nu).

  • A.2

    For any μ,ν(Σm+×X,F)\mu,\nu\in\mathcal{M}(\Sigma_{m}^{+}\times X,F), β(θ):=α(θμ+(1θ)ν)\beta(\theta):=\alpha(\theta\mu+(1-\theta)\nu) is constant on [0,1][0,1] when α(μ)=α(ν)\alpha(\mu)=\alpha(\nu).

  • A.3

    For any μ,ν(Σm+×X,F)\mu,\nu\in\mathcal{M}(\Sigma_{m}^{+}\times X,F), β(θ):=α(θμ+(1θ)ν)\beta(\theta):=\alpha(\theta\mu+(1-\theta)\nu) is not constant over any subinterval of [0,1][0,1] when α(μ)α(ν)\alpha(\mu)\neq\alpha(\nu).

Given ιΣm+\iota\in\Sigma_{m}^{+}, we introduce the general regular set and irregular set with respect to ι\iota as follows:

Rα(ι,G):={xX:infνM(ι,x)(F)α(ν)=supνM(ι,x)(F)α(ν)},R_{\alpha}(\iota,G):=\left\{x\in X:\inf_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu)=\sup_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu)\right\},
Iα(ι,G):={xX:infνM(ι,x)(F)α(ν)<supνM(ι,x)(F)α(ν)}.I_{\alpha}(\iota,G):=\left\{x\in X:\inf_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu)<\sup_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu)\right\}.

Let C(ι,x)=νM(ι,x)(F)Sν¯C_{(\iota,x)}=\overline{\cup_{\nu\in M_{(\iota,x)}(F)}S_{\nu}}, where SνS_{\nu} denotes the support of measure ν\nu. Let BR#(ι,G):=BR(ι,G)\QW(ι,G)\mathrm{BR}^{\#}(\iota,G):=\mathrm{BR}(\iota,G)\backslash\mathrm{QW}(\iota,G). Fixed ιΣm+\iota\in\Sigma_{m}^{+}, the following sets are introduced to more precisely characterize the recurrence of the orbit,

W(ι,G)\displaystyle W(\iota,G) :={xX:Sν=C(ι,x) for every νM(ι,x)(F)},\displaystyle:=\left\{x\in X:S_{\nu}=C_{(\iota,x)}\text{ for every }\nu\in M_{(\iota,x)}(F)\right\},
V(ι,G)\displaystyle V(\iota,G) :={xX:νM(ι,x)(F) such that Sν=C(ι,x)},\displaystyle:=\left\{x\in X:\exists\nu\in M_{(\iota,x)}(F)\text{ such that }S_{\nu}=C_{(\iota,x)}\right\},
S(ι,G)\displaystyle S(\iota,G) :={xX:νM(ι,x)(F)Sν}.\displaystyle:=\left\{x\in X:\cap_{\nu\in M_{(\iota,x)}(F)}S_{\nu}\neq\emptyset\right\}.

More specifically, BR#(ι,G)\mathrm{BR}^{\#}(\iota,G) is subdivided into the following several levels with different asymptotic behaviour:

BR1(ι,G):=BR#(ι,G)W(ι,G),\displaystyle\mathrm{BR}_{1}(\iota,G):=\mathrm{BR}^{\#}(\iota,G)\cap W(\iota,G),
BR2(ι,G):=BR#(ι,G)(V(ι,G)S(ι,G)),\displaystyle\mathrm{BR}_{2}(\iota,G):=\mathrm{BR}^{\#}(\iota,G)\cap(V(\iota,G)\cap S(\iota,G)),
BR3(ι,G):=BR#(ι,G)V(ι,G),\displaystyle\mathrm{BR}_{3}(\iota,G):=\mathrm{BR}^{\#}(\iota,G)\cap V(\iota,G),
BR4(ι,G):=BR#(ι,G)(V(ι,G)S(ι,G)),\displaystyle\mathrm{BR}_{4}(\iota,G):=\mathrm{BR}^{\#}(\iota,G)\cap(V(\iota,G)\cup S(\iota,G)),
BR5(ι,G):=BR#(ι,G).\displaystyle\mathrm{BR}_{5}(\iota,G):=\mathrm{BR}^{\#}(\iota,G).

Then BR1(ι,G)BR2(ι,G)BR3(ι,G)BR4(ι,G)BR5(ι,G)\mathrm{BR}_{1}(\iota,G)\subseteq\mathrm{BR}_{2}(\iota,G)\subseteq\mathrm{BR}_{3}(\iota,G)\subseteq\mathrm{BR}_{4}(\iota,G)\subseteq\mathrm{BR}_{5}(\iota,G).

Analogously, QW(ι,G)\mathrm{QW}(\iota,G) is also subdivided into the following several levels with varying asymptotic behaviour:

QW1(ι,G):=QW(ι,G)W(ι,G),\displaystyle\mathrm{QW}_{1}(\iota,G):=\mathrm{QW}(\iota,G)\cap W(\iota,G),
QW2(ι,G):=QW(ι,G)(V(ι,G)S(ι,G)),\displaystyle\mathrm{QW}_{2}(\iota,G):=\mathrm{QW}(\iota,G)\cap(V(\iota,G)\cap S(\iota,G)),
QW3(ι,G):=QW(ι,G)V(ι,G),\displaystyle\mathrm{QW}_{3}(\iota,G):=\mathrm{QW}(\iota,G)\cap V(\iota,G),
QW4(ι,G):=QW(ι,G)(V(ι,G)S(ι,G)),\displaystyle\mathrm{QW}_{4}(\iota,G):=\mathrm{QW}(\iota,G)\cap(V(\iota,G)\cup S(\iota,G)),
QW5(ι,G):=QW(ι,G).\displaystyle\mathrm{QW}_{5}(\iota,G):=\mathrm{QW}(\iota,G).

Note that QW1(ι,G)QW2(ι,G)QW3(ι,G)QW4(ι,G)QW5(ι,G)\mathrm{QW}_{1}(\iota,G)\subseteq\mathrm{QW}_{2}(\iota,G)\subseteq\mathrm{QW}_{3}(\iota,G)\subseteq\mathrm{QW}_{4}(\iota,G)\subseteq\mathrm{QW}_{5}(\iota,G).

Let Z0(ι,G),Z1(ι,G),,Zk(ι,G)Z_{0}(\iota,G),Z_{1}(\iota,G),\cdots,Z_{k}(\iota,G) and Y(ι,G)Y(\iota,G) be the subsets of XX with respect to ιΣm+\iota\in\Sigma_{m}^{+}. Consider the sets, for j=1,,kj=1,\cdots,k,

Mj(Y):=ιΣm+(Y(ι,G)(Zj(ι,G)Zj1(ι,G))),M_{j}(Y):=\cup_{\iota\in\Sigma_{m}^{+}}\big{(}Y(\iota,G)\cap(Z_{j}(\iota,G)\setminus Z_{j-1}(\iota,G))\big{)},

then we say that the sets M1(Y),M2(Y),,Mk(Y)M_{1}(Y),M_{2}(Y),\cdots,M_{k}(Y) is the unions of gaps of {Z0(ι,G),Z1(ι,G),,Zk(ι,G)}\{Z_{0}(\iota,G),Z_{1}(\iota,G),\cdots,Z_{k}(\iota,G)\} with respect to Y(ι,G)Y(\iota,G) for all ιΣm+\iota\in\Sigma_{m}^{+}.

Now we start to state our main theorems.

Theorem 1.

Suppose that GG has the 𝐠\mathbf{g}-almost product property, there exists a \mathbb{P}-stationary measure (see Sec. 3.3) on XX with full support where \mathbb{P} is a Bernoulli measure on Σm+\Sigma_{m}^{+}. Let α:(Σm+×X,F)\alpha:\mathcal{M}(\Sigma_{m}^{+}\times X,F)\to\mathbb{R} be a continuous function.

  • (1)

    If α\alpha satisfies A.3 and Int(Lα)\mathrm{Int}(L_{\alpha})\neq\emptyset, then the unions of gaps of

    {QR(ι,G),BR1(ι,G),BR2(ι,G),BR3(ι,G),BR4(ι,G),BR5(ι,G)}\left\{\mathrm{QR}(\iota,G),\mathrm{BR}_{1}(\iota,G),\mathrm{BR}_{2}(\iota,G),\mathrm{BR}_{3}(\iota,G),\mathrm{BR}_{4}(\iota,G),\mathrm{BR}_{5}(\iota,G)\right\}

    with respect to Iα(ι,G)Tran(ι,G)I_{\alpha}(\iota,G)\cap\mathrm{Tran}(\iota,G) for all ιΣm+\iota\in\Sigma_{m}^{+} have full upper capacity topological entropy of free semigroup action GG.

  • (2)

    If the skew product FF is not uniquely ergodic, then the unions of gaps of

    {,QR(ι,G)BR1(ι,G),BR1(ι,G),BR2(ι,G),BR3(ι,G),BR4(ι,G),BR5(ι,G)}\left\{\emptyset,\mathrm{QR}(\iota,G)\cap\mathrm{BR}_{1}(\iota,G),\mathrm{BR}_{1}(\iota,G),\mathrm{BR}_{2}(\iota,G),\mathrm{BR}_{3}(\iota,G),\mathrm{BR}_{4}(\iota,G),\mathrm{BR}_{5}(\iota,G)\right\}

    with respect to Tran(ι,G)\mathrm{Tran}(\iota,G) for all ιΣm+\iota\in\Sigma_{m}^{+} have full upper capacity topological entropy of free semigroup action GG.

  • (3)

    If the skew product FF is not uniquely ergodic and α\alpha satisfies A.1 and A.2, then the unions of gaps of

    {,QR(ι,G)BR1(ι,G),BR1(ι,G),BR2(ι,G),BR3(ι,G),BR4(ι,G),BR5(ι,G)}\left\{\emptyset,\mathrm{QR}(\iota,G)\cap\mathrm{BR}_{1}(\iota,G),\mathrm{BR}_{1}(\iota,G),\mathrm{BR}_{2}(\iota,G),\mathrm{BR}_{3}(\iota,G),\mathrm{BR}_{4}(\iota,G),\mathrm{BR}_{5}(\iota,G)\right\}

    with respect to Rα(ι,G)Tran(ι,G)R_{\alpha}(\iota,G)\cap\mathrm{Tran}(\iota,G) for all ιΣm+\iota\in\Sigma_{m}^{+} have full upper capacity topological entropy of free semigroup action GG.

Theorem 2.

Suppose that GG has the 𝐠\mathbf{g}-almost product property and positively expansive, there exists a \mathbb{P}-stationary measure with full support on XX where \mathbb{P} is a Bernoulli measure on Σm+\Sigma_{m}^{+}. Let φ:X\varphi:X\to\mathbb{R} be a continuous function. If the skew product FF is not uniquely ergodic, then the unions of gaps of

{,QR(ι,G)QW1(ι,G),QW1(ι,G),QW2(ι,G),QW3(ι,G),QW4(ι,G),QW5(ι,G)}\left\{\emptyset,\mathrm{QR}(\iota,G)\cap\mathrm{QW}_{1}(\iota,G),\mathrm{QW}_{1}(\iota,G),\mathrm{QW}_{2}(\iota,G),\mathrm{QW}_{3}(\iota,G),\mathrm{QW}_{4}(\iota,G),\mathrm{QW}_{5}(\iota,G)\right\}

with respect to Tran(ι,G)\mathrm{Tran}(\iota,G), Rα(ι,G)Tran(ι,G)R_{\alpha}(\iota,G)\cap\mathrm{Tran}(\iota,G) for all ιΣm+\iota\in\Sigma_{m}^{+} have full upper capacity topological entropy of free semigroup action GG, respectively. If Iα(ι,G)I_{\alpha}(\iota,G) is non-empty for some ιΣm+\iota\in\Sigma_{m}^{+}, similar arguments hold with respect to Iα(ι,G)Tran(ι,G)I_{\alpha}(\iota,G)\cap\mathrm{Tran}(\iota,G).

For SS\subseteq\mathbb{N}, let d¯(S)\overline{d}(S), d¯(S)\underline{d}(S), B(S)B^{*}(S) and B(S)B_{*}(S) denote the upper density, lower density, Banach upper density and Banach lower density of SS, respectively. Given (ι,x)Σm+×X(\iota,x)\in\Sigma_{m}^{+}\times X and ξ{d¯,d¯,B,B}\xi\in\{\,\overline{d},\underline{d},B^{*},B_{*}\}, denote by ωξ((ι,x),F)\omega_{\xi}\left((\iota,x),F\right) the ξ\xi-ω\omega-limit set of (ι,x)(\iota,x). The notions will be given in more detail later in Section 3.1 (also see MR3963890 ; DongandTian1 ; DongandTian2 ). If ωB((ι,x),F)=\omega_{B_{*}}\left((\iota,x),F\right)=\emptyset and ωB((ι,x),F)=ω((ι,x),F)\omega_{B^{*}}\left((\iota,x),F\right)=\omega\left((\iota,x),F\right), then from DongandTian1 one has that (ι,x)(\iota,x) satisfies only one of the following six cases:

  1. (1)

    =ωB((ι,x),F)ωd¯((ι,x),F)=ωd¯((ι,x),F)=ωB((ι,x),F)=ω((ι,x),F)\emptyset=\omega_{B_{*}}\left((\iota,x),F\right)\subsetneq\omega_{\underline{d}}\left((\iota,x),F\right)=\omega_{\overline{d}}\left((\iota,x),F\right)=\omega_{B^{*}}\left((\iota,x),F\right)=\omega\left((\iota,x),F\right);

  2. (2)

    =ωB((ι,x),F)ωd¯((ι,x),F)=ωd¯((ι,x),F)ωB((ι,x),F)=ω((ι,x),F)\emptyset=\omega_{B_{*}}\left((\iota,x),F\right)\subsetneq\omega_{\underline{d}}\left((\iota,x),F\right)=\omega_{\overline{d}}\left((\iota,x),F\right)\subsetneq\omega_{B^{*}}\left((\iota,x),F\right)=\omega\left((\iota,x),F\right);

  3. (3)

    =ωB((ι,x),F)=ωd¯((ι,x),F)ωd¯((ι,x),F)=ωB((ι,x),F)=ω((ι,x),F)\emptyset=\omega_{B_{*}}\left((\iota,x),F\right)=\omega_{\underline{d}}\left((\iota,x),F\right)\subsetneq\omega_{\overline{d}}\left((\iota,x),F\right)=\omega_{B^{*}}\left((\iota,x),F\right)=\omega\left((\iota,x),F\right);

  4. (4)

    =ωB((ι,x),F)ωd¯((ι,x),F)ωd¯((ι,x),F)=ωB((ι,x),F)=ω((ι,x),F)\emptyset=\omega_{B_{*}}\left((\iota,x),F\right)\subsetneq\omega_{\underline{d}}\left((\iota,x),F\right)\subsetneq\omega_{\overline{d}}\left((\iota,x),F\right)=\omega_{B^{*}}\left((\iota,x),F\right)=\omega\left((\iota,x),F\right);

  5. (5)

    =ωB((ι,x),F)=ωd¯((ι,x),F)ωd¯((ι,x),F)ωB((ι,x),F)=ω((ι,x),F)\emptyset=\omega_{B_{*}}\left((\iota,x),F\right)=\omega_{\underline{d}}\left((\iota,x),F\right)\subsetneq\omega_{\overline{d}}\left((\iota,x),F\right)\subsetneq\omega_{B^{*}}\left((\iota,x),F\right)=\omega\left((\iota,x),F\right);

  6. (6)

    =ωB((ι,x),F)ωd¯((ι,x),F)ωd¯((ι,x),F)ωB((ι,x),F)=ω((ι,x),F)\emptyset=\omega_{B_{*}}\left((\iota,x),F\right)\subsetneq\omega_{\underline{d}}\left((\iota,x),F\right)\subsetneq\omega_{\overline{d}}\left((\iota,x),F\right)\subsetneq\omega_{B^{*}}\left((\iota,x),F\right)=\omega\left((\iota,x),F\right).

Consider the two sets as follows:

Tj(ι,G):={xTran(ι,G):(ι,x) satisfies Case (j)},T_{j}(\iota,G):=\left\{x\in\mathrm{Tran}(\iota,G):(\iota,x)\text{ satisfies Case }(j)\right\},
Bj(ι,G):={xBR(ι,G):(ι,x) satisfies Case (j)},B_{j}(\iota,G):=\left\{x\in\mathrm{BR}(\iota,G):(\iota,x)\text{ satisfies Case }(j)\right\},

where j=1,,6j=1,\cdots,6. Let

Tj(G):=ιΣm+Tj(ι,G),Bj(G):=ιΣm+Bj(ι,G).T_{j}(G):=\cup_{\iota\in\Sigma_{m}^{+}}T_{j}(\iota,G),\quad B_{j}(G):=\cup_{\iota\in\Sigma_{m}^{+}}B_{j}(\iota,G).
Theorem 3.

Suppose that GG has the 𝐠\mathbf{g}-almost product property, there exists a \mathbb{P}-stationary measure with full support on XX where \mathbb{P} is a Bernoulli measure on Σm+\Sigma_{m}^{+}. If the skew product FF is not uniquely ergodic, then Tj(G)T_{j}(G)\neq\emptyset and Bj(G)B_{j}(G)\neq\emptyset. Moreover, they all have full capacity topological entropy of free semigroup action GG, that is,

Ch¯Tj(G)(G)=Ch¯X(G)=h(G),\overline{Ch}_{T_{j}(G)}(G)=\overline{Ch}_{X}(G)=h(G),
Ch¯Bj(G)(G)=Ch¯X(G)=h(G),\overline{Ch}_{B_{j}(G)}(G)=\overline{Ch}_{X}(G)=h(G),

for all j=1,,6j=1,\cdots,6, where Ch¯Z(G)\overline{Ch}_{Z}(G) denotes the upper capacity topological entropy on any subset ZXZ\subseteq X in the sense of MR3918203 , h(G)h(G) denotes the topological entropy in the sense of Bufetov MR1681003 . If Z=XZ=X, we have Ch¯X(G)=h(G)\overline{Ch}_{X}(G)=h(G) from Remark 5.1 of MR3918203 .

3 Preliminaries

3.1 Some notions

Let (X,d)(X,d) be a compact metric space and ff be a continuous map on XX. For SS\subseteq\mathbb{N}, the upper density and the Banach upper density of SS are defined by

d¯(S):=lim supn{S{0,1,,n1}}n,B(S):=lim supI{SI}I,\overline{d}(S):=\limsup_{n\rightarrow\infty}\frac{\sharp\left\{S\cap\{0,1,\cdots,n-1\}\right\}}{n},\quad B^{*}(S):=\limsup_{\sharp I\rightarrow\infty}\frac{\sharp\left\{S\cap I\right\}}{\sharp I},

respectively, where Y\sharp Y denotes the cardinality of the set YY and II\subseteq\mathbb{N} is taken from finite continuous integer intervals. Similarly, one can define the lower density and the Banach lower density of SS, denoted as d¯(S)\underline{d}(S) and B(S)B_{*}(S), respectively. Let UXU\subset X be a nonempty open set and xXx\in X. Define the set of visiting time,

N(x,U):={n0:fn(x)U}.N(x,U):=\left\{n\geq 0:f^{n}(x)\in U\right\}.

Recall that a point xXx\in X is called to be Banach upper recurrent, if for any ε>0\varepsilon>0, the set of visiting time N(x,B(x,ε))N(x,B(x,\varepsilon)) has a positive Banach upper density where B(x,ε)B(x,\varepsilon) denotes the ball centered at xx with radius ε\varepsilon. Similarly, one can call a point xXx\in X upper recurrent, if for any ε>0\varepsilon>0, the set of visiting time N(x,B(x,ε))N(x,B(x,\varepsilon)) has a positive upper density. Let us denote by BR(f)\mathrm{BR}(f) and QW(f)\mathrm{QW}(f) the sets of the Banach upper recurrent points and the upper recurrent points of ff, respectively. It is immediate that

QW(f)BR(f).\mathrm{QW}(f)\subseteq\mathrm{BR}(f).

A point xXx\in X is called transitive if its orbit {x,f(x),f2(x),}\{x,f(x),f^{2}(x),\cdots\} is dense in XX. Let us denote by Tran(f)\mathrm{Tran}(f) the set of transitive points of ff.

We recall that several concepts were introduced in MR3963890 . For xXx\in X and ξ{d¯,d¯,B,B}\xi\in\{\,\overline{d},\underline{d},B_{*},B^{*}\}, a point yXy\in X is called xx-ξ\xi-accessible, if for any ε>0\varepsilon>0, the set of visiting time N(x,B(y,ε))N\left(x,B(y,\varepsilon)\right) has positive density with respect to ξ\xi. Let

ωξ(x):={yX:y is x-ξ-accessible }.\omega_{\xi}(x):=\{y\in X:y\text{ is }x\text{-}\xi\text{-accessible }\}.

For convenience, it is called the ξ\xi-ω\omega-limit set of xx.

The set of invariant measures under ff will be denote by (X,f)\mathcal{M}(X,f). For μ(X,f)\mu\in\mathcal{M}(X,f), a point xXx\in X is μ\mu-generic if

limn1nj=0n1δfj(x)=μ\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{j=0}^{n-1}\delta_{f^{j}(x)}=\mu

where δy\delta_{y} denotes the Dirac measure on yy. We will use Gμ(f)G_{\mu}(f) to denote the set of μ\mu-generic points. Let QR(f):=μ(X,f)Gμ(f)\mathrm{QR}(f):=\bigcup_{\mu\in\mathcal{M}(X,f)}G_{\mu}(f). The points in QR(f)\mathrm{QR}(f) are called quasiregular points of ff.

3.2 The topological entropy and others concepts of free semigroup actions

In this paper, we use the topological entropy and upper capacity topological entropy of free semigroup actions defined by MR1681003 and MR3918203 , respectively. Let (X,d)(X,d) be a compact metric space and GG the free semigroup action on XX generated by f0,,fm1f_{0},\cdots,f_{m-1}. For convenience, we first recall the notion of words.

Let Fm+F_{m}^{+} be the set of all finite words of symbols 0,1,,m10,1,\cdots,m-1. For any wFm+w\in F_{m}^{+}, |w|\lvert w\rvert stands for the length of ww, that is, the number of symbols in ww. Obviously, Fm+F^{+}_{m} with respect to the law of composition is a free semigroup with mm generators. We write www^{\prime}\leq w if there exists a word w′′Fm+w^{\prime\prime}\in F^{+}_{m} such that w=w′′ww=w^{\prime\prime}w^{\prime}. Remark that Fm+\emptyset\in F_{m}^{+} and w\emptyset\leq w. For w=i0i1ikFm+w=i_{0}i_{1}\cdots i_{k}\in F^{+}_{m}, denote w¯=iki1i0\overline{w}=i_{k}\cdots i_{1}i_{0}.

Denote by Σm+\Sigma^{+}_{m} the set of all one-side infinite sequences of symbols {0,1,,m1}\{0,1,\cdots,m-1\}, that is,

Σm+={ι=(i0,i1,):ik{0,1,,m1},k}.\Sigma^{+}_{m}=\left\{\iota=(i_{0},i_{1},\cdots)\,:\,i_{k}\in\{0,1,\cdots,m-1\},\>k\in\mathbb{N}\right\}.

The metric on Σm+\Sigma^{+}_{m} is given by

d(ι,ι):=2j,j=inf{n:inin}.d^{\prime}(\iota,\iota^{\prime}):=2^{-j},\quad j=\inf\{n\,:\,i_{n}\neq i^{\prime}_{n}\}.

It is easy to check that Σm+\Sigma^{+}_{m} is compact with respect to this metric. The shift σ:Σm+Σm+\sigma:\Sigma^{+}_{m}\to\Sigma^{+}_{m} is given by the formula, for each ι=(i0,i1,)Σm+\iota=(i_{0},i_{1},\cdots)\in\Sigma^{+}_{m},

σ(ι)=(i1,i2,).\sigma(\iota)=(i_{1},i_{2},\cdots).

Suppose that ιΣm+\iota\in\Sigma^{+}_{m}, and a,ba,b\in\mathbb{N} with aba\leq b. We write ι|[a,b]=w\iota\lvert_{[a,b]}=w if w=iaia+1ibw=i_{a}i_{a+1}\cdots i_{b}.

To each wFm+w\in F^{+}_{m}, w=i0ik1w=i_{0}\cdots i_{k-1}, let us write fw=fi0fik1f_{w}=f_{i_{0}}\circ\cdots\circ f_{i_{k-1}} if k>0k>0, and fw=Idf_{w}=\mathrm{Id} if k=0k=0, where Id\mathrm{Id} is the identity map. Obviously, fww=fwfwf_{ww^{\prime}}=f_{w}f_{w^{\prime}}.

For wFm+w\in F^{+}_{m}, we assign a metric dwd_{w} on XX by setting

dw(x1,x2)=maxww¯d(fw(x1),fw(x2)).d_{w}(x_{1},x_{2})=\max_{w^{\prime}\leq\overline{w}}d\left(f_{w^{\prime}}(x_{1}),f_{w^{\prime}}(x_{2})\right).

Given a number δ>0\delta>0 and a point xXx\in X, define the (w,δ)(w,\delta)-Bowen ball at xx by

Bw(x,δ):={yX:dw(x,y)<δ}.B_{w}(x,\delta):=\left\{y\in X:{d_{w}\left(x,y\right)<\delta}\right\}.

Recall that the positively expansive of the free semigroup actions means that if there exists δ>0\delta>0, such that any x,yXx,y\in X with xyx\neq y, for any ιΣm+\iota\in\Sigma_{m}^{+} there exists n1n\geq 1 satisfying d(fι|[0,n1]¯(x),fι|[0,n1]¯(y))δd\left(f_{\overline{\iota\lvert_{[0,n-1]}}}(x),f_{\overline{\iota\lvert_{[0,n-1]}}}(y)\right)\geq\delta, which was introduced by Zhu and Ma MR4200965 .

The specification property of free semigroup actions was introduced by Rodrigues and Varandas MR3503951 . We say that GG has the specification property if for any ε>0\varepsilon>0, there exists 𝔭(ε)>0\mathfrak{p}(\varepsilon)>0, such that for any k>0k>0, any points x1,,xkXx_{1},\cdots,x_{k}\in X, any positive integers n1,,nkn_{1},\cdots,n_{k}, any p1,,pk𝔭(ε)p_{1},\cdots,p_{k}\geq\mathfrak{p}(\varepsilon), any w(pj)Fm+w_{(p_{j})}\in F_{m}^{+} with |w(pj)|=pj\lvert w_{(p_{j})}\rvert=p_{j}, w(nj)Fm+w_{(n_{j})}\in F_{m}^{+} with |w(nj)|=nj,1jk\lvert w_{(n_{j})}\rvert=n_{j},1\leq j\leq k, one has

Bw(n1)(x1,ε)(j=2kfw(pj1)¯w(nj1)¯w(p1)¯w(n1)¯1Bw(nj)(xj,ε)).B_{w_{(n_{1})}}\left(x_{1},\varepsilon\right)\cap\left(\bigcap_{j=2}^{k}{f^{-1}_{\overline{w_{(p_{j-1})}}\,\overline{w_{(n_{j-1})}}\cdots\overline{w_{(p_{1})}}\,\overline{w_{(n_{1})}}}}B_{w_{(n_{j})}}\left(x_{j},\varepsilon\right)\right)\neq\emptyset.

If m=1m=1, the specification property of free semigroup actions coincides with the classical definition introduced by Bowen MR282372 .

We recall the definition of topological entropy for free semigroup actions introduced by MR1681003 . A subset KK of XX is called a (w,ε,G)(w,\varepsilon,G)-separated subset if, for any x1,x2Kx_{1},x_{2}\in K with x1x2x_{1}\neq x_{2}, one has dw(x1,x2)εd_{w}\left(x_{1},x_{2}\right)\geq\varepsilon. The maximum cardinality of a (w,ε,G)(w,\varepsilon,G)-separated subset of XX is denoted by N(w,ε,G)N(w,\varepsilon,G). The topological entropy of free semigroup actions is defined by the formula

h(G):=limε0lim supn1nlog(1mn|w|=nN(w,ε,G)).h(G):=\lim_{\varepsilon\rightarrow 0}\limsup_{n\rightarrow\infty}\frac{1}{n}\log\left(\frac{1}{m^{n}}\sum_{\lvert w\rvert=n}N(w,\varepsilon,G)\right).
Remark 1.

If m=1m=1, this definition coincides with the topological entropy of a single map defined by MR175106 . For more information, see Chapter 7 of MR648108 .

The dynamical systems given by free semigroup action have a strong connection with skew product which has been analyzed to obtain properties of free semigroup actions through fiber associated with the skew product (see for instance MR4200965 ; MR3784991 ). Recall that the skew product transformation is given by as follows:

F:Σm+×XΣm+×X,(ι,x)(σ(ι),fi0(x)),F:\Sigma^{+}_{m}\times X\to\Sigma^{+}_{m}\times X,\>\,(\iota,x)\mapsto\big{(}\sigma(\iota),f_{i_{0}}(x)\big{)},

where ι=(i0,i1,)\iota=(i_{0},i_{1},\cdots) and σ\sigma is the shift map of Σm+\Sigma^{+}_{m}. The metric DD on Σm+×X\Sigma^{+}_{m}\times X is given by the formula

D((ι,x),(ι,x)):=max{d(ι,ι),d(x,x)}.D\left(\left(\iota,x\right),\left(\iota^{\prime},x^{\prime}\right)\right):=\max\left\{d^{\prime}\left(\iota,\iota^{\prime}\right),d\left(x,x^{\prime}\right)\right\}.
Theorem 4.

(MR1681003 ,Theorem 1) Topological entropy of the skew product transformation FF satisfies

h(F)=logm+h(G),h(F)=\log m+h(G),

where h(F)h(F) denotes the topological entropy of FF.

Now, let us recall the topological entropy and upper capacity topological entropy of free semigroup actions for non-compact sets defined by MR3918203 . Fixed δ>0\delta>0, we define the collection of subsets

:={Bw(x,δ):xX,wFm+,|w|=n and n}.\mathcal{F}:=\left\{B_{w}(x,\delta):\,x\in X,\,w\in F^{+}_{m},\,\lvert w\rvert=n\text{ and }n\in\mathbb{N}\right\}.

Given subset ZXZ\subset X, we define, for γ0\gamma\geq 0, N>0N>0 and wFm+w\in F_{m}^{+} with |w|=N\lvert w\rvert=N,

Mw(Z,γ,δ,N):=inf𝒢w{Bw(x,δ)𝒢wexp(γ(|w|+1))},{M}_{w}(Z,\gamma,\delta,N):=\inf_{\mathcal{G}_{w}}\left\{\sum_{B_{w^{\prime}}(x,\delta)\in\mathcal{G}_{w}}\exp{\left(-\gamma\cdot\left(\lvert w^{\prime}\rvert+1\right)\right)}\right\},

where the infimum is taken over all finite or countable subcollections 𝒢w\mathcal{G}_{w}\subseteq\mathcal{F} covering ZZ (i.e. for any Bw(x,δ)𝒢wB_{w^{\prime}}(x,\delta)\in\mathcal{G}_{w}, w¯w¯\overline{w}\leq\overline{w^{\prime}} and Bw(x,δ)𝒢wBw(x,δ)Z\bigcup_{B_{w^{\prime}}(x,\delta)\in\mathcal{G}_{w}}B_{w^{\prime}}(x,\delta)\supseteq Z). Let

M(Z,γ,δ,N):=1mN|w|=NMw(Z,γ,δ,N).{M}(Z,\gamma,\delta,N):=\frac{1}{m^{N}}\sum_{\lvert w\rvert=N}{M}_{w}(Z,\gamma,\delta,N).

It is easy to verify that the function M(Z,γ,δ,N){M}(Z,\gamma,\delta,N) is non-decreasing as NN increases. Therefore, there exists the limit

m(Z,γ,δ)=limNM(Z,γ,δ,N).{m}(Z,\gamma,\delta)=\lim_{N\rightarrow\infty}{M}(Z,\gamma,\delta,N).

Furthermore, we can define

Rw(Z,γ,δ,N):=inf𝒢w{Bw(x,δ)𝒢wexp(γ(N+1))},{R}_{w}(Z,\gamma,\delta,N):=\inf_{\mathcal{G}_{w}}\left\{\sum_{B_{w}(x,\delta)\in\mathcal{G}_{w}}\exp{\left(-\gamma\cdot(N+1)\right)}\right\},

where the infimum is taken over all finite or countable subcollections 𝒢w\mathcal{G}_{w}\subseteq\mathcal{F} covering ZZ and the length word correspond to every ball in 𝒢w\mathcal{G}_{w} are all equal to NN. Let

R(Z,γ,δ,N):=1mN|w|=NRw(Z,γ,δ,N),{R}(Z,\gamma,\delta,N):=\frac{1}{m^{N}}\sum_{\lvert w\rvert=N}{R}_{w}(Z,\gamma,\delta,N),

and set

r¯(Z,γ,δ):=lim supNR(Z,γ,δ,N).\overline{r}(Z,\gamma,\delta):=\limsup_{N\rightarrow\infty}{R}(Z,\gamma,\delta,N).

The critical values hZ(G,δ)h_{Z}(G,\delta) and Ch¯Z(G,δ)\overline{Ch}_{Z}(G,\delta) are defined as

hZ(G,δ)\displaystyle h_{Z}(G,\delta) :=inf{γ:m(Z,γ,δ)=0}=sup{γ:m(Z,γ,δ)=},\displaystyle:=\inf\{\gamma:{m}(Z,\gamma,\delta)=0\}=\sup\{\gamma:{m}(Z,\gamma,\delta)=\infty\},
Ch¯Z(G,δ)\displaystyle\overline{Ch}_{Z}(G,\delta) :=inf{γ:r¯(Z,γ,δ)=0}=sup{γ:r¯(Z,γ,δ)=}.\displaystyle:=\inf\{\gamma:\,\,\overline{r}(Z,\gamma,\delta)=0\}=\sup\{\gamma:\,\,\overline{r}(Z,\gamma,\delta)=\infty\}.

The topological entropy and upper capacity topological entropy of ZZ of free semigroup action GG are then defined as

hZ(G)\displaystyle h_{Z}(G) :=limδ0hZ(G,δ),\displaystyle:=\lim_{\delta\rightarrow 0}h_{Z}(G,\delta),
Ch¯Z(G)\displaystyle\overline{Ch}_{Z}(G) :=limδ0Ch¯Z(G,δ).\displaystyle:=\lim_{\delta\rightarrow 0}\overline{Ch}_{Z}(G,\delta).
Remark 2.

Let f:XXf:X\to X be a continuous transformation and GG the free semigroup generated by the map ff. Then hZ(G)=hZ(f)h_{Z}(G)=h_{Z}(f), Ch¯Z(G)=Ch¯Z(f)\overline{Ch}_{Z}(G)=\overline{Ch}_{Z}(f), for any set ZXZ\subset X, where hZ(f)h_{Z}(f) and Ch¯Z(f)\overline{Ch}_{Z}(f) are the topological entropy and upper capacity topological entropy defined by Pesin MR1489237 . If Z=XZ=X, then h(G)=h(f)=hX(f)=Ch¯X(f)h(G)=h(f)=h_{X}(f)=\overline{Ch}_{X}(f), i.e., the classical topological entropy defined by Adler et al MR175106 .

In MR3918203 , they proved that the upper capacity topological entropy of the skew product FF satisfies the following result for any subset ZXZ\subseteq X.

Theorem 5.

(MR3918203 , Theorem 5.1) For any subset ZXZ\subset X, then

Ch¯Σm+×Z(F)=logm+Ch¯Z(G).\overline{Ch}_{\Sigma_{m}^{+}\times Z}(F)=\log m+\overline{Ch}_{Z}(G).
Remark 3.

If Z=X,Z=X, the authors of MR3918203 proved that h(G)=Ch¯X(G)h(G)=\overline{Ch}_{X}(G). Hence, we have

Ch¯Σm+×X(F)=logm+Ch¯X(G).\overline{Ch}_{\Sigma_{m}^{+}\times X}(F)=\log m+\overline{Ch}_{X}(G).

Since h(F)=hΣm+×X(F)=Ch¯Σm+×X(F)h(F)=h_{\Sigma_{m}^{+}\times X}(F)=\overline{Ch}_{\Sigma_{m}^{+}\times X}(F), then Theorem 4 can be restated as

hΣm+×X(F)=logm+h(G).h_{\Sigma_{m}^{+}\times X}(F)=\log m+h(G).

3.3 Stationary measure

Let 𝐩:=(p0,,pm1)\mathbf{p}:=(p_{0},\cdots,p_{m-1}) be a probability vector with non-zero entries (i.e., pj>0p_{j}>0 for each jj and j=0m1pj=1\sum_{j=0}^{m-1}p_{j}=1). The Bernoulli measure \mathbb{P} on Σm+\Sigma_{m}^{+} generated by the probability vector 𝐩\mathbf{p} is σ\sigma-invariant and ergodic. Given a point xXx\in X and measurable set AXA\subseteq X, the transition probabilities are defined by the formula

𝒫(x,A)=χA(fj(x))𝐩(dj),\mathcal{P}(x,A)=\int\chi_{A}\left(f_{j}(x)\right)\mathbf{p}(\mathrm{d}j),

where χA\chi_{A} denotes the indicator map corresponding with the set AA. Let (X)\mathcal{M}(X) denote the set of all probability measures on XX. For every probability measure μ(X)\mu\in\mathcal{M}(X), the adjoint operator 𝒫\mathcal{P}^{*} is defined by the following way,

𝒫μ(A)=𝒫(x,A)𝑑μ(x)=χA(fj(x))𝐩(dj)μ(dx)=j=0m1pjμ(fj1A).\displaystyle\mathcal{P}^{*}\mu(A)=\int\mathcal{P}\left(x,{A}\right)d\mu(x)=\int\int\chi_{A}\left(f_{j}(x)\right)\mathbf{p}(\mathrm{d}j)\mu(\mathrm{d}x)=\sum_{j=0}^{m-1}p_{j}\mu\left(f_{j}^{-1}A\right).

A Borel probability measure μ(X)\mu\in\mathcal{M}(X) is said to be \mathbb{P}-stationary if, 𝒫μ=μ\mathcal{P}^{*}\mu=\mu.

As XX is a compact metric space, the set of \mathbb{P}-stationary probability measures is a nonempty compact convex set with respect to the weak topology for every \mathbb{P}. Its extreme points are called \mathbb{P}-ergodic. For more information, see MR884892 . When convenient, we will use the following criterium :

Proposition 6.

(MR884892 , Lemma I.2.3) Let \mathbb{P} be a Bernoulli measure on Σm+\Sigma_{m}^{+}, and μ\mu be a probability measure on XX, then

  • (1)

    μ\mu is \mathbb{P}-stationary if and only if the product probability measure ×μ\mathbb{P}\times\mu is FF-invariant.

  • (2)

    μ\mu is \mathbb{P}-stationary and ergodic if and only if the product probability measure ×μ\mathbb{P}\times\mu is FF-invariant and ergodic.

4 Periodic-like recurrence and 𝐠\mathbf{g}-almost product property of free semigroup actions

In this section, we introduce the new concept of 𝐠\mathbf{g}-almost product property of free semigroup actions, and some concepts of transitive points, quasiregular points, upper recurrent points and Banach upper recurrent points with respect to a certain orbit of free semigroup actions. We obtain that the 𝐠\mathbf{g}-almost product property is weaker than the specification property under free semigroup actions. The results in this section are inspired by MR2322186 . Throughout this section we assume that XX is a compact metric space, GG is the free semigroup generated by mm generators f0,,fm1f_{0},\cdots,f_{m-1} which are continuous maps on XX and FF is the skew product map corresponding to the maps f0,,fm1f_{0},\cdots,f_{m-1}.

Let us introduce the definitions of recurrence for free semigroup actions.

Definition 1.

Given ι=(i0,i1,)Σm+\iota=(i_{0},i_{1},\cdots)\in\Sigma_{m}^{+}, a point xXx\in X is called a transitive point with respect to ι\iota of free semigroup action GG if the orbit of xx under ι\iota,

orb(x,ι,G):={x,fi0(x),fi1i0(x),}orb(x,\iota,G):=\{x,f_{i_{0}}(x),f_{i_{1}i_{0}}(x),\cdots\}

is dense in XX.

Definition 2.

Given ι=(i0,i1,)Σm+\iota=(i_{0},i_{1},\cdots)\in\Sigma_{m}^{+}, a point xXx\in X is called a quasiregular point with respect to ι\iota of free semigroup action GG if a sequence

1nj=0n1δFj(ι,x)\frac{1}{n}\sum_{j=0}^{n-1}\delta_{F^{j}(\iota,x)}

converges in the weak topology.

Denote by Tran(ι,G)\mathrm{Tran}(\iota,G) and QR(ι,G)\mathrm{QR}(\iota,G) the sets of the transitive points and the quasiregular points with respect to ι\iota of free semigroup action, respectively. We write Tran(G)\mathrm{Tran}(G) and QR(G)\mathrm{QR}(G) for the union of Tran(ι,G)\mathrm{Tran}(\iota,G) and QR(ι,G)\mathrm{QR}(\iota,G) for all ι\iota, respectively.

Let UXU\subset X be a nonempty open set and xXx\in X, ι=(i0,i1,)Σm+\iota=(i_{0},i_{1},\cdots)\in\Sigma_{m}^{+}, the set of visiting time with respect to ι\iota is defined by

Nι(x,U):={n:fin1i0(x)U}.N_{\iota}(x,U):=\left\{n\in\mathbb{N}:f_{i_{n-1}\cdots i_{0}}(x)\in U\right\}.
Definition 3.

Given ι=(i0,i1,)Σm+\iota=(i_{0},i_{1},\cdots)\in\Sigma_{m}^{+}, a point xXx\in X is called a upper recurrent point with respect to ι\iota of free semigroup action GG if for any ε>0\varepsilon>0, the set of visiting time Nι(x,B(x,ε))N_{\iota}\left(x,B(x,\varepsilon)\right) has a positive upper density.

Definition 4.

Given ι=(i0,i1,)Σm+\iota=(i_{0},i_{1},\cdots)\in\Sigma_{m}^{+}, a point xXx\in X is called a Banach upper recurrent point with respect to ι\iota of free semigroup action GG if for any ε>0\varepsilon>0, the set of visiting time Nι(x,B(x,ε))N_{\iota}\left(x,B(x,\varepsilon)\right) has a positive Banach upper density.

Denote by QW(ι,G)\mathrm{QW}(\iota,G) and BR(ι,G)\mathrm{BR}(\iota,G) the sets of the upper recurrent points and the Banach upper recurrent points with respect to ι\iota of free semigroup action GG, respectively. Let

QW(G):=ιΣm+QW(ι,G),BR(G):=ιΣm+BR(ι,G).\mathrm{QW}(G):=\bigcup_{\iota\in\Sigma_{m}^{+}}\mathrm{QW}(\iota,G),\,\mathrm{BR}(G):=\bigcup_{\iota\in\Sigma_{m}^{+}}\mathrm{BR}(\iota,G).

Let us call QW(G)\mathrm{QW}(G) and BR(G)\mathrm{BR}(G) the sets of the upper recurrent points and the Banach upper recurrent points of free semigroup action, respectively. It is easy to check that QW(G)\mathrm{QW}(G) coincides with the set of the quasi-weakly almost periodic points of free semigroup action defined by Zhu and Ma MR4200965 . Clearly,

QW(ι,G)BR(ι,G).\mathrm{QW}(\iota,G)\subseteq\mathrm{BR}(\iota,G).

The notion of specification, introduced by Bowen MR282372 , says that one can always find a single orbit to interpolate between different pieces of orbits. In the case of β\beta-shifts it is known that the specification property holds for a set of β\beta of Lebesgue measure zero (see MR1452189 ). In MR2322186 , the authors studied a new condition, called 𝐠\mathbf{g}-almost product product property, which is weaker that specification property, and proved the 𝐠\mathbf{g}-almost product product property always holds for β\beta-shifts.

Next we introduce the concept of 𝐠\mathbf{g}-almost product property of free semigroup actions:

Definition 5.

Let 𝐠:\mathbf{g}:\mathbb{N}\rightarrow\mathbb{N} be a given nondecreasing unbounded map with the properties

𝐠(n)<n and limn𝐠(n)n=0.\mathbf{g}(n)<n\quad\text{ and }\quad\lim_{n\rightarrow\infty}\frac{\mathbf{g}(n)}{n}=0.

The function 𝐠\mathbf{g} is called blowup function.

Fixed ε>0\varepsilon>0, wFm+w\in F_{m}^{+} and xXx\in X, define the 𝐠\mathbf{g}-blowup of Bw(x,ε)B_{w}(x,\varepsilon) as the closed set

Bw(𝐠;x,ε):={yX:{ww¯:d(fw(x),fw(y))>ε}<𝐠(|w|+1)}.B_{w}(\mathbf{g}\mathchar 24635\relax\;x,\varepsilon):=\Big{\{}y\in X:\sharp\left\{w^{\prime}\leq\overline{w}:d\left(f_{w^{\prime}}(x),f_{w^{\prime}}(y)\right)>\varepsilon\right\}<\mathbf{g}\left(\lvert w\rvert+1\right)\Big{\}}.
Definition 6.

We say GG satisfies the 𝐠\mathbf{g}-almost product property with the blowup function 𝐠\mathbf{g}, if there exists a nonincreasing function 𝔪:+\mathfrak{m}:\mathbb{R}^{+}\to\mathbb{N}, such that for k2k\geq 2, any kk points x1,,xkXx_{1},\cdots,x_{k}\in X, any positive ε1,,εk\varepsilon_{1},\cdots,\varepsilon_{k}, and any words w(ε1),,w(εk)Fm+w_{(\varepsilon_{1})},\cdots,w_{(\varepsilon_{k})}\in F_{m}^{+} with |w(ε1)|𝔪(ε1),,|w(εk)|𝔪(εk)\lvert w_{(\varepsilon_{1})}\rvert\geq\mathfrak{m}(\varepsilon_{1}),\cdots,\lvert w_{(\varepsilon_{k})}\rvert\geq\mathfrak{m}(\varepsilon_{k}),

Bw(ε1)(𝐠;x1,ε1)(j=2kfw(εj1)¯w(ε1)¯1Bw(εj)(𝐠;xj,εj)).B_{w_{(\varepsilon_{1})}}(\mathbf{g}\mathchar 24635\relax\;x_{1},\varepsilon_{1})\cap\left(\bigcap_{j=2}^{k}f^{-1}_{\overline{w_{(\varepsilon_{j-1})}}\cdots\overline{w_{(\varepsilon_{1})}}}B_{w_{(\varepsilon_{j})}}\left(\mathbf{g}\mathchar 24635\relax\;x_{j},\varepsilon_{j}\right)\right)\neq\emptyset.

Under 𝐠\mathbf{g}-almost product property, the topological entropy of periodic-like recurrent sets has been studied in MR3963890 , but the topological entropy of such sets has not been studied in dynamical systems of free semigroup actions. In this paper, we focus on the topological entropy of similar sets of free semigroup actions and obtain more extensive results. Therefore, it is important and necessary to introduce the 𝐠\mathbf{g}-almost product property of free semigroup actions.

If m=1m=1, the 𝐠\mathbf{g}-almost product property of free semigroup actions coincides with the definition introduced by Pfister and Sullivan MR2322186 ; MR2109476 .

The next proposition asserts the relationship between specification property and 𝐠\mathbf{g}-almost product property of free semigroup actions.

Proposition 7.

Let 𝐠\mathbf{g} be any blowup function and GG satisfies the specification property. Then it has the 𝐠\mathbf{g}-almost product property.

Proof: This proof extends the method of Proposition 2.1 in MR2322186 to the free semigroup actions, but we provide the complete proof for the reader’s convenience.

Let 𝔭(ε)\mathfrak{p}(\varepsilon) be the positive integer in the definition of specification property of GG (see Sec. 3.2) for ε>0\varepsilon>0. It is no restriction to suppose that the function 𝔭(ε)\mathfrak{p}(\varepsilon) is nonincreasing. Let {x1,,xk}\left\{x_{1},\cdots,x_{k}\right\} and {ε1,,εk}\left\{\varepsilon_{1},\cdots,\varepsilon_{k}\right\} be given. Let δr:=2r,r\delta_{r}:=2^{-r},r\in\mathbb{N}. Next, we may define a nonincreasing function 𝔪:+\mathfrak{m}:\mathbb{R}^{+}\to\mathbb{N} as follows:

𝔪(ε):=𝔪~(2δr),\mathfrak{m}(\varepsilon):=\widetilde{\mathfrak{m}}(2\delta_{r}),

where r=min{i:2δiε}r=\min\{i:2\delta_{i}\leq\varepsilon\} and 𝔪~(2δr):=min{m:𝐠(m)2𝔭(δr)}\widetilde{\mathfrak{m}}(2\delta_{r}):=\min\left\{m:\mathbf{g}(m)\geq 2\mathfrak{p}(\delta_{r})\right\}.

It is sufficient to prove the statement for εj\varepsilon_{j} of the form 2δrj,j=1,,k2\delta_{r_{j}},j=1,\cdots,k, where, as above rj=min{i:2δiεj}r_{j}=\min\{i:2\delta_{i}\leq\varepsilon_{j}\}. Precisely, if εj\varepsilon_{j} is not of that form, we change it into 2δrj2\delta_{r_{j}}. From now on we assume that, for all jj, εj\varepsilon_{j} is of the form 2δrj2\delta_{r_{j}}. Let w(ε1),,w(εk)w_{(\varepsilon_{1})},\cdots,w_{(\varepsilon_{k})} be the words with the length not less than 𝔪(ε1),,𝔪(εk)\mathfrak{m}(\varepsilon_{1}),\cdots,\mathfrak{m}(\varepsilon_{k}), respectively. Let n1,,nkn_{1},\cdots,n_{k} denote the length of w(ε1),,w(εk)w_{(\varepsilon_{1})},\cdots,w_{(\varepsilon_{k})}, respectively.

We prove the proposition by an iterative construction. Let Δ(xj):=εj/2=δrj\Delta\left(x_{j}\right):=\varepsilon_{j}/2=\delta_{r_{j}}, w(xj):=w(εj)w(x_{j}):=w_{(\varepsilon_{j})}, p(xj):=𝔭(Δ(xj))p(x_{j}):=\mathfrak{p}\left(\Delta(x_{j})\right) and n(xj):=njn(x_{j}):=n_{j}. The sequence {x1,,xk}\{x_{1},\cdots,x_{k}\} is considered as an ordered sequence; its elements are called original points. The possible values of Δ(xj)\Delta\left(x_{j}\right) are rewritten Δ1>Δ2>>Δq\Delta_{1}>\Delta_{2}>\cdots>\Delta_{q}. A level-ii point is defined by an original point xjx_{j} such that Δ(xj)=Δi.\Delta\left(x_{j}\right)=\Delta_{i}.

At step 1 we consider the level-1 points labeled by

S1:={j[1,k]:Δ(xj)=Δ1}.S_{1}:=\left\{j\in[1,k]:\Delta\left(x_{j}\right)=\Delta_{1}\right\}.

If S1=[1,k]S_{1}=[1,k], then by the specification property there exists yy such that

d(fw(x1)|[0,i]¯(x1),fw(x1)|[0,i]¯(y))Δ1,i=p(x1),,n(x1)p(x1)1,d\left(f_{\overline{w{(x_{1})}\lvert_{[0,i]}}}(x_{1}),f_{\overline{w{(x_{1})}\lvert_{[0,i]}}}(y)\right)\leq\Delta_{1},\quad i=p(x_{1}),\cdots,n(x_{1})-p(x_{1})-1,
d(fw(xj)|[0,i]¯(xj),fw(xj)|[0,i]¯w(xj1)¯w(x1)¯(y))Δ1,i=p(xj),,n(xj)p(xj)1,d\big{(}f_{\overline{w{(x_{j})}\lvert_{[0,i]}}}(x_{j}),f_{\overline{w{(x_{j})}\lvert_{[0,i]}}\,\overline{w{(x_{j-1})}}\cdots\overline{w{(x_{1})}}}(y)\big{)}\leq\Delta_{1},i=p(x_{j}),\cdots,n(x_{j})-p(x_{j})-1,

where j=2,,kj=2,\cdots,k, which proves this case by the definition of the function 𝔪\mathfrak{m}. If S1[1,k]S_{1}\neq[1,k], then we decompose it into maximal subsets of consecutive points, called components. (The components are defined with respect to the whole sequence.) Let JJ be a component, say [r,s][r,s] with r<sr<s. By the specification property there exists yy such that

d(fw(xr)|[0,i]¯(xr),fw(xr)|[0,i]¯(y))Δ1,i=p(xr),,n(xr)p(xr)1,d\left(f_{\overline{w{(x_{r})}\lvert_{[0,i]}}}(x_{r}),f_{\overline{w{(x_{r})}\lvert_{[0,i]}}}(y)\right)\leq\Delta_{1},\quad i=p(x_{r}),\cdots,n(x_{r})-p(x_{r})-1,
d(fw(xj)|[0,i]¯(xj),fw(xj)|[0,i]¯w(xj1)¯w(xr)¯(y))Δ1,i=p(xj),,n(xj)p(xj)1,d\big{(}f_{\overline{w{(x_{j})}\lvert_{[0,i]}}}(x_{j}),f_{\overline{w{(x_{j})}\lvert_{[0,i]}}\,\overline{w{(x_{j-1})}}\cdots\overline{w{(x_{r})}}}(y)\big{)}\leq\Delta_{1},i=p(x_{j}),\cdots,n(x_{j})-p(x_{j})-1,

where j=r+1,,sj=r+1,\cdots,s. Hence,

yBw(xr)(𝐠;xr,εr)(j=r+1sfw(xj1)¯w(xr)¯1Bw(xj)(𝐠;xj,εj)).y\in B_{w{(x_{r})}}(\mathbf{g}\mathchar 24635\relax\;x_{r},\varepsilon_{r})\cap\left(\bigcap_{j=r+1}^{s}f^{-1}_{\overline{w{(x_{j-1})}}\cdots\overline{w{(x_{r})}}}B_{w{(x_{j})}}\left(\mathbf{g}\mathchar 24635\relax\;x_{j},\varepsilon_{j}\right)\right).

We replace the sequence {x1,,xk}\left\{x_{1},\cdots,x_{k}\right\} by the (ordered) sequence

{x1,,xr1,y,xs+1,xk}\left\{x_{1},\cdots,x_{r-1},y,x_{s+1}\cdots,x_{k}\right\}

and set, for the concatenated point yy, let

Δ(y):=Δ1,p(y):=𝔭(Δ(y)),n(y):=n(xr)++n(xs),w(y):=w(xr)w(xs).\Delta(y):=\Delta_{1},\,p(y):=\mathfrak{p}(\Delta(y)),\,n(y):=n(x_{r})+\cdots+n(x_{s}),\,w(y):=w(x_{r})\cdots w(x_{s}).

We do this operation for all components which are not singletons. After these operations we have a new (ordered) sequence {z1,,zk1},k1k\left\{z_{1},\cdots,z_{k_{1}}\right\},k_{1}\leq k, where the point ziz_{i} is either a point of the original sequence, or a concatenated point. This ends the construction at step 1.

Let

S2:={j[1,k1]:Δ(zj)Δ2}.S_{2}:=\left\{j\in\left[1,k_{1}\right]:\Delta\left(z_{j}\right)\geq\Delta_{2}\right\}.

We decompose this set into components. Let [r,s][r,s] be a component which is not a singleton (r<s)(r<s). We replace that component by a single concatenated point yy such that if zrz_{r} is concatenated point of S1S_{1},

d(fw(zr)|[0,i]¯(zr),fw(zr)|[0,i]¯(y))Δ2,i=0,,n(zr)1,d\left(f_{\overline{w{(z_{r})}\lvert_{[0,i]}}}(z_{r}),f_{\overline{w{(z_{r})}\lvert_{[0,i]}}}(y)\right)\leq\Delta_{2},\quad i=0,\cdots,n(z_{r})-1,

otherwise,

d(fw(zr)|[0,i]¯(zr),fw(zr)|[0,i]¯(y))Δ2,i=p(zr),,n(zr)p(zr)1;d\left(f_{\overline{w{(z_{r})}\lvert_{[0,i]}}}(z_{r}),f_{\overline{w{(z_{r})}\lvert_{[0,i]}}}(y)\right)\leq\Delta_{2},\quad i=p(z_{r}),\cdots,n(z_{r})-p(z_{r})-1\mathchar 24635\relax\;

and, for j=r+1,,sj=r+1,\cdots,s, if zjz_{j} is concatenated point of S1S_{1},

d(fw(zj)|[0,i]¯(zj),fw(zj)|[0,i]¯w(zj1)¯w(zr)¯(y))Δ2,i=0,,n(zj)1,d\left(f_{\overline{w{(z_{j})}\lvert_{[0,i]}}}(z_{j}),f_{\overline{w{(z_{j})}\lvert_{[0,i]}}\,\overline{w(z_{j-1})}\cdots\overline{w(z_{r})}}(y)\right)\leq\Delta_{2},\quad i=0,\cdots,n(z_{j})-1,

otherwise,

d(fw(zj)|[0,i]¯(zj),fw(zj)|[0,i]¯w(zj1)¯w(zr)¯(y))Δ2,i=p(zj),,n(zj)p(zj)1.d\big{(}f_{\overline{w{(z_{j})}\lvert_{[0,i]}}}(z_{j}),f_{\overline{w{(z_{j})}\lvert_{[0,i]}}\,\overline{w(z_{j-1})}\cdots\overline{w(z_{r})}}(y)\big{)}\leq\Delta_{2},i=p(z_{j}),\cdots,n(z_{j})-p(z_{j})-1.

Existence of such a yy is a consequence of the specification property. We set

Δ(y):=Δ2,p(y):=𝔭(Δ(y)),n(y):=n(zr)++n(zs),w(y):=w(zr)w(zs).\Delta(y):=\Delta_{2},\,p(y):=\mathfrak{p}(\Delta(y)),\,n(y):=n(z_{r})+\cdots+n(z_{s}),\,w(y):=w(z_{r})\cdots w(z_{s}).

The construction of yy involves consecutive points of the original sequence (via the concatenated points), say points xj,j[u,t].x_{j},j\in[u,t]. Since δj=i>jδi\delta_{j}=\sum_{i>j}\delta_{i},

yBw(xu)(𝐠;xu,εu)(j=u+1tfw(xj1)¯w(xu)¯1Bw(xj)(𝐠;xj,εj)).y\in B_{w{(x_{u})}}(\mathbf{g}\mathchar 24635\relax\;x_{u},\varepsilon_{u})\cap\left(\bigcap_{j=u+1}^{t}f^{-1}_{\overline{w{(x_{j-1})}}\cdots\overline{w{(x_{u})}}}B_{w{(x_{j})}}\left(\mathbf{g}\mathchar 24635\relax\;x_{j},\varepsilon_{j}\right)\right).

We do these operations for all components of S2S_{2}, which are not singletons. We get a new ordered sequence, still denoted by {z1,,zk2}\left\{z_{1},\cdots,z_{k_{2}}\right\}. This ends the construction at level 2.

The construction at level 3 is similar to the construction at level 2, using

S3:={j[1,k2]:Δ(zj)Δ3}.S_{3}:=\left\{j\in\left[1,k_{2}\right]:\Delta\left(z_{j}\right)\geq\Delta_{3}\right\}.

Once step qq is completed, we have a single concatenated point yy such that

d(fw(x1)|[0,i]¯(x1),fw(x1)|[0,i]¯(y))ε1,i=p(x1),,n(x1)p(x1)1,d\left(f_{\overline{w{(x_{1})}\lvert_{[0,i]}}}(x_{1}),f_{\overline{w{(x_{1})}\lvert_{[0,i]}}}(y)\right)\leq\varepsilon_{1},\quad i=p(x_{1}),\cdots,n(x_{1})-p(x_{1})-1,
d(fw(xj)|[0,i]¯(xj),fw(xj)|[0,i]¯w(xj1)¯w(x1)¯(y))εj,i=p(xj),,n(xj)p(xj)1,d\big{(}f_{\overline{w{(x_{j})}\lvert_{[0,i]}}}(x_{j}),f_{\overline{w{(x_{j})}\lvert_{[0,i]}}\,\overline{w{(x_{j-1})}}\cdots\overline{w{(x_{1})}}}(y)\big{)}\leq\varepsilon_{j},i=p(x_{j}),\cdots,n(x_{j})-p(x_{j})-1,

where j=2,,k.j=2,\cdots,k. Observe that, for all jj, 𝐠(nj)2p(xj)\mathbf{g}(n_{j})\geq 2p(x_{j}). As a consequence,

yBw(ε1)(𝐠;x1,ε1)(j=2kfw(εj1)¯w(ε1)¯1Bw(εj)(𝐠;xj,εj)).y\in B_{w_{(\varepsilon_{1})}}(\mathbf{g}\mathchar 24635\relax\;x_{1},\varepsilon_{1})\cap\left(\bigcap_{j=2}^{k}f^{-1}_{\overline{w_{(\varepsilon_{j-1})}}\cdots\overline{w_{(\varepsilon_{1})}}}B_{w_{(\varepsilon_{j})}}\left(\mathbf{g}\mathchar 24635\relax\;x_{j},\varepsilon_{j}\right)\right). (2)
Remark 4.

If m=1m=1, it generates the Proposition 2.1 in MR2322186 .

In MR3503951 , Rodrigues and Varandas proved that if XX is a compact Riemannian manifold, and GG is free semigroup generated by f0,,fm1{f_{0},\cdots,f_{m-1}} which are all expanding maps, then GG satisfies the specification property, furthermore, it has the 𝐠\mathbf{g}-almost product property by Proposition 7.

Next, we describe an example to help us interpret the 𝐠\mathbf{g}-almost product property of free semigroup actions.

Example 1.

Let MM be a compact Riemannian manifold and GG the free semigroup generated by f0,,fm1f_{0},\cdots,f_{m-1} on MM which are C1C^{1}-local diffeomorphisms such that for any j=0,,m1j=0,\cdots,m-1, Dfj(x)vλjv\|Df_{j}(x)v\|\geq\lambda_{j}\|v\| for all xMx\in M and all vTxMv\in T_{x}M, where λj\lambda_{j} is a constant larger than 1. It follows from MR4200965 and Theorem 16 of MR3503951 that GG satisfies positively expansive and specification property. Let 𝐠\mathbf{g} be a blowup function. Consider the nonincreasing function 𝐦:+\mathbf{m}:\mathbb{R}^{+}\to\mathbb{N} given by Proposition 7. For k2k\geq 2, let x1,,xkXx_{1},\cdots,x_{k}\in X, ε1,,εk>0\varepsilon_{1},\cdots,\varepsilon_{k}>0, and w(ε1),,w(εk)Fm+w_{(\varepsilon_{1})},\cdots,w_{(\varepsilon_{k})}\in F_{m}^{+} with |w(ε1)|𝔪(ε1),,|w(εk)|𝔪(εk)\lvert w_{(\varepsilon_{1})}\rvert\geq\mathfrak{m}(\varepsilon_{1}),\cdots,\lvert w_{(\varepsilon_{k})}\rvert\geq\mathfrak{m}(\varepsilon_{k}) be given. By the formula (2) in Proposition 7, we have that

Bw(ε1)(𝐠;x1,ε1)(j=2kfw(εj1)¯w(ε1)¯1Bw(εj)(𝐠;xj,εj)).B_{w_{(\varepsilon_{1})}}(\mathbf{g}\mathchar 24635\relax\;x_{1},\varepsilon_{1})\cap\left(\bigcap_{j=2}^{k}f^{-1}_{\overline{w_{(\varepsilon_{j-1})}}\cdots\overline{w_{(\varepsilon_{1})}}}B_{w_{(\varepsilon_{j})}}\left(\mathbf{g}\mathchar 24635\relax\;x_{j},\varepsilon_{j}\right)\right)\neq\emptyset.

Hence GG satisfies the 𝐠\mathbf{g}-almost product property for any blowup function 𝐠\mathbf{g}.

Proposition 8.

If GG satisfies the 𝐠\mathbf{g}-almost product property, then the skew product map FF corresponding to the maps f0,,fm1f_{0},\cdots,f_{m-1} has 2𝐠2\mathbf{g}-almost product property.

Proof: The shift map σ:Σm+Σm+\sigma:\Sigma_{m}^{+}\to\Sigma_{m}^{+} has specification property (see MR0457675 ). Let 𝔭(ε)\mathfrak{p}(\varepsilon) be the positive integer in the definition of specification property of σ\sigma for ε>0\varepsilon>0. Let 𝔪G\mathfrak{m}_{G} denote the function in the 𝐠\mathbf{g}-almost product property for GG. Let δr:=2r,r\delta_{r}:=2^{-r},\,r\in\mathbb{N}. It is no restriction to suppose that 𝔭(δr)>r\mathfrak{p}(\delta_{r})>r and the function 𝔭(δr)\mathfrak{p}(\delta_{r}) is increasing as rr increases. Next, we may define a nonincreasing function 𝔪F:+\mathfrak{m}_{F}:\mathbb{R}^{+}\to\mathbb{N} as follows:

𝔪F(ε):=𝔪~(2δr)\mathfrak{m}_{F}(\varepsilon):=\widetilde{\mathfrak{m}}(2\delta_{r})

where r=min{i:2δiε}r=\min\{i:2\delta_{i}\leq\varepsilon\} and 𝔪~(2δr):=min{n:𝐠(n)2𝔭(δr)and n𝔪G(δr)}\widetilde{\mathfrak{m}}(2\delta_{r}):=\min\left\{n:\mathbf{g}(n)\geq 2\mathfrak{p}\left(\delta_{r}\right)\,\text{and }n\geq\mathfrak{m}_{G}\left(\delta_{r}\right)\right\}.

For k2k\geq 2, let (ι(1),x1),,(ι(k),xk)Σm+×X(\iota^{(1)},x_{1}),\cdots,(\iota^{(k)},x_{k})\in\Sigma_{m}^{+}\times X and ε1,,εk>0\varepsilon_{1},\cdots,\varepsilon_{k}>0 be given. It is sufficient to prove the statement for εj\varepsilon_{j} of the form 2δrj,j=1,,k2\delta_{r_{j}},j=1,\cdots,k, where, as above rj=min{i:2δiεj}r_{j}=\min\{i:2\delta_{i}\leq\varepsilon_{j}\}. Precisely, if εj\varepsilon_{j} is not of that form, we change it into 2δrj2\delta_{r_{j}}. From now on we assume that, for all j,εjj,\varepsilon_{j} is of the form 2δrj2\delta_{r_{j}}. For convenience, write pj:=𝔭(δrj)p_{j}:=\mathfrak{p}(\delta_{r_{j}}) for all j=1,,kj=1,\cdots,k.

For any n1𝔪F(ε1),,nk𝔪F(εk)n_{1}\geq\mathfrak{m}_{F}(\varepsilon_{1}),\cdots,n_{k}\geq\mathfrak{m}_{F}(\varepsilon_{k}), let ιΣm+\iota\in\Sigma_{m}^{+} satisfy the following condition:

ι|[n1+n2++nj1,n1+n2++nj1]=ι(j)|[0,nj1],j=1,,k,\iota\lvert_{[n_{1}+n_{2}+\cdots+n_{j-1},\,n_{1}+n_{2}+\cdots+n_{j}-1]}=\iota^{(j)}\lvert_{[0,\,n_{j}-1]},\quad j=1,\cdots,k,

where n0=0n_{0}=0. We now apply the argument pj>rjp_{j}>r_{j} for all jj to obtain

d(σn1+n2++nj1+r(ι),σr(ι(j)))εj,r=pj,pj+1,,njpj1.d^{\prime}\left(\sigma^{n_{1}+n_{2}+\cdots+n_{j-1}+r}(\iota),\sigma^{r}(\iota^{(j)})\right)\leq\varepsilon_{j},\quad r=p_{j},p_{j}+1,\cdots,n_{j}-p_{j}-1. (3)

Let

w(ε1):\displaystyle w_{(\varepsilon_{1})}: =ι|[0,n11],\displaystyle=\iota\lvert_{[0,\,n_{1}-1]},
w(ε2):\displaystyle w_{(\varepsilon_{2})}: =ι|[n1,n1+n21],\displaystyle=\iota\lvert_{[n_{1},\,n_{1}+n_{2}-1]},
\displaystyle\vdots
w(εk):\displaystyle w_{(\varepsilon_{k})}: =ι|[n1++nk1,n1++nk1].\displaystyle=\iota\lvert_{[n_{1}+\cdots+n_{k-1},\,n_{1}+\cdots+n_{k}-1]}.

Observe that |w(εj)|𝔪G(εj)\lvert w_{(\varepsilon_{j})}\rvert\geq\mathfrak{m}_{G}(\varepsilon_{j}) for each j=1,,kj=1,\cdots,k. The 𝐠\mathbf{g}-almost product property of GG implies that

Bw(ε1)(𝐠;x1,ε1)(j=2kfw(εj1)¯w(ε1)¯1Bw(εj)(𝐠;xj,εj)).B_{w_{(\varepsilon_{1})}}(\mathbf{g}\mathchar 24635\relax\;x_{1},\varepsilon_{1})\cap\left(\bigcap_{j=2}^{k}f^{-1}_{\overline{w_{(\varepsilon_{j-1})}}\cdots\overline{w_{(\varepsilon_{1})}}}B_{w_{(\varepsilon_{j})}}\left(\mathbf{g}\mathchar 24635\relax\;x_{j},\varepsilon_{j}\right)\right)\neq\emptyset.

Take an element xx from the left set. For j=1,,kj=1,\cdots,k, define

Γj:={pjr<njpj:d(fw(εj)|[0,r]¯w(εj1)¯w(ε1)¯(x),fw(εj)|[0,r]¯(xj))εj}.\Gamma_{j}:=\bigg{\{}p_{j}\leq r<n_{j}-p_{j}:d\big{(}f_{\overline{w_{(\varepsilon_{j})}\lvert_{[0,r]}}\overline{w_{(\varepsilon_{j-1})}}\cdots\overline{w_{(\varepsilon_{1})}}}(x),f_{\overline{w_{(\varepsilon_{j})}\lvert_{[0,r]}}}(x_{j})\big{)}\leq\varepsilon_{j}\bigg{\}}.

To be more precise, for any rΓjr\in\Gamma_{j},

d(fι|[0,n1+n2++nj1+r]¯(x),fι(j)|[0,r]¯(xj))εj.d\left(f_{\overline{\iota\lvert_{[0,\,n_{1}+n_{2}+\cdots+n_{j-1}+r]}}}(x),f_{\overline{\iota^{(j)}\lvert_{[0,r]}}}(x_{j})\right)\leq\varepsilon_{j}. (4)

Accordingly,

D(Fn1+n2++nj1+r(ι,x),Fr(ι(j),xj))\displaystyle D\Big{(}F^{n_{1}+n_{2}+\cdots+n_{j-1}+r}(\iota,x),F^{r}(\iota^{(j)},x_{j})\Big{)}
=\displaystyle= D((σn1+n2++nj1+r(ι),fι|[0,Mj1+r]¯(x)),(σr(ι(j)),fι(j)|[0,r]¯(xj)))\displaystyle D\Big{(}\big{(}\sigma^{n_{1}+n_{2}+\cdots+n_{j-1}+r}(\iota),\,f_{\overline{\iota\lvert_{[0,\,M_{j-1}+r]}}}(x)\big{)},\big{(}\sigma^{r}(\iota^{(j)}),f_{\overline{\iota^{(j)}\lvert_{[0,r]}}}(x_{j})\big{)}\Big{)}
=\displaystyle= max{d(σn1+n2++nj1+r(ι),σr(ιj)),d(fι|[0,n1+n2++nj1+r]¯(x),fι(j)|[0,r]¯(xj))}\displaystyle\max\Big{\{}d^{\prime}\big{(}\sigma^{n_{1}+n_{2}+\cdots+n_{j-1}+r}(\iota),\sigma^{r}(\iota_{j})\big{)},d\big{(}f_{\overline{\iota\lvert_{[0,\,n_{1}+n_{2}+\cdots+n_{j-1}+r]}}}(x),f_{\overline{\iota^{(j)}\lvert_{[0,r]}}}(x_{j})\big{)}\Big{\}}
\displaystyle\leq εj,by these inequations (3) and (4).\displaystyle\varepsilon_{j},\quad\text{by these inequations (\ref{3.1}) and (\ref{3.2})}.

Observe that (Γj)nj2pj𝐠(nj)nj2𝐠(nj)\sharp\left(\Gamma_{j}\right)\geq n_{j}-2p_{j}-\mathbf{g}(n_{j})\geq n_{j}-2\mathbf{g}(n_{j}). As a consequence,

(ι,x)Bn1(2𝐠;(ι(1),x1),ε1)(j=2kF(n1+n2++nj1)Bnj(2𝐠;(ι(j),xj),εj)).(\iota,x)\in B_{n_{1}}\big{(}2\mathbf{g}\mathchar 24635\relax\;(\iota^{(1)},x_{1}),\varepsilon_{1}\big{)}\cap\bigg{(}\bigcap_{j=2}^{k}F^{-(n_{1}+n_{2}+\cdots+n_{j-1})}B_{n_{j}}\big{(}2\mathbf{g}\mathchar 24635\relax\;(\iota^{(j)},x_{j}),\varepsilon_{j}\big{)}\bigg{)}.

This proves that FF has 2𝐠\mathbf{g}-almost product property.

5 General (ir)regularity

In this section, we study the more general irregular and regular sets of free semigroup actions and calculate the upper capacity topological entropy of the irregular and regular sets of free semigroup actions. The results in this section are inspired by MR3963890 ; MR4200965 . Throughout this section we assume that XX is a compact metric space, GG is the free semigroup generated by mm generators f0,,fm1f_{0},\cdots,f_{m-1} which are continuous maps on XX and FF is the skew product map corresponding to the maps f0,,fm1f_{0},\cdots,f_{m-1}.

Let

Rα(G):=ιΣm+Rα(ι,G),Iα(G):=ιΣm+Iα(ι,G).R_{\alpha}(G):=\bigcup_{\iota\in\Sigma_{m}^{+}}R_{\alpha}(\iota,G),\quad I_{\alpha}(G):=\bigcup_{\iota\in\Sigma_{m}^{+}}I_{\alpha}(\iota,G).

Let us call Rα(G)R_{\alpha}(G) and Iα(G)I_{\alpha}(G) the α\alpha-regular set and α\alpha-irregular set of free semigroup actions, respectively.

Theorem 9.

Let (X,d)(X,d) be a compact metric space and GG the free semigroup action on XX generated by f0,,fm1f_{0},\cdots,f_{m-1}. Let α:(Σm+×X,F)\alpha:\mathcal{M}(\Sigma_{m}^{+}\times X,F)\to\mathbb{R} be a continuous function. Then,

Ch¯Rα(G)(G)=Ch¯X(G)=h(G).\overline{Ch}_{R_{\alpha}(G)}(G)=\overline{Ch}_{X}(G)=h(G).

Proof: Consider a set

Rα(F):={(ι,x)Σm+×X:infνM(ι,x)(F)α(ν)=supνM(ι,x)(F)α(ν)}.R_{\alpha}(F):=\left\{(\iota,x)\in\Sigma_{m}^{+}\times X:\inf_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu)=\sup_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu)\right\}.

It follows from Theorem 4.1(4) of MR3963890 that

hRα(F)(F)=hΣm+×X(F).h_{R_{\alpha}(F)}(F)=h_{\Sigma_{m}^{+}\times X}(F). (5)

For (ι,x)Rα(F)(\iota,x)\in R_{\alpha}(F), it is immediate that xRα(ι,G)x\in R_{\alpha}(\iota,G), then xRα(G)x\in R_{\alpha}(G). This implies that

Rα(F)Σm+×Rα(G)Σm+×X.R_{\alpha}(F)\subseteq\Sigma_{m}^{+}\times R_{\alpha}(G)\subseteq\Sigma_{m}^{+}\times X.

In this way we conclude from the formula (5) that

hΣm+×X(F)=hRα(F)(F)Ch¯Σm+×Rα(G)(F).h_{\Sigma_{m}^{+}\times X}(F)=h_{R_{\alpha}(F)}(F)\leq\overline{Ch}_{\Sigma_{m}^{+}\times R_{\alpha}(G)}(F). (6)

From Theorem 4, we obtain that

logm+h(G)=hΣm+×X(F).\log m+h(G)=h_{\Sigma_{m}^{+}\times X}(F). (7)

By Theorem 5, one has

Ch¯Σm+×Rα(G)(F)=logm+Ch¯Rα(G)(G).\overline{Ch}_{\Sigma_{m}^{+}\times R_{\alpha}(G)}(F)=\log m+\overline{Ch}_{R_{\alpha}(G)}(G). (8)

Combining the equations (6), (7) and (8), we get that

logm+h(G)\displaystyle\log m+h(G) =hRα(F)(F)\displaystyle=h_{R_{\alpha}(F)}(F)
Ch¯Σm+×Rα(G)(F)\displaystyle\leq\overline{Ch}_{\Sigma_{m}^{+}\times R_{\alpha}(G)}(F)
=logm+Ch¯Rα(G)(G).\displaystyle=\log m+\overline{Ch}_{R_{\alpha}(G)}(G).

Hence,

Ch¯X(G)=h(G)Ch¯Rα(G)(G).\overline{Ch}_{X}(G)=h(G)\leq\overline{Ch}_{R_{\alpha}(G)}(G).

Obviously,

Ch¯Rα(G)(G)Ch¯X(G)=h(G).\overline{Ch}_{R_{\alpha}(G)}(G)\leq\overline{Ch}_{X}(G)=h(G).

Consequently,

Ch¯Rα(G)(G)=Ch¯X(G)=h(G).\overline{Ch}_{R_{\alpha}(G)}(G)=\overline{Ch}_{X}(G)=h(G).
Theorem 10.

Suppose that GG has the 𝐠\mathbf{g}-almost product property, there exists a \mathbb{P}-stationary measure with full support where \mathbb{P} is a Bernoulli measure on Σm+\Sigma_{m}^{+}. Let α:(Σm+×X,F)\alpha:\mathcal{M}(\Sigma_{m}^{+}\times X,F)\to\mathbb{R} be a continuous function satisfying the condition A.3. If infν(Σm+×X,F)α(ν)<supν(Σm+×X,F)α(ν)\inf_{\nu\in\mathcal{M}(\Sigma_{m}^{+}\times X,F)}\alpha(\nu)<\sup_{\nu\in\mathcal{M}(\Sigma_{m}^{+}\times X,F)}\alpha(\nu), then

Ch¯Iα(G)(G)=Ch¯E(Iα,Tran)(G)=Ch¯X(G)=h(G),\overline{Ch}_{I_{\alpha}(G)}(G)=\overline{Ch}_{E(I_{\alpha},\mathrm{Tran})}(G)=\overline{Ch}_{X}(G)=h(G),

where E(Iα,Tran):=ιΣm+(Iα(ι,G)Tran(ι,G))E(I_{\alpha},\mathrm{Tran}):=\cup_{\iota\in\Sigma_{m}^{+}}\left(I_{\alpha}(\iota,G)\cap\mathrm{Tran}(\iota,G)\right). In particular,

Ch¯Iα(G)(G)=Ch¯Iα(G)Tran(G)(G)=Ch¯X(G)=h(G).\overline{Ch}_{I_{\alpha}(G)}(G)=\overline{Ch}_{I_{\alpha}(G)\cap\mathrm{Tran}(G)}(G)=\overline{Ch}_{X}(G)=h(G).

Proof: Suppose μ\mu is the \mathbb{P}-stationary measure with full support. Then, Proposition 6 ensures that ×μ\mathbb{P}\times\mu is an invariant measure under the skew product FF with support Σm+×X\Sigma_{m}^{+}\times X. From Proposition 8, the skew product FF has 2𝐠\mathbf{g}-almost product property. Consider a set

Iα(F):={(ι,x)Σm+×X:infνM(ι,x)(F)α(ν)<supνM(ι,x)(F)α(ν)}.I_{\alpha}(F):=\left\{(\iota,x)\in\Sigma_{m}^{+}\times X:\inf_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu)<\sup_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu)\right\}.

Hence, from Theorem 4.1 (2) of MR3963890 , one has

hIα(F)(F)=hIα(F)Tran(F)(F)=hΣm+×X(F).h_{I_{\alpha}(F)}(F)=h_{I_{\alpha}(F)\cap\mathrm{Tran}(F)}(F)=h_{\Sigma_{m}^{+}\times X}(F). (9)

It is clear that if (ι,x)Iα(F)Tran(F)(\iota,x)\in I_{\alpha}(F)\cap\mathrm{Tran}(F), then xIα(ι,G)Tran(ι,G)x\in I_{\alpha}(\iota,G)\cap\mathrm{Tran}(\iota,G). Accordingly, xE(Iα,Tran)x\in E(I_{\alpha},\mathrm{Tran}). This yields that

Iα(F)Tran(F)Σm+×E(Iα,Tran)Σm+×X.I_{\alpha}(F)\cap\mathrm{Tran}(F)\subseteq\Sigma_{m}^{+}\times E(I_{\alpha},\mathrm{Tran})\subseteq\Sigma_{m}^{+}\times X.

In this way we conclude from the formula (9) that

hΣm+×X(F)=hIα(F)Tran(F)(F)Ch¯Σm+×E(Iα,Tran)(F).h_{\Sigma_{m}^{+}\times X}(F)=h_{I_{\alpha}(F)\cap\mathrm{Tran}(F)}(F)\leq\overline{Ch}_{\Sigma_{m}^{+}\times E(I_{\alpha},\mathrm{Tran})}(F). (10)

By Theorem 5, one has

Ch¯Σm+×E(Iα,Tran)(F)=logm+Ch¯E(Iα,Tran)(G).\overline{Ch}_{\Sigma_{m}^{+}\times E(I_{\alpha},\mathrm{Tran})}(F)=\log m+\overline{Ch}_{E(I_{\alpha},\mathrm{Tran})}(G). (11)

Combining the equations (7), (10) and (11), we get that

logm+h(G)\displaystyle\log m+h(G) =hIα(F)Tran(F)(F)\displaystyle=h_{I_{\alpha}(F)\cap\mathrm{Tran}(F)}(F)
Ch¯Σm+×E(Iα,Tran)(F)\displaystyle\leq\overline{Ch}_{\Sigma_{m}^{+}\times E(I_{\alpha},\mathrm{Tran})}(F)
=logm+Ch¯E(Iα,Tran)(G).\displaystyle=\log m+\overline{Ch}_{E(I_{\alpha},\mathrm{Tran})}(G).

Hence,

Ch¯X(G)=h(G)Ch¯E(Iα,Tran)(G).\overline{Ch}_{X}(G)=h(G)\leq\overline{Ch}_{E(I_{\alpha},\mathrm{Tran})}(G).

Obviously,

Ch¯E(Iα,Tran)(G)Ch¯X(G)=h(G).\overline{Ch}_{E(I_{\alpha},\mathrm{Tran})}(G)\leq\overline{Ch}_{X}(G)=h(G).

Consequently,

Ch¯E(Iα,Tran)(G)=Ch¯X(G)=h(G).\overline{Ch}_{E(I_{\alpha},\mathrm{Tran})}(G)=\overline{Ch}_{X}(G)=h(G).

We may obtain from E(Iα,Tran)Iα(G)E(I_{\alpha},\mathrm{Tran})\subseteq I_{\alpha}(G) that

Ch¯Iα(G)(G)=Ch¯E(Iα,Tran)(G)=Ch¯X(G)=h(G).\overline{Ch}_{I_{\alpha}(G)}(G)=\overline{Ch}_{E(I_{\alpha},\mathrm{Tran})}(G)=\overline{Ch}_{X}(G)=h(G).

It is easy to check that

Iα(G)Tran(G)\displaystyle I_{\alpha}(G)\cap\mathrm{Tran}(G) =(ιΣm+Iα(ι,G))(ιΣm+Tran(ι,G))\displaystyle=\left(\bigcup_{\iota\in\Sigma_{m}^{+}}I_{\alpha}(\iota,G)\right)\cap\left(\bigcup_{\iota^{\prime}\in\Sigma_{m}^{+}}\mathrm{Tran}(\iota^{\prime},G)\right)
=ι,ιΣm+(Iα(ι,G)Tran(ι,G))\displaystyle=\bigcup_{\iota,\iota^{\prime}\in\Sigma_{m}^{+}}\left(I_{\alpha}(\iota,G)\cap\mathrm{Tran}(\iota^{\prime},G)\right)
ιΣm+(Iα(ι,G)Tran(ι,G))=E(Iα,Tran).\displaystyle\supseteq\bigcup_{\iota\in\Sigma_{m}^{+}}\left(I_{\alpha}(\iota,G)\cap\mathrm{Tran}(\iota,G)\right)=E(I_{\alpha},\mathrm{Tran}).

Hence,

Ch¯Iα(G)(G)=Ch¯Iα(G)Tran(G)(G)=Ch¯X(G)=h(G).\overline{Ch}_{I_{\alpha}(G)}(G)=\overline{Ch}_{I_{\alpha}(G)\cap\mathrm{Tran}(G)}(G)=\overline{Ch}_{X}(G)=h(G).
Remark 5.

Both Theorem 9 and 10 are extension of Theorem 4.1 of MR3963890 .

For ι=(i0,i1,)Σm+\iota=(i_{0},i_{1},\cdots)\in\Sigma^{+}_{m}, consider a set

Iφ(ι,G):={xX:limn1nj=0n1φ(fij1i0(x)) does not exist}.I_{\varphi}(\iota,G):=\left\{x\in X:\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\varphi\left(f_{i_{j-1}\cdots i_{0}}(x)\right)\text{ does not exist}\right\}.

Let Rφ(ι,G):=X\Iφ(ι,G)R_{\varphi}(\iota,G):=X\backslash I_{\varphi}(\iota,G), and

Rφ(G):=ιΣm+Rφ(ι,G),Iφ(G):=ιΣm+Iφ(ι,G).R_{\varphi}(G):=\bigcup_{\iota\in\Sigma_{m}^{+}}R_{\varphi}(\iota,G),\quad I_{\varphi}(G):=\bigcup_{\iota\in\Sigma_{m}^{+}}I_{\varphi}(\iota,G).

It is easy to find that Iφ(G)I_{\varphi}(G) coincides with the φ\varphi-irregular set of free semigroup action defined by Zhu and Ma MR4200965 . For convenience, we call Rφ(G)R_{\varphi}(G) to be φ\varphi-regular set of free semigroup action.

For a continuous function φ:X\varphi:X\to\mathbb{R}, consider a function ψ:Σm+×X\psi:\Sigma_{m}^{+}\times X\to\mathbb{R} such that for any ι=(i0,i1,)Σm+\iota=(i_{0},i_{1},\cdots)\in\Sigma_{m}^{+}, the map ψ\psi satisfies ψ(ι,x)=φ(x)\psi(\iota,x)=\varphi(x), then ψ\psi is continuous. The continuous function α:(Σm+×X,F)\alpha:\mathcal{M}(\Sigma_{m}^{+}\times X,F)\to\mathbb{R} is given by α(ν)=ψdν\alpha(\nu)=\int\psi\mathrm{d}\nu. It is easy to check that the function α\alpha satisfies the conditions A.1, A.2 and A.3. It follows from the definition of the function ψ\psi that the limit

limn1nj=0n1φ(fij1i0(x))\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\varphi\left(f_{i_{j-1}\cdots i_{0}}(x)\right)

exists if and only if

infνM(ι,x)(F)α(ν)=supνM(ι,x)(F)α(ν).\inf_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu)=\sup_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu).

Hence, Rα(ι,G)=Rφ(ι,G)R_{\alpha}(\iota,G)=R_{\varphi}(\iota,G). Analogously, Iα(ι,G)=Iφ(ι,G)I_{\alpha}(\iota,G)=I_{\varphi}(\iota,G).

Corollary 1.

Let (X,d)(X,d) be a compact metric space and GG the free semigroup action on XX generated by f0,,fm1f_{0},\cdots,f_{m-1}. Then the φ\varphi-regular set of free semigroup action carries full upper capacity topological entropy, that is,

Ch¯Rφ(G)(G)=Ch¯X(G)=h(G).\overline{Ch}_{R_{\varphi}(G)}(G)=\overline{Ch}_{X}(G)=h(G).

If m=1m=1, then the above corollary coincides with the result of Theorem 4.2 that Tian proved in MR3436391 .

Corollary 2.

Suppose that GG has the 𝐠\mathbf{g}-almost product property, there exists a \mathbb{P}-stationary measure with full support where \mathbb{P} is a Bernoulli measure on Σm+\Sigma_{m}^{+}. Let φ:X\varphi:X\to\mathbb{R} be a continuous function. If Iφ(ι,G)I_{\varphi}(\iota,G) is non-empty for some ιΣm+\iota\in\Sigma_{m}^{+}, then

Ch¯Iφ(G)(G)=Ch¯E(Iφ,Tran)(G)=Ch¯X(G)=h(G),\overline{Ch}_{I_{\varphi}(G)}(G)=\overline{Ch}_{E(I_{\varphi},\mathrm{Tran})}(G)=\overline{Ch}_{X}(G)=h(G),

where E(Iφ,Tran):=ιΣm+(Iφ(ι,G)Tran(ι,G)){E(I_{\varphi},\mathrm{Tran})}:=\cup_{\iota\in\Sigma_{m}^{+}}\left(I_{\varphi}(\iota,G)\cap\mathrm{Tran}(\iota,G)\right). In particular,

Ch¯Iφ(G)(G)=Ch¯Iφ(G)Tran(G)(G)=Ch¯X(G)=h(G).\overline{Ch}_{I_{\varphi}(G)}(G)=\overline{Ch}_{I_{\varphi}(G)\cap\mathrm{Tran}(G)}(G)=\overline{Ch}_{X}(G)=h(G).
Remark 6.

The previous corollary generalizes Theorem 2 obtained by Zhu and Ma MR4200965 . Indeed, from Lemma 3.3 of MR4200965 , if the free semigroup action GG has specification property, then the skew product FF has specification property. This yields from MR646049 that there exists a FF-invariant probability measures on Σm+×X\Sigma_{m}^{+}\times X with full support. On the other hand, from Proposition 7 we know that specification implies the 𝐠\mathbf{g}-almost product property for free semigroup actions. Therefore, the specification property of the free semigroup GG implies the hypothesis of Corollary 2, as we wanted to prove.

We provide an example that satisfies the assumptions of Theorem 1, 2 and 3.

Example 2.

Given qq\in\mathbb{N}, let AjGL(q,)A_{j}\in\mathrm{GL}(q,\mathbb{Z}) be the integer coefficients matrix whose the determinant is different from zero and eigenvalues have absolute value bigger than one, for j=0,,m1j=0,\cdots,m-1. Let fAj:𝕋q𝕋qf_{A_{j}}:\mathbb{T}^{q}\to\mathbb{T}^{q} be the linear endomorphism of the torus induced by the matrix AjA_{j}. Then the transformations fA0,fA1,,fAm1f_{A_{0}},f_{A_{1}},\cdots,f_{A_{m-1}} are all expanding (see Sec. 11.1 of MR3558990 for details). Let GG be the free semigroup action generated by fA0,fA1,,fAm1f_{A_{0}},f_{A_{1}},\cdots,f_{A_{m-1}}. It follows from MR3503951 that GG is positively expansive with 𝐠\mathbf{g}-almost product property.

Suppose that F:Σm+×XΣm+×XF:\Sigma_{m}^{+}\times X\to\Sigma_{m}^{+}\times X is the skew product map corresponding to the maps fA0,fA1,,fAm1f_{A_{0}},f_{A_{1}},\cdots,f_{A_{m-1}}. From Section 4.2.5 of MR3558990 , we have that fAjf_{A_{j}} preserves the Lebesgue measure μ\mu on 𝕋q\mathbb{T}^{q} for all j=0,,m1j=0,\cdots,m-1. Hence the Lebesgue measure is stationary with respect to any Bernoulli measure, so the skew product FF is not uniquely ergodic. This may be seen as follows. Let a\mathbb{P}_{a} and b\mathbb{P}_{b} be two Bernoulli measures on Σm+\Sigma_{m}^{+} generated by different probability vectors a=(a0,a1,,am1)a=(a_{0},a_{1},\cdots,a_{m-1}) and b=(b0,b1,,bm1)b=(b_{0},b_{1},\cdots,b_{m-1}), respectively. It follows from Proposition 6 that the different product measures both a×μ\mathbb{P}_{a}\times\mu and b×μ\mathbb{P}_{b}\times\mu are invariant under the skew product FF. This shows that FF is not uniquely ergodic. Hence, it satisfies the hypothesis of Theorem 1, 2 and 3, as we wanted to prove.

6 Proofs of the main results

In this section, we complete the proofs of Theorem 1, 2 and 3. Let (X,f)(X,f) be a dynamical system and Z1,Z2,,ZkX(k2)Z_{1},Z_{2},\cdots,Z_{k}\subseteq X(k\geq 2) be a collection of subsets of XX. Recall that {Zi}\left\{Z_{i}\right\} has full entropy gaps with respect to YXY\subseteq X if

h(Zi+1\Zi)Y(f)=hY(f) for all 1i<k.h_{(Z_{i+1}\backslash Z_{i})\cap Y}(f)=h_{Y}(f)\text{ for all }1\leq i<k.

Next throughout this section we assume that XX is a compact metric space, GG is the free semigroup generated by mm generators f0,,fm1f_{0},\cdots,f_{m-1} which are continuous maps on XX, and FF is the skew product map corresponding to the maps f0,,fm1f_{0},\cdots,f_{m-1}.

From MR3963890 , Tian defined the recurrent level sets of the upper Banach recurrent points with respect to a single map. For the skew product map FF, let BR#(F):=BR(F)\QW(F)\mathrm{BR}^{\#}(F):=\mathrm{BR}(F)\backslash\mathrm{QW}(F),

W(F)\displaystyle W(F) :={(ι,x)Σm+×X:Sμ=C(ι,x) for every μM(ι,x)(F)},\displaystyle:=\left\{(\iota,x)\in\Sigma_{m}^{+}\times X:S_{\mu}=C_{(\iota,x)}\text{ for every }\mu\in M_{(\iota,x)}(F)\right\},
V(F)\displaystyle V(F) :={(ι,x)Σm+×X:μM(ι,x)(F) such that Sμ=C(ι,x)},\displaystyle:=\left\{(\iota,x)\in\Sigma_{m}^{+}\times X:\exists\mu\in M_{(\iota,x)}(F)\text{ such that }S_{\mu}=C_{(\iota,x)}\right\},
S(F)\displaystyle S(F) :={(ι,x)Σm+×X:μM(ι,x)(F)Sμ}.\displaystyle:=\left\{(\iota,x)\in\Sigma_{m}^{+}\times X:\cap_{\mu\in M_{(\iota,x)}(F)}S_{\mu}\neq\emptyset\right\}.

More precisely, BR#(F)\mathrm{BR}^{\#}(F) is divided into the following several levels with different asymptotic behaviour:

BR1(F):=BR#(F)W(F),\displaystyle\mathrm{BR}_{1}(F):=\mathrm{BR}^{\#}(F)\cap W(F),
BR2(F):=BR#(F)(V(F)S(F)),\displaystyle\mathrm{BR}_{2}(F):=\mathrm{BR}^{\#}(F)\cap(V(F)\cap S(F)),
BR3(F):=BR#(F)V(F),\displaystyle\mathrm{BR}_{3}(F):=\mathrm{BR}^{\#}(F)\cap V(F),
BR4(F):=BR#(F)(V(F)S(F)),\displaystyle\mathrm{BR}_{4}(F):=\mathrm{BR}^{\#}(F)\cap(V(F)\cup S(F)),
BR5(F):=BR#(F).\displaystyle\mathrm{BR}_{5}(F):=\mathrm{BR}^{\#}(F).

Then BR1(F)BR2(F)BR3(F)BR4(F)BR5(F)\mathrm{BR}_{1}(F)\subseteq\mathrm{BR}_{2}(F)\subseteq\mathrm{BR}_{3}(F)\subseteq\mathrm{BR}_{4}(F)\subseteq\mathrm{BR}_{5}(F).

Proof: [Proof of Theorem 1] Suppose μ\mu is the \mathbb{P}-stationary measure with full support. Then, Proposition 6 ensures that ×μ\mathbb{P}\times\mu is an invariant measure under the skew product FF with support Σm+×X\Sigma_{m}^{+}\times X. From Lemma 8, the skew product FF has 2𝐠\mathbf{g}-almost product property.

(1) Consider a set

Iα(F):={(ι,x)Σm+×X:infνM(ι,x)(F)α(ν)<supνM(ι,x)(F)α(ν)}.I_{\alpha}(F):=\left\{(\iota,x)\in\Sigma_{m}^{+}\times X:\inf_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu)<\sup_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu)\right\}.

If α\alpha satisfies A.3 and Int(Lα)\mathrm{Int}(L_{\alpha})\neq\emptyset, it follows from Theorem 6.1(1) of MR3963890 that

{QR(F),BR1(F),BR2(F),BR3(F),BR4(F),BR5(F)}\left\{\mathrm{QR}(F),\mathrm{BR}_{1}(F),\mathrm{BR}_{2}(F),\mathrm{BR}_{3}(F),\mathrm{BR}_{4}(F),\mathrm{BR}_{5}(F)\right\}

has full entropy gaps with respect to Iα(F)Tran(F)I_{\alpha}(F)\cap\mathrm{Tran}(F). Hence,

hIα(F)Tran(F)(BR1(F)QR(F))(F)=hIα(F)Tran(F)(F)=hΣm+×X(F)h_{I_{\alpha}(F)\cap\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{1}(F)\setminus\mathrm{QR}(F)\right)}(F)=h_{I_{\alpha}(F)\cap\mathrm{Tran}(F)}(F)=h_{\Sigma_{m}^{+}\times X}(F)

and

hIα(F)Tran(F)(BRj(F)BRj1(F))(F)=hIα(F)Tran(F)(F)=hΣm+×X(F),h_{I_{\alpha}(F)\cap\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{j}(F)\setminus\mathrm{BR}_{j-1}(F)\right)}(F)=h_{I_{\alpha}(F)\cap\mathrm{Tran}(F)}(F)=h_{\Sigma_{m}^{+}\times X}(F),

for j=2,,5j=2,\cdots,5. From the Theorem 4, we get that

logm+h(G)=hIα(F)Tran(F)(BR1(F)QR(F))(F),\log m+h(G)=h_{I_{\alpha}(F)\cap\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{1}(F)\setminus\mathrm{QR}(F)\right)}(F), (12)

and

logm+h(G)=hIα(F)Tran(F)(BRj(F)BRj1)(F)for j=2,,5.\log m+h(G)=h_{I_{\alpha}(F)\cap\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{j}(F)\setminus\mathrm{BR}_{j-1}\right)}(F)\quad\text{for }j=2,\cdots,5. (13)

By the definitions of the sets, if (ι,x)Iα(F)Tran(F)(BR1(F)QR(F))(\iota,x)\in I_{\alpha}(F)\cap\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{1}(F)\setminus\mathrm{QR}(F)\right) then

xIα(ι,G)Tran(ι,G)(BR1(ι,G)QR(ι,G)).x\in I_{\alpha}(\iota,G)\cap\mathrm{Tran}(\iota,G)\cap\left(\mathrm{BR}_{1}(\iota,G)\setminus\mathrm{QR}(\iota,G)\right).

This shows that

Iα(F)Tran(F)(BR1(F)QR(F))Σm+×M1(Iα,Tran)Σm+×X,I_{\alpha}(F)\cap\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{1}(F)\setminus\mathrm{QR}(F)\right)\subseteq\Sigma_{m}^{+}\times M_{1}(I_{\alpha},\mathrm{Tran})\subseteq\Sigma_{m}^{+}\times X, (14)

where

M1(Iα,Tran):=ιΣm+{Iα(ι,G)Tran(ι,G)(BR1(ι,G)QR(ι,G))}.M_{1}(I_{\alpha},\mathrm{Tran}):=\cup_{\iota\in\Sigma_{m}^{+}}\big{\{}I_{\alpha}(\iota,G)\cap\mathrm{Tran}(\iota,G)\cap\left(\mathrm{BR}_{1}(\iota,G)\setminus\mathrm{QR}(\iota,G)\right)\big{\}}.

It follows using the formula (14) and Theorem 5 that

hΣm+×X(F)\displaystyle h_{\Sigma_{m}^{+}\times X}(F) =hIα(F)Tran(F)(BR1(F)QR(F))(F)\displaystyle=h_{I_{\alpha}(F)\cap\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{1}(F)\setminus\mathrm{QR}(F)\right)}(F) (15)
Ch¯Σm+×M1(Iα,Tran)(F)\displaystyle\leq\overline{Ch}_{\Sigma_{m}^{+}\times M_{1}(I_{\alpha},\mathrm{Tran})}(F)
=logm+Ch¯M1(Iα,Tran)(G).\displaystyle=\log m+\overline{Ch}_{M_{1}(I_{\alpha},\mathrm{Tran})}(G).

Combining these two relations (12) and (15), we find that

Ch¯M1(Iα,Tran)(G)=Ch¯X(G)=h(G).\overline{Ch}_{M_{1}(I_{\alpha},\mathrm{Tran})}(G)=\overline{Ch}_{X}(G)=h(G).

Denote

Mj(Iα,Tran):=ιΣm+{Iα(ι,G)Tran(ι,G)(BRj(ι,G)BRj1(ι,G))},M_{j}(I_{\alpha},\mathrm{Tran}):=\cup_{\iota\in\Sigma_{m}^{+}}\left\{I_{\alpha}(\iota,G)\cap\mathrm{Tran}(\iota,G)\cap\left(\mathrm{BR}_{j}(\iota,G)\setminus\mathrm{BR}_{j-1}(\iota,G)\right)\right\},

for j=2,,5.j=2,\cdots,5. Similarly, if (ι,x)Iα(F)Tran(F)(BRj(F)BRj1(F))(\iota,x)\in I_{\alpha}(F)\cap\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{j}(F)\setminus\mathrm{BR}_{j-1}(F)\right), we obtain that xIα(ι,G)Tran(ι,G)(BRj(ι,G)BRj1(ι,G))x\in I_{\alpha}(\iota,G)\cap\mathrm{Tran}(\iota,G)\cap\left(\mathrm{BR}_{j}(\iota,G)\setminus\mathrm{BR}_{j-1}(\iota,G)\right). This shows that

Iα(F)Tran(F)(BRj(F)BRj1(F))Σm+×Mj(Iα,Tran)Σm+×X.I_{\alpha}(F)\cap\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{j}(F)\setminus\mathrm{BR}_{j-1}(F)\right)\subseteq\Sigma_{m}^{+}\times M_{j}(I_{\alpha},\mathrm{Tran})\subseteq\Sigma_{m}^{+}\times X.

It follows using the Theorem 5 that

hΣm+×X(F)\displaystyle h_{\Sigma_{m}^{+}\times X}(F) =hIα(F)Tran(F)(BRj(F)BRj1(F))(F)\displaystyle=h_{I_{\alpha}(F)\cap\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{j}(F)\setminus\mathrm{BR}_{j-1}(F)\right)}(F) (16)
Ch¯Σm+×Mj(Iα,Tran)(F)\displaystyle\leq\overline{Ch}_{\Sigma_{m}^{+}\times M_{j}(I_{\alpha},\mathrm{Tran})}(F)
=logm+Ch¯Mj(Iα,Tran)(G).\displaystyle=\log m+\overline{Ch}_{M_{j}(I_{\alpha},\mathrm{Tran})}(G).

Combining these two relations (12) and (16), we find that

Ch¯Mj(Iα,Tran)(G)=Ch¯X(G)=h(G),for j=2,,5.\overline{Ch}_{M_{j}(I_{\alpha},\mathrm{Tran})}(G)=\overline{Ch}_{X}(G)=h(G),\,\text{for }j=2,\cdots,5.

This completes the proof.

(2) By the hypothesis about the skew product, it follows from Theorem 6.1(3) of MR3963890 that

{,QR(F)BR1(F),BR1(F),BR2(F),BR3(F),BR4(F),BR5(F)}\left\{\emptyset,\mathrm{QR}(F)\cap\mathrm{BR}_{1}(F),\mathrm{BR}_{1}(F),\mathrm{BR}_{2}(F),\mathrm{BR}_{3}(F),\mathrm{BR}_{4}(F),\mathrm{BR}_{5}(F)\right\}

has full entropy gaps with respect to Tran(F)\mathrm{Tran}(F). Hence,

hTran(F)QR(F)BR1(F)(F)=hTran(F)(F)=hΣm+×X(F),h_{\mathrm{Tran}(F)\cap\mathrm{QR}(F)\cap\mathrm{BR}_{1}(F)}(F)=h_{\mathrm{Tran}(F)}(F)=h_{\Sigma_{m}^{+}\times X}(F),
hTran(F)(BR1(F)QR(F))(F)=hTran(F)(F)=hΣm+×X(F),h_{\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{1}(F)\setminus\mathrm{QR}(F)\right)}(F)=h_{\mathrm{Tran}(F)}(F)=h_{\Sigma_{m}^{+}\times X}(F),
hTran(F)(BRj(F)BRj1(F))(F)=hTran(F)(F)=hΣm+×X(F),for j=2,,5.h_{\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{j}(F)\setminus\mathrm{BR}_{j-1}(F)\right)}(F)=h_{\mathrm{Tran}(F)}(F)=h_{\Sigma_{m}^{+}\times X}(F),\,\text{for }j=2,\cdots,5.

Applying Theorem 4, we obtain that

logm+h(G)=hTran(F)QR(F)BR1(F)(F),\log m+h(G)=h_{\mathrm{Tran}(F)\cap\mathrm{QR}(F)\cap\mathrm{BR}_{1}(F)}(F), (17)
logm+h(G)=hTran(F)(BR1(F)QR(F))(F),\log m+h(G)=h_{\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{1}(F)\setminus\mathrm{QR}(F)\right)}(F), (18)
logm+h(G)=hTran(F)(BRj(F)BRj1(F))(F),for j=2,,5.\log m+h(G)=h_{\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{j}(F)\setminus\mathrm{BR}_{j-1}(F)\right)}(F),\,\text{for }j=2,\cdots,5. (19)

By the definitions of the sets, if (ι,x)Tran(F)QR(F)BR1(F)(\iota,x)\in\mathrm{Tran}(F)\cap\mathrm{QR}(F)\cap\mathrm{BR}_{1}(F), then xTran(ι,G)QR(ι,G)BR1(ι,G)x\in\mathrm{Tran}(\iota,G)\cap\mathrm{QR}(\iota,G)\cap\mathrm{BR}_{1}(\iota,G). This shows that

Tran(F)QR(F)BR1(F)Σm+×M0(Tran)Σm+×X,\mathrm{Tran}(F)\cap\mathrm{QR}(F)\cap\mathrm{BR}_{1}(F)\subseteq\Sigma_{m}^{+}\times M_{0}(\mathrm{Tran})\subseteq\Sigma_{m}^{+}\times X,

where M0(Tran):=ιΣm+{Tran(ι,G)QR(ι,G)BR1(ι,G)}M_{0}(\mathrm{Tran}):=\bigcup_{\iota\in\Sigma_{m}^{+}}\{\mathrm{Tran}(\iota,G)\cap\mathrm{QR}(\iota,G)\cap\mathrm{BR}_{1}(\iota,G)\}. It follows using the Theorem 5 that

hΣm+×X(F)\displaystyle h_{\Sigma_{m}^{+}\times X}(F) =hTran(F)QR(F)BR1(F)(F)\displaystyle=h_{\mathrm{Tran}(F)\cap\mathrm{QR}(F)\cap\mathrm{BR}_{1}(F)}(F) (20)
Ch¯Σm+×M0(Tran)(F)\displaystyle\leq\overline{Ch}_{\Sigma_{m}^{+}\times M_{0}(\mathrm{Tran})}(F)
=logm+Ch¯M0(Tran)(G).\displaystyle=\log m+\overline{Ch}_{M_{0}(\mathrm{Tran})}(G).

Combining these two relations (17) and (20), we find that

Ch¯M0(Tran)(G)=Ch¯X(G)=h(G).\overline{Ch}_{M_{0}(\mathrm{Tran})}(G)=\overline{Ch}_{X}(G)=h(G).

By the definitions of the sets, if (ι,x)Tran(F)(BR1(F)QR(F))(\iota,x)\in\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{1}(F)\setminus\mathrm{QR}(F)\right), then xTran(ι,G)(BR1(ι,G)QR(ι,G))x\in\mathrm{Tran}(\iota,G)\cap\left(\mathrm{BR}_{1}(\iota,G)\setminus\mathrm{QR}(\iota,G)\right). This shows that

Tran(F)(BR1(F)QR(F))Σm+×M1(Tran)Σm+×X,\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{1}(F)\setminus\mathrm{QR}(F)\right)\subseteq\Sigma_{m}^{+}\times M_{1}(\mathrm{Tran})\subseteq\Sigma_{m}^{+}\times X,

where M1(Tran):=ιΣm+{Tran(ι,G)(BR1(ι,G)QR(ι,G))}M_{1}(\mathrm{Tran}):=\bigcup_{\iota\in\Sigma_{m}^{+}}\left\{\mathrm{Tran}(\iota,G)\cap\left(\mathrm{BR}_{1}(\iota,G)\setminus\mathrm{QR}(\iota,G)\right)\right\}. It follows using the Theorem 5 that

hΣm+×X(F)\displaystyle h_{\Sigma_{m}^{+}\times X}(F) =hTran(F)(BR1(F)QR(F))(F)\displaystyle=h_{\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{1}(F)\setminus\mathrm{QR}(F)\right)}(F) (21)
Ch¯Σm+×M1(Tran)(F)\displaystyle\leq\overline{Ch}_{\Sigma_{m}^{+}\times M_{1}(\mathrm{Tran})}(F)
=logm+Ch¯M1(Tran)(G).\displaystyle=\log m+\overline{Ch}_{M_{1}(\mathrm{Tran})}(G).

Combining these two relations (18) and (21), we find that

Ch¯M1(Tran)(G)=Ch¯X(G)=h(G).\overline{Ch}_{M_{1}(\mathrm{Tran})}(G)=\overline{Ch}_{X}(G)=h(G).

Denote

Mj(Tran):=ιΣm+{Tran(ι,G)(BRj(ι,G)BRj1(ι,G))},M_{j}(\mathrm{Tran}):=\cup_{\iota\in\Sigma_{m}^{+}}\left\{\mathrm{Tran}(\iota,G)\cap\left(\mathrm{BR}_{j}(\iota,G)\setminus\mathrm{BR}_{j-1}(\iota,G)\right)\right\},

for j=2,,5j=2,\cdots,5. Similarly, if (ι,x)Tran(F)(BRj(F)BRj1(F))(\iota,x)\in\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{j}(F)\setminus\mathrm{BR}_{j-1}(F)\right), we obtain that xTran(ι,G)(BRj(ι,G)BRj1(ι,G))x\in\mathrm{Tran}(\iota,G)\cap\left(\mathrm{BR}_{j}(\iota,G)\setminus\mathrm{BR}_{j-1}(\iota,G)\right). This shows that

Tran(F)(BRj(F)BRj1(F))Σm+×Mj(Tran)Σm+×X.\mathrm{Tran}(F)\cap\left(\mathrm{BR}_{j}(F)\setminus\mathrm{BR}_{j-1}(F)\right)\subseteq\Sigma_{m}^{+}\times M_{j}(\mathrm{Tran})\subseteq\Sigma_{m}^{+}\times X.

Analogously, using Theorem 5 and the formula 19, we conclude that

Ch¯Mj(Tran)(G)=Ch¯X(G)=h(G),for j=2,,5.\overline{Ch}_{M_{j}(\mathrm{Tran})}(G)=\overline{Ch}_{X}(G)=h(G),\,\text{for }j=2,\cdots,5.

This completes the proof.

(3) Define a set as

Rα(F):={(ι,x)Σm+×X:infνM(ι,x)(F)α(ν)=supνM(ι,x)(F)α(ν)}.R_{\alpha}(F):=\left\{(\iota,x)\in\Sigma_{m}^{+}\times X:\inf_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu)=\sup_{\nu\in M_{(\iota,x)}(F)}\alpha(\nu)\right\}.

If the skew product FF is not uniquely ergodic and α\alpha satisfies A.1 and A.2, from Theorem 6.1(4) of MR3963890 , we obtain that

{,QR(F)BR1(F),BR1(F),BR2(F),BR3(F),BR4(F),BR5(F)}\left\{\emptyset,\mathrm{QR}(F)\cap\mathrm{BR}_{1}(F),\mathrm{BR}_{1}(F),\mathrm{BR}_{2}(F),\mathrm{BR}_{3}(F),\mathrm{BR}_{4}(F),\mathrm{BR}_{5}(F)\right\} (22)

has full entropy gaps with respect to Rα(F)Tran(F)R_{\alpha}(F)\cap\mathrm{Tran}(F). Similar to Theorem 1 (1) and (2), one can adopt the proof to complete the proof for Rα(ι,G)Tran(ι,G)R_{\alpha}(\iota,G)\cap\mathrm{Tran}(\iota,G). Here we omit the details.

Proof: [Proof of Theorem 2] By Lemma 3.4 of MR4200965 , it follows that GG is expansive if and only if the skew product FF is expansive. In the same spirit, one can adapt the proof of Theorem 1 using Theorem 7.1 of MR3963890 to complete the proof. Here we omit the details.

Remark 7.

We extend the some results of MR3963890 to the dynamical systems of free semigroup actions.

Corollary 3.

Suppose that GG has the 𝐠\mathbf{g}-almost product property, there exists a \mathbb{P}-stationary measure on XX with full support where \mathbb{P} is a Bernoulli measure on Σm+\Sigma_{m}^{+}. Let φ:X\varphi:X\to\mathbb{R} be a continuous function.

  • (1)

    If Iφ(ι,G)I_{\varphi}(\iota,G)\neq\emptyset for some ιΣm+\iota\in\Sigma_{m}^{+}, then the unions of gaps of

    {QR(ι,G),BR1(ι,G),BR2(ι,G),BR3(ι,G),BR4(ι,G),BR5(ι,G)}\left\{\mathrm{QR}(\iota,G),\mathrm{BR}_{1}(\iota,G),\mathrm{BR}_{2}(\iota,G),\mathrm{BR}_{3}(\iota,G),\mathrm{BR}_{4}(\iota,G),\mathrm{BR}_{5}(\iota,G)\right\}

    with respect to Iφ(ι,G)Tran(ι,G)I_{\varphi}(\iota,G)\cap\mathrm{Tran}(\iota,G) for all ιΣm+\iota\in\Sigma_{m}^{+} have full upper capacity topological entropy of free semigroup action GG.

  • (2)

    If the skew product FF is not uniquely ergodic, then the unions of gaps of

    {,QR(ι,G)BR1(ι,G),BR1(ι,G),BR2(ι,G),BR3(ι,G),BR4(ι,G),BR5(ι,G)}\left\{\emptyset,\mathrm{QR}(\iota,G)\cap\mathrm{BR}_{1}(\iota,G),\mathrm{BR}_{1}(\iota,G),\mathrm{BR}_{2}(\iota,G),\mathrm{BR}_{3}(\iota,G),\mathrm{BR}_{4}(\iota,G),\mathrm{BR}_{5}(\iota,G)\right\}

    with respect to Tran(ι,G)\mathrm{Tran}(\iota,G), Rφ(ι,G)Tran(ι,G)R_{\varphi}(\iota,G)\cap\mathrm{Tran}(\iota,G) for all ιΣm+\iota\in\Sigma_{m}^{+} have full upper capacity topological entropy of free semigroup action GG, respectively.

Corollary 4.

Suppose that GG has the 𝐠\mathbf{g}-almost product property and positively expansive, there exists a \mathbb{P}-stationary measure with full support on XX where \mathbb{P} is a Bernoulli measure on Σm+\Sigma_{m}^{+}. Let φ:X\varphi:X\to\mathbb{R} be a continuous function. If the skew product FF is not uniquely ergodic, then the unions of gaps of

{,QW1(ι,G),QW2(ι,G),QW3(ι,G),QW4(ι,G),QW5(ι,G)}\left\{\emptyset,\mathrm{QW}_{1}(\iota,G),\mathrm{QW}_{2}(\iota,G),\mathrm{QW}_{3}(\iota,G),\mathrm{QW}_{4}(\iota,G),\mathrm{QW}_{5}(\iota,G)\right\}

with respect to Tran(ι,G)\mathrm{Tran}(\iota,G), Rφ(ι,G)Tran(ι,G)R_{\varphi}(\iota,G)\cap\mathrm{Tran}(\iota,G) for all ιΣm+\iota\in\Sigma^{+}_{m} have full upper capacity topological entropy of free semigroup action GG, respectively. If Iφ(ι,G)I_{\varphi}(\iota,G) is non-empty for some ιΣm+\iota\in\Sigma_{m}^{+}, similar arguments hold with respect to Iφ(ι,G)Tran(ι,G)I_{\varphi}(\iota,G)\cap\mathrm{Tran}(\iota,G).

Proof: [Proof of Theorem 3] Suppose that μ\mu is the \mathbb{P}-stationary measure with full support. Then, Proposition 6 ensures that ×μ\mathbb{P}\times\mu is an invariant measure under the skew product transformation FF with support Σm+×X\Sigma_{m}^{+}\times X. From Lemma 8, the skew product FF has 2𝐠\mathbf{g}-almost product property. For j=1,,6j=1,\cdots,6, let us denote:

Tj(F):={(ι,x)Tran(F):(ι,x) satisfies Case (j)},T_{j}(F):=\left\{(\iota,x)\in\mathrm{Tran}(F):(\iota,x)\text{ satisfies Case }(j)\right\},

and

Bj(F):={(ι,x)BR(F):(ι,x) satisfies Case (j)}.B_{j}(F):=\left\{(\iota,x)\in\mathrm{BR}(F):(\iota,x)\text{ satisfies Case }(j)\right\}.

It follows from Theorem 1.3 of MR3963890 that

Tj(F),Bj(F),T_{j}(F)\neq\emptyset,\quad B_{j}(F)\neq\emptyset,

and they all have full topological entropy for all j=1,,6j=1,\cdots,6.

For j=1,,6j=1,\cdots,6, if (ι,x)Tj(F)(\iota,x)\in T_{j}(F) with ι=(i0,i1,)\iota=(i_{0},i_{1},\cdots), then the orbit of (ι,x)(\iota,x) under FF, that is, {Fk(ι,x):k}\{F^{k}(\iota,x):k\in\mathbb{N}\} is dense in Σm+×X\Sigma_{m}^{+}\times X. This implies that orb(x,ι,G)orb(x,\iota,G) is dense in XX, hence xTran(ι,G)x\in\mathrm{Tran}(\iota,G). Notice that (ι,x)(\iota,x) satisfies Case (j)(j). Hence xTj(G)x\in T_{j}(G) and Tj(G)T_{j}(G)\neq\emptyset. In particular, one has that

Tj(F)Σm+×Tj(G)Σm+×X.T_{j}(F)\subseteq\Sigma_{m}^{+}\times T_{j}(G)\subseteq\Sigma_{m}^{+}\times X.

Summing the two Theorems 4 and 5, we get that

logm+h(G)=hΣm+×X(F)\displaystyle\log m+h(G)=h_{\Sigma_{m}^{+}\times X}(F) =hTj(F)(F)\displaystyle=h_{T_{j}(F)}(F)
Ch¯Σm+×Tj(G)(F)\displaystyle\leq\overline{Ch}_{\Sigma_{m}^{+}\times T_{j}(G)}(F)
=logm+Ch¯Tj(G)(G).\displaystyle=\log m+\overline{Ch}_{T_{j}(G)}(G).

Since h(G)=Ch¯X(G)h(G)=\overline{Ch}_{X}(G), this proves that

h(G)=Ch¯X(G)Ch¯Tj(G)(G).h(G)=\overline{Ch}_{X}(G)\leq\overline{Ch}_{T_{j}(G)}(G).

Finally, we conclude that

h(G)=Ch¯X(G)=Ch¯Tj(G)(G).h(G)=\overline{Ch}_{X}(G)=\overline{Ch}_{T_{j}(G)}(G).

On the other hand, for j=1,,6j=1,\cdots,6, if (ι,x)Bj(F)(\iota,x)\in B_{j}(F) with ι=(i0,i1,)\iota=(i_{0},i_{1},\cdots), then for any ε>0\varepsilon>0, the set of visiting time N((ι,x),B((ι,x),ε))N\left((\iota,x),B\left((\iota,x),\varepsilon\right)\right) has a positive Banach upper density and so does Nι(x,B(x,ε))N_{\iota}(x,B(x,\varepsilon)). Hence, we get that xBR(ι,G)x\in\mathrm{BR}(\iota,G). Using the fact that (ι,x)(\iota,x) satisfies Case (j)(j), hence xBj(G)x\in B_{j}(G), so Bj(G)B_{j}(G)\neq\emptyset. In particular, one has that

Bj(F)Σm+×Bj(G)Σm+×X.B_{j}(F)\subseteq\Sigma_{m}^{+}\times B_{j}(G)\subseteq\Sigma_{m}^{+}\times X.

Summing the two Theorems 4 and 5, we get that

logm+h(G)=hΣm+×X(F)\displaystyle\log m+h(G)=h_{\Sigma_{m}^{+}\times X}(F) =hBj(F)(F)\displaystyle=h_{B_{j}(F)}(F)
Ch¯Σm+×Bj(G)(F)\displaystyle\leq\overline{Ch}_{\Sigma_{m}^{+}\times B_{j}(G)}(F)
=logm+Ch¯Bj(G)(G).\displaystyle=\log m+\overline{Ch}_{B_{j}(G)}(G).

Since h(G)=Ch¯X(G)h(G)=\overline{Ch}_{X}(G), this proves that

h(G)=Ch¯X(G)Ch¯Bj(G)(G).h(G)=\overline{Ch}_{X}(G)\leq\overline{Ch}_{B_{j}(G)}(G).

Finally, we conclude that

h(G)=Ch¯X(G)=Ch¯Bj(G)(G).h(G)=\overline{Ch}_{X}(G)=\overline{Ch}_{B_{j}(G)}(G).
Remark 8.

Theorem 3 is a generalization of Theorem 1.3 of MR3963890 .

Acknowledgements The authors really appreciate the referees’ valuable remarks and suggestions that helped a lot.

References

  • \bibcommenthead
  • (1) Zhu, L., Ma, D.: The upper capacity topological entropy of free semigroup actions for certain non-compact sets. J. Stat. Phys. 182(1), 19 (2021)
  • (2) Huang, Y., Tian, X., Wang, X.: Transitively-saturated property, Banach recurrence and Lyapunov regularity. Nonlinearity 32(7), 2721–2757 (2019)
  • (3) Pfister, C.-E., Sullivan, W.G.: On the topological entropy of saturated sets. Ergodic Theory Dynam. Systems 27(3), 929–956 (2007)
  • (4) Bowen, R.: Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184, 125–136 (1973)
  • (5) Pesin, Y.B.: Dimension Theory in Dynamical Systems. Chicago Lectures in Mathematics, p. 304. University of Chicago Press, Chicago (1997). Contemporary views and applications
  • (6) Tian, X.: Different asymptotic behavior versus same dynamical complexity: recurrence & (ir)regularity. Adv. Math. 288, 464–526 (2016)
  • (7) Takens, F., Verbitskiy, E.: On the variational principle for the topological entropy of certain non-compact sets. Ergodic Theory Dynam. Systems 23(1), 317–348 (2003)
  • (8) Barreira, L., Pesin, Y., Schmeling, J.: On a general concept of multifractality: multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity. Chaos 7(1), 27–38 (1997)
  • (9) Thompson, D.J.: Irregular sets, the β\beta-transformation and the almost specification property. Trans. Amer. Math. Soc. 364(10), 5395–5414 (2012)
  • (10) Barreira, L., Schmeling, J.: Sets of “non-typical” points have full topological entropy and full Hausdorff dimension. Israel J. Math. 116, 29–70 (2000)
  • (11) Dong, Y., Oprocha, P., Tian, X.: On the irregular points for systems with the shadowing property. Ergodic Theory Dynam. Systems 38(6), 2108–2131 (2018)
  • (12) Chen, E., Tassilo, K., Shu, L.: Topological entropy for divergence points. Ergodic Theory Dynam. Systems 25(4), 1173–1208 (2005)
  • (13) Dong, Y., Tian, X.: Different statistical future of dynamical orbits over expanding or hyperbolic systems (I): Empty syndetic center (arxiv:1701.01910)
  • (14) Dong, Y., Tian, X.: Different statistical future of dynamical orbits over expanding or hyperbolic systems (II): Nonempty syndetic center (arxiv:1803.06796)
  • (15) Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79, p. 250. Springer, New York, Berlin, Heidelberg (1982)
  • (16) Zhou, Z.: Weakly almost periodic point and measure centre. Sci. China Ser. A 36(2), 142–153 (1993)
  • (17) Zhou, Z., Feng, L.: Twelve open problems on the exact value of the Hausdorff measure and on topological entropy: a brief survey of recent results. Nonlinearity 17(2), 493–502 (2004)
  • (18) Zhou, Z.: Measure centre and minimal centre of attraction. Chin. Sci. Bull. (7), 4 (1993)
  • (19) Zhou, Z., He, W.: Level of the orbit’s topological structure and topological semi-conjugacy. Sci. China Ser. A (1995)
  • (20) Feng, D., Huang, W.: Lyapunov spectrum of asymptotically sub-additive potentials. Comm. Math. Phys. 297(1), 1–43 (2010)
  • (21) Pesin, Y.B., Pitskel, B.S.: Topological pressure and the variational principle for noncompact sets. Funktsional. Anal. i Prilozhen. 18(4), 50–6396 (1984)
  • (22) Ashwin, P., Aston, P.J., Nicol, M.: On the unfolding of a blowout bifurcation. Phys. D 111(1-4), 81–95 (1998)
  • (23) Ashwin, P., Field, M.: Heteroclinic networks in coupled cell systems. Arch. Ration. Mech. Anal. 148(2), 107–143 (1999)
  • (24) Ghys, E., Langevin, R., Walczak, P.: Entropie géométrique des feuilletages. Acta Math. 160(1-2), 105–142 (1988)
  • (25) Biś, A.: Entropies of a semigroup of maps. Discrete Contin. Dyn. Syst. 11(2-3), 639–648 (2004)
  • (26) Bufetov, A.: Topological entropy of free semigroup actions and skew-product transformations. J. Dynam. Control Systems 5(1), 137–143 (1999)
  • (27) Rodrigues, F.B., Varandas, P.: Specification and thermodynamical properties of semigroup actions. J. Math. Phys. 57(5) (2016)
  • (28) Lin, X., Ma, D., Wang, Y.: On the measure-theoretic entropy and topological pressure of free semigroup actions. Ergodic Theory Dynam. Systems 38(2), 686–716 (2018)
  • (29) Ju, Y., Ma, D., Wang, Y.: Topological entropy of free semigroup actions for noncompact sets. Discrete Contin. Dyn. Syst. 39(2), 995–1017 (2019)
  • (30) Carvalho, M., Rodrigues, F.B., Varandas, P.: A variational principle for free semigroup actions. Adv. Math. 334, 450–487 (2018)
  • (31) Carvalho, M., Rodrigues, F.B., Varandas, P.: Quantitative recurrence for free semigroup actions. Nonlinearity 31(3), 864–886 (2018)
  • (32) Carvalho, M., Rodrigues, F.B., Varandas, P.: Semigroup actions of expanding maps. J. Stat. Phys. 166(1), 114–136 (2017)
  • (33) Sumi, H.: Skew product maps related to finitely generated rational semigroups. Nonlinearity 13(4), 995–1019 (2000)
  • (34) Bowen, R.: Periodic points and measures for Axiom AA diffeomorphisms. Trans. Amer. Math. Soc. 154, 377–397 (1971)
  • (35) Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Amer. Math. Soc. 114, 309–319 (1965)
  • (36) Kifer, Y.: Ergodic Theory of Random Transformations. Progress in Probability and Statistics, vol. 10, p. 210. Birkhäuser, Boston (1986)
  • (37) Schmeling, J.: Symbolic dynamics for β\beta-shifts and self-normal numbers. Ergodic Theory Dynam. Systems 17(3), 675–694 (1997)
  • (38) Pfister, C.-E., Sullivan, W.G.: Large deviations estimates for dynamical systems without the specification property. Applications to the β\beta-shifts. Nonlinearity 18(1), 237–261 (2005)
  • (39) Denker, M., Grillenberger, C., Sigmund, K.: Ergodic Theory on Compact Spaces. Lecture Notes in Mathematics, Vol. 527, p. 360. Springer, Berlin, New York (1976)
  • (40) Dateyama, M.: Invariant measures for homeomorphisms with weak specification. Tokyo J. Math. 4(2), 389–397 (1981)
  • (41) Viana, M., Oliveira, K.: Foundations of Ergodic Theory. Cambridge Studies in Advanced Mathematics, vol. 151, p. 530. Cambridge University Press, Cambridge (2016)