This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The total Johnson homomorphism on the homology cylinder and the bracket-quantization HOMFLY-PT skein algebra

Shunsuke Tsuji [email protected]
Abstract.

A homology cylinder of a surface induces an automorphism of the completed group ring of the fundamental group of the surface. We introduce a new method of computing the automorphism by using the Goldman Lie algebra of the surface or some skein algebra. In particular, we give a refinement of a formula by Kuno and Massuyeau [7].

Acknowledgment

The author is grateful to Kazuo Habiro, Nariya Kawazumi, Yusuke Kuno, Gwénaël Massuyeau, Jun Murakami and Tomotada Ohtsuki for helpful comments and discussions. This work was partially supported by JSPS KAKENHI Grant Number 18J00305, the Research Institute for Mathematical Sciences and an International Joint Usage/Research Center located at Kyoto University.

1. Introduction and the main result

1.1. Back ground

The mapping class group (Σ)\mathcal{M}(\Sigma) of a compact connected oriented surface Σ\Sigma with boundary is the set of the isotopy classes of diffeomorphism fixing the boundary Σ\partial\Sigma pointwise. The group (Σ)\mathcal{M}(\Sigma) acts naturally on the fundamental group π1(Σ,)\pi_{1}(\Sigma,*) of the surface Σ\Sigma with basepoint Σ*\in\partial\Sigma. The action is faithful by a theorem of Dehn and Nielsen, and so provides us with an algebraic method of studying the mapping class group.

We denote by Σg,1\Sigma_{g,1} a compact connected oriented surface of genus gg with one boundary component. In the study of the action of (Σg,1)\mathcal{M}(\Sigma_{g,1}) on π1(Σg,1)\pi_{1}(\Sigma_{g,1}), Johnson introduced a series of homomorphisms, which we call the Johnson homomorphisms. Morita [10] [11] discovered an explicit relationship between the Johnson homomorphisms and the Casson invariant, which is the finite type invariant of 33-manifold of order 11. Furthermore, Garoufalidis and Levine [1] made us understand the Johnson homomorphisms as the full tree parts of finite type invariants for “homology cobordisms”.

Kawazumi, Kuno, Massuyeau, and Turaev [5] [6] [9] studied the Goldman Lie algebra using a grading defined by an augmentation ideal. The Torelli group (Σg,1)\mathcal{I}(\Sigma_{g,1}) is the kernel of the action of (Σg,1)\mathcal{M}(\Sigma_{g,1}) on H1(Σg,1,)H_{1}(\Sigma_{g,1},\mathbb{Z}). Furthermore, Kawazumi and Kuno constructed an injective map from the Torelli group (Σg,1)\mathcal{I}(\Sigma_{g,1}) to the completed Goldman Lie algebra in terms of the grading, which recovers the Johnson homomorphisms. In other words, we can understand the Johnson homomorphisms as the associated graded quotients.

We denote by 𝒞(Σ)\mathcal{C}(\Sigma) the set of diffeomorphism classes of homology cobordisms of the surface, which will be defined later. By “stacking sums”, we may consider 𝒞(Σ)\mathcal{C}(\Sigma) as a monoid.

Let {(π1(Σg,1))n}n0\{(\pi_{1}(\Sigma_{g,1}))_{n}\}_{n\geq 0} be the lower central series of π1(Σg,1)\pi_{1}(\Sigma_{g,1}). For any N1N\in\mathbb{Z}_{\geq 1}, using the Stallings’s theorem [13], Garoufalidis and Levine [1] introduced a monoid homomorphism

ΦN:𝒞(Σg,1)Aut(π1(Σg,1)/((π1(Σg,1))N).\Phi^{\prime}_{N}:\mathcal{C}(\Sigma_{g,1})\to\mathrm{Aut}(\pi_{1}(\Sigma_{g,1})/((\pi_{1}(\Sigma_{g,1}))_{N}).

We can extend it to

Φ=():𝒞(Σg,1)Aut(π1^(Σg,1)),\Phi=(\cdot)_{*}:\mathcal{C}(\Sigma_{g,1})\to\mathrm{Aut}(\widehat{\mathbb{Q}\pi_{1}}(\Sigma_{g,1})),

where π1^(Σg,1)\widehat{\mathbb{Q}\pi_{1}}(\Sigma_{g,1}) is the completed group ring of π1(Σg,1)\pi_{1}(\Sigma_{g,1}). The monoid homomorphisms provides us with an algebraic method of studying 𝒞(Σg,1)\mathcal{C}(\Sigma_{g,1}) in terms of the finite type invariants of 3-manifolds and the Goldman Lie algebra. We remark that we can also define a monoid homomorphism

Φ=():𝒞(Σ)Aut(π1^(Σ)),\Phi=(\cdot)_{*}:\mathcal{C}(\Sigma)\to\mathrm{Aut}(\widehat{\mathbb{Q}\pi_{1}}(\Sigma)),

for the surface Σ\Sigma.

In the case Σ=Σg,1\Sigma=\Sigma_{g,1}, Garoufalidis and Levine [1] derived the Johnson homomorphisms of 𝒞(Σg,1)\mathcal{C}(\Sigma_{g,1}) from the action ΦN\Phi^{\prime}_{N}. By their paper, we understand the Johnson homomorphisms as the full tree parts of finite type invariants for homology cobordisms. In terms of the Goldman Lie algebra, Kuno and Massuyeau [7] have recently obtained a formula for the Johnson homomorphisms of 𝒞(Σg,1)\mathcal{C}(\Sigma_{g,1}) using “ generalized Dehn twists”.

We can define a submonoid 𝒞(Σg,1)\mathcal{IC}(\Sigma_{g,1}) of 𝒞(Σg,1)\mathcal{C}(\Sigma_{g,1}) analogous to the Torelli group (Σg,1)\mathcal{I}(\Sigma_{g,1}) (Definition 1.1) and construct a map from 𝒞(Σg,1)\mathcal{IC}(\Sigma_{g,1}) to the completed Goldman Lie algebra. The action Φ=():𝒞(Σg,1)Aut(π1^(Σg,1))\Phi=(\cdot)_{*}:\mathcal{C}(\Sigma_{g,1})\to\mathrm{Aut}(\widehat{\mathbb{Q}\pi_{1}}(\Sigma_{g,1})) restricted to 𝒞(Σg,1)\mathcal{IC}(\Sigma_{g,1}) can be regarded as the exponential of the map to the completed Goldman Lie algebra (Theorem 1.4). Furthermore, we can understand the Johnson homomorphisms as the associated graded quotients of the Goldman Lie algebra.

In §1.2 and §1.3, we introduce the notion of the Goldman Lie algebra and homology cylinders of the surface Σ\Sigma. In §1.4, we present our main result. In §1.5, we explain that we understand the Johnson homomorphisms as the associated graded quotients of the Goldman Lie algebra.

1.2. The Goldman Lie algebra

We set up notation for the Goldman Lie algebra on the surface Σ\Sigma. By using the Goldman Lie algebra, we will describe the action Φ\Phi of a homology cylinder of Σ\Sigma on the completed group ring in §1.4.

Let |π1|(Σ)\lvert\pi_{1}\rvert(\Sigma) denote the set of conjugacy classes in π1(Σ)\pi_{1}(\Sigma). Goldman defined a Lie bracket on the free \mathbb{Q}-vector space |π1|(Σ)\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma) over the set |π1|(Σ)\lvert\pi_{1}\rvert(\Sigma), which we call the Goldman Lie bracket. Kawazumi and Kuno [5] introduced Lie actions σ:|π1|(Σ)×π1(Σ,)π1(Σ,)\sigma:\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)\times\mathbb{Q}\pi_{1}(\Sigma,*)\to\mathbb{Q}\pi_{1}(\Sigma,*) and σ:|π1|(Σ)×π1(Σ,1,2)π1(Σ,1,2)\sigma:\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)\times\mathbb{Q}\pi_{1}(\Sigma,*_{1},*_{2})\to\mathbb{Q}\pi_{1}(\Sigma,*_{1},*_{2}) for ,1,2Σ*,*_{1},*_{2}\in\partial\Sigma. The Lie bracket and the Lie actions satisfy the condition

[|(kerε)n|,|(kerε)m|]|(kerε)n+m2|,\displaystyle[\lvert(\ker\varepsilon)^{n}\rvert,\lvert(\ker\varepsilon)^{m}\rvert]\subset\lvert(\ker\varepsilon)^{n+m-2}\rvert,
σ(|(kerε)n|)((kerε)mπ1(Σ,1,2))(kerε)n+m2π1(Σ,1,2),\displaystyle\sigma(\lvert(\ker\varepsilon)^{n}\rvert)((\ker\varepsilon)^{m}\mathbb{Q}\pi_{1}(\Sigma,*_{1},*_{2}))\subset(\ker\varepsilon)^{n+m-2}\mathbb{Q}\pi_{1}(\Sigma,*_{1},*_{2}),

where ||:π1(Σ)|π1|(Σ)\lvert\cdot\rvert:\mathbb{Q}\pi_{1}(\Sigma)\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma) is the quotient map. Here, for any group GG, ε:G\varepsilon:\mathbb{Q}G\to\mathbb{Q} is the augmentation map defined by gG1g\in G\mapsto 1.

To define the logarithm and the exponential on the group ring, we define filtrations

Fnπ1(Σ,)=def.(kerε)n,\displaystyle F^{n}\mathbb{Q}\pi_{1}(\Sigma,*)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}(\ker\varepsilon)^{n},
Fnπ1(Σ,1,2),=def.(kerε)nπ1(Σ,1,2),\displaystyle F^{n}\mathbb{Q}\pi_{1}(\Sigma,*_{1},*_{2}),\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}(\ker\varepsilon)^{n}\mathbb{Q}\pi_{1}(\Sigma,*_{1},*_{2}),
Fn|π1|(Σ)=def.|(kerε)n|.\displaystyle F^{n}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\lvert(\ker\varepsilon)^{n}\rvert.

and completions

π1^(Σ,)=def.limiπ1(Σ,)/Fiπ1(Σ,),\displaystyle\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\underleftarrow{\lim}_{i\rightarrow\infty}\mathbb{Q}\pi_{1}(\Sigma,*)/F^{i}\mathbb{Q}\pi_{1}(\Sigma,*),
π1^(Σ,1,2)=def.limiπ1(Σ,1,2)/Fiπ1(Σ,1,2),\displaystyle\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\underleftarrow{\lim}_{i\rightarrow\infty}\mathbb{Q}\pi_{1}(\Sigma,*_{1},*_{2})/F^{i}\mathbb{Q}\pi_{1}(\Sigma,*_{1},*_{2}),
|π1|^(Σ)=def.limi|π1|(Σ)/Fi|π1|(Σ).\displaystyle\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\underleftarrow{\lim}_{i\rightarrow\infty}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)/F^{i}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma).

The completions also have filtrations such that

FnV^=ker(V^V/FnV)F^{n}\widehat{V}=\ker(\widehat{V}\to V/F^{n}V)

where

V=π1(Σ,),π1(Σ,1,2),and|π1|(Σ)V=\mathbb{Q}\pi_{1}(\Sigma,*),\mathbb{Q}\pi_{1}(\Sigma,*_{1},*_{2}),\ \mathrm{and}\ \mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)

and V^\widehat{V} is the completion of VV. Using the Baker-Campbell-Hausdorff series, we consider F3|π1|^(Σ)F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma) as a group.

Using the filtrations and the completions, we can discuss a relationship between the Goldman Lie algebra and the mapping class group. Here we denote by tct_{c} the Dehn twist along a simple closed curve cc. Let (Σ)\mathcal{I}^{\prime}(\Sigma) be the subgroup of the mapping class group (Σ)\mathcal{M}(\Sigma) generated by

{tc1tc21|(c1,c2)boundsasurface}and{tc0|c0boundsasurface}.\displaystyle\{t_{c_{1}}t_{c_{2}}^{-1}|(c_{1},c_{2})\mathrm{\ bounds\ a\ surface}\}\ \mathrm{and}\ \{t_{c_{0}}|c_{0}\mathrm{\ bounds\ a\ surface}\}.

Then there is an embedding ζ\zeta from (Σ)\mathcal{I}^{\prime}(\Sigma) to F3π1^(Σ)F^{3}\widehat{\mathbb{Q}\pi_{1}}(\Sigma). The map ζ\zeta satisfies

ξ=exp(ζ(ξ))=def.i=01i!(σ(ζ(ξ)))i:π1^(Σ,1,2)π1^(Σ,1,2).\xi_{*}=\exp(\zeta(\xi))\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\sum_{i=0}^{\infty}\frac{1}{i!}(\sigma(\zeta(\xi)))^{i}:\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})\to\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2}).

For details, see §2 or [5] [6] [9].

1.3. Homology cylinders

We recall the definition of homology cobordisms. Let (M,α)(M,\alpha) be a pair of a compact connected oriented 33-manifold and a diffeomorphism (Σ×I)M\partial(\Sigma\times I)\to\partial M, where II is the unit interval [0,1][0,1]. If the embedding maps

α0:ΣM,pα(p,0)andα1:ΣM,pα(p,1)\alpha_{0}:\Sigma\to M,p\mapsto\alpha(p,0)\ \mathrm{and}\ \alpha_{1}:\Sigma\to M,p\mapsto\alpha(p,1)

induce the isomorphisms

α0:H1(Σ,)H1(M,)andα1:H1(Σ,)H1(M,),\alpha_{0*}:H_{1}(\Sigma,\mathbb{Z})\to H_{1}(M,\mathbb{Z})\ \mathrm{and}\ \alpha_{1*}:H_{1}(\Sigma,\mathbb{Z})\to H_{1}(M,\mathbb{Z}),

we call it a homology cobordism.

The set of the diffeomorphism classes of homology cobordisms

𝒞(Σ)=def.{homologycobordisms}/diffeomorpic\mathcal{C}(\Sigma)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\{\mathrm{homology\ cobordisms}\}/\mathrm{diffeomorpic}

is a monoid by “stacking sums”. The action 𝒞(Σ)Aut(π1^(Σ,1,2))\mathcal{C}(\Sigma)\to\mathrm{Aut}(\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})) and the Johnson homomorphisms introduced by Garoufalidis and Levine are monoid homomorphism.

We define the action Φ()=():𝒞(Σ)Aut(π1^(Σ,1,2))\Phi(\cdot)=(\cdot)_{*}:\mathcal{C}(\Sigma)\to\mathrm{Aut}(\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})) as follows. Let (M,α)(M,\alpha) be a homology cobordism of the surface Σ\Sigma. By Stallings’ theorem, the embedding maps α0,α1\alpha_{0},\alpha_{1} induce the isomorphisms

α0:π1^(Σ,1,2)π1^(M,α(1,0),α(2,0)),\displaystyle\alpha_{0*}:\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})\to\widehat{\mathbb{Q}\pi_{1}}(M,\alpha(*_{1},0),\alpha(*_{2},0)),
α1:π1^(Σ,1,2)π1^(M,α(1,1),α(2,1)).\displaystyle\alpha_{1*}:\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})\to\widehat{\mathbb{Q}\pi_{1}}(M,\alpha(*_{1},1),\alpha(*_{2},1)).

Here, for any i=0,1i=0,1, we denote by π1^(M,α(1,i),α(2,i))\widehat{\mathbb{Q}\pi_{1}}(M,\alpha(*_{1},i),\alpha(*_{2},i)) the completion

limnπ1(M,α(1,i),α(2,i))/(kerε)nπ1(M,α(1,i),α(2,i)).\underleftarrow{\lim}_{n\rightarrow\infty}\mathbb{Q}\pi_{1}(M,\alpha(*_{1},i),\alpha(*_{2},i))/(\ker\varepsilon)^{n}\mathbb{Q}\pi_{1}(M,\alpha(*_{1},i),\alpha(*_{2},i)).

Let :π1^(M,α(1,0),α(2,0))π1^(M,α(1,1),α(2,1))\Diamond:\widehat{\mathbb{Q}\pi_{1}}(M,\alpha(*_{1},0),\alpha(*_{2},0))\to\widehat{\mathbb{Q}\pi_{1}}(M,\alpha(*_{1},1),\alpha(*_{2},1)) be the automorphism defined as (γ)=def.(γ01)1γγ01\Diamond(\gamma)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}(\gamma_{*01})^{-1}\gamma\gamma_{*01}, where the continuous map IM,tα(,t)I\to M,t\mapsto\alpha(*,t) represents the path γ01\gamma_{*01}. The composite α11α0\alpha_{1*}^{-1}\circ\Diamond\circ\alpha_{0*} defines a monoid homomorphism

Φ=():𝒞(Σ)Aut(π1^(Σ,1,2)),(M,α)(M,α)=def.α11α0,\Phi=(\cdot)_{*}:\mathcal{C}(\Sigma)\to\mathrm{Aut}(\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})),(M,\alpha)\mapsto(M,\alpha)_{*}\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\alpha_{1*}^{-1}\circ\Diamond\circ\alpha_{0*},

which we call the action Φ\Phi of 𝒞(Σ)\mathcal{C}(\Sigma) on π1^(Σ,1,2)\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2}).

Definition 1.1.

We denote by 𝒞(Σ)\mathcal{IC}(\Sigma) the subset of 𝒞(Σ)\mathcal{C}(\Sigma) consisting of all elements Ξ\Xi satisfying

(idΞ)(π1^(Σ,1,2))F2π1^(Σ,1,2)(\mathrm{id}-\Xi_{*})(\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2}))\subset F^{2}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})

for any 1,2Σ*_{1},*_{2}\in\partial\Sigma. We call a homology cobordism representing an element of 𝒞(Σ)\mathcal{IC}(\Sigma) a homology cylinder.

To state our main result, we introduce a homology cylinder version of a Heegaard splitting of a 3-manifold. We choose disjoint closed disks D1,,DND_{1},\cdots,D_{N} on Σ\Sigma where NN is at least 11. Let Σst\Sigma_{\mathrm{st}} be the closure of Σ\(D1DN)\Sigma\backslash(D_{1}\sqcup\cdots\sqcup D_{N}). We denote the extended surface (Σst×I)\(Σ×(0,1))=Σst×{0,1}((D1DN)×I)\partial(\Sigma_{\mathrm{st}}\times I)\backslash(\partial\Sigma\times(0,1))=\Sigma_{\mathrm{st}}\times\{0,1\}\cup(\partial(D_{1}\sqcup\cdots\sqcup D_{N})\times I) by Σ~st\widetilde{\Sigma}_{\mathrm{st}}. For an element ξ(Σ~st)\xi\in\mathcal{I}^{\prime}(\widetilde{\Sigma}_{\mathrm{st}}), we take a representative of ξ\xi and denote it by the same symbol ξ\xi. Here est:Σst×IΣ×I,(p,t)(p,1+t3)e_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\to\Sigma\times I,(p,t)\mapsto(p,\frac{1+t}{3}) is the standard embedding map. We define a homology cylinder (Σ×I)(est,ξ)(\Sigma\times I)(e_{\mathrm{st}},\xi) by

((theclosureof(Σ×I\est(Σst×I)))estξ(Σst×I),id(Σ×I)).((\mathrm{the\ closure\ of\ }(\Sigma\times I\backslash e_{\mathrm{st}}(\Sigma_{\mathrm{st}}\times I)))\cup_{e_{\mathrm{st}}\circ\xi}(\Sigma_{\mathrm{st}}\times I),\mathrm{id}_{\partial(\Sigma\times I)}).
Proposition 1.2 (Proposition 4.9).

For any homology cylinder (M,α)(M,\alpha) of the surface Σ\Sigma, there exist some disjoint closed disks D1,,DND_{1},\cdots,D_{N} and an element ξ(Σst~)\xi\in\mathcal{I}^{\prime}(\widetilde{\Sigma_{\mathrm{st}}}) such that the diffeomorphism class of (M,α)(M,\alpha) equals that of (Σ×I)(est,ξ)(\Sigma\times I)(e_{\mathrm{st}},\xi).

For details, see §4.

To state our main result, we need to define a map v:F3|π1|^(Σ~st)F3|π1|^(Σst)v:F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\widetilde{\Sigma}_{\mathrm{st}})\to F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}}) as follows. The maps

Σst~Σst×IΣst,ΣstΣ~st,p(p,1),andΣstΣ~st,p(p,0)\widetilde{\Sigma_{\mathrm{st}}}\to\Sigma_{\mathrm{st}}\times I\twoheadrightarrow\Sigma_{\mathrm{st}},\ \Sigma_{\mathrm{st}}\to\widetilde{\Sigma}_{\mathrm{st}},p\mapsto(p,1),\ \mathrm{and}\ \Sigma_{\mathrm{st}}\to\widetilde{\Sigma}_{\mathrm{st}},p\mapsto(p,0)

induce linear maps

κ:|π1|^(Σst~)|π1|^(Σst),ι0:|π1|^(Σst)|π1|^(Σ~st),\displaystyle\kappa_{*}:\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\widetilde{\Sigma_{\mathrm{st}}})\to\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}}),\ \iota_{0*}:\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}})\to\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\widetilde{\Sigma}_{\mathrm{st}}),
andι1:|π1|^(Σst)|π1|^(Σst~).\displaystyle\mathrm{and}\ \iota_{1*}:\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}})\to\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\widetilde{\Sigma_{\mathrm{st}}}).

We remark that the second map is a Lie algebra homomorphisms, but the first one and the third one are not.

Definition 1.3.

For xF3|π1|^(Σ~st)x\in F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\widetilde{\Sigma}_{\mathrm{st}}), a sequence {vn(x)}n1F3|π1|^(Σst)\{v_{n}(x)\}_{n\in\mathbb{Z}_{\geq 1}}\subset F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}}) is defined by

v1(x)=def.κ(x),vn+1(x)=def.vn(x)+κ(bch(ι1(vn(x)),x)).\displaystyle v_{1}(x)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\kappa_{*}(x),\ v_{n+1}(x)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}v_{n}(x)+\kappa_{*}(\mathrm{bch}(-\iota_{1*}(v_{n}(x)),x)).

Furthermore, v(x)v(x) is defined by

v(x)=def.limnvn(x).v(x)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\lim_{n\to\infty}v_{n}(x).

The element v(x)v(x) is a unique one satisfying κ(bch(ι1(v(x)),x))=0\kappa_{*}(\mathrm{bch}(-\iota_{1*}(v(x)),x))=0. In other words, v(x)v(x) is the unique solution of κ(bch(ι1(),x))=0\kappa_{*}(\mathrm{bch}(-\iota_{1*}(\cdot),x))=0. There is a topological definition of vv using some skein algebra in §3. Using this map, we state our main theorem proved in §6.

1.4. Main result

The paper aims to construct a monoid homomorphism

ζ~:𝒞(Σ)F3|π1|^(Σ)\widetilde{\zeta}:\mathcal{IC}(\Sigma)\to F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma)

having the following property

Φ()=exp(σ(ζ~()))Aut(π1^(Σ,1,2))\Phi(\cdot)=\exp(\sigma(\widetilde{\zeta}(\cdot)))\in\mathrm{Aut}(\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2}))

as follows.

Theorem 1.4.

We have

(Σ×I)(est,ξ)=exp(e(v(ζ(ξ)))):π1^(Σ,1,2)π1^(Σ,1,2)(\Sigma\times I)(e_{\mathrm{st}},\xi)_{*}=\exp(e^{\prime}_{*}(v(\zeta(\xi)))):\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})\to\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})

for 1,2Σ*_{1},*_{2}\in\partial\Sigma, where e:|π1|^(Σst)|π1|^(Σ)e^{\prime}_{*}:\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}})\to\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma) is induced by ΣstΣ.\Sigma_{\mathrm{st}}\hookrightarrow\Sigma. Using the formula, the map

ζ~:𝒞(Σ)(F3|π1|^(Σ),bch),\widetilde{\zeta}:\mathcal{IC}(\Sigma)\to(F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma),\mathrm{bch}),

defined by

(Σ×I)(est,ξ)e(v(ζ(ξ))),(\Sigma\times I)(e_{\mathrm{st}},\xi)\mapsto e^{\prime}_{*}(v(\zeta(\xi))),

is a well-defined monoid homomorphism.

We construct the map ζ~\widetilde{\zeta} in this section in an algebraic method. On the other hand, in §3, we reconstruct the map in ζ~\widetilde{\zeta} a topological one. In other words, “a surgery formula” of some skein algebra explained later defines ζ~\widetilde{\zeta} in a similar way to the WRT invariant. See, for details, Theorem 5.5.

1.5. An application

In this subsection, we assume that Σ=Σg,1\Sigma=\Sigma_{g,1}. By the monoid homomorphism ζ~:𝒞(Σg,1)F3|π1|^(Σg,1)\widetilde{\zeta}:\mathcal{IC}(\Sigma_{g,1})\to F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{g,1}), we recover the Johnson homomorphisms of homology cobordisms defined by Garoufalidis and Levine.

We reformulate the Johnson-like filtration {Fn𝒞(Σg,1)}n0\{F^{n}\mathcal{C}(\Sigma_{g,1})\}_{n\geq 0} of 𝒞(Σg,1)\mathcal{C}(\Sigma_{g,1}) introduced by Garoufalidis and Levine. The subset Fn𝒞(Σg,1)F^{n}\mathcal{C}(\Sigma_{g,1}) consists of all elements Ξ\Xi satisfying

(Ξid)(π1^(Σg,1))Fn+1π1^(Σg,1).(\Xi_{*}-\mathrm{id})(\widehat{\mathbb{Q}\pi_{1}}(\Sigma_{g,1}))\subset F^{n+1}\widehat{\mathbb{Q}\pi_{1}}(\Sigma_{g,1}).

Here we set the linear maps

λn+2:\displaystyle\lambda_{n+2}: Fn+2|π1|(Σg,1)/Fn+3|π1|(Σg,1)(H1(Σg,1,))n+2,\displaystyle F^{n+2}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{g,1})/F^{n+3}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{g,1})\to(H_{1}(\Sigma_{g,1},\mathbb{Q}))^{\otimes n+2},
|(γ11)(γn+21)|cn+2([γ1][γn+2]),\displaystyle\lvert(\gamma_{1}-1)\cdots(\gamma_{n+2}-1)\rvert\mapsto c_{n+2}([\gamma_{1}]\otimes\cdots\otimes[\gamma_{n+2}]),
cn+2:\displaystyle c_{n+2}: (H1(Σg,1,))n+2(H1(Σg,1,))n+2,\displaystyle(H_{1}(\Sigma_{g,1},\mathbb{Q}))^{\otimes n+2}\to(H_{1}(\Sigma_{g,1},\mathbb{Q}))^{\otimes n+2},
a1an+2i=1n+2aian+2a1ai1.\displaystyle a_{1}\otimes\cdots\otimes a_{n+2}\mapsto\sum_{i=1}^{n+2}a_{i}\otimes\cdots\otimes a_{n+2}\otimes a_{1}\otimes\cdots\otimes a_{i-1}.

For any n1n\in\mathbb{Z}_{\geq 1}, the composite

Fn𝒞(Σg,1)ζ~Fn+2|π1|(Σg,1)/Fn+3|π1|(Σg,1)λn+2cn+2(H1(Σg,1,)n+2)F^{n}\mathcal{C}(\Sigma_{g,1})\stackrel{{\scriptstyle\widetilde{\zeta}}}{{\to}}F^{n+2}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{g,1})/F^{n+3}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{g,1})\stackrel{{\scriptstyle\lambda_{n+2}}}{{\to}}c_{n+2}(H_{1}(\Sigma_{g,1},\mathbb{Q})^{\otimes n+2})

is the nn-th Johnson homomorphism introduced by Garoufalidis and Levine. For details, see [1]. Since we can recover each τn\tau_{n} from ζ~\widetilde{\zeta}, we call ζ~\widetilde{\zeta} the total Johnson homomorphism.

2. Review of the Goldman Lie algebra

We denote by Σ\Sigma a compact connected oriented surface as in §1.2. In this section, we review some facts on the Goldman Lie algebra of Σ\Sigma. In particular, we discuss a relationship between the Goldman Lie algebra and the mapping class group. We use the propositions in this section to prove our main theorem in §5.

Now we recall the Lie bracket and the Lie action introduced by Goldman and Kawazumi-Kuno, respectively. Let δ\delta be a free loop in Σ\Sigma and γ\gamma a path from 1Σ*_{1}\in\partial\Sigma to 2Σ*_{2}\in\partial\Sigma. We assume δ\delta and γ\gamma are in general position. For an intersection pδγp\in\delta\cap\gamma, we denote

  • by γ,p\gamma_{*,p} and γp,\gamma_{p,*} a path from * to pp and one from pp to * along γ\gamma.

  • by δp\delta_{p} a based loop along δ\delta whose basepoint is pp, and

  • by ϵ(p,δ,γ)\epsilon(p,\delta,\gamma) the local intersection number of δ\delta and γ\gamma at pp.

We set σ(δ)(γ)\sigma(\delta)(\gamma) by

σ(δ)(γ)=def.pδγϵ(p,δ,γ)γ,pδpγp,.\sigma(\delta)(\gamma)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\sum_{p\in\delta\cap\gamma}\epsilon(p,\delta,\gamma)\gamma_{*,p}\delta_{p}\gamma_{p,*}.

For δ|π1|(Σ)\delta\in\lvert\pi_{1}\rvert(\Sigma) and δπ1(Σ,)\delta^{\prime}\in\pi_{1}(\Sigma,*), Goldman defined the bracket as [δ,|δ|]=def.|σ(δ)(δ)|[\delta,\lvert\delta^{\prime}\rvert]\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\lvert\sigma(\delta)(\delta^{\prime})\rvert. Kawazumi and Kuno proved that the action σ\sigma makes π1(Σ,1,2)\mathbb{Q}\pi_{1}(\Sigma,*_{1},*_{2}) a Lie module of the Goldman Lie algebra.

To discuss the relationship between the Goldman Lie algebra and the mapping class group, Kawazumi, Kuno, Massuyeau, and Turaev used the filtration and the completion of the Goldman Lie algebra defined as the equations in §1.2. They obtained a formula for the action of the Dehn twist tct_{c} along a simple closed curve cc in terms of the one of the Goldman Lie algebra.

Theorem 2.1 ([5] [6] [9]).

For a simple closed curve cc, we set an element

L|π1|(c)=def.|12(logγ)2||π1|^(Σ)L_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(c)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\lvert\frac{1}{2}(\log\gamma)^{2}\rvert\in\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma)

of the completed Goldman Lie algebra where γπ1(Σ)\gamma\in\pi_{1}(\Sigma) satisfies |γ|=c\lvert\gamma\rvert=c. We have

tc=exp(σ(L|π1|(c)))=def.i=01i!(σ(L|π1|(c)))i:π1^(Σ,1,2)π1^(Σ,1,2)t_{c*}=\exp(\sigma(L_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(c)))\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\sum_{i=0}^{\infty}\frac{1}{i!}(\sigma(L_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(c)))^{i}:\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})\to\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})

for any 1,2Σ*_{1},*_{2}\in\partial\Sigma.

We need the following two propositions Proposition 2.2 and Proposition 2.3 to state our main theorem Theorem 1.4. We use the first one to prove that the homomorphism ζ~\widetilde{\zeta} is well-defined. We describe the automorphism induced by a homology cylinder using the second one.

We can prove the following proposition by “the symplectic expansion”. For details, see [5] [6] [9]. In this paper, we use it without proof.

Proposition 2.2.
  1. (1)

    For xF1|π1|^(Σ)x\in F^{1}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma), if σ(x)(π1^(Σ,1,2))={0}\sigma(x)(\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2}))=\{0\} for any 1,2Σ*_{1},*_{2}\in\partial\Sigma, we have x=0x=0.

  2. (2)

    We fix a subset BΣB\subset\partial\Sigma such that the map Bπ0(Σ)B\to\pi_{0}(\partial\Sigma) is bijective. Let ξ\xi be a bijection ,Bπ1^(Σ,,),Bπ1^(Σ,,)\coprod_{\bullet,*\in B}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*)\to\coprod_{\bullet,*\in B}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*) satisfying the following

    • For any ,B\bullet,*\in B, ξ(π1^(Σ,,))=π1^(Σ,,)\xi(\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*))=\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*).

    • For any 1,2,3B\star_{1},\star_{2},\star_{3}\in B and xπ1^(Σ,1,2)x\in\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2}), xπ1^(Σ,2,3)x^{\prime}\in\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{2},\star_{3}), ξ(xx)=ξ(x)ξ(x)\xi(xx^{\prime})=\xi(x)\xi(x^{\prime}).

    • For any ,B\bullet,*\in B,

      ξ(Iπ1(Σ,)nπ1^(Σ,,))=Iπ1(Σ,)nπ1^(Σ,,),\displaystyle\xi(I_{\mathbb{Q}\pi_{1}(\Sigma,\bullet)}^{n}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*))=I_{\mathbb{Q}\pi_{1}(\Sigma,\bullet)}^{n}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*),
      (ξid)(π1^(Σ,,))Iπ1(Σ,)2π1^(Σ,,).\displaystyle(\xi-\mathrm{id})(\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*))\subset I_{\mathbb{Q}\pi_{1}(\Sigma,\bullet)}^{2}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,\star).
    • For any γπ1(Σ,,)\gamma\in\pi_{1}(\Sigma,\bullet,*) represented by a continuous map IΣI\to\partial\Sigma,

      ξ(γ)=γ\xi(\gamma)=\gamma

    Then there exists a unique element ζAut(ξ)F3|π1|^(Σ)\zeta_{\mathrm{Aut}}(\xi)\in F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma) such that

    ξ=exp(ζAut(ξ)):π1^(Σ,,)π1^(Σ,,)\xi=\exp(\zeta_{\mathrm{Aut}}(\xi)):\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star,\star^{\prime})\to\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star,\star^{\prime})

    for any ,Σ\star,\star^{\prime}\in\partial\Sigma.

We use Theorem 2.1 and Proposition 2.2 to prove the following.

Proposition 2.3.

The homomorphism ζ:(Σ)(F3|π1|^(Σ),bch)\zeta:\mathcal{I}^{\prime}(\Sigma)\to(F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma),\mathrm{bch}) is defined by

ζ(tc0)=L(c0)andζ(tc1tc21)=L|π1|(c1)L|π1|(c2)\displaystyle\zeta(t_{c_{0}})=L(c_{0})\ \mathrm{and}\ \zeta(t_{c_{1}}t_{c_{2}}^{-1})=L_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(c_{1})-L_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(c_{2})

where a simple closed curve c0c_{0} and the pair (c1,c2)(c_{1},c_{2}) of simple closed curves bound surfaces. Then the homomorphism is well-defined. Furthermore, ζ\zeta satisfies the property

ξ=exp(σ(ζ(ξ))):π1^(Σ,1,2)π1^(Σ,1,2)\xi_{*}=\exp(\sigma(\zeta(\xi))):\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})\to\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})

for any ξ(Σ)\xi\in\mathcal{I}^{\prime}(\Sigma) and 1,2Σ*_{1},*_{2}\in\partial\Sigma.

Proof.

Let

ζ:{tc0|c0boundsasurface.}{tc1tc21|(c1,c2)bpoundsssurface.}F3|π1|^(Σ)\zeta^{\prime}:\{t_{c_{0}}|c_{0}\mathrm{\ bounds\ a\ surface.}\}\cup\{t_{c_{1}}t_{c_{2}}^{-1}|(c_{1},c_{2})\mathrm{\ bpounds\ s\ surface.}\}\to F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma)

be a map defined by

tc0L|π1|(c0)andtc1tc21L|π1|(c1)L|π1|(c2).t_{c_{0}}\mapsto L_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(c_{0})\mathrm{\ and\ }t_{c_{1}}t_{c_{2}}^{-1}\mapsto L_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(c_{1})-L_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(c_{2}).

We prove the proposition by two steps. We use Theorem 2.1 and Proposition 2.2 in the first and second steps, respectively.

In the first step, we prove that, for any

ξ1,,ξj{tc0|c0boundsasurface.}{tc1tc21|(c1,c2)bpoundsssurface.},\xi_{1},\cdots,\xi_{j}\in\{t_{c_{0}}|c_{0}\mathrm{\ bounds\ a\ surface.}\}\cup\{t_{c_{1}}t_{c_{2}}^{-1}|(c_{1},c_{2})\mathrm{\ bpounds\ s\ surface.}\},
(ξ1ξj)=exp(σ(bch(ζ(ξ1),,ζ(ξj)))):π1^(Σ,1,2)π1^(Σ,1,2)(\xi_{1}\cdots\xi_{j})_{*}=\exp(\sigma(\mathrm{bch}(\zeta^{\prime}(\xi_{1}),\cdots,\zeta^{\prime}(\xi_{j})))):\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})\to\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})

holds. Here we denote bch(x1,bch(x2,,bch(xn1,xn)))\mathrm{bch}(x_{1},\mathrm{bch}(x_{2},\cdots,\mathrm{bch}(x_{n-1},x_{n}))) by bch(x1,,xn)\mathrm{bch}(x_{1},\cdots,x_{n}) for any x1,,xnF3|π1|^(Σ)x_{1},\cdots,x_{n}\in F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma). By Theorem 2.1, we have

exp(σ(bch(ζ(ξ1),,ζ(ξj))))\displaystyle\exp(\sigma(\mathrm{bch}(\zeta^{\prime}(\xi_{1}),\cdots,\zeta^{\prime}(\xi_{j}))))
=exp(σ(ζ(ξ1)))exp(σ(ζ(ξj)))\displaystyle=\exp(\sigma(\zeta^{\prime}(\xi_{1})))\circ\cdots\circ\exp(\sigma(\zeta^{\prime}(\xi_{j})))
=ξ1ξj=(ξ1ξj).\displaystyle=\xi_{1*}\circ\cdots\circ\xi_{j*}=(\xi_{1}\cdots\xi_{j})_{*}.

In the second step, we prove that, for any

ξ1,,ξj,ξ1,,ξj{tc0|c0boundsasurface.}{tc1tc21|(c1,c2)bpoundsssurface.},\xi_{1},\cdots,\xi_{j},\xi^{\prime}_{1},\cdots,\xi^{\prime}_{j^{\prime}}\in\{t_{c_{0}}|c_{0}\mathrm{\ bounds\ a\ surface.}\}\cup\{t_{c_{1}}t_{c_{2}}^{-1}|(c_{1},c_{2})\mathrm{\ bpounds\ s\ surface.}\},

if

ξ=ξ1ξj=ξ1ξj,\xi=\xi_{1}\cdots\xi_{j}=\xi^{\prime}_{1}\cdots\xi^{\prime}_{j^{\prime}},
bch(ζ(ξ1),,ζ(ξj))=bch(ζ(ξ1),,ζ(ξj))\mathrm{bch}(\zeta^{\prime}(\xi_{1}),\cdots,\zeta^{\prime}(\xi_{j}))=\mathrm{bch}(\zeta^{\prime}(\xi^{\prime}_{1}),\cdots,\zeta^{\prime}(\xi^{\prime}_{j^{\prime}}))

holds. By the first statement, we have

σ(bch(ζ(ξ1),,ζ(ξj))=σ(bch(ζ(ξ1),,ζ(ξj)))=i=1(1)ii(ξid)i\displaystyle\sigma(\mathrm{bch}(\zeta^{\prime}(\xi_{1}),\cdots,\zeta^{\prime}(\xi_{j}))=\sigma(\mathrm{bch}(\zeta^{\prime}(\xi^{\prime}_{1}),\cdots,\zeta^{\prime}(\xi^{\prime}_{j^{\prime}})))=\sum_{i=1}^{\infty}\frac{(-1)^{i}}{i}(\xi_{*}-\mathrm{id})^{i}
:π1^(Σ,1,2)π1^(Σ,1,2)\displaystyle:\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})\to\widehat{\mathbb{Q}\pi_{1}}(\Sigma,*_{1},*_{2})

for any 1,2Σ*_{1},*_{2}\in\partial\Sigma. Using it, by Proposition 2.2, we obtain

bch(ζ(ξ1),,ζ(ξj))=bch(ζ(ξ1),,ζ(ξj)).\mathrm{bch}(\zeta^{\prime}(\xi_{1}),\cdots,\zeta^{\prime}(\xi_{j}))=\mathrm{bch}(\zeta^{\prime}(\xi^{\prime}_{1}),\cdots,\zeta^{\prime}(\xi^{\prime}_{j^{\prime}})).

The above two statements prove the proposition.

3. The bracket-quantization HOMFLY-PT skein algebra

In this section, we set a skein module 𝒜(M)\mathcal{A}^{\prime}(M) of a oriented 3-manifold MM. We call 𝒜(M)\mathcal{A}^{\prime}(M) the bracket-quantization HOMFLY-PT skein module in this paper. If the 3-manifold is a cylinder S×IS\times I of a compact oriented surface SS, we consider an algebraic structure of the module and call 𝒜(S)=def.𝒜(S×I)\mathcal{A}^{\prime}(S)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\mathcal{A}^{\prime}(S\times I) the quantum bracket-quantization HOMFLY-PT skein module.

For a compact oriented 3-manifold MM, let (M)\mathcal{E}^{\prime}(M) be a set consisting of all embeddings E:(S1)ME:(\coprod S^{1})\to M satisfying the condition.

  • E((S1))M\M.E(\coprod(S^{1}))\subset M\backslash\partial M.

For two elements E1E_{1} and E2E_{2} of (M)\mathcal{E}^{\prime}(M), E1E_{1} and E2E_{2} are isotopic, if and only if there exists an isotopy Y:(S1)×IMY:(\coprod S^{1})\times I\to M having the properties.

  • For any tIt\in I, Y(,t)(M).Y(\cdot,t)\in\mathcal{E}^{\prime}(M).

  • E0=Y(,0)E_{0}=Y(\cdot,0), E1=Y(,1)E_{1}=Y(\cdot,1).

We denote by 𝒯(M)\mathcal{T}^{\prime}(M) the set of all tangles, which are isotopy classes of elements of (M)\mathcal{E}^{\prime}(M).

In this paper, we also use tangles. For two points 0,1Σ\star_{0},\star_{1}\in\partial\Sigma, let (M,1,2)\mathcal{E}^{\prime}(M,\star_{1},\star_{2}) be a set consisting of all embeddings E:I(S1)ME:I\sqcup(\coprod S^{1})\to M satisfying the condition.

  1. (1)

    E((0,1)(S1))M\M.E((0,1)\sqcup\coprod(S^{1}))\subset M\backslash\partial M.

  2. (2)

    E({0I})={0}E(\{0\in I\})=\{\star_{0}\}.

  3. (3)

    E({1I})={1}E(\{1\in I\})=\{\star_{1}\}.

For two elements E1E_{1} and E2E_{2} of (M,1,2)\mathcal{E}^{\prime}(M,\star_{1},\star_{2}), E1E_{1} and E2E_{2} are isotopic, if and only if there exists an isotopy Y:(I(S1))×IY:(I\sqcup\coprod(S^{1}))\times I having the properties.

  • For any tIt\in I, Y(,t)(M,0,1).Y(\cdot,t)\in\mathcal{E}^{\prime}(M,\star_{0},\star_{1}).

  • E0=Y(,0)E_{0}=Y(\cdot,0), E1=Y(,1)E_{1}=Y(\cdot,1).

We denote by 𝒯(M,0,1)\mathcal{T}^{\prime}(M,\star_{0},\star_{1}) the set of all tangles in MM with basepoint set 0,1\star_{0},\star_{1}, which are isotopy classes of (M,0,1)\mathcal{E}^{\prime}(M,\star_{0},\star_{1}).

To define the quantum-bracket skein module, we will consider a Conway triple who are elements of 𝒯(M)\mathcal{T}^{\prime}(M) or 𝒯(M,0,1)\mathcal{T}^{\prime}(M,\star_{0},\star_{1}) and maps

||:𝒯(M,0,1)0,T(thenumberofcomponentsofT),\displaystyle\lvert\cdot\rvert:\mathcal{T}^{\prime}(M,\star_{0},\star_{1})\to\mathbb{Z}_{\geq 0},T\mapsto(\mathrm{the\ number\ of\ components\ of\ }T),
||:𝒯(M)0,L(thenumberofcomponentsofL).\displaystyle\lvert\cdot\rvert:\mathcal{T}^{\prime}(M)\to\mathbb{Z}_{\geq 0},L\mapsto(\mathrm{the\ number\ of\ components\ of\ }L).

Conway triples need to define skein relations. There exist two types of the skein relations of the quantum-bracket skein module in this paper.

Definition 3.1.

Let (E(C+),E(C),E(C0))(M,0,1)×3or(M)×3(E_{(C+)},E_{(C-)},E_{(C0)})\in\mathcal{E}^{\prime}(M,\star_{0},\star_{1})^{\times 3}\mathrm{\ or\ }\mathcal{E}^{\prime}(M)^{\times 3} be embeddings having the two properties.

  • The image of E(C+),E(C),E(C0)E_{(C+)},E_{(C-)},E_{(C0)} are equals except for a closed ball as oriented submanifolds.

  • In the ball, the images of them are two lines presented by Figure3, Figure3, and Figure3.

Then the three elements (T(C+),T(C),T(C0))𝒯(M,0,1)×3or𝒯(M)×3(T_{(C+)},T_{(C-)},T_{(C0)})\in\mathcal{T}^{\prime}(M,\star_{0},\star_{1})^{\times 3}\mathrm{\ or\ }\mathcal{T}^{\prime}(M)^{\times 3} represented by (E(C+),E(C),E(C0))(E_{(C+)},E_{(C-)},E_{(C0)}) is a Conway triple.

Figure 1. T(C+)T_{(C+)}
Figure 2. T(C)T_{(C-)}
Figure 3. T(C0)T_{(C0)}
Definition 3.2.

For a compact oriented 3-manifold MM and 0,1M\star_{0},\star_{1}\in\partial M, we set 𝒜(M)\mathcal{A}^{\prime}(M) and 𝒜(M,0,1)\mathcal{A}^{\prime}(M,\star_{0},\star_{1}) as the quotients of the free [h]\mathbb{Q}[h]-modules [h]𝒯(M)\mathbb{Q}[h]\mathcal{T}^{\prime}(M) and [h]𝒯(M,0,1)\mathbb{Q}[h]\mathcal{T}^{\prime}(M,\star_{0},\star_{1}) by the relations

  • For a Conway triple (T(C+),T(C),T(C0))𝒯(M)×3or𝒯(M,0,1)×3(T_{(C+)},T_{(C-)},T_{(C0)})\in\mathcal{T}^{\prime}(M)^{\times 3}\mathrm{\ or\ }\mathcal{T}^{\prime}(M,\star_{0},\star_{1})^{\times 3} such that

    |T(C+)|=|T(C)|=|TC0|1,\lvert T_{(C+)}\rvert=\lvert T_{(C-)}\rvert=\lvert T_{C0}\rvert-1,

    we consider the relation

    T(C+)T(C)=hT(C0).T_{(C+)}-T_{(C-)}=hT_{(C0)}.
  • For a Conway triple (T(C+),T(C),T(C0))𝒯(M)×3or𝒯(M,0,1)×3(T_{(C+)},T_{(C-)},T_{(C0)})\in\mathcal{T}^{\prime}(M)^{\times 3}\mathrm{\ or\ }\mathcal{T}^{\prime}(M,\star_{0},\star_{1})^{\times 3} such that

    |T(C+)|=|T(C)|=|TC0|+1,\lvert T_{(C+)}\rvert=\lvert T_{(C-)}\rvert=\lvert T_{C0}\rvert+1,

    we consider the relation

    T(C+)T(C)=0.T_{(C+)}-T_{(C-)}=0.

In other words, the figure visualizes relations defining the skein modules 𝒜(M)\mathcal{A}^{\prime}(M) and 𝒜(M,0,1)\mathcal{A}^{\prime}(M,\star_{0},\star_{1}).

=h=h=0=0--

Let SS be a compact oriented surface. We denote by 𝒜(S)\mathcal{A}^{\prime}(S) and 𝒜(S,0,1)\mathcal{A}^{\prime}(S,\star_{0},\star_{1}) the skein modules 𝒜((Σ×I)\mathcal{A}((\Sigma\times I) and 𝒜(Σ×I,(0,1),(1,0))\mathcal{A}^{\prime}(\Sigma\times I,(\star_{0},1),(\star_{1},0)) for 0,1Σ\star_{0},\star_{1}\in\partial\Sigma. For a tangle T𝒯(S×I,(0,1),(1,0))T\in\mathcal{T}^{\prime}(S\times I,(\star_{0},1),(\star_{1},0)) represented by EγE:I(S1)S×IE_{\gamma}\sqcup E:I\sqcup\coprod(S^{1})\to S\times I and t0,t1It_{0},t_{1}\in I, we set Et0γt1E_{t_{0}\cdot\gamma\cdot t_{1}} as

Et0γt1(t){(0,t0(13t)+3t)ift[0,13]Eγ(3t1)ift[13,23](1,t1(3t2)ift[23,1]E_{t_{0}\cdot\gamma\cdot t_{1}}(t)\begin{cases}(\star_{0},t_{0}(1-3t)+3t)\mathrm{\ if\ }t\in[0,\frac{1}{3}]\\ E_{\gamma}(3t-1)\mathrm{\ if\ }t\in[\frac{1}{3},\frac{2}{3}]\\ (\star_{1},t_{1}(3t-2)\mathrm{\ if\ }t\in[\frac{2}{3},1]\end{cases}

and (1,0)(t0,t1)(T)\diamondsuit_{(1,0)}^{(t_{0},t_{1})}(T) as an element of 𝒯(S×I,(0,t0),(1,t1))\mathcal{T}^{\prime}(S\times I,(\star_{0},t_{0}),(\star_{1},t_{1})) represented by one of (S×I,(0,t0),(1,t1))\mathcal{E}^{\prime}(S\times I,(\star_{0},t_{0}),(\star_{1},t_{1})) isotopic to the embedding Et0,γ,t1EE_{t_{0},\gamma,t_{1}}\sqcup E. The map induces a bijection (1,0)(t0,t1):𝒜(S,0,1)𝒜(S×I,(0,t0),(1,t1))\diamondsuit_{(1,0)}^{(t_{0},t_{1})}:\mathcal{A}(S,\star_{0},\star_{1})\to\mathcal{A}(S\times I,(\star_{0},t_{0}),(\star_{1},t_{1})), whose reverse map (t0,t1)(1,0)\diamondsuit_{(t_{0},t_{1})}^{(1,0)} denotes. We will define a multiple of 𝒜(S)\mathcal{A}^{\prime}(S) and right and left actions of 𝒜(S)\mathcal{A}^{\prime}(S) on 𝒜(S,0,1)\mathcal{A}^{\prime}(S,\star_{0},\star_{1}). We set two embeddings eover,eunder:S×IS×Ie_{\mathrm{over}},e_{\mathrm{under}}:S\times I\to S\times I as

eover(p,t)=(p,1+t2),eunder(p,t)=(p,t2).e_{\mathrm{over}}(p,t)=(p,\frac{1+t}{2}),\ e_{\mathrm{under}}(p,t)=(p,\frac{t}{2}).

Let L1L_{1} and L2L_{2} be two links in S×IS\times I and TT be a tangle represented by E1E_{1}, E2E_{2}, and EE. We set the multiple L1L2L_{1}L_{2} of L1L_{1} and L2L_{2}, the right and left actions L1T,TL1L_{1}T,TL_{1} of L1L_{1} on TT as the following. The multiple L1L2L_{1}L_{2} is a link represented by the embedding eoverE1eunderE2e_{\mathrm{over}}\circ E_{1}\sqcup e_{\mathrm{under}}\circ E_{2}. The right and left actions L1T,TL1L_{1}T,TL_{1} are the tangles as

L1T=def.(12,0)(1,0)((L1T)),TL1=def.(1,12)(1,0)((TL1))L_{1}T\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\diamondsuit_{(\frac{1}{2},0)}^{(1,0)}((L_{1}T)^{\prime}),\ TL_{1}\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\diamondsuit_{(1,\frac{1}{2})}^{(1,0)}((TL_{1})^{\prime})

where the embeddings eoverE1eunderEe_{\mathrm{over}}\circ E_{1}\sqcup e_{\mathrm{under}}\circ E and eoverEeunderE1e_{\mathrm{over}}\circ E\sqcup e_{\mathrm{under}}\circ E_{1} represent (L1T)(L_{1}T)^{\prime} and (TL1)(TL_{1})^{\prime}.

Furthermore, we consider a Lie bracket [,]:𝒜(Σ)×𝒜(Σ)𝒜(Σ)[\cdot,\cdot]:\mathcal{A}^{\prime}(\Sigma)\times\mathcal{A}^{\prime}(\Sigma)\to\mathcal{A}^{\prime}(\Sigma) and a Lie action σ()():𝒜(Σ)×𝒜(Σ,0,1)\sigma(\cdot)(\cdot):\mathcal{A}^{\prime}(\Sigma)\times\mathcal{A}^{\prime}(\Sigma,\star_{0},\star_{1}) as the following. By Theorem 3.3, the maps

h():𝒜(Σ)𝒜(Σ),xhx\displaystyle h(\cdot):\mathcal{A}^{\prime}(\Sigma)\to\mathcal{A}^{\prime}(\Sigma),x\mapsto hx
h():𝒜(Σ,1,2)𝒜(Σ,1,2),yhy\displaystyle h(\cdot):\mathcal{A}^{\prime}(\Sigma,\star_{1},\star_{2})\to\mathcal{A}^{\prime}(\Sigma,\star_{1},\star_{2}),y\mapsto hy

are injective, and by the skein relation, we have

x1x2x2x1h𝒜(Σ),\displaystyle x_{1}x_{2}-x_{2}x_{1}\in h\mathcal{A}^{\prime}(\Sigma),
x1yyx1h𝒜(Σ,1,2).\displaystyle x_{1}y-yx_{1}\in h\mathcal{A}^{\prime}(\Sigma,\star_{1},\star_{2}).

for x1,x2𝒜(Σ)x_{1},x_{2}\in\mathcal{A}^{\prime}(\Sigma) and y𝒜(Σ,1,2).y\in\mathcal{A}^{\prime}(\Sigma,\star_{1},\star_{2}). We can define

[x1,x2]=def.1h(x1x2x2x1),\displaystyle[x_{1},x_{2}]\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\frac{1}{h}(x_{1}x_{2}-x_{2}x_{1}),
σ(x1)(y)=def.1h(x1yyx1).\displaystyle\sigma(x_{1})(y)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\frac{1}{h}(x_{1}y-yx_{1}).

Let Σ\Sigma be a compact connected oriented surface. We set 𝒰h(Σ)\mathcal{U}_{h}(\Sigma) as the quotient of the tensor algebra i=0([h]|π1|(Σ))[h]i\oplus_{i=0}^{\infty}(\mathbb{Q}[h]\lvert\pi_{1}\rvert(\Sigma))^{\otimes_{\mathbb{Q}[h]}i} by the relation

  • For any x,y|π1|(Σ)x,y\in\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma),

    xyyx=h[x,y].x\otimes y-y\otimes x=h[x,y].

We define the Lie bracket [,]:𝒰h(Σ)×𝒰h(Σ)𝒰h(Σ)[\cdot,\cdot]:\mathcal{U}_{h}(\Sigma)\times\mathcal{U}_{h}(\Sigma)\to\mathcal{U}_{h}(\Sigma) by the Leibniz rule, which means that we have

[x1xi,y1yj]\displaystyle[x_{1}\otimes\cdots\otimes x_{i},y_{1}\otimes\cdots\otimes y_{j}] =\displaystyle=
i{1,,i},j{1,,j}\displaystyle\sum_{i^{\prime}\in\{1,\cdots,i\},j^{\prime}\in\{1,\cdots,j\}} x1xi1y1yj1\displaystyle x_{1}\otimes\cdots\otimes x_{i^{\prime}-1}\otimes y_{1}\otimes\cdots\otimes y_{j^{\prime}-1}
[xi,yj]yj+1yjxi+1xi\displaystyle\otimes[x_{i^{\prime}},y_{j^{\prime}}]\otimes y_{j^{\prime}+1}\otimes\cdots\otimes y_{j}\otimes x_{i^{\prime}+1}\otimes\cdots\otimes x_{i}

for x1xi([h]|π1|(Σ))ix_{1}\otimes\cdots\otimes x_{i}\in(\mathbb{Q}[h]\lvert\pi_{1}\rvert(\Sigma))^{\otimes i} and y1yj([h]|π1|(Σ))jy_{1}\otimes\cdots\otimes y_{j}\in(\mathbb{Q}[h]\lvert\pi_{1}\rvert(\Sigma))^{\otimes j}. It satisfies the formula

[x,y]=1h(xyyx)[x,y]=\frac{1}{h}(x\otimes y-y\otimes x)

for xx and y𝒰h(Σ)y\in\mathcal{U}_{h}(\Sigma). We denote by Ψ|π1|𝒰h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{U}_{h}} the natural injection |π1|(Σ)𝒰h(Σ)\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)\to\mathcal{U}_{h}(\Sigma) and by Ψ𝒰h|π1|\Psi_{\mathcal{U}_{h}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert} the natural surjection

𝒰h(Σ)|π1|(Σ),x{xifx|π1|(Σ)0ifx|π1|(Σ)k,k1.\mathcal{U}_{h}(\Sigma)\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma),x\mapsto\begin{cases}x\mathrm{\ if\ }x\in\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)\\ 0\mathrm{\ if\ }x\in\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)^{\otimes k},k\neq 1.\end{cases}

We also set 𝒰h(Σ,1,2)\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2}) as the quotient of the tensor module 𝒰h(Σ)[h][h]π1(Σ,1,2)[h]𝒰h(Σ)\mathcal{U}_{h}(\Sigma)\otimes_{\mathbb{Q}[h]}\mathbb{Q}[h]\pi_{1}(\Sigma,\star_{1},\star_{2})\otimes_{\mathbb{Q}[h]}\mathcal{U}_{h}(\Sigma) by the relation

  • For x1,,xi[h]|π1|(Σ)x_{1},\cdots,x_{i}\in\mathbb{Q}[h]\lvert\pi_{1}\rvert(\Sigma) and y[h]π1(Σ,1,2)y\in\mathbb{Q}[h]\pi_{1}(\Sigma,\star_{1},\star_{2}),

    x1xiyxi+1xi\displaystyle x_{1}\otimes\cdots\otimes x_{i^{\prime}}\otimes y\otimes x_{i^{\prime}+1}\otimes\cdots\otimes x_{i}
    x1xi1yxixi\displaystyle-x_{1}\otimes\cdots\otimes x_{i^{\prime}-1}\otimes y\otimes x_{i^{\prime}}\otimes\cdots\otimes x_{i}
    =x1xi1σ(xi)(y)xi+1xi\displaystyle=x_{1}\otimes\cdots\otimes x_{i^{\prime}-1}\otimes\sigma(x_{i^{\prime}})(y)\otimes x_{i^{\prime}+1}\otimes\cdots\otimes x_{i}

We define the Lie action σ()():𝒰h(Σ)𝒰h(Σ,1,2)\sigma(\cdot)(\cdot):\mathcal{U}_{h}(\Sigma)\to\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2}) by the Leibniz rule, which means that we have

σ(x1xi)(xyx′′)=[x1xi,x]yx′′\displaystyle\sigma(x_{1}\otimes\cdots\otimes x_{i})(x^{\prime}\otimes y\otimes x^{\prime\prime})=[x_{1}\otimes\cdots\otimes x_{i},x^{\prime}]\otimes y\otimes x^{\prime\prime}
+i{1,,i}xx1xi1σ(xi)(y)xi+1xix\displaystyle+\sum_{i^{\prime}\in\{1,\cdots,i\}}x^{\prime}\otimes x_{1}\otimes\cdots\otimes x_{i-1}\otimes\sigma(x_{i})(y)\otimes x_{i^{\prime}+1}\otimes\cdots\otimes x_{i}\otimes x
+xy[x1xi,x′′]\displaystyle+x^{\prime}\otimes y\otimes[x_{1}\otimes\cdots\otimes x_{i},x^{\prime\prime}]

for x1,,xi|π1|(Σ)x_{1},\cdots,x_{i}\in\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma), x,x𝒰h(Σ)x,x^{\prime}\in\mathcal{U}_{h}(\Sigma), and yπ1(Σ)y\in\mathbb{Q}\pi_{1}(\Sigma). It also satisfies

σ(x)(y)=1h(xyyx).\sigma(x)(y)=\frac{1}{h}(x\otimes y-y\otimes x).

We denote by Ψπ1𝒰h\Psi_{\mathbb{Q}\pi_{1}}^{\mathcal{U}_{h}} the natural injection π1(Σ,1,2)𝒰h(Σ,1,2)\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})\to\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2}) and by Ψ𝒰hπ1\Psi_{\mathcal{U}_{h}}^{\mathbb{Q}\pi_{1}} the natural surjection

𝒰h(Σ,1,2)π1(Σ,1,2),\displaystyle\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2})\to\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}),
xyx{(x)(x)yifx,x|π1|(Σ)0=0ify|π1|(Σ)k,y|π1|(Σ)k,k+k1\displaystyle x\otimes y\otimes x^{\prime}\mapsto\begin{cases}(x)(x^{\prime})y\mathrm{\ if\ }x,x^{\prime}\in\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)^{\otimes 0}=\mathbb{Q}\\ 0\mathrm{\ if\ }y\in\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)^{\otimes k},y^{\prime}\in\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)^{\otimes k^{\prime}},k+k^{\prime}\geq 1\end{cases}

for yπ1(Σ,1,2)y\in\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}).

We set the [h]\mathbb{Q}[h]-algebra homomorphism Ψ𝒰h𝒜\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}} and the [h]\mathbb{Q}[h]-module one Ψ𝒰h𝒜\Psi_{\mathcal{U}_{h}}^{\mathcal{A}} by

Ψ𝒰h𝒜:𝒰h(Σ)𝒜(Σ),|γ||π1|(Σ)K|γ|,\displaystyle\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}:\mathcal{U}_{h}(\Sigma)\to\mathcal{A}^{\prime}(\Sigma),\lvert\gamma\rvert\in\lvert\pi_{1}\rvert(\Sigma)\mapsto K_{\lvert\gamma\rvert},
Ψ𝒰h𝒜:𝒰h(Σ,1,2)𝒜(Σ,1,2),xγxΨ𝒰h𝒜(x)TγΨ𝒰h𝒜(x)\displaystyle\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}:\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2})\to\mathcal{A}^{\prime}(\Sigma,\star_{1},\star_{2}),x\otimes\gamma\otimes x^{\prime}\mapsto\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}(x)T_{\gamma}\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}(x)

for γπ1(Σ)\gamma\in\pi_{1}(\Sigma) and x,x𝒰h(Σ)x,x^{\prime}\in\mathcal{U}_{h}(\Sigma), where K|γ|K_{\lvert\gamma\rvert} and TγT_{\gamma} are a knot and a a tangle whose homotopy class is |γ|\lvert\gamma\rvert and γ\gamma, respectively. We can prove the following theorem in the same way as the proof of Turaev [15, Theorem 3.3].

Theorem 3.3.

For a compact connected oriented surface Σ\Sigma and 1,2Σ\star_{1},\star_{2}\in\partial\Sigma, the algebra homomorphism Ψ𝒰h𝒜:𝒰h(Σ)𝒜(Σ)\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}:\mathcal{U}_{h}(\Sigma)\to\mathcal{A}^{\prime}(\Sigma) and module one Ψ𝒰h𝒜:𝒰h(Σ,1,2)𝒜(Σ,1,2)\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}:\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2})\to\mathcal{A}^{\prime}(\Sigma,\star_{1},\star_{2}) are bijective. Furthermore, we have

[Ψ𝒰h𝒜(x),Ψ𝒰h𝒜(x)]=Ψ𝒰h𝒜([x,x]),\displaystyle[\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}(x),\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}(x^{\prime})]=\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}([x,x^{\prime}]),
σ(Ψ𝒰h𝒜(x))(Ψ𝒰h𝒜(y))=Ψ𝒰h𝒜(σ(x)(y))\displaystyle\sigma(\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}(x))(\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}(y))=\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}(\sigma(x)(y))

for x,x𝒰h(Σ)x,x^{\prime}\in\mathcal{U}_{h}(\Sigma) and y𝒰h(Σ,1,2)y\in\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2}).

We denote by Ψ𝒜𝒰h\Psi_{\mathcal{A}^{\prime}}^{\mathcal{U}_{h}} the reverse map of Ψ𝒰h𝒜\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}, and consider the composites

Ψπ1𝒜=def.Ψπ1𝒰hΨ𝒰h𝒜,Ψ|π1|𝒜=def.Ψ|π1|𝒰hΨ𝒰h𝒜,\displaystyle\Psi_{\mathbb{Q}\pi_{1}}^{\mathcal{A}^{\prime}}\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\Psi_{\mathbb{Q}\pi_{1}}^{\mathcal{U}_{h}}\circ\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}},\ \Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{U}_{h}}\circ\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}},
Ψ𝒜π1=def.Ψ𝒜𝒰hΨ𝒰hπ1,Ψ𝒜|π1|=def.Ψ𝒜𝒰hΨ𝒰h|π1|.\displaystyle\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\pi_{1}}\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\Psi_{\mathcal{A}^{\prime}}^{\mathcal{U}_{h}}\circ\Psi_{\mathcal{U}_{h}}^{\mathbb{Q}\pi_{1}},\ \Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\Psi_{\mathcal{A}^{\prime}}^{\mathcal{U}_{h}}\circ\Psi_{\mathcal{U}_{h}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}.

Let {Fn𝒰h(Σ)}n0\{F^{n}\mathcal{U}_{h}(\Sigma)\}_{n\geq 0} and {Fn𝒰h(Σ,1,2)}n0\{F^{n}\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2})\}_{n\geq 0} be the filtrations of 𝒰h(Σ)\mathcal{U}_{h}(\Sigma) and 𝒰h(Σ,1,2)\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2}) such as

Fn𝒰h(Σ)=def.2i0+i1++ijnhi0(Fi1|π1|(Σ))(Fij|π1|(Σ)),\displaystyle F^{n}\mathcal{U}_{h}(\Sigma)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\sum_{2i_{0}+i_{1}+\cdots+i_{j}\geq n}h^{i_{0}}(F^{i_{1}}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma))\otimes\cdots\otimes(F^{i_{j}}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)),
Fn𝒰h(Σ,1,2)=def.i1+i2+i3nFi1𝒰h(Σ)(Fi2π1(Σ,1,2))Fi3𝒰h(Σ).\displaystyle F^{n}\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2})\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\sum_{i_{1}+i_{2}+i_{3}\geq n}F^{i_{1}}\mathcal{U}_{h}(\Sigma)\otimes(F^{i_{2}}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}))\otimes F^{i_{3}}\mathcal{U}_{h}(\Sigma).

We consider the completed algebra and module

𝒰h^(Σ)=def.limi𝒰h(Σ)/Fi𝒰h(Σ),\displaystyle\widehat{\mathcal{U}_{h}}(\Sigma)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\underleftarrow{\lim}_{i\rightarrow\infty}\mathcal{U}_{h}(\Sigma)/F^{i}\mathcal{U}_{h}(\Sigma),
𝒰h^(Σ,1,2)=def.limi𝒰h(Σ,1,2)/Fi𝒰h(Σ,1,2)\displaystyle\widehat{\mathcal{U}_{h}}(\Sigma,\star_{1},\star_{2})\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\underleftarrow{\lim}_{i\rightarrow\infty}\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2})/F^{i}\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2})

of 𝒰h(Σ)\mathcal{U}_{h}(\Sigma) and 𝒰h(Σ,1,2)\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2}) in terms of the filtrations. Furthermore, they also define {Fn𝒜(Σ)}n0\{F^{n}\mathcal{A}^{\prime}(\Sigma)\}_{n\geq 0} and {Fn𝒜(Σ,1,2)}n0\{F^{n}\mathcal{A}^{\prime}(\Sigma,\star_{1},\star_{2})\}_{n\geq 0} of 𝒜(Σ)\mathcal{A}^{\prime}(\Sigma) and 𝒜(Σ,1,2)\mathcal{A}^{\prime}(\Sigma,\star_{1},\star_{2}) such as

Fn𝒜(Σ)=def.Ψ𝒰h𝒜(Fn𝒰h(Σ)),\displaystyle F^{n}\mathcal{A}^{\prime}(\Sigma)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}(F^{n}\mathcal{U}_{h}(\Sigma)),
Fn𝒰h(Σ,1,2)=def.Ψ𝒰h𝒜(Fn(𝒰h(Σ,1,2)).\displaystyle F^{n}\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2})\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}(F^{n}(\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2})).

We also consider the completed algebra and module

𝒜^(Σ)=def.limi𝒜(Σ)/Fi𝒜(Σ),\displaystyle\widehat{\mathcal{A}}^{\prime}(\Sigma)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\underleftarrow{\lim}_{i\rightarrow\infty}\mathcal{A}^{\prime}(\Sigma)/F^{i}\mathcal{A}^{\prime}(\Sigma),
𝒜^(Σ,1,2)=def.limi𝒜(Σ,1,2)/Fi𝒜(Σ,1,2),\displaystyle\widehat{\mathcal{A}}^{\prime}(\Sigma,\star_{1},\star_{2})\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\underleftarrow{\lim}_{i\rightarrow\infty}\mathcal{A}^{\prime}(\Sigma,\star_{1},\star_{2})/F^{i}\mathcal{A}^{\prime}(\Sigma,\star_{1},\star_{2}),

of 𝒜(Σ)\mathcal{A}^{\prime}(\Sigma) and 𝒜(Σ,1,2)\mathcal{A}^{\prime}(\Sigma,\star_{1},\star_{2}). For a compact oriented surface SS having components Σ(1),,Σ(k)\Sigma^{(1)},\cdots,\Sigma^{(k)}, using the isomorphism

eiΣ(i),S:𝒜(Σ(1))𝒜(Σ(k))𝒜(S),e_{\coprod_{i}\Sigma^{(i)},S*}:\mathcal{A}^{\prime}(\Sigma^{(1)})\otimes\cdots\otimes\mathcal{A}^{\prime}(\Sigma^{(k)})\to\mathcal{A}^{\prime}(S),

we define the filtration {Fn𝒜(S)}n0\{F^{n}\mathcal{A}^{\prime}(S)\}_{n\geq 0} as

Fn𝒜(S)=def.i1++ikneiΣ(i),S(Fi1𝒜(Σ(1))Fik(Σ(ik))).F^{n}\mathcal{A}^{\prime}(S)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\sum_{i_{1}+\cdots+i_{k}\geq n}e_{\coprod_{i}\Sigma^{(i)},S*}(F^{i_{1}}\mathcal{A}^{\prime}(\Sigma^{(1)})\otimes\cdots\otimes F^{i_{k}}(\Sigma^{(i_{k})})).

We also set the filtrations {FnV^}n0\{F^{n}\widehat{V}\}_{n\geq 0} of completions by

FnV^=def.ker(V^V/FnV)F^{n}\widehat{V}\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\ker(\widehat{V}\to V/F^{n}V)

for V=𝒰h(Σ),𝒰h(Σ,1,2),𝒜(Σ),𝒜(Σ,1,2)V=\mathcal{U}_{h}(\Sigma),\mathcal{U}_{h}(\Sigma,\star_{1},\star_{2}),\mathcal{A}^{\prime}(\Sigma),\mathcal{A}^{\prime}(\Sigma,\star_{1},\star_{2}) and 𝒜(S)\mathcal{A}^{\prime}(S). The filtration has the following property.

Proposition 3.4.

For compact connected surfaces SS and SS^{\prime}, the induced map e:𝒜(S)𝒜(S)e_{*}:\mathcal{A}^{\prime}(S^{\prime})\to\mathcal{A}^{\prime}(S) of an embedding e:S×IS×Ie:S^{\prime}\times I\to S\times I satisfies

e(FN𝒜(S))FN𝒜(S)e_{*}(F^{N}\mathcal{A}^{\prime}(S^{\prime}))\subset F^{N}\mathcal{A}^{\prime}(S)

for any N0.N\in\mathbb{Z}_{\geq 0}.

Proof.

We can prove the statement in the same way as our paper [14, §4]. Furthermore, it is easy to prove it by Lemma 7.6 in this paper in case the sequence is trivial, which means 𝐛={0,0,0,}\mathbf{b}=\{0,0,0,\cdots\}.

4. Homology cylinders

Let Σ\Sigma be a compact connected oriented surface with boundary. We define a homology cobordism or cylinder not only in the case that Σ\Sigma has one boundary component but in the general case.

Definition 4.1.

Let MM be a compact connected oriented 3-manifold and α:(Σ×I)M\alpha:\partial(\Sigma\times I)\to\partial M a diffeomorphism. We call the pair (M,α)(M,\alpha) a homology cylinder, if and only if the embeddings

α0:ΣM,pα(p,0),α1:ΣM,pα(p,1)\displaystyle\alpha_{0}:\Sigma\to M,p\mapsto\alpha(p,0),\ \alpha_{1}:\Sigma\to M,p\mapsto\alpha(p,1)

induce isomorphisms α0:H1(Σ,)H1(M,)\alpha_{0*}:H_{1}(\Sigma,\mathbb{Z})\to H_{1}(M,\mathbb{Z}) and α1:H1(Σ,)H1(M,)\alpha_{1*}:H_{1}(\Sigma,\mathbb{Z})\to H_{1}(M,\mathbb{Z}) in homology groups over the integers.

Let (M1,α1)(M^{1},\alpha^{1}) and (M2,α2)(M^{2},\alpha^{2}) be two homology cobordisms. If there exists a diffeomorphism χ:M1M2\chi:M^{1}\to M^{2} satisfying χα1=α2\chi\circ\alpha^{1}=\alpha^{2}, such pairs are called diffeomorphic. We denote by 𝒞(Σ)\mathcal{C}(\Sigma) the set of diffeomorphic classes of homology cobordisms of the surface Σ\Sigma.

We consider the stacking sum of homology cobordisms defined as follows, which makes 𝒞(Σ)\mathcal{C}(\Sigma) a monoid. For two homology cobordisms (M1,α1)(M^{1},\alpha^{1}) and (M2,α2)(M^{2},\alpha^{2}), we set a 33-manifold M1α1,α2M2M^{1}\circ_{\alpha^{1},\alpha^{2}}M^{2} and a diffeomorphism α1α2:(Σ×I)(M1α1,α2M2)\alpha^{1}\sqcup\alpha^{2}:\partial(\Sigma\times I)\to\partial(M^{1}\circ_{\alpha^{1},\alpha^{2}}M^{2}) as the following. The 33-manifold M1α1,α2M2M^{1}\circ_{\alpha^{1},\alpha^{2}}M^{2} is the quotient of M1M2M^{1}\sqcup M^{2} by the relation

α01(p)α02(p)forpΣ.\alpha^{1}_{0}(p)\sim\alpha^{2}_{0}(p)\mathrm{\ for\ }p\in\Sigma.

We define the diffeomorphism α1α2\alpha^{1}\sqcup\alpha^{2} as

(α1α2)(p,t)={α1(p,1)α1(p,2t1)ift[12,1]α2(p,2t)ift[0,12]α2(p,0).(\alpha^{1}\sqcup\alpha^{2})(p,t)=\begin{cases}\alpha^{1}(p,1)\ &\\ \alpha^{1}(p,2t-1)\ &\mathrm{if}\ t\in[\frac{1}{2},1]\\ \alpha^{2}(p,2t)\ &\mathrm{if}\ t\in[0,\frac{1}{2}]\\ \alpha^{2}(p,0).\ &\end{cases}

Then the pair (M1α1,α2M2,α1α2)(M^{1}\circ_{\alpha^{1},\alpha^{2}}M^{2},\alpha^{1}\sqcup\alpha^{2}) is also a homology cobordism. The operator

()():𝒞(Σ)×𝒞(Σ)𝒞(Σ),((M1,α1),(M2,α2))(M1α1,α2M2,α1α2)(\cdot)\circ(\cdot):\mathcal{C}(\Sigma)\times\mathcal{C}(\Sigma)\to\mathcal{C}(\Sigma),((M^{1},\alpha^{1}),(M^{2},\alpha^{2}))\mapsto(M^{1}\circ_{\alpha^{1},\alpha^{2}}M^{2},\alpha^{1}\sqcup\alpha^{2})

makes 𝒞(Σ)\mathcal{C}(\Sigma) a monoid, and we call it the stacking sum.

We will consider the action

Φ:𝒞(Σ)Aut(π1^(Σ,,))\Phi:\mathcal{C}(\Sigma)\to\mathrm{Aut}(\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,\star))

of 𝒞(Σ)\mathcal{C}(\Sigma) on π1(Σ,1,2)\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}) as follows. We set isomorphisms

01:π1(M,α(,0),α(,0))π1(M,α(,1),α(,1)),γγ10γγ01,\displaystyle\diamondsuit_{0}^{1}:\pi_{1}(M,\alpha(\bullet,0),\alpha(*,0))\to\pi_{1}(M,\alpha(\bullet,1),\alpha(*,1)),\gamma\mapsto\gamma_{10\bullet}\gamma\gamma_{01*},
10:π1(M,α(,1),α(,1))π1(M,α(,0),α(,0)),γγ01γγ10,\displaystyle\diamondsuit_{1}^{0}:\pi_{1}(M,\alpha(\bullet,1),\alpha(*,1))\to\pi_{1}(M,\alpha(\bullet,0),\alpha(*,0)),\gamma\mapsto\gamma_{01\bullet}\gamma\gamma_{10*},

where the continuous maps

[0,1]M,tα(,t),[0,1]M,tα(,1t),\displaystyle[0,1]\to M,t\mapsto\alpha(\star,t),\ \ [0,1]\to M,t\mapsto\alpha(\star,1-t),

represent the paths γ01π1(M,α(,0),α(,1)),\gamma_{01\star}\in\pi_{1}(M,\alpha(\star,0),\alpha(\star,1)), γ10π1(M,α(,1),α(,0))\gamma_{10\star}\in\pi_{1}(M,\alpha(\star,1),\alpha(\star,0)) , respectively, for any Σ\star\in\partial\Sigma. By Stallings’s theorem [13], the embeddings α0\alpha_{0} and α1\alpha_{1} induced isomorphisms

α0:π1^(Σ,,)π1^(M,π1(M,α(,0),α(,0)),\displaystyle\alpha_{0*}:\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*)\to\widehat{\mathbb{Q}\pi_{1}}(M,\pi_{1}(M,\alpha(\bullet,0),\alpha(*,0)),
α1:π1^(Σ,,)π1^(M,α(,1),α(,1)).\displaystyle\alpha_{1*}:\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*)\to\widehat{\mathbb{Q}\pi_{1}}(M,\alpha(\bullet,1),\alpha(*,1)).

Then the action Φ((M,α))=(M,α)Aut(π1^(Σ,,))\Phi((M,\alpha))=(M,\alpha)_{*}\in\mathrm{Aut}(\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*)) is defined as the composite map

Φ((M,α))=(M,α)=def.α1101α0.\Phi((M,\alpha))=(M,\alpha)_{*}\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\alpha_{1*}^{-1}\circ\diamondsuit_{0}^{1}\circ\alpha_{0*}.

The map

Φ=():𝒞(Σ)Aut(π1^(Σ,,))\Phi=(\cdot)_{*}:\mathcal{C}(\Sigma)\to\mathrm{Aut}(\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*))

is a monoid homomorphism.

To make the definition of homology cylinders, we will check that the two conditions in the following proposition are equivalent.

Proposition 4.2.

For a homology cobordism (M,α)(M,\alpha), the following two conditions are equivalent.

  1. (1)

    We have

    ker(ι:H1((Σ×I),)H1(Σ×I,))=ker(α:H1((Σ×I),)H1(M,)),\ker(\iota_{*}:H_{1}(\partial(\Sigma\times I),\mathbb{Z})\to H_{1}(\Sigma\times I,\mathbb{Z}))=\ker(\alpha_{*}:H_{1}(\partial(\Sigma\times I),\mathbb{Z})\to H_{1}(M,\mathbb{Z})),

    where the natural embedding ι:(Σ×I)Σ×I\iota:\partial(\Sigma\times I)\to\Sigma\times I and α:(Σ×I)M\alpha:\partial(\Sigma\times I)\to M induce the group homomorphisms

    ι:H1((Σ×I),)H1(Σ×I,),α:H1((Σ×I),)H1(M,).\displaystyle\iota_{*}:H_{1}(\partial(\Sigma\times I),\mathbb{Z})\to H_{1}(\Sigma\times I,\mathbb{Z}),\ \alpha_{*}:H_{1}(\partial(\Sigma\times I),\mathbb{Z})\to H_{1}(M,\mathbb{Z}).
  2. (2)

    For any 1,2Σ\star_{1},\star_{2}\in\partial\Sigma, the action (M,α)(M,\alpha)_{*} satisfies

    ((M,α)idπ1^(Σ,,))(π1^(Σ,1,2))F2π1^(Σ,1,2).((M,\alpha)_{*}-\mathrm{id}_{\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*)})(\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2}))\subset F^{2}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2}).
Proof.

To prove it, we need some notation. We choose some base points ,1,2Σ\star,\star_{1},\star_{2}\in\partial\Sigma. Let

γ01(Σ×I)π1((Σ×I),(,0),(,1)),\displaystyle\gamma^{\partial(\Sigma\times I)}_{01\star}\in\pi_{1}(\partial(\Sigma\times I),(\star,0),(\star,1)), γ10(Σ×I)π1((Σ×I),(,1),(,0)),\displaystyle\gamma^{\partial(\Sigma\times I)}_{10\star}\in\pi_{1}(\partial(\Sigma\times I),(\star,1),(\star,0)),

be the paths represented by the continuous maps

I(Σ×I),t(,t),\displaystyle I\to\partial(\Sigma\times I),t\mapsto(\star,t),\ I(Σ×I),t(,1t).\displaystyle I\to\partial(\Sigma\times I),t\mapsto(\star,1-t).

We set the embeddings ι0,ι1:Σ(Σ×I)\iota^{\prime}_{0},\iota^{\prime}_{1}:\Sigma\to\partial(\Sigma\times I) as

ι0:Σ(Σ×I),p(p,0),ι1:Σ(Σ×I),p(p,1).\displaystyle\iota^{\prime}_{0}:\Sigma\to\partial(\Sigma\times I),p\mapsto(p,0),\ \iota^{\prime}_{1}:\Sigma\to\partial(\Sigma\times I),p\mapsto(p,1).

They induce

ι0:π1(Σ,1,2)π1((Σ×I),(1,0),(2,0)),\displaystyle\iota^{\prime}_{0*}:\pi_{1}(\Sigma,\star_{1},\star_{2})\to\pi_{1}(\partial(\Sigma\times I),(\star_{1},0),(\star_{2},0)),
ι1:π1(Σ,1,2)π1((Σ×I),(1,1),(2,1)).\displaystyle\iota^{\prime}_{1*}:\pi_{1}(\Sigma,\star_{1},\star_{2})\to\pi_{1}(\partial(\Sigma\times I),(\star_{1},1),(\star_{2},1)).

First, we prove (1)(2)(1)\Rightarrow(2). Let γ\gamma be an element of π1(Σ,1,2)\pi_{1}(\Sigma,\star_{1},\star_{2}), and γ¯\bar{\gamma} the reverse of γ\gamma. Then, the homology class represented by the path

ι0(γ)γ012(Σ×I)ι1,(γ¯)γ101(Σ×I)\iota^{\prime}_{0*}(\gamma)\gamma^{\partial(\Sigma\times I)}_{01\star_{2}}\iota^{\prime}_{1,*}(\bar{\gamma})\gamma^{\partial(\Sigma\times I)}_{10\star_{1}}

satisfies

ι([ι0(γ)γ012(Σ×I)ι1,(γ¯)γ101(Σ×I)])=0H1((Σ×I),).\iota_{*}([\iota^{\prime}_{0*}(\gamma)\gamma^{\partial(\Sigma\times I)}_{01\star_{2}}\iota^{\prime}_{1,*}(\bar{\gamma})\gamma^{\partial(\Sigma\times I)}_{10\star_{1}}])=0\in H_{1}(\partial(\Sigma\times I),\mathbb{Z}).

By the first statement, we have

α([ι0(γ)γ012(Σ×I)ι1,(γ¯)γ101(Σ×I)])=0H1(M,),\displaystyle\alpha_{*}([\iota^{\prime}_{0*}(\gamma)\gamma^{\partial(\Sigma\times I)}_{01\star_{2}}\iota^{\prime}_{1,*}(\bar{\gamma})\gamma^{\partial(\Sigma\times I)}_{10\star_{1}}])=0\in H_{1}(M,\mathbb{Z}),
α0(γ)γ012α1(γ¯)γ101[π1(M,α(1,0)),π1(M,α(1,0))]1+F2π1(M,α(1,0)).\displaystyle\alpha_{0*}(\gamma)\gamma_{01\star_{2}}\alpha_{1*}(\bar{\gamma})\gamma_{10\star_{1}}\in[\pi_{1}(M,\alpha(\star_{1},0)),\pi_{1}(M,\alpha(\star_{1},0))]\subset 1+F^{2}\mathbb{Q}\pi_{1}(M,\alpha(\star_{1},0)).

So we have

α0(γ)γ011α1(γ)γ102\displaystyle\alpha_{0*}(\gamma)-\gamma_{01\star_{1}}\alpha_{1*}({\gamma})\gamma_{10\star_{2}}
=(α0(γ)γ012α1(γ¯)γ1011)γ011α1(γ)γ102\displaystyle=(\alpha_{0*}(\gamma)\gamma_{01\star_{2}}\alpha_{1*}(\bar{\gamma})\gamma_{10\star_{1}}-1)\gamma_{01\star_{1}}\alpha_{1*}({\gamma})\gamma_{10\star_{2}}
F2π1(M,α(1,0),α(2,0))\displaystyle\in F^{2}\mathbb{Q}\pi_{1}(M,\alpha(\star_{1},0),\alpha(\star_{2},0))

Hence we obtain (1)(2)(1)\Rightarrow(2).

Next, we prove (2)(1)(2)\Rightarrow(1). We will prove it in five steps.

  • (Step 1)

    The homology group H1((Σ×I),)H_{1}(\partial(\Sigma\times I),\mathbb{Z}) is the direct sum Vι1(H1(Σ,))V\oplus\iota^{\prime}_{1*}(H_{1}(\Sigma,\mathbb{Z})), where, for a path γπ1(Σ,1,2)\gamma\in\pi_{1}(\Sigma,\star_{1},\star_{2}) and the reverse path γ¯\bar{\gamma}, the homology classes of

    ι0(γ)γ012(Σ×I)ι1(γ¯)γ101(Σ×I)\iota^{\prime}_{0}(\gamma)\gamma_{01\star_{2}}^{\partial(\Sigma\times I)}\iota^{\prime}_{1}(\bar{\gamma})\gamma_{10\star_{1}}^{\partial(\Sigma\times I)}

    generate VV.

  • (Step 2)

    We have kerι=V.\ker\iota_{*}=V.

  • (Step 3)

    The composite αι1:H1(Σ,)H1(M,)\alpha_{*}\circ\iota^{\prime}_{1*}:H_{1}(\Sigma,\mathbb{Z})\to H_{1}(M,\mathbb{Z}) is an isomorphism.

  • (Step 4)

    We have α(V)={0}.\alpha_{*}(V)=\{0\}.

  • (Step 5)

    We have kerα=V\ker\alpha_{*}=V.

(Step 1) The basis in the figure generates the homology group H1((Σ×I),)H_{1}(\partial(\Sigma\times I),\mathbb{Z}) as a free \mathbb{Z}-module. Some set of it generates ι1(H1(Σ,))\iota^{\prime}_{1*}(H_{1}(\Sigma,\mathbb{Z})), and one of the others VV. This proves (Step 1).

×{1}\times\{1\}×(0,1)\times(0,1)×{0}\times\{0\}

(Step 2) Using the above basis, we have ι(V)={0}\iota_{*}(V)=\{0\} and ιι1=idH1(Σ,):H1(Σ,)H1(Σ,)\iota_{*}\circ\iota^{\prime}_{1*}=\mathrm{id}_{H_{1}(\Sigma,\mathbb{Z})}:H_{1}(\Sigma,\mathbb{Z})\to H_{1}(\Sigma,\mathbb{Z}). So we obtain (Step 2).

(Step 3) By definition of homology cobordisms, the homomorphism α1:H1(Σ,)H1(M,)\alpha_{1*}:H_{1}(\Sigma,\mathbb{Z})\to H_{1}(M,\mathbb{Z}) is an isomorphism. Since α1=αι1\alpha_{1}=\alpha\circ\iota^{\prime}_{1}, we have (Step 3).

(Step 4) Here we use (2). By it, for a path γπ1(Σ,1,2)\gamma\in\pi_{1}(\Sigma,\star_{1},\star_{2}) and the reverse γ¯\bar{\gamma}, we have

α0(γ)γ011α1(γ)γ102F2π1(M,1M,0,2M,0).\alpha_{0*}(\gamma)-\gamma_{01\star_{1}}\alpha_{1*}(\gamma)\gamma_{10\star_{2}}\in F^{2}\mathbb{Q}\pi_{1}(M,\star_{1M,0},\star_{2M,0}).

So we obtain

α0(γ)γ102α1(γ¯)γ1011F2π1(M,1M0).\alpha_{0*}(\gamma)\gamma_{10\star_{2}}\alpha_{1*}(\bar{\gamma})\gamma_{10\star_{1}}-1\in F^{2}\mathbb{Q}\pi_{1}(M,\star_{1M0}).

Since

Iπ1(M,1M0)/(Iπ1(M,1M0))2\displaystyle I_{\mathbb{Q}\pi_{1}(M,\star_{1M0})}/(I_{\mathbb{Q}\pi_{1}(M,\star_{1M0})})^{2} H1(M,),x1[x],\displaystyle\simeq H_{1}(M,\mathbb{Q}),x-1\mapsto[x],

where Iπ1(M,1M0)=def.{gGqgg|gGqg=0}I_{\mathbb{Q}\pi_{1}(M,\star_{1M0})}\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\{\sum_{g\in G}q_{g}g|\sum_{g\in G}q_{g}=0\}, the homology class

[α0(γ)γ102α1(γ¯)γ101][\alpha_{0*}(\gamma)\gamma_{10\star_{2}}\alpha_{1*}(\bar{\gamma})\gamma_{10\star_{1}}]

equals 0 as desired.

(Step 5) The statement (Step 4) gives α(v1+ι1(v2))=α(ι1(v2))\alpha_{*}(v_{1}+\iota^{\prime}_{1*}(v_{2}))=\alpha_{*}(\iota^{\prime}_{1*}(v_{2})) for two elements v1Vv_{1}\in V and v2H1(Σ,)v_{2}\in H_{1}(\Sigma,\mathbb{Z}). By (Step 3), if α(v1+ι1(v2))=0\alpha_{*}(v_{1}+\iota^{\prime}_{1*}(v_{2}))=0, v2v_{2} equals 0. Using (Step 1), we obtain kerα=V\ker\alpha_{*}=V as desired.

By the second and fifth steps, we obtain (2)(1)(2)\Rightarrow(1).

Remark 4.3.

For a group GG, let IGI_{\mathbb{Q}G} be the augmentation ideal {gGqgg|gGqg=0}\{\sum_{g\in G}q_{g}g|\sum_{g\in G}q_{g}=0\}. We can prove [G,G]1+IG2[G,G]\subset 1+I_{\mathbb{Q}G}^{2} by

i=1k[γi1,γi2]=i=1k(((γi11)(γi21)(γi21)(γi11))γi11γi21+1)\prod_{i=1}^{k}[\gamma_{i1},\gamma_{i2}]=\prod_{i=1}^{k}(((\gamma_{i1}-1)(\gamma_{i2}-1)-(\gamma_{i2}-1)(\gamma_{i1}-1))\gamma_{i1}^{-1}\gamma_{i2}^{-1}+1)

for elements γ11,γ21,,γk1,\gamma_{11},\gamma_{21},\cdots,\gamma_{k1}, γ12,γ22,,γk2G\gamma_{12},\gamma_{22},\cdots,\gamma_{k2}\in G. So, the linear map

G/[G,G]IG/(IG)2,[x]x1\displaystyle\mathbb{Q}\otimes G/[G,G]\to I_{\mathbb{Q}G}/(I_{\mathbb{Q}G})^{2},[x]\mapsto x-1

is well-defined. It is bijection because

(x1)(y1)=(xy1)(x1)(y1).(x-1)(y-1)=(xy-1)-(x-1)-(y-1).

Hence we have the isomorphism

G/[G,G]IG/(IG)2.\displaystyle\mathbb{Q}\otimes G/[G,G]\simeq I_{\mathbb{Q}G}/(I_{\mathbb{Q}G})^{2}.

For a homology cobordism (M,α)(M,\alpha), if it has one of the properties in Proposition 4.2, we call it a homology cylinder. Then, it has both of them.

We introduce two ways to construct homology cylinders. The first way is to use boundary links. The second way is to use standard embeddings, which is an analogy of Heegaard splittings. Both are equivalent to each other, and we can obtain any diffeomorphic class of a homology cylinder in one of both.

“A construction using a boundary link”

First, we prepare notations about boundary links.

Definition 4.4.

For a framed unoriented link LL in Σ×I\Sigma\times I, we call it a boundary link if and only if there exists an embedded surface SS satisfying the two conditions.

  • Any component of SS has one or two boundary components.

  • The tubular neighborhood of the boundary is isotopic to LL.

Here we call SS a Seifert surface. A label of SS is a map π0(S){1,+1}\pi_{0}(\partial S)\to\{-1,+1\} satisfying

1,2(acomponentofS),[1][2]λ([1])λ([2])=1.\partial_{1},\partial_{2}\subset(\mathrm{a\ component\ of\ }S),[\partial_{1}]\neq[\partial_{2}]\Rightarrow\lambda([\partial_{1}])\lambda([\partial_{2}])=-1.

Let a labeled boundary link L(λ)L(\lambda) be a framed unoriented link having the two properties.

  • The unframed link of LL equals that of L(λ)L(\lambda).

  • If ll and ll^{\prime} are knot components of LL and L(λ)L(\lambda) corresponding to []π0(S)[\partial]\in\pi_{0}(\partial S), respectively, we have

    w(l)w(l)=λ([]).w(l^{\prime})-w(l)=\lambda([\partial]).

    Here w()w(\cdot) is the framing number, which is the difference in the number of positive crossings and that of negative ones.

Let LL be a boundary link in Σ×I\Sigma\times I and λ\lambda a label of a Seifert surface of LL. We choose a 3-manifold representing the diffeomorphic class obtained by the Dehn surgery of L(λ)L(\lambda) and denote it by (Σ×I)(L(λ))(\Sigma\times I)(L(\lambda)). Then the pair ((Σ×I)(L(λ)),id(Σ×I))((\Sigma\times I)(L(\lambda)),\mathrm{id}_{\partial(\Sigma\times I)}) is a homology cylinder. Here we write the same symbol (Σ×I)(L(λ))(\Sigma\times I)(L(\lambda)) for the diffeomorphic class of ((Σ×I)(L(λ)),id(Σ×I))((\Sigma\times I)(L(\lambda)),\mathrm{id}_{\partial(\Sigma\times I)}). Let 𝒞1(Σ)\mathcal{IC}_{1}(\Sigma) be the subset of 𝒞(Σ)\mathcal{IC}(\Sigma) consisting of all elements obtained in this way.

Proposition 4.5 ([3] p.4 Theorem 2.5, p.17 Lemma 6.1).

We have 𝒞1(Σ)=𝒞(Σ)\mathcal{IC}_{1}(\Sigma)=\mathcal{IC}(\Sigma). In other words, for any homology cylinder (M,α)(M,\alpha), there exists a boundary link LΣ×IL\subset\Sigma\times I and exists a label λ\lambda of a Seifert surface of LL such that the diffeomorphic class (Σ×I)(L(λ))(\Sigma\times I)(L(\lambda)) is that of (M,α)(M,\alpha).

“A construction using a standard embedding”

We introduce the notion of standard embeddings.

Definition 4.6.

We call est:Σst×IΣ×Ie_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\hookrightarrow\Sigma\times I a standard embedding if and only if there exists an embedding est:ΣstΣe^{\prime}_{\mathrm{st}}:\Sigma_{\mathrm{st}}\hookrightarrow\Sigma satisfying the two properties.

  • The image est(Σ)e^{\prime}_{\mathrm{st}}(\Sigma) is the closure of Σ\Sigma except for closed disks and includes Σ\partial\Sigma.

  • We have est(p,t)=(est(p),1+t3)e_{\mathrm{st}}(p,t)=(e^{\prime}_{\mathrm{st}}(p),\frac{1+t}{3}) for pΣstp\in\Sigma_{\mathrm{st}} and tIt\in I.

Let est;ΣstΣe^{\prime}_{\mathrm{st}};\Sigma_{\mathrm{st}}\hookrightarrow\Sigma be an embedding such that est:Σst×IΣ×I,e(p,t)=e(p,1+t3)e_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\hookrightarrow\Sigma\times I,e(p,t)=e^{\prime}(p,\frac{1+t}{3}) is a standard embedding. Here we denote by Σ~st\widetilde{\Sigma}_{\mathrm{st}} the closure of the subsurface (Σst×I)\est1(Σ×I)\partial(\Sigma_{\mathrm{st}}\times I)\backslash e_{\mathrm{st}}^{-1}(\partial\Sigma\times I).

For a diffeomorphism χDiff+(Σ~st,Σ~st)\chi^{\prime}\in\mathrm{Diff}^{+}(\widetilde{\Sigma}_{\mathrm{st}},\partial\widetilde{\Sigma}_{\mathrm{st}}), the quotient space of the set

(theclosureof(Σ×I)\e(Σst×I))Σst×I(\mathrm{the\ closure\ of\ }(\Sigma\times I)\backslash e({\Sigma}_{\mathrm{st}}\times I))\sqcup{\Sigma}_{\mathrm{st}}\times I

by the relation

estχ(p)pforpΣ~ste_{\mathrm{st}}\circ\chi^{\prime}(p)\sim p\mathrm{\ for\ }p\in\widetilde{\Sigma}_{\mathrm{st}}

is a 3-manifold. We denote by (Σ×I)(est,χ)(\Sigma\times I)(e_{\mathrm{st}},\chi^{\prime}) the 3-manifold. We recall that (Σ~st)(Σ~st)\mathcal{I}^{\prime}(\widetilde{\Sigma}_{\mathrm{st}})\subset\mathcal{M}(\widetilde{\Sigma}_{\mathrm{st}}) is a subgroup generated

{tc1tc21|(c1,c2)boundsasurface.}{tc|cboundsasurface.}.\displaystyle\{t_{c_{1}}\circ t_{c_{2}}^{-1}|(c_{1},c_{2})\mathrm{\ bounds\ a\ surface.}\}\cup\{t_{c}|c\mathrm{\ bounds\ a\ surface.}\}.

If χ\chi represents an element ξ\xi of (Σ)\mathcal{I}^{\prime}(\Sigma), the pair ((Σ×I)(est,χ),αest)((\Sigma\times I)(e_{\mathrm{st}},\chi^{\prime}),\alpha^{e_{\mathrm{st}}}) is a homology cylinder, where we set the diffeomorphism αest:(Σ×I)((Σ×I)(est,χ))\alpha^{e_{\mathrm{st}}}:\partial(\Sigma\times I)\to\partial((\Sigma\times I)(e_{\mathrm{st}},\chi^{\prime})) as

αest(p,t)={(p,t)ifpΣ,t{0,1}(p,t)ifpΣ,t[0,13][23,1]est1(p,3t1)ifpΣ,t[13,23]\alpha^{e_{\mathrm{st}}}(p,t)=\begin{cases}(p,t)\mathrm{\ if\ }p\in\Sigma,t\in\{0,1\}\\ (p,t)\mathrm{\ if\ }p\in\partial\Sigma,t\in[0,\frac{1}{3}]\cup[\frac{2}{3},1]\\ e_{\mathrm{st}}^{-1}(p,3t-1)\mathrm{\ if\ }p\in\partial\Sigma,t\in[\frac{1}{3},\frac{2}{3}]\end{cases}

We write (Σ×I)(est,ξ)(\Sigma\times I)(e_{\mathrm{st}},\xi) for the diffeomorphic class of ((Σ×I)(est,χ),αest)((\Sigma\times I)(e_{\mathrm{st}},\chi^{\prime}),\alpha^{e_{\mathrm{st}}}). Let 𝒞2(Σ)\mathcal{IC}_{2}(\Sigma) be the subset of 𝒞(Σ)\mathcal{IC}(\Sigma) consisting of all elements obtained in this way. To prove 𝒞2(Σ)=𝒞1(Σ)\mathcal{IC}_{2}(\Sigma)=\mathcal{IC}_{1}(\Sigma), we need the following lemma.

Lemma 4.7.

Let SS be a compact oriented surface and ee an embedding from SS to Σ×I\Sigma\times I. Then, there exists a standard embedding est:Σst×IΣ×Ie_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\to\Sigma\times I and exists an embedding e~:SΣ~st\widetilde{e}:S\to\widetilde{\Sigma}_{\mathrm{st}} satisfying that the composite ee~e_{\mathrm{\circ}}\widetilde{e} is isotopic to ee.

Proof.

First, we construct a standard embedding est:Σst×IΣ×Ie_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\to\Sigma\times I by the three steps.

  • We split SS into 0-handles and 1-handles. For example, see Figure 4.

    0-handle11-handles
    Figure 4. A 0-handle and 11-handles
  • We consider 11-handles as tangles and illustrate a diagram presenting the isotopy type of the embedding ee similar to a tangle diagram. For example, see Figure 5.

    Figure 5. A diagram
  • We set Σst\Sigma_{\mathrm{st}} as the closure of Σ\Sigma except for closed disks corresponding to angles for any crossing of this diagram. For example, see Figure 6.

    Figure 6. Σst\Sigma_{\mathrm{st}}

Furthermore, we set e~:SΣ~st\widetilde{e}:S\to\widetilde{\Sigma}_{\mathrm{st}} as this diagram except for the neighborhood of the crossings, where we set e~\widetilde{e} as Figure 7. Then the composite este~e_{\mathrm{st}}\circ\widetilde{e} is isotopic to ee. This proves the lemma.

Figure 7. e~:S(Σst×I)\est1(Σ×I)\widetilde{e}:S\to\partial(\Sigma_{\mathrm{st}}\times I)\backslash e_{\mathrm{st}}^{-1}(\partial\Sigma\times I)

To prove 𝒞(Σ)=𝒞2(Σ)\mathcal{IC}(\Sigma)=\mathcal{IC}_{2}(\Sigma), we need the following lemma, which we call Lickorish’s trick [8].

Lemma 4.8.

Let SS be a compact oriented surface such that each component of SS has one or two boundary components, est:Σst×IΣ×Ie_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\to\Sigma\times I a standard embedding, e~:SΣ~st\widetilde{e}:S\to\widetilde{\Sigma}_{\mathrm{st}} an embedding, and Leste~(S)L_{e_{\mathrm{st}}\circ\widetilde{e}(S)} a boundary link whose Seifert surface is ee~(S)e\circ\widetilde{e}(S). We write cc_{\partial} for a closed curve in SS parallel to a boundary \partial. For a label λ:π0(S)=π0(este~(S)){±1}\lambda:\pi_{0}(\partial S)=\pi_{0}(\partial e_{\mathrm{st}}\circ\widetilde{e}(S))\to\{\pm 1\} of ee~(S)e\circ\widetilde{e}(S), we have

(Σ×I)(est,[]π0(S)te~(c)λ([]))=(Σ×I)(Leste~(S)(λ)).(\Sigma\times I)(e_{\mathrm{st}},\prod_{[\partial]\in\pi_{0}(\partial S)}t_{\widetilde{e}(c_{\partial})}^{-\lambda([\partial])})=(\Sigma\times I)(L_{e_{\mathrm{st}}\circ\widetilde{e}(S)}(\lambda)).
Proposition 4.9.

We have 𝒞(Σ)=𝒞2(Σ)\mathcal{IC}(\Sigma)=\mathcal{IC}_{2}(\Sigma). In other words, for any homology cylinder (M,α)(M,\alpha), there exists a standard embedding est:Σst×IΣ×Ie_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\to\Sigma\times I and exists an element ξ\xi of (Σ~st)\mathcal{I}^{\prime}(\widetilde{\Sigma}_{\mathrm{st}}) such that the diffeomorphic class (Σ×I)(est,ξ)(\Sigma\times I)(e_{\mathrm{st}},\xi) is that of the pair (M,α)(M,\alpha).

Proof.

By Proposition 4.5, it is enough to show that 𝒞1(Σ)𝒞2(Σ)\mathcal{IC}_{1}(\Sigma)\subset\mathcal{IC}_{2}(\Sigma). Let LL be a boundary link in Σ×I\Sigma\times I and e:SΣ×Ie:S\to\Sigma\times I a Seifert surface of LL. By Lemma 4.7, there exists an embedding eS:SΣ~st=(Σst×I)\e1(Σ×I)¯e_{S}:S\to\widetilde{\Sigma}_{\mathrm{st}}=\overline{\partial(\Sigma_{\mathrm{st}}\times I)\backslash e^{-1}(\partial\Sigma\times I)} such that the composite esteSe_{\mathrm{st}}\circ e_{S} is isotopic to this embedding ee. By Lemma 4.8, for a label λ:π0(S){±1}\lambda:\pi_{0}(\partial S)\to\{\pm 1\} of SS, we have

(Σ×I)(est,[]π0(S)teS(c)λ([]))=(Σ×I)(L(λ)),(\Sigma\times I)(e_{\mathrm{st}},\prod_{[\partial]\in\pi_{0}(\partial S)}t_{e_{S}(c_{\partial})}^{-\lambda([\partial])})=(\Sigma\times I)(L(\lambda)),

where we denote by cc_{\partial} the simple closed curve parallel to the boundary \partial. Hence we obtain (Σ×I)(L(λ))𝒞2(Σ)(\Sigma\times I)(L(\lambda))\in\mathcal{IC}_{2}(\Sigma) as desired.

5. The main result

For ,Σ\bullet,*\in\partial\Sigma, we consider the action Φ:𝒞(Σ)Aut(π1^(Σ,,))\Phi:\mathcal{IC}(\Sigma)\to\mathrm{Aut}(\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*)). We obtain

Ξ(Iπ1(Σ,)nπ1^(Σ,,))=Iπ1(Σ,)nπ1^(Σ,,),\displaystyle\Xi_{*}(I_{\mathbb{Q}\pi_{1}(\Sigma,\bullet)}^{n}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*))=I_{\mathbb{Q}\pi_{1}(\Sigma,\bullet)}^{n}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*),
(Ξid)(π1^(Σ,,))Iπ1(Σ,)2π1^(Σ,,)\displaystyle(\Xi_{*}-\mathrm{id})(\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*))\subset I_{\mathbb{Q}\pi_{1}(\Sigma,\bullet)}^{2}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,\star)

for any Ξ\Xi. By Prop 2.2, there exists a unique element ζ~(Ξ)\widetilde{\zeta}(\Xi) of F3|π1|^(Σ)F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma) satisfying

exp(σ(ζ~|π1|(Ξ)))=Ξ:π1^(Σ,,)π1^(Σ,,).\exp(\sigma(\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\Xi)))=\Xi_{*}:\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*)\to\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\bullet,*).

In this section, we introduce two ways to compute ζ~:𝒞(Σ)F3|π1|^(Σ)\widetilde{\zeta}:\mathcal{IC}(\Sigma)\to F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma). The first way is to use a sequence of the Goldman Lie algebra. The second one is to use the skein algebra 𝒜\mathcal{A}^{\prime}.

To state the main theorems, we introduce an extension of 𝒜(Σ)\mathcal{A}^{\prime}(\Sigma) and set the filtration of it as

(01hF3)𝒜(Σ)=def.01hF3𝒜(Σ)[h,1h]𝒜(Σ),\displaystyle(\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*})\mathcal{A}^{\prime}(\Sigma)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*}\mathcal{A}^{\prime}(\Sigma)\subset\mathbb{Q}[h,\frac{1}{h}]\otimes_{\mathbb{Q}}\mathcal{A}^{\prime}(\Sigma),
Fn(01hF3)𝒜(Σ)=01hF2+max(n,)𝒜(Σ).\displaystyle F^{n}(\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*})\mathcal{A}^{\prime}(\Sigma)=\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{2*+\max(n,*)}\mathcal{A}^{\prime}(\Sigma).

We consider the completion

(01hF3)^𝒜(Σ)=def.limn(01hF3)𝒜(Σ)/Fn(01hF3)𝒜(Σ)\widehat{(\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*})}\mathcal{A}^{\prime}(\Sigma)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\underleftarrow{\lim}_{n\rightarrow\infty}(\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*})\mathcal{A}^{\prime}(\Sigma)/F^{n}(\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*})\mathcal{A}^{\prime}(\Sigma)

in terms of the filtration. Using this extension, we can obtain a formula about the Baker-Campbel-Hausdorff series as follows.

Remark 5.1.

Let (R,{FnR}n0)(R,\{F^{n}R\}_{n\geq 0}) be a filtered completed ring satisfying FjRFkRFj+kRF^{j}RF^{k}R\subset F^{j+k}R. In this paper, we set the bracket {x,y}\{x,y\} by xyyxxy-yx. Then, for x0,x1F1Rx_{0},x_{1}\in F^{1}R, bch(x0,x1)=def.log(expx0,expx1)\mathrm{bch}^{\prime}(x_{0},x_{1})\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\log(\exp x_{0},\exp x_{1}) equals

jϵ1,,ϵj{0,1}bϵ1,,ϵj{xϵ1,{xϵ2,{xϵj1,xϵj}}},\sum_{j}\sum_{\epsilon_{1},\cdots,\epsilon_{j}\in\{0,1\}}b_{\epsilon_{1},\cdots,\epsilon_{j}}\{x_{\epsilon_{1}},\{x_{\epsilon_{2}},\cdots\{x_{\epsilon_{j-1}},x_{\epsilon_{j}}\}\}\},

where bϵ1,,ϵjb_{\epsilon_{1},\cdots,\epsilon_{j}} is a rational number. We return to the skein algebra 𝒜(Σ)\mathcal{A}^{\prime}(\Sigma). We set [x,y][x,y] as 1h(xyyx)\frac{1}{h}(xy-yx). Hence we obtain

bch(x0,x1)\displaystyle\mathrm{bch}(x_{0},x_{1})
=jϵ1,,ϵj{0,1}bϵ1,,ϵj[xϵ1,[xϵ2,[xϵj1,xϵj]]]\displaystyle=\sum_{j}\sum_{\epsilon_{1},\cdots,\epsilon_{j}\in\{0,1\}}b_{\epsilon_{1},\cdots,\epsilon_{j}}[x_{\epsilon_{1}},[x_{\epsilon_{2}},\cdots[x_{\epsilon_{j-1}},x_{\epsilon_{j}}]]]
=hjϵ1,,ϵj{0,1}bϵ1,,ϵj{1hxϵ1,{1hxϵ2,{1hxϵj1,1hxϵj}}}\displaystyle=h\sum_{j}\sum_{\epsilon_{1},\cdots,\epsilon_{j}\in\{0,1\}}b_{\epsilon_{1},\cdots,\epsilon_{j}}\{\frac{1}{h}x_{\epsilon_{1}},\{\frac{1}{h}x_{\epsilon_{2}},\cdots\{\frac{1}{h}x_{\epsilon_{j-1}},\frac{1}{h}x_{\epsilon_{j}}\}\}\}
=hbch(1hx0,1hx1)=hlog(exp(1hx01hx1))\displaystyle=h\mathrm{bch}^{\prime}(\frac{1}{h}x_{0},\frac{1}{h}x_{1})=h\log(\exp(\frac{1}{h}x_{0}\frac{1}{h}x_{1}))

for any two elements x0,x1F3𝒜^(Σ)x_{0},x_{1}\in F^{3}\widehat{\mathcal{A}}^{\prime}(\Sigma). In other words, we have

exp(1hbch(x0,x1))=exp(1hx0)exp(1hx1).\displaystyle\exp(\frac{1}{h}\mathrm{bch}(x_{0},x_{1}))=\exp(\frac{1}{h}x_{0})\exp(\frac{1}{h}x_{1}).

“A construction using a standard embedding”

We will introduce how to compute ζ~:𝒞(Σ)F3|π1|^(Σ)\widetilde{\zeta}:\mathcal{IC}(\Sigma)\to F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma) using a sequence of |π1|^(Σ)\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma). We fix a standard embedding est:Σst×IΣ×Ie_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\to\Sigma\times I and denote by Σ~st\widetilde{\Sigma}_{\mathrm{st}} the closure of (Σst×I)\e1(Σ×I)\partial(\Sigma_{\mathrm{st}}\times I)\backslash e^{-1}(\partial\Sigma\times I).

The embeddings

ι1:ΣstΣ~st,p(p,0),ι0:ΣstΣ~st,p(p,1),\iota_{1}:\Sigma_{\mathrm{st}}\to\widetilde{\Sigma}_{\mathrm{st}},p\mapsto(p,0),\ \iota_{0}:\Sigma_{\mathrm{st}}\to\widetilde{\Sigma}_{\mathrm{st}},p\mapsto(p,1),

induce linear maps

ι1:|π1|(Σst)|π1|(Σ~st),ι0:|π1|(Σst)|π1|(Σ~st).\iota_{1*}:\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{\mathrm{st}})\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\widetilde{\Sigma}_{\mathrm{st}}),\ \iota_{0*}:\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{\mathrm{st}})\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\widetilde{\Sigma}_{\mathrm{st}}).\

The first embedding ι1\iota_{1} is an orientation preserving map, but the second one ι0\iota_{0} an orientation reversing one. So the first linear map ι1:|π1|(Σst)|π1|(Σ~st)\iota_{1*}:\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{\mathrm{st}})\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\widetilde{\Sigma}_{\mathrm{st}}) is a Lie algebra homomorphism, but the second one ι0:|π1|(Σst)|π1|(Σ~st)\iota_{0*}:\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{\mathrm{st}})\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\widetilde{\Sigma}_{\mathrm{st}}) is not. The embeddings

ι1:Σst×IΣ~st×I,(p,t)((p,0),t),\displaystyle\iota_{1}:\Sigma_{\mathrm{st}}\times I\to\widetilde{\Sigma}_{\mathrm{st}}\times I,(p,t)\mapsto((p,0),t),
ι0:Σst×IΣ~st×I,(p,t)((p,1),1t)\displaystyle\iota_{0}:\Sigma_{\mathrm{st}}\times I\to\widetilde{\Sigma}_{\mathrm{st}}\times I,(p,t)\mapsto((p,1),1-t)

also induce linear maps

ι1:𝒜(Σst)𝒜(Σ~st),ι0:𝒜(Σst)𝒜(Σ~st).\iota_{1*}:\mathcal{A}^{\prime}(\Sigma_{\mathrm{st}})\to\mathcal{A}^{\prime}(\widetilde{\Sigma}_{\mathrm{st}}),\ \iota_{0*}:\mathcal{A}^{\prime}(\Sigma_{\mathrm{st}})\to\mathcal{A}^{\prime}(\widetilde{\Sigma}_{\mathrm{st}}).\

Then we have

Ψ|π1|𝒜ι1=ι1Ψ|π1|𝒜,\displaystyle\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}\circ\iota_{1*}=\iota_{1*}\circ\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}},
Ψ|π1|𝒜ι0=ι0Ψ|π1|𝒜.\displaystyle\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}\circ\iota_{0*}=\iota_{0*}\circ\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}.

We can extend the linear maps to the completions.

We set the linear map κ:|π1|(Σ~st)|π1|(Σst)\kappa_{*}:\mathbb{Q}\lvert{\pi}_{1}\rvert(\widetilde{\Sigma}_{\mathrm{st}})\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{\mathrm{st}}) as the composite of |π1|(Σ~st)|π1|(Σst×I)\mathbb{Q}\lvert{\pi}_{1}\rvert(\widetilde{\Sigma}_{\mathrm{st}})\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{\mathrm{st}}\times I) induced by the embedding Σ~stΣst×I\widetilde{\Sigma}_{\mathrm{st}}\to\Sigma_{\mathrm{st}}\times I and the natural isomorphism |π1|(Σst×I)|π1|(Σst).\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{\mathrm{st}}\times I)\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{\mathrm{st}}). It is not a Lie algebra homomorphism. Let κ:Σ~st×IΣst×I\kappa:\widetilde{\Sigma}_{\mathrm{st}}\times I\to\Sigma_{\mathrm{st}}\times I be the tubular neighborhood satisfying the two conditions.

  • For any pΣ~stp\in\widetilde{\Sigma}_{\mathrm{st}}, e(p,1)=p.e_{\partial}(p,1)=p.

  • For any pΣ~stest1(Σ×I)p\in\widetilde{\Sigma}_{\mathrm{st}}\cap e_{\mathrm{st}}^{-1}(\partial\Sigma\times I),

    este((p,1),t)=(est(p),2ϵ+ϵt3)\displaystyle e_{\mathrm{st}}\circ e_{\partial}((p,1),t)=(e^{\prime}_{\mathrm{st}}(p),\frac{2-\epsilon+\epsilon t}{3})
    este((p,0),t)=(est(p),1+ϵϵt3).\displaystyle e_{\mathrm{st}}\circ e_{\partial}((p,0),t)=(e^{\prime}_{\mathrm{st}}(p),\frac{1+\epsilon-\epsilon t}{3}).

The embedding κ\kappa induces the linear map κ:𝒜(Σ~st)𝒜(Σst).\kappa_{*}:\mathcal{A}^{\prime}(\widetilde{\Sigma}_{\mathrm{st}})\to\mathcal{A}^{\prime}(\Sigma_{\mathrm{st}}). Then we have

κΨ|π1|𝒜=Ψ|π1|𝒜κ:|π1|(Σ~st)𝒜(Σst).\kappa_{*}\circ\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}=\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}\circ\kappa_{*}:\mathbb{Q}\lvert{\pi}_{1}\rvert(\widetilde{\Sigma}_{\mathrm{st}})\to\mathcal{A}^{\prime}(\Sigma_{\mathrm{st}}).

We can extend the linear maps to the completion.

Furthermore, since the embeddings idΣ×I\mathrm{id}_{\Sigma\times I}, κι0\kappa\circ\iota_{0}, and κι1\kappa\circ\iota_{1} are isotopic, we have id|π1|(Σst)=κι0=κι1\mathrm{id}_{\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{\mathrm{st}})}=\kappa_{*}\circ\iota_{0*}=\kappa\circ\iota_{1*} and id𝒜(Σst)=κι0=κι1\mathrm{id}_{\mathcal{A}^{\prime}(\Sigma_{\mathrm{st}})}=\kappa_{*}\circ\iota_{0*}=\kappa\circ\iota_{1*}.

Definition 5.2.

For an element xF3|π1|^(Σ~st)x\in F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\widetilde{\Sigma}_{\mathrm{st}}), we define a sequence {vn(x)}n1F3|π1|^(Σst)\{v_{n}(x)\}_{n\in\mathbb{Z}_{\geq 1}}\subset F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}}) by

v1(x)=def.κ(x),vn+1(x)=def.vn(x)+κ(bch(ι1(vn(x)),x))\displaystyle v_{1}(x)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\kappa(x),\ v_{n+1}(x)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}v_{n}(x)+\kappa_{*}(\mathrm{bch}(-\iota_{1*}(v_{n}(x)),x))

and an element v(x)F3|π1|^(Σst)v(x)\in F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}}) as

v(x)=def.limnvn(x).v(x)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\lim_{n\to\infty}v_{n}(x).

By the following proposition, v(x)v(x) is well-defined as an element of the completed Goldman Lie algebra. We can define v(x)v(x) using a computation of the skein algebra 𝒜\mathcal{A}^{\prime}. Furthermore, v(x)v(x) is a unique solution to κ(bch(ι1(),x))=0\kappa_{*}(\mathrm{bch}(-\iota_{1*}(\cdot),x))=0.

Proposition 5.3.

Let est:Σst×IΣ×Ie_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\to\Sigma\times I be a standard embedding and Σ~st\widetilde{\Sigma}_{\mathrm{st}} be the closure of (Σst×I)\e1(Σ×I).\partial(\Sigma_{\mathrm{st}}\times I)\backslash e^{-1}(\partial\Sigma\times I). Then we have the following.

  1. (1)

    vn+1(x)vn(x)=κ(bch(ι1(vn(x)),x))F2+n|π1|^(Σst)v_{n+1}(x)-v_{n}(x)=\kappa_{*}(\mathrm{bch}(-\iota_{1*}(v_{n}(x)),x))\in F^{2+n}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}}).

  2. (2)

    For xF3|π1|^(Σ~st)x\in F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\widetilde{\Sigma}_{\mathrm{st}}) and yF3|π1|^(Σst)y\in F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}}) satisfying κ(bch(ι1(y),x))=0\kappa_{*}(\mathrm{bch}(-\iota_{1*}(y),x))=0, we have

    exp(Ψ|π1|𝒜(y)h)=κ(exp(Ψ|π1|𝒜(x)h))(01hF3)^𝒜(Σst).\exp(\frac{\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(y)}{h})=\kappa_{*}(\exp(\frac{\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x)}{h}))\in\widehat{(\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*})}\mathcal{A}^{\prime}(\Sigma_{\mathrm{st}}).

Using them, we obtain two statements.

  • (a)

    v(x)v(x) is well-defined.

  • (b)

    v(x)v(x) is a unique solution to κ(bch(ι1(),x))=0\kappa_{*}(\mathrm{bch}(-\iota_{1*}(\cdot),x))=0.

Proof.

First, we prove the statement (1)(1) by induction. If n=1n=1,

v2(x)v1(x)=κ(bch(ι1(v1(x)),x))\displaystyle v_{2}(x)-v_{1}(x)=\kappa_{*}(\mathrm{bch}(-\iota_{1*}(v_{1}(x)),x))
=κ(ι1(v1(x))+x)F4|π1|^(Σst)\displaystyle=\kappa_{*}(-\iota_{1*}(v_{1}(x))+x)F^{4}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}})
=κι1κ(x)+κ(x)=0\displaystyle=-\kappa_{*}\circ\iota_{1*}\kappa_{*}(x)+\kappa_{*}(x)=0

holds. We assume

vk+1(x)vk(x)=κ(bch(ι1(vk(x)),x))F2+k|π1|^(Σst).v_{k+1}(x)-v_{k}(x)=\kappa_{*}(\mathrm{bch}(-\iota_{1*}(v_{k}(x)),x))\in F^{2+k}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}}).

For z,w,wF3|π1|^(Σst)z,w,w^{\prime}\in F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}}) satisfying wwFm|π1|^(Σst)w-w^{\prime}\in F^{m}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}}), we have

zw+bch(z,w)=zw+bch(z,w)modFm+1|π1|^(Σst)-z-w+\mathrm{bch}(z,w)=-z-w^{\prime}+\mathrm{bch}(z,w^{\prime})\mod F^{m+1}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}})

by [F3|π1|^(Σst),Fm|π1|^(Σst)]Fm+1|π1|^(Σst)[F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}}),F^{m}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}})]\subset F^{m+1}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}}). Using it, we have

vk+2(x)vk+1(x)=κ(bch(ι1(vk+1(x)),x))\displaystyle v_{k+2}(x)-v_{k+1}(x)=\kappa_{*}(\mathrm{bch}(-\iota_{1*}(v_{k+1}(x)),x))
=κι1(vk+1(x))+κ(x)+(κι1(vk+1(x))κ(x)+κ(bch(ι1(vk+1(x)),x)))\displaystyle=-\kappa_{*}\circ\iota_{1*}(v_{k+1}(x))+\kappa_{*}(x)+(\kappa_{*}\circ\iota_{1*}(v_{k+1}(x))-\kappa_{*}(x)+\kappa_{*}(\mathrm{bch}(-\iota_{1*}(v_{k+1}(x)),x)))
=κι1(vk+1(x))+κ(x)\displaystyle=-\kappa_{*}\circ\iota_{1*}(v_{k+1}(x))+\kappa_{*}(x)
+(κι1(vk(x))κ(x)+κ(bch(ι1(vk(x)),x)))modF3+k|π1|^(Σst)\displaystyle+(\kappa_{*}\circ\iota_{1*}(v_{k}(x))-\kappa_{*}(x)+\kappa_{*}(\mathrm{bch}(-\iota_{1*}(v_{k}(x)),x)))\mod F^{3+k}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}})
=vk+1(x)+κ(x)+(vk(x)κ(x)+κ(bch(ι1(vk(x)),x)))\displaystyle=-v_{k+1}(x)+\kappa_{*}(x)+(v_{k}(x)-\kappa_{*}(x)+\kappa(\mathrm{bch}(-\iota_{1*}(v_{k}(x)),x)))
=vk+1(x)+vk(x)+κ(bch(ι1(vk(x)),x))=0\displaystyle=-v_{k+1}(x)+v_{k}(x)+\kappa(\mathrm{bch}(-\iota_{1*}(v_{k}(x)),x))=0

and prove (1).

By (1), we have

KkvK(x)vk(x)Fk+2|π1|^(Σ),K\geq k\Rightarrow v_{K}(x)-v_{k}(x)\in F^{k+2}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma),

which means that limnvn(x)\lim_{n\to\infty}v_{n}(x) is well-defined. In other words, the statement (a) holds.

We will prove the statement (2). By definition of bch\mathrm{bch}, we have

κ(exp(1hΨ|π1|𝒜(x)))\displaystyle\kappa_{*}(\exp(\frac{1}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x)))
=κ(exp(1hbch(ι1(Ψ|π1|𝒜(y)),bch(ι1(Ψ|π1|𝒜(y)),Ψ|π1|𝒜(x)))))\displaystyle=\kappa_{*}(\exp(\frac{1}{h}\mathrm{bch}(\iota_{1*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(y)),\mathrm{bch}(-\iota_{1*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(y)),\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x)))))
=κ(exp(1hι1(Ψ|π1|𝒜(y)))exp(1hΨ|π1|𝒜(bch(ι1(y),x)))).\displaystyle=\kappa_{*}(\exp(\frac{1}{h}\iota_{1*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(y)))\exp(\frac{1}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\mathrm{bch}(-\iota_{1*}(y),x)))).

Since

κ(x)=0κ(x′′x)=0\kappa_{*}(x^{\prime})=0\Rightarrow\kappa_{*}(x^{\prime\prime}x^{\prime})=0

for x,x′′𝒜(Σ~st)x^{\prime},x^{\prime\prime}\in\mathcal{A}^{\prime}(\widetilde{\Sigma}_{\mathrm{st}}), we have

κ(exp(1hΨ𝒰h𝒜(x)))=κ(exp(1hι1(Ψ𝒰h𝒜(y)))).\displaystyle\kappa_{*}(\exp(\frac{1}{h}\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}(x)))=\kappa_{*}(\exp(\frac{1}{h}\iota_{1*}(\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}(y)))).

Since ι1\iota_{1*} is an algebra homomorphism, we have

κ(exp(1hΨ|π1|𝒜(x)))=κι1(exp(1hΨ|π1|𝒜(y)))=exp(1hΨ|π1|𝒜(y))\displaystyle\kappa_{*}(\exp(\frac{1}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x)))=\kappa_{*}\circ\iota_{1*}(\exp(\frac{1}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(y)))=\exp(\frac{1}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(y))

as desired.

Finally, we prove the statement (b). By (1), we have κ(bch(ι1(v(x)),x))i=4Fi|π1|^(Σ)={0}\kappa_{*}(\mathrm{bch}(-\iota_{1*}(v(x)),x))\in\cap_{i=4}^{\infty}F^{i}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma)=\{0\}, which means that v(x)v(x) is a solution to κ(bch(ι1(),x))=0\kappa_{*}(\mathrm{bch}(-\iota_{1*}(\cdot),x))=0. By (2), we have

Ψ|π1|𝒰h(v(x))=Ψ𝒜𝒰h(hlog(κ(exp(Ψ|π1|𝒜(x)h))))(01hF3)^𝒰h(Σ).\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{U}_{h}}(v(x))=\Psi_{\mathcal{A}^{\prime}}^{\mathcal{U}_{h}}(h\log(\kappa_{*}(\exp(\frac{\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x)}{h}))))\in\widehat{(\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*})}\mathcal{U}_{h}(\Sigma).

Since Ψ|π1|𝒰h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{U}_{h}} is an injection, v(x)v(x) is a unique solution.

The above statements prove the proposition.

We state Theorem 5.4 using the definition.

Theorem 5.4.

Let est;ΣstΣe^{\prime}_{\mathrm{st}};\Sigma_{\mathrm{st}}\hookrightarrow\Sigma be an embedding such that the map est:Σst×IΣ×I,(p,t)(e(p),1+t3)e_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\hookrightarrow\Sigma\times I,(p,t)\mapsto(e^{\prime}(p),\frac{1+t}{3}) is a standard embedding and Σ~st\widetilde{\Sigma}_{\mathrm{st}} the closure of (Σst×I)\e1(Σ×I).\partial(\Sigma_{\mathrm{st}}\times I)\backslash e^{-1}(\partial\Sigma\times I). For an element ξ(Σ~st)\xi\in\mathcal{I}^{\prime}(\widetilde{\Sigma}_{\mathrm{st}}), we have

ζ~|π1|((Σ×I)(est,ξ))=est(v(ζ|π1|(ξ)))F3|π1|^(Σ).\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(e_{\mathrm{st}},\xi))=e^{\prime}_{\mathrm{st}*}(v(\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert(\xi)))\in F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma).

In other words, for 1,2Σ\star_{1},\star_{2}\in\partial\Sigma, we have

(Σ×I)(est,ξ)=exp(σ(est(v(ζ|π1|(ξ)))):π1^(Σ,1,2)π1^(Σ,1,2).(\Sigma\times I)(e_{\mathrm{st}},\xi)_{*}=\exp(\sigma(e^{\prime}_{\mathrm{st}*}(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\xi)))):\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2})\to\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2}).

We will prove the theorem in §6.

“A construction using a boundary link”

For a boundary link LL in Σ×I\Sigma\times I and a label λ\lambda of a Seifert surface of LL, we set an element L𝒜(S,λ)𝒜^(S)L_{\mathcal{A}^{\prime}}(S,\lambda)\in\widehat{\mathcal{A}}^{\prime}(S) as

L𝒜(S,λ)=def.[]π0(S)λ([])L𝒜(c),L_{\mathcal{A}^{\prime}}(S,\lambda)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}-\sum_{[\partial]\in\pi_{0}(\partial S)}\lambda([\partial])L_{\mathcal{A}^{\prime}}(c_{\partial}),

where

L𝒜(c)=def.Ψ|π1|𝒜(L|π1|(c))=Ψ|π1|𝒜(|12log(γc)2|)L_{\mathcal{A}^{\prime}}(c)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(L_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(c))=\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\frac{1}{2}\log(\gamma_{c})^{2}\rvert)

for any simple closed curve cc. Here we use two notations as follows.

  • For a simple close curve cc, γc\gamma_{c} is an element, where the conjugacy class |γc|\lvert\gamma_{c}\rvert equals cc.

  • The simple closed curve cc_{\partial} is parallel to the boundary component \partial.

The Seifert surface SS defines the embedding eS:S×IΣ×Ie_{S}:S\times I\to\Sigma\times I inducing the module homomorphism eS:𝒜^(S)𝒜^(Σ)e_{S*}:\widehat{\mathcal{A}}^{\prime}(S)\to\widehat{\mathcal{A}}^{\prime}(\Sigma).

Theorem 5.5.

For a boundary link LL in Σ×I\Sigma\times I and a label λ\lambda of a Seifert surface SS of LL, we have

exp(1hΨ|π1|𝒜(ζ~|π1|((Σ×I)(L(λ)))))=eS(exp(1hL𝒜(S,λ)))\displaystyle\exp(\frac{1}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(L(\lambda)))))=e_{S*}(\exp(\frac{1}{h}L_{\mathcal{A}^{\prime}}(S,\lambda)))
=i=01i!hieS(L𝒜(S,λ)i)(01hF3)^𝒜(Σ).\displaystyle=\sum_{i=0}^{\infty}\frac{1}{i!h^{i}}e_{S*}(L_{\mathcal{A}^{\prime}}(S,\lambda)^{i})\in\widehat{(\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*})}\mathcal{A}^{\prime}(\Sigma).

In other words, we have

Ψ𝒜𝒰h(hlog(eS(exp(1hL𝒜(S,λ)))))=Ψ|π1|𝒰hζ~|π1|((Σ×I)(L(λ)))𝒰h^(Σ).\Psi_{\mathcal{A}^{\prime}}^{\mathcal{U}_{h}}(h\log(e_{S*}(\exp(\frac{1}{h}L_{\mathcal{A}^{\prime}}(S,\lambda)))))=\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{U}_{h}}\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(L(\lambda)))\in\widehat{\mathcal{U}_{h}}(\Sigma).

We will prove the theorem in §6.

6. Proof of the main result

In this section, we will prove the theorems in §5. The third statement in Proposition 6.1 plays an important role.

Proposition 6.1.

Let Σ\Sigma be a compact connected oriented surface and M(1)M^{(1)} a submanifold of Σ\partial\Sigma. We choose base points 1,2M(1)\star_{1},\star_{2}\in M^{(1)} and denote by Σ~\widetilde{\Sigma} the closure of (Σ×I)\(M(1)×I)\partial(\Sigma\times I)\backslash(M^{(1)}\times I). We consider linear maps

κ:|π1|(Σ~)|π1|(Σ),κ:π1(Σ~,(1,i),(2,i))π1(Σ,1,2)fori=0,1,\displaystyle\kappa^{\prime}_{*}:\mathbb{Q}\lvert{\pi}_{1}\rvert(\widetilde{\Sigma})\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma),\ \kappa^{\prime}_{*}:\mathbb{Q}\pi_{1}(\widetilde{\Sigma},(\star_{1},i),(\star_{2},i))\to\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})\mathrm{\ for\ }i=0,1,
ι0:|π1|(Σ)|π1|(Σ~),ι0:π1(Σ,1,2)π1(Σ~,(1,0),(2,0)),\displaystyle\iota^{\prime}_{0*}:\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\widetilde{\Sigma}),\ \iota^{\prime}_{0*}:\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})\to\mathbb{Q}\pi_{1}(\widetilde{\Sigma},(\star_{1},0),(\star_{2},0)),
ι1:|π1|(Σ)|π1|(Σ~),ι1:π1(Σ,1,2)π1(Σ~,(1,1),(2,1)).\displaystyle\iota^{\prime}_{1*}:\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\widetilde{\Sigma}),\ \iota^{\prime}_{1*}:\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})\to\mathbb{Q}\pi_{1}(\widetilde{\Sigma},(\star_{1},1),(\star_{2},1)).

The homomorphisms κ:|π1|(Σ~)|π1|(Σ)\kappa^{\prime}_{*}:\mathbb{Q}\lvert{\pi}_{1}\rvert(\widetilde{\Sigma})\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma) and κ:π1(Σ~,(1,i),(2,i))π1(Σ,1,2)\kappa^{\prime}_{*}:\mathbb{Q}\pi_{1}(\widetilde{\Sigma},(\star_{1},i),(\star_{2},i))\to\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}) are composites of the ones induced by the embedding Σ~Σ×I\widetilde{\Sigma}\hookrightarrow\Sigma\times I and the natural maps

|π1|(Σ×I)|π1|(Σ),\displaystyle\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma\times I)\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma),
π1(Σ×I,(1,i),(2,i))π1(Σ,1,2).\displaystyle\mathbb{Q}\pi_{1}(\Sigma\times I,(\star_{1},i),(\star_{2},i))\to\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}).

The embeddings

ι1:ΣΣ~,p(p,1)ι0:ΣΣ~,p(p,0)\displaystyle\iota_{1}:\Sigma\to\widetilde{\Sigma},p\mapsto(p,1)\iota_{0}:\Sigma\to\widetilde{\Sigma},p\mapsto(p,0)

induce ι1,ι0\iota_{1*},\iota{0*}. We can extend them to completions. Then we have the three statements.

  1. (1)

    For i=0,1i=0,1, x|π1|(Σ~)x\in\mathbb{Q}\lvert{\pi}_{1}\rvert(\widetilde{\Sigma}), and yπ1(Σ~,(1,i),(2,i))y\in\mathbb{Q}\pi_{1}(\widetilde{\Sigma},(\star_{1},i),(\star_{2},i)), we have

    κ(σ(x)(y))=κ(σ(x)(ι1κ(y)))+κ(σ(ι0κ(x))(y)).\kappa^{\prime}_{*}(\sigma(x)(y))=\kappa^{\prime}_{*}(\sigma(x)(\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}(y)))+\kappa^{\prime}(\sigma(\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(x))(y)).
  2. (2)

    For x|π1|(Σ~)x\in\mathbb{Q}\lvert{\pi}_{1}\rvert(\widetilde{\Sigma}) and yπ1(Σ,1,2)y\in\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}) satisfying κ(x)=0\kappa^{\prime}_{*}(x)=0, we have

    κ((σ(x))n(ι0(y)))=κ((σ(x))n(ι1(y)))\kappa^{\prime}_{*}((\sigma(x))^{n}(\iota^{\prime}_{0*}(y)))=\kappa^{\prime}_{*}((\sigma(x))^{n}(\iota^{\prime}_{1*}(y)))

    for any n0n\in\mathbb{Z}_{\geq 0}.

  3. (3)

    We choose a diffeomorphism χDiff(Σ~,Σ~)\chi\in\mathrm{Diff}(\widetilde{\Sigma},\partial\widetilde{\Sigma}) representing an element of (Σ~)\mathcal{I}^{\prime}(\widetilde{\Sigma}). Let ζ|π1|(χ)\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi) and v(ζ|π1|(χ))v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi)) be elements of F3|π1|^(Σ~)F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\widetilde{\Sigma}) and F3|π1|^(Σ)F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma), respectively, satisfying

    χ=exp(σ(ζ|π1|(χ))):π1^(Σ~,1,2)π1^(Σ~,1,2),\displaystyle\chi_{*}=\exp(\sigma(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi))):\widehat{\mathbb{Q}\pi_{1}}(\widetilde{\Sigma},\star^{\prime}_{1},\star^{\prime}_{2})\to\widehat{\mathbb{Q}\pi_{1}}(\widetilde{\Sigma},\star^{\prime}_{1},\star^{\prime}_{2}),
    κ(bch(ι1(v(ζ|π1|(χ))),ζ|π1|(χ)))=0.\displaystyle\kappa^{\prime}_{*}(\mathrm{bch}(-\iota^{\prime}_{1*}(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi))),\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi)))=0.

    Then we have

    κχ1ι0(x)=κχ1ι1(exp(σ(v(ζ|π1|(χ))))(x))\kappa^{\prime}_{*}\circ\chi_{*}^{-1}\circ\iota^{\prime}_{0*}(x)=\kappa^{\prime}_{*}\circ\chi_{*}^{-1}\circ\iota^{\prime}_{1*}(\exp(\sigma(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi))))(x))

    for any xπ1^(Σ,1,2)x\in\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2}).

Proof.

(1)We can prove the statement directly. In this paper, we use the skein algebra 𝒜\mathcal{A}^{\prime} to prove it. We consider three embeddings κ:Σ~×IΣ×I\kappa^{\prime}:\widetilde{\Sigma}\times I\to\Sigma\times I, ι1:Σ×IΣ~×I\iota^{\prime}_{1}:\Sigma\times I\to\widetilde{\Sigma}\times I, and ι0:Σ×IΣ~×I\iota^{\prime}_{0}:\Sigma\times I\to\widetilde{\Sigma}\times I.

  • The first one satisfies

    • For pΣ~p\in\widetilde{\Sigma}, κ(p,1)=p\kappa^{\prime}(p,1)=p.

    • For pM(1)p\in M^{(1)}, κ((p,1),t)=(p,1ϵ+ϵt),κ((p,0),t)=(p,ϵϵt).\kappa^{\prime}((p,1),t)=(p,1-\epsilon+\epsilon t),\ \kappa^{\prime}((p,0),t)=(p,\epsilon-\epsilon t).

    for enough small ϵ>0\epsilon>0.

  • We define the second one and the third one as

    ι1(p,t)=((p,1),t),ι0(p,t)=((p,0),1t).\displaystyle\iota^{\prime}_{1}(p,t)=((p,1),t),\ \iota^{\prime}_{0}(p,t)=((p,0),1-t).

There exist isomorphisms (t0,t1)(1,0):𝒜(Σ×I,(,t0),(,t1))𝒜(Σ,,)\diamondsuit_{(t_{0},t_{1})}^{(1,0)}:\mathcal{A}^{\prime}(\Sigma^{\prime}\times I,(\star,t_{0}),(\star^{\prime},t_{1}))\to\mathcal{A}^{\prime}(\Sigma^{\prime},\star,\star^{\prime}) for any t0,t1It_{0},t_{1}\in I. These embeddings and these isomorphisms induce the linear maps

κ:𝒜(Σ~)𝒜(Σ)\displaystyle\kappa^{\prime}_{*}:\mathcal{A}^{\prime}(\widetilde{\Sigma})\to\mathcal{A}^{\prime}(\Sigma)
κ:𝒜(Σ~,(1,i),(2,i))𝒜(Σ,1,2),\displaystyle\kappa^{\prime}_{*}:\mathcal{A}^{\prime}(\widetilde{\Sigma},(\star_{1},i),(\star_{2},i))\to\mathcal{A}^{\prime}(\Sigma,\star_{1},\star_{2}),
ιi:𝒜(Σ)𝒜(Σ~),\displaystyle\iota^{\prime}_{i*}:\mathcal{A}^{\prime}(\Sigma)\to\mathcal{A}^{\prime}(\widetilde{\Sigma}),
ιi:𝒜(Σ,1,2)𝒜(Σ,(1,i),(2,i)).\displaystyle\iota^{\prime}_{i*}:\mathcal{A}^{\prime}(\Sigma,\star_{1},\star_{2})\to\mathcal{A}^{\prime}(\Sigma,(\star_{1},i),(\star_{2},i)).

We prove the statement using

κ(xy)=κ(xι1κ(y))=κ(xι0κ(y)),\displaystyle\kappa^{\prime}_{*}(xy)=\kappa^{\prime}_{*}(x\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}(y))=\kappa^{\prime}_{*}(x\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(y)),
κ(yx)=κ(yι1κ(x))=κ(yι0κ(x)),\displaystyle\kappa^{\prime}_{*}(yx)=\kappa^{\prime}_{*}(y\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}(x))=\kappa^{\prime}_{*}(y\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(x)),
κ(x)κ(y)=κ(ι1κ(x)y)=κ(ι0κ(y)x),\displaystyle\kappa^{\prime}_{*}(x)\kappa^{\prime}_{*}(y)=\kappa^{\prime}_{*}(\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}(x)y)=\kappa^{\prime}_{*}(\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(y)x),
κ(y)κ(x)=κ(ι1κ(y)x)=κ(ι0κ(x)y)\displaystyle\kappa^{\prime}_{*}(y)\kappa^{\prime}_{*}(x)=\kappa^{\prime}_{*}(\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}(y)x)=\kappa^{\prime}_{*}(\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(x)y)

for any x𝒜(Σ~)x\in\mathcal{A}^{\prime}(\widetilde{\Sigma}) and y𝒜(Σ~,(1,i),(2,i))y\in\mathcal{A}^{\prime}(\widetilde{\Sigma},(\star_{1},i),(\star_{2},i)). We set

eover:Σ×IΣ×I,(p,t)(p,2+t4),\displaystyle e_{\mathrm{over}}:\Sigma^{\prime}\times I\to\Sigma^{\prime}\times I,(p,t)\mapsto(p,\frac{2+t}{4}),
eunder:Σ×IΣ×I,(p,t)(p,t4)\displaystyle e_{\mathrm{under}}:\Sigma^{\prime}\times I\to\Sigma^{\prime}\times I,(p,t)\mapsto(p,\frac{t}{4})

for any surface Σ\Sigma^{\prime}. Since the embeddings κ(eovereunder)\kappa^{\prime}\circ(e_{\mathrm{over}}\sqcup e_{\mathrm{under}}), κ(eover(eunderι1κ))\kappa^{\prime}\circ(e_{\mathrm{over}}\sqcup(e_{\mathrm{under}}\circ\iota^{\prime}_{1}\circ\kappa^{\prime})), and κ(eover(eunderι0κ))\kappa^{\prime}\circ(e_{\mathrm{over}}\sqcup(e_{\mathrm{under}}\circ\iota^{\prime}_{0}\circ\kappa^{\prime})) are isotopic preserving {1,2}×I\{\star_{1},\star_{2}\}\times I, we have the first one and the second one. Furthermore, since the embeddings eoverκeunderκe_{\mathrm{over}}\circ\kappa^{\prime}\sqcup e_{\mathrm{under}}\circ\kappa^{\prime}, κ((eoverι1κ)eunder)\kappa^{\prime}\circ((e_{\mathrm{over}}\circ\iota^{\prime}_{1}\circ\kappa^{\prime})\sqcup e_{\mathrm{under}}), and κ(eunder(eoverι0κ))\kappa^{\prime}\circ(e_{\mathrm{under}}\sqcup(e_{\mathrm{over}}\circ\iota^{\prime}_{0}\circ\kappa^{\prime})) are isotopic preserving {1,2}×I\{\star_{1},\star_{2}\}\times I, we also have the third one and the fourth one.

Using the above formulas, we obtain

hκ(σ(x)(y))\displaystyle h\kappa^{\prime}_{*}(\sigma(x)(y))
=κ(xyyx)\displaystyle=\kappa^{\prime}_{*}(xy-yx)
=κ(xι1κ(y)yι0κ(x))\displaystyle=\kappa^{\prime}_{*}(x\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}(y)-y\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(x))
=(κ(xι1κ(y))κ(y)κ(x))+(κ(y)κ(x)κ(yι0κ(x)))\displaystyle=(\kappa^{\prime}_{*}(x\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}(y))-\kappa^{\prime}_{*}(y)\kappa^{\prime}_{*}(x))+(\kappa^{\prime}_{*}(y)\kappa^{\prime}_{*}(x)-\kappa^{\prime}_{*}(y\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(x)))
=κ(xι1κ(y)ι1κ(y)x)+κ(ι0κ(x)yyι0κ(x))\displaystyle=\kappa^{\prime}_{*}(x\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}(y)-\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}(y)x)+\kappa^{\prime}_{*}(\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(x)y-y\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(x))
=h(κ(σ(x)(ι1κ(y)))+κ(σ(ι0κ(x))(y)))\displaystyle=h(\kappa^{\prime}_{*}(\sigma(x)(\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}(y)))+\kappa^{\prime}_{*}(\sigma(\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(x))(y)))

for any x𝒜(Σ~)x\in\mathcal{A}^{\prime}(\widetilde{\Sigma}) and y𝒜(Σ~,(1,i),(2,i))y\in\mathcal{A}^{\prime}(\widetilde{\Sigma},(\star_{1},i),(\star_{2},i)). By Theorem 3.3, 𝒜(Σst,1,2)\mathcal{A}^{\prime}(\Sigma_{\mathrm{st}},\star_{1},\star_{2}) is a free [h]\mathbb{Q}[h]-module. So we have

κ(σ(x)(y))=κ(σ(x)(ι1κ(y)))+κ(σ(ι0κ(x))(y)).\kappa^{\prime}_{*}(\sigma(x)(y))=\kappa^{\prime}_{*}(\sigma(x)(\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}(y)))+\kappa(\sigma(\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(x))(y)).

For xπ1(Σ~st)x^{\prime}\in\mathbb{Q}\pi_{1}(\widetilde{\Sigma}_{\mathrm{st}}) and yπ1(Σ~st,(1,i),(2,i))y^{\prime}\in\mathbb{Q}\pi_{1}(\widetilde{\Sigma}_{\mathrm{st}},(\star_{1},i),(\star_{2},i)), we set xx and yy as

x=def.Ψ|π1|𝒜(x),y=def.Ψπ1𝒜(y).\displaystyle x\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x^{\prime}),\ y\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\Psi_{\mathbb{Q}\pi_{1}}^{\mathcal{A}^{\prime}}(y^{\prime}).

We have

κ(σ(x)(y))\displaystyle\kappa^{\prime}_{*}(\sigma(x^{\prime})(y^{\prime}))
=Ψ𝒜π1(i,i)(κ(σ(x)(y)))\displaystyle=\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\pi_{1}(i,i)}(\kappa^{\prime}_{*}(\sigma(x)(y)))
=Ψ𝒜π1(i,i)(κ(σ(x)(ι1κ(y)))+κ(σ(ι0κ(x))(y)))\displaystyle=\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\pi_{1}(i,i)}(\kappa^{\prime}_{*}(\sigma(x)(\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}(y)))+\kappa^{\prime}_{*}(\sigma(\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(x))(y)))
=κ(σ(x)(ι1κ(y)))+κ(σ(ι0κ(x))(y))\displaystyle=\kappa^{\prime}_{*}(\sigma(x^{\prime})(\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}(y^{\prime})))+\kappa^{\prime}_{*}(\sigma(\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(x^{\prime}))(y^{\prime}))

as desired.

(2)We will prove the statement by induction on nn. If n=0n=0, κ(ι0(y))=κ(ι1(y))\kappa^{\prime}_{*}(\iota^{\prime}_{0*}(y))=\kappa^{\prime}_{*}(\iota^{\prime}_{1*}(y)) holds. We assume

κ((σ(x))n1(ι0(y)))=κ((σ(x))n1(ι1(y))).\kappa^{\prime}_{*}((\sigma(x))^{n-1}(\iota^{\prime}_{0*}(y)))=\kappa^{\prime}_{*}((\sigma(x))^{n-1}(\iota^{\prime}_{1*}(y))).

We have

κ((σ(x))n(ι0(y)))\displaystyle\kappa^{\prime}_{*}((\sigma(x))^{n}(\iota^{\prime}_{0*}(y)))
=κ(σ(x)(ι1κ((σ(x))n1(ι0(y)))))+κ(σ(ι0κ(x))(σ(x))n1(ι0(y)))\displaystyle=\kappa^{\prime}_{*}(\sigma(x)(\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}((\sigma(x))^{n-1}(\iota^{\prime}_{0*}(y)))))+\kappa^{\prime}_{*}(\sigma(\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(x))(\sigma(x))^{n-1}(\iota^{\prime}_{0*}(y)))
=κ(σ(x)(ι1κ((σ(x))n1(ι0(y))))),\displaystyle=\kappa^{\prime}_{*}(\sigma(x)(\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}((\sigma(x))^{n-1}(\iota^{\prime}_{0*}(y))))),
κ((σ(x))n(ι1(y)))\displaystyle\kappa^{\prime}_{*}((\sigma(x))^{n}(\iota^{\prime}_{1*}(y)))
=κ(σ(x)(ι1κ((σ(x))n1(ι1(y)))))+κ(σ(ι0κ(x))(σ(x))n1(ι1(y)))\displaystyle=\kappa^{\prime}_{*}(\sigma(x)(\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}((\sigma(x))^{n-1}(\iota^{\prime}_{1*}(y)))))+\kappa^{\prime}_{*}(\sigma(\iota^{\prime}_{0*}\circ\kappa^{\prime}_{*}(x))(\sigma(x))^{n-1}(\iota^{\prime}_{1*}(y)))
=κ(σ(x)(ι1κ((σ(x))n1(ι1(y))))).\displaystyle=\kappa^{\prime}_{*}(\sigma(x)(\iota^{\prime}_{1*}\circ\kappa^{\prime}_{*}((\sigma(x))^{n-1}(\iota^{\prime}_{1*}(y))))).

By this inductive assumption, we obtain

κ((σ(x))n(ι0(y)))=κ((σ(x))n(ι1(y)))\kappa^{\prime}_{*}((\sigma(x))^{n}(\iota^{\prime}_{0*}(y)))=\kappa^{\prime}_{*}((\sigma(x))^{n}(\iota^{\prime}_{1*}(y)))

as desired.

(3)We write ζ\zeta, vv, and vv^{\prime} for ζ|π1|(χ),\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi), v(ζ|π1|(χ))v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi)), and bch(ι1(v),ζ)\mathrm{bch}(-\iota^{\prime}_{1*}(v),\zeta) respectively. Using

χ=exp(σ(ζ)):|π1|^(Σ~,1,2),\chi_{*}=\exp(\sigma(\zeta)):\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\widetilde{\Sigma},\star^{\prime}_{1},\star^{\prime}_{2}),

we have

κχ1ι0(x)\displaystyle\kappa^{\prime}_{*}\circ\chi_{*}^{-1}\circ\iota^{\prime}_{0*}(x)
=κ(exp(σ(ζ))(ι0(x)))\displaystyle=\kappa^{\prime}_{*}(\exp(\sigma(-\zeta))(\iota^{\prime}_{0*}(x)))
=κ(exp(σ(bch(ι1(v),v))(ι0(x)))\displaystyle=\kappa^{\prime}_{*}(\exp(\sigma(-\mathrm{bch}(\iota^{\prime}_{1*}(v),v^{\prime}))(\iota^{\prime}_{0*}(x)))
=κ(exp(σ(v))exp(σ(ι1(v)))(ι0(x)))\displaystyle=\kappa^{\prime}_{*}(\exp(\sigma(-v^{\prime}))\circ\exp(\sigma(-\iota^{\prime}_{1*}(v)))(\iota^{\prime}_{0*}(x)))
=κ(exp(σ(v))(ι0(x))),\displaystyle=\kappa^{\prime}_{*}(\exp(\sigma(-v^{\prime}))(\iota^{\prime}_{0*}(x))),
κχ1ι1(exp(σ(v)(x))\displaystyle\kappa^{\prime}_{*}\circ\chi_{*}^{-1}\circ\iota^{\prime}_{1*}(\exp(\sigma(v)(x))
=κ(exp(σ(ζ))(ι1(exp(σ(v)(x))))\displaystyle=\kappa^{\prime}_{*}(\exp(\sigma(-\zeta))(\iota^{\prime}_{1*}(\exp(\sigma(v)(x))))
=κ(exp(σ(bch(ι1(v),v))(ι1(exp(σ(v)(x))))\displaystyle=\kappa^{\prime}_{*}(\exp(\sigma(-\mathrm{bch}(\iota^{\prime}_{1*}(v),v^{\prime}))(\iota^{\prime}_{1*}(\exp(\sigma(v)(x))))
=κ(exp(σ(v))exp(σ(ι1(v)))(ι1(exp(σ(v)(x))))\displaystyle=\kappa^{\prime}_{*}(\exp(\sigma(-v^{\prime}))\circ\exp(\sigma(-\iota^{\prime}_{1*}(v)))(\iota^{\prime}_{1*}(\exp(\sigma(v)(x))))
=κ(exp(σ(v))exp(σ(ι1(v)))exp(σ(ι1(v)))(ι1(x))\displaystyle=\kappa^{\prime}_{*}(\exp(\sigma(-v^{\prime}))\circ\exp(\sigma(-\iota^{\prime}_{1*}(v)))\circ\exp(\sigma(\iota^{\prime}_{1*}(v)))(\iota^{\prime}_{1*}(x))
=κ(exp(σ(v))(ι1(x)).\displaystyle=\kappa^{\prime}_{*}(\exp(\sigma(-v^{\prime}))(\iota^{\prime}_{1*}(x)).

By (2), we obtain

κχ1ι0(x)=κχ1ι1(exp(σ(v(ζ|π1|(χ))))(x)),\kappa^{\prime}_{*}\circ\chi_{*}^{-1}\circ\iota^{\prime}_{0*}(x)=\kappa^{\prime}_{*}\circ\chi_{*}^{-1}\circ\iota^{\prime}_{1*}(\exp(\sigma(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi))))(x)),

as desired.

The above statements prove the proposition.

Let est;ΣstΣe^{\prime}_{\mathrm{st}};\Sigma_{\mathrm{st}}\hookrightarrow\Sigma be an embedding such that est:Σst×IΣ×I,(p,t)(est,1+t3)e_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\hookrightarrow\Sigma\times I,(p,t)\mapsto(e^{\prime}_{\mathrm{st}},\frac{1+t}{3}) is a standard embedding and Σ~st\widetilde{\Sigma}_{\mathrm{st}} be the closure of (Σst×I)\(e1(Σ)×I)\partial(\Sigma_{\mathrm{st}}\times I)\backslash(e^{\prime-1}(\partial\Sigma)\times I). We choose a diffeomorphism χ\chi representing an element of (Σ~st)\mathcal{I}^{\prime}(\widetilde{\Sigma}_{\mathrm{st}}). We set (Σ×I)(est,χ)(\Sigma\times I)(e_{\mathrm{st}},\chi) as the 3-manifold that is the quotient of the set (Σ×I)\e(Σst×I)¯Σst×I\overline{(\Sigma\times I)\backslash e({\Sigma}_{\mathrm{st}}\times I)}\sqcup{\Sigma}_{\mathrm{st}}\times I by the relation estχ(p)pe_{\mathrm{st}}\circ\chi(p)\sim p for any pΣ~stp\in\widetilde{\Sigma}_{\mathrm{st}}. We consider the embedding maps.

  • We denote by κ\kappa the natural embedding Σ~stΣst×I\widetilde{\Sigma}_{\mathrm{st}}\to\Sigma_{\mathrm{st}}\times I.

  • The identity map Σst×IΣst×I\Sigma_{\mathrm{st}}\times I\to\Sigma_{\mathrm{st}}\times I induces an embedding map

    est:Σst×I(Σ×I)(est,χ).e_{\mathrm{st}}^{\flat}:\Sigma_{\mathrm{st}}\times I\to(\Sigma\times I)(e_{\mathrm{st}},\chi).
  • We recall that we set the embeddings ι1,ι0:ΣstΣ~st\iota_{1},\iota_{0}:\Sigma_{\mathrm{st}}\to\widetilde{\Sigma}_{\mathrm{st}} and α1,α0:Σ(Σ×I)(est,χ)\alpha_{1},\alpha_{0}:\Sigma\to(\Sigma\times I)(e_{\mathrm{st}},\chi) as

    ι1:ΣstΣ~st,p(p,1)\displaystyle\iota_{1}:\Sigma_{\mathrm{st}}\to\widetilde{\Sigma}_{\mathrm{st}},p\mapsto(p,1)
    ι0:ΣstΣ~st,p(p,0),\displaystyle\iota_{0}:\Sigma_{\mathrm{st}}\to\widetilde{\Sigma}_{\mathrm{st}},p\mapsto(p,0),
    α1:Σ(Σ×I)(est,χ),p(p,1),\displaystyle\alpha_{1}:\Sigma\to(\Sigma\times I)(e_{\mathrm{st}},\chi),p\mapsto(p,1),
    α0:Σ(Σ×I)(est,χ),p(p,0).\displaystyle\alpha_{0}:\Sigma\to(\Sigma\times I)(e_{\mathrm{st}},\chi),p\mapsto(p,0).

We recall that we set the diffeomorphism αest:(Σ×I)((Σ×I)(est,χ))\alpha^{e_{\mathrm{st}}}:\partial(\Sigma\times I)\to\partial((\Sigma\times I)(e_{\mathrm{st}},\chi)) as

αest(p,t)={(p,t)ifpΣ,t{0,1}(p,t)ifpΣ,t[0,13][23,1]est1(p,3t1)ifpΣ,t[13,23].\alpha^{e_{\mathrm{st}}}(p,t)=\begin{cases}(p,t)\mathrm{\ if\ }p\in\Sigma,t\in\{0,1\}\\ (p,t)\mathrm{\ if\ }p\in\partial\Sigma,t\in[0,\frac{1}{3}]\cup[\frac{2}{3},1]\\ e_{\mathrm{st}}^{-1}(p,3t-1)\mathrm{\ if\ }p\in\partial\Sigma,t\in[\frac{1}{3},\frac{2}{3}].\end{cases}

For any 1,2Σ\star_{1},\star_{2}\in\partial\Sigma and t1,t2It_{1},t_{2}\in I, we define

t1t2:π1((Σ×I)(est,χ),αest1(1,t1),αest1(2,t1))\displaystyle\diamondsuit_{t_{1}}^{t_{2}}:\pi_{1}((\Sigma\times I)(e_{\mathrm{st}},\chi),\alpha^{e_{\mathrm{st}}-1}(\star_{1},t_{1}),\alpha^{e_{\mathrm{st}}-1}(\star_{2},t_{1}))
π1((Σ×I)(est,χ),αest1(1,t2),αest1(2,t2))\displaystyle\to\pi_{1}((\Sigma\times I)(e_{\mathrm{st}},\chi),\alpha^{e_{\mathrm{st}}-1}(\star_{1},t_{2}),\alpha^{e_{\mathrm{st}}-1}(\star_{2},t_{2}))

by ()γ1,t2,t1()γ2,t1,t2(\cdot)\mapsto\gamma_{\star_{1},t_{2},t_{1}}(\cdot)\gamma_{\star_{2},t_{1},t_{2}}. Here, for any Σ\star\in\partial\Sigma and t,tIt,t^{\prime}\in I, the continuous map I(Σ×I)(e,χ),sαest1(,ts+t(1s))I\to(\Sigma\times I)(e,\chi),s\mapsto\alpha^{e_{\mathrm{st}}-1}(\star,ts+t^{\prime}(1-s)) represents the path γ,t,tπ1((Σ×I)(e,χ),αest1(,t),αest1(,t))\gamma_{\star,t,t^{\prime}}\in\pi_{1}((\Sigma\times I)(e,\chi),\alpha^{e_{\mathrm{st}}-1}(\star,t),\alpha^{e_{\mathrm{st}}-1}(\star,t^{\prime})). To prove Theorem 5.4, we need the following lemma.

Lemma 6.2.
  1. (1)

    For any 1,2Σ\star_{1},\star_{2}\in\partial\Sigma, the homomorphism

    est:π1(Σst,est1(1),est1(2))π1(Σ,1,2)e^{\prime}_{\mathrm{st}*}:\pi_{1}(\Sigma_{\mathrm{st}},{e^{\prime}_{\mathrm{st}}}^{-1}(\star_{1}),{e^{\prime}_{\mathrm{st}}}^{-1}(\star_{2}))\to\pi_{1}(\Sigma,\star_{1},\star_{2})

    induced by the embedding est:ΣstΣe^{\prime}_{\mathrm{st}}:\Sigma_{\mathrm{st}}\to\Sigma is surjective.

  2. (2)

    We fix 1,2Σst\star_{1},\star_{2}\in\partial\Sigma_{\mathrm{st}}. The homomorphisms

    (α1est):π1(Σst,1,2)π1((Σ×I)(est,χ),(est(1),1),(est(2),1)),\displaystyle(\alpha_{1}\circ e_{\mathrm{st}})_{*}:\pi_{1}(\Sigma_{\mathrm{st}},\star_{1},\star_{2})\to\pi_{1}((\Sigma\times I)(e_{\mathrm{st}},\chi),(e^{\prime}_{\mathrm{st}}(\star_{1}),1),(e^{\prime}_{\mathrm{st}}(\star_{2}),1)),
    (α0est):π1(Σst,1,2)π1((Σ×I)(est,χ),(est(1),0),(est(2),0)),\displaystyle(\alpha_{0}\circ e_{\mathrm{st}})_{*}:\pi_{1}(\Sigma_{\mathrm{st}},\star_{1},\star_{2})\to\pi_{1}((\Sigma\times I)(e_{\mathrm{st}},\chi),(e^{\prime}_{\mathrm{st}}(\star_{1}),0),(e^{\prime}_{\mathrm{st}}(\star_{2}),0)),
    (estκ~χ1ι1):π1(Σst,1,2)π1((Σ×I)(est,χ),(est(1),23),(est(2),23)),\displaystyle(e_{\mathrm{st}}^{\flat}\circ\widetilde{\kappa}\circ\chi^{-1}\circ\iota_{1})_{*}:\pi_{1}(\Sigma_{\mathrm{st}},\star_{1},\star_{2})\to\pi_{1}((\Sigma\times I)(e_{\mathrm{st}},\chi),(e^{\prime}_{\mathrm{st}}(\star_{1}),\frac{2}{3}),(e^{\prime}_{\mathrm{st}}(\star_{2}),\frac{2}{3})),
    (estκ~χ1ι0):π1(Σst,1,2)π1((Σ×I)(est,χ),(est(1),13),(est(2),13)),\displaystyle(e_{\mathrm{st}}^{\flat}\circ\widetilde{\kappa}\circ\chi^{-1}\circ\iota_{0})_{*}:\pi_{1}(\Sigma_{\mathrm{st}},\star_{1},\star_{2})\to\pi_{1}((\Sigma\times I)(e_{\mathrm{st}},\chi),(e^{\prime}_{\mathrm{st}}(\star_{1}),\frac{1}{3}),(e^{\prime}_{\mathrm{st}}(\star_{2}),\frac{1}{3})),

    induced by the embeddings α1est\alpha_{1}\circ e_{\mathrm{st}}, α0est\alpha_{0}\circ e_{\mathrm{st}}, estκ~χ1ι1e_{\mathrm{st}}^{\flat}\circ\widetilde{\kappa}\circ\chi^{-1}\circ\iota_{1}, and estκ~χ1ι0e_{\mathrm{st}}^{\flat}\circ\widetilde{\kappa}\circ\chi^{-1}\circ\iota_{0} satisfy

    (α1est)=231(estκ~χ1ι1),\displaystyle(\alpha_{1}\circ e_{\mathrm{st}})_{*}=\diamondsuit_{\frac{2}{3}}^{1}\circ(e_{\mathrm{st}}^{\flat}\circ\widetilde{\kappa}\circ\chi^{-1}\circ\iota_{1})_{*},
    (α0est)=130(estκ~χ1ι0).\displaystyle(\alpha_{0}\circ e_{\mathrm{st}})_{*}=\diamondsuit_{\frac{1}{3}}^{0}\circ(e_{\mathrm{st}}^{\flat}\circ\widetilde{\kappa}\circ\chi^{-1}\circ\iota_{0})_{*}.
  3. (3)

    Let ζ|π1|(χ)\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi) and v(ζ|π1|(χ))v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi)) be elements in F3|π1|^(Σ~st)F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\widetilde{\Sigma}_{\mathrm{st}}) and F3|π1|^(Σst)F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma_{\mathrm{st}}) satisfying the two properties, respectively.

    • For any 1,2Σ~st\star^{\prime}_{1},\star^{\prime}_{2}\in\partial\widetilde{\Sigma}_{\mathrm{st}}, we have

      χ=exp(σ(ζ|π1|(χ))):π1^(Σ~st,1,2)π1^(Σ~st,1,2).\chi_{*}=\exp(\sigma(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi))):\widehat{\mathbb{Q}\pi_{1}}(\widetilde{\Sigma}_{\mathrm{st}},\star^{\prime}_{1},\star^{\prime}_{2})\to\widehat{\mathbb{Q}\pi_{1}}(\widetilde{\Sigma}_{\mathrm{st}},\star^{\prime}_{1},\star^{\prime}_{2}).
    • We have κ~(bch(ι1(v(ζ|π1|(χ))),ζ|π1|(χ)))=0\widetilde{\kappa}_{*}(\mathrm{bch}(-\iota_{1*}(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi))),\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi)))=0.

    Then we have

    κ~χ1ι0(x)=10κ~χ1ι1(exp(σ(v(ζ|π1|(χ))))(x))\widetilde{\kappa}_{*}\circ\chi_{*}^{-1}\circ\iota_{0*}(x)=\diamondsuit_{1}^{0}\circ\widetilde{\kappa}_{*}\circ\chi_{*}^{-1}\circ\iota_{1*}(\exp(\sigma(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi))))(x))

    for any xπ1^(Σst,1,2)x\in\widehat{\mathbb{Q}\pi_{1}}(\Sigma_{\mathrm{st}},\star_{1},\star_{2}).

  4. (4)

    Under the assumption in (3), we have

    α0(x)=10α1(exp(σ(est(v(ζ|π1|(χ)))))(x))\alpha_{0*}(x)=\diamondsuit_{1}^{0}\circ\alpha_{1*}(\exp(\sigma(e^{\prime}_{\mathrm{st}*}(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi)))))(x))

    for any xπ1^(Σ,1,2)x\in\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2}).

Proof.

(1)Since este_{\mathrm{st}} is a standard embedding, the closure of Σ\est(Σst)\Sigma\backslash e^{\prime}_{\mathrm{st}}(\Sigma_{\mathrm{st}}) is a connected sum of closed disks. So there exists an embedding e′′:ΣΣste^{\prime\prime}:\Sigma\to\Sigma_{\mathrm{st}} satisfying the two conditions.

  • We have este′′(1)=1,este′′(2)=2e^{\prime}_{\mathrm{st}}\circ e^{\prime\prime}(\star_{1})=\star_{1},e^{\prime}_{\mathrm{st}}\circ e^{\prime\prime}(\star_{2})=\star_{2}.

  • The composite este′′e^{\prime}_{\mathrm{st}}\circ e^{\prime\prime} is isotopic to the identity map preserving {1,2}\{\star_{1},\star_{2}\}.

Then we have este′′=idπ1^(Σ,1,2)e^{\prime}_{\mathrm{st}*}\circ e^{\prime\prime}_{*}=\mathrm{id}_{\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2})}. So the homomorphism

est:π1(Σst,est1(1),est1(2))π1(Σ,1,2)e^{\prime}_{\mathrm{st}*}:\pi_{1}(\Sigma_{\mathrm{st}},{e^{\prime}_{\mathrm{st}}}^{-1}(\star_{1}),{e^{\prime}_{\mathrm{st}}}^{-1}(\star_{2}))\to\pi_{1}(\Sigma,\star_{1},\star_{2})

is surjective as desired.

(2)The embeddings α1est\alpha_{1}\circ e_{\mathrm{st}} and α0est\alpha_{0}\circ e_{\mathrm{st}} are isotopic to estκ~χ1ι1e_{\mathrm{st}}^{\flat}\circ\widetilde{\kappa}\circ\chi^{-1}\circ\iota_{1} and estκ~χ1ι0e_{\mathrm{st}}^{\flat}\circ\widetilde{\kappa}\circ\chi^{-1}\circ\iota_{0} preserving 1×I2×I\star_{1}\times I\cup\star_{2}\times I, respectively. It proves (2).

(3)For i=0,1i=0,1, we denote by Proji\mathrm{Proj}_{i} the natural map |π1|(Σ×I,(1,i),(2,i))|π1|(Σ,1,2)\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma\times I,(\star_{1},i),(\star_{2},i))\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma,\star_{1},\star_{2}) and have Proj010=Proj1\mathrm{Proj}_{0}\circ\diamondsuit_{1}^{0}=\mathrm{Proj}_{1}. By Proposition 6.1, we obtain

Proj0κ~χ1ι0(x)=Proj1κ~χ1ι1(exp(σ(v(ζ|π1|(χ))))(x)).\mathrm{Proj}_{0}\circ\widetilde{\kappa}_{*}\circ\chi_{*}^{-1}\circ\iota_{0*}(x)=\mathrm{Proj}_{1}\circ\widetilde{\kappa}_{*}\circ\chi_{*}^{-1}\circ\iota_{1*}(\exp(\sigma(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi))))(x)).

So we have

Proj0κ~χ1ι0(x)=Proj010κ~χ1ι1(exp(σ(v(ζ|π1|(χ))))(x)).\mathrm{Proj}_{0}\circ\widetilde{\kappa}_{*}\circ\chi_{*}^{-1}\circ\iota_{0*}(x)=\mathrm{Proj}_{0}\circ\diamondsuit_{1}^{0}\circ\widetilde{\kappa}_{*}\circ\chi_{*}^{-1}\circ\iota_{1*}(\exp(\sigma(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi))))(x)).

Since Proj0\mathrm{Proj}_{0} is an isomorphism, we get

κ~χ1ι0(x)=10κ~χ1ι1(exp(σ(v(ζ|π1|(χ))))(x)),\widetilde{\kappa}_{*}\circ\chi_{*}^{-1}\circ\iota_{0*}(x)=\diamondsuit_{1}^{0}\circ\widetilde{\kappa}_{*}\circ\chi_{*}^{-1}\circ\iota_{1*}(\exp(\sigma(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi))))(x)),

as desired.

(4)By (1), there exists an element xπ1(Σ,est1(1),est1(2))x^{\prime}\in\mathbb{Q}\pi_{1}(\Sigma,{e^{\prime}_{\mathrm{st}}}^{-1}(\star_{1}),{e^{\prime}_{\mathrm{st}}}^{-1}(\star_{2})) satisfying est(x)=xe^{\prime}_{\mathrm{st}*}(x^{\prime})=x. Using (2), we obtain

10α1(exp(σ(est(v(ζ|π1|(χ)))))(x))\displaystyle\diamondsuit_{1}^{0}\circ\alpha_{1*}(\exp(\sigma(e^{\prime}_{\mathrm{st}*}(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi)))))(x))
=10α1(exp(σ(est(v(ζ|π1|(χ)))))(est(x)))\displaystyle=\diamondsuit_{1}^{0}\circ\alpha_{1*}(\exp(\sigma(e^{\prime}_{\mathrm{st}*}(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi)))))(e^{\prime}_{\mathrm{st}*}(x^{\prime})))
=10α1est(exp(σ(v(ζ|π1|(χ))))(x))\displaystyle=\diamondsuit_{1}^{0}\circ\alpha_{1*}\circ e^{\prime}_{\mathrm{st}*}(\exp(\sigma(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi))))(x^{\prime}))
=10231estκ~χ1ι1(exp(σ(v(ζ|π1|(χ))))(x))\displaystyle=\diamondsuit_{1}^{0}\circ\diamondsuit_{\frac{2}{3}}^{1}\circ e^{\flat}_{\mathrm{st}*}\circ\widetilde{\kappa}_{*}\circ\chi^{-1}_{*}\circ\iota_{1*}(\exp(\sigma(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi))))(x^{\prime}))
=230estκ~χ1ι1(exp(σ(v(ζ|π1|(χ))))(x))\displaystyle=\diamondsuit_{\frac{2}{3}}^{0}\circ e^{\flat}_{\mathrm{st}*}\circ\widetilde{\kappa}_{*}\circ\chi^{-1}_{*}\circ\iota_{1*}(\exp(\sigma(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi))))(x^{\prime}))
=130est(10κ~χ1ι1(exp(σ(v(ζ|π1|(χ))))(x))),\displaystyle=\diamondsuit_{\frac{1}{3}}^{0}\circ e^{\flat}_{\mathrm{st}*}(\diamondsuit_{1}^{0}\circ\widetilde{\kappa}_{*}\circ\chi^{-1}_{*}\circ\iota_{1*}(\exp(\sigma(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi))))(x^{\prime}))),
α0(x)\displaystyle\alpha_{0*}(x)
=α0(est(x))\displaystyle=\alpha_{0*}(e^{\prime}_{\mathrm{st}}(x^{\prime}))
=130estκ~χ1ι0(x)\displaystyle=\diamondsuit_{\frac{1}{3}}^{0}\circ e^{\flat}_{\mathrm{st}*}\circ\widetilde{\kappa}_{*}\circ\chi^{-1}_{*}\circ\iota_{0*}(x^{\prime})
=130est(κ~χ1ι0(x)).\displaystyle=\diamondsuit_{\frac{1}{3}}^{0}\circ e^{\flat}_{\mathrm{st}*}(\widetilde{\kappa}_{*}\circ\chi^{-1}_{*}\circ\iota_{0*}(x^{\prime})).

By (3), we have

α0(x)=10α1(exp(σ(est(v(ζ|π1|(χ)))))(x)),\alpha_{0*}(x)=\diamondsuit_{1}^{0}\circ\alpha_{1*}(\exp(\sigma(e^{\prime}_{\mathrm{st}*}(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi)))))(x)),

as desired.

The above statements prove the lemma.

proof of Theorem 5.4.

We use the notations in Lemma 6.2(3). We assume the diffeomorphism χ\chi represents an element ξ\xi of (Σ)\mathcal{I}^{\prime}(\Sigma). By Proposition 2.2, ζ|π1|(χ)\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi) equals ζ|π1|(ξ)\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\xi). Furthermore, by Proposition 5.3, v(ζ|π1|(χ))v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\chi)) equals v(ζ|π1|(ξ))v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\xi)). Lemma 6.2(4) says

α1101α0(x)=exp(σ(est(v(ζ|π1|(ξ)))))(x),\alpha_{1*}^{-1}\circ\diamondsuit_{0}^{1}\circ\alpha_{0*}(x)=\exp(\sigma(e^{\prime}_{\mathrm{st}*}(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\xi)))))(x),

which means

(Σ×I)(est,ξ)(x)=exp(σ(est(v(ζ|π1|(ξ)))))(x).(\Sigma\times I)(e_{\mathrm{st}},\xi)_{*}(x)=\exp(\sigma(e^{\prime}_{\mathrm{st}*}(v(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\xi)))))(x).

The equation proves the theorem.

Next, we will prove Theorem 5.5. To do it, we need the following lemma. We recall that κ:Σ~st×IΣst×I\kappa:\widetilde{\Sigma}_{\mathrm{st}}\times I\to\Sigma_{\mathrm{st}}\times I is the tubular neighborhood satisfying the two conditions for enough small ϵ>0\epsilon>0.

  • For any pΣ~stp\in\widetilde{\Sigma}_{\mathrm{st}}, e(p,1)=p.e_{\partial}(p,1)=p.

  • For any pΣ~stest1(Σ×I)p\in\widetilde{\Sigma}_{\mathrm{st}}\cap e_{\mathrm{st}}^{-1}(\partial\Sigma\times I),

    este((p,1),t)=(est(p),2ϵ+ϵt3),\displaystyle e_{\mathrm{st}}\circ e_{\partial}((p,1),t)=(e^{\prime}_{\mathrm{st}}(p),\frac{2-\epsilon+\epsilon t}{3}),
    este((p,0),t)=(est(p),1+ϵϵt3).\displaystyle e_{\mathrm{st}}\circ e_{\partial}((p,0),t)=(e^{\prime}_{\mathrm{st}}(p),\frac{1+\epsilon-\epsilon t}{3}).
Lemma 6.3.

For a standard embedding est:Σst×IΣ×Ie_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\to\Sigma\times I and an element ξ(Σ~st)\xi\in\mathcal{I}(\widetilde{\Sigma}_{\mathrm{st}}), we have

exp(1hΨ|π1|𝒜(ζ~|π1|((Σ×I)(est,ξ))))=estκ(exp(1h(Ψ|π1|𝒜(ζ|π1|(ξ))))).\exp(\frac{1}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(e_{\mathrm{st}},\xi))))=e_{\mathrm{st}*}\circ\kappa_{*}(\exp(\frac{1}{h}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\xi))))).
Proof.

Let est:ΣstΣe^{\prime}_{\mathrm{st}}:\Sigma_{\mathrm{st}}\to\Sigma be the embedding satisfying e×id{12}=eΣ×{12}e^{\prime}\times\mathrm{id}_{\{\frac{1}{2}\}}=e_{\Sigma\times\{\frac{1}{2}\}}. By Theorem 5.4, we have

exp(1hΨ|π1|𝒜(ζ~|π1|((Σ×I)(est,ξ))))=exp(1h(Ψ|π1|𝒜(est(v(ζ(ξ)))))\displaystyle\exp(\frac{1}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(e_{\mathrm{st}},\xi))))=\exp(\frac{1}{h}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(e^{\prime}_{\mathrm{st}*}(v(\zeta(\xi)))))
=exp(1h(est(Ψ|π1|𝒜(v(ζ(ξ))))))=est(exp(1hΨ|π1|𝒜(v(ζ(ξ))))).\displaystyle=\exp(\frac{1}{h}(e_{\mathrm{st}*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(v(\zeta(\xi))))))=e_{\mathrm{st}*}(\exp(\frac{1}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(v(\zeta(\xi))))).

Using Proposition 5.3, we have

est(exp(1hΨ|π1|𝒜(v(ζ(ξ)))))=estκ(exp(1hΨ|π1|𝒜(ζ(ξ)))).\displaystyle e_{\mathrm{st}*}(\exp(\frac{1}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(v(\zeta(\xi)))))=e_{\mathrm{st}*}\circ\kappa_{*}(\exp(\frac{1}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\zeta(\xi)))).

The equation proves the lemma.

proof of Theorem 5.5.

Let LL be a boundary link in Σ×I\Sigma\times I and eS:SΣ×Ie_{S}:S\to\Sigma\times I a Seifert surface of LL. By Lemma 4.7, there exists a standard embedding est:Σst×IΣ×Ie_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\to\Sigma\times I and an embedding e:SΣ~ste^{\prime}:S\to\widetilde{\Sigma}_{\mathrm{st}} such that the composite estee_{\mathrm{st}}\circ e^{\prime} is isotopic to eSe_{S}. Using Lemma 4.8, for any label λ:π0(S){±1}\lambda:\pi_{0}(\partial S)\to\{\pm{1}\}, we have

(Σ×I)(L(λ))=(Σ×I)(est,[]π0(S)te(c)λ([])).(\Sigma\times I)(L(\lambda))=(\Sigma\times I)(e_{\mathrm{st}},\prod_{[\partial]\in\pi_{0}(\partial S)}t_{e^{\prime}(c_{\partial})}^{-\lambda([\partial])}).

By Lemma 6.3, we have

exp(1hΨ|π1|𝒜(ζ~|π1|((Σ×I)(est,ξ))))\displaystyle\exp(\frac{1}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(e_{\mathrm{st}},\xi))))
=estκ(exp(1h(Ψ|π1|𝒜(ζ|π1|(ξ)))))\displaystyle=e_{\mathrm{st}*}\circ\kappa_{*}(\exp(\frac{1}{h}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\xi)))))
=estκ(exp(1h(Ψ|π1|𝒜(ζ|π1|([]π0(S)te(c)λ([]))))))\displaystyle=e_{\mathrm{st}*}\circ\kappa_{*}(\exp(\frac{1}{h}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\zeta_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\prod_{[\partial]\in\pi_{0}(\partial S)}t_{e^{\prime}(c_{\partial})}^{-\lambda([\partial])})))))
=estκ(exp(1h(Ψ|π1|𝒜([]π0(S)λ([])e(L|π1|(c))))))\displaystyle=e_{\mathrm{st}*}\circ\kappa_{*}(\exp(\frac{1}{h}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\sum_{[\partial]\in\pi_{0}(\partial S)}-\lambda([\partial])e^{\prime}_{*}(L_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(c_{\partial}))))))
=estκe(exp(1h(Ψ|π1|𝒜([]π0(S)λ([])L|π1|(c)))))\displaystyle=e_{\mathrm{st}*}\circ\kappa_{*}\circ e^{\prime}_{*}(\exp(\frac{1}{h}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\sum_{[\partial]\in\pi_{0}(\partial S)}-\lambda([\partial])L_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(c_{\partial})))))
=eS(exp(1h(Ψ|π1|𝒜([]π0(S)λ([])L|π1|(c))))).\displaystyle=e_{S*}(\exp(\frac{1}{h}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\sum_{[\partial]\in\pi_{0}(\partial S)}-\lambda([\partial])L_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(c_{\partial}))))).

The computation proves the theorem.

7. A lemma of 𝒜\mathcal{A}^{\prime}

To give another proof of the formula [7] of Kuno and Massuyeau and to clarify it, we need a lemma of the filtration of the skein algebra 𝒜\mathcal{A}^{\prime}. In this section, we introduce the lemma and prove it.

Let Σ\Sigma be a compact connected oriented surface and \star a point in Σ\partial\Sigma. We fix an embedding e:ΣΣ~×Ie:\Sigma\hookrightarrow\widetilde{\Sigma}\times I and a non-increasing sequence 𝐛=def.{bn}n0\mathbf{b}\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\{b_{n}\}_{n\geq 0} of non-negative integers. For any m0m\in\mathbb{Z}_{\geq 0}, we set a F(e,𝐛)m|π1|(Σ)|π1|(Σ)F^{(e,\mathbf{b})m}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)\subset\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma) generated by

|η1η2ηk|\lvert\eta_{1}\eta_{2}\cdots\eta_{k}\rvert

satisfying the properties.

  • η1,η2,,ηkπ1(Σ,)\eta_{1},\eta_{2},\cdots,\eta_{k}\in\mathbb{Q}\pi_{1}(\Sigma,\star).

  • There exist non-negative integers m1,,mk,n1,,ckm_{1},\cdots,m_{k},n_{1},\cdots,c_{k} satisfying the conditions.

    • For any ii, ηiFmiπ1(Σ,)\eta_{i}\in F^{m_{i}}\mathbb{Q}\pi_{1}(\Sigma,\star).

    • For any ii, e(ηi)Fmi+niπ1(Σ,)e_{*}(\eta_{i})\in F^{m_{i}+n_{i}}\mathbb{Q}\pi_{1}(\Sigma,\star).

    • We have i=1kmim.\sum_{i=1}^{k}m_{i}\geq m.

    • For any subset ς{1,,k}\varsigma\subset\{1,\cdots,k\}, iςnibkς\sum_{i\in\varsigma}n_{i}\geq b_{k-\sharp\varsigma}.

In this paper, we denote by 𝐛(N)\mathbf{b}(N) the NN-th element of 𝐛(N)\mathbf{b}(N) for any sequence 𝐛\mathbf{b}. Let 𝐛1,𝐛2,\mathbf{b}_{1},\mathbf{b}_{2},\cdots be some sequences. We set a new one Λ(𝐛1,𝐛2)\Lambda(\mathbf{b}_{1},\mathbf{b}_{2}) by

Λ(𝐛1,𝐛2)(n)=def.min{𝐛1(i)+𝐛2(j)|i+j+2=n}.\Lambda(\mathbf{b}_{1},\mathbf{b}_{2})(n)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\min\{\mathbf{b}_{1}(i)+\mathbf{b}_{2}(j)|i+j+2=n\}.

Then the operator has the associativity, which means

Λ(𝐛1,Λ(𝐛2,𝐛3))(n)=Λ(Λ(𝐛1,𝐛2),𝐛3)(n)=min{bi+bj+bk′′|i+j+k=n4}.\Lambda(\mathbf{b}_{1},\Lambda(\mathbf{b}_{2},\mathbf{b}_{3}))(n)=\Lambda(\Lambda(\mathbf{b}_{1},\mathbf{b}_{2}),\mathbf{b}_{3})(n)=\min\{b_{i}+b^{\prime}_{j}+b^{\prime\prime}_{k}|i+j+k=n-4\}.

We denote

Δ(𝐛1,,𝐛j)=Δ(𝐛1,(Δ(𝐛2,,Δ(𝐛j1,𝐛j)))).\Delta(\mathbf{b}_{1},\cdots,\mathbf{b}_{j})=\Delta(\mathbf{b}_{1},(\Delta(\mathbf{b}_{2},\cdots,\Delta(\mathbf{b}_{j-1},\mathbf{b}_{j})\cdots))).

In this section, we will prove the following statement Statement (N)(N) for any N1N\in\mathbb{Z}_{\geq 1}.

  • Let Σ1,,ΣN,Σ\Sigma_{1},\cdots,\Sigma_{N},\Sigma be compact connected oriented surfaces and e=e1eN:Σ1×IΣN×IΣ×Ie=e_{1}\sqcup\cdots\sqcup e_{N}:\Sigma_{1}\times I\sqcup\cdots\sqcup\Sigma_{N}\times I\hookrightarrow\Sigma\times I be an embedding that induces homomorphism e:𝒜(Σ1)𝒜(ΣN)𝒜(Σ)e_{*}:\mathcal{A}^{\prime}(\Sigma_{1})\otimes\cdots\otimes\mathcal{A}^{\prime}(\Sigma_{N})\to\mathcal{A}^{\prime}(\Sigma). For any m1,,mN0m_{1},\cdots,m_{N}\in\mathbb{Z}_{\geq 0} and non-increasing sequences 𝐛1,,𝐛N\mathbf{b}_{1},\cdots,\mathbf{b}_{N} of non-negative integers, we have

    e(i=1jΨ|π1|𝒜(F(ei,𝐛i)mi|π1|(Σi)))F(i=1Nmi)+Δ(𝐛1,,𝐛N)(0)𝒜(Σ).e_{*}(\otimes_{i=1}^{j}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(F^{(e_{i},\mathbf{b}_{i})m_{i}}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{i})))\subset F^{(\sum_{i=1}^{N}m_{i})+\Delta(\mathbf{b}_{1},\cdots,\mathbf{b}_{N})(0)}\mathcal{A}^{\prime}(\Sigma).
Lemma 7.1.

If N=1N=1, Statement (1)(1) holds.

Proof.

Let η1,,ηk\eta_{1},\cdots,\eta_{k} be elements of π1(Σ1)\mathbb{Q}\pi_{1}(\Sigma_{1}) satisfying e(ηj)Iπ1(Σ)nj+mje_{*}(\eta_{j})\in I_{\mathbb{Q}\pi_{1}(\Sigma)}^{n_{j}+m_{j}}, where

j=1,,kmj𝐛1(0).\sum_{j=1,\cdots,k}m_{j}\geq\mathbf{b}_{1}(0).

We remark that we can ignore the self-crossing in the skein algebra. We obtain

e(Ψ|π1|𝒜(|η1ηk|))Fj=1,,k(mj+nj)𝒜(Σ)Fj=1,,kmj+𝐛1(0)𝒜(Σ)e_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\eta_{1}\cdots\eta_{k}\rvert))\in F^{\sum_{j=1,\cdots,k}(m_{j}+n_{j})}\mathcal{A}^{\prime}(\Sigma)\subset F^{\sum_{j=1,\cdots,k}m_{j}+\mathbf{b}_{1}(0)}\mathcal{A}^{\prime}(\Sigma)

as desired.

Lemma 7.2.

Let Σ\Sigma and Σ~\widetilde{\Sigma} be compact connected oriented surfaces and e:ΣΣ~×Ie:\Sigma\hookrightarrow\widetilde{\Sigma}\times I an embedding. For non-increasing sequences 𝐛,𝐛\mathbf{b},\mathbf{b}^{\prime} of non-negative integers and integers m,m0m,m^{\prime}\in\mathbb{Z}_{\geq 0}, we have

[F(e,𝐛)m|π1|(Σ),F(e,𝐛)m|π1|(Σ)]F(e,Λ(𝐛,𝐛))m+m2|π1|(Σ).[F^{(e,\mathbf{b})m}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma),F^{(e,\mathbf{b}^{\prime})m^{\prime}}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)]\subset F^{(e,\Lambda(\mathbf{b},\mathbf{b^{\prime}}))m+m^{\prime}-2}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma).
Proof.

Let η1,,ηk,η1,,ηk\eta_{1},\cdots,\eta_{k},\eta^{\prime}_{1},\cdots,\eta^{\prime}_{k^{\prime}} be elements of π1(Σ,)\mathbb{Q}\pi_{1}(\Sigma,\star) satisfying the conditions.

  • For any j{1,,k}j\in\{1,\cdots,k\}, there exists a set SjS_{j}, exists mj0m_{j}\in\mathbb{Z}_{\geq 0}, sxists qαjq_{\alpha_{j}}\in\mathbb{Q} for any αjSj\alpha_{j}\in S_{j}, and exists γi(αj)π1(Σ,)\gamma^{(\alpha_{j})}_{i}\in\pi_{1}(\Sigma,\star) for any αjSj,i{1,,mj}\alpha_{j}\in S_{j},i\in\{1,\cdots,m_{j}\} satisfying

    ηj=αjSjqαj(γ1(αj)1)(γ2(αj)1)(γmj(αj)1)Iπ1(Σ,)mj.\eta_{j}=\sum_{\alpha_{j}\in S_{j}}q_{\alpha_{j}}(\gamma^{(\alpha_{j})}_{1}-1)(\gamma^{(\alpha_{j})}_{2}-1)\cdots(\gamma^{(\alpha_{j})}_{m_{j}}-1)\in I_{\mathbb{Q}\pi_{1}(\Sigma,\star)}^{m_{j}}.
  • For any j{1,,k}j^{\prime}\in\{1,\cdots,k^{\prime}\}, there exists a set SjS^{\prime}_{j^{\prime}}, exists mj0m^{\prime}_{j^{\prime}}\in\mathbb{Z}_{\geq 0}, sxists qαjq^{\prime}_{\alpha^{\prime}_{j^{\prime}}}\in\mathbb{Q} for any αjSj\alpha^{\prime}_{j^{\prime}}\in S^{\prime}_{j^{\prime}}, and exists γi(αj)π1(Σ,)\gamma^{\prime(\alpha^{\prime}_{j^{\prime}})}_{i}\in\pi_{1}(\Sigma,\star) for any αjSj,i{1,,mj}\alpha^{\prime}_{j^{\prime}}\in S^{\prime}_{j^{\prime}},i\in\{1,\cdots,m^{\prime}_{j^{\prime}}\} satisfying

    ηj=αjSjqαj(γ1(αj)1)(γ2(αj)1)(γmj(αj)1)Iπ1(Σ,)mj.\eta^{\prime}_{j^{\prime}}=\sum_{\alpha^{\prime}_{j^{\prime}}\in S^{\prime}_{j^{\prime}}}q^{\prime}_{\alpha^{\prime}_{j^{\prime}}}(\gamma^{\prime(\alpha^{\prime}_{j^{\prime}})}_{1}-1)(\gamma^{\prime(\alpha^{\prime}_{j^{\prime}})}_{2}-1)\cdots(\gamma^{\prime(\alpha^{\prime}_{j^{\prime}})}_{m^{\prime}_{j^{\prime}}}-1)\in I_{\mathbb{Q}\pi_{1}(\Sigma,\star)}^{m^{\prime}_{j^{\prime}}}.
  • There exist integers n1,,nk,n1,,nk0n_{1},\cdots,n_{k},n^{\prime}_{1},\cdots,n^{\prime}_{k^{\prime}}\in\mathbb{Z}_{\geq 0} such that

    e(ηk)Iπ1(Σ~×I)mk+nkande(ηk)Iπ1(Σ~×I)mk+nk.e_{*}(\eta_{k})\in I_{\mathbb{Q}\pi_{1}(\widetilde{\Sigma}\times I)}^{m_{k}+n_{k}}\mathrm{\ and\ }e_{*}(\eta^{\prime}_{k^{\prime}})\in I_{\mathbb{Q}\pi_{1}(\widetilde{\Sigma}\times I)}^{m^{\prime}_{k^{\prime}}+n^{\prime}_{k^{\prime}}}.
  • i{1,,k}mim\sum_{i\in\{1,\cdots,k\}}m_{i}\geq m.

  • i{1,,k}mim\sum_{i\in\{1,\cdots,k^{\prime}\}}m^{\prime}_{i}\geq m^{\prime}.

  • For any subset ς{1,,k}\varsigma\subset\{1,\cdots,k\}, iςnibkς\sum_{i\in\varsigma}n_{i}\geq b_{k-\sharp\varsigma}.

  • For any subset ς{1,,k}\varsigma^{\prime}\subset\{1,\cdots,k^{\prime}\}, iςnibkς\sum_{i\in\varsigma^{\prime}}n^{\prime}_{i}\geq b^{\prime}_{k-\sharp\varsigma^{\prime}}.

Here we recall that IGGI_{\mathbb{Q}G}\subset\mathbb{Q}G is the augmentation ideal {gGqgg|gGqg=0}\{\sum_{g\in G}q_{g}g|\sum_{g\in G}q_{g}=0\}. for any group GG. Then we have

[|η1η2ηk|,|η1,η2,ηk|]\displaystyle[\lvert\eta_{1}\eta_{2}\cdots\eta_{k}\rvert,\lvert\eta^{\prime}_{1},\eta^{\prime}_{2},\cdots\eta^{\prime}_{k^{\prime}}\rvert]
=j{1,,k}j{1,,k}αjSjαjSji{1,,mk}i{1,,mk}pγi(αj)γi(αj)\displaystyle=\sum_{j\in\{1,\cdots,k\}}\sum_{j^{\prime}\in\{1,\cdots,k^{\prime}\}}\sum_{\alpha_{j}\in S_{j}}\sum_{\alpha^{\prime}_{j^{\prime}}\in S^{\prime}_{j^{\prime}}}\sum_{i\in\{1,\cdots,m_{k}\}}\sum_{i^{\prime}\in\{1,\cdots,m^{\prime}_{k^{\prime}}\}}\sum_{p\in\gamma^{(\alpha_{j})}_{i}\cap\gamma^{\prime(\alpha^{\prime}_{j^{\prime}})}_{i^{\prime}}}
qαjqαjϵ(p,γi(αj),γi(αj))|(γ1(αj)1)(γi1(αj)1)(γi(αj)),p(γi(αj))p,\displaystyle q_{\alpha_{j}}q^{\prime}_{\alpha^{\prime}_{j^{\prime}}}\epsilon(p,\gamma^{(\alpha_{j})}_{i},\gamma^{\prime(\alpha^{\prime}_{j^{\prime}})}_{i^{\prime}})\lvert(\gamma^{(\alpha_{j})}_{1}-1)\cdots(\gamma^{(\alpha_{j})}_{i-1}-1)(\gamma^{(\alpha_{j})}_{i})_{\star,p}(\gamma^{\prime(\alpha^{\prime}_{j^{\prime}})}_{i^{\prime}})_{p,\star}
(γi+1(αj)1)(γmj(αj)1)ηj+1ηkη1ηj1(γ1(αj)1)(γi1(αj)1)\displaystyle(\gamma^{(\alpha^{\prime}_{j^{\prime}})}_{i^{\prime}+1}-1)\cdots(\gamma^{(\alpha^{\prime}_{j^{\prime}})}_{m^{\prime}_{j^{\prime}}}-1)\eta^{\prime}_{j^{\prime}+1}\cdots\eta^{\prime}_{k^{\prime}}\eta^{\prime}_{1}\cdots\eta^{\prime}_{j^{\prime}-1}(\gamma^{\prime(\alpha^{\prime}_{j^{\prime}})}_{1}-1)\cdots(\gamma^{\prime(\alpha^{\prime}_{j^{\prime}})}_{i-1}-1)
(γi(αj)),p(γi(αj))p,(γi+1(αj)1)(γmj(αj)1)ηj+1ηkη1ηj1|.\displaystyle(\gamma^{\prime(\alpha^{\prime}_{j^{\prime}})}_{i^{\prime}})_{\star,p}(\gamma^{(\alpha_{j})}_{i})_{p,\star}(\gamma^{(\alpha_{j})}_{i+1}-1)\cdots(\gamma^{(\alpha_{j})}_{m_{j}}-1)\eta_{j+1}\cdots\eta_{k}\eta_{1}\cdots\eta_{j-1}\rvert.

Now, for any subsets ς{1,,j1,j+1,,k}\varsigma\subset\{1,\cdots,j-1,j+1,\cdots,k\} and ς{1,,j1,j+1,,k}\varsigma^{\prime}\subset\{1,\cdots,j^{\prime}-1,j^{\prime}+1,\cdots,k^{\prime}\},

iςni+iςnibkς+bkςΔ(𝐛,𝐛)(k+k2ςς)\sum_{i\in\varsigma}n_{i}+\sum_{i^{\prime}\in\varsigma^{\prime}}n^{\prime}_{i^{\prime}}\geq b_{k-\sharp\varsigma}+b^{\prime}_{k^{\prime}-\sharp\varsigma^{\prime}}\geq\Delta(\mathbf{b},\mathbf{b^{\prime}})(k+k^{\prime}-2-\sharp\varsigma-\sharp^{\prime}\varsigma^{\prime})

holds. By definition, we obtain

|(γ1(αj)1)(γi1(αj)1)(γi(αj)),p(γi(αj))p,\displaystyle\lvert(\gamma^{(\alpha_{j})}_{1}-1)\cdots(\gamma^{(\alpha_{j})}_{i-1}-1)(\gamma^{(\alpha_{j})}_{i})_{\star,p}(\gamma^{\prime(\alpha^{\prime}_{j^{\prime}})}_{i^{\prime}})_{p,\star}
(γi+1(αj)1)(γmj(αj)1)ηj+1ηkη1ηj1(γ1(αj)1)(γi1(αj)1)\displaystyle(\gamma^{(\alpha^{\prime}_{j^{\prime}})}_{i^{\prime}+1}-1)\cdots(\gamma^{(\alpha^{\prime}_{j^{\prime}})}_{m^{\prime}_{j^{\prime}}}-1)\eta^{\prime}_{j^{\prime}+1}\cdots\eta^{\prime}_{k^{\prime}}\eta^{\prime}_{1}\cdots\eta^{\prime}_{j^{\prime}-1}(\gamma^{\prime(\alpha^{\prime}_{j^{\prime}})}_{1}-1)\cdots(\gamma^{\prime(\alpha^{\prime}_{j^{\prime}})}_{i-1}-1)
(γi(αj)),p(γi(αj))p,(γi+1(αj)1)(γmj(αj)1)ηj+1ηkη1ηj1|\displaystyle(\gamma^{\prime(\alpha^{\prime}_{j^{\prime}})}_{i^{\prime}})_{\star,p}(\gamma^{(\alpha_{j})}_{i})_{p,\star}(\gamma^{(\alpha_{j})}_{i+1}-1)\cdots(\gamma^{(\alpha_{j})}_{m_{j}}-1)\eta_{j+1}\cdots\eta_{k}\eta_{1}\cdots\eta_{j-1}\rvert
F(e,Δ(𝐛,𝐛))m+m2|π1|(Σ).\displaystyle\in F^{(e,\Delta(\mathbf{b},\mathbf{b}^{\prime}))m+m^{\prime}-2}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma).

It proves the lemma.

Lemma 7.3.

Let Σ,Σ1,Σ2,\Sigma,\Sigma_{1},\Sigma_{2}, and Σ~\widetilde{\Sigma} be compact connected oriented surfaces and e:Σ×IΣ~×Ie:\Sigma\times I\to\widetilde{\Sigma}\times I, e1:Σ1Σ×Ie_{1}:\Sigma_{1}\to\Sigma\times I, and e2:Σ2Σ×Ie_{2}:\Sigma_{2}\to\Sigma\times I embeddings. We also denote by ee the restriction ΣΣ~×I,pe(p,0)\Sigma\to\widetilde{\Sigma}\times I,p\mapsto e(p,0). For any elements xΨ|π1|𝒜(F(ee1,𝐛1)m1|π1|(Σ1))x\in\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(F^{(e\circ e_{1},\mathbf{b}_{1})m_{1}}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{1})) and yΨ|π1|𝒜(F(ee2,𝐛2)m2|π1|(Σ2))y\in\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(F^{(e\circ e_{2},\mathbf{b}_{2})m_{2}}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{2})), we obtain

e1(x)e2(y)e2(y)e1(x)hΨ|π1|𝒜(F(e,Δ(𝐛1,𝐛2))m1+m22|π1|(Σ)).e_{1*}(x)e_{2*}(y)-e_{2*}(y)e_{1*}(x)\in h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(F^{(e,\Delta(\mathbf{b}_{1},\mathbf{b}_{2}))m_{1}+m_{2}-2}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)).
Proof.

We remark that, by definition, we have

ei(F(eei,𝐛i)mi|π1|(Σi))F(e,𝐛i)mi|π1|(Σ)\displaystyle e_{i*}(F^{(e\circ e_{i},\mathbf{b}_{i})m_{i}}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{i}))\subset F^{(e,\mathbf{b}_{i})m_{i}}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)

for i=1,2i=1,2. By the relation of 𝒰h(Σ)\mathcal{U}_{h}(\Sigma), we have

Ψ𝒜|π1|(e1(x)e2(y)e2(y)e1(x))=h[Ψ𝒜|π1|(e1(x)),Ψ𝒜𝒰h(e2(y))].\displaystyle\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}(e_{1*}(x)e_{2*}(y)-e_{2*}(y)e_{1*}(x))=h[\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}(e_{1*}(x)),\Psi_{\mathcal{A}^{\prime}}^{\mathcal{U}_{h}}(e_{2*}(y))].

Using Lemma 7.2, we obtain

h[Ψ𝒜|π1|(e1(x)),Ψ𝒜|π1|(e2(y))]hF(e,Δ(𝐛1,𝐛2))m1+m22|π1|(Σ).\displaystyle h[\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}(e_{1*}(x)),\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}(e_{2*}(y))]\in hF^{(e,\Delta(\mathbf{b}_{1},\mathbf{b}_{2}))m_{1}+m_{2}-2}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma).

It proves the lemma.

Lemma 7.4.

Let Σ0,,ΣN+1,Σ\Sigma_{0},\cdots,\Sigma_{N+1},\Sigma be compact connected oriented surfaces and

e+=e1+eN+1+\displaystyle e^{+}=e^{+}_{1}\sqcup\cdots\sqcup e^{+}_{N+1} :Σ1×IΣN1×IΣN×IΣN+1×IΣ×I\displaystyle:\Sigma_{1}\times I\sqcup\cdots\sqcup\Sigma_{N-1}\times I\sqcup\Sigma_{N}\times I\sqcup\Sigma_{N+1}\times I\hookrightarrow\Sigma\times I
e=e1eN+1\displaystyle e^{-}=e^{-}_{1}\sqcup\cdots\sqcup e^{-}_{N+1} :Σ1×IΣN1×IΣN×IΣN+1×IΣ×I\displaystyle:\Sigma_{1}\times I\sqcup\cdots\sqcup\Sigma_{N-1}\times I\sqcup\Sigma_{N}\times I\sqcup\Sigma_{N+1}\times I\hookrightarrow\Sigma\times I
e0=e10eN10e00\displaystyle e^{0}=e^{0}_{1}\sqcup\cdots\sqcup e^{0}_{N-1}\sqcup e^{0}_{0} :Σ1×IΣN1×IΣ0×IΣ×I\displaystyle:\Sigma_{1}\times I\sqcup\cdots\sqcup\Sigma_{N-1}\times I\sqcup\Sigma_{0}\times I\hookrightarrow\Sigma\times I

be embeddings satisfying the three conditions.

  • The images of e+,e,e0e^{+},e^{-},e^{0} equal to each other except for a closed ball D3D^{3}.

  • In D3D^{3}, the images of e+,e,e0e^{+},e^{-},e^{0} are submanifolds shown in the figure.

    e+e^{+}ee^{-}e0e^{0}ΣN+1\Sigma_{N+1}ΣN\Sigma_{N}ΣN+1\Sigma_{N+1}ΣN\Sigma_{N}Σ0\Sigma_{0}
  • We have

    ei+=ei=ei0fori=1,,N1,\displaystyle e_{i}^{+}=e_{i}^{-}=e_{i}^{0}\mathrm{\ for\ }i=1,\cdots,N-1,
    (Σi×I)\(e+)1(D3)=(Σi×I)\(e)1(D3)fori=N,N+1,\displaystyle(\Sigma_{i}\times I)\backslash(e^{+})^{-1}(D^{3})=(\Sigma_{i}\times I)\backslash(e^{-})^{-1}(D^{3})\mathrm{\ for\ }i=N,N+1,
    ei|(Σi×I)\(e+)1(D3)+=ei|(Σi×I)\(e)1(D3)fori=N,N+1,\displaystyle e^{+}_{i|(\Sigma_{i}\times I)\backslash(e^{+})^{-1}(D^{3})}=e^{-}_{i|(\Sigma_{i}\times I)\backslash(e^{-})^{-1}(D^{3})}\mathrm{\ for\ }i=N,N+1,

For non-increasing sequences 𝐛1,𝐛N+1\mathbf{b}_{1},\cdots\mathbf{b}_{N+1} of non-negative integers, integers m1m_{1}, \cdots, mN+10m_{N+1}\in\mathbb{Z}_{\geq 0}, and

x1F(e1,𝐛1)m1|π1|(Σ1),,xN+1F(eN+1,𝐛N+1)mN+1|π1|(ΣN+1),\displaystyle x_{1}\in F^{(e_{1},\mathbf{b}_{1})m_{1}}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{1}),\cdots,x_{N+1}\in F^{(e_{N+1},\mathbf{b}_{N+1})m_{N+1}}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{N+1}),

the two statements hold.

  1. (1)

    There exists yF(e0,Δ(𝐛N,𝐛N+1))+mN+mN+12|π1|(Σ0)y\in F^{(e_{0},\Delta(\mathbf{b}_{N},\mathbf{b}_{N+1}))+m_{N}+m_{N+1}-2}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{0}) satisfying

    e+(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN+1))e(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN+1))\displaystyle e^{+}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))-e^{-}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))
    =he0(Ψ|π1|𝒜(x1)Ψ𝒰h𝒜(xN1)Ψ|π1|𝒜(y)).\displaystyle=he^{0}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\Psi_{\mathcal{U}_{h}}^{\mathcal{A}^{\prime}}(x_{N-1})\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(y)).
  2. (2)

    If Statement(N)(N) holds, we have

    e+(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN+1))e(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN+1))\displaystyle e^{+}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))-e^{-}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))
    Fi=1kmi+Δ(𝐛1,,𝐛N+1)(0)𝒜(Σ).\displaystyle\in F^{\sum_{i=1}^{k}m_{i}+\Delta(\mathbf{b}_{1},\cdots,\mathbf{b}_{N+1})(0)}\mathcal{A}^{\prime}(\Sigma).
Proof.

(1)We set embeddings eover,eunder:Σ0×IΣ0×Ie_{\mathrm{over}},e_{\mathrm{under}}:\Sigma_{0}\times I\to\Sigma_{0}\times I as eover(p,t)=(p,t+12)e_{\mathrm{over}}(p,t)=(p,\frac{t+1}{2}) and eunder(p,t)=(p,t2)e_{\mathrm{under}}(p,t)=(p,\frac{t}{2}). Let eN,0:ΣN×IΣ0×Ie_{N,0}:\Sigma_{N}\times I\to\Sigma_{0}\times I and eN+1,0:ΣN+1×IΣ0×Ie_{N+1,0}:\Sigma_{N+1}\times I\to\Sigma_{0}\times I be embeddings satisfying the condition.

  • The embedding e+=e1+eN+1+e^{+}=e^{+}_{1}\sqcup\cdots\sqcup e^{+}_{N+1} is isotopic to e1+eN1+e00eundereN,0e00eovereN+1,0e^{+}_{1}\sqcup\cdots\sqcup e^{+}_{N-1}\sqcup e^{0}_{0}\circ e_{\mathrm{under}}\circ e_{N,0}\sqcup e^{0}_{0}\circ e_{\mathrm{over}}\circ e_{N+1,0}.

  • The embedding e=e1eN+1e^{-}=e^{-}_{1}\sqcup\cdots\sqcup e^{-}_{N+1} is isotopic to e1eN1e00eovereN,0e00eundereN+1,0e^{-}_{1}\sqcup\cdots\sqcup e^{-}_{N-1}\sqcup e^{0}_{0}\circ e_{\mathrm{over}}\circ e_{N,0}\sqcup e^{0}_{0}\circ e_{\mathrm{under}}\circ e_{N+1,0}.

Then we obtain

e+(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN+1))e(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN+1))\displaystyle e^{+}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))-e^{-}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))
=e0(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN1)\displaystyle=e^{0}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N-1})\otimes
(eN+1,0(Ψ|π1|𝒜(xN+1))eN,0(Ψ|π1|𝒜(xN))eN,0(Ψ|π1|𝒜(xN))eN+1,0(Ψ|π1|𝒜(xN+1)))).\displaystyle(e_{N+1,0*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N}+1))e_{N,0*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N}))-e_{N,0*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N}))e_{N+1,0*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1})))).

By Lemma 7.3, we have

e+(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN+1))e(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN+1))\displaystyle e^{+}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))-e^{-}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))
=he0(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN1)Ψ|π1|𝒜(y))\displaystyle=he^{0}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N-1})\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(y))

where we set

y=def.[eN+1(xN+1),eN(xN)]F(e0,Δ(𝐛N,𝐛N+1))(0)+mN+mN+12|π1|(ΣN+1).y\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}[e_{N+1*}(x_{N+1}),e_{N*}(x_{N})]\in F^{(e_{0},\Delta(\mathbf{b}_{N},\mathbf{b}_{N+1}))(0)+m_{N}+m_{N+1}-2}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{N+1}).

It proves the statement.

(2)Using the statement (1) and Statement (N)(N), we obtain

e0(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN1)Ψ|π1|𝒜(y))\displaystyle e^{0}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N-1})\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(y))
FΔ(𝐛1,,𝐛N1,Δ(𝐛N,𝐛N+1))(0)+(i=1N+1mi)2𝒜(Σ).\displaystyle\in F^{\Delta(\mathbf{b}_{1},\cdots,\mathbf{b}_{N-1},\Delta(\mathbf{b}_{N},\mathbf{b}_{N+1}))(0)+(\sum_{i=1}^{N+1}m_{i})-2}\mathcal{A}^{\prime}(\Sigma).

By definition, we have

Δ(𝐛1,,𝐛N1,Δ(𝐛N,𝐛N+1))=Δ(𝐛1,,𝐛N+1).\Delta(\mathbf{b}_{1},\cdots,\mathbf{b}_{N-1},\Delta(\mathbf{b}_{N},\mathbf{b}_{N+1}))=\Delta(\mathbf{b}_{1},\cdots,\mathbf{b}_{N+1}).

So we have

e+(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN+1))e(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN+1))\displaystyle e^{+}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))-e^{-}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))
=he0(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN1)Ψ|π1|𝒜(y))\displaystyle=he^{0}_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N-1})\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(y))
FΔ(𝐛1,,𝐛N+1)(0)+(i=1N+1mi)𝒜(Σ).\displaystyle\in F^{\Delta(\mathbf{b}_{1},\cdots,\mathbf{b}_{N+1})(0)+(\sum_{i=1}^{N+1}m_{i})}\mathcal{A}^{\prime}(\Sigma).

It proves the statement.

Lemma 7.5.

We assume Statement (N)(N). Let

e=e1eN+1\displaystyle e=e_{1}\sqcup\cdots\sqcup e_{N+1} :Σ1×IΣN+1×IΣ×I\displaystyle:\Sigma_{1}\times I\sqcup\cdots\sqcup\Sigma_{N+1}\times I\hookrightarrow\Sigma\times I

be an embedding. For non-increasing sequences 𝐛1,,𝐛N+1\mathbf{b}_{1},\cdots,\mathbf{b}_{N+1} of non-negative integers, integers m1,,mN+1m_{1},\cdots,m_{N+1}, and elements

x1F(e1,𝐛1)m1|π1|(Σ1),,xN+1F(eN+1,𝐛N+1)mN+1|π1|(ΣN+1),\displaystyle x_{1}\in F^{(e_{1},\mathbf{b}_{1})m_{1}}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{1}),\cdots,x_{N+1}\in F^{(e_{N+1},\mathbf{b}_{N+1})m_{N+1}}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{N+1}),

we have

(1) e(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN+1))\displaystyle e_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))
e1(Ψ|π1|𝒜(x1))eN+1(Ψ|π1|𝒜(xN+1))\displaystyle-e_{1*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1}))\cdots e_{N+1*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))
FΔ(𝐛1,,𝐛N+1)(0)+i=1N+1mi𝒜(Σ),\displaystyle\in F^{\Delta(\mathbf{b}_{1},\cdots,\mathbf{b}_{N+1})(0)+\sum_{i=1}^{N+1}m_{i}}\mathcal{A}^{\prime}(\Sigma),
(2) e1(Ψ|π1|𝒜(x1))eN+1(Ψ|π1|𝒜(xN+1))\displaystyle e_{1*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1}))\cdots e_{N+1*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))
FΔ(𝐛1,,𝐛N+1)(0)+i=1N+1mi𝒜(Σ),\displaystyle\in F^{\Delta(\mathbf{b}_{1},\cdots,\mathbf{b}_{N+1})(0)+\sum_{i=1}^{N+1}m_{i}}\mathcal{A}^{\prime}(\Sigma),
(3) e(Ψ|π1|𝒜(x1)Ψ|π1|𝒜(xN+1))\displaystyle e_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1})\otimes\cdots\otimes\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))
FΔ(𝐛1,,𝐛N+1)(0)+i=1N+1mi𝒜(Σ).\displaystyle\in F^{\Delta(\mathbf{b}_{1},\cdots,\mathbf{b}_{N+1})(0)+\sum_{i=1}^{N+1}m_{i}}\mathcal{A}^{\prime}(\Sigma).
Proof.

(1)Using Lemma 7.4 (2) repeatedly, we obtain the equation (1).

(2)By definition, we have

ei(Ψ|π1|𝒜(xi))Fmi+𝐛i(0)𝒜(Σ).e_{i*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{i}))\in F^{m_{i}+\mathbf{b}_{i}(0)}\mathcal{A}^{\prime}(\Sigma).

So we obtain

e1(Ψ|π1|𝒜(x1))eN+1(Ψ|π1|𝒜(xN+1))\displaystyle e_{1*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{1}))\cdots e_{N+1*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(x_{N+1}))
Fi=1N+1(mi+𝐛i(0))𝒜(Σ)Fi=1N+1mi+Δ(𝐛1,,𝐛N+1)(0)𝒜(Σ).\displaystyle\in F^{\sum_{i=1}^{N+1}(m_{i}+\mathbf{b}_{i}(0))}\mathcal{A}^{\prime}(\Sigma)\subset F^{\sum_{i=1}^{N+1}m_{i}*+\Delta(\mathbf{b}_{1},\cdots,\mathbf{b}_{N+1})(0)}\mathcal{A}^{\prime}(\Sigma).

(3)Using the equations (1) and (2), we obtain the equation(3).

Theorem 7.6.

For any N1N\in\mathbb{Z}_{\geq 1}, Statement (N)(N) holds. In other words, for any N1N\in\mathbb{Z}_{\geq 1}, we have the following. Let Σ1,,ΣN,Σ\Sigma_{1},\cdots,\Sigma_{N},\Sigma be compact connected oriented surfaces and e=e1eN:Σ1×IΣN×IΣ×Ie=e_{1}\sqcup\cdots\sqcup e_{N}:\Sigma_{1}\times I\sqcup\cdots\sqcup\Sigma_{N}\times I\hookrightarrow\Sigma\times I be an embedding that induces homomorphism e:𝒜(Σ1)𝒜(ΣN)𝒜(Σ)e_{*}:\mathcal{A}^{\prime}(\Sigma_{1})\otimes\cdots\otimes\mathcal{A}^{\prime}(\Sigma_{N})\to\mathcal{A}^{\prime}(\Sigma). For any integers m1,,mNm_{1},\cdots,m_{N} and non-increasing sequences 𝐛1={b(1)n}n0,,𝐛N={b(N)i}n0\mathbf{b}_{1}=\{b_{(1)n}\}_{n\geq 0},\cdots,\mathbf{b}_{N}=\{b_{(N)i}\}_{n\geq 0} of non-negative integers, we have

e(i=1jΨ|π1|𝒜(F(ei,𝐛i)mi|π1|(Σi)))F(i=1jmi)+Δ(𝐛1,,𝐛N)(0)𝒜(Σ)\displaystyle e_{*}(\otimes_{i=1}^{j}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(F^{(e_{i},\mathbf{b}_{i})m_{i}}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma_{i})))\subset F^{(\sum_{i=1}^{j}m_{i})+\Delta(\mathbf{b}_{1},\cdots,\mathbf{b}_{N})(0)}\mathcal{A}^{\prime}(\Sigma)
=F(i=1Nmi)+min{b(1)k1+b(N)kN|k1++kN2N2}𝒜(Σ).\displaystyle=F^{(\sum_{i=1}^{N}m_{i})+\min\{b_{(1)k_{1}}+\cdots b_{(N)k_{N}}|k_{1}+\cdots+k_{N}\geq 2N-2\}}\mathcal{A}^{\prime}(\Sigma).
Proof.

By Lemma 7.1, we have Statement (1)(1). Using Lemma 7.5(3), by induction, Statement (N)(N) holds for any N1N\in\mathbb{Z}_{\geq 1}. By definition, we can check Δ(𝐛1,,𝐛N)(k)=min{b(1)k1+b(N)kN|k1++kN2N2+k}\Delta(\mathbf{b}_{1},\cdots,\mathbf{b}_{N})(k)=\min\{b_{(1)k_{1}}+\cdots b_{(N)k_{N}}|k_{1}+\cdots+k_{N}\geq 2N-2+k\}.

Using the lemma, we can prove the corollary.

Corollary 7.7.

Let Σ\Sigma^{\prime} and Σ\Sigma be compact connected oriented surfaces and e:Σ×IΣ×Ie:\Sigma^{\prime}\times I\to\Sigma\times I an embedding. For an element γ[π1(Σ),π1(Σ)]\gamma\in[\pi_{1}(\Sigma^{\prime}),\pi_{1}(\Sigma^{\prime})] satisfying e(γ)1+Iπ1(Σ×I)m+2e_{*}(\gamma)\in 1+I_{\mathbb{Q}\pi_{1}(\Sigma\times I)}^{m+2}, we have

e(i=1kΨ|π1|𝒜(|(γ1)mi|))F2(i=1kmi)+m(i=1kmi(2k2))𝒜(Σ).e_{*}(\prod_{i=1}^{k}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(\gamma-1)^{m_{i}}\rvert))\in F^{2(\sum_{i=1}^{k}m_{i})+m(\sum_{i=1}^{k}m_{i}-(2k-2))}\mathcal{A}^{\prime}(\Sigma).
Proof.

For i=1,,ki=1,\cdots,k, we set an embedding ei:Σ×IΣ×Ie_{i}:\Sigma^{\prime}\times I\hookrightarrow\Sigma\times I as ei(p,t)=e(p,2k2i+t2k)e_{i}(p,t)=e(p,\frac{2k-2i+t}{2k}) and consider the embedding e~=e1ek:Σ×IΣ×I\widetilde{e}=e_{1}\sqcup\cdots\sqcup e_{k}:\coprod\Sigma^{\prime}\times I\hookrightarrow\Sigma\times I. Then we have

e(i=1kΨ|π1|𝒜(|(γ1)mi|))=e~(i=1kΨ|π1|𝒜(|(γ1)mi|)).e_{*}(\prod_{i=1}^{k}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(\gamma-1)^{m_{i}}\rvert))=\widetilde{e}_{*}(\otimes_{i=1}^{k}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(\gamma-1)^{m_{i}}\rvert)).

Setting a sequence 𝐛(i)={bn(i)}n0\mathbf{b}^{(i)}=\{b^{(i)}_{n}\}_{n\geq 0} as

bn(i)=max(m(min),0)b^{(i)}_{n}=\max(m(m_{i}-n),0)

for any i=1,,ki=1,\cdots,k, we obtain

|(γ1)mi|F(ei,𝐛(i))2mi|π1|(Σ).\lvert(\gamma-1)^{m_{i}}\rvert\in F^{(e_{i},\mathbf{b}^{(i)})2m_{i}}\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma).

Using Lemma 7.6, we have

e~(i=1kΨ|π1|𝒜(|(γ1)mi|))F2(i=1kmi)+min{b(1)j1+b(k)jk|j1++jk2k2}𝒜(Σ).\displaystyle\widetilde{e}_{*}(\otimes_{i=1}^{k}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(\gamma-1)^{m_{i}}\rvert))\in F^{2(\sum_{i=1}^{k}m_{i})+\min\{b_{(1)j_{1}}+\cdots b_{(k)j_{k}}|j_{1}+\cdots+j_{k}\geq 2k-2\}}\mathcal{A}^{\prime}(\Sigma).

Since

m(i=1kmi2k+2)min{b(1)j1+b(k)jk|j1++jk2k2}m(\sum_{i=1}^{k}m_{i}-2k+2)\leq\min\{b_{(1)j_{1}}+\cdots b_{(k)j_{k}}|j_{1}+\cdots+j_{k}\geq 2k-2\}

we have

e~(i=1kΨ|π1|𝒜(|(γ1)mi|))F2(i=1kmi)+m(i=1kmi2k+2)𝒜(Σ).\displaystyle\widetilde{e}_{*}(\otimes_{i=1}^{k}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(\gamma-1)^{m_{i}}\rvert))\in F^{2(\sum_{i=1}^{k}m_{i})+m(\sum_{i=1}^{k}m_{i}-2k+2)}\mathcal{A}^{\prime}(\Sigma).

It proves the corollary.

8. Some formulas of the action of some homology cylinders

In this section, we will give another proof of the theorem (Theorem 8.1 in this paper) of Kuno and Massuyeau [7] and clarify it. Kuno and Massuyeau obtain this theorem by observing how paths behave in the neighborhood of a Seifert surface. On the other hand, we will prove it by using Theorem 5.5 in this paper.

We apply our knowledge of the skein algebra 𝒜\mathcal{A}^{\prime} to compute the map ζ~:𝒞(Σ)(F3|π1|^(Σ),bch)\widetilde{\zeta}:\mathcal{IC}(\Sigma)\to(F^{3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma),\mathrm{bch}) in the situation of the formula of Kuno and Massuyeau. Let Σ\Sigma be a compact connected oriented surface. For a knot KK in Σ×I\Sigma\times I, the two properties are equivalent.

  1. (1)

    The homology class of KK equals 0, and the framing number w(K)w(K) of KK 0.

  2. (2)

    The knot KK is a boundary link, which means a boundary knot.

Theorem 8.1 ([7]).

Let Σ\Sigma be a compact connected oriented surface, \star a base point in Σ\partial\Sigma, and KK a boundary knot in Σ×I\Sigma\times I. We denote by λϵ,π0(K){±1},[K]ϵ\lambda_{\epsilon},\pi_{0}(K)\to\{\pm 1\},[K]\mapsto\epsilon the label of a Seifert surface of KK and by (Σ×I)(K(ϵ))(\Sigma\times I)(K(\epsilon)) the element (Σ×I)(K(λϵ))(\Sigma\times I)(K(\lambda_{\epsilon})) of 𝒞(Σ)\mathcal{IC}(\Sigma). If there exists a path γπ1(Σ)(1+Iπ1(Σ)m)\gamma\in\pi_{1}(\Sigma)\cap(1+I_{\mathbb{Q}\pi_{1}(\Sigma)}^{m}) whose conjugacy class equals the homotopy class of KK, we have

ζ~|π1|((Σ×I)(K(ϵ)))=ϵ|12(log(γ))2|modF2m+2|π1|^(Σ)\displaystyle\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(K(-\epsilon)))=\epsilon\lvert\frac{1}{2}(\log(\gamma))^{2}\rvert\mod F^{2m+2}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma)
ϵ|12(log(γ))2|F2m|π1|^(Σ).\displaystyle\epsilon\lvert\frac{1}{2}(\log(\gamma))^{2}\rvert\in F^{2m}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma).

In other words, for 1,2Σ\star_{1},\star_{2}\in\partial\Sigma, we have

((Σ×I)(K(ϵ))=id\displaystyle((\Sigma\times I)(K(-\epsilon))_{*}=\mathrm{id}
:π1(Σ,1,2)/F2m1π1(Σ,1,2)π1(Σ,)/F2m1π1(Σ,1,2),\displaystyle:\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m-1}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})\to\mathbb{Q}\pi_{1}(\Sigma,\star)/F^{2m-1}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}),
((Σ×I)(K(ϵ))=exp(σ(ϵ12|(logγ)2|))\displaystyle((\Sigma\times I)(K(-\epsilon))_{*}=\exp(\sigma(\epsilon\frac{1}{2}\lvert(\log\gamma)^{2}\rvert))
:π1(Σ,1,2)/F2m+1π1(Σ,1,2)π1(Σ,)/F2m+1π1(Σ,1,2).\displaystyle:\mathbb{Q}\pi_{1}(\Sigma,\star 1,\star_{2})/F^{2m+1}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})\to\mathbb{Q}\pi_{1}(\Sigma,\star)/F^{2m+1}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}).
Remark 8.2.

In the above theorem, Kuno and Massuyeau proved that ζ~|π1|((Σ×I)(K(ϵ)))modF2m+2|π1|^(Σ)\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(K(-\epsilon)))\mod F^{2m+2}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma) depends only on the homotopy type of the knot KK. In this paper §9, we will verify that the number 2m+22m+2 is the best possible.

Proof.

Let Σ\Sigma^{\prime} be a compact connected oriented surface and e:Σ×IΣ×Ie:\Sigma^{\prime}\times I\to\Sigma\times I an embedding such that the image e(Σ×I)e(\partial\Sigma^{\prime}\times I) represents KK. Using Theorem 5.5, we have

Ψ|π1|𝒰h(ζ~|π1|((Σ×I)(K(ϵ))))=hΨ𝒜𝒰h(log(e(exp(ϵhΨ|π1|𝒜(12(|(log(γ))2|)))))),\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{U}_{h}}(\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(K(-\epsilon))))=h\Psi_{\mathcal{A}^{\prime}}^{\mathcal{U}_{h}}(\log(e_{*}(\exp(\frac{\epsilon}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\frac{1}{2}(\lvert(\log(\gamma_{\partial}))^{2}\rvert)))))),

where γ\gamma_{\partial} is an element of π1(Σ)\pi_{1}(\Sigma^{\prime}) whose conjugacy class equals the boundary Σ\partial\Sigma^{\prime}. We remark e(|γn|)=|γn|e_{*}(\lvert\gamma_{\partial}^{n}\rvert)=\lvert\gamma^{n}\rvert and e(γ)1+Iπ1(Σ)me_{*}(\gamma_{\partial})\in 1+I_{\mathbb{Q}\pi_{1}(\Sigma)}^{m}. So we have ϵ|12(log(γ))2|F2m|π1|^(Σ)\epsilon\lvert\frac{1}{2}(\log(\gamma))^{2}\rvert\in F^{2m}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma).

By Corollary 7.7, since 4N+(m2)(2N2(N1))=4(N1)+2m4N+(m-2)(2N-2(N-1))=4(N-1)+2m, we obtain

e(exp(ϵhΨ|π1|𝒜(12(|(log(γ))2|))))\displaystyle e_{*}(\exp(\frac{\epsilon}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\frac{1}{2}(\lvert(\log(\gamma_{\partial}))^{2}\rvert))))
=i=0ϵii!hie(Ψ|π1|𝒜((12|(log(γ))2|)i))\displaystyle=\sum_{i=0}^{\infty}\frac{\epsilon^{i}}{i!h^{i}}e_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}((\frac{1}{2}\lvert(\log(\gamma_{\partial}))^{2}\rvert)^{i}))
=1+ϵhe(Ψ|π1|𝒜((12|(log(γ))2|)))modF2m(01hF3)^𝒜(Σ).\displaystyle=1+\frac{\epsilon}{h}e_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}((\frac{1}{2}\lvert(\log(\gamma_{\partial}))^{2}\rvert)))\mod F^{2m}\widehat{(\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*})}\mathcal{A}^{\prime}(\Sigma).

Using

e(exp(ϵhΨ|π1|𝒜(12(|(log(γ))2|))))1F2m2(01hF3)^𝒜(Σ),\displaystyle e_{*}(\exp(\frac{\epsilon}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\frac{1}{2}(\lvert(\log(\gamma_{\partial}))^{2}\rvert))))-1\in F^{2m-2}\widehat{(\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*})}\mathcal{A}^{\prime}(\Sigma),

we have

h(log(e(exp(ϵhΨ|π1|𝒜(12(|(log(γ))2|))))))\displaystyle h(\log(e_{*}(\exp(\frac{\epsilon}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\frac{1}{2}(\lvert(\log(\gamma_{\partial}))^{2}\rvert))))))
=i=1(1)i1i(e(exp(ϵhΨ|π1|𝒜(12(|(log(γ))2|))))1)i\displaystyle=\sum_{i=1}^{\infty}\frac{(-1)^{i-1}}{i}(e_{*}(\exp(\frac{\epsilon}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\frac{1}{2}(\lvert(\log(\gamma_{\partial}))^{2}\rvert))))-1)^{i}
=ϵe(Ψ|π1|𝒜((12|(log(γ))2|)))modF2m+2(01hF3)^𝒜(Σ).\displaystyle=\epsilon e_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}((\frac{1}{2}\lvert(\log(\gamma_{\partial}))^{2}\rvert)))\mod F^{2m+2}\widehat{(\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*})}\mathcal{A}^{\prime}(\Sigma).

It proves

ζ~|π1|((Σ×I)(K(ϵ)))\displaystyle\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(K(-\epsilon)))
=Ψ𝒜|π1|(ϵe(Ψ|π1|𝒜((12|(log(γ))2|))))modF2m+2|π1|^(Σ)\displaystyle=\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\epsilon e_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}((\frac{1}{2}\lvert(\log(\gamma_{\partial}))^{2}\rvert))))\mod F^{2m+2}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma)
=ϵe(12|(log(γ))2|)=ϵ12|(log(γ))2|\displaystyle=\epsilon e_{*}(\frac{1}{2}\lvert(\log(\gamma_{\partial}))^{2}\rvert)=\epsilon\frac{1}{2}\lvert(\log(\gamma))^{2}\rvert

as desired.

Using the computation in the above proof, we obtain a more accurate formula. Specifically, we have

e(exp(ϵhΨ|π1|𝒜(12(|(log(γ))2|))))\displaystyle e_{*}(\exp(\frac{\epsilon}{h}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\frac{1}{2}(\lvert(\log(\gamma_{\partial}))^{2}\rvert))))
=i=0ϵii!hie(Ψ|π1|𝒜((12|(log(γ))2|)i))\displaystyle=\sum_{i=0}^{\infty}\frac{\epsilon^{i}}{i!h^{i}}e_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}((\frac{1}{2}\lvert(\log(\gamma_{\partial}))^{2}\rvert)^{i}))
=1+ϵhe(Ψ|π1|𝒜((12|(log(γ))2|)))+ϵ22h2e((Ψ|π1|𝒜((12|(log(γ))2|)))2)\displaystyle=1+\frac{\epsilon}{h}e_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}((\frac{1}{2}\lvert(\log(\gamma_{\partial}))^{2}\rvert)))+\frac{\epsilon^{2}}{2h^{2}}e_{*}((\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}((\frac{1}{2}\lvert(\log(\gamma_{\partial}))^{2}\rvert)))^{2})
+ϵ36h3e((Ψ|π1|𝒜((12|(log(γ))2|)))3)modF2m+4(01hF3)^𝒜(Σ).\displaystyle+\frac{\epsilon^{3}}{6h^{3}}e_{*}((\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}((\frac{1}{2}\lvert(\log(\gamma_{\partial}))^{2}\rvert)))^{3})\mod F^{2m+4}\widehat{(\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*})}\mathcal{A}^{\prime}(\Sigma).

Using the notation

L(i)=def.e((Ψ|π1|𝒜((12|(log(γ))2|)))i),L^{(i)}\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}e_{*}((\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}((\frac{1}{2}\lvert(\log(\gamma_{\partial}))^{2}\rvert)))^{i}),

we get

Ψ|π1|𝒰h(ζ~|π1|((Σ×I)(K(ϵ))))\displaystyle\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{U}_{h}}(\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(K(-\epsilon))))
=Ψ𝒜𝒰h(hlog(1+ϵhL(1)+ϵ22h2L(2)+ϵ36h3L(3)))modF2m+6|π1|^(Σ)\displaystyle=\Psi_{\mathcal{A}^{\prime}}^{\mathcal{U}_{h}}(h\log(1+\frac{\epsilon}{h}L^{(1)}+\frac{\epsilon^{2}}{2h^{2}}L^{(2)}+\frac{\epsilon^{3}}{6h^{3}}L^{(3)}))\mod F^{2m+6}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma)
=Ψ𝒜𝒰h(ϵL(1)+12h(L(2)L(1)2)+ϵ12h2(2L(3)3L(2)L(1)3L(1)L(2)+4L(1)3))\displaystyle=\Psi_{\mathcal{A}^{\prime}}^{\mathcal{U}_{h}}(\epsilon L^{(1)}+\frac{1}{2h}(L^{(2)}-L^{(1)2})+\frac{\epsilon}{12h^{2}}(2L^{(3)}-3L^{(2)}L^{(1)}-3L^{(1)}L^{(2)}+4L^{(1)3}))
modΨ𝒜𝒰h(F2m+6(01hF3)^𝒜(Σ)).\displaystyle\mod\Psi_{\mathcal{A}^{\prime}}^{\mathcal{U}_{h}}(F^{2m+6}\widehat{(\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*})}\mathcal{A}^{\prime}(\Sigma)).

Here we can prove L(2)L(1)2h𝒜^(Σ)𝒜^(Σ)L^{(2)}-L^{(1)2}\in h\widehat{\mathcal{A}}^{\prime}(\Sigma)\subset\widehat{\mathcal{A}}^{\prime}(\Sigma) and 2L(3)3L(2)L(1)3L(1)L(2)+4L(1)3h2𝒜^(Σ)𝒜^(Σ)2L^{(3)}-3L^{(2)}L^{(1)}-3L^{(1)}L^{(2)}+4L^{(1)3}\in h^{2}\widehat{\mathcal{A}}^{\prime}(\Sigma)\subset\widehat{\mathcal{A}}^{\prime}(\Sigma) using the following lemma, where x=y=z=Ψ|π1|𝒜(12|log(γ)2|)x=y=z=\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\frac{1}{2}\lvert\log(\gamma_{\partial})^{2}\rvert).

Lemma 8.3.

Let e:Σ×IΣ×Ie:\Sigma^{\prime}\times I\hookrightarrow\Sigma\times I be an embedding. Then we have

e(xy)e(x)e(y)h𝒜(Σ),\displaystyle e_{*}(xy)-e_{*}(x)e_{*}(y)\in h\mathcal{A}^{\prime}(\Sigma),
e(xy)e(y)e(x)h𝒜(Σ),\displaystyle e_{*}(xy)-e_{*}(y)e_{*}(x)\in h\mathcal{A}^{\prime}(\Sigma),
2e(xyz)(e(x)e(yz)+2e(y)e(xz))(e(yz)e(x)+2e(xy)e(z))\displaystyle 2e_{*}(xyz)-(e_{*}(x)e_{*}(yz)+2e_{*}(y)e_{*}(xz))-(e_{*}(yz)e_{*}(x)+2e_{*}(xy)e_{*}(z))
+e(x)e(y)e(z)+e(y)e(z)e(x)+2e(y)e(x)e(z)h2𝒜(Σ)\displaystyle+e_{*}(x)e_{*}(y)e_{*}(z)+e_{*}(y)e_{*}(z)e_{*}(x)+2e_{*}(y)e_{*}(x)e_{*}(z)\in h^{2}\mathcal{A}^{\prime}(\Sigma)

for any x,y,z𝒜(Σ)x,y,z\in\mathcal{A}^{\prime}(\Sigma^{\prime}).

Proof.

We will prove the equations by the three steps. We assume ee is a tubular neighborhood e:(Σ×I)×IΣ×Ie_{\partial}:\partial(\Sigma\times I)\times I\to\Sigma\times I, an embedding estest:(Σst×I)×IΣ×Ie_{\mathrm{st}}\circ e_{\mathrm{st}\partial}:\partial(\Sigma_{\mathrm{st}}\times I)\times I\to\Sigma\times I defined by a standard embedding est:Σst×IΣ×Ie_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\to\Sigma\times I, or a general embedding in (Step 1), (Step 2), or (Step 3), respectively.

(Step 1) For enough small ϵ>0\epsilon>0, we set embeddings κ0\kappa_{0} and κ1\kappa_{1} as

κ0:Σ×I(Σ×I)×I,(p,t)e1(p,ϵt),\displaystyle\kappa_{0}:\Sigma\times I\to\partial(\Sigma\times I)\times I,(p,t)\mapsto e_{\partial}^{-1}(p,\epsilon t),
κ1:Σ×I(Σ×I)×I,(p,t)e1(p,1ϵ+ϵt),\displaystyle\kappa_{1}:\Sigma\times I\to\partial(\Sigma\times I)\times I,(p,t)\mapsto e_{\partial}^{-1}(p,1-\epsilon+\epsilon t),

which induce

κ0:𝒜(Σ)𝒜((Σ×I)),\displaystyle\kappa_{0*}:\mathcal{A}^{\prime}(\Sigma)\to\mathcal{A}^{\prime}(\partial(\Sigma\times I)),
κ1:𝒜(Σ)𝒜((Σ×I)).\displaystyle\kappa_{1*}:\mathcal{A}^{\prime}(\Sigma)\to\mathcal{A}^{\prime}(\partial(\Sigma\times I)).

Since

ideκ0eκ1,\displaystyle\mathrm{id}\simeq e_{\partial}\circ\kappa_{0}\simeq e_{\partial}\circ\kappa_{1},
κ1eoverΣκ1eunderΣeover(Σ×I)κ1eunder(Σ×I)κ1,\displaystyle\kappa_{1}\circ e^{\Sigma}_{\mathrm{over}}\sqcup\kappa_{1}\circ e^{\Sigma}_{\mathrm{under}}\simeq e^{\partial(\Sigma\times I)}_{\mathrm{over}}\circ\kappa_{1}\sqcup e^{\partial(\Sigma\times I)}_{\mathrm{under}}\circ\kappa_{1},
κ0eoverΣκ0eunderΣeunder(Σ×I)κ0eover(Σ×I)κ0,\displaystyle\kappa_{0}\circ e^{\Sigma}_{\mathrm{over}}\sqcup\kappa_{0}\circ e^{\Sigma}_{\mathrm{under}}\simeq e^{\partial(\Sigma\times I)}_{\mathrm{under}}\circ\kappa_{0}\sqcup e^{\partial(\Sigma\times I)}_{\mathrm{over}}\circ\kappa_{0},
eeover(Σ×I)eeunder(Σ×I)\displaystyle e_{\partial}\circ e_{\mathrm{over}}^{\partial(\Sigma\times I)}\sqcup e_{\partial}\circ e_{\mathrm{under}}^{\partial(\Sigma\times I)}
eeover(Σ×I)eeunder(Σ×I)κ1e\displaystyle\simeq e_{\partial}\circ e_{\mathrm{over}}^{\partial(\Sigma\times I)}\sqcup e_{\partial}\circ e_{\mathrm{under}}^{\partial(\Sigma\times I)}\circ\kappa_{1}\circ e_{\partial}
eeover(Σ×I)eeunder(Σ×I)κ0e,\displaystyle\simeq e_{\partial}\circ e_{\mathrm{over}}^{\partial(\Sigma\times I)}\sqcup e_{\partial}\circ e_{\mathrm{under}}^{\partial(\Sigma\times I)}\circ\kappa_{0}\circ e_{\partial},
eoverΣeeunderΣe\displaystyle e_{\mathrm{over}}^{\Sigma}\circ e_{\partial}\sqcup e_{\mathrm{under}}^{\Sigma}\circ e_{\partial}
eeover(Σ×I)κ1eeeunder(Σ×I)\displaystyle\simeq e_{\partial}\circ e_{\mathrm{over}}^{\partial(\Sigma\times I)}\circ\kappa_{1}\circ e_{\partial}\sqcup e_{\partial}\circ e_{\mathrm{under}}^{\partial(\Sigma\times I)}
eeunder(Σ×I)eeover(Σ×I)κ0e,\displaystyle\simeq e_{\partial}\circ e_{\mathrm{under}}^{\partial(\Sigma\times I)}\sqcup e_{\partial}\circ e_{\mathrm{over}}^{\partial(\Sigma\times I)}\circ\kappa_{0}\circ e_{\partial},

we have

id=eκ0=eκ1,\displaystyle\mathrm{id}=e_{\partial*}\circ\kappa_{0*}=e_{\partial*}\circ\kappa_{1*},
κ1(z1z2)=κ1(z1)κ1(z2),\displaystyle\kappa_{1*}(z^{\prime}_{1}z^{\prime}_{2})=\kappa_{1*}(z^{\prime}_{1})\kappa_{1*}(z^{\prime}_{2}),
κ0(z1z2)=κ0(z2)κ0(z1),\displaystyle\kappa_{0*}(z^{\prime}_{1}z^{\prime}_{2})=\kappa_{0*}(z^{\prime}_{2})\kappa_{0*}(z^{\prime}_{1}),
e(z1z2)=e(z1κ0e(z2))=e(z1κ1e(z2))\displaystyle e_{\partial*}(z_{1}z_{2})=e_{\partial*}(z_{1}\kappa_{0*}\circ e_{\partial*}(z_{2}))=e_{\partial*}(z_{1}\kappa_{1*}\circ e_{\partial*}(z_{2}))
e(z1)e(z2)=e(κ1e(z1)z2)=e(κ0e(z2)z1)\displaystyle e_{\partial*}(z_{1})e_{\partial*}(z_{2})=e_{\partial*}(\kappa_{1*}\circ e_{\partial*}(z_{1})z_{2})=e_{\partial*}(\kappa_{0*}\circ e_{\partial*}(z_{2})z_{1})

for z1,z2𝒜((Σ×I)),z1,z2𝒜(Σ)z_{1},z_{2}\in\mathcal{A}^{\prime}(\partial(\Sigma\times I)),z^{\prime}_{1},z^{\prime}_{2}\in\mathcal{A}^{\prime}(\Sigma). We obtain

e(xy)e(x)e(y)=e(xκ0e(y)κ0e(y)x)h𝒜(Σ),\displaystyle e_{\partial*}(xy)-e_{\partial*}(x)e_{\partial*}(y)=e_{\partial*}(x\kappa_{0*}\circ e_{\partial*}(y)-\kappa_{0*}\circ e_{\partial*}(y)x)\in h\mathcal{A}^{\prime}(\Sigma),
e(xy)e(y)e(x)\displaystyle e_{\partial*}(xy)-e_{\partial*}(y)e_{\partial*}(x)
=(e(xy)e(x)e(y))+(e(x)e(y)e(y)e(x))h𝒜(Σ),\displaystyle=(e_{\partial*}(xy)-e_{\partial*}(x)e_{\partial*}(y))+(e_{\partial*}(x)e_{\partial*}(y)-e_{\partial*}(y)e_{\partial*}(x))\in h\mathcal{A}^{\prime}(\Sigma),

which proves the first equation and the second equation.

Using the first equation and the second equation, we will prove

(a) e(xyz)e(xκ0(e(y)e(z)))\displaystyle e_{\partial*}(xyz)-e_{\partial*}(x\kappa_{0*}(e_{\partial*}(y)e_{\partial*}(z)))
e(x)e(yz)+e(x)e(y)e(z)h2𝒜(Σ),\displaystyle-e_{\partial*}(x)e_{\partial*}(yz)+e_{\partial*}(x)e_{\partial*}(y)e_{\partial*}(z)\in h^{2}\mathcal{A}^{\prime}(\Sigma),
(b) e(xyz)e(xκ0(e(y)e(z)))\displaystyle e_{\partial*}(xyz)-e_{\partial*}(x\kappa_{0*}(e_{\partial*}(y)e_{\partial*}(z)))
e(yz)e(x)+e(y)e(z)e(x)h2𝒜(Σ),\displaystyle-e_{\partial*}(yz)e_{\partial*}(x)+e_{\partial*}(y)e_{\partial*}(z)e_{\partial*}(x)\in h^{2}\mathcal{A}^{\prime}(\Sigma),
(c) e(xκ0(e(y)e(z)))e(y)e(xz)\displaystyle e_{\partial*}(x\kappa_{0*}(e_{\partial*}(y)e_{\partial*}(z)))-e_{\partial*}(y)e_{\partial*}(xz)
e(xy)e(z)+e(y)e(x)e(z)h2𝒜(Σ)\displaystyle-e_{\partial*}(xy)e_{\partial*}(z)+e_{\partial*}(y)e_{\partial*}(x)e_{\partial*}(z)\in h^{2}\mathcal{A}^{\prime}(\Sigma)

for x,y,z𝒜((Σ×I))x,y,z\in\mathcal{A}^{\prime}(\partial(\Sigma\times I)).

We will prove the equations (a) and (b). Using the first and the second equation, we obtain

e(xyz)e(xκ0(e(y)e(z)))e(x)e(yz)+e(x)e(y)e(z)\displaystyle e_{\partial*}(xyz)-e_{\partial*}(x\kappa_{0*}(e_{\partial*}(y)e_{\partial*}(z)))-e_{\partial*}(x)e_{\partial*}(yz)+e_{\partial*}(x)e_{\partial*}(y)e_{\partial*}(z)
=e(xκ0(e(yz)e(y)e(z)))e(x)e(κ0(e(yz)e(y)e(z)))\displaystyle=e_{\partial*}(x\kappa_{0*}(e_{\partial*}(yz)-e_{\partial*}(y)e_{\partial*}(z)))-e_{\partial*}(x)e_{\partial*}(\kappa_{0*}(e_{\partial*}(yz)-e_{\partial*}(y)e_{\partial*}(z)))
h2𝒜(Σ)\displaystyle\in h^{2}\mathcal{A}^{\prime}(\Sigma)
e(xyz)e(xκ0(e(y)e(z)))e(yz)e(x)+e(y)e(z)e(x)\displaystyle e_{\partial*}(xyz)-e_{\partial*}(x\kappa_{0*}(e_{\partial*}(y)e_{\partial*}(z)))-e_{\partial*}(yz)e_{\partial*}(x)+e_{\partial*}(y)e_{\partial*}(z)e_{\partial*}(x)
=e(xyz)e(xκ1(e(y)e(z)))e(yz)e(x)+e(y)e(z)e(x)\displaystyle=e_{\partial*}(xyz)-e_{\partial*}(x\kappa_{1*}(e_{\partial*}(y)e_{\partial*}(z)))-e_{\partial*}(yz)e_{\partial*}(x)+e_{\partial*}(y)e_{\partial*}(z)e_{\partial*}(x)
=e(xκ1(e(yz)e(y)e(z)))e(κ1(e(yz)e(y)e(z)))e(x)\displaystyle=e_{\partial*}(x\kappa_{1*}(e_{\partial*}(yz)-e_{\partial*}(y)e_{\partial*}(z)))-e_{\partial*}(\kappa_{1*}(e_{\partial*}(yz)-e_{\partial*}(y)e_{\partial*}(z)))e_{\partial*}(x)
h2𝒜(Σ),\displaystyle\in h^{2}\mathcal{A}^{\prime}(\Sigma),

which verify the equations (a) and (b).

We will prove the equation (c). Since

z1z2=e(κ1(z1z2))=e(κ1(z1)κ1(z2))=e(κ1(z1)κ0(z2))\displaystyle z^{\prime}_{1}z^{\prime}_{2}=e_{\partial*}(\kappa_{1*}(z^{\prime}_{1}z^{\prime}_{2}))=e_{\partial*}(\kappa_{1*}(z^{\prime}_{1})\kappa_{1*}(z^{\prime}_{2}))=e_{\partial*}(\kappa_{1*}(z^{\prime}_{1})\kappa_{0*}(z^{\prime}_{2}))

for z1,z2𝒜(Σ)z^{\prime}_{1},z^{\prime}_{2}\in\mathcal{A}^{\prime}(\Sigma), we obtain

e(xκ0(e(y)e(z)))\displaystyle e_{\partial*}(x\kappa_{0*}(e_{\partial*}(y)e_{\partial*}(z)))
=e(xκ1(e(y)e(z)))\displaystyle=e_{\partial*}(x\kappa_{1*}(e_{\partial*}(y)e_{\partial*}(z)))
=e(xκ1eκ1(e(y)e(z)))\displaystyle=e_{\partial*}(x\kappa_{1}\circ e_{\partial*}\circ\kappa_{1*}(e_{\partial*}(y)e_{\partial*}(z)))
=e(xκ1e((κ1e(y))(κ0e(z))))\displaystyle=e_{\partial*}(x\kappa_{1}\circ e_{\partial*}((\kappa_{1*}\circ e_{\partial*}(y))(\kappa_{0*}\circ e_{\partial*}(z))))
=e(x((κ1e(y))(κ0e(z)))).\displaystyle=e_{\partial*}(x((\kappa_{1*}\circ e_{\partial*}(y))(\kappa_{0*}\circ e_{\partial*}(z)))).

By definition, we have

e(y)e(xz)=e((κ1e(y))x(κ0e(z))),\displaystyle e_{\partial*}(y)e_{\partial*}(xz)=e_{\partial*}((\kappa_{1*}\circ e_{\partial*}(y))x(\kappa_{0*}\circ e_{\partial*}(z))),
e(xy)e(z)=e((κ0e(z))x(κ1e(y))).\displaystyle e_{\partial*}(xy)e_{\partial*}(z)=e_{\partial*}((\kappa_{0*}\circ e_{\partial*}(z))x(\kappa_{1*}\circ e_{\partial*}(y))).

We remark that these elements κ0(z1)\kappa_{0*}(z_{1}) and κ1(z2)\kappa_{1*}(z_{2}) are commutative for z1,z2𝒜(Σ)z_{1},z_{2}\in\mathcal{A}^{\prime}(\Sigma). Using it, we have

e(y)e(x)e(z)=e((κ0e(z))(κ1e(y))x).\displaystyle e_{\partial*}(y)e_{\partial*}(x)e_{\partial*}(z)=e_{\partial*}((\kappa_{0*}\circ e_{\partial*}(z))(\kappa_{1*}\circ e_{\partial*}(y))x).

Hence, we obtain

e(xκ0(e(y)e(z)))e(y)e(xz)e(xy)e(z)+e(y)e(x)e(z)\displaystyle e_{\partial*}(x\kappa_{0*}(e_{\partial*}(y)e_{\partial*}(z)))-e_{\partial*}(y)e_{\partial*}(xz)-e_{\partial*}(xy)e_{\partial*}(z)+e_{\partial*}(y)e_{\partial*}(x)e_{\partial*}(z)
=e(x(κ1e(y))(κ1(z))(κ1e(y))x(κ1e(z))\displaystyle=e_{\partial*}(x(\kappa_{1*}\circ e_{\partial*}(y))(\kappa_{1*}\circ_{\partial*}(z))-(\kappa_{1*}\circ e_{\partial*}(y))x(\kappa_{1*}\circ e_{\partial*}(z))
(κ1e(z))x(κ1e(y))+(κ1e(y))(κ1e(z))x)\displaystyle-(\kappa_{1*}\circ e_{\partial*}(z))x(\kappa_{1*}\circ e_{\partial*}(y))+(\kappa_{1*}\circ e_{\partial*}(y))(\kappa_{1*}\circ e_{\partial*}(z))x)
=e(κ1e(y)((κ1e(z))xx(κ1e(z)))\displaystyle=e_{\partial*}(\kappa_{1*}\circ e_{\partial*}(y)((\kappa_{1*}\circ e_{\partial*}(z))x-x(\kappa_{1*}\circ e_{\partial*}(z)))
((κ1e(z))xx(κ1e(z))κ1e(y)))\displaystyle-((\kappa_{1*}\circ e_{\partial*}(z))x-x(\kappa_{1*}\circ e_{\partial*}(z))\kappa_{1*}\circ e_{\partial*}(y)))
h2𝒜(Σ),\displaystyle\in h^{2}\mathcal{A}^{\prime}(\Sigma),

which verifies the equation (c).

Using the equations (a), (b), and (c), we have

e(xyz)e(xκ0(e(y)e(z)))e(x)e(yz)+e(x)e(y)e(z)\displaystyle e_{\partial*}(xyz)-e_{\partial*}(x\kappa_{0*}(e_{\partial*}(y)e_{\partial*}(z)))-e_{\partial*}(x)e_{\partial*}(yz)+e_{\partial*}(x)e_{\partial*}(y)e_{\partial*}(z)
+e(xyz)e(xκ0(e(y)e(z)))e(yz)e(x)+e(y)e(z)e(x)\displaystyle+e_{\partial*}(xyz)-e_{\partial*}(x\kappa_{0*}(e_{\partial*}(y)e_{\partial*}(z)))-e_{\partial*}(yz)e_{\partial*}(x)+e_{\partial*}(y)e_{\partial*}(z)e_{\partial*}(x)
+2(e(xκ0(e(y)e(z)))e(y)e(xz)e(xy)e(z)+e(y)e(x)e(z))\displaystyle+2(e_{\partial*}(x\kappa_{0*}(e_{\partial*}(y)e_{\partial*}(z)))-e_{\partial*}(y)e_{\partial*}(xz)-e_{\partial*}(xy)e_{\partial*}(z)+e_{\partial*}(y)e_{\partial*}(x)e_{\partial*}(z))
=2e(xyz)(e(x)e(yz)+2e(y)e(xz))(e(yz)e(x)+2e(xy)e(z))\displaystyle=2e_{\partial*}(xyz)-(e_{\partial*}(x)e_{\partial*}(yz)+2e_{\partial*}(y)e_{\partial*}(xz))-(e_{\partial*}(yz)e_{\partial*}(x)+2e_{\partial*}(xy)e_{\partial*}(z))
+e(x)e(y)e(z)+e(y)e(z)e(x)+2e(y)e(x)e(z)h2𝒜(Σ).\displaystyle+e_{\partial*}(x)e_{\partial*}(y)e_{\partial*}(z)+e_{\partial*}(y)e_{\partial*}(z)e_{\partial*}(x)+2e_{\partial*}(y)e_{\partial*}(x)e_{\partial*}(z)\in h^{2}\mathcal{A}^{\prime}(\Sigma).

In other words, we obtain the third equation under the assumption of (Step 1).

(Step 2) Let est:Σst×IΣ×Ie_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\to\Sigma\times I be a standard embedding, est:(Σst×I)Σst×Ie_{\mathrm{st}\partial}:\partial(\Sigma_{\mathrm{st}}\times I)\to\Sigma_{\mathrm{st}}\times I a tubular neighborhood. Using (Step 1), we obtain

est(xy)est(x)est(y)h𝒜(Σst),\displaystyle e_{\mathrm{st}\partial*}(xy)-e_{\mathrm{st}\partial*}(x)e_{\mathrm{st}\partial*}(y)\in h\mathcal{A}^{\prime}(\Sigma_{\mathrm{st}}),
est(xy)est(y)est(x)h𝒜(Σst),\displaystyle e_{\mathrm{st}\partial*}(xy)-e_{\mathrm{st}\partial*}(y)e_{\mathrm{st}\partial*}(x)\in h\mathcal{A}^{\prime}(\Sigma_{\mathrm{st}}),
2est(xyz)(est(x)est(yz)+2est(y)est(xz))\displaystyle 2e_{\mathrm{st}\partial*}(xyz)-(e_{\mathrm{st}\partial*}(x)e_{\mathrm{st}\partial*}(yz)+2e_{\mathrm{st}\partial*}(y)e_{\mathrm{st}\partial*}(xz))
(est(yz)est(x)+2est(xy)est(z))\displaystyle-(e_{\mathrm{st}\partial*}(yz)e_{\mathrm{st}\partial*}(x)+2e_{\mathrm{st}\partial*}(xy)e_{\mathrm{st}\partial*}(z))
+est(x)est(y)est(z)+est(y)est(z)est(x)\displaystyle+e_{\mathrm{st}\partial*}(x)e_{\mathrm{st}\partial*}(y)e_{\mathrm{st}\partial*}(z)+e_{\mathrm{st}\partial*}(y)e_{\mathrm{st}\partial*}(z)e_{\mathrm{st}\partial*}(x)
+2est(y)est(x)est(z)h2𝒜(Σst).\displaystyle+2e_{\mathrm{st}\partial*}(y)e_{\mathrm{st}\partial*}(x)e_{\mathrm{st}\partial*}(z)\in h^{2}\mathcal{A}^{\prime}(\Sigma_{\mathrm{st}}).

We can prove the equations under the assumption e=esteste=e_{\mathrm{st}}\circ e_{\mathrm{st}\partial} of (Step 2) using that est:𝒜(Σst)𝒜(Σ)e_{\mathrm{st}*}:\mathcal{A}^{\prime}(\Sigma_{\mathrm{st}})\to\mathcal{A}^{\prime}(\Sigma) is an algebra isomorphism.

(Step 3) By Lemma 4.7, there exists a standard embedding est:Σst×IΣ×Ie_{\mathrm{st}}:\Sigma_{\mathrm{st}}\times I\to\Sigma\times I and exists an embedding e:Σ(Σst×I)e^{\prime}:\Sigma^{\prime}\to\partial(\Sigma_{\mathrm{st}}\times I) satisfying estee(,1)e_{\mathrm{st}}\circ e^{\prime}\simeq e(\cdot,1). We can extend e:Σ(Σst)e^{\prime}:\Sigma^{\prime}\to\partial(\Sigma_{\mathrm{st}}) to e′′=e×idI:Σ×I(Σst)×Ie^{\prime\prime}=e^{\prime}\times\mathrm{id}_{I}:\Sigma^{\prime}\times I\to\partial(\Sigma_{\mathrm{st}})\times I. By definition, esteste′′e_{\mathrm{st}}\circ e_{\partial\mathrm{st}}\circ e^{\prime\prime} is also isotopic to ee. By the second step, we obtain

estest(xy)estest(x)estest(y)h𝒜(Σst),\displaystyle e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(x^{\prime}y^{\prime})-e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(x^{\prime})e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(y^{\prime})\in h\mathcal{A}^{\prime}(\Sigma_{\mathrm{st}}),
estest(xy)estest(y)estest(x)h𝒜(Σst),\displaystyle e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(x^{\prime}y^{\prime})-e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(y^{\prime})e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(x^{\prime})\in h\mathcal{A}^{\prime}(\Sigma_{\mathrm{st}}),
2estest(xyz)\displaystyle 2e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(x^{\prime}y^{\prime}z^{\prime})
(estest(x)estest(yz)+2estest(y)estest(xz))\displaystyle-(e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(x^{\prime})e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(y^{\prime}z^{\prime})+2e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(y^{\prime})e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(x^{\prime}z^{\prime}))
(estest(yz)estest(x)+2estest(xy)estest(z))\displaystyle-(e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(y^{\prime}z^{\prime})e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(x^{\prime})+2e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(x^{\prime}y^{\prime})e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(z^{\prime}))
+estest(x)estest(y)estest(z)\displaystyle+e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(x^{\prime})e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(y^{\prime})e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(z^{\prime})
+estest(y)estest(z)estest(x)\displaystyle+e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(y^{\prime})e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(z^{\prime})e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(x^{\prime})
+2estest(y)estest(x)estest(z)h2𝒜(Σst)\displaystyle+2e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(y^{\prime})e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(x^{\prime})e_{\mathrm{st}*}\circ e_{\mathrm{st}\partial*}(z^{\prime})\in h^{2}\mathcal{A}^{\prime}(\Sigma_{\mathrm{st}})

for x,y,z𝒜(Σ~st)x^{\prime},y^{\prime},z^{\prime}\in\mathcal{A}^{\prime}(\widetilde{\Sigma}_{\mathrm{st}}). We can prove the equations under the assumption of the (Step 3) using that e′′:𝒜(Σ)𝒜(Σ~st)e^{\prime\prime}_{*}:\mathcal{A}^{\prime}(\Sigma^{\prime})\to\mathcal{A}^{\prime}(\widetilde{\Sigma}_{\mathrm{st}}) is an algebra isomorphism.

To state an accurate formula, we use the following notation.

Definition 8.4.

Let KK be a null homologous unoriented framed knot in Σ×I\Sigma\times I satisfying w(K)=0w(K)=0 and eK:SKΣ×Ie^{\prime}_{K}:S_{K}\to\Sigma\times I a Seifert surface of KK. We choose an element γπ1(SK)\gamma_{\partial}\in\pi_{1}(S_{K}) whose conjugacy class is SK\partial S_{K}. We can extend eKe^{\prime}_{K} to eK:SK×IΣ×Ie_{K}:S_{K}\times I\to\Sigma\times I such that eK(,0)=eK()e_{K}(\cdot,0)=e^{\prime}_{K}(\cdot). We use the notation L𝒜(c)=def.Ψ|π1|𝒜(L|π1|(c))=Ψ|π1|𝒜(|12(logγ)2|)L_{\mathcal{A}^{\prime}}(c_{\partial})\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(L_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(c_{\partial}))=\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\frac{1}{2}(\log\gamma_{\partial})^{2}\rvert). Then we set L1(K),L2(K),L3(K)|π1|^(Σ)L_{1}(K),L_{2}(K),L_{3}(K)\in\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma) as

L1(K)=def.\displaystyle L_{1}(K)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}} Ψ𝒜|π1|(eK(L𝒜(c))),\displaystyle\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}(e_{K*}(L_{\mathcal{A}^{\prime}}(c_{\partial}))),
L2(K)=def.\displaystyle L_{2}(K)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}} Ψ𝒜|π1|(12h(eK((L𝒜(c))2)(eK(L𝒜(c)))2)),\displaystyle\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\frac{1}{2h}(e_{K*}((L_{\mathcal{A}^{\prime}}(c_{\partial}))^{2})-(e_{K*}(L_{\mathcal{A}^{\prime}}(c_{\partial})))^{2})),
L3(K)=def.\displaystyle L_{3}(K)\stackrel{{\scriptstyle\mathrm{def.}}}{{=}} Ψ𝒜|π1|(112h2(2eK((L𝒜(c))3)3eK((L𝒜(c))2)eK(L𝒜(c))\displaystyle\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\frac{1}{12h^{2}}(2e_{K*}((L_{\mathcal{A}^{\prime}}(c_{\partial}))^{3})-3e_{K*}((L_{\mathcal{A}^{\prime}}(c_{\partial}))^{2})e_{K*}(L_{\mathcal{A}^{\prime}}(c_{\partial}))
3eK(L𝒜(c))eK((L𝒜(c))2)+4(eK((L𝒜(c))))3)).\displaystyle-3e_{K*}(L_{\mathcal{A}^{\prime}}(c_{\partial}))e_{K*}((L_{\mathcal{A}^{\prime}}(c_{\partial}))^{2})+4(e_{K*}((L_{\mathcal{A}^{\prime}}(c_{\partial}))))^{3})).

Using the notation, we state the theorem.

Theorem 8.5.

In the situation of Theorem 8.1, we have

ζ~|π1|((Σ×I)(K(ϵ)))\displaystyle\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(K(-\epsilon)))
=ϵL1(K)+L2(K)+ϵL3(k)modF2m+6|π1|^(Σ),\displaystyle=\epsilon L_{1}(K)+L_{2}(K)+\epsilon L_{3}(k)\mod F^{2m+6}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma),

where L1(K)L_{1}(K), L2(K)L_{2}(K), and L3(K)L_{3}(K) are elements of F2m|π1|^(Σ)F^{2m}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma), F2m+2|π1|^(Σ)F^{2m+2}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma), and F2m+4|π1|^(Σ)F^{2m+4}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma), respectively. In other words, for 1,2Σ\star_{1},\star_{2}\in\partial\Sigma, we have

((Σ×I)(K(ϵ))=id\displaystyle((\Sigma\times I)(K(-\epsilon))_{*}=\mathrm{id}
:π1(Σ,1,2)/F2m1π1(Σ,1,2)π1(Σ,1,2)/F2m1π1(Σ,1,2),\displaystyle:\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m-1}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})\to\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m-1}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}),
((Σ×I)(K(ϵ))=exp(σ(ϵL1(K)))\displaystyle((\Sigma\times I)(K(-\epsilon))_{*}=\exp(\sigma(\epsilon L_{1}(K)))
:π1(Σ,1,2)/F2m+1π1(Σ,1,2)π1(Σ,1,2)/F2m+1π1(Σ,1,2),\displaystyle:\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m+1}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})\to\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m+1}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}),
((Σ×I)(K(ϵ))=exp(σ(ϵL1(K)+L2(K)))\displaystyle((\Sigma\times I)(K(-\epsilon))_{*}=\exp(\sigma(\epsilon L_{1}(K)+L_{2}(K)))
:π1(Σ,1,2)/F2m+3π1(Σ,1,2)π1(Σ,1,2)/F2m+3π1(Σ,1,2),\displaystyle:\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m+3}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})\to\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m+3}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}),
((Σ×I)(K(ϵ))=exp(σ(ϵL1(K)+L2(K)+ϵL3(K)))\displaystyle((\Sigma\times I)(K(-\epsilon))_{*}=\exp(\sigma(\epsilon L_{1}(K)+L_{2}(K)+\epsilon L_{3}(K)))
:π1(Σ,1,2)/F2m+5π1(Σ,1,2)π1(Σ,1,2)/F2m+5π1(Σ,1,2).\displaystyle:\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m+5}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})\to\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m+5}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}).
Proof.

Using the notation L(N)=def.eK((L𝒜(c))N)L^{(N)}\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}e_{K*}((L_{\mathcal{A}^{\prime}}(c_{\partial}))^{N}), by the above computation, we obtain

Ψ|π1|𝒰h(ζ~|π1|((Σ×I)(K(ϵ))))\displaystyle\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{U}_{h}}(\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(K(-\epsilon))))
=Ψ𝒜𝒰h(hlog(1+ϵhL(1)+ϵ22h2L(2)+ϵ36h3L(3)))modF2m+6|π1|^(Σ)\displaystyle=\Psi_{\mathcal{A}^{\prime}}^{\mathcal{U}_{h}}(h\log(1+\frac{\epsilon}{h}L^{(1)}+\frac{\epsilon^{2}}{2h^{2}}L^{(2)}+\frac{\epsilon^{3}}{6h^{3}}L^{(3)}))\mod F^{2m+6}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma)
=Ψ𝒜𝒰h(ϵL(1)+12h(L(2)L(1)2)+ϵ12h2(2L(3)3L(2)L(1)3L(1)L(2)+4L(1)3))\displaystyle=\Psi_{\mathcal{A}^{\prime}}^{\mathcal{U}_{h}}(\epsilon L^{(1)}+\frac{1}{2h}(L^{(2)}-L^{(1)2})+\frac{\epsilon}{12h^{2}}(2L^{(3)}-3L^{(2)}L^{(1)}-3L^{(1)}L^{(2)}+4L^{(1)3}))
modΨ𝒜𝒰h(F2m+6(01hF3)^𝒜(Σ))\displaystyle\mod\Psi_{\mathcal{A}^{\prime}}^{\mathcal{U}_{h}}(F^{2m+6}\widehat{(\sum_{*\in\mathbb{Z}_{\geq 0}}\frac{1}{h^{*}}F^{3*})}\mathcal{A}^{\prime}(\Sigma))
=Ψ|π1|𝒰h(ϵL1(K)+L2(K)+ϵL3(k))modF2m+6|π1|^(Σ).\displaystyle=\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{U}_{h}}(\epsilon L_{1}(K)+L_{2}(K)+\epsilon L_{3}(k))\mod F^{2m+6}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma).

By Corollary 7.7, we have L1(K)F2m|π1|^(Σ)L_{1}(K)\in F^{2m}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma), L2(K)F2m+2|π1|^(Σ)L_{2}(K)\in F^{2m+2}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma), and L3(K)F2m+4|π1|^(Σ)L_{3}(K)\in F^{2m+4}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma). It proves the first formula. Since σ(FN|π1|^(Σ))(π1(Σ,))FN1π1^(Σ,)\sigma(F^{N}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma))(\mathbb{Q}\pi_{1}(\Sigma,\star))\subset F^{N-1}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star) for any N0N\in\mathbb{Z}_{\geq 0}, we have

((Σ×I)(K(ϵ))=id\displaystyle((\Sigma\times I)(K(-\epsilon))_{*}=\mathrm{id}
:π1(Σ,1,2)/F2m1π1(Σ,1,2)π1(Σ,1,2)/F2m1π1(Σ,1,2),\displaystyle:\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m-1}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})\to\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m-1}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}),
((Σ×I)(K(ϵ))=exp(σ(ϵL1(K)))\displaystyle((\Sigma\times I)(K(-\epsilon))_{*}=\exp(\sigma(\epsilon L_{1}(K)))
:π1(Σ,1,2)/F2m+1π1(Σ,1,2)π1(Σ,1,2)/F2m+1π1(Σ,1,2),\displaystyle:\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m+1}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})\to\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m+1}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}),
((Σ×I)(K(ϵ))=exp(σ(ϵL1(K)+L2(K)))\displaystyle((\Sigma\times I)(K(-\epsilon))_{*}=\exp(\sigma(\epsilon L_{1}(K)+L_{2}(K)))
:π1(Σ,1,2)/F2m+3π1(Σ,1,2)π1(Σ,1,2)/F2m+3π1(Σ,1,2),\displaystyle:\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m+3}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})\to\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m+3}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2}),
((Σ×I)(K(ϵ))=exp(σ(ϵL1(K)+L2(K)+ϵL3(K)))\displaystyle((\Sigma\times I)(K(-\epsilon))_{*}=\exp(\sigma(\epsilon L_{1}(K)+L_{2}(K)+\epsilon L_{3}(K)))
:π1(Σ,1,2)/F2m+5π1(Σ,1,2)π1(Σ,1,2)/F2m+5π1(Σ,1,2)\displaystyle:\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m+5}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})\to\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})/F^{2m+5}\mathbb{Q}\pi_{1}(\Sigma,\star_{1},\star_{2})

The above equations prove the theorem.

9. An application

In this section, we will use Theorem 8.5 in a concrete example. Let Σ1,1\Sigma_{1,1} be a compact connected oriented surface of genus one having a connected boundary. We fix a generating set {γα,γβ}\{\gamma_{\alpha},\gamma_{\beta}\} of π1(Σ1,1)\pi_{1}(\Sigma_{1,1}) as the figure and denote the element γαγβγα1γβ1\gamma_{\alpha}\gamma_{\beta}\gamma_{\alpha}^{-1}\gamma_{\beta}^{-1} by γ\gamma_{\partial}.

γα\gamma_{\alpha}γβ\gamma_{\beta}γ\gamma_{\partial}

We choose an embedding e(1)Σ1,1:Σ1,1×IΣ1,1×Ie^{(1)}_{\Sigma_{1,1}}:\Sigma_{1,1}\times I\to\Sigma_{1,1}\times I satisfying the two conditions.

  • It is an embedding shown in the figure.

  • The induced map |π1|(Σ)|π1|(Σ)\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma)\to\mathbb{Q}\lvert{\pi}_{1}\rvert(\Sigma) is an isomorphism.

+1+1

To apply Theorem 8.5, we need the lemma.

Lemma 9.1.

Using the above notation, we have

e(1)Σ1,1((Ψ|π1|𝒜(|γ2+γ1|))2)(Ψ|π1|𝒜(|γ2+γ1|))2\displaystyle e^{(1)}_{\Sigma_{1,1}}((\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\gamma_{\partial}-2+\gamma_{\partial}^{-1}\rvert))^{2})-(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\gamma_{\partial}-2+\gamma_{\partial}^{-1}\rvert))^{2}
=2hΨ|π1|𝒜(|(γ1)(γ11)(γ1)(γβ11)γβ\displaystyle=2h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1)(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}^{-1}-1){\gamma^{\prime}_{\beta}}
(γ1)(γ11)(γβ11)(γ1)γβ\displaystyle-(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)(\gamma_{\partial}-1){\gamma^{\prime}_{\beta}}
(γ1)(γ11)γβ1(γ11)(γβ1)\displaystyle-(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1){\gamma^{\prime}_{\beta}}^{-1}(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)
+(γ1)(γ11)γβ1(γβ1)(γ11)))|)\displaystyle+(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1){\gamma^{\prime}_{\beta}}^{-1}({\gamma^{\prime}_{\beta}}-1)(\gamma_{\partial}^{-1}-1)))\rvert)
+4hΨ|π1|𝒜(|(γ1)(γ1)(γβ11)(γβ1)\displaystyle+4h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(\gamma_{\partial}-1)(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)
(γ1)(γβ11)(γ1)(γβ1)\displaystyle-(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}-1)
(γ11)(γβ11)(γ11)(γβ1)\displaystyle-(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)
+(γ11)(γβ11)(γβ1)(γ11)|).\displaystyle+(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)(\gamma_{\partial}^{-1}-1)\rvert).
Proof.

Using the notation l=def.Ψ|π1|𝒜(|γ|)l\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\gamma_{\partial}\rvert), l=def.Ψ|π1|𝒜(|γ1|)l^{\prime}\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\gamma_{\partial}^{-1}\rvert), we have

e(1)Σ1,1((l+l+2)2)((l+l+2)2)\displaystyle e^{(1)}_{\Sigma_{1,1}}((l+l^{\prime}+2)^{2})-((l+l^{\prime}+2)^{2})
=(e(1)Σ1,1(l2)l2)+2(e(1)Σ1,1(ll)ll)+(e(1)Σ1,1(l2)l2).\displaystyle=(e^{(1)}_{\Sigma_{1,1}}(l^{2})-l^{2})+2(e^{(1)}_{\Sigma_{1,1}}(ll^{\prime})-ll^{\prime})+(e^{(1)}_{\Sigma_{1,1}}(l^{\prime 2})-l^{\prime}2).

We will compute the three elements (e(1)Σ1,1(l2)l2)(e^{(1)}_{\Sigma_{1,1}}(l^{2})-l^{2}), (e(1)Σ1,1(ll)ll)(e^{(1)}_{\Sigma_{1,1}}(ll^{\prime})-ll^{\prime}), (e(1)Σ1,1(l2)l2)(e^{(1)}_{\Sigma_{1,1}}(l^{\prime 2})-l^{\prime}2). In the proof, we denote by L(X)L(X) the link presented by the link diagram.

XX

Here XX is one of the following.

d(1,1)d(1,1)d(1,2)d(1,2)d(1,3)d(1,3)d(1,4)d(1,4)d(1,5)d(1,5)d(1,6)d(1,6)d(2,1)d(2,1)d(2,2)d(2,2)d(2,3)d(2,3)d(2,4)d(2,4)d(2,5)d(2,5)d(2,6)d(2,6)d(3,1)d(3,1)d(3,2)d(3,2)d(3,3)d(3,3)d(3,4)d(3,4)d(3,5)d(3,5)d(3,6)d(3,6)

Using the notation x=γα,y=γβx=\gamma_{\alpha},y=\gamma_{\beta}, we have

(e(1)Σ1,1(l2)l2)\displaystyle(e^{(1)}_{\Sigma_{1,1}}(l^{2})-l^{2})
=L(d(1,1))L(d(1,2))=h(L(d(1,3))+L(d(1,4))L(d(1,5))+L(d(1,6)))\displaystyle=L(d(1,1))-L(d(1,2))=h(-L(d(1,3))+L(d(1,4))-L(d(1,5))+L(d(1,6)))
=hΨ|π1|𝒜(|(xyx1)2y2+xyx1y1xyx1y1(xyx1)2y2+xyx1y1xyx1y1|)\displaystyle=h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert-(xyx^{-1})^{2}y^{-2}+xyx^{-1}y^{-1}xyx^{-1}y^{-1}-(xyx^{-1})^{2}y^{-2}+xyx^{-1}y^{-1}xyx^{-1}y^{-1}\rvert)
=2hΨ|π1|𝒜(|(xyx1)2y2+xyx1y1xyx1y1|),\displaystyle=2h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert-(xyx^{-1})^{2}y^{-2}+xyx^{-1}y^{-1}xyx^{-1}y^{-1}\rvert),
(e(1)Σ1,1(ll)ll)\displaystyle(e^{(1)}_{\Sigma_{1,1}}(ll^{\prime})-ll^{\prime})
=L(d(2,1))L(d(2,2))=h(L(d(2,3))L(d(2,4))+L(d(2,5))L(d(2,6)))\displaystyle=L(d(2,1))-L(d(2,2))=h(L(d(2,3))-L(d(2,4))+L(d(2,5))-L(d(2,6)))
=hΨ|π1|𝒜(|xyx1y1xy1x1y1+xyx1y1xy1x1y1|)\displaystyle=h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert xyx^{-1}y^{-1}xy^{-1}x^{-1}y-1+xyx^{-1}y^{-1}xy^{-1}x^{-1}y-1\rvert)
=2hΨ|π1|𝒜(|xyx1y1xy1x1y1|),\displaystyle=2h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert xyx^{-1}y^{-1}xy^{-1}x^{-1}y-1\rvert),
(e(1)Σ1,1(l2)l2)\displaystyle(e^{(1)}_{\Sigma_{1,1}}(l^{\prime 2})-l^{\prime 2})
=L(d(3,1))L(d(3,2))=h(L(d(3,3))+L(d(3,4))L(d(3,5))+L(d(3,6)))\displaystyle=L(d(3,1))-L(d(3,2))=h(-L(d(3,3))+L(d(3,4))-L(d(3,5))+L(d(3,6)))
=hΨ|π1|𝒜(|(xyx1)2y2+yxy1x1yxy1x1(xyx1)2y2+yxy1x1yxy1x1|)\displaystyle=h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert-(xyx^{-1})^{-2}y^{2}+yxy^{-1}x^{-1}yxy^{-1}x^{-1}-(xyx^{-1})^{-2}y^{2}+yxy^{-1}x^{-1}yxy^{-1}x^{-1}\rvert)
=2hΨ|π1|𝒜(|(xyx1)2y2+yxy1x1yxy1x1|).\displaystyle=2h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert-(xyx^{-1})^{-2}y^{2}+yxy^{-1}x^{-1}yxy^{-1}x^{-1}\rvert).

So we obtain

e(1)Σ1,1((l+l+2)2)((l+l+2)2)\displaystyle e^{(1)}_{\Sigma_{1,1}}((l+l^{\prime}+2)^{2})-((l+l^{\prime}+2)^{2})
=(e(1)Σ1,1(l2)l2)+2(e(1)Σ1,1(ll)ll)+(e(1)Σ1,1(l2)l2)\displaystyle=(e^{(1)}_{\Sigma_{1,1}}(l^{2})-l^{2})+2(e^{(1)}_{\Sigma_{1,1}}(ll^{\prime})-ll^{\prime})+(e^{(1)}_{\Sigma_{1,1}}(l^{\prime 2})-l^{\prime}2)
=2hΨ|π1|𝒜(|yy1(yy1y1y+y1yyy1)\displaystyle=2h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert y^{\prime}y^{-1}(y^{\prime}y^{-1}-y^{-1}y^{\prime}+y^{\prime-1}y-yy^{\prime-1})
+yy1(yy1y1y+y1yyy1)|)\displaystyle+yy^{\prime-1}(yy^{\prime-1}-y^{\prime-1}y+y^{-1}y^{\prime}-y^{\prime}y^{-1})\rvert)
=2hΨ|π1|𝒜(|(yy1yy1)(yy1y1y+y1yyy1)|),\displaystyle=2h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(y^{\prime}y^{-1}-yy^{\prime-1})(y^{\prime}y^{-1}-y^{-1}y^{\prime}+y^{\prime-1}y-yy^{\prime-1})\rvert),

where y=xyx1y^{\prime}=xyx^{-1}. Furthermore, using

yy1y1y+y1yyy1\displaystyle y^{\prime}y^{-1}-y^{-1}y^{\prime}+y^{\prime-1}y-yy^{\prime-1}
=(yy1y1y1yy1)y+y1(yy1yyyy1)\displaystyle=(y^{\prime}y^{-1}y^{\prime-1}-y^{\prime-1}y^{\prime}y^{-1})y^{\prime}+y^{\prime-1}(yy^{\prime-1}y^{\prime}-y^{\prime}yy^{\prime-1})
=((yy11)(y11)(y11)(yy11))y\displaystyle=((y^{\prime}y^{-1}-1)(y^{\prime-1}-1)-(y^{\prime-1}-1)(y^{\prime}y^{-1}-1))y^{\prime}
+y1((yy11)(y1)(y1)(yy11)),\displaystyle+y^{\prime-1}((yy^{\prime-1}-1)(y^{\prime}-1)-(y^{\prime}-1)(yy^{\prime-1}-1)),
yy1yy1\displaystyle y^{\prime}y^{-1}-yy^{\prime-1}
=(yy11)(yy11)+2yy12\displaystyle=(y^{\prime}y^{-1}-1)(yy^{\prime-1}-1)+2y^{\prime}y^{-1}-2
=(yy11)(yy11)2yy1+2,\displaystyle=-(y^{\prime}y^{-1}-1)(yy^{\prime-1}-1)-2yy^{\prime-1}+2,

we obtain

2hΨ|π1|𝒜(|(yy1yy1)(yy1y1y+y1yyy1)|)\displaystyle 2h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(y^{\prime}y^{-1}-yy^{\prime-1})(y^{\prime}y^{-1}-y^{-1}y^{\prime}+y^{\prime-1}y-yy^{\prime-1})\rvert)
=2hΨ|π1|𝒜(|(yy1yy1)(((yy11)(y11)(y11)(yy11))y\displaystyle=2h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(y^{\prime}y^{-1}-yy^{\prime-1})(((y^{\prime}y^{-1}-1)(y^{\prime-1}-1)-(y^{\prime-1}-1)(y^{\prime}y^{-1}-1))y^{\prime}
+y1((yy11)(y1)(y1)(yy11)))|)\displaystyle+y^{\prime-1}((yy^{\prime-1}-1)(y^{\prime}-1)-(y^{\prime}-1)(yy^{\prime-1}-1)))\rvert)
=2hΨ|π1|𝒜(|(yy11)(yy11)(((yy11)(y11)(y11)(yy11))y\displaystyle=2h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(y^{\prime}y^{-1}-1)(yy^{\prime-1}-1)(((y^{\prime}y^{-1}-1)(y^{\prime-1}-1)-(y^{\prime-1}-1)(y^{\prime}y^{-1}-1))y^{\prime}
y1((yy11)(y1)(y1)(yy11)))|)\displaystyle-y^{\prime-1}((yy^{\prime-1}-1)(y^{\prime}-1)-(y^{\prime}-1)(yy^{\prime-1}-1)))\rvert)
+4hΨ|π1|𝒜(|(yy11)((yy11)(y11)(y11)(yy11))y\displaystyle+4h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(y^{\prime}y^{-1}-1)((y^{\prime}y^{-1}-1)(y^{\prime-1}-1)-(y^{\prime-1}-1)(y^{\prime}y^{-1}-1))y^{\prime}
(yy11)y1((yy11)(y1)(y1)(yy11))|)\displaystyle-(yy^{\prime-1}-1)y^{\prime-1}((yy^{\prime-1}-1)(y^{\prime}-1)-(y^{\prime}-1)(yy^{\prime-1}-1))\rvert)
=2hΨ|π1|𝒜(|(yy11)(yy11)(((yy11)(y11)(y11)(yy11))y\displaystyle=2h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(y^{\prime}y^{-1}-1)(yy^{\prime-1}-1)(((y^{\prime}y^{-1}-1)(y^{\prime-1}-1)-(y^{\prime-1}-1)(y^{\prime}y^{-1}-1))y^{\prime}
y1((yy11)(y1)(y1)(yy11)))|)\displaystyle-y^{\prime-1}((yy^{\prime-1}-1)(y^{\prime}-1)-(y^{\prime}-1)(yy^{\prime-1}-1)))\rvert)
+4hΨ|π1|𝒜(|(yy11)((yy11)(y11)(y11)(yy11))\displaystyle+4h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(y^{\prime}y^{-1}-1)((y^{\prime}y^{-1}-1)(y^{\prime-1}-1)-(y^{\prime-1}-1)(y^{\prime}y^{-1}-1))
(yy11)((yy11)(y1)(y1)(yy11))|)\displaystyle-(yy^{\prime-1}-1)((yy^{\prime-1}-1)(y^{\prime}-1)-(y^{\prime}-1)(yy^{\prime-1}-1))\rvert)
+4hΨ|π1|𝒜(|(yy11)((yy11)(y11)(y11)(yy11))(y1)\displaystyle+4h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(y^{\prime}y^{-1}-1)((y^{\prime}y^{-1}-1)(y^{\prime-1}-1)-(y^{\prime-1}-1)(y^{\prime}y^{-1}-1))(y^{\prime}-1)
(yy11)(y11)((yy11)(y1)(y1)(yy11))|)\displaystyle-(yy^{\prime-1}-1)(y^{\prime-1}-1)((yy^{\prime-1}-1)(y^{\prime}-1)-(y^{\prime}-1)(yy^{\prime-1}-1))\rvert)

Using |z1z2|=|z2z1|\lvert z_{1}z_{2}\rvert=\lvert z_{2}z_{1}\rvert for z1,z2π1(Σ)z_{1},z_{2}\in\mathbb{Q}\pi_{1}(\Sigma), we have

e(1)Σ1,1((Ψ|π1|𝒜(|γ2+γ1|))2)(Ψ|π1|𝒜(|γ2+γ1|))2\displaystyle e^{(1)}_{\Sigma_{1,1}}((\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\gamma_{\partial}-2+\gamma_{\partial}^{-1}\rvert))^{2})-(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\gamma_{\partial}-2+\gamma_{\partial}^{-1}\rvert))^{2}
=2hΨ|π1|𝒜(|(yy11)(yy11)(((yy11)(y11)(y11)(yy11))y\displaystyle=2h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(y^{\prime}y^{-1}-1)(yy^{\prime-1}-1)(((y^{\prime}y^{-1}-1)(y^{\prime-1}-1)-(y^{\prime-1}-1)(y^{\prime}y^{-1}-1))y^{\prime}
y1((yy11)(y1)(y1)(yy11)))|)\displaystyle-y^{\prime-1}((yy^{\prime-1}-1)(y^{\prime}-1)-(y^{\prime}-1)(yy^{\prime-1}-1)))\rvert)
+4hΨ|π1|𝒜(|(yy11)((yy11)(y11)(y11)(yy11))(y1)\displaystyle+4h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(y^{\prime}y^{-1}-1)((y^{\prime}y^{-1}-1)(y^{\prime-1}-1)-(y^{\prime-1}-1)(y^{\prime}y^{-1}-1))(y^{\prime}-1)
(yy11)(y11)((yy11)(y1)(y1)(yy11))|).\displaystyle-(yy^{\prime-1}-1)(y^{\prime-1}-1)((yy^{\prime-1}-1)(y^{\prime}-1)-(y^{\prime}-1)(yy^{\prime-1}-1))\rvert).

Recalling the notations

yy1=γαγβγα1γβ1=γ,\displaystyle y^{\prime}y^{-1}=\gamma_{\alpha}\gamma_{\beta}\gamma_{\alpha}^{-1}\gamma_{\beta}^{-1}=\gamma_{\partial},
yy1=γ1,\displaystyle yy^{\prime-1}=\gamma_{\partial}^{-1},
y=γβ,\displaystyle y=\gamma_{\beta},
y=γαγβγα1=γβ,\displaystyle y^{\prime}=\gamma_{\alpha}\gamma_{\beta}\gamma_{\alpha}^{-1}={\gamma^{\prime}_{\beta}},

we get

e(1)Σ1,1((Ψ|π1|𝒜(|γ2+γ1|))2)(Ψ|π1|𝒜(|γ2+γ1|))2\displaystyle e^{(1)}_{\Sigma_{1,1}}((\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\gamma_{\partial}-2+\gamma_{\partial}^{-1}\rvert))^{2})-(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\gamma_{\partial}-2+\gamma_{\partial}^{-1}\rvert))^{2}
=2hΨ|π1|𝒜(|(γ1)(γ11)(((γ1)(γβ11)(γβ11)(γ1))γβ\displaystyle=2h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1)(((\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)-({\gamma^{\prime}_{\beta}}^{-1}-1)(\gamma_{\partial}-1)){\gamma^{\prime}_{\beta}}
γβ1((γ11)(γβ1)(γβ1)(γ11)))|)\displaystyle-{\gamma^{\prime}_{\beta}}^{-1}((\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)-({\gamma^{\prime}_{\beta}}-1)(\gamma_{\partial}^{-1}-1)))\rvert)
+4hΨ|π1|𝒜(|(γ1)((γ1)(γβ11)(γβ11)(γ1))(γβ1)\displaystyle+4h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(\gamma_{\partial}-1)((\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)-({\gamma^{\prime}_{\beta}}^{-1}-1)(\gamma_{\partial}-1))({\gamma^{\prime}_{\beta}}-1)
(γ11)(γβ11)((γ11)(γβ1)(γβ1)(γ11))|)\displaystyle-(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)((\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)-({\gamma^{\prime}_{\beta}}-1)(\gamma_{\partial}^{-1}-1))\rvert)

Finally, we can expand it into

e(1)Σ1,1((Ψ|π1|𝒜(|γ2+γ1|))2)(Ψ|π1|𝒜(|γ2+γ1|))2\displaystyle e^{(1)}_{\Sigma_{1,1}}((\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\gamma_{\partial}-2+\gamma_{\partial}^{-1}\rvert))^{2})-(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\gamma_{\partial}-2+\gamma_{\partial}^{-1}\rvert))^{2}
=2hΨ|π1|𝒜(|(γ1)(γ11)(γ1)(γβ11)γβ\displaystyle=2h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1)(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}^{-1}-1){\gamma^{\prime}_{\beta}}
(γ1)(γ11)(γβ11)(γ1)γβ\displaystyle-(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)(\gamma_{\partial}-1){\gamma^{\prime}_{\beta}}
(γ1)(γ11)γβ1(γ11)(γβ1)\displaystyle-(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1){\gamma^{\prime}_{\beta}}^{-1}(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)
+(γ1)(γ11)γβ1(γβ1)(γ11)))|)\displaystyle+(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1){\gamma^{\prime}_{\beta}}^{-1}({\gamma^{\prime}_{\beta}}-1)(\gamma_{\partial}^{-1}-1)))\rvert)
+4hΨ|π1|𝒜(|(γ1)(γ1)(γβ11)(γβ1)\displaystyle+4h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(\gamma_{\partial}-1)(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)
(γ1)(γβ11)(γ1)(γβ1)\displaystyle-(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}-1)
(γ11)(γβ11)(γ11)(γβ1)\displaystyle-(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)
+(γ11)(γβ11)(γβ1)(γ11)|),\displaystyle+(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)(\gamma_{\partial}^{-1}-1)\rvert),

as desired.

Using the lemma, we will state the theorem.

Theorem 9.2.

We use the notation in Theorem 8.1. Let e:Σ1,1×IΣ×Ie:\Sigma_{1,1}\times I\to\Sigma\times I be an embedding satisfying e(γαγβγα1γβ1)1+Iπ1(Σ×I)Ne_{*}(\gamma_{\alpha}\gamma_{\beta}\gamma_{\alpha}^{-1}\gamma_{\beta}^{-1})\in 1+I_{\mathbb{Q}\pi_{1}(\Sigma\times I)}^{N}, and KK_{\partial} the boundary knot in Σ1,1×I\Sigma_{1,1}\times I whose Seifert surface is Σ1,1×{12}\Sigma_{1,1}\times\{\frac{1}{2}\}, respectively. Then we have

ζ|π1|((Σ×I)(ee(1)Σ1,1(K)(ϵ)))=ζ|π1|((Σ×I)(e(K)(ϵ)))\displaystyle\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert((\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon)))=\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert((\Sigma\times I)(e(K_{\partial})(-\epsilon)))
=ϵ|12(log(e(γ))2)|modF2N+2|π1|^(Σ),\displaystyle=\epsilon\lvert\frac{1}{2}(\log(e_{*}(\gamma_{\partial}))^{2})\rvert\mod F^{2N+2}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma),
ζ|π1|((Σ×I)(ee(1)Σ1,1(K)(ϵ)))ζ|π1|((Σ×I)(e(K)(ϵ)))\displaystyle\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert((\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon)))-\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert((\Sigma\times I)(e(K_{\partial})(-\epsilon)))
=|(e(γ)1)(e(γβ)1)(e(γ)1)(e(γβ)1)(e(γ)1)2(e(γβ)1)2|\displaystyle=\lvert(e_{*}(\gamma_{\partial})-1)(e_{*}(\gamma_{\beta})-1)(e_{*}(\gamma_{\partial})-1)(e_{*}(\gamma_{\beta})-1)-(e_{*}(\gamma_{\partial})-1)^{2}(e_{*}(\gamma_{\beta})-1)^{2}\rvert
modF2N+3|π1|^(Σ).\displaystyle\mod F^{2N+3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma).

In other words, for 1,2Σ\star_{1},\star_{2}\in\partial\Sigma, we have

(Σ×I)(ee(1)Σ1,1(K)(ϵ))=(Σ×I)(e(K)(ϵ))=exp(σ(ϵ|12(log(e(γ)))2|)):\displaystyle(\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon))_{*}=(\Sigma\times I)(e(K_{\partial})(-\epsilon))_{*}=\exp(\sigma(\epsilon\lvert\frac{1}{2}(\log(e_{*}(\gamma_{\partial})))^{2}\rvert)):
π1^(Σ,1,2)/F2N+1π1^(Σ,1,2)π1^(Σ,1,2)/F2N+1π1^(Σ,1,2),\displaystyle\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2})/F^{2N+1}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2})\to\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2})/F^{2N+1}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2}),
(Σ×I)(ee(1)Σ1,1(K)(ϵ))((Σ×I)(e(K)(ϵ)))1\displaystyle(\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon))_{*}\circ((\Sigma\times I)(e(K_{\partial})(-\epsilon))_{*})^{-1}
=exp(σ(|(e(γ)1)(e(γβ)1)(e(γ)1)(e(γβ)1)(e(γ)1)2(e(γβ)1)2|)):\displaystyle=\exp(\sigma(\lvert(e_{*}(\gamma_{\partial})-1)(e_{*}(\gamma_{\beta})-1)(e_{*}(\gamma_{\partial})-1)(e_{*}(\gamma_{\beta})-1)-(e_{*}(\gamma_{\partial})-1)^{2}(e_{*}(\gamma_{\beta})-1)^{2}\rvert)):
π1^(Σ,)/F2N+2π1^(Σ,)π1^(Σ,1,2)/F2N+2π1^(Σ,1,2).\displaystyle\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star)/F^{2N+2}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star)\to\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2})/F^{2N+2}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2}).
Proof.

The first formula and the third formula are special ones in Theorem 8.1. We will prove the second equation using Theorem 8.5.

By Theorem 8.5, we have

ζ|π1|((Σ×I)(ee(1)Σ1,1(K)(ϵ)))ζ|π1|((Σ×I)(e(K)(ϵ)))\displaystyle\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert((\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon)))-\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert((\Sigma\times I)(e(K_{\partial})(-\epsilon)))
=(ϵL1(ee(1)Σ1,1(K))+L2(ee(1)Σ1,1(K)))\displaystyle=(\epsilon L_{1}(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial}))+L_{2}(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})))
(ϵL1(e(K))+L2(e(K)))modF2N+3|π1|^(Σ)\displaystyle-(\epsilon L_{1}(e(K_{\partial}))+L_{2}(e(K_{\partial})))\mod F^{2N+3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma)
=L2(ee(1)Σ1,1(K))L2(e(K))\displaystyle=L_{2}(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial}))-L_{2}(e(K_{\partial}))
=Ψ𝒜|π1|(12h((ee(1)Σ1,1((Ψ|π1|𝒜(|12(logγ)2|))2))\displaystyle=\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\frac{1}{2h}((e_{*}\circ e^{(1)}_{\Sigma_{1},1*}((\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\frac{1}{2}(\log\gamma_{\partial})^{2}\rvert))^{2}))
(ee(1)Σ1,1(Ψ|π1|𝒜(|12(logγ)2|)))2)\displaystyle-(e_{*}\circ e^{(1)}_{\Sigma_{1},1*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\frac{1}{2}(\log\gamma_{\partial})^{2}\rvert)))^{2})
Ψ𝒜|π1|(12h((e((Ψ|π1|𝒜(|12(logγ)2|))2))(e(Ψ|π1|𝒜(|12(logγ)2|)))2)).\displaystyle-\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\frac{1}{2h}((e_{*}((\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\frac{1}{2}(\log\gamma_{\partial})^{2}\rvert))^{2}))-(e_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\frac{1}{2}(\log\gamma_{\partial})^{2}\rvert)))^{2})).

Using

ee(1)Σ1,1(Ψ|π1|𝒜(|12(logγ)2|))=e(Ψ|π1|𝒜(|12(logγ)2|)),e_{*}\circ e^{(1)}_{\Sigma_{1},1*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\frac{1}{2}(\log\gamma_{\partial})^{2}\rvert))=e_{*}(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\frac{1}{2}(\log\gamma_{\partial})^{2}\rvert)),

we have

ζ|π1|((Σ×I)(ee(1)Σ1,1(K)(ϵ)))ζ|π1|((Σ×I)(e(K)(ϵ)))\displaystyle\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert((\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon)))-\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert((\Sigma\times I)(e(K_{\partial})(-\epsilon)))
=Ψ𝒜|π1|(12h((ee(1)Σ1,1((Ψ|π1|𝒜(|12(logγ)2|))2)))\displaystyle=\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\frac{1}{2h}((e_{*}\circ e^{(1)}_{\Sigma_{1},1*}((\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\frac{1}{2}(\log\gamma_{\partial})^{2}\rvert))^{2})))
(e((Ψ|π1|𝒜(|12(logγ)2|))2)))modF2N+3|π1|^(Σ).\displaystyle-(e_{*}((\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\frac{1}{2}(\log\gamma_{\partial})^{2}\rvert))^{2})))\mod F^{2N+3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma).

Since 12(log(X))2=12(X2+X1)\frac{1}{2}(\log(X))^{2}=\frac{1}{2}(X-2+X^{-1}), by Corollary 7.7, we obtain

ζ|π1|((Σ×I)(ee(1)Σ1,1(K)(ϵ)))ζ|π1|((Σ×I)(e(K)(ϵ)))\displaystyle\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert((\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon)))-\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert((\Sigma\times I)(e(K_{\partial})(-\epsilon)))
=Ψ𝒜|π1|(18he(e(1)Σ1,1((Ψ|π1|𝒜(|γ2+γ1|))2)(Ψ|π1|𝒜(|γ2+γ1|))2))\displaystyle=\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\frac{1}{8h}e_{*}(e^{(1)}_{\Sigma_{1,1}}((\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\gamma_{\partial}-2+\gamma_{\partial}^{-1}\rvert))^{2})-(\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert\gamma_{\partial}-2+\gamma_{\partial}^{-1}\rvert))^{2}))
modF2N+3|π1|^(Σ).\displaystyle\mod F^{2N+3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma).

Using Lemma 9.1, we continue the computation. By the lemma, we have

ζ|π1|((Σ×I)(ee(1)Σ1,1(K)(ϵ)))ζ|π1|((Σ×I)(e(K)(ϵ)))\displaystyle\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert((\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon)))-\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert((\Sigma\times I)(e(K_{\partial})(-\epsilon)))
=Ψ𝒜|π1|(18e(\displaystyle=\Psi_{\mathcal{A}^{\prime}}^{\mathbb{Q}\lvert{\pi}_{1}\rvert}(\frac{1}{8}e_{*}(
2hΨ|π1|𝒜(|(γ1)(γ11)(γ1)(γβ11)γβ\displaystyle 2h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1)(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}^{-1}-1){\gamma^{\prime}_{\beta}}
(γ1)(γ11)(γβ11)(γ1)γβ\displaystyle-(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)(\gamma_{\partial}-1){\gamma^{\prime}_{\beta}}
(γ1)(γ11)γβ1(γ11)(γβ1)\displaystyle-(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1){\gamma^{\prime}_{\beta}}^{-1}(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)
+(γ1)(γ11)γβ1(γβ1)(γ11)))|)\displaystyle+(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1){\gamma^{\prime}_{\beta}}^{-1}({\gamma^{\prime}_{\beta}}-1)(\gamma_{\partial}^{-1}-1)))\rvert)
+4hΨ|π1|𝒜(|(γ1)(γ1)(γβ11)(γβ1)\displaystyle+4h\Psi_{\mathbb{Q}\lvert{\pi}_{1}\rvert}^{\mathcal{A}^{\prime}}(\lvert(\gamma_{\partial}-1)(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)
(γ1)(γβ11)(γ1)(γβ1)\displaystyle-(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}-1)
(γ11)(γβ11)(γ11)(γβ1)\displaystyle-(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)
+(γ11)(γβ11)(γβ1)(γ11)|))modF2N+3|π1|^(Σ)\displaystyle+(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)(\gamma_{\partial}^{-1}-1)\rvert))\mod F^{2N+3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma)
=14e(|(γ1)(γ11)(γ1)(γβ11)γβ\displaystyle=\frac{1}{4}e_{*}(\lvert(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1)(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}^{-1}-1){\gamma^{\prime}_{\beta}}
(γ1)(γ11)(γβ11)(γ1)γβ\displaystyle-(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)(\gamma_{\partial}-1){\gamma^{\prime}_{\beta}}
(γ1)(γ11)γβ1(γ11)(γβ1)\displaystyle-(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1){\gamma^{\prime}_{\beta}}^{-1}(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)
+(γ1)(γ11)γβ1(γβ1)(γ11)))|)\displaystyle+(\gamma_{\partial}-1)(\gamma_{\partial}^{-1}-1){\gamma^{\prime}_{\beta}}^{-1}({\gamma^{\prime}_{\beta}}-1)(\gamma_{\partial}^{-1}-1)))\rvert)
12e(|(γ1)(γ1)(γβ11)(γβ1)\displaystyle-\frac{1}{2}e_{*}(\lvert(\gamma_{\partial}-1)(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)
(γ1)(γβ11)(γ1)(γβ1)\displaystyle-(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)(\gamma_{\partial}-1)({\gamma^{\prime}_{\beta}}-1)
(γ11)(γβ11)(γ11)(γβ1)\displaystyle-(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)
+(γ11)(γβ11)(γβ1)(γ11)|))modF2N+3|π1|^(Σ)\displaystyle+(\gamma_{\partial}^{-1}-1)({\gamma^{\prime}_{\beta}}^{-1}-1)({\gamma^{\prime}_{\beta}}-1)(\gamma_{\partial}^{-1}-1)\rvert))\mod F^{2N+3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma)

where γβ=def.γαγβγα1\gamma^{\prime}_{\beta}\stackrel{{\scriptstyle\mathrm{def.}}}{{=}}\gamma_{\alpha}\gamma_{\beta}\gamma_{\alpha}^{-1}. Furthermore, since

e(γ1)FNπ1(Σ),\displaystyle e_{*}(\gamma_{\partial}-1)\in F^{N}\mathbb{Q}\pi_{1}(\Sigma),
e(γ1)=e(γ11)modF2Nπ1(Σ),\displaystyle e_{*}(\gamma_{\partial}-1)=e_{*}(\gamma_{\partial}^{-1}-1)\mod F^{2N}\mathbb{Q}\pi_{1}(\Sigma),
e(γβ1)=e(γβ11)=e(γβ1)=e(γβ11)modF2π1(Σ),\displaystyle e_{*}({\gamma^{\prime}_{\beta}}-1)=-e_{*}({\gamma^{\prime}_{\beta}}^{-1}-1)=e_{*}(\gamma_{\beta}-1)=-e_{*}(\gamma_{\beta}^{-1}-1)\mod F^{2}\mathbb{Q}\pi_{1}(\Sigma),

we obtain

ζ|π1|((Σ×I)(ee(1)Σ1,1(K)(ϵ)))ζ|π1|((Σ×I)(e(K)(ϵ)))\displaystyle\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert((\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon)))-\zeta_{\mathbb{Q}}\lvert{\pi}_{1}\rvert((\Sigma\times I)(e(K_{\partial})(-\epsilon)))
=12e(|(γ1)(γ1)(γβ1)(γβ1)\displaystyle=\frac{1}{2}e_{*}(\lvert-(\gamma_{\partial}-1)(\gamma_{\partial}-1)({\gamma_{\beta}}-1)({\gamma_{\beta}}-1)
+(γ1)(γβ1)(γ1)(γβ1)\displaystyle+(\gamma_{\partial}-1)({\gamma_{\beta}}-1)(\gamma_{\partial}-1)({\gamma_{\beta}}-1)
+(γ1)(γβ1)(γ1)(γβ1)\displaystyle+(\gamma_{\partial}-1)({\gamma_{\beta}}-1)(\gamma_{\partial}-1)({\gamma_{\beta}}-1)
(γ1)(γβ1)(γβ1)(γ1)|))modF2N+3|π1|^(Σ)\displaystyle-(\gamma_{\partial}-1)({\gamma_{\beta}}-1)({\gamma_{\beta}}-1)(\gamma_{\partial}-1)\rvert))\mod F^{2N+3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma)
=|(e(γ)1)(e(γβ)1)(e(γ)1)(e(γβ)1)(e(γ)1)2(e(γβ)1)2|.\displaystyle=\lvert(e_{*}(\gamma_{\partial})-1)(e_{*}(\gamma_{\beta})-1)(e_{*}(\gamma_{\partial})-1)(e_{*}(\gamma_{\beta})-1)-(e_{*}(\gamma_{\partial})-1)^{2}(e_{*}(\gamma_{\beta})-1)^{2}\rvert.

It proves the second formula.

Finally, using the second formula, we verify the fourth formula. By definition of the Baker-Campbell-Hausdorff series, we obtain

(Σ×I)(ee(1)Σ1,1(K)(ϵ))((Σ×I)(e(K)(ϵ)))1\displaystyle(\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon))_{*}\circ((\Sigma\times I)(e(K_{\partial})(-\epsilon))_{*})^{-1}
=exp(σ(ζ~|π1|((Σ×I)(ee(1)Σ1,1(K)(ϵ)))))exp(σ(ζ~|π1|((Σ×I)(e(K)(ϵ)))))\displaystyle=\exp(\sigma(\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon)))))\circ\exp(\sigma(-\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(e(K_{\partial})(-\epsilon)))))
=exp(σ(ζ~|π1|((Σ×I)(ee(1)Σ1,1(K)(ϵ)))))exp(σ(ζ~|π1|((Σ×I)(e(K)(ϵ)))))\displaystyle=\exp(\sigma(\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon)))))\circ\exp(\sigma(-\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(e(K_{\partial})(-\epsilon)))))
=exp(σ(bch(ζ~|π1|(((Σ×I)(ee(1)Σ1,1(K)(ϵ)))),ζ~|π1|((Σ×I)(e(K)(ϵ)))))).\displaystyle=\exp(\sigma(\mathrm{bch}(\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(((\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon)))),-\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(e(K_{\partial})(-\epsilon)))))).

By the second formula, we have

bch(ζ~|π1|(((Σ×I)(ee(1)Σ1,1(K)(ϵ)))),ζ~|π1|((Σ×I)(e(K)(ϵ))))\displaystyle\mathrm{bch}(\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(((\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon)))),-\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(e(K_{\partial})(-\epsilon))))
=ζ~|π1|(((Σ×I)(ee(1)Σ1,1(K)(ϵ))))ζ~|π1|((Σ×I)(e(K)(ϵ)))modF4N2|π1|^(Σ)\displaystyle=\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}(((\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon))))-\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(e(K_{\partial})(-\epsilon)))\mod F^{4N-2}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma)
=|(e(γ)1)(e(γβ)1)(e(γ)1)(e(γβ)1)(e(γ)1)2(e(γβ)1)2|\displaystyle=\lvert(e_{*}(\gamma_{\partial})-1)(e_{*}(\gamma_{\beta})-1)(e_{*}(\gamma_{\partial})-1)(e_{*}(\gamma_{\beta})-1)-(e_{*}(\gamma_{\partial})-1)^{2}(e_{*}(\gamma_{\beta})-1)^{2}\rvert
modF2N+3|π1|^(Σ).\displaystyle\mod F^{2N+3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma).

Since σ(F2N+3|π1|^(Σ))F2N+2π1^(Σ)\sigma(F^{2N+3}\widehat{\mathbb{Q}\lvert\pi_{1}\rvert}(\Sigma))\subset F^{2N+2}\widehat{\mathbb{Q}\pi_{1}}(\Sigma) for any N0N\in\mathbb{Z}_{\geq 0}, we get

(Σ×I)(ee(1)Σ1,1(K)(ϵ))((Σ×I)(e(K)(ϵ)))1\displaystyle(\Sigma\times I)(e\circ e^{(1)}_{\Sigma_{1},1}(K_{\partial})(-\epsilon))_{*}\circ((\Sigma\times I)(e(K_{\partial})(-\epsilon))_{*})^{-1}
=exp(σ(|(e(γ)1)(e(γβ)1)(e(γ)1)(e(γβ)1)(e(γ)1)2(e(γβ)1)2|)):\displaystyle=\exp(\sigma(\lvert(e_{*}(\gamma_{\partial})-1)(e_{*}(\gamma_{\beta})-1)(e_{*}(\gamma_{\partial})-1)(e_{*}(\gamma_{\beta})-1)-(e_{*}(\gamma_{\partial})-1)^{2}(e_{*}(\gamma_{\beta})-1)^{2}\rvert)):
π1^(Σ,)/F2N+2π1^(Σ,)π1^(Σ,1,2)/F2N+2π1^(Σ,1,2)\displaystyle\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star)/F^{2N+2}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star)\to\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2})/F^{2N+2}\widehat{\mathbb{Q}\pi_{1}}(\Sigma,\star_{1},\star_{2})

as desired.

Remark 9.3.

The theorem verifies that the number 2m+22m+2 in Theorem 8.1 is the best possible. In other words, there exist two boundary knots K,KK,K^{\prime} having the same homotopy type in |π1|(Σ)|1+Iπ1(Σ)m|\lvert\pi_{1}\rvert(\Sigma)\cap\lvert 1+I_{\mathbb{Q}\pi_{1}(\Sigma)}^{m}\rvert such that

ζ~|π1|((Σ×I)(K(ϵ))ζ~|π1|((Σ×I)(K(ϵ))0modF2m+3π1^(Σ).\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(K(-\epsilon))-\widetilde{\zeta}_{\mathbb{Q}\lvert{\pi}_{1}\rvert}((\Sigma\times I)(K^{\prime}(-\epsilon))\neq 0\mod F^{2m+3}\widehat{\mathbb{Q}\pi_{1}}(\Sigma).

References

  • [1] S. Garoufalidis and J. Levine, Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism, In: Graphs and patterns in mathematics and theoretical physics, volume 73 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence 2005, 173–203.
  • [2] W. M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface groups representations, Invent. Math. 85, 263-302(1986).
  • [3] N. Habegger, Milnor, Johnson, and tree level perturbative invariants, preprint.
  • [4] D. Johnson, An abelian quotient of the mapping class group g\mathcal{I}_{g}, Math. Ann. 249, 225-242(1980).
  • [5] N. Kawazumi and Y. Kuno, The logarithms of Dehn twists, Quantum Topology, Vol. 5(2014), Issue 3, pp. 347–423.
  • [6] N. Kawazumi and Y. Kuno, Groupoid-theoretical methods in the mapping class groups of surfaces, arXiv: 1109.6479 (2011), UTMS preprint: 2011–28.
  • [7] Y.  Kuno and G.  Massuyeau, Generalized Dehn twists on surfaces and homology cylinders. Preprint, arXiv:1902.02592.
  • [8] W. B. R. Lickorish, A representation of orientable combinatorial 33-manifolds, Ann. of Math (2) 76 (9152), 531-540.
  • [9] G. Massuyeau and V. Turaev, Fox pairings and generalized Dehn twists, Ann. Inst. Fourier 63 (2013) 2403-2456.
  • [10] S. Morita, Casson’s invariant for homology 3-spheres and characteristic classes of surface bundles. I, Topology 28 (1989) 305–323.
  • [11] S. Morita, On the structure of the Torelli group and the Casson invariant, Topology, Volume 30(1991), 603-621.
  • [12] S. Morita, Structures of the mapping class group of surface: a survey and a prospect, Proceedings of the Kirbyfest Geom. Topol.Monogr., 2 (1998) 349-406.
  • [13] J. Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170-181.
  • [14] S. Tsuji, A formula for the action of Dehn twists on HOMFLY-PT skein modules and its applications, preprint, arXiv:1801.00580.
  • [15] V. G. Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. Ecole Norm. Sup. (4) 24 (1991), no. 6, 635-704.