This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The symplectic characteristic polynomial

Kohei Ichizuka Department of Mathematics, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama 338-8570, Japan [email protected]
Abstract.

We introduce the notion of the symplectic characteristic polynomial of an endomorphism of a symplectic vector space. This is a polynomial in two variables and can be considered as a generalization of the characteristic polynomial of the endomorphism in the context of symplectic linear algebra. One of the goal of this paper is to prove that the symplectic characteristic polynomial is a complete symplectic invariant of symplectically diagonalizable endomorphisms.

Key words and phrases:
Characteristic polynomial, Symplectic similarity, Symplectically diagonalizability
2020 Mathematics Subject Classification:
15A20, 15A21

1. Introduction

Let (V,ω)(V,\omega) be a finite dimensional symplectic vector space over a field 𝕂\mathbb{K}. It is a fundamental question to classify endomorphisms of VV with respect to symplectic similarity. Endomorphisms which are self-adjoint, anti-self-adjoint or preserve the symplectic form ω\omega have been classified when the characteristic of 𝕂\mathbb{K} is not 22 (see [5, Theorem 4], [1, Theorem 2.2], [4, Section 9]). Such an endomorphism is symplectically normal (Definition 2.1 (2)) and the classification of symplectically normal endomorphisms is not known even though they are diagonalizable. An endomorphism is symplectically diagonalizable if and only if the endomorprhism is symplectically normal and diagonalizable ([2, Theorem 13]). A motivation of the paper is to classify symplectically diagonalizable endomorphisms up to symplectic similarity.

Let us recall several facts on the characteristic polynomial of an endomorphism MM of a vector space VV. Cayley-Hamilton theorem implies that VV admits the direct sum decomposition into the generalized eigenspaces of MM when all eigenvalues of MM are in 𝕂\mathbb{K}. The characteristic polynomial is a complete invariant of diagonalizable endomorphisms. Moreover, if the number of eigenvalues of MM is equal to the dimension of VV, then MM is diagonalizable.

Now we consider a symplectic vector space (V,ω)(V,\omega). Let MM be an endomorphism of VV. Suppose that MM is symplectically normal and that all eigenvalues of MM are in 𝕂\mathbb{K}. It can be proved by using the same idea in ([3, Lemma 1]) that VV is the symplectically orthogonal sum of the symplectic subspaces associated with two eigenvalues of MM. This implies that we have projections onto these subspaces. On the other hand, if one considers the endomorphism (MsE)(MωsE)(M-sE)(M^{*\omega}-sE) of the 𝕂(s)\mathbb{K}(s)-vector space V𝕂𝕂(s)V\otimes_{\mathbb{K}}\mathbb{K}(s), we have other projections, whose images are the generalized eigenspaces of (MsE)(MωsE)({M}-sE)({M}^{*\omega}-sE). Here EE is the identity map and 𝕂(s)\mathbb{K}(s) is the field of rational functions over 𝕂\mathbb{K}.

In this paper, we show that these generalized eigenspaces and projections correspond to the previous symplectic subspaces and projections respectively. We introduce the symplectic characteristic polynomial as the Pfaffian of (MsE)ωtω(M-sE)^{*}\omega-t\omega. We prove that the symplectic characteristic polynomial is a complete invariant of symplectically diagonalizable endomorphisms up to symplectic similarity. Moreover, we give a sufficient condition for symplectically diagonalizability.

The paper is organized as follows. Section 2 contains several fundamental facts on symplectic linear algebra. In Section 3, we define the symplectic characteristic polynomial of an endomorphism and prove several properties. In Section 4, we study the characteristic polynomial of the endomorphism associated with two endomorphisms MM, NN of a (not necessary symplectic) vector space. In Section 5, we prove that the symplectic characteristic polynomial is a complete invariant of symplectically diagonalizable endomorphisms and give a sufficient condition on symplectically diagonalizability.

2. Preliminaries

We first introduce the following notation.

  • We denote the field of rational functions over 𝕂\mathbb{K} by 𝕂(s)\mathbb{K}(s).

  • The set of endomorphisms of a vector space VV is denoted by End(V)\operatorname{End}(V). By abuse of notation, EE denotes the identity map of VV and OO denotes the zero map of VV.

  • The characteristic polynomial of an endomorphism MM is denoted by φM(t)\varphi_{M}(t).

  • Let M,NEnd(V)M,N\in\operatorname{End}(V) and λ,μ𝕂\lambda,\mu\in\mathbb{K}. We define the subspaces VM(λ)V_{M}(\lambda), V~M(λ)\tilde{V}_{M}(\lambda) by

    VM(λ)\displaystyle V_{M}(\lambda) =Ker(MλE),\displaystyle=\operatorname{Ker}(M-\lambda E),
    V~M(λ)\displaystyle\tilde{V}_{M}(\lambda) =Ker(MλE)nwhere dim𝕂V=n.\displaystyle=\operatorname{Ker}(M-\lambda E)^{n}\ \text{where $\dim_{\mathbb{K}}V=n$}.

    The space VM(λ)V_{M}(\lambda) (resp. V~M(λ)\tilde{V}_{M}(\lambda)) is an eigenspace (resp. a generalized eigenspace ) if it is not zero.

    We also define the subspaces VM,N(λ,μ)V_{M,N}(\lambda,\mu), V~M,N(λ,μ)\tilde{V}_{M,N}(\lambda,\mu) of VV by

    VM,N(λ,μ)\displaystyle V_{M,N}(\lambda,\mu) =(VM(λ)VN(μ))+(VM(μ)VN(λ)),\displaystyle=\left(V_{M}(\lambda)\cap V_{N}(\mu)\right)+\left(V_{M}(\mu)\cap V_{N}(\lambda)\right),
    V~M,N(λ,μ)\displaystyle\tilde{V}_{M,N}(\lambda,\mu) =(V~M(λ)V~N(μ))+(V~M(μ)V~N(λ)).\displaystyle=\left(\tilde{V}_{M}(\lambda)\cap\tilde{V}_{N}(\mu)\right)+\left(\tilde{V}_{M}(\mu)\cap\tilde{V}_{N}(\lambda)\right).
  • Let MEnd(V)M\in\operatorname{End}(V) and ω\omega a bilinear form. Let 𝔽\mathbb{F} be a extension field of 𝕂\mathbb{K}. We use the same letter MM (resp. ω\omega) for the natural extension of MM (resp. ω\omega) to the endomorphism (resp. the bilinear form) of V𝕂𝔽V\otimes_{\mathbb{K}}\mathbb{F}.

Now we recall several fundamental facts on symplectic linear algebra.

Let VV be a vector space over a field 𝕂\mathbb{K} and let dim𝕂V=2n\dim_{\mathbb{K}}V=2n. A bilinear form ω\omega of VV is said to be symplectic if

  • ω\omega is alternating, that is, ω(v,v)=0\omega(v,v)=0 for all vVv\in V and

  • ω\omega is non-degenerate, that is, a linear map

    ω:VVvω(,v)\omega^{\flat}:V\rightarrow V^{*}\quad v\mapsto\omega(\cdot,v)

    is an isomorphism.

We call (V,ω)(V,\omega) a symplectic vector space. A representation matrix of an alternating matrix with respect to some bases is anti-symmetric and the diagonal entries are zero. This matrix has determinant zero when the size of the matrix is odd and a symplectic vector space must be even-dimensional.

The set of automorphisms which preserve ω\omega is denoted by Sp(V,ω)\operatorname{Sp}(V,\omega). Since the Pfaffian of a matrix which represents ω\omega is not zero, any automorphism in Sp(V,ω)\operatorname{Sp}(V,\omega) has determinant 11.

Let (V,ω)(V,\omega) be a symplectic vector space and let MEnd(V)M\in\operatorname{End}(V). The symplectic adjoint endomorphism MωM^{*\omega} of MM is an endomorphism of VV defined by

Mω=(ω)1MωM^{*\omega}=(\omega^{\flat})^{-1}M^{*}\omega^{\flat}

where MM^{*} is the dual map of MM. It is easily shown that the following properties hold for any M,NEnd(V)M,N\in\operatorname{End}(V).

  • ω(Mv,w)=ω(v,Mωw)\omega(Mv,w)=\omega(v,M^{*\omega}w) for all v,wVv,w\in V.

  • MSp(V,ω)M\in\operatorname{Sp}(V,\omega) if and only if Mω=M1M^{*\omega}=M^{-1}.

  • (Mω)ω=M.(M^{*\omega})^{*\omega}=M.

  • (MN)ω=NωMω(MN)^{*\omega}=N^{*\omega}M^{*\omega}.

  • The characteristic polynomial of MM is equal to that of MωM^{*\omega}.

Definition 2.1.
  • (1)

    An endomorphism MM is said to be symplectically similar to an endomorphism NN if there exists PSp(V,ω)P\in\operatorname{Sp}(V,\omega) such that P1MP=NP^{-1}MP=N.

  • (2)

    An endomorphism MM is said to be symplectically normal if MMω=MωMMM^{*\omega}=M^{*\omega}M.

Let WW be a subspace of VV. We define the symplectically orthogonal subspace WωW^{\perp\omega} by

Wω={vV|ω(v,w)=0wW}.W^{\perp\omega}=\{v\in V|\ \omega(v,w)=0\quad\forall w\in W\}.

As in the case of an inner product, we have the following.

Proposition 2.2.

Let MEnd(V)M\in\operatorname{End}(V) and let WW be a subspace of VV. Then

  • (1)(1)

    dimW+dimWω=dimV\dim W+\dim W^{\perp\omega}=\dim V.

  • (2)(2)

    (Wω)ω=W(W^{\perp\omega})^{\perp\omega}=W.

  • (3)(3)

    KerM=(ImMω)ω\operatorname{Ker}M=(\operatorname{Im}M^{*\omega})^{\perp\omega}.

  • (4)(4)

    M(W)WM(W)\subset W implies that Mω(Wω)Wω.M^{*\omega}(W^{\perp\omega})\subset W^{\perp\omega}.

  • (5)(5)

    If λμ\lambda\neq\mu, then V~M(λ)V~Mω(μ)ω.\tilde{V}_{M}(\lambda)\subset\tilde{V}_{M^{*\omega}}(\mu)^{\perp\omega}.

Proof.

(1)(1) It follows that Wω=KerιWωW^{\perp\omega}=\operatorname{Ker}\iota_{W}^{*}\omega^{\flat} where ιW\iota_{W} is the inclusion. Since a linear map ιWω:VW\iota_{W}^{*}\omega^{\flat}:V\rightarrow W^{*} is surjective, we have (1)(1). (2)(2) It is clear that W(Wω)ωW\subset(W^{\perp\omega})^{\perp\omega}. Applying (1)(1) for WωW^{\perp\omega}, we have dim(Wω)ω=dimW\dim(W^{\perp\omega})^{\perp\omega}=\dim W. Hence, we get (2)(2). (3)(3) It is easy to see that KerM(ImMω)ω\operatorname{Ker}M\subset(\operatorname{Im}M^{*\omega})^{\perp\omega}. Let v0(ImMω)ωv_{0}\in(\operatorname{Im}M^{*\omega})^{\perp\omega}. Then ω(Mv0,v)=ω(v0,Mωv)=0\omega(Mv_{0},v)=\omega(v_{0},M^{*\omega}v)=0 for all vVv\in V. This implies that v0KerMv_{0}\in\operatorname{Ker}M. Hence, we have (3)(3). The items (4)(4) are easily shown. (5)(5) Suppose that λμ\lambda\neq\mu. Since (MμE)2n|V~M(λ)(M-\mu E)^{2n}|_{\tilde{V}_{M}(\lambda)} is an automorphism, V~M(λ)=Im(MμE)2nV~M(λ)Im(MμE)2n\tilde{V}_{M}(\lambda)=\operatorname{Im}(M-\mu E)^{2n}\cap\tilde{V}_{M}(\lambda)\subset\operatorname{Im}(M-\mu E)^{2n}. Therefore, by (2)(2) and (3)(3), we get (5)(5). ∎

A subspace WW of VV is said to be

  • symplectic if WWω={0}W\cap W^{\perp\omega}=\{0\},

  • isotropic if WWωW\subset W^{\perp\omega},

  • coisotropic if WωWW^{\perp\omega}\subset W,

  • Lagrangian if W=WωW=W^{\perp\omega}.

Since (Wω)ω=W(W^{\perp\omega})^{\perp\omega}=W, we have that WW is symplectic if and only if WωW^{\perp\omega} is symplectic.

The item (1)(1) in Proposition 2.2 shows that if WW is isotropic, then dim𝕂Wn\dim_{\mathbb{K}}W\leq n and that WW is Lagrangian if and only if WW is isotropic and dim𝕂W=n\dim_{\mathbb{K}}W=n.

Proposition 2.3.

Let SEnd(V)S\in\operatorname{End}(V). Suppose that Sω=SS^{*\omega}=S. Then V~S(λ)\tilde{V}_{S}(\lambda) is a symplectic subspace of (V,ω)(V,\omega).

Proof.

It follows from the item (2)(2) and (3)(3) in Proposition 2.2 that V~S(λ)ω=Im(SλE)2n\tilde{V}_{S}(\lambda)^{\perp\omega}=\operatorname{Im}(S-\lambda E)^{2n}. This implies that V~S(λ)V~S(λ)ω={0}\tilde{V}_{S}(\lambda)\cap\tilde{V}_{S}(\lambda)^{\perp\omega}=\{0\}. ∎

Lemma 2.4.

Let MEnd(V)M\in\operatorname{End}(V) and let W=V~M,Mω(λ,μ)W=\tilde{V}_{{M},{M}^{*\omega}}(\lambda,\mu). Suppose that λμ\lambda\neq\mu and that WW is a symplectic subspace of (V,ω)(V,\omega). Then V~M(λ)V~Mω(μ)\tilde{V}_{M}(\lambda)\cap\tilde{V}_{M^{*\omega}}(\mu), V~M(μ)V~Mω(λ)\tilde{V}_{M}(\mu)\cap\tilde{V}_{M^{*\omega}}(\lambda) are Lagrangian subspaces of (V,ω)(V,\omega).

Proof.

The item (5)(5) in Proposition 2.2 gives that V~M(λ)V~Mω(μ)\tilde{V}_{M}(\lambda)\cap\tilde{V}_{M^{*\omega}}(\mu), V~M(λ)V~Mω(μ)\tilde{V}_{M}(\lambda)\cap\tilde{V}_{M^{*\omega}}(\mu) are isotropic subspaces of (W,ω|W)(W,\omega|_{W}). Since V~M(λ)V~M(μ)={0}\tilde{V}_{M}(\lambda)\cap\tilde{V}_{M}(\mu)=\{0\}, we have

dim𝕂(V~M(λ)V~Mω(μ))=dim𝕂(V~M(μ)V~Mω(λ))=12dim𝕂W.\dim_{\mathbb{K}}(\tilde{V}_{M}(\lambda)\cap\tilde{V}_{M^{*\omega}}(\mu))=\dim_{\mathbb{K}}(\tilde{V}_{M}(\mu)\cap\tilde{V}_{M^{*\omega}}(\lambda))=\frac{1}{2}\dim_{\mathbb{K}}W.

Therefore, V~M(λ)V~Mω(μ)\tilde{V}_{M}(\lambda)\cap\tilde{V}_{M^{*\omega}}(\mu), V~M(μ)V~Mω(λ)\tilde{V}_{M}(\mu)\cap\tilde{V}_{M^{*\omega}}(\lambda) are Lagrangian subspaces of (W,ω|W)(W,\omega|_{W}). ∎

A basis =(e1,,en,f1,,fn)\mathcal{B}=(e_{1},\dots,e_{n},f_{1},\dots,f_{n}) of VV is said to be symplectic if

ω(ei,ej)=0,ω(fi,fj)=0,ω(ei,fj)=δij,i,j{1,,n}.\omega(e_{i},e_{j})=0,\ \omega(f_{i},f_{j})=0,\ \omega(e_{i},f_{j})=\delta_{ij},\quad i,j\in\{1,\dots,n\}.
Proposition 2.5.

There exists a symplectic basis of (V,ω)(V,\omega).

Proof.

We proof by induction on nn. Since ω\omega is non-degenerate, there exist e1,f1Ve_{1},f_{1}\in V such that ω(e1,f1)=1\omega(e_{1},f_{1})=1. Hence, the assertion holds for n=1n=1. We assume the assertion holds for n1n-1. Let WW be a subspace spanned by e1,f1e_{1},f_{1}. Then WW is symplectic and so is WωW^{\perp\omega}. The induction hypothesis shows that there exists a symplectic basis (e2,,en,f2,,fn)(e_{2},\dots,e_{n},f_{2},\dots,f_{n}) of (Wω,ω|Wω)(W^{\perp\omega},\omega|_{W^{\perp\omega}}). It is clear that (e1,,en,f1,,fn)(e_{1},\dots,e_{n},f_{1},\dots,f_{n}) is a symplectic basis of (V,ω)(V,\omega). ∎

Lemma 2.6.

Let L1,L2L_{1},L_{2} be Lagrangian subspaces of (V,ω)(V,\omega). Suppose that L1L2={0}L_{1}\cap L_{2}=\{0\} and (e1,,en)(e_{1},\dots,e_{n}) is a basis of L1L_{1}. Then there exists a basis (f1,,fn)(f_{1},\dots,f_{n}) of L2L_{2} such that (e1,,en,f1,,fn)(e_{1},\dots,e_{n},f_{1},\dots,f_{n}) is a symplectic basis of (V,ω)(V,\omega).

Proof.

The condition L1L2={0}L_{1}\cap L_{2}=\{0\} implies that there exist λ1,,λnV\lambda_{1},\dots,\lambda_{n}\in V^{*} such that λi(ej)=δij\lambda_{i}(e_{j})=\delta_{ij} and that λi|L2=0.\ \lambda_{i}|_{L_{2}}=0. Since ω\omega is non-degenerate, there exists fiVf_{i}\in V such that λi=ω(fi)\lambda_{i}=\omega^{\flat}(f_{i}). It follows from λi|L2=0\lambda_{i}|_{L_{2}}=0 that fi(L2)ω=L2f_{i}\in(L_{2})^{\perp\omega}=L_{2}. It is clear that (e1,,en,f1,,fn)(e_{1},\dots,e_{n},f_{1},\dots,f_{n}) is a symplectic basis. ∎

Let \mathcal{B} be a symplectic basis of (V,ω)(V,\omega). Then the matrix [ω][\omega]_{\mathcal{B}} which represents ω\omega with respect to \mathcal{B} is

[ω]=(OEnEnO)[\omega]_{\mathcal{B}}=\left(\begin{array}[]{cc}O&E_{n}\\ -E_{n}&O\end{array}\right)

where EnE_{n} is the identity matrix of order nn and OO is the zero matrix. If MEnd(V)M\in\operatorname{End}(V) is represented by

[M]=(AnBnCnDn)[M]_{\mathcal{B}}=\left(\begin{array}[]{cc}A_{n}&B_{n}\\ C_{n}&D_{n}\end{array}\right)

where AnA_{n}, BnB_{n}, CnC_{n}, DnD_{n} are matrices of order nn, then MωM^{*\omega} is represented by

[Mω]=[ω]1[M]T[ω]=(DnTBnTCnTAnT).[M^{*\omega}]_{\mathcal{B}}=[\omega]_{\mathcal{B}}^{-1}[M]_{\mathcal{B}}^{T}[\omega]_{\mathcal{B}}=\left(\begin{array}[]{cc}D_{n}^{T}&-B_{n}^{T}\\ -C_{n}^{T}&A_{n}^{T}\end{array}\right).

Here TT denotes the transpose of a matrix. Hence, if dim𝕂V=2\dim_{\mathbb{K}}V=2, then MMω=(detM)EMM^{*\omega}=(\det M)E, M+Mω=(trM)EM+M^{*\omega}=(\operatorname{tr}M)E.

Let PEnd(V)P\in\operatorname{End}(V) and let =(e1,,en,f1,,fn)\mathcal{B}=(e_{1},\dots,e_{n},f_{1},\dots,f_{n}) be a symplectic basis of (V,ω)(V,\omega). Then (Pe1,,Pen,Pf1,,Pfn)(Pe_{1},\dots,Pe_{n},Pf_{1},\dots,Pf_{n}) is a symplectic basis if and only if PSp(V,ω)P\in\operatorname{Sp}(V,\omega). This means that

Proposition 2.7.

An endomorphism MM is symplectically similar to an endomorphism NN if and only if there exist symplectic bases \mathcal{B}, \mathcal{B^{\prime}} such that [M]=[N][M]_{\mathcal{B}}=[N]_{\mathcal{B^{\prime}}}.

An endomorphism MM is said to be symplectically diagonalizable if there exists a symplectic basis consisting of eigenvectors of MM. It is easy to see that if an endomorphism MM is symplectically diagonalizable, then MMω=MωMMM^{*\omega}=M^{*\omega}M and MM is diagonalizable. Theorem 5.4 shows that the converse is true.

Let MEnd(V).M\in\operatorname{End}(V). We define the bilinear form ωM\omega_{M} of VV by

ωM(v,w)=ω(v,Mw)v,wV.\omega_{M}(v,w)=\omega(v,Mw)\quad v,w\in V.

It is easy to see that ωMMω=(Mω)ω\omega_{MM^{*\omega}}=(M^{*\omega})^{*}\omega. We remark that ωMMω\omega_{MM^{*\omega}}, ωM+Mω\omega_{M+M^{*\omega}} are alternating for any MEnd(V)M\in\operatorname{End}(V).

Let AEnd(V)A\in\operatorname{End}(V) and assume that ωA\omega_{A} is alternating. Let (e1,,en,f1,,fn)(e_{1},\dots,e_{n},f_{1},\dots,f_{n}) be a symplectic basis. Set (v1,,v2n)=(e1,f1,,en,fn)(v_{1},\dots,v_{2n})=(e_{1},f_{1},\dots,e_{n},f_{n}). Define the matrix ΩA\Omega_{A} by ΩA=(ωA(vi,vj))i,j\Omega_{A}=(\omega_{A}(v_{i},v_{j}))_{i,j}. Since detP=1\det P=1 for PSp(V,ω)P\in\operatorname{Sp}(V,\omega), the Pfaffian pf(ΩA)\operatorname{pf}(\Omega_{A}) does not depend on the choice of symplectic bases. We denote pf(ΩA)\operatorname{pf}(\Omega_{A}) by pfω(ωA)\operatorname{pf}_{\omega}(\omega_{A}). It is easily shown that pfω(ω)=1\operatorname{pf}_{\omega}(\omega)=1.

Definition 2.8.

Let AEnd(V)A\in\operatorname{End}(V) and assume that ωA\omega_{A} is alternating. The polynomial ψA(t)\psi_{A}(t) is defined by ψA(t)=pfω(ωAtE)\psi_{A}(t)=\operatorname{pf}_{\omega}(\omega_{A-tE}),

Proposition 2.9.

Let AEnd(V)A\in\operatorname{End}(V) and assume that ωA\omega_{A} is alternating. The polynomial ψA(t)\psi_{A}(t) has the following properties.

  • (1)(1)

    The square ψA(t)2\psi_{A}(t)^{2} is the characteristic polynomial φA(t)\varphi_{A}(t).

  • (2)(2)

    The polynomial ψA(t)\psi_{A}(t) is an invariant of AA under symplectic similarity transformation, that is, ψP1AP(t)=ψA(t)\psi_{P^{-1}AP}(t)=\psi_{A}(t) for PSp(V,ω)P\in\operatorname{Sp}(V,\omega).

  • (3)(3)

    Let ψA(t)=a0++an1tn1+antn\psi_{A}(t)=a_{0}+\dots+a_{n-1}t^{n-1}+a_{n}t^{n}. Then

    a0=pfω(ωA), 2an1=(1)n1trA,an=(1)n.a_{0}=\operatorname{pf}_{\omega}(\omega_{A}),\ 2a_{n-1}=(-1)^{n-1}\operatorname{tr}{A},\ a_{n}=(-1)^{n}.
  • (4)(4)

    ψA(A)=O.\psi_{A}(A)=O.

Proof.

It is clear from the definition of ψA(t)\psi_{A}(t) that (1)(1) holds.

Let PSp(V,ω)P\in\operatorname{Sp}(V,\omega). Since ωP1AP=Pω\omega_{P^{-1}AP}=P^{*}\omega, we get that ωP1AP\omega_{P^{-1}AP} is alternating. The item (1)(1) implies that ψP1AP(t)2=ψA(t)2\psi_{P^{-1}AP}(t)^{2}=\psi_{A}(t)^{2}. Hence, we have (2)(2).

It follows from [5, Theorem 3] that there exists a symplectic basis \mathcal{B} such that

[A]=(DnTOODn)[A]_{\mathcal{B}}=\left(\begin{array}[]{cccc}D_{n}^{T}&O\\ O&D_{n}\end{array}\right)

where DnD_{n} is a matrix of order nn. Then

[ωAtE]=[ω][AtE]=(ODntEn(DntEn)TO).[\omega_{A-tE}]_{\mathcal{B}}=[\omega]_{\mathcal{B}}[A-tE]_{\mathcal{B}}=\left(\begin{array}[]{cccc}O&D_{n}-tE_{n}\\ -(D_{n}-tE_{n})^{T}&O\end{array}\right).

This implies that pf([ωAtE])=(1)n(n1)2det(DntEn)\operatorname{pf}([\omega_{A-tE}]_{\mathcal{B}})=(-1)^{\frac{n(n-1)}{2}}\det(D_{n}-tE_{n}). Hence, we have ψA(t)=det(DntEn).\psi_{A}(t)=\det(D_{n}-tE_{n}). Since detDn=ψA(0)=pfω(ωA)\det D_{n}=\psi_{A}(0)=\operatorname{pf}_{\omega}(\omega_{A}) and 2trDn=trA2\operatorname{tr}D_{n}=\operatorname{tr}A, we get (3)(3). Cayley-Hamilton theorem gives that ψA(Dn)=O\psi_{A}(D_{n})=O. Therefore,

[ψA(A)]\displaystyle[\psi_{A}(A)]_{\mathcal{B}} =(ψA(Dn)TOOψA(Dn))=O,\displaystyle=\left(\begin{array}[]{cc}\psi_{A}(D_{n})^{T}&O\\ O&\psi_{A}(D_{n})\end{array}\right)=O,

which completes the proof. ∎

Proposition 2.10.

Let MEnd(V)M\in\operatorname{End}(V). Then we have ψMMω(t)=ψMωM(t)=pfω(Mωtω)\psi_{MM^{*\omega}}(t)=\psi_{M^{*\omega}M}(t)=\operatorname{pf}_{\omega}(M^{*}\omega-t\omega) and ψMMω(0)=detM\psi_{MM^{*\omega}}(0)=\det M.

Proof.

By the item (2)(2) in Proposition 2.9, we get ψMMω(t)2=ψMωM(t)2\psi_{MM^{*\omega}}(t)^{2}=\psi_{M^{*\omega}M}(t)^{2}. The item (4)(4) in Proposition 2.9 shows that the coefficient of tnt^{n} in ψMMω(t)\psi_{MM^{*\omega}}(t) and the coefficient of tnt^{n} in ψMωM(t)\psi_{M^{*\omega}M}(t) are (1)n(-1)^{n}. Hence, ψMMω(t)=ψMωM(t)\psi_{MM^{*\omega}}(t)=\psi_{M^{*\omega}M}(t). Since ωMωM=Mω\omega_{M^{*\omega}M}=M^{*}\omega, we have ψMωM(t)=pfω(Mωtω)\psi_{M^{*\omega}M}(t)=\operatorname{pf}_{\omega}(M^{*}\omega-t\omega). This implies that ψMMω(0)=detMpfω(ω)=detM\psi_{MM^{*\omega}}(0)=\det M\cdot\operatorname{pf}_{\omega}(\omega)=\det M. ∎

3. The symplectic characteristic polynomial

Let (V,ω)(V,\omega) be a 2n2n-dimensional symplectic vector space over a field 𝕂\mathbb{K}.

Definition 3.1.

The symplectic characteristic polynomial φMω(s,t)\varphi_{M}^{\omega}(s,t) of an endomorphism MM of (V,ω)(V,\omega) is defined by

φMω(s,t)=ψ(MsE)(MωsE)(t).\varphi^{\omega}_{M}(s,t)=\psi_{({M}-sE)({M}^{*\omega}-sE)}(t).

Here ψ(MsE)(MωsE)(t)\psi_{({M}-sE)({M}^{*\omega}-sE)}(t) is a polynomial defined in Definition 2.8.

Remark 3.2.

It follows from Proposition 2.10 that

(3.1) ψ(MsE)(MωsE)(t)=ψ(MωsE)(MsE)(t)=pfω(MsE)ωtω).\psi_{({M}-sE)({M}^{*\omega}-sE)}(t)=\psi_{(M^{*\omega}-sE)(M-sE)}(t)=\operatorname{pf}_{\omega}(M-sE)^{*}\omega-t\omega).
Remark 3.3.

The definition above is motivated by the following example. Let dim𝕂V=4\dim_{\mathbb{K}}V=4 and MEnd(V)M\in\operatorname{End}(V). Assume that MM has four distinct eigenvalues and that MM is symplectically diagonalizable, that is, there exists a symplectic basis \mathcal{B} such that [M][M]_{\mathcal{B}} is a diagonal matrix diag(λ1,λ2,λ3,λ4)\operatorname{diag}(\lambda_{1},\lambda_{2},\lambda_{3},\lambda_{4}). Define the subgroup GG of the symmetric group 𝔖4\mathfrak{S}_{4} as follows: An element σ𝔖4\sigma\in\mathfrak{S}_{4} is in GG if there exists a symplectic basis \mathcal{B}^{\prime} such that [M]=diag(λσ(1),λσ(2),λσ(3),λσ(4))[M]_{\mathcal{B}^{\prime}}=\operatorname{diag}(\lambda_{\sigma(1)},\lambda_{\sigma(2)},\lambda_{\sigma(3)},\lambda_{\sigma(4)}). Since trMMω=λ1λ3+λ2λ4\operatorname{tr}MM^{*\omega}=\lambda_{1}\lambda_{3}+\lambda_{2}\lambda_{4} is independent on the choice of symplectic bases, GG consists of eight elements

(12341234),(12342341),(12343412),(12344123),\displaystyle\left(\begin{array}[]{cccc}1&2&3&4\\ 1&2&3&4\end{array}\right),\ \left(\begin{array}[]{cccc}1&2&3&4\\ 2&3&4&1\end{array}\right),\ \left(\begin{array}[]{cccc}1&2&3&4\\ 3&4&1&2\end{array}\right),\ \left(\begin{array}[]{cccc}1&2&3&4\\ 4&1&2&3\end{array}\right),
(12341432),(12342143),(12343214),(12344321),\displaystyle\left(\begin{array}[]{cccc}1&2&3&4\\ 1&4&3&2\end{array}\right),\ \left(\begin{array}[]{cccc}1&2&3&4\\ 2&1&4&3\end{array}\right),\ \left(\begin{array}[]{cccc}1&2&3&4\\ 3&2&1&4\end{array}\right),\ \left(\begin{array}[]{cccc}1&2&3&4\\ 4&3&2&1\end{array}\right),

which implies that GG is isomorphic to the dihedral group of square. Therefore, we find that {{λ1,λ3},{λ2,λ4}}\{\{\lambda_{1},\lambda_{3}\},\{\lambda_{2},\lambda_{4}\}\} is independent on the choice of symplectic bases. This set determines uniquely the polynomial

p(s,t)={(λ1s)(λ3s)t}{(λ2s)(λ4s)t}.p(s,t)=\{(\lambda_{1}-s)(\lambda_{3}-s)-t\}\{(\lambda_{2}-s)(\lambda_{4}-s)-t\}.

On the other hand,

[(MsE)(MωsE)]\displaystyle[({M}-sE)({M}^{*\omega}-sE)]_{\mathcal{B}}
=\displaystyle= diag((λ1s)(λ3s),(λ2s)(λ4s),(λ1s)(λ3s),(λ2s)(λ4s)).\displaystyle\operatorname{diag}((\lambda_{1}-s)(\lambda_{3}-s),(\lambda_{2}-s)(\lambda_{4}-s),(\lambda_{1}-s)(\lambda_{3}-s),(\lambda_{2}-s)(\lambda_{4}-s)).

This implies that φ(MsE)(MωsE)(t)=p(s,t)2.\varphi_{({M}-sE)({M}^{*\omega}-sE)}(t)=p(s,t)^{2}. The item (4)(4) in Proposition 2.9 shows that the coefficient of t2t^{2} in ψ(MsE)(MωsE)(t)\psi_{({M}-sE)({M}^{*\omega}-sE)}(t) is 11. Hence, we have ψ(MsE)(MωsE)(t)=p(s,t).\psi_{({M}-sE)({M}^{*\omega}-sE)}(t)=p(s,t).

We show properties of the symplectic characteristic polynomial.

Proposition 3.4.

Let MEnd(V)M\in\operatorname{End}(V). The symplectic characteristic polynomial φMω(s,t)\varphi_{M}^{\omega}(s,t) satisfies the following.

  • (1)(1)

    The polynomial φMω(0,t)\varphi^{\omega}_{M}(0,t) is the polynomial ψMMω(t)\psi_{MM^{*\omega}}(t).

  • (2)(2)

    The polynomial φMω(s,0)\varphi_{M}^{\omega}(s,0) is the characteristic polynomial φM(s)\varphi_{M}(s).

  • (3)(3)

    φMω(s,(σs)(τs))=ψMMω(στ)++ψM+Mω(σ+τ)(s)n.\varphi_{M}^{\omega}(s,(\sigma-s)(\tau-s))=\psi_{MM^{*\omega}}(\sigma\tau)+\dots+\psi_{M+M^{*\omega}}(\sigma+\tau)(-s)^{n}.

  • (4)(4)

    If φMω(s,(λs)(μs))=0\varphi^{\omega}_{M}(s,(\lambda-s)(\mu-s))=0 for λ,μ𝕂\lambda,\mu\in\mathbb{K}, then λ\lambda, μ\mu are eigenvalues of MM, λμ\lambda\mu is an eigenvalue of MMωMM^{*\omega} and λ+μ\lambda+\mu is an eigenvalue of M+MωM+M^{*\omega}.

  • (5)(5)

    The symplectic characteristic polynomial is an invariant of MM under symplectic similarity transformation and taking the symplectic adjoint, that is, φP1MPω(s,t)=φMω(s,t)\varphi^{\omega}_{P^{-1}MP}(s,t)=\varphi^{\omega}_{M}(s,t) for PSp(V,ω)P\in\operatorname{Sp}(V,\omega) and φMωω(s,t)=φMω(s,t)\varphi^{\omega}_{M^{*\omega}}(s,t)=\varphi^{\omega}_{M}(s,t).

  • (6)(6)

    The square φMω(s,t)2\varphi^{\omega}_{M}(s,t)^{2} is the characteristic polynomial φ(MsE)(MωsE)(t)\varphi_{({M}-sE)({M}^{*\omega}-sE)}(t).

  • (7)(7)

    Let φMω(s,t)=a0(s)++an1(s)tn1+an(s)tn.\varphi^{\omega}_{M}(s,t)=a_{0}(s)+\dots+a_{n-1}(s)t^{n-1}+a_{n}(s)t^{n}. Then

    a0(s)\displaystyle a_{0}(s) =φM(s), 2an1(s)=(1)n1{trMMω2(trM)s+ns2},\displaystyle=\varphi_{M}(s),\ 2a_{n-1}(s)=(-1)^{n-1}\{\operatorname{tr}MM^{*\omega}-2(\operatorname{tr}M)s+ns^{2}\},
    an(s)\displaystyle\ a_{n}(s) =(1)n.\displaystyle=(-1)^{n}.
  • (8)(8)

    φMω(s,(MsE)(MωsE))=O.\varphi^{\omega}_{M}(s,({M}-sE)({M}^{*\omega}-sE))=O.

Proof.

It is clear from the definition that (1)(1) holds. The item (2)(2) follows from Proposition 2.10.

(3)(3) The easy calculation shows that

(MωsE)ω(σs)(τs)ω=ωMMωστEsωM+Mω(σ+τ)E.(M^{*\omega}-sE)^{*}\omega-(\sigma-s)(\tau-s)\omega=\omega_{MM^{*\omega}-\sigma\tau E}-s\omega_{M+M^{*\omega}-(\sigma+\tau)E}.

This implies that

φMω(s,(σs)(τs))=pfω(ωMMωστEsω{M+Mω(σ+τ)E})\displaystyle\varphi_{M}^{\omega}(s,(\sigma-s)(\tau-s))=\operatorname{pf}_{\omega}\left(\omega_{MM^{*\omega}-\sigma\tau E}-s\omega_{\{M+M^{*\omega}-(\sigma+\tau)E\}}\right)
=\displaystyle= ψMMω(στ)++ψM+Mω(σ+τ)(s)n.\displaystyle\psi_{MM^{*\omega}}(\sigma\tau)+\dots+\psi_{M+M^{*\omega}}(\sigma+\tau)(-s)^{n}.

(4)(4) Assume that φMω(s,(λs)(μs))=0\varphi^{\omega}_{M}(s,(\lambda-s)(\mu-s))=0 for λ,μ𝕂\lambda,\mu\in\mathbb{K}. Then by (2)(2), we have φM(λ)=φMω(λ,0)=0\varphi_{M}(\lambda)=\varphi^{\omega}_{M}(\lambda,0)=0. From (3)(3), we get ψMMω(λμ)=0\psi_{MM^{*\omega}}(\lambda\mu)=0, ψM+Mω(λ+μ)=0\psi_{M+M^{*\omega}}(\lambda+\mu)=0. This implies that φMMω(λμ)=0\varphi_{MM^{*\omega}}(\lambda\mu)=0, φM+Mω(λ+μ)=0\varphi_{M+M^{*\omega}}(\lambda+\mu)=0.

(5)(5) Let PSp(V,ω)P\in\operatorname{Sp}(V,\omega). It is easy to see that

(P1MPsE)(P1MωPsE)=P1(MsE)(MωsE)P.(P^{-1}MP-sE)(P^{-1}M^{*\omega}P-sE)=P^{-1}(M-sE)(M^{*\omega}-sE)P.

Hence, from the item (1)(1) in Proposition 2.9, we have φP1MPω(s,t)=φMω(s,t)\varphi^{\omega}_{P^{-1}MP}(s,t)=\varphi^{\omega}_{M}(s,t). The equality (3.1) implies that φMωω(s,t)=φMω(s,t)\varphi^{\omega}_{M^{*\omega}}(s,t)=\varphi^{\omega}_{M}(s,t).

The items (6)(6)(8)(8) follows from the items (2)(2)(4)(4) in Proposition 2.9 respectively. ∎

The symplectic characteristic polynomial φMω(s,t)\varphi^{\omega}_{M}(s,t) of an endomorphism MM is determined by the characteristic polynomial φM(t)\varphi_{M}(t) if Mω=MM^{*\omega}=M, Mω=MM^{*\omega}=-M or Mω=M1M^{*\omega}=M^{-1}. Precisely, we have the following proposition.

Proposition 3.5.

Let MEnd(V)M\in\operatorname{End}(V). Then

φMω(s,t)2={φM(st12)φM(s+t12)if Mω=M,φM2(s2t)if Mω=M,s2nφM+M1(s1(s2t+1))if Mω=M1.\varphi^{\omega}_{M}(s,t)^{2}=\begin{dcases}\varphi_{M}(s-t^{\frac{1}{2}})\varphi_{M}(s+t^{\frac{1}{2}})&\text{if $M^{*\omega}=M$},\\ \varphi_{M^{2}}(s^{2}-t)&\text{if $M^{*\omega}=-M$},\\ s^{2n}\varphi_{M+M^{-1}}(s^{-1}(s^{2}-t+1))&\text{if $M^{*\omega}=M^{-1}$}.\end{dcases}
Proof.

This is verified from the fact that φMω(s,t)2=φ(MsE)(MωsE)(t)\varphi^{\omega}_{M}(s,t)^{2}=\varphi_{({M}-sE)({M}^{*\omega}-sE)}(t). ∎

4. The characteristic polynomial associated with two endomorphisms

We have seen in Proposition 3.4 that the square of the symplectic characteristic polynomial φMω(s,t)\varphi^{\omega}_{M}(s,t) of an endomorphism MM is the characteristic polynomial φ(MsE)(MωsE)(t)\varphi_{({M}-sE)({M}^{*\omega}-sE)}(t). This section is devoted to the study of the characteristic polynomial φ(MsE)(NsE)(t)\varphi_{({M}-sE)({N}-sE)}(t) for any endomorphisms M,NM,N of a (not necessarily symplectic) vector space.

Let VV be a finite dimensional vector space over a field 𝕂\mathbb{K} with dim𝕂V=n\dim_{\mathbb{K}}V=n.

Proposition 4.1.

Let M,NEnd(V)M,N\in\operatorname{End}(V). Then

  • φ(MsE)(NsE)(0)=φM(s)φN(s)\varphi_{({M}-sE)({N}-sE)}({0})=\varphi_{M}(s)\varphi_{N}(s),

  • φ(MsE)(NsE)((σs)(τs))=φMN(στ)++φM+N(σ+τ)(s)n\varphi_{({M}-sE)({N}-sE)}({(\sigma-s)(\tau-s)})=\varphi_{MN}(\sigma\tau)+\dots+\varphi_{M+N}(\sigma+\tau)(-s)^{n}.

Proof.

It is clear from the definition. ∎

Proposition 4.2.

Let M,NEnd(V)M,N\in\operatorname{End}(V). If MM, NN are simultaneously triangularizable, then

φ(MsE)(NsE)(t)=i=1n{(λis)(μis)t},λi,μi𝕂.\varphi_{({M}-sE)({N}-sE)}({t})=\prod_{i=1}^{n}\{(\lambda_{i}-s)(\mu_{i}-s)-t\},\quad\lambda_{i},\mu_{i}\in\mathbb{K}.

In particular, a polynomial (λis)(μis)(\lambda_{i}-s)(\mu_{i}-s) is an eigenvalue of (MsE)(NsE)({M}-sE)({N}-sE).

Proof.

Since MM and NN are simultaneously triangularizable, there exists a basis \mathcal{B} such that

[M]=(λ10λn),[N]=(μ10μn).[M]_{\mathcal{B}}=\left(\begin{array}[]{ccccc}\lambda_{1}&&*\\ &\ddots\\ 0&&\lambda_{n}\end{array}\right),\quad[N]_{\mathcal{B}}=\left(\begin{array}[]{ccccc}\mu_{1}&&*\\ &\ddots\\ 0&&\mu_{n}\end{array}\right).

Therefore, φ(MsE)(NsE)(t)=i=1n{(λis)(μis)t}\varphi_{({M}-sE)({N}-sE)}({t})=\prod_{i=1}^{n}\{(\lambda_{i}-s)(\mu_{i}-s)-t\}. ∎

Proposition 4.3.

Let M,NEnd(V)M,N\in\operatorname{End}(V). Suppose that MN=NMMN=NM. The following are equivalent.

  • (1)(1)

    All eigenvalues of MM and all eigenvalues of NN are in 𝕂\mathbb{K}.

  • (2)(2)

    The characteristic polynomial φ(MsE)(NsE)(t)\varphi_{({M}-sE)({N}-sE)}({t}) is of the form

    φ(MsE)(NsE)(t)=i=1n{(λis)(μis)t},λi,μi𝕂.\varphi_{({M}-sE)({N}-sE)}({t})=\prod_{i=1}^{n}\{(\lambda_{i}-s)(\mu_{i}-s)-t\},\quad\lambda_{i},\mu_{i}\in\mathbb{K}.
Proof.

It is clear that (2)(2) implies (1)(1). If all eigenvalues of MM, NN are in 𝕂\mathbb{K}, then MM, NN are simultaneously triangularizable. Hence, Proposition 4.2 gives (2)(2). ∎

Proposition 4.4.

Let M,NEnd(V)M,N\in\operatorname{End}(V) and λ,μ𝕂\lambda,\mu\in\mathbb{K}. If (λs)(μs)(\lambda-s)(\mu-s) is an eigenvalue of (MsE)(NsE)({M}-sE)({N}-sE), then λμ\lambda\mu is an eigenvalue of MNMN and NMNM and λ+μ\lambda+\mu is an eigenvalue of M+NM+N. Moreover, if the characteristic polynomial of MM is equal to that of NN, then λ,μ\lambda,\mu are eigenvalues of MM and NN.

Proof.

It is easy to see from Proposition 4.1. ∎

By using this proposition, we give an example of endomorphisms MM, NN which satisfy that φ(MsE)(NsE)((λs)(μs))0\varphi_{({M}-sE)({N}-sE)}({(\lambda-s)(\mu-s)})\neq 0 for all λ,μ𝕂\lambda,\mu\in\mathbb{K}.

Example 4.5.

Let V=𝕂2V=\mathbb{K}^{2}. Define two matrices MM, NN by

M=(0100),N=(0010).M=\left(\begin{array}[]{cc}0&1\\ 0&0\\ \end{array}\right),\ N=\left(\begin{array}[]{cccc}0&0\\ 1&0\end{array}\right).

It is easily shown that φM(t)=φN(t)=t2\varphi_{M}(t)=\varphi_{N}(t)=t^{2} and that φM+N(t)=(1t)(1+t).\varphi_{M+N}(t)=(1-t)(1+t). Hence, Proposition 4.4 shows that φ(MsE)(NsE)((λs)(μs))0\varphi_{({M}-sE)({N}-sE)}({(\lambda-s)(\mu-s)})\neq 0 for all λ,μ𝕂\lambda,\mu\in\mathbb{K}. We note that φ(MsE)(NsE)(t)=s4(1+2s2)t+t2\varphi_{({M}-sE)({N}-sE)}(t)=s^{4}-(1+2s^{2})t+t^{2}.

It is well-known that (λs)(μs)(\lambda-s)(\mu-s) is an eigenvalue of (MsE)(NsE)({M}-sE)({N}-sE) if and only if V~(MsE)(NsE)((λs)(μs)){0}\tilde{V}_{({M}-sE)({N}-sE)}((\lambda-s)(\mu-s))\neq\{0\}. We show that if MN=NMMN=NM, then

  • the space V~(MsE)(NsE)((λs)(μs))\tilde{V}_{({M}-sE)({N}-sE)}((\lambda-s)(\mu-s)) is generated by vectors in V~M,N(λ,μ)\tilde{V}_{M,N}(\lambda,\mu),

  • the space V~M,N(λ,μ)\tilde{V}_{M,N}(\lambda,\mu) is equal to V~MN(λμ)V~M+N(λ+μ)\tilde{V}_{MN}(\lambda\mu)\cap\tilde{V}_{M+N}(\lambda+\mu)

We first give a lemma.

Lemma 4.6.

Let M,NEnd(V)M,N\in\operatorname{End}(V) and λ,μ,𝕂\lambda,\mu,\in\mathbb{K}. Suppose that MN=NMMN=NM. Then

V~M,N(λ,μ)\displaystyle\tilde{V}_{M,N}(\lambda,\mu) V~MN(λμ)V~M+N(λ+μ),\displaystyle\subset\tilde{V}_{MN}(\lambda\mu)\cap\tilde{V}_{M+N}(\lambda+\mu),
(V~MN(λμ)V~M+N(λ+μ))𝕂𝕂(s)\displaystyle(\tilde{V}_{MN}(\lambda\mu)\cap\tilde{V}_{M+N}(\lambda+\mu))\otimes_{\mathbb{K}}\mathbb{K}(s) V~(MsE)(NsE)((λs)(μs)).\displaystyle\subset\tilde{V}_{(M-sE)(N-sE)}((\lambda-s)(\mu-s)).
Proof.

To show the first implication, it suffices to see that V~M(λ)V~N(μ)V~MN(λμ)V~M+N(λ+μ)\tilde{V}_{M}(\lambda)\cap\tilde{V}_{N}(\mu)\subset\tilde{V}_{MN}(\lambda\mu)\cap\tilde{V}_{M+N}(\lambda+\mu). Let W=V~M(λ)V~N(μ)W=\tilde{V}_{M}(\lambda)\cap\tilde{V}_{N}(\mu) and M1=M|WM_{1}=M|_{W}, N1=N|WN_{1}=N|_{W}. Since M1M_{1}, N1N_{1} are simultaneously triangularizable, there exists a basis 1\mathcal{B}_{1} of WW such that

[M1]1=(λ0λ),[N1]1=(μ0μ).[M_{1}]_{\mathcal{B}_{1}}=\left(\begin{array}[]{cccc}\lambda&&*\\ &\ddots\\ 0&&\lambda\end{array}\right),\ [N_{1}]_{\mathcal{B}_{1}}=\left(\begin{array}[]{cccc}\mu&&*\\ &\ddots\\ 0&&\mu\end{array}\right).

Hence, W=V~M1N1(λμ)V~M1+N1(λ+μ)V~MN(λμ)V~M+N(λ+μ)W=\tilde{V}_{M_{1}N_{1}}(\lambda\mu)\cap\tilde{V}_{M_{1}+N_{1}}(\lambda+\mu)\subset\tilde{V}_{MN}(\lambda\mu)\cap\tilde{V}_{M+N}(\lambda+\mu).

Let Z=(V~MN(λμ)V~M+N(λ+μ))𝕂𝕂(s)Z=(\tilde{V}_{MN}(\lambda\mu)\cap\tilde{V}_{M+N}(\lambda+\mu))\otimes_{\mathbb{K}}\mathbb{K}(s). It is easy to see that

V~(MsE)(NsE)((λs)(μs))=V~MNs(M+N)(λμs(λ+μ)).\tilde{V}_{({M}-sE)({N}-sE)}((\lambda-s)(\mu-s))=\tilde{V}_{MN-s(M+N)}(\lambda\mu-s(\lambda+\mu)).

Since MN|ZMN|_{Z}, (M+N)|Z(M+N)|_{Z} are simultaneously triangularizable, in the same way as above, we get ZV~MNs(M+N)(λμs(λ+μ))Z\subset\tilde{V}_{MN-s(M+N)}(\lambda\mu-s(\lambda+\mu)). ∎

Theorem 4.7.

Under the same assumption as the lemma above, we have

V~M,N(λ,μ)\displaystyle\tilde{V}_{M,N}(\lambda,\mu) =V~MN(λμ)V~M+N(λ+μ),\displaystyle=\tilde{V}_{MN}(\lambda\mu)\cap\tilde{V}_{M+N}(\lambda+\mu),
V~M,N(λ,μ)𝕂𝕂(s)\displaystyle\tilde{V}_{M,N}(\lambda,\mu)\otimes_{\mathbb{K}}{\mathbb{K}(s)} =V~(MsE)(NsE)((λs)(μs)).\displaystyle=\tilde{V}_{({M}-sE)({N}-sE)}((\lambda-s)(\mu-s)).
Proof.

By Lemma 4.6, it suffices to prove that

V~(MsE)(NsE)((λs)(μs))V~M,N(λ,μ)𝕂𝕂(s).\tilde{V}_{({M}-sE)({N}-sE)}((\lambda-s)(\mu-s))\subset\tilde{V}_{M,N}(\lambda,\mu)\otimes_{\mathbb{K}}\mathbb{K}(s).

Let W=V~(MsE)(NsE)((λs)(μs))W=\tilde{V}_{({M}-sE)({N}-sE)}((\lambda-s)(\mu-s)) and let M1=M|WM_{1}=M|_{W}, N1=N|WN_{1}=N|_{W}. Then

(4.1) φM1(s)φN1(s)=(λs)k(μs)k.\varphi_{M_{1}}(s)\varphi_{N_{1}}(s)=(\lambda-s)^{k}(\mu-s)^{k}.

In the case where λ=μ\lambda=\mu, this implies that W=V~M1(λ)V~N1(λ)=V~M1,N1(λ,λ)V~M,N(λ,λ)𝕂𝕂(s).W=\tilde{V}_{M_{1}}(\lambda)\cap\tilde{V}_{N_{1}}(\lambda)=\tilde{V}_{M_{1},N_{1}}(\lambda,\lambda)\subset\tilde{V}_{M,N}(\lambda,\lambda)\otimes_{\mathbb{K}}\mathbb{K}(s). Suppose that λμ\lambda\neq\mu. Then the equality (4.1) implies that WW is the sum of V~M1,N1(λ,μ)\tilde{V}_{M_{1},N_{1}}(\lambda,\mu), V~M1(λ)V~N1(λ)\tilde{V}_{M_{1}}(\lambda)\cap\tilde{V}_{N_{1}}(\lambda), V~M1(μ)V~N1(μ)\tilde{V}_{M_{1}}(\mu)\cap\tilde{V}_{N_{1}}(\mu). Applying Lemma 4.6 for M1M_{1}, N1N_{1}, we get

V~M1(λ)V~N1(λ)V~(M1sE)(N1sE)(λs)(λs))={0}.\tilde{V}_{M_{1}}(\lambda)\cap\tilde{V}_{N_{1}}(\lambda)\subset\tilde{V}_{(M_{1}-sE)(N_{1}-sE)}(\lambda-s)(\lambda-s))=\{0\}.

In the same way, V~M1(μ)V~N1(μ)={0}\tilde{V}_{M_{1}}(\mu)\cap\tilde{V}_{N_{1}}(\mu)=\{0\}. Hence, we get W=V~M1,N1(λ,μ)V~M,N(λ,μ)𝕂𝕂(s)W=\tilde{V}_{M_{1},N_{1}}(\lambda,\mu)\subset\tilde{V}_{M,N}(\lambda,\mu)\otimes_{\mathbb{K}}\mathbb{K}(s). ∎

As a consequence of Theorem 4.7, we have the following.

Corollary 4.8.

Let M,NEnd(V)M,N\in\operatorname{End}(V). Suppose that MN=NMMN=NM and that

φ(MsE)(NsE)(t)=i=1k{(λis)(μis)t}mi\varphi_{({M}-sE)({N}-sE)}({t})=\prod_{i=1}^{k}\{(\lambda_{i}-s)(\mu_{i}-s)-t\}^{m_{i}}

so that (λis)(μis)(λjs)(μjs)(\lambda_{i}-s)(\mu_{i}-s)\neq(\lambda_{j}-s)(\mu_{j}-s) for iji\neq j. Then we have the following.

  • The space VV is the direct sum of the mim_{i}-dimensional (M,N)(M,N)-invariant subspaces V~M,N(λi,μi)\tilde{V}_{M,N}(\lambda_{i},\mu_{i}).

  • Let P1,,PkP_{1},\dots,P_{k} be projections with respect to V=i=1kV~M,N(λi,μi)V=\bigoplus_{i=1}^{k}\tilde{V}_{M,N}(\lambda_{i},\mu_{i}) and let Q1,,QkQ_{1},\dots,Q_{k} be projections with respect to

    V𝕂𝕂(s)=i=1kV~(MsE)(NsE)((λis)(μis)).V\otimes_{\mathbb{K}}\mathbb{K}(s)=\bigoplus_{i=1}^{k}\tilde{V}_{({M}-sE)({N}-sE)}((\lambda_{i}-s)(\mu_{i}-s)).

    Then Pi=Qi.P_{i}=Q_{i}.

Proposition 4.9.

Let M,NEnd(V)M,N\in\operatorname{End}(V) and λ,μ𝕂\lambda,\mu\in\mathbb{K}. Suppose that MN=NMMN=NM. Then (λs)(μs)(\lambda-s)(\mu-s) is an eigenvalue of (MsE)(NsE)({M}-sE)({N}-sE) if and only if VM,N(λ,μ){0}V_{M,N}(\lambda,\mu)\neq\{0\}.

Proof.

Suppose that VM,N(λ,μ){0}V_{M,N}(\lambda,\mu)\neq\{0\}. Let v(VM,N(λ,μ))𝕂𝕂(s)v\in(V_{M,N}(\lambda,\mu))\otimes_{\mathbb{K}}\mathbb{K}(s). Then we get (MsE)(NsE)v=(λs)(μs)v({M}-sE)({N}-sE)v=(\lambda-s)(\mu-s)v. Hence, (λs)(μs)(\lambda-s)(\mu-s) is an eigenvalue of (MsE)(NsE)({M}-sE)({N}-sE).

The only if part follows from Theorem 4.7 and the fact that VM,N(λ,μ)={0}V_{M,N}(\lambda,\mu)=\{0\} is equivalent to V~M,N(λ,μ)={0}\tilde{V}_{M,N}(\lambda,\mu)=\{0\}. ∎

5. Applications of the symplectic characteristic polynomial

In this section, we prove several results for symplectically normal endomorphisms which are concerned with the symplectic characteristic polynomial.

Let (V,ω)(V,\omega) be a 2n2n-dimensional symplectic vector space over a field 𝕂\mathbb{K}.

Proposition 5.1.

Let MEnd(V)M\in\operatorname{End}(V). Suppose that MMω=MωMMM^{*\omega}=M^{*\omega}M. The following are equivalent.

  • (1)(1)

    All eigenvalues of MM are in 𝕂\mathbb{K}.

  • (2)(2)

    The characteristic polynomial φMω(s,t)\varphi^{\omega}_{M}(s,t) is of the form

    φMω(s,t)=i=1n{(λis)(μis)t},λi,μi𝕂.\varphi^{\omega}_{M}(s,t)=\prod_{i=1}^{n}\{(\lambda_{i}-s)(\mu_{i}-s)-t\},\quad\lambda_{i},\mu_{i}\in\mathbb{K}.
Proof.

This follows from φMω(s,t)2=φ(MsE)(MωsE)(t)\varphi^{\omega}_{M}(s,t)^{2}=\varphi_{({M}-sE)({M}^{*\omega}-sE)}(t) and Proposition 4.3. ∎

Let MEnd(V)M\in\operatorname{End}(V). Suppose that all eigenvalues of MM are in 𝕂\mathbb{K}. By using the same idea of the proof of Lemma 1 in [3], we can show that VV is the symplectically orthogonal direct sum of the symplectic subspaces V~M,Mω(λ,μ)\tilde{V}_{{M},{M}^{*\omega}}(\lambda,\mu) associated with two eigenvalues λ,μ\lambda,\mu of MM. We reformulate this result with the symplectic characteristic polynomial and give a short proof.

Lemma 5.2.

Let MEnd(V)M\in\operatorname{End}(V). Suppose that MMω=MωMMM^{*\omega}=M^{*\omega}M. If the symplectic characteristic polynomial φMω(s,t)\varphi^{\omega}_{M}(s,t) is of the form

φMω(s,t)=i=1k{(λis)(μis)t}mi,λi,μi𝕂\varphi^{\omega}_{M}(s,t)=\prod_{i=1}^{k}\{(\lambda_{i}-s)(\mu_{i}-s)-t\}^{m_{i}},\quad\lambda_{i},\mu_{i}\in\mathbb{K}

so that (λis)(μis)(λjs)(μjs)(\lambda_{i}-s)(\mu_{i}-s)\neq(\lambda_{j}-s)(\mu_{j}-s) for iji\neq j, then VV is the symplectically orthogonal direct sum of the 2mi2m_{i}-dimensional symplectic subspaces V~M,Mω(λi,μi)\tilde{V}_{{M},{M}^{*\omega}}(\lambda_{i},\mu_{i}). Precisely, we have the following.

  • (1)(1)

    dim𝕂V~M,Mω(λi,μi)=2mi\dim_{\mathbb{K}}\tilde{V}_{{M},{M}^{*\omega}}(\lambda_{i},\mu_{i})=2m_{i}.

  • (2)(2)

    V=i=1kV~M,Mω(λi,μi)V=\bigoplus_{i=1}^{k}\tilde{V}_{{M},{M}^{*\omega}}(\lambda_{i},\mu_{i}).

  • (3)(3)

    V~M,Mω(λi,μi)(V~M,Mω(λj,μj))ω\tilde{V}_{{M},{M}^{*\omega}}(\lambda_{i},\mu_{i})\subset\left(\tilde{V}_{{M},{M}^{*\omega}}(\lambda_{j},\mu_{j})\right)^{\perp\omega}  for iji\neq j.

  • (4)(4)

    V~M,Mω(λi,μi)\tilde{V}_{{M},{M}^{*\omega}}(\lambda_{i},\mu_{i}) is an (M,Mω)(M,M^{*\omega})-invariant symplectic subspace of (V,ω)(V,\omega).

Proof.

Let Msω=(MsE)(MωsE)M_{s}^{\omega}=(M-sE)(M^{*\omega}-sE). By Theorem 4.7, we have

(5.1) V~M,Mω(λi,μi)𝕂𝕂(s)=V~Msω((λis)(μis)).\tilde{V}_{{M},{M}^{*\omega}}(\lambda_{i},\mu_{i})\otimes_{\mathbb{K}}\mathbb{K}(s)=\tilde{V}_{M_{s}^{\omega}}((\lambda_{i}-s)(\mu_{i}-s)).

Since φMω(s,t)2=φ(MsE)(MωsE)(t)\varphi^{\omega}_{M}(s,t)^{2}=\varphi_{({M}-sE)({M}^{*\omega}-sE)}(t), this implies (1)(1) and (2)(2). The item (5)(5) in Proposition 2.2 shows that V~Msω((λis)(μis))(V~Msω((λjs)(μjs)))ω.\tilde{V}_{M_{s}^{\omega}}((\lambda_{i}-s)(\mu_{i}-s))\subset\left(\tilde{V}_{M_{s}^{\omega}}((\lambda_{j}-s)(\mu_{j}-s))\right)^{\perp\omega}. Moreover, Proposition 2.3 gives that V~Msω((λis)(μis))\tilde{V}_{M_{s}^{\omega}}((\lambda_{i}-s)(\mu_{i}-s)) is a symplectic subspace of (V𝕂𝕂(s),ω)(V\otimes_{\mathbb{K}}\mathbb{K}(s),\omega). Hence, from (5.1), we get (3)(3) and (4)(4). ∎

In the symplectic case, we have a stronger result than Proposition 4.9.

Proposition 5.3.

Let MEnd(V)M\in\operatorname{End}(V) and λ,μ𝕂\lambda,\mu\in\mathbb{K}. Suppose that MMω=MωMMM^{*\omega}=M^{*\omega}M. Then φMω(s,(λs)(μs))=0\varphi^{\omega}_{M}(s,(\lambda-s)(\mu-s))=0 if and only if VM(λ)VMω(μ){0}V_{M}(\lambda)\cap V_{M^{*\omega}}(\mu)\neq\{0\}.

Proof.

By Proposition 4.9, it is enough to show that VM,Mω(λ,μ){0}V_{{M},{M}^{*\omega}}(\lambda,\mu)\neq\{0\} implies VM(λ)VMω(μ){0}V_{M}(\lambda)\cap V_{M^{*\omega}}(\mu)\neq\{0\}. The case where λ=μ\lambda=\mu is clear. Suppose that λμ\lambda\neq\mu. Lemma 5.2 shows that V~M,Mω(λ,μ)\tilde{V}_{{M},{M}^{*\omega}}(\lambda,\mu) is a symplectic subspace of (V,ω)(V,\omega). Hence, by Lemma 2.4, we have V~M(λ)V~Mω(μ){0}\tilde{V}_{M}(\lambda)\cap\tilde{V}_{M^{*\omega}}(\mu)\neq\{0\}. Since MMω=MωMMM^{*\omega}=M^{*\omega}M, this implies VM(λ)VMω(μ){0}V_{M}(\lambda)\cap V_{M^{*\omega}}(\mu)\neq\{0\}. ∎

It is proved in [2, Theorem 13] that if an endomorphism is symplectically normal and diagonalizable, then the endomorphism is symplectically diagonalizable. The following theorem is an improvement of this fact.

Theorem 5.4.

Let MEnd(V)M\in\operatorname{End}(V). Suppose that MMω=MωMMM^{*\omega}=M^{*\omega}M and that MM is diagonalizable. Then there exists a symplectic basis (e1,,en,f1,,fn)(e_{1},\dots,e_{n},f_{1},\dots,f_{n}) such that

Mei=λiei,Mfi=μifi,i{1,n}Me_{i}=\lambda_{i}e_{i},\ Mf_{i}=\mu_{i}f_{i},\quad i\in\{1\dots,n\}

where the symplectic characteristic polynomial φMω(s,t)\varphi^{\omega}_{M}(s,t) is of the form

φMω(s,t)=i=1n{(λis)(μis)t},λi,μi𝕂.\varphi^{\omega}_{M}(s,t)=\prod_{i=1}^{n}\{(\lambda_{i}-s)(\mu_{i}-s)-t\},\quad\lambda_{i},\mu_{i}\in\mathbb{K}.
Proof.

We proof by induction on nn. The item (4)(4) in Lemma 5.2 shows that VM,Mω(λ1,μ1)V_{{M},{M}^{*\omega}}(\lambda_{1},\mu_{1}) is a symplectic subspaces of (V,ω)(V,\omega). There exist e1,f1Ve_{1},f_{1}\in V such that

e1VM(λ1)VMω(μ1),f1VM(μ1)VMω(λ1),ω(e1,f1)=1.e_{1}\in V_{M}(\lambda_{1})\cap V_{M^{*\omega}}(\mu_{1}),\ f_{1}\in V_{M}(\mu_{1})\cap V_{M^{*\omega}}(\lambda_{1}),\ \omega(e_{1},f_{1})=1.

Indeed, the case where λ=μ\lambda=\mu follows from Proposition 2.5 and the case where λμ\lambda\neq\mu follows from Lemma 2.4 and 2.6. Hence, the assertion holds for n=1n=1. We assume that the assertion holds for n1n-1. Let WW be a subspace generated by e1,f1e_{1},f_{1}. Then WW is an (M,Mω)(M,M^{*\omega})-invariant symplectic subspace of (V,ω)(V,\omega) and by the item (4)(4) in Proposition 2.2, so is WωW^{\perp\omega}. Let M1=M|WωM_{1}=M|_{W^{\perp\omega}} and ω1=ω|Wω\omega_{1}=\omega|_{W^{\perp\omega}}. Since M1ω1=Mω|WωM_{1}^{*\omega_{1}}=M^{*\omega}|_{W^{\perp\omega}}, we have M1M1ω1=M1ω1M1M_{1}M_{1}^{*\omega_{1}}=M_{1}^{*\omega_{1}}M_{1}. It is clear that M1M_{1} is diagonalizable. The induction hypothesis shows that there exists a symplectic basis (e2,,en,f1,,fn)(e_{2},\dots,e_{n},f_{1},\dots,f_{n}) of (Wω,ω|Wω)(W^{\perp\omega},\omega|_{W^{\perp\omega}}) such that Mei=λiei,Mfi=μifiMe_{i}=\lambda_{i}e_{i},\ Mf_{i}=\mu_{i}f_{i} for i{2,,n}i\in\{2,\dots,n\}. It is clear that (e1,,en,f1,,fn)(e_{1},\dots,e_{n},f_{1},\dots,f_{n}) is a symplectic basis which is desired. ∎

Corollary 5.5.

The symplectic characteristic polynomial is a complete invariant with respect to symplectic similarity for symplectically diagonalizable endomorphisms. In particular, a symplectically diagonalizable endomorphism MM is symplectically similar to the symplectic adjoint endomorphism MωM^{*\omega}.

Proof.

Let MM, NN be symplectically diagonalizable endomorphisms. Suppose that φMω(s,t)=φNω(s,t)\varphi^{\omega}_{M}(s,t)=\varphi^{\omega}_{N}(s,t). Theorem 5.4 shows that there exist symplectic bases \mathcal{B}, \mathcal{B}^{\prime} such that [M]=[N][M]_{\mathcal{B}}=[N]_{\mathcal{B}^{\prime}}. Hence, Proposition 2.7 gives that MM is symplectically similar to NN. ∎

It is well-known that if the number of distinct eigenvalues of an endomorphism is equal to dimV\dim V, then the endomorphism is diagonalizable. In the symplectic case, we have the following two theorems.

Theorem 5.6.

Let MEnd(V)M\in\operatorname{End}(V). Suppose that MMω=MωMMM^{*\omega}=M^{*\omega}M and that the symplectic characteristic polynomial φMω(s,t)\varphi^{\omega}_{M}(s,t) is of the form

φMω(s,t)=i=1n{(λis)(μis)t},λi,μi𝕂\varphi^{\omega}_{M}(s,t)=\prod_{i=1}^{n}\{(\lambda_{i}-s)(\mu_{i}-s)-t\},\quad\lambda_{i},\mu_{i}\in\mathbb{K}

and (λis)(μis)(λjs)(μjs)(\lambda_{i}-s)(\mu_{i}-s)\neq(\lambda_{j}-s)(\mu_{j}-s) for ij.i\neq j. Then there exists a symplectic basis (e1,,en,f1,,fn)(e_{1},\dots,e_{n},f_{1},\dots,f_{n}) such that

MMωei\displaystyle MM^{*\omega}e_{i} =λiμiei,\displaystyle=\lambda_{i}\mu_{i}e_{i}, (M+Mω)ei\displaystyle(M+M^{*\omega})e_{i} =(λi+μi)ei,\displaystyle=(\lambda_{i}+\mu_{i})e_{i},
MMωfi\displaystyle MM^{*\omega}f_{i} =λiμifi,\displaystyle=\lambda_{i}\mu_{i}f_{i}, (M+Mω)fi\displaystyle(M+M^{*\omega})f_{i} =(λi+μi)fi,\displaystyle=(\lambda_{i}+\mu_{i})f_{i}, i{1,,n}.\displaystyle i\in\{1,\dots,n\}.
Proof.

Let Wi=V~M,Mω(λi,μi)W_{i}=\tilde{V}_{{M},{M}^{*\omega}}(\lambda_{i},\mu_{i}) and let Mi=M|WiM_{i}=M|_{W_{i}}, ωi=ω|Wi\omega_{i}=\omega|_{W_{i}}. Lemma 5.2 shows that dim𝕂Wi=2\dim_{\mathbb{K}}W_{i}=2 and that WiW_{i} is symplectic. Hence, we get φMiωi(s,t)={(λis)(μis)t}\varphi^{\omega_{i}}_{M_{i}}(s,t)=\{(\lambda_{i}-s)(\mu_{i}-s)-t\}, which implies that φMi(t)=(λis)(μis)\varphi_{M_{i}}(t)=(\lambda_{i}-s)(\mu_{i}-s). It follows from Mω|Wi=(Mi)ωiM^{*\omega}|_{W_{i}}=(M_{i})^{*\omega_{i}} that

(MMω)|Wi\displaystyle(MM^{*\omega})|_{W_{i}} =MiMiωi=(detMi)E=λiμiE,\displaystyle=M_{i}M_{i}^{*\omega_{i}}=(\det M_{i})E=\lambda_{i}\mu_{i}E,
(M+Mω)|Wi\displaystyle(M+M^{*\omega})|_{W_{i}} =Mi+Miωi=(trMi)E=(λi+μi)E.\displaystyle=M_{i}+M_{i}^{*\omega_{i}}=(\operatorname{tr}M_{i})E=(\lambda_{i}+\mu_{i})E.

Since WiW_{i} is symplectic, there exist ei,fiWie_{i},f_{i}\in W_{i} such that ω(ei,fi)=1\omega(e_{i},f_{i})=1. The item (3)(3) in Lemma 5.2 shows that (e1,,en,f1,fn)(e_{1},\dots,e_{n},f_{1}\dots,f_{n}) is a symplectic basis, which completes the proof. ∎

Theorem 5.7.

Under the same assumption as above, we assume further that λiμi\lambda_{i}\neq\mu_{i} for all ii. Then there exists a symplectic basis (e1,,en,f1,,fn)(e_{1},\dots,e_{n},f_{1},\dots,f_{n}) such that

Mei\displaystyle Me_{i} =λiei,\displaystyle=\lambda_{i}e_{i}, Mωei\displaystyle M^{*\omega}e_{i} =μiei,\displaystyle=\mu_{i}e_{i},
Mfi\displaystyle Mf_{i} =μifi,\displaystyle=\mu_{i}f_{i}, Mωfi\displaystyle M^{*\omega}f_{i} =λifi,\displaystyle=\lambda_{i}f_{i}, i{1,,n}.\displaystyle i\in\{1,\dots,n\}.
Proof.

Let Wi=V~M,Mω(λi,μi)W_{i}=\tilde{V}_{{M},{M}^{*\omega}}(\lambda_{i},\mu_{i}). Lemma 5.2 gives that dim𝕂W=2\dim_{\mathbb{K}}W=2 and that WiW_{i} is a symplectic subspace. Hence, Proposition 5.3 shows that

dim𝕂(VM(λi)VMω(μi))=dim𝕂(VM(μi)VMω(λi))=1.\dim_{\mathbb{K}}\left(V_{M}(\lambda_{i})\cap V_{M^{*\omega}}(\mu_{i})\right)=\dim_{\mathbb{K}}\left(V_{M}(\mu_{i})\cap V_{M^{*\omega}}(\lambda_{i})\right)=1.

Since WiW_{i} is symplectic, there exist ei,fiVe_{i},f_{i}\in V such that

eiVM(λi)VMω(μi),fiVM(μi)VMω(λi),ω(ei,fi)=1.e_{i}\in V_{M}(\lambda_{i})\cap V_{M^{*\omega}}(\mu_{i}),\ f_{i}\in V_{M}(\mu_{i})\cap V_{M^{*\omega}}(\lambda_{i}),\ \omega(e_{i},f_{i})=1.

The item (3)(3) in Lemma 5.2 shows that (e1,,en,f1,,fn)(e_{1},\dots,e_{n},f_{1},\dots,f_{n}) is a symplectic basis which is desired. ∎

References

  • [1] Antonio Ciampi. Classification of Hamiltonian linear systems. Indiana Univ. Math. J., 23:513–526, 1973/74.
  • [2] Ralph John de la Cruz and Heike Faßbender. On the diagonalizability of a matrix by a symplectic equivalence, similarity or congruence transformation. Linear Algebra Appl., 496:288–306, 2016.
  • [3] Israel Gohberg and Boris Reichstein. On classification of normal matrices in an indefinite scalar product. Integral Equations Operator Theory, 13(3):364–394, 1990.
  • [4] T. A. Springer. On symplectic transformations. Indag. Math. (N.S.), 33(1):279–302, 2022. Translated from the 1951 Dutch original [MR0043785] by Wilberd van der Kallen.
  • [5] William C. Waterhouse. The structure of alternating-Hamiltonian matrices. Linear Algebra Appl., 396:385–390, 2005.