This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Syzygy Matrix and the Differential for Rational Curves in Projective Space

Chen Song, University of Illinois at Chicago
Abstract

In this paper, we study whether a given morphism ff from the tangent bundle of 1\mathbb{P}^{1} to a balanced vector bundle of degree (n+1)d(n+1)d is induced by the restriction of the tangent bundle TnT_{\mathbb{P}^{n}} to a rational curve of degree dd in n\mathbb{P}^{n}. We propose a conjecture on this problem based on Mathematica computations of some examples and provide computer-assisted proof of the conjecture for certain values of nn and dd.

1 Introduction

Rational curves are crucial in the study of birational geometry and the arithmetic of varieties. Analyzing the restriction of vector bundles to a rational curve unveils important geometric properties of both the vector bundles and the underlying base space. Let CϕnC\xrightarrow{\phi}\mathbb{P}^{n} be a rational curve in projective space over a field KK. By Grothendieck’s theorem on vector bundles on 1\mathbb{P}^{1}, the restriction of the tangent bundle of n\mathbb{P}^{n} to C splits as a direct sum of line bundles Tn|C=i=1n𝒪1(ai)T_{\mathbb{P}^{n}}|_{C}=\bigoplus_{i=1}^{n}\mathcal{O}_{\mathbb{P}^{1}}(a_{i}). We say that the restriction of tangent bundle is balanced if |aiaj|1|a_{i}-a_{j}|\leq 1 for every i,ji,j.

The splitting type of the restriction of the tangent bundle and normal bundle of a rational curve is an extensively studied topic. In [6], Ramella proved that the restriction of the tangent bundle of n\mathbb{P}^{n} to a general rational curve is balanced. In [5], Mandal studied the locus of morphisms from a rational curve to a Grassmannian with a specified splitting type of the restricted tangent bundle. In [7], Sacchiero proves that a general non-degenerate rational curve of degree dd in n\mathbb{P}^{n} has a balanced normal bundle when n3n\geq 3 and char(K)=0char(K)=0. In [4], Larson and Vogt extend this result to the case char(K)=2char(K)=2 . In [1], Coskun, Larson and Vogt proved that NC/Gr(a,a+b)N_{C/Gr(a,a+b)} is 2-balanced for a general rational curve in Grassmannian.

Let CC be a general rational curve in n\mathbb{P}^{n} of degree dn+1d\geq n+1. Then Tn|CT_{\mathbb{P}^{n}}|_{C} has degree (n+1)d(n+1)d. By Ramella’s result, we have a balanced restriction

Tn|C=𝒪1(d+q)a𝒪1(d+q+1)b,T_{\mathbb{P}^{n}}|_{C}=\mathcal{O}_{\mathbb{P}^{1}}(d+q)^{\oplus a}\bigoplus\mathcal{O}_{\mathbb{P}^{1}}(d+q+1)^{\oplus b},

where q=dnq=\lfloor\frac{d}{n}\rfloor, a=(q+1)nda=(q+1)n-d and b=dnqb=d-nq. If we compose the tangent map TCdϕTnT_{C}\xrightarrow{d\phi}T_{\mathbb{P}^{n}} with the restriction map TnTn|CT_{\mathbb{P}^{n}}\rightarrow T_{\mathbb{P}^{n}}|_{C}, we get a morphism

f:𝒪1(2)𝒪1(d+q)a𝒪1(d+q+1)b.f:\mathcal{O}_{\mathbb{P}^{1}}(2)\rightarrow\mathcal{O}_{\mathbb{P}^{1}}(d+q)^{\oplus a}\bigoplus\mathcal{O}_{\mathbb{P}^{1}}(d+q+1)^{\oplus b}.

Conversely, Eric Larson raised the following question. Given a morphism

f:𝒪1(2)𝒪1(d+q)a𝒪1(d+q+1)bf:\mathcal{O}_{\mathbb{P}^{1}}(2)\rightarrow\mathcal{O}_{\mathbb{P}^{1}}(d+q)^{\oplus a}\bigoplus\mathcal{O}_{\mathbb{P}^{1}}(d+q+1)^{\oplus b}

where qq, aa and bb are defined above, when can we find a rational curve CnC\subset\mathbb{P}^{n} such that ff is given by the composition of tangent map with restriction map?

When d<nd<n, the curve CC is degenerate and not all morphisms ff can be represented by CC. The restriction is not balanced except when d=1d=1.

When d=nd=n, CC is a rational normal curve. Hom(𝒪1(2),𝒪1(n+1)n)Kn2Hom(\mathcal{O}_{\mathbb{P}^{1}}(2),\mathcal{O}_{\mathbb{P}^{1}}(n+1)^{n})\cong K^{n^{2}}. Therefore, ff is induced by the restriction of the tangent map.

When dn+1d\geq n+1, the question is still open. Now we state our main conjecture and results on this problem.

Conjecture 1.1

Let dn+1d\geq n+1 be integers. Let q=dnq=\lfloor\frac{d}{n}\rfloor, a=(q+1)nda=(q+1)n-d, b=dnqb=d-nq.

(1) If char(K)=0char(K)=0, n=2,3n=2,3 or dn+2d\geq n+2, then given a general morphism

f:𝒪1(2)𝒪1(d+q)a𝒪1(d+q+1)b,f:\mathcal{O}_{\mathbb{P}^{1}}(2)\rightarrow\mathcal{O}_{\mathbb{P}^{1}}(d+q)^{\oplus a}\bigoplus\mathcal{O}_{\mathbb{P}^{1}}(d+q+1)^{\oplus b},

there is a rational curve CϕnC\xrightarrow{\phi}\mathbb{P}^{n} of degree dd such that f=ϕdϕf=\phi^{*}\circ d\phi.

(2) If n4n\geq 4 is an integer, then there exists a morphism

f:𝒪1(2)𝒪1(n+1)(n1)𝒪1(n+3)f:\mathcal{O}_{\mathbb{P}^{1}}(2)\to\mathcal{O}_{\mathbb{P}^{1}}(n+1)^{\oplus(n-1)}\oplus\mathcal{O}_{\mathbb{P}^{1}}(n+3)

such that there is no rational curve CϕnC\xrightarrow{\phi}\mathbb{P}^{n} of degree n+1n+1 for which f=dϕϕf=d\phi\circ\phi^{*}.

As the main result of this paper, we provide computer assisted proofs of this conjecture for some numbers of nn and dd.

Theorem 1.2

Let dn+1d\geq n+1 be integers. char(K)=0char(K)=0. q=dnq=\lfloor\frac{d}{n}\rfloor, a=(q+1)nda=(q+1)n-d, b=dnqb=d-nq. Given a general morphism

f:𝒪1(2)𝒪1(d+q)a𝒪1(d+q+1)bf:\mathcal{O}_{\mathbb{P}^{1}}(2)\rightarrow\mathcal{O}_{\mathbb{P}^{1}}(d+q)^{\oplus a}\bigoplus\mathcal{O}_{\mathbb{P}^{1}}(d+q+1)^{\oplus b}

, there is a rational curve CϕnC\xrightarrow{\phi}\mathbb{P}^{n} of degree dd such that f=ϕdϕf=\phi^{*}\circ d\phi for the following list of nn and dd.

  • n=2n=2, 3d253\leq d\leq 25;

  • n=3n=3, 4d174\leq d\leq 17;

  • n=4n=4, 6d126\leq d\leq 12;

  • n=5n=5, 7d97\leq d\leq 9.

Theorem 1.3

If 4n84\leq n\leq 8, then there exists a morphism

f:𝒪1(2)𝒪1(n+2)(n1)𝒪1(n+3)f:\mathcal{O}_{\mathbb{P}^{1}}(2)\to\mathcal{O}_{\mathbb{P}^{1}}(n+2)^{\oplus(n-1)}\oplus\mathcal{O}_{\mathbb{P}^{1}}(n+3)

such that there is no rational curve CϕnC\xrightarrow{\phi}\mathbb{P}^{n} of degree n+1n+1 for which f=dϕϕf=d\phi\circ\phi^{*}.

Organization of the paper. In Section 2, we recall the preliminary facts needed in the rest of the paper. In Section 3 we explicitly write down the relation between ff and syzygy matrix of the rational curve. In Section 4, we show a computer assisted proof of Theorem 1.2 and Theorem 1.3.

Acknowledgements. I extend my deepest gratitude to my advisor, Izzet Coskun, for providing invaluable guidance and insightful suggestions throughout the course of my study at UIC. I would like to thank Ning Jiang for her constructive remarks on the proof of Theorem 1.3. I would also thank Yeqin Liu for many useful discussions.

2 Preliminaries

In this sections, we collect necessary facts on rational curves and vector bundles on n\mathbb{P}^{n}.

A rational curve is a curve which is birationally equivalent to 1\mathbb{P}^{1}. A rational curve CnC\subset\mathbb{P}^{n} can be described as a map [s:t][G0(s,t),,Gn(s,t)][s:t]\mapsto[G_{0}(s,t),...,G_{n}(s,t)] where GiG_{i} are homogeneous polynomials in variable s,ts,t of the same degree dd with no common zeros. Here dd is called the degree of the rational curve CC.

Given a homogeneous ideal I=(f1,,fm)K[x0,,xn]I=(f_{1},...,f_{m})\subset K[x_{0},...,x_{n}]. The first syzygy module Syz(f1,,fm)Syz(f_{1},...,f_{m}) consists of mm-tuples (g1,gm)(g_{1},...g_{m}) of elements of K[x0,,xn]K[x_{0},...,x_{n}] such that f1g1+,,,+fmgm=0f_{1}g_{1}+,,,+f_{m}g_{m}=0. The syzygy module can be presented as the kernel of a map K[x0,,xn]mIK[x_{0},...,x_{n}]^{m}\to I. To describe the syzygy module, we often use a syzygy matrix. If we have relations j=1mlijfj=0\sum_{j=1}^{m}l_{ij}f_{j}=0 for i=1,2,,ti=1,2,\ldots,t, then these relations can be organized into a matrix LL such that

L(f1f2fm)=0.L\cdot\begin{pmatrix}f_{1}\\ f_{2}\\ \vdots\\ f_{m}\end{pmatrix}=0.

Here, LL is a t×mt\times m matrix with entries in K[x0,,xn]K[x_{0},...,x_{n}].

By the Birkhoff–Grothendieck theorem, every vector bundle VV of rank rr on 1\mathbb{P}^{1} decomposes as a direct sum of line bundles

i=1r𝒪1(ai)\mathcal{E}\cong\bigoplus_{i=1}^{r}\mathcal{O}_{\mathbb{P}^{1}}(a_{i})

for a unique sequence of integers a1ara_{1}\leq...\leq a_{r}. The sequence of integers a1,,ara_{1},...,a_{r} is called the splitting type of VV. We say that the vector bundle is jj-balanced if a1arja_{1}-a_{r}\leq j. If j=0j=0, we say that VV is perfectly balanced. If j=1j=1, we say that VV is balanced.

In [6], Ramella proved that the restriction of the tangent bundle of n\mathbb{P}^{n} to a general rational curve is balanced. Let CC be a general rational curve in n\mathbb{P}^{n} of degree dn+1d\geq n+1. Then Tn|CT_{\mathbb{P}^{n}}|_{C} has degree (n+1)d(n+1)d. We have a balanced restriction

Tn|C=𝒪1(d+q)a𝒪1(d+q+1)b,T_{\mathbb{P}^{n}}|_{C}=\mathcal{O}_{\mathbb{P}^{1}}(d+q)^{\oplus a}\bigoplus\mathcal{O}_{\mathbb{P}^{1}}(d+q+1)^{\oplus b},

where q=dnq=\lfloor\frac{d}{n}\rfloor, a=(q+1)nda=(q+1)n-d and b=dnqb=d-nq.

3 Relation Between the Morphism and the Rational Curve

In this part, we use the Euler sequence of projective space to set up a commutative diagram. This commutative diagram relates the syzygy matrix of the rational curve CC and the morphism ff in Conjecture 1.1 and Conjecture 1.2. We work over a field KK of general characteristic.

Let n2n\geq 2 be an integer. Consider the Euler sequence of projective space n\mathbb{P}^{n}.

0𝒪n𝒪n(1)(n+1)Tn0.0\to\mathcal{O}_{\mathbb{P}^{n}}\to\mathcal{O}_{\mathbb{P}^{n}}(1)^{\oplus(n+1)}\to T_{\mathbb{P}^{n}}\to 0.

Let CnC\subset\mathbb{P}^{n} be a rational curve of degree dd. Restricting the Euler sequence to CC, we get

0𝒪1𝒪1(d)(n+1)Tn|C0.0\to\mathcal{O}_{\mathbb{P}^{1}}\to\mathcal{O}_{\mathbb{P}^{1}}(d)^{\oplus(n+1)}\to T_{\mathbb{P}^{n}}|_{C}\to 0.

Suppose CC is a general curve, by Ramella’s result, we have

0𝒪1𝒪1(d)(n+1)𝒪1(d+q)a𝒪1(d+q+1)b00\to\mathcal{O}_{\mathbb{P}^{1}}\to\mathcal{O}_{\mathbb{P}^{1}}(d)^{\oplus(n+1)}\to\mathcal{O}_{\mathbb{P}^{1}}(d+q)^{\oplus a}\bigoplus\mathcal{O}_{\mathbb{P}^{1}}(d+q+1)^{\oplus b}\to 0

where q=dnq=\lfloor\frac{d}{n}\rfloor, a=(q+1)nda=(q+1)n-d, b=dnqb=d-nq. Combining this sequence with the Euler sequence of 1\mathbb{P}^{1}, we have the following commutative diagram.

0𝒪1𝒪1(1)2(ts)𝒪1(2)0JFH0𝒪1G𝒪1(d)(n+1)LP𝒪1(d+q)a𝒪1(d+q+1)b0\setcounter{MaxMatrixCols}{11}\begin{CD}0@>{}>{}>\mathcal{O}_{\mathbb{P}^{1}}@>{}>{}>\mathcal{O}_{\mathbb{P}^{1}}(1)^{\oplus 2}@>{\begin{pmatrix}-t&s\end{pmatrix}}>{}>\mathcal{O}_{\mathbb{P}^{1}}(2)@>{}>{}>0\\ @V{J}V{}V@V{FH}V{}V\\ 0@>{}>{}>\mathcal{O}_{\mathbb{P}^{1}}@>{G}>{}>\mathcal{O}_{\mathbb{P}^{1}}(d)^{\oplus(n+1)}@>{LP}>{}>\mathcal{O}_{\mathbb{P}^{1}}(d+q)^{\oplus a}\bigoplus\mathcal{O}_{\mathbb{P}^{1}}(d+q+1)^{\oplus b}@>{}>{}>0\\ \end{CD}

Let ss, tt be the coordinate variables of 1\mathbb{P}^{1}. Morphisms in this commutative diagram can be represented by matrices of homogeneous polynomials with variables ss, tt.

G=(G0,,Gn)G=(G_{0},...,G_{n}) is defined by the embedding of the rational curve CnC\subset\mathbb{P}^{n} where

Gi=j=0dgijsjtdjG_{i}=\sum_{j=0}^{d}g_{ij}s^{j}t^{d-j}

and JJ is the Jacobian matrix of GG.
LP=(LP)LP=\begin{pmatrix}L\\ P\end{pmatrix} is an n×(n+1)n\times(n+1) matrix representing the syzygy of the ideal generated by G1,,GnG_{1},...,G_{n}. L=(L10L01L0nL20L11L1nLa0La1Lan)L=\begin{pmatrix}L_{10}&L_{01}&\cdots&L_{0n}\\ L_{20}&L_{11}&\cdots&L_{1n}\\ \vdots&\vdots&\ddots&\vdots\\ L_{a0}&L_{a1}&\cdots&L_{an}\end{pmatrix} where Lki=j=0qlkijsjtqjL_{ki}=\sum_{j=0}^{q}l_{kij}s^{j}t^{q-j} for k=1,,ak=1,...,a and i=0,,ni=0,...,n.
P=(P10P01P0nP20P11P1nPb0Pb1Pbn)P=\begin{pmatrix}P_{10}&P_{01}&\cdots&P_{0n}\\ P_{20}&P_{11}&\cdots&P_{1n}\\ \vdots&\vdots&\ddots&\vdots\\ P_{b0}&P_{b1}&\cdots&P_{bn}\end{pmatrix} where Pki=j=0q+1pkijsjtq+1jP_{ki}=\sum_{j=0}^{q+1}p_{kij}s^{j}t^{q+1-j} for k=1,,bk=1,...,b and i=0,,ni=0,...,n.
FH=(F|H)FH=(F|H)^{\intercal} is the matrix representing the morphism ff in Conjecture 1.1 and Conjecture 1.2.
F=(F1,,Fa)F=(F_{1},...,F_{a}) where Fi=j=0d+q2fijsjtd+q2jF_{i}=\sum_{j=0}^{d+q-2}f_{ij}s^{j}t^{d+q-2-j}. H=(H1,,Hb)H=(H_{1},...,H_{b}) where Hi=j=0d+q1hijsjtd+q1jH_{i}=\sum_{j=0}^{d+q-1}h_{ij}s^{j}t^{d+q-1-j}. Since this is a commutative diagram, we get the equation of matrices

LP.J=FH.(ts).LP.J=FH.\begin{pmatrix}-t&s\end{pmatrix}. (1)

Both sides of the equation (1) are n×2n\times 2 matrices of homogeneous polynomials. If we can solve this system of equations, we will have a polynomial relation between the curve CC and the morphism ff.

One natural idea is that we can represent the syzygy matrix LPLP and the Jacobian matrix JJ by gijg_{ij} and solve (1) for fijf_{ij} and hijh_{ij} by gijg_{ij}. However, this computation is extremely difficult since it involves solving high degree polynomial equations with a huge number of variables.

Instead, we choose to fix the syzygy matrix LPLP and construct a rational curve whose ideal has this syzygy matrix. Formally speaking, we take G0,,GnG_{0},...,G_{n} to be n×nn\times n-minors of LPLP. Then we compute the Jacobian JJ and compare the coefficients of the polynomial in both sides of equation (1). It becomes a system of equations with variables fijf_{ij}, hijh_{ij}, lkijl_{kij} and pkijp_{kij}.

The right hand side of 1 is

FH.(ts)=(tF1sF1tFasFatH1sH1tHbsHb)FH.\begin{pmatrix}-t&s\end{pmatrix}=\begin{pmatrix}-tF_{1}&sF_{1}\\ \vdots&\vdots\\ -tF_{a}&sF_{a}\\ -tH_{1}&sH_{1}\\ \vdots&\vdots\\ -tH_{b}&sH_{b}\\ \end{pmatrix}

Therefore, we can linearly solve for fijf_{ij} and hijh_{ij} by lkijl_{kij} and pkijp_{kij}. The number of variables fijf_{ij} and hijh_{ij} is a(d+q1)+b(d+q)a(d+q-1)+b(d+q). The number of variables lkijl_{kij} and pkijp_{kij} is ((q+1)a+(q+2)b)(n+1)((q+1)a+(q+2)b)(n+1). The difference is n2+2nn^{2}+2n. This shows we have enough variables lkijl_{kij} and pkijp_{kij} to represent fijf_{ij} and hijh_{ij}.

To conclude, we have the following theorems.

Theorem 3.1

Suppose char(K)0char(K)\gg 0. Let dn+1d\geq n+1 be integers. q=dnq=\lfloor\frac{d}{n}\rfloor, a=(q+1)nda=(q+1)n-d, b=dnqb=d-nq. The previous argument gives a polynomial ring map

Ψ:K((q+1)a+(q+2)b)(n+1)Ka(d+q1)+b(d+q)\Psi:K^{((q+1)a+(q+2)b)(n+1)}\rightarrow K^{a(d+q-1)+b(d+q)}

from the space of syzygy matrix of rational curves of degree dd in n\mathbb{P}^{n} to

Hom(𝒪1(2),𝒪1(d+q)a𝒪1(d+q+1)b).\text{Hom}(\mathcal{O}_{\mathbb{P}^{1}}(2),\mathcal{O}_{\mathbb{P}^{1}}(d+q)^{a}\oplus\mathcal{O}_{\mathbb{P}^{1}}(d+q+1)^{b}).

Given a general morphism

f:𝒪1(2)𝒪1(d+q)a𝒪1(d+q+1)b,f:\mathcal{O}_{\mathbb{P}^{1}}(2)\rightarrow\mathcal{O}_{\mathbb{P}^{1}}(d+q)^{a}\bigoplus\mathcal{O}_{\mathbb{P}^{1}}(d+q+1)^{b},

there is a rational curve CϕnC\xrightarrow{\phi}\mathbb{P}^{n} of degree dd such that f=ϕdϕf=\phi^{*}\circ d\phi if and only if Ψ\Psi is dominant.

We will analyze the surjectivity of Ψ\Psi in next section. In the following example, we use a given syzygy matrix to compute the map FHFH.

Example 3.2

Let n=4n=4 and d=5d=5. Given syzygy matrix

LP=(ts00000ts2t4s000000tst22t2s2000)LP=\begin{pmatrix}-t&s&0&0&0&0\\ 0&-t&s-2t&4s&0&0\\ 0&0&0&0&-t&s\\ -t^{2}&-2t^{2}&s^{2}&0&0&0\\ \end{pmatrix}

We take G0,,G4G_{0},...,G_{4} to be 4×44\times 4-minors of LPLP, we have

G=(4s54s4t4s2t2(s+2t)4st44t5).G=\begin{pmatrix}4s^{5}&4s^{4}t&4s^{2}t^{2}(s+2t)&4st^{4}&4t^{5}\end{pmatrix}.

The Jacobian matrix of GG is

J=(20s4016s3t4s44st2(3s+4t)8s2t(s+3t)4t416st3020t4)J=\begin{pmatrix}20s^{4}&0\\ 16s^{3}t&4s^{4}\\ 4st^{2}(3s+4t)&8s^{2}t(s+3t)\\ 4t^{4}&16st^{3}\\ 0&20t^{4}\end{pmatrix}

Then we have

LP.J=(4s4t4s54st2(s2+2st+4t2)4s2t(s2+2st+4t2)4t54st48s3t2(s+2t)8s4t(s+2t))LP.J=\begin{pmatrix}-4s^{4}t&4s^{5}\\ -4st^{2}\left(s^{2}+2st+4t^{2}\right)&4s^{2}t\left(s^{2}+2st+4t^{2}\right)\\ -4t^{5}&4st^{4}\\ -8s^{3}t^{2}(s+2t)&8s^{4}t(s+2t)\end{pmatrix}

and

FH.(ts)=(t5f10st4f11s2t3f12s3t2f13s4tf14st4f10+s2t3f11+s3t2f12+s4tf13+s5f14t5f20st4f21s2t3f22s3t2f23s4tf24st4f20+s2t3f21+s3t2f22+s4tf23+s5f24t5f30st4f31s2t3f32s3t2f33s4tf34st4f30+s2t3f31+s3t2f32+s4tf33+s5f34t6h10st5h11s2t4h12s3t3h13s4t2h14s5th15st5h10+s2t4h11+s3t3h12+s4t2h13+s5th14+s6h15)FH.\begin{pmatrix}-t&s\end{pmatrix}=\scalebox{0.75}{$\begin{pmatrix}-t^{5}f_{10}-st^{4}f_{11}-s^{2}t^{3}f_{12}-s^{3}t^{2}f_{13}-s^{4}tf_{14}&st^{4}f_{10}+s^{2}t^{3}f_{11}+s^{3}t^{2}f_{12}+s^{4}tf_{13}+s^{5}f_{14}\\ -t^{5}f_{20}-st^{4}f_{21}-s^{2}t^{3}f_{22}-s^{3}t^{2}f_{23}-s^{4}tf_{24}&st^{4}f_{20}+s^{2}t^{3}f_{21}+s^{3}t^{2}f_{22}+s^{4}tf_{23}+s^{5}f_{24}\\ -t^{5}f_{30}-st^{4}f_{31}-s^{2}t^{3}f_{32}-s^{3}t^{2}f_{33}-s^{4}tf_{34}&st^{4}f_{30}+s^{2}t^{3}f_{31}+s^{3}t^{2}f_{32}+s^{4}tf_{33}+s^{5}f_{34}\\ -t^{6}h_{10}-st^{5}h_{11}-s^{2}t^{4}h_{12}-s^{3}t^{3}h_{13}-s^{4}t^{2}h_{14}-s^{5}th_{15}&st^{5}h_{10}+s^{2}t^{4}h_{11}+s^{3}t^{3}h_{12}+s^{4}t^{2}h_{13}+s^{5}th_{14}+s^{6}h_{15}\end{pmatrix}$}

If we set these two matrix equal, then we can solve for FHFH as

FH=(4s44s3t+8s2t2+16st34t48s4t+16s3t2).FH=\begin{pmatrix}4s^{4}&4s^{3}t+8s^{2}t^{2}+16st^{3}&4t^{4}&8s^{4}t+16s^{3}t^{2}\end{pmatrix}.

In general, for each given pair of n,dn,d, we can use Mathematica to symbolically compute fijf_{ij} and hijh_{ij}. Here is the result for n=2n=2 d=4d=4.

Example 3.3

Let n=2n=2 d=4d=4. Suppose char(K)2char(K)\neq 2. Solving Equation (1) by Mathematica, we get the explicit expression of Ψ\Psi represented by the elements of FHFH.

  • f10=(l101l120+l100l121)l210+l111(l120l200l100l220)+l110(l121l200+l101l220)f_{10}=(-l_{101}l_{120}+l_{100}l_{121})l_{210}+l_{111}(l_{120}l_{200}-l_{100}l_{220})+l_{110}(-l_{121}l_{200}+l_{101}l_{220})

  • f11=l111l120l2012l102l120l210+2l100l121l210+2l100l120l211+l112(l120l200l100l220)l100l111l221+l110(2l122l200+l101l220+l100l221)f_{11}=-l_{111}l_{120}l_{201}-2l_{102}l_{120}l_{210}+2l_{100}l_{121}l_{210}+2l_{100}l_{120}l_{211}+l_{112}(l_{120}l_{200}-l_{100}l_{220})-l_{100}l_{111}l_{221}+l_{110}(-2l_{122}l_{200}+l_{101}l_{220}+l_{100}l_{221})

  • f12=2l110l122l201l110l121l2022l100l122l211l101l122l211+l112(l121l200+2l100l201l101l220l100l221)+l101l110l222f_{12}=-2l_{110}l_{122}l_{201}-l_{110}l_{121}l_{202}-2l_{100}l_{122}l_{211}-l_{101}l_{122}l_{211}+l_{112}(l_{121}l_{200}+2l_{100}l_{201}-l_{101}l_{220}-l_{100}l_{221})+l_{101}l_{110}l_{222}

  • f13=2l110l122l202l102l121l211l101l122l211+l112(l121l200+2l100l201l101l220l100l221)+l101l110l222f_{13}=-2l_{110}l_{122}l_{202}-l_{102}l_{121}l_{211}-l_{101}l_{122}l_{211}+l_{112}(l_{121}l_{200}+2l_{100}l_{201}-l_{101}l_{220}-l_{100}l_{221})+l_{101}l_{110}l_{222}

  • f14=l112(l120l200l100l220)l121l210+l112(l120l220)f_{14}=-l_{112}(l_{120}l_{200}-l_{100}l_{220})l_{121}l_{210}+l_{112}(l_{120}l_{220})

  • f20=l120(l201l210+l200l211)+l110(l201l220l200l221)+l100(l211l220l210l221)f_{20}=l_{120}(-l_{201}l_{210}+l_{200}l_{211})+l_{110}(l_{201}l_{220}-l_{200}l_{221})+l_{100}(l_{211}l_{220}-l_{210}l_{221})

  • f21=l121(l201l210+l200l211)+l110(2l202l210+2l200l212)+l101(l211l220l210l221)+2l100l210l222f_{21}=l_{121}(-l_{201}l_{210}+l_{200}l_{211})+l_{110}(-2l_{202}l_{210}+2l_{200}l_{212})+l_{101}(l_{211}l_{220}-l_{210}l_{221})+2l_{100}l_{210}l_{222}

  • f22=l120l202l211+l122(l201l210l200l211)+l112(l201l220+2l200l221)+l111(l201l220l200l221)+l110(2l202l2102l200l212)+l101l120l2222l100l122l221f_{22}=-l_{120}l_{202}l_{211}+l_{122}(l_{201}l_{210}-l_{200}l_{211})+l_{112}(-l_{201}l_{220}+2l_{200}l_{221})+l_{111}(l_{201}l_{220}-l_{200}l_{221})+l_{110}(2l_{202}l_{210}-2l_{200}l_{212})+l_{101}l_{120}l_{222}-2l_{100}l_{122}l_{221}

  • f23=l122(2l202l210+2l200l212)+l121(l202l211+2l200l212)+l112(2l201l220+2l200l221)l111(2l202l2102l200l212)+l101l120l2222l111l210l221+2l110l210l222+l100l211l222f_{23}=l_{122}(-2l_{202}l_{210}+2l_{200}l_{212})+l_{121}(-l_{202}l_{211}+2l_{200}l_{212})+l_{112}(-2l_{201}l_{220}+2l_{200}l_{221})-l_{111}(2l_{202}l_{210}-2l_{200}l_{212})+l_{101}l_{120}l_{222}-2l_{111}l_{210}l_{221}+2l_{110}l_{210}l_{222}+l_{100}l_{211}l_{222}

  • f24=l122(l202l211+l201l212)+l112(l202l221l201l222)+l111(l201l220l200l221)+l110l202l221l101l212l221+l100l211l222f_{24}=l_{122}(-l_{202}l_{211}+l_{201}l_{212})+l_{112}(l_{202}l_{221}-l_{201}l_{222})+l_{111}(l_{201}l_{220}-l_{200}l_{221})+l_{110}l_{202}l_{221}-l_{101}l_{212}l_{221}+l_{100}l_{211}l_{222}

Notice that in this example b=0b=0. Therefore, we do not have HH terms. If we substitute fijf_{ij} by the result above, we will get the expression of FHFH. However, due to the complexity of the expression and the limited space available, we do not display it here.

4 Proof of Main Theorems

Now, we use Mathematica computation to prove Theorem 1.2. We restate it for convenience.

Theorem 4.1 (Restatement of Theorem 1.2)

Let dn+1d\geq n+1 be integers. char(K)=0char(K)=0. q=dnq=\lfloor\frac{d}{n}\rfloor, a=(q+1)nda=(q+1)n-d, b=dnqb=d-nq. Given a general morphism

f:𝒪1(2)𝒪1(d+q)a𝒪1(d+q+1)b,f:\mathcal{O}_{\mathbb{P}^{1}}(2)\rightarrow\mathcal{O}_{\mathbb{P}^{1}}(d+q)^{\oplus a}\bigoplus\mathcal{O}_{\mathbb{P}^{1}}(d+q+1)^{\oplus b},

there is a rational curve CϕnC\xrightarrow{\phi}\mathbb{P}^{n} of degree dd such that f=ϕdϕf=\phi^{*}\circ d\phi for the following list of nn and dd.

  • n=2n=2, 3d253\leq d\leq 25;

  • n=3n=3, 4d174\leq d\leq 17;

  • n=4n=4, 6d126\leq d\leq 12;

  • n=5n=5, 7d97\leq d\leq 9.

Proof: By Theorem 3.1, we need to prove Ψ\Psi is dominant. Since dominance is an open condition, it suffices to show the Jacobian matrix of Ψ\Psi is of full rank at a random point.

As showed in Section 3, Ψ\Psi is represented by the matrix FHFH. We can use Mathematica to symbolically compute FHFH by the syzygy matrix LPLP of the rational curve. Taking the Jacobian JJ^{\prime} of FHFH, we get the matrix representation of the differential dΦd\Phi. Now it suffices to show JJ^{\prime} has full rank at a point. We use the random number generator in Mathematica to create a random numerical matrix LPLP and plug lkijl_{kij} and pkijp_{kij} in the Jacobian JJ^{\prime}. Finally, we use the built-in rank-checking function in Mathematica to compute the rank of JJ^{\prime}. The result shows that JJ^{\prime} has full rank. Thus, Ψ\Psi is surjective at an Zariski open set of K((q+1)a+(q+2)b)(n+1)K^{((q+1)a+(q+2)b)(n+1)}. Therefore, Ψ\Psi is dominant. \Box

To further explain this proof, we show the computation in detail for n=2n=2, d=3d=3.

Example 4.2

Let n=2n=2. d=3d=3. In this case, the ideal of CC is generated by

  • G0=l121p112s3+l111p122s3l121p111s2t+l120p112s2t+l111p121s2t+l110p122s2tl121p110st2l120p111st2+l111p120st2+l110p121st2l120p110t3+l110p120t3G_{0}=-l_{121}p_{112}s^{3}+l_{111}p_{122}s^{3}-l_{121}p_{111}s^{2}t+l_{120}p_{112}s^{2}t+l_{111}p_{121}s^{2}t+l_{110}p_{122}s^{2}t-l_{121}p_{110}st^{2}-l_{120}p_{111}st^{2}+l_{111}p_{120}st^{2}+l_{110}p_{121}st^{2}-l_{120}p_{110}t^{3}+l_{110}p_{120}t^{3}

  • G1=l121p102s3l101p122s3+l121p101s2tl111p121s2tl101p112s2t+l120p102s2tl110p121s2tl100p122s2t+l120p101st2+l111p100st2l101p120st2+l100p121st2+l120p100t3l100p120t3G_{1}=l_{121}p_{102}s^{3}-l_{101}p_{122}s^{3}+l_{121}p_{101}s^{2}t-l_{111}p_{121}s^{2}t-l_{101}p_{112}s^{2}t+l_{120}p_{102}s^{2}t-l_{110}p_{121}s^{2}t-l_{100}p_{122}s^{2}t+l_{120}p_{101}st^{2}+l_{111}p_{100}st^{2}-l_{101}p_{120}st^{2}+l_{100}p_{121}st^{2}+l_{120}p_{100}t^{3}-l_{100}p_{120}t^{3}

  • G2=l111p102s3+l101p112s3l110p102s2t+l111p101s2tl101p111s2t+l110p112s2t+l101p110st2l100p111st2l110p100t3+l100p110t3G_{2}=-l_{111}p_{102}s^{3}+l_{101}p_{112}s^{3}-l_{110}p_{102}s^{2}t+l_{111}p_{101}s^{2}t-l_{101}p_{111}s^{2}t+l_{110}p_{112}s^{2}t+l_{101}p_{110}st^{2}-l_{100}p_{111}st^{2}-l_{110}p_{100}t^{3}+l_{100}p_{110}t^{3}

Solving Equation (1) by Mathematica, we get the explicit expression of Ψ\Psi represented by the elements of FHFH.

  • f1,0=l111l120p100l110l121p100l100l120p110+l100l121p110+l101l110p120l100l111p120f_{1,0}=l_{111}l_{120}p_{100}-l_{110}l_{121}p_{100}-l_{100}l_{120}p_{110}+l_{100}l_{121}p_{110}+l_{101}l_{110}p_{120}-l_{100}l_{111}p_{120}

  • f1,1=l111l120p101l110l121p101l100l121p111+l101l110p121l100l111p121f_{1,1}=l_{111}l_{120}p_{101}-l_{110}l_{121}p_{101}-l_{100}l_{121}p_{111}+l_{101}l_{110}p_{121}-l_{100}l_{111}p_{121}

  • f1,2=l111l120p102l110l121p102l100l121p112+l101l110p122l100l111p122f_{1,2}=l_{111}l_{120}p_{102}-l_{110}l_{121}p_{102}-l_{100}l_{121}p_{112}+l_{101}l_{110}p_{122}-l_{100}l_{111}p_{122}

  • h1,0=l120p101p110+l120p100p111+l100p111p120l100p110p121+l100p101p122h_{1,0}=-l_{120}p_{101}p_{110}+l_{120}p_{100}p_{111}+l_{100}p_{111}p_{120}-l_{100}p_{110}p_{121}+l_{100}p_{101}p_{122}

  • h1,1=l121p101p1102l120p102p110+2l121p102p111+l111p101p112+l100p112p120l111p100p122h_{1,1}=-l_{121}p_{101}p_{110}-2l_{120}p_{102}p_{110}+2l_{121}p_{102}p_{111}+l_{111}p_{101}p_{112}+l_{100}p_{112}p_{120}-l_{111}p_{100}p_{122}

  • h1,2=2l121p102p110l120p102p111+2l111p102p120+l110p102p121l100p112p1212l111p100p122h_{1,2}=-2l_{121}p_{102}p_{110}-l_{120}p_{102}p_{111}+2l_{111}p_{102}p_{120}+l_{110}p_{102}p_{121}-l_{100}p_{112}p_{121}-2l_{111}p_{100}p_{122}

  • h1,3=l121p102p112+l111p101p122l101p112p121l111p101p122+l101p111p122h_{1,3}=-l_{121}p_{102}p_{112}+l_{111}p_{101}p_{122}-l_{101}p_{112}p_{121}-l_{111}p_{101}p_{122}+l_{101}p_{111}p_{122}

Now we take the Jacobian matrix JJ^{\prime} of FHFH. Due to the limited width of the paper, we display the transpose
(l121p110l111p120l121p111l111p121l121p112l111p122p110p121p111p120l101p120l121p100l101p121l121p101l101p122l121p102p101p120p100p121l111p100l101p110l111p101l101p111l111p102l101p112p100p111p101p110l110p120l120p110l110p121l120p111l110p122l120p1120l120p100l100p120l120p101l100p121l120p102l100p1220l100p110l110p100l100p111l110p101l100p112l110p1020l111l120l110l12100l120p111l110p121l100l121l101l12000l100p121l120p101l101l110l100l11100l110p101l100p1110l111l120l110l1210l110p120l120p1100l100l121l101l1200l120p100l100p1200l101l110l100l1110l100p110l110p10000l111l120l110l121000l100l121l101l120000l101l110l100l1110\left(\begin{array}[]{ccccc}l_{121}p_{110}-l_{111}p_{120}&l_{121}p_{111}-l_{111}p_{121}&l_{121}p_{112}-l_{111}p_{122}&p_{110}p_{121}-p_{111}p_{120}&\cdots\\ l_{101}p_{120}-l_{121}p_{100}&l_{101}p_{121}-l_{121}p_{101}&l_{101}p_{122}-l_{121}p_{102}&p_{101}p_{120}-p_{100}p_{121}&\cdots\\ l_{111}p_{100}-l_{101}p_{110}&l_{111}p_{101}-l_{101}p_{111}&l_{111}p_{102}-l_{101}p_{112}&p_{100}p_{111}-p_{101}p_{110}&\cdots\\ l_{110}p_{120}-l_{120}p_{110}&l_{110}p_{121}-l_{120}p_{111}&l_{110}p_{122}-l_{120}p_{112}&0&\cdots\\ l_{120}p_{100}-l_{100}p_{120}&l_{120}p_{101}-l_{100}p_{121}&l_{120}p_{102}-l_{100}p_{122}&0&\cdots\\ l_{100}p_{110}-l_{110}p_{100}&l_{100}p_{111}-l_{110}p_{101}&l_{100}p_{112}-l_{110}p_{102}&0&\cdots\\ l_{111}l_{120}-l_{110}l_{121}&0&0&l_{120}p_{111}-l_{110}p_{121}&\cdots\\ l_{100}l_{121}-l_{101}l_{120}&0&0&l_{100}p_{121}-l_{120}p_{101}&\cdots\\ l_{101}l_{110}-l_{100}l_{111}&0&0&l_{110}p_{101}-l_{100}p_{111}&\cdots\\ 0&l_{111}l_{120}-l_{110}l_{121}&0&l_{110}p_{120}-l_{120}p_{110}&\cdots\\ 0&l_{100}l_{121}-l_{101}l_{120}&0&l_{120}p_{100}-l_{100}p_{120}&\cdots\\ 0&l_{101}l_{110}-l_{100}l_{111}&0&l_{100}p_{110}-l_{110}p_{100}&\cdots\\ 0&0&l_{111}l_{120}-l_{110}l_{121}&0&\cdots\\ 0&0&l_{100}l_{121}-l_{101}l_{120}&0&\cdots\\ 0&0&l_{101}l_{110}-l_{100}l_{111}&0&\cdots\\ \end{array}\right.

2p110p1222p112p120p111p122p112p12102p102p1202p100p122p102p121p101p12202p100p1122p102p110p101p112p102p1110p110p121p111p1202p110p1222p112p120p111p122p112p121p101p120p100p1212p102p1202p100p122p102p121p101p122p100p111p101p1102p100p1122p102p110p101p112p102p1112l110p122l111p121+2l120p112+l121p1112l121p1122l111p12202l100p122+l101p1212l120p102l121p1012l101p1222l121p10202l100p112l101p111+2l110p102+l111p1012l111p1022l101p1120l111p120l121p110l120p112l110p122l121p112l111p122l121p100l101p120l100p122l120p102l101p122l121p102l101p110l111p100l110p102l100p112l111p102l101p1122l110p1202l120p110l110p121+2l111p120l120p1112l121p110l111p121l121p1112l120p1002l100p120l100p1212l101p120+l120p101+2l121p100l121p101l101p1212l100p1102l110p100l100p111+2l101p110l110p1012l111p100l101p111l111p101)\left.\begin{array}[]{cccc}\cdots&2p_{110}p_{122}-2p_{112}p_{120}&p_{111}p_{122}-p_{112}p_{121}&0\\ \cdots&2p_{102}p_{120}-2p_{100}p_{122}&p_{102}p_{121}-p_{101}p_{122}&0\\ \cdots&2p_{100}p_{112}-2p_{102}p_{110}&p_{101}p_{112}-p_{102}p_{111}&0\\ \cdots&p_{110}p_{121}-p_{111}p_{120}&2p_{110}p_{122}-2p_{112}p_{120}&p_{111}p_{122}-p_{112}p_{121}\\ \cdots&p_{101}p_{120}-p_{100}p_{121}&2p_{102}p_{120}-2p_{100}p_{122}&p_{102}p_{121}-p_{101}p_{122}\\ \cdots&p_{100}p_{111}-p_{101}p_{110}&2p_{100}p_{112}-2p_{102}p_{110}&p_{101}p_{112}-p_{102}p_{111}\\ \cdots&-2l_{110}p_{122}-l_{111}p_{121}+2l_{120}p_{112}+l_{121}p_{111}&2l_{121}p_{112}-2l_{111}p_{122}&0\\ \cdots&2l_{100}p_{122}+l_{101}p_{121}-2l_{120}p_{102}-l_{121}p_{101}&2l_{101}p_{122}-2l_{121}p_{102}&0\\ \cdots&-2l_{100}p_{112}-l_{101}p_{111}+2l_{110}p_{102}+l_{111}p_{101}&2l_{111}p_{102}-2l_{101}p_{112}&0\\ \cdots&l_{111}p_{120}-l_{121}p_{110}&l_{120}p_{112}-l_{110}p_{122}&l_{121}p_{112}-l_{111}p_{122}\\ \cdots&l_{121}p_{100}-l_{101}p_{120}&l_{100}p_{122}-l_{120}p_{102}&l_{101}p_{122}-l_{121}p_{102}\\ \cdots&l_{101}p_{110}-l_{111}p_{100}&l_{110}p_{102}-l_{100}p_{112}&l_{111}p_{102}-l_{101}p_{112}\\ \cdots&2l_{110}p_{120}-2l_{120}p_{110}&l_{110}p_{121}+2l_{111}p_{120}-l_{120}p_{111}-2l_{121}p_{110}&l_{111}p_{121}-l_{121}p_{111}\\ \cdots&2l_{120}p_{100}-2l_{100}p_{120}&-l_{100}p_{121}-2l_{101}p_{120}+l_{120}p_{101}+2l_{121}p_{100}&l_{121}p_{101}-l_{101}p_{121}\\ \cdots&2l_{100}p_{110}-2l_{110}p_{100}&l_{100}p_{111}+2l_{101}p_{110}-l_{110}p_{101}-2l_{111}p_{100}&l_{101}p_{111}-l_{111}p_{101}\\ \end{array}\right)

We use the random number generator in Mathematica to create a random numerical matrix LPLP and plug lkijl_{kij} and pkijp_{kij} in the Jacobian JJ^{\prime}. Finally, we use the built-in rank-checking function in Mathematica to compute the rank of this numerical matrix and we get 77. Hence, this matrix has full rank. Therefore, Ψ\Psi is dominant.

Remark 4.3

In fact, our Mathematica program can compute the Jacobian matrix of Ψ\Psi in symbolic form for each given nn and dd . However, due to the memory limitation of our personal computer, we cannot compute the rank of this symbolic Jacobian matrix. Instead, we numerically compute its rank at some random point. Consequently, we limit our results in characteristic 0. For those with access to a workstation or high-performance computing resources, this program should yield results for the general characteristic case.

Now we use Mathematica computation to prove Theorem 1.3. We restate it for convenience.

Theorem 4.4 (Restatement of Theorem 1.3)

If n=4,5,6,7,8n=4,5,6,7,8, then there exists a morphism f:𝒪1(2)𝒪1(n+2)(n1)𝒪1(n+3)f:\mathcal{O}_{\mathbb{P}^{1}}(2)\to\mathcal{O}_{\mathbb{P}^{1}}(n+2)^{\oplus(n-1)}\oplus\mathcal{O}_{\mathbb{P}^{1}}(n+3) such that there is no rational curve CϕnC\xrightarrow{\phi}\mathbb{P}^{n} of degree n+1n+1 for which f=dϕϕf=d\phi\circ\phi^{*}.

Proof: By Theorem 3.1, it suffices to prove Ψ\Psi is not dominant. Notice that the argument in Theorem 3.1 works for a field KK of general characteristic. However, since non-surjectivity is a closed condition, if we can check Ψ\Psi is not surjective for a general characteristic, then it is not surjective for all characteristic.

We use the built-in rank function in Mathematica to compute the rank of the matrix

M=(tF1sF1tFn1sFn1).M=\begin{pmatrix}-tF_{1}&sF_{1}\\ \vdots&\vdots\\ -tF_{n-1}&sF_{n-1}\\ \end{pmatrix}.

We find that for n=4,5,6,7,8n=4,5,6,7,8, rank(M)(M)=1. Hence there is linear relation between the rows of MM. This shows there is first order relations in FHFH. Therefore, Ψ\Psi is not surjective. \Box

References

  • [1] Izzet Coskun, Eric Larson, and Isabel Vogt. Normal bundles of rational curves in grassmannians, 2024.
  • [2] Izzet Coskun and Eric Riedl. Normal bundles of rational curves in projective space. Mathematische Zeitschrift, 288(3-4):803–827, 2018.
  • [3] Wolfram Research, Inc. Mathematica, Version 14.1. Champaign, IL, 2024.
  • [4] Eric Larson and Isabel Vogt. Interpolation for brill–noether curves. Forum of Mathematics, Pi, 11:e25, 2023.
  • [5] Sayanta Mandal. On the loci of morphisms from 1\mathbb{P}^{1} to g(r,n)g(r,n) with fixed splitting type of the restricted universal sub-bundle or quotient bundle, 2020.
  • [6] L. Ramella. La stratification du schéma de hilbert des courbes rationnelles de pnp^{n} par le fibré tangent restreint. C. R. Acad. Sci. Paris Sér. I Math., 311(3):181–184, 1990.
  • [7] Giovanni Sacchiero. Fibrati normali di curve razionali dello spazio proiettivo. Annali di Matematica Pura ed Applicata, 120:105–113, 1979.