This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The study of lepton EDMs in U(1)XU(1)_{X}SSM

Lu-Hao Su1,2111[email protected], Dan He1,2222[email protected], Xing-Xing Dong1,2333dxx_\_[email protected], Tai-Fu Feng1,2,3444[email protected], Shu-Min Zhao1,2555[email protected] 1 Department of Physics, Hebei University, Baoding 071002, China 2 Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Baoding 071002, China 3 Department of Physics, Chongqing University, Chongqing 401331, China
Abstract

The minimal supersymmetric extension of the standard model (MSSM) is extended to the U(1)XU(1)_{X}SSM, whose local gauge group is SU(3)C×SU(2)L×U(1)Y×U(1)XSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times U(1)_{X}. To obtain the U(1)XU(1)_{X}SSM, we add the new superfields to the MSSM, namely: three Higgs singlets η^,η¯^,S^\hat{\eta},~{}\hat{\bar{\eta}},~{}\hat{S} and right-handed neutrinos ν^i\hat{\nu}_{i}. The CP violating effects are considered to study the lepton electric dipole moment(EDM) in U(1)XU(1)_{X}SSM. The CP violating phases in U(1)XU(1)_{X}SSM are more than those in the standard model(SM). In this model, some new parameters (θS,θBB,θBL)(\theta_{S},\theta_{BB^{\prime}},\theta_{BL}) as CP violating phases are considered, so there are new contributions to lepton EDMs. It is conducive to exploring the source of CP violation and probing new physical beyond SM.

lepton, electric dipole moment

I Introduction

In 1964, Cronin and Fitch discovered the charge conjugate and parity (CP) violating by the decays of the KK meson 1964 . The study of the lepton electric dipole moments (EDMs) becomes the physical quantities for probing sources of CP violation2 . Therefore, it is of special significance to research the EDMs of lepton. At present, the upper bound of electron EDM is |deexp||d^{exp}_{e}| << 1.1×10291.1\times 10^{-29} e.cm at the 90%90\% confidence levelde ; de1 ; de2 , the muon EDM is |dμexp||d^{exp}_{\mu}| << 1.8×10191.8\times 10^{-19} e.cm at the 95%95\% confidence level and the tau EDM is |dτexp||d^{exp}_{\tau}| << 1.1×10171.1\times 10^{-17} e.cm at the 95%95\% confidence level pdg . The sources and mechanism of CP violation have not been well explained. Scientists are trying to find CP violation terms in new physics beyond SM in order to better explain CP violation mechanismNPdl1 ; NPdl2 ; NPdl3 ; NPdl4 . There are several CP violating phases, which can give large contributions to the EDMs of lepton in the minimal supersymmetric extension of standard model (MSSM)mssm ; mssm1 ; mssm2 ; Z2015 .

Due to the deficiency of MSSM which can not explain neutrino mass and not solve μ\mu problem, U(1) extension of MSSM is carried out. There are two U(1) groups in U(1)XU(1)_{X}SSM: U(1)YU(1)_{Y} and U(1)XU(1)_{X}, and the U(1)XU(1)_{X}SSM is explored that we use SARAH software packages extend1 ; extend2 ; extend3 . By adding some new superfields to MSSM, the U(1)XU(1)_{X}SSM not only obtains additional Higgs, neutrino and gauge fields, but corresponding superpartners that extend the neutralino and sfermion sectors. The mass mh0m_{h_{0}} of the lightest CP-even Higgs LCTHiggs1 ; LCTHiggs2 in U(1)XU(1)_{X}SSM is larger than the corresponding mass in MSSM at tree order. Therefore, In U(1)XU(1)_{X}SSM, the loop diagram correction of mh0m_{h_{0}} does not need to be very large.

It is an effective way to explore new physics beyond the standard model(SM) that research the MDMs mdms ; mdms1 and EDMs edms1 ; edms2 ; edms3 ; edms4 ; edms6 ; edms7 ; edms8 of lepton. The one-loop correction and the two-loop correction to EDM of leptons are well researched in MSSM. ded_{e} in the SM is studied independently of the modelmi ; mi1 . The authors consider the right-handed neutrinos, the neutrino see-saw mechanism and the structure of minimal flavor violation. The results show that when the neutrinos are Majorana particles, the value of ded_{e} will reach the upper limit of the experiment.

In the following, we introduce the specific form of U(1)XU(1)_{X}SSM and its superfields in section 2. In section 3, we show that the one-loop and two-loop corrections to the lepton EDMs. The main content of section 4 is the numerical analysis for the dependence of lepton EDMs on the U(1)XU(1)_{X}SSM parameters. We have a special summary and discussion in section 5. The appendix is used for the some mass matrics.

II the U(1)XU(1)_{X}SSM

The U(1)XU(1)_{X}SSM has been expanded on the basis of the MSSM. The U(1)XU(1)_{X}SSM superfields include three Higgs singlets η^,η¯^,S^\hat{\eta},~{}\hat{\bar{\eta}},~{}\hat{S} and right-handed neutrinos ν^i\hat{\nu}_{i}. By the see-saw mechanism, the light neutrinos can get tiny masses at the tree level. For details of the mass matrix of particles, please see the Ref.pro .

The superpotential of U(1)XU(1)_{X}SSM is

W=lWS^+μH^uH^d+MSS^S^Ydd^q^H^dYee^l^H^d+λHS^H^uH^d\displaystyle W=l_{W}\hat{S}+\mu\hat{H}_{u}\hat{H}_{d}+M_{S}\hat{S}\hat{S}-Y_{d}\hat{d}\hat{q}\hat{H}_{d}-Y_{e}\hat{e}\hat{l}\hat{H}_{d}+\lambda_{H}\hat{S}\hat{H}_{u}\hat{H}_{d}
+λCS^η^η¯^+κ3S^S^S^+Yuu^q^H^u+YXν^η¯^ν^+Yνν^l^H^u.\displaystyle+\lambda_{C}\hat{S}\hat{\eta}\hat{\bar{\eta}}+\frac{\kappa}{3}\hat{S}\hat{S}\hat{S}+Y_{u}\hat{u}\hat{q}\hat{H}_{u}+Y_{X}\hat{\nu}\hat{\bar{\eta}}\hat{\nu}+Y_{\nu}\hat{\nu}\hat{l}\hat{H}_{u}\;. (1)

These two Higgs doublets and three Higgs singlets are shown below in concrete form,

Hu=(Hu+12(vu+Hu0+iPu0)),Hd=(12(vd+Hd0+iPd0)Hd),\displaystyle H_{u}=\left(\begin{array}[]{c}H_{u}^{+}\\ {1\over\sqrt{2}}\Big{(}v_{u}+H_{u}^{0}+iP_{u}^{0}\Big{)}\end{array}\right)\;,~{}~{}~{}~{}~{}~{}H_{d}=\left(\begin{array}[]{c}{1\over\sqrt{2}}\Big{(}v_{d}+H_{d}^{0}+iP_{d}^{0}\Big{)}\\ H_{d}^{-}\end{array}\right)\;, (6)
η=12(vη+ϕη0+iPη0),η¯=12(vη¯+ϕη¯0+iPη¯0),\displaystyle\eta={1\over\sqrt{2}}\Big{(}v_{\eta}+\phi_{\eta}^{0}+iP_{\eta}^{0}\Big{)}\;,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\bar{\eta}={1\over\sqrt{2}}\Big{(}v_{\bar{\eta}}+\phi_{\bar{\eta}}^{0}+iP_{\bar{\eta}}^{0}\Big{)}\;,
S=12(vS+ϕS0+iPS0).\displaystyle\hskip 113.81102ptS={1\over\sqrt{2}}\Big{(}v_{S}+\phi_{S}^{0}+iP_{S}^{0}\Big{)}\;. (7)

vu,vd,vηv_{u},~{}v_{d},~{}v_{\eta}vη¯v_{\bar{\eta}} and vSv_{S} are the VEVs of the Higgs superfields HuH_{u}, HdH_{d}, η\eta, η¯\bar{\eta} and SS respectively.

Here, we set tanβ=vu/vd\tan\beta=v_{u}/v_{d} and tanβη=vη¯/vη\tan\beta_{\eta}=v_{\bar{\eta}}/v_{\eta}. The specific form of ν~L\tilde{\nu}_{L} and ν~R\tilde{\nu}_{R} are

ν~L=12ϕl+i2σl,ν~R=12ϕR+i2σR.\displaystyle\tilde{\nu}_{L}=\frac{1}{\sqrt{2}}\phi_{l}+\frac{i}{\sqrt{2}}\sigma_{l}\;,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\tilde{\nu}_{R}=\frac{1}{\sqrt{2}}\phi_{R}+\frac{i}{\sqrt{2}}\sigma_{R}\;. (8)

The specific form of soft SUSY breaking terms are shown below

soft=softMSSMBSS2LSSTκ3S3TλCSηη¯+ϵijTλHSHdiHuj\displaystyle\mathcal{L}_{soft}=\mathcal{L}_{soft}^{MSSM}-B_{S}S^{2}-L_{S}S-\frac{T_{\kappa}}{3}S^{3}-T_{\lambda_{C}}S\eta\bar{\eta}+\epsilon_{ij}T_{\lambda_{H}}SH_{d}^{i}H_{u}^{j}
TXIJη¯ν~RIν~RJ+ϵijTνIJHuiν~RIl~jJmη2|η|2mη¯2|η¯|2\displaystyle-T_{X}^{IJ}\bar{\eta}\tilde{\nu}_{R}^{*I}\tilde{\nu}_{R}^{*J}+\epsilon_{ij}T^{IJ}_{\nu}H_{u}^{i}\tilde{\nu}_{R}^{I*}\tilde{l}_{j}^{J}-m_{\eta}^{2}|\eta|^{2}-m_{\bar{\eta}}^{2}|\bar{\eta}|^{2}
mS2S2(mν~R2)IJν~RIν~RJ12(MSλX~2+2MBBλB~λX~)+h.c..\displaystyle-m_{S}^{2}S^{2}-(m_{\tilde{\nu}_{R}}^{2})^{IJ}\tilde{\nu}_{R}^{I*}\tilde{\nu}_{R}^{J}-\frac{1}{2}\Big{(}M_{S}\lambda^{2}_{\tilde{X}}+2M_{BB^{\prime}}\lambda_{\tilde{B}}\lambda_{\tilde{X}}\Big{)}+h.c.\;. (9)

The particle content and charge assignments for U(1)XU(1)_{X}SSM are shown in the Table 1. Compared to the SM, the anomalies of U(1)XU(1)_{X}SSM are more complex text . This model has been proven anomaly free pro at last. The two Abelian groups U(1)YU(1)_{Y} and U(1)XU(1)_{X} in U(1)XU(1)_{X}SSM can create a new effect, the gauge kinetic mixing. This effect can also be induced by RGEs even with zero value at MGUTM_{GUT}.

Superfields SU(3)CSU(3)_{C} SU(2)LSU(2)_{L} U(1)YU(1)_{Y} U(1)XU(1)_{X}
Q^i\hat{Q}_{i} 3 2 1/6 0
u^ic\hat{u}^{c}_{i} 3¯\bar{3} 1 -2/3 -1/21/2
d^ic\hat{d}^{c}_{i} 3¯\bar{3} 1 1/3 1/21/2
L^i\hat{L}_{i} 1 2 -1/2 0
e^ic\hat{e}^{c}_{i} 1 1 1 1/21/2
ν^i\hat{\nu}_{i} 1 1 0 -1/21/2
H^u\hat{H}_{u} 1 2 1/2 1/2
H^d\hat{H}_{d} 1 2 -1/2 -1/2
η^\hat{\eta} 1 1 0 -1
η¯^\hat{\bar{\eta}} 1 1 0 1
S^\hat{S} 1 1 0 0
Table 1: The superfields in U(1)XU(1)_{X}SSM.

The general form of the covariant derivative of this model is model1 ; model2 ; model3

Dμ=μi(Y,X)(gY,gYXg,XYgX)(AμYAμX).\displaystyle D_{\mu}=\partial_{\mu}-i\left(\begin{array}[]{cc}Y,&X\end{array}\right)\left(\begin{array}[]{cc}g_{Y},&g{{}^{\prime}}_{{YX}}\\ g{{}^{\prime}}_{{XY}},&g{{}^{\prime}}_{{X}}\end{array}\right)\left(\begin{array}[]{c}A_{\mu}^{\prime Y}\\ A_{\mu}^{\prime X}\end{array}\right)\;. (15)

The AμYA_{\mu}^{\prime Y} and AμXA^{\prime X}_{\mu} represent the gauge fields of U(1)YU(1)_{Y} and U(1)XU(1)_{X}. Since these two Abelian gauge groups are unbroken, we make a basis exchange. Using the orthogonal matrix RR model1 ; model3 , the resulting formula is shown below

(gY,gYXg,XYgX)RT=(g1,gYX0,gX).\displaystyle\left(\begin{array}[]{cc}g_{Y},&g{{}^{\prime}}_{{YX}}\\ g{{}^{\prime}}_{{XY}},&g{{}^{\prime}}_{{X}}\end{array}\right)R^{T}=\left(\begin{array}[]{cc}g_{1},&g_{{YX}}\\ 0,&g_{{X}}\end{array}\right)\;. (20)

We deduce sin2θW\sin^{2}\theta_{W}^{\prime} ==

12((gYX+gX)2g12g22)v2+4gX2ξ22((gYX+gX)2+g12+g22)2v4+8gX2((gYX+gX)2g12g22)v2ξ2+16gX4ξ4.\displaystyle\frac{1}{2}-\frac{((g_{YX}+g_{X})^{2}-g_{1}^{2}-g_{2}^{2})v^{2}+4g_{X}^{2}\xi^{2}}{2\sqrt{((g_{YX}+g_{X})^{2}+g_{1}^{2}+g_{2}^{2})^{2}v^{4}+8g_{X}^{2}((g_{YX}+g_{X})^{2}-g_{1}^{2}-g_{2}^{2})v^{2}\xi^{2}+16g_{X}^{4}\xi^{4}}}\;. (21)

with ξ=vη2+vη¯2\xi=\sqrt{v_{\eta}^{2}+v_{\bar{\eta}}^{2}}. The new mixing angle θW\theta_{W}^{\prime} can be found in the couplings of ZZ and ZZ^{\prime}.

Next, we describe some of the couplings needed.

The couplings of ν~kRe¯iχj\tilde{\nu}^{R}_{k}-\bar{e}_{i}-\chi_{j}^{-} and ν~kIe¯iχj\tilde{\nu}^{I}_{k}-\bar{e}_{i}-\chi_{j}^{-} are

ν~Re¯χ=e¯i{i2Uj2ZkiRYeiPLi2g2Vj1ZkiRPR}χjν~kR,\displaystyle\mathcal{L}_{\tilde{\nu}^{R}\bar{e}\chi^{-}}=\bar{e}_{i}\Big{\{}\frac{i}{\sqrt{2}}U^{*}_{j2}Z^{R*}_{ki}Y_{e}^{i}P_{L}-\frac{i}{\sqrt{2}}g_{2}V_{j1}Z^{R*}_{ki}P_{R}\Big{\}}\chi_{j}^{-}\tilde{\nu}^{R}_{k}\;, (22)
ν~Ie¯χ=e¯i{12Uj2ZkiIYeiPL+12g2Vj1ZkiIPR}χjν~kI.\displaystyle\mathcal{L}_{\tilde{\nu}^{I}\bar{e}\chi^{-}}=\bar{e}_{i}\Big{\{}\frac{-1}{\sqrt{2}}U^{*}_{j2}Z^{I*}_{ki}Y_{e}^{i}P_{L}+\frac{1}{\sqrt{2}}g_{2}V_{j1}Z^{I*}_{ki}P_{R}\Big{\}}\chi_{j}^{-}\tilde{\nu}^{I}_{k}\;. (23)

With PL=1γ52P_{L}=\frac{1-\gamma_{5}}{2} and PR=1+γ52P_{R}=\frac{1+\gamma_{5}}{2}. ZRZ^{R} and ZIZ^{I} are rotation matrices, which can diagonalize the mass squared matrices of CP-even sneutrino and CP-odd sneutrino. The mass matrix for chargino is diagonalized by rotation matrices UU and VV.

We also deduce the vertex couplings of neutrino-slepton-chargino and neutralino-lepton-slepton,

ν¯χL~=ν¯i((g2Uj1a=13UiaVZkaE+Uj2a=13UiaVYlaZk(3+a)E)PL\displaystyle\mathcal{L}_{\bar{\nu}\chi^{-}\tilde{L}}=\bar{\nu}_{i}\Big{(}(-g_{2}U^{*}_{j1}\sum_{a=1}^{3}U^{V*}_{ia}Z^{E}_{ka}+U^{*}_{j2}\sum_{a=1}^{3}U^{V*}_{ia}Y^{a}_{l}Z^{E}_{k(3+a)})P_{L}
+a,b=13YνabUi(3+a)VZkbEVj2PR)χjL~k,\displaystyle\hskip 45.52458pt+\sum_{a,b=1}^{3}Y_{\nu}^{ab}U^{V}_{i(3+a)}Z^{E}_{kb}V_{j2}P_{R}\Big{)}\chi^{-}_{j}\tilde{L}_{k}\;, (24)
χ¯0lL~=χ¯i0{(12(g1Ni1+g2Ni2+gYXNi5)ZkjENi3YljZk(3+j)E)PL\displaystyle\mathcal{L}_{\bar{\chi}^{0}l\tilde{L}}=\bar{\chi}^{0}_{i}\Big{\{}\Big{(}\frac{1}{\sqrt{2}}(g_{1}N^{*}_{i1}+g_{2}N^{*}_{i2}+g_{YX}N^{*}_{i5})Z^{E}_{kj}-N^{*}_{i3}Y^{j}_{l}Z^{E}_{k(3+j)}\Big{)}P_{L}
[12(2g1Ni1+(2gYX+gX)Ni5)Zk(3+a)E+YljZkjENi3]PR}ljL~k.\displaystyle\hskip 45.52458pt-\Big{[}\frac{1}{\sqrt{2}}\Big{(}2g_{1}N_{i1}+(2g_{YX}+g_{X})N_{i5}\Big{)}Z^{E}_{k(3+a)}+Y_{l}^{j}Z^{E}_{kj}N_{i3}\Big{]}P_{R}\Big{\}}l_{j}\tilde{L}_{k}\;. (25)

With ZEZ^{E} and NN are rotation matrices, which can diagonalize the mass squared matrix of slepton and the mass matrix of neutralino. The mass matrix for neutrino is diagonalized by UVU^{V}.

Other couplings needed can be found in our previous works pro ; slh .

III formulation

The Feynman amplitude can be expressed by these dimension 6 operators lepton with the effective Lagrangian method. The dimension 8 operators be suppressed by the factor mμ2MSUSY2\frac{m_{\mu}^{2}}{M_{SUSY}^{2}} \sim (10710^{-7}, 10810^{-8}) and can then be ignored.

These dimension 6 operators are shown below

𝒪1=1(4π)2l¯(i𝒟/)3ωl,\displaystyle\mathcal{O}_{1}^{\mp}=\frac{1}{(4\pi)^{2}}\bar{l}(i\mathcal{D}\!\!\!/)^{3}\omega_{\mp}l\;,
𝒪2=eQf(4π)2(i𝒟μl)¯γμFσωl,\displaystyle\mathcal{O}_{2}^{\mp}=\frac{eQ_{f}}{(4\pi)^{2}}\overline{(i\mathcal{D}_{\mu}l)}\gamma^{\mu}F\cdot\sigma\omega_{\mp}l\;,
𝒪3=eQf(4π)2l¯Fσγμω(i𝒟μl),\displaystyle\mathcal{O}_{3}^{\mp}=\frac{eQ_{f}}{(4\pi)^{2}}\bar{l}F\cdot\sigma\gamma^{\mu}\omega_{\mp}(i\mathcal{D}_{\mu}l)\;,
𝒪4=eQf(4π)2l¯(μFμν)γνωl,\displaystyle\mathcal{O}_{4}^{\mp}=\frac{eQ_{f}}{(4\pi)^{2}}\bar{l}(\partial^{\mu}F_{\mu\nu})\gamma^{\nu}\omega_{\mp}l,
𝒪5=ml(4π)2l¯(i𝒟/)2ωl,\displaystyle\mathcal{O}_{5}^{\mp}=\frac{m_{l}}{(4\pi)^{2}}\bar{l}(i\mathcal{D}\!\!\!/)^{2}\omega_{\mp}l\;,
𝒪6=eQfml(4π)2l¯Fσωl.\displaystyle\mathcal{O}_{6}^{\mp}=\frac{eQ_{f}m_{l}}{(4\pi)^{2}}\bar{l}F\cdot\sigma\omega_{\mp}l\;. (26)

Here, 𝒟μ=μ+ieAμ\mathcal{D}_{\mu}=\partial_{\mu}+ieA_{\mu} and ω=1γ52\omega_{\mp}=\frac{1\mp\gamma_{5}}{2}. FμνF_{{\mu\nu}} denotes the electromagnetic field strength, and mlm_{{}_{l}} represents the lepton mass.

The effective Lagrangian of lepton EDM is

EDM=i2dll¯σμνγ5lFμν.\displaystyle{\cal L}_{{}_{EDM}}=\frac{-i}{2}d_{l}\bar{l}\sigma^{\mu\nu}\gamma_{5}lF_{\mu\nu}\;. (27)

For Fermions EDM cannot be obtained at tree level in the fundamental interaction because it is a CP violation amplitude. Then, the one-loop diagrams should have non-zero contribution to Fermion EDM in the CP violating electroweak theory. With the relationship between the Wilson coefficients C2,3,6C_{2,3,6}^{\mp} of the operators 𝒪2,3,6\mathcal{O}_{2,3,6}^{\mp} lepton ; edms6 ; edms7 ; edms8 , the lepton EDM obtained is shown below

dl=2eQfml(4π)2(C2++C2+C6+).\displaystyle d_{l}=\frac{-2eQ_{f}m_{l}}{(4\pi)^{2}}\Im(C_{2}^{+}+C_{2}^{-*}+C_{6}^{+})\;. (28)

III.1 The one-loop corrections

The one-loop new physics contributions to lepton EDMs come from the diagrams in FIG. 1. The one-loop contributions to lepton EDMs are obtained by calculating with the on-shell condition of external lepton. Then we simplify the analytical results.

Refer to caption
Figure 1: The one-loop self energy diagrams in the U(1)XU(1)_{X}SSM.

The analytical results of the one-loop diagrams are shown below

1. The corrections to lepton EDMs from neutralinos and scalar leptons are

dlL~χ0=(e2Λ)[i=18j=16{(ALAR)xχi0xL~j2(xχi0,xL~j)xL~j2}].\displaystyle d_{l}^{\tilde{L}\chi^{0}}=(\frac{-e}{2\Lambda})\Im\left[-\sum_{i=1}^{8}\sum_{j=1}^{6}\Big{\{}(A_{L}^{*}A_{R})\sqrt{x_{\chi_{i}^{0}}}x_{\tilde{L}_{j}}\frac{\partial^{2}\mathcal{B}(x_{\chi_{i}^{0}},x_{\tilde{L}_{j}})}{\partial x_{\tilde{L}_{j}}^{2}}\Big{\}}\right]\;. (29)

With xi=mi2Λ2x_{i}=\frac{m_{i}^{2}}{\Lambda^{2}}, mim_{i} represents the particle mass and Λ\Lambda denotes the new physics energy scale. The couplings AR,ALA_{R},A_{L} can be expressed as

AR=12g1Ni1Zj2E+12g2Ni2Zj2E+12gYXNi5Zj2ENi3YμZj5E,\displaystyle A_{R}=\frac{1}{\sqrt{2}}g_{1}N_{i1}^{*}Z_{j2}^{E}+\frac{1}{\sqrt{2}}g_{2}N_{i2}^{*}Z_{j2}^{E}+\frac{1}{\sqrt{2}}g_{YX}N_{i5}^{*}Z_{j2}^{E}-N_{i3}^{*}Y_{\mu}Z_{j5}^{E}\;,
AL=12Zj5E(2g1Ni1+(2gYX+gX)Ni5)YμZj2ENi3.\displaystyle A_{L}=-\frac{1}{\sqrt{2}}Z_{j5}^{E}(2g_{1}N_{i1}+(2g_{YX}+g_{X})N_{i5})-Y_{\mu}^{*}Z_{j2}^{E}N_{i3}\;. (30)

The mass matrices of scalar leptons and neutrinos can be diagonalized using the matrices ZEZ^{E} and NN.

The specific forms of functions (x,y)\mathcal{B}(x,y) (using in the Eq.(11)) and 1(x,y)\mathcal{B}_{1}(x,y) (using in the Eqs.(14) and (16)) are shown below

(x,y)=116π2(xlnxyx+ylnyxy),1(x,y)=(y+y22y2)(x,y).\displaystyle\mathcal{B}(x,y)=\frac{1}{16\pi^{2}}\Big{(}\frac{x\ln x}{y-x}+\frac{y\ln y}{x-y}\Big{)}\;,~{}~{}~{}\mathcal{B}_{1}(x,y)=(\frac{\partial}{\partial y}+\frac{y}{2}\frac{\partial^{2}}{\partial y^{2}})\mathcal{B}(x,y)\;. (31)

2. The corrections from chargino and CP-odd scalar neutrino are

dlIν~χ±=(e2Λ)[i=12j=16{2(BLBR)xχi1(xν~jI,xχi)}].\displaystyle d_{lI}^{\tilde{\nu}\chi^{\pm}}=(\frac{-e}{2\Lambda})\Im\left[\sum_{i=1}^{2}\sum_{j=1}^{6}\Big{\{}-2(B_{L}^{*}B_{R})\sqrt{x_{\chi_{i}^{-}}}\mathcal{B}_{1}(x_{\tilde{\nu}_{j}^{I}},x_{\chi_{i}^{-}})\Big{\}}\right]\;. (32)

The couplings BLB_{L} and BRB_{R} can be expressed as

BL=12Ui2Zj2IYμ,BR=12g2Zj2IVi1.\displaystyle B_{L}=-\frac{1}{\sqrt{2}}U_{i2}^{*}Z_{j2}^{I*}Y_{\mu}\;,~{}~{}~{}B_{R}=\frac{1}{\sqrt{2}}g_{2}Z_{j2}^{I*}V_{i1}\;. (33)

3. The corrections from chargino and CP-even scalar neutrino are

dlRν~χ±=(e2Λ)[i=12j=16{2(CLCR)xχi1(xν~jR,xχi)}].\displaystyle d_{lR}^{\tilde{\nu}\chi^{\pm}}=(\frac{-e}{2\Lambda})\Im\left[\sum_{i=1}^{2}\sum_{j=1}^{6}\Big{\{}-2(C_{L}^{*}C_{R})\sqrt{x_{\chi_{i}^{-}}}\mathcal{B}_{1}(x_{\tilde{\nu}_{j}^{R}},x_{\chi_{i}^{-}})\Big{\}}\right]\;. (34)

The couplings CLC_{L} and CRC_{R} can be expressed as

CL=12Ui2Zj2RYμ,CR=12g2Zj2RVi1.\displaystyle C_{L}=\frac{1}{\sqrt{2}}U_{i2}^{*}Z_{j2}^{R*}Y_{\mu}\;,~{}~{}~{}C_{R}=-\frac{1}{\sqrt{2}}g_{2}Z_{j2}^{R*}V_{i1}\;. (35)

And, the UU, VV, ZRZ^{R} and ZIZ^{I} matrices diagonalize the corresponding particle mass matrices, which are detailed in the appendix.

So the contributions of the one-loop diagrams to lepton EDMs are

dloneloop=dlL~χ0+dlIν~χ±+dlRν~χ±.\displaystyle d_{l}^{one-loop}=d_{l}^{\tilde{L}\chi^{0}}+d_{lI}^{\tilde{\nu}\chi^{\pm}}+d_{lR}^{\tilde{\nu}\chi^{\pm}}\;. (36)

III.2 The two-loop corrections

In this paper, the two-loop diagrams that we research include the Barr-Zee two-loop diagrams (FIG. 2 (a), (b), (c)) and rainbow two-loop diagrams (FIG. 2 (d), (e)), as shown below.

Refer to caption
Figure 2: The two-loop Barr-Zee and rainbow type diagrams in the U(1)XU(1)_{X}SSM.

The analytical results of the contributions from the two-loop diagrams to lepton EDMs are shown below.

The contribution from FIG. 2 (a). Under the assumption mF=mF1=mF2mWm_{F}=m_{F_{1}}=m_{F_{2}}\gg m_{W}, the result ffa of simplification is

dlWH=GFmW2sW256π4F1=χ±F2=χ0Hl¯HνLmF{[[214518QF1+(3+QF13)(lnmF12\displaystyle\qquad\quad d_{l}^{WH}=\frac{-G_{F}m_{W}^{2}s_{W}}{256\pi^{4}}\sum_{F_{1}=\chi^{\pm}}\sum_{F_{2}=\chi^{0}}\frac{H_{\bar{l}H\nu}^{L}}{m_{F}}\Big{\{}\Im\Big{[}\Big{[}\frac{21}{4}-\frac{5}{18}Q_{F_{1}}+(3+\frac{Q_{F_{1}}}{3})(\ln{m_{F_{1}}^{2}}
ϱ1,1(mW2,mH±2))](HHF1F2LHWF1F2L+HHF1F2RHWF1F2R)+[1920QF19\displaystyle\qquad\quad-\varrho_{1,1}(m_{W}^{2},m_{H^{\pm}}^{2}))\Big{]}(H_{HF_{1}F_{2}}^{L}H_{WF_{1}F_{2}}^{L}+H_{HF_{1}F_{2}}^{R}H_{WF_{1}F_{2}}^{R})+\Big{[}\frac{19-20Q_{F_{1}}}{9}
+24QF13(lnmF12ϱ1,1(mW2,mH±2))](HHF1F2LHWF1F2R+HHF1F2RHWF1F2L)\displaystyle\qquad\quad+\frac{2-4Q_{F_{1}}}{3}(\ln{m_{F_{1}}^{2}}-\varrho_{1,1}(m_{W}^{2},m_{H^{\pm}}^{2}))\Big{]}(H_{HF_{1}F_{2}}^{L}H_{WF_{1}F_{2}}^{R}+H_{HF_{1}F_{2}}^{R}H_{WF_{1}F_{2}}^{L})
+[1692+6QF13(lnmF12ϱ1,1(mW2,mH±2))](HHF1F2LHWF1F2LHHF1F2RHWF1F2R)\displaystyle\qquad\quad+\Big{[}-\frac{16}{9}-\frac{2+6Q_{F_{1}}}{3}(\ln{m_{F_{1}}^{2}}-\varrho_{1,1}(m_{W}^{2},m_{H^{\pm}}^{2}))\Big{]}(H_{HF_{1}F_{2}}^{L}H_{WF_{1}F_{2}}^{L}-H_{HF_{1}F_{2}}^{R}H_{WF_{1}F_{2}}^{R})
+[2QF1962QF13(lnmF12ϱ1,1(mW2,mH±2))](HHF1F2LHWF1F2RHHF1F2RHWF1F2L)]}.\displaystyle\qquad\quad+\Big{[}-\frac{2Q_{F_{1}}}{9}-\frac{6-2Q_{F_{1}}}{3}(\ln{m_{F_{1}}^{2}}-\varrho_{1,1}(m_{W}^{2},m_{H^{\pm}}^{2}))\Big{]}(H_{HF_{1}F_{2}}^{L}H_{WF_{1}F_{2}}^{R}-H_{HF_{1}F_{2}}^{R}H_{WF_{1}F_{2}}^{L})\Big{]}\Big{\}}\;. (37)

Here, ϱ1,1(x,y)=xlnxylnyxy\varrho_{1,1}(x,y)=\frac{x\ln x-y\ln y}{x-y}. HHF1F2L,RH_{HF_{1}F_{2}}^{L,R} and HWF1F2L,RH_{WF_{1}F_{2}}^{L,R} denote the corresponding couplings coefficients. Please see the Ref.slh for their concrete forms.

Under the assumption mF=mF1=mF2mh0m_{F}=m_{F_{1}}=m_{F_{2}}\gg m_{h_{0}}, the reduced form of the contribution to lepton EDM from FIG. 2(b) is

dlγh0=eGFQfQF1mW2sW232π4F1=F2=χ±{[1mF1(Hh0F1F2L)[1+lnmF12mh02]]}.\displaystyle d_{l}^{\gamma h_{0}}=\frac{-eG_{F}Q_{f}Q_{F_{1}}m_{W}^{2}s_{W}^{2}}{32\pi^{4}}\sum_{F_{1}=F_{2}=\chi^{\pm}}\Big{\{}\Im\Big{[}\frac{1}{m_{F_{1}}}(H_{h_{0}F_{1}F_{2}}^{L})[1+\ln\frac{m_{F_{1}}^{2}}{m_{h_{0}}^{2}}]\Big{]}\Big{\}}\;. (38)

And, the simplified form from FIG. 2(c) is given below

dlZh0=2e1024π4F1=F2=χ±,χ0{Hh0ll¯mF1[ϱ1,1(mZ2,mh02)lnmF121]\displaystyle d_{l}^{Zh_{0}}=\frac{-\sqrt{2}e}{1024\pi^{4}}\sum_{F_{1}=F_{2}=\chi^{\pm},\chi^{0}}\Big{\{}\frac{H_{h_{0}l\bar{l}}}{m_{F_{1}}}\Big{[}\varrho_{1,1}(m_{Z}^{2},m_{h_{0}}^{2})-\ln{m_{F_{1}}^{2}}-1\Big{]}
×[(HZllLHZllR)(Hh0F1F2LHZF1F2L+Hh0F1F2RHZF1F2R)]}.\displaystyle\qquad\quad\times\Im[(H^{L}_{Zll}-H^{R}_{Zll})(H_{h_{0}F_{1}F_{2}}^{L}H_{ZF_{1}F_{2}}^{L}+H_{h_{0}F_{1}F_{2}}^{R}H_{ZF_{1}F_{2}}^{R})]\Big{\}}\;. (39)

With QfQ_{f} represents the electric charge of the external lepton mμm_{\mu}. QF1Q_{F_{1}} and QF2Q_{F_{2}} denote the electric charges of the internal charginos.

With the assumption mF=mF1=mF2mWmZm_{F}=m_{F_{1}}=m_{F_{2}}\gg m_{W}\sim m_{Z}, the reduced form of the contribution to lepton EDM from FIG. 2(d) is

dlWW=eGFml3842π4F1=χ±F2=χ0{[11(HWF1F2RHWF1F2L)]}.\displaystyle d_{l}^{WW}=\frac{-eG_{F}m_{l}}{384\sqrt{2}\pi^{4}}\sum_{F_{1}=\chi^{\pm}}\sum_{F_{2}=\chi^{0}}\left\{\Im[11(H_{WF_{1}F_{2}}^{R*}H_{WF_{1}F_{2}}^{L})]\right\}\;. (40)

We simplify the tedious two-loop results to the order mμ2MZ2\frac{m_{\mu}^{2}}{M_{Z}^{2}} \sim 10610^{-6} or mμ2mSUSY2\frac{m_{\mu}^{2}}{m_{SUSY}^{2}} under the assumption mF=mF1=mF2mWmZm_{F}=m_{F1}=m_{F2}\gg m_{W}\sim m_{Z}, and get the simplified form of FIG. 2(e) as follows

dlZZ=eQF1ml2048Λ2π4F1=F2=χ±{[(HZF1F2LHZF1F2R)(|HZllL|2+|HZllR|2)[6logxZ+6logxF+49xF]\displaystyle d_{l}^{ZZ}=\frac{eQ_{F_{1}}m_{l}}{2048\Lambda^{2}\pi^{4}}\sum_{F_{1}=F_{2}=\chi^{\pm}}\Big{\{}\Im\Big{[}(H^{L}_{ZF_{1}F_{2}}H^{R}_{ZF_{1}F_{2}})\Big{(}|H^{L}_{Zll}|^{2}+|H^{R}_{Zll}|^{2}\Big{)}[\frac{-6\log x_{Z}+6\log x_{F}+4}{9x_{F}}]
+(|HZF1F2L|2+|HZF1F2R|2)HZllLHZllR[16(logxFlogxZ)(logxF+2)+2xZ]]}.\displaystyle+\Big{(}|H^{L}_{ZF_{1}F_{2}}|^{2}+|H^{R}_{ZF_{1}F_{2}}|^{2}\Big{)}H^{L}_{Zll}H^{R}_{Zll}[16\frac{(\log x_{F}-\log x_{Z})(\log x_{F}+2)+2}{x_{Z}}]\Big{]}\Big{\}}\;. (41)

The contributions to lepton EDMs from the researched two-loop diagrams are

dltwoloop=dlWH+dlγh0+dlZh0+dlWW+dlZZ.\displaystyle d_{l}^{two-loop}=d_{l}^{WH}+d_{l}^{\gamma h_{0}}+d_{l}^{Zh_{0}}+d_{l}^{WW}+d_{l}^{ZZ}\;. (42)

At two-loop level, the contributions to lepton EDMs can be summarized as

dltotal=dloneloop+dltwoloop.\displaystyle d_{l}^{total}=d_{l}^{one-loop}+d_{l}^{two-loop}\;. (43)

IV the numerical results

For the numerical discussion, we consider the following experimental limitations. The lightest CP-even higgs mass is considered as an input parameter, which is mh0m_{h^{0}} \approx 125.1 GeV hmass1 ; hmass2 . And h0h^{0} decays are h0γ+γh^{0}\rightarrow\gamma+\gamma, h0Z+Zh^{0}\rightarrow Z+Z and h0γ+γh^{0}\rightarrow\gamma+\gamma dec . Experimental constraints on the masses of the new particles are also considered. The LHC experiments have more stringent mass constraints on ZZ^{\prime} boson. To satisfy the experimental constraint, we take the parameter MZM_{Z^{\prime}} greater than 5.1 TeV 51 , which is heavier than the previous mass limit. The ratio of MZM_{Z^{\prime}} to its gauge coupling gXg_{X}, (MZgX)(\frac{M_{Z^{\prime}}}{g_{X}}) should be not less than 6 TeV at 99%99\% C.L. cl1 ; cl2 . Considering the constraints from the LHC, we set the tanβη<1.5\tan{\beta_{\eta}}<1.5 BT . Since MZM_{Z^{\prime}} has a large mass, the contribution of ZZ^{\prime} at the amplitude level is very small, so the contribution of ZZ^{\prime} is ignored. Considering the experimental limitation of lepton EDMs, we adjust the parameters. In this section, we research and discuss lepton (e,μ,τe,\mu,\tau)EDMs respectively.

The parameters used in U(1)XU(1)_{X}SSM are given below:

gX=0.33,gYX=0.2,λC=0.1,κ=0.1,TλH=1.0TeV,Tκ=1.0TeV,\displaystyle g_{X}=0.33,~{}g_{YX}=0.2,~{}\lambda_{C}=-0.1,~{}\kappa=0.1,~{}T_{\lambda_{H}}=1.0~{}{\rm TeV},~{}T_{\kappa}=1.0~{}{\rm TeV},
tanβη=1.05,vη=15×cosβηTeV,vη¯=15×sinβηTeV,Bμ=8TeV2,\displaystyle\tan{\beta_{\eta}}=1.05,~{}v_{\eta}=15\times\cos{\beta_{\eta}}~{}{\rm TeV},~{}v_{\bar{\eta}}=15\times\sin{\beta_{\eta}}~{}{\rm TeV},~{}B_{\mu}=8~{}{\rm TeV^{2}},
mS2=8TeV2,TλC=150GeV,TE11=TE22=TE33=0.1TeV,\displaystyle m_{S}^{2}=8~{}{\rm TeV^{2}},~{}T_{\lambda_{C}}=150~{}{\rm GeV},~{}T_{E11}=T_{E22}=T_{E33}=0.1~{}{\rm TeV},
Mν11=Mν22=Mν33=6TeV2,YX11=YX22=YX33=0.04,\displaystyle M_{\nu 11}=M_{\nu 22}=M_{\nu 33}=6~{}{\rm TeV^{2}},~{}Y_{X11}=Y_{X22}=Y_{X33}=0.04,
BS=8TeV2,λH=0.1,lW=8TeV2,TX11=TX22=TX33=10GeV.\displaystyle B_{S}=8~{}{\rm TeV^{2}},~{}\lambda_{H}=0.1,~{}l_{W}=8~{}{\rm TeV^{2}},~{}T_{X11}=T_{X22}=T_{X33}=10~{}{\rm GeV}. (44)

θ1\theta_{1}, θ2\theta_{2} and θμ\theta_{\mu} are the CP violating phases of the parameters m1m_{1}, m2m_{2} and μ\mu. We take into account three new CP violating parameters with the phases θBL\theta_{BL}, θBB\theta_{BB^{\prime}} and θS\theta_{S}.

m1=M1eiθ1,m2=M2eiθ2,μ=mueiθμ,\displaystyle m_{1}=M_{1}*e^{i*\theta_{1}},~{}m_{2}=M_{2}*e^{i*\theta_{2}},~{}\mu=mu*e^{i*\theta_{\mu}},
mBL=MBLeiθBL,mBB=MBBeiθBB,mS=MSeiθS.\displaystyle m_{BL}=M_{BL}*e^{i*\theta_{BL}},~{}m_{{BB}^{\prime}}=M_{{BB}^{\prime}}*e^{i*\theta_{BB^{\prime}}},~{}m_{S}=M_{S}*e^{i*\theta_{S}}. (45)

In order to facilitate the following discussion, we have made some simplifications:

ML=ML11=ML22=ML33,ME=ME11=ME22=ME33,\displaystyle M_{L}=M_{L11}=M_{L22}=M_{L33},~{}~{}~{}M_{E}=M_{E11}=M_{E22}=M_{E33},
TE=TE11=TE22=TE33.\displaystyle T_{E}=T_{E11}=T_{E22}=T_{E33}. (46)

IV.1 the e EDM

At the beginning, we discussed the EDM of electron, because its experimental upper limit is very strict. The CP violating phases θ1\theta_{1}, θ2\theta_{2} ,θμ\theta_{\mu}, θBL\theta_{BL}, θBB\theta_{BB^{\prime}} and θS\theta_{S}, also including other parameters have a certain impact on the electron EDM. Now, supposing θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θBB\theta_{BB^{\prime}} = θS\theta_{S} = 0, and setting tanβ=5\tan{\beta}=5, M2=500GeVM_{2}=500~{}{\rm GeV}, mu=500GeVmu=500~{}{\rm GeV}, MBL=1800GeVM_{BL}=1800~{}{\rm GeV}, MBB=700GeVM_{BB^{\prime}}=700~{}{\rm GeV}, MS=2400GeVM_{S}=2400~{}{\rm GeV}, ML=1.1TeVM_{L}=1.1~{}{\rm TeV}, ME=1.0TeVM_{E}=1.0~{}{\rm TeV}. We study the influence of θBL\theta_{BL} on electron EDM. MBLM_{BL} is related to neutralino mass matrix. In FIG. 3, we plot the solid line and dashed line versus MLM_{L} (0.91.1TeV20.9\sim 1.1~{}{\rm TeV^{2}}) corresponding to M1M_{1} = 700,800GeV700,800~{}{\rm GeV}. We can see that these two lines are subtractive functions, and θBL\theta_{BL} has influence on |de||d_{e}|. The relationship between ded_{e} and MLM_{L} is not a simple linear relation, its change curve is like ML2M_{L}^{-2}. The shaded part of the figure indicates that all these parameters are within reasonable parameters and conform to experimental limits.

Refer to caption
Figure 3: With θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θBB\theta_{BB^{\prime}} = θS\theta_{S} = 0, and θBL\theta_{BL} = π4\frac{\pi}{4}, the contributions to electron EDM varying with MLM_{L} are plotted by the solid line, dashed line respectively corresponding to M1M_{1} = (700,800)GeV700,800)~{}{\rm GeV}.
Refer to caption
Figure 4: With θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θBB\theta_{BB^{\prime}} = θBL\theta_{BL} = 0, and θS\theta_{S} = π4\frac{\pi}{4}, the contributions to electron EDM varying with ML11M_{L11} are plotted by the solid line, dashed line respectively corresponding to ML33M_{L33} = (1,0.9)TeV2(1,0.9)~{}{\rm TeV^{2}}.

Setting θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θBB\theta_{BB^{\prime}} = θBL\theta_{BL} = 0, tanβ=5\tan{\beta}=5, M1=700GeVM_{1}=700~{}{\rm GeV}, M2=2000GeVM_{2}=2000~{}{\rm GeV}, mu=500GeVmu=500~{}{\rm GeV}, MBL=1600GeVM_{BL}=1600~{}{\rm GeV}, MBB=800GeVM_{BB^{\prime}}=800~{}{\rm GeV}, MS=800GeVM_{S}=-800~{}{\rm GeV}, ML22=1.0TeV2M_{L22}=1.0~{}{\rm TeV^{2}}, ME=1.0TeV2M_{E}=1.0~{}{\rm TeV^{2}}, we consider the impact of θS\theta_{S} on the electron EDM. MSM_{S} is related to the mass matrices of neutralino and scalar lepton. In FIG. 4, ML11M_{L11} varies from 0.50.5 to 5.05.0 TeV2~{}{\rm TeV^{2}}, and when ML11M_{L11} >> 2.0TeV22.0~{}{\rm TeV^{2}}, the numerical results of |de||d_{e}| conform to the experimental limits.

Refer to caption
Figure 5: With θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θS\theta_{S} = θBL\theta_{BL} = 0, and θBB\theta_{BB^{\prime}} = π3\frac{\pi}{3}, the contributions to electron EDM varying with TET_{E} are plotted by the solid line, dashed line respectively corresponding to ME11M_{E11} = (0.5,1.0)TeV2(0.5,1.0)~{}{\rm TeV^{2}}.

θBB\theta_{BB^{\prime}} is the new CP violating phase of the lepton neutrino mass matrix. So, it make new physical contribution to the lepton EDM. With θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θS\theta_{S} = θBL\theta_{BL} = 0, the contributions to muon EDM varying with TET_{E} are plotted by the solid line and dashed line respectively corresponding to ME11M_{E11} = 0.5 and 1.0TeV2~{}{\rm TeV^{2}}. In this part, we set tanβ=5\tan{\beta}=5, M1=700GeVM_{1}=700~{}{\rm GeV}, M2=2000GeVM_{2}=2000~{}{\rm GeV}, mu=500GeVmu=500~{}{\rm GeV}, MBL=1800GeVM_{BL}=1800~{}{\rm GeV}, MBB=700GeVM_{BB^{\prime}}=700~{}{\rm GeV}, MS=2400GeVM_{S}=2400~{}{\rm GeV}, ML=1.0TeV2M_{L}=1.0~{}{\rm TeV^{2}}, ME=0.5TeV2M_{E}=0.5~{}{\rm TeV^{2}}. In FIG. 5, the two lines are shaped like parabolas. And most of the numerical results are within experimental limits.

Refer to caption
Figure 6: With θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θBB\theta_{BB^{\prime}} = θBL\theta_{BL} = 0, and θS\theta_{S} = π4\frac{\pi}{4}, |de||d_{e}| is in the plane of ML11M_{L11} versus ML22M_{L22}, “\blacksquare” represents |de|<1.1×1029|d_{e}|<1.1\times 10^{-29} e.cm, “\circ” represents |de|1.1×1029|d_{e}|\geqslant 1.1\times 10^{-29} e.cm.

We select these parameters ML11(0.55.0TeV2)M_{L11}(0.5\thicksim 5.0~{}{\rm TeV^{2}}), ML22(0.55.0TeV2)M_{L22}(0.5\thicksim 5.0~{}{\rm TeV^{2}}), ML33(0.55.0TeV2)M_{L33}(0.5\thicksim 5.0~{}{\rm TeV^{2}}), TE(30003000GeV)T_{E}(-3000\thicksim 3000~{}{\rm GeV}), ME(0.55.0TeV2)M_{E}(0.5\thicksim 5.0~{}{\rm TeV^{2}}), and randomly scatter points. With θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θBB\theta_{BB^{\prime}} = θBL\theta_{BL} = 0, and θS\theta_{S} = π4\frac{\pi}{4}. We plot |de||d_{e}| in the plane of ML11M_{L11} versus ML22M_{L22} in Fig. 6. “\blacksquare” represents |de|<1.1×1029|d_{e}|<1.1\times 10^{-29} e.cm, “\circ” represents |de|1.1×1029|d_{e}|\geqslant 1.1\times 10^{-29} e.cm. In Fig. 6, We can see that there is a clear stratification. When ML11M_{L11} >> 1.0 TeV2~{}{\rm TeV^{2}}, ML22M_{L22} is in the vicinity of 1.4 TeV2~{}{\rm TeV^{2}}, |de||d_{e}| is within the experimental limit. This can show that ML11M_{L11} is a sensitive parameters and ML22M_{L22} is a less sensitive parameter.

IV.2 the μ\mu EDM

In this section, the muon EDM is numerically studied. In FIG. 7, setting θ1\theta_{1} = θμ\theta_{\mu} = θBB\theta_{BB^{\prime}} = θ2\theta_{2} = θBL\theta_{BL} = 0, and setting tanβ=6\tan{\beta}=6, M1=1450GeVM_{1}=1450~{}{\rm GeV}, M2=2000GeVM_{2}=2000~{}{\rm GeV}, mu=500GeVmu=500~{}{\rm GeV}, MBB=800GeVM_{BB^{\prime}}=800~{}{\rm GeV}, MS=800GeVM_{S}=-800~{}{\rm GeV}, ML=1.0TeV2M_{L}=1.0~{}{\rm TeV^{2}}, ME=0.5TeV2M_{E}=0.5~{}{\rm TeV^{2}}. We study the influence of θS\theta_{S} on the muon EDM. These solid line, dashed line correspond to MBLM_{BL} (1200,1500GeV1200,1500~{}{\rm GeV}). We can see that the numerical result of the muon EDM increases as MEM_{E} increases. The θS\theta_{S} has great influence on the numerical results, because of that MSM_{S} is related to the mass matrices of neutralino and charge Higgs.

Refer to caption
Figure 7: With θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θBB\theta_{BB^{\prime}} = θBL\theta_{BL} = 0, and θS\theta_{S} = π3\frac{\pi}{3}, the contributions to muon EDM varying with MEM_{E} are plotted by the solid line, dashed line respectively corresponding to MBLM_{BL} = (1200,1500)GeV(1200,1500)~{}{\rm GeV}.

θBB\theta_{BB^{\prime}} is the new CP violating phase of the neutralino mass matrix. So, it makes new physical contribution to the lepton EDMs. With θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θS\theta_{S} = θBL\theta_{BL} = 0, the contributions to muon EDM varying with ME22M_{E22} are plotted by the solid line and dashed line respectively corresponding to tanβ\tan\beta = (5, 6). In this part, we set M1=1450GeVM_{1}=1450~{}{\rm GeV}, M2=800GeVM_{2}=800~{}{\rm GeV}, mu=500GeVmu=500~{}{\rm GeV}, MBL=1600GeVM_{BL}=1600~{}{\rm GeV}, MBB=800GeVM_{BB^{\prime}}=800~{}{\rm GeV}, MS=800GeVM_{S}=-800~{}{\rm GeV}, ML=1.0TeV2M_{L}=1.0~{}{\rm TeV^{2}}, ME=0.5TeV2M_{E}=0.5~{}{\rm TeV^{2}}. In FIG. 8, as ME22M_{E22} increasing, the numerical result decreases slowly, and the shapes of the two lines are similar.

Refer to caption
Figure 8: With θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θS\theta_{S} = θBL\theta_{BL} = 0, and θBB\theta_{BB^{\prime}} = π6\frac{\pi}{6}, the contributions to muon EDM varying with ME22M_{E22} are plotted by the solid line, dashed line respectively corresponding to tanβ\tan\beta = (5,65,6).

We choose these parameters ML11(0.55.0TeV2)M_{L11}(0.5\thicksim 5.0~{}{\rm TeV^{2}}), ML22(0.55.0TeV2)M_{L22}(0.5\thicksim 5.0~{}{\rm TeV^{2}}), ML33(0.55.0TeV2)M_{L33}(0.5\thicksim 5.0~{}{\rm TeV^{2}}), TE(30003000GeV)T_{E}(-3000\thicksim 3000~{}{\rm GeV}), ME(0.55.0TeV2)M_{E}(0.5\thicksim 5.0~{}{\rm TeV^{2}}), and randomly scatter points. With θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θBB\theta_{BB^{\prime}} = θBL\theta_{BL} = 0, and θS\theta_{S} = π4\frac{\pi}{4}, we study |dμ||d_{\mu}| in the plane of ML33M_{L33} versus MEM_{E}. In FIG. 9, “\blacksquare” represents |dμ||d_{\mu}| << 1×10241\times 10^{-24} e.cm, “\circ” represents |dμ||d_{\mu}| \geqslant 1×10241\times 10^{-24} e.cm. Delamination occurs when MEM_{E} = 1.1TeV21.1~{}{\rm TeV^{2}}, and the stratification is obvious. This can show that MEM_{E} is a sensitive parameter and ML33M_{L33} is an insensitive parameter. These parameters are in a reasonable parameter space.

Refer to caption
Figure 9: With θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θBB\theta_{BB^{\prime}} = θBL\theta_{BL} = 0, and θS\theta_{S} = π4\frac{\pi}{4}, |dμ||d_{\mu}| is in the plane of ML33M_{L33} versus MEM_{E}, “\blacksquare” represents |dμ||d_{\mu}| << 1×10241\times 10^{-24} e.cm, “\circ” represents |dμ||d_{\mu}| \geqslant 1×10241\times 10^{-24} e.cm.

IV.3 the τ\tau EDM

At present, the experimental upper bound of tau EDM is |dτexp||d^{exp}_{\tau}| << 1.1×10171.1\times 10^{-17} e.cm, and it is largest one among bounds of the lepton EDMs. So, we study the tau EDM in this subsection. Setting tanβ=6\tan{\beta}=6, M1=750GeVM_{1}=750~{}{\rm GeV}, mu=650GeVmu=650~{}{\rm GeV}, MBL=1800GeVM_{BL}=1800~{}{\rm GeV}, MBB=700GeVM_{BB^{\prime}}=700~{}{\rm GeV}, MS=1400GeVM_{S}=1400~{}{\rm GeV}, ML=1.0TeV2M_{L}=1.0~{}{\rm TeV^{2}}, ME=1.0TeV2M_{E}=1.0~{}{\rm TeV^{2}}, and setting θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θBB\theta_{BB^{\prime}} = θBL\theta_{BL} = 0, and θS\theta_{S} = π5\frac{\pi}{5}, we study the influence of ML33M_{L33} on |dτ||d_{\tau}|. In FIG. 10, the solid line and dashed line respectively correspond to M2M_{2} = (400,500GeV)(400,500~{}{\rm GeV}) and their numerical results are all in the negative part. The two lines are increasing functions of ML33M_{L33}, and θS\theta_{S} has more obvious influence on numerical result of |dτ||d_{\tau}|. The maximum value of two lines can reach 5.0×10235.0\times 10^{-23} e.cm, and this value is 6 orders of magnitude smaller than the upper limit of the experiment.

Refer to caption
Figure 10: With θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θBB\theta_{BB^{\prime}} = θBL\theta_{BL} = 0, and θS\theta_{S} = π5\frac{\pi}{5}, the contributions to tau EDM varying with ML33M_{L33} are plotted by the solid line, dashed line respectively corresponding to M2M_{2} = (400,500)GeV(400,500)~{}{\rm GeV}.

θBL\theta_{BL} is the new CP violating phase of MBLM_{BL} in the neutralino mass matrix. Setting tanβ=6\tan{\beta}=6, M1=750GeVM_{1}=750~{}{\rm GeV}, M2=400GeVM_{2}=400~{}{\rm GeV}, MBL=1800GeVM_{BL}=1800~{}{\rm GeV}, MBB=700GeVM_{BB^{\prime}}=700~{}{\rm GeV}, MS=1400GeVM_{S}=1400~{}{\rm GeV}, ME=1.0TeV2M_{E}=1.0~{}{\rm TeV^{2}}, θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θBB\theta_{BB^{\prime}} = θS\theta_{S} = 0, and θBL\theta_{BL} = π6\frac{\pi}{6}, the contributions to tau EDM varying with MLM_{L} are plotted by the solid line and dashed line respectively corresponding to mumu = (650,750GeV(650,750~{}{\rm GeV}). In FIG. 11, we can see that |dτ||d_{\tau}| decreases with the increase of MLM_{L}. The maximum value of these two lines can reach |dτ||d_{\tau}| = 4.5×10234.5\times 10^{-23} e.cm.

Refer to caption
Figure 11: With θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θS\theta_{S} = θBB\theta_{BB^{\prime}} = 0, and θBL\theta_{BL} = π6\frac{\pi}{6}, the contributions to tau EDM varying with MLM_{L} are plotted by the solid line, dashed line respectively corresponding to mumu = (650,750)GeV(650,750)~{}{\rm GeV}.

We select these parameters ML11(0.55.0TeV2)M_{L11}(0.5\thicksim 5.0~{}{\rm TeV^{2}}), ML22(0.55.0TeV2)M_{L22}(0.5\thicksim 5.0~{}{\rm TeV^{2}}), ML33(0.55.0TeV2)M_{L33}(0.5\thicksim 5.0~{}{\rm TeV^{2}}), TE(30003000GeV)T_{E}(-3000\thicksim 3000~{}{\rm GeV}), tanβ(220)\tan{\beta}(2\thicksim 20), and randomly scatter points. In Fig. 12, we study |dτ||d_{\tau}| in the plane of ML33M_{L33} and tanβ\tan{\beta} to see their influence. The varying regions of ML33M_{L33} and tanβ\tan{\beta} are in the range (0.55TeV2)(0.5\thicksim 5~{}\rm TeV^{2}) and (220)(2\thicksim 20) respectively.“\blacksquare” represents |dτ||d_{\tau}| << 1×10231\times 10^{-23} e.cm, “\circ” represents |dτ||d_{\tau}| \geqslant 1×10231\times 10^{-23} e.cm. When tanβ\tan{\beta} = 6, stratification occurs, and the stratification is more obvious. This indicates that tanβ\tan{\beta} is a sensitive parameter.

Refer to caption
Figure 12: With θ1\theta_{1} = θ2\theta_{2} = θμ\theta_{\mu} = θBB\theta_{BB^{\prime}} = θS\theta_{S} = 0, and θBL\theta_{BL} = π6\frac{\pi}{6}, |dτ||d_{\tau}| is in the plane of ML33M_{L33} versus tanβ\tan{\beta}, “\blacksquare” represents |dτ||d_{\tau}| << 1×10231\times 10^{-23} e.cm, “\circ” represents |dτ||d_{\tau}| \geqslant 1×10231\times 10^{-23} e.cm.

V discussion and conclusion

In the U(1)XU(1)_{X}SSM, we calculate and analyze the one-loop and two-loop contributions to the lepton (e,μ,τe,\mu,\tau) EDMs. The effects of the CP violating phases θ1\theta_{1}, θ2\theta_{2}, θμ\theta_{\mu}, θBB\theta_{BB^{\prime}}, θS\theta_{S}, θBL\theta_{BL} to the lepton EDMs are researched. Among them, θBB\theta_{BB^{\prime}}, θS\theta_{S}, θBL\theta_{BL} are all newly introduced ones. The experimental upper limit of electron EDM is |deexp||d^{exp}_{e}| << 1.1×10291.1\times 10^{-29} e.cm, which gives strict restrictions on the U(1)XU(1)_{X}SSM parameter space. In the our used parameter space, the numerical result of |de||d_{e}| can be controlled below the experimental limit. In our study, the largest numerical results of μ\mu EDM and τ\tau EDM are about 2.8×10242.8\times 10^{-24} e.cm and 5.0×10235.0\times 10^{-23} e.cm respectively. They are all in a reasonable parameter space and do not exceed the upper limit of the experiment. For the corrections of lepton EDMs, the one-loop contributions are dominant. As for the contributions of one-loop and two-loop to EDMs, their relative size (dltwoloop/dloneloop)(d_{l}^{two-loop}/d_{l}^{one-loop}) are about 5%15%5\%\thicksim 15\% after numerical calculation.

Our numerical results mainly obey the rule de/dμ/dτd_{e}/d_{\mu}/d_{\tau} \thicksim me/mμ/mτm_{e}/m_{\mu}/m_{\tau}. In FIG. 3, when θBL\theta_{BL} = π4\frac{\pi}{4}, MLM_{L} has a more obvious impact on electron EDM, and the influence of θBL\theta_{BL} on electron EDM is also more obvious. In addition, the influences of the CP-violating phases θS\theta_{S} and θBB\theta_{BB^{\prime}} on lepton EDMs are also obvious. In FIG. 7, when θS\theta_{S} = π3\frac{\pi}{3}, the value of the muon EDM increases as MEM_{E} increases (the numerical results are all negative), The θS\theta_{S} has great influence on the numerical results, because of that MSM_{S} is related to the mass matrices of neutralino and charge Higgs. In FIG. 8, when θBB\theta_{BB^{\prime}} = π6\frac{\pi}{6}, the two lines (solid line, dashed line) are about the decreasing function of ME22M_{E22}. The above parameters (MLM_{L}MEM_{E}) are all elements on the diagonal of the mass matrix, so their corresponding results are all decoupled, such as FIG. 3, FIG. 4, FIG. 7, FIG. 8, FIG. 10, FIG. 11. In FIG. 12, We can get that |dτ||d_{\tau}| increases with the increase of tanβ\tan\beta. If we use the method of mass insertion massi to analyze the results, it is intuitive to find that tanβ\tan\beta is proportional to lepton EDMs. We have also performed some random spot operations on lepton EDMs. The randomly scattered pictures have obvious stratification, also help us to find a reasonable parameter space. As the accuracy of technology improves, lepton EDMs may be detected in the near future.

VI acknowledgments

This work is supported by National Natural Science Foundation of China(NNSFC)(Nos. 11535002, 11705045), Natural Science Foundation of Hebei Province (A2020201002) and the youth top-notch talent support program of the Hebei Province.

Appendix

The mass matrix for slepton with the basis (e~L,e~R)(\tilde{e}_{L},\tilde{e}_{R})

me~2=(me~Le~L12(2vdTevu(λHvS+2μ)Ye)12(2vdTevuYe(2μ+vSλH))me~Re~R),\displaystyle m_{\tilde{e}}^{2}=\left({\begin{array}[]{*{20}{c}}m_{\tilde{e}_{L}\tilde{e}_{L}^{*}}&\frac{1}{2}(\sqrt{2}v_{d}T_{e}^{\dagger}-v_{u}(\lambda_{H}v_{S}+\sqrt{2}\mu)Y_{e}^{\dagger})\\ \frac{1}{2}(\sqrt{2}v_{d}T_{e}-v_{u}Y_{e}(\sqrt{2}\mu^{*}+v_{S}\lambda_{H}^{*}))&m_{\tilde{e}_{R}\tilde{e}_{R}^{*}}\\ \end{array}}\right)\;, (49)
me~Le~L=ml~2+18((g12+gYX2+gYXgXg22)(vd2vu2)+2gYXgX(vη2vη¯2))+12vd2YeYe,\displaystyle m_{\tilde{e}_{L}\tilde{e}_{L}^{*}}=m_{\tilde{l}}^{2}+\frac{1}{8}\Big{(}(g_{1}^{2}+g_{YX}^{2}+g_{YX}g_{X}-g_{2}^{2})(v_{d}^{2}-v_{u}^{2})+2g_{YX}g_{X}(v_{\eta}^{2}-v_{\bar{\eta}}^{2})\Big{)}+\frac{1}{2}v_{d}^{2}Y_{e}^{{\dagger}}Y_{e},
me~Re~R=me218([2(g12+gYX)+3gYXgX+gX2](vd2vu2)+(4gYXgX+2gX2)(vη2vη¯2))\displaystyle m_{\tilde{e}_{R}\tilde{e}_{R}^{*}}=m_{e}^{2}-\frac{1}{8}\Big{(}[2(g_{1}^{2}+g_{YX})+3g_{YX}g_{X}+g_{X}^{2}](v_{d}^{2}-v_{u}^{2})+(4g_{YX}g_{X}+2g_{X}^{2})(v_{\eta}^{2}-v_{\bar{\eta}}^{2})\Big{)}
+12vd2YeYe.\displaystyle\hskip 51.21504pt+\frac{1}{2}v_{d}^{2}Y_{e}Y_{e}^{{\dagger}}\;. (50)

This matrix is diagonalized by ZEZ^{E}

ZEme~2ZE,=m2,e~dia.\displaystyle Z^{E}m_{\tilde{e}}^{2}Z^{E,{\dagger}}=m_{2,\tilde{e}}^{dia}\;. (51)

The mass matrix for CP-even sneutrino (ϕl,ϕr)({\phi}_{l},{\phi}_{r}) reads

mν~R2=(mϕlϕlmϕrϕlTmϕlϕrmϕrϕr),\displaystyle m^{2}_{\tilde{\nu}^{R}}=\left(\begin{array}[]{cc}m_{{\phi}_{l}{\phi}_{l}}&m^{T}_{{\phi}_{r}{\phi}_{l}}\\ m_{{\phi}_{l}{\phi}_{r}}&m_{{\phi}_{r}{\phi}_{r}}\end{array}\right)\;, (54)
mϕlϕl=18((g12+gYX2+g22+gYXgX)(vd2vu2)+gYXgX(2vη22vη¯2))\displaystyle m_{{\phi}_{l}{\phi}_{l}}=\frac{1}{8}\Big{(}(g_{1}^{2}+g_{YX}^{2}+g_{2}^{2}+g_{YX}g_{X})(v_{d}^{2}-v_{u}^{2})+g_{YX}g_{X}(2v_{\eta}^{2}-2v_{\bar{\eta}}^{2})\Big{)}
+12vu2YνTYν+mL~2,\displaystyle\hskip 51.21504pt+\frac{1}{2}v_{u}^{2}{Y_{\nu}^{T}Y_{\nu}}+m_{\tilde{L}}^{2}\;, (55)
mϕlϕr=12vuTν+vuvη¯YXYν12vd(λHvS+2μ)Yν,\displaystyle m_{{\phi}_{l}{\phi}_{r}}=\frac{1}{\sqrt{2}}v_{u}T_{\nu}+v_{u}v_{\bar{\eta}}{Y_{X}Y_{\nu}}-\frac{1}{2}v_{d}({\lambda}_{H}v_{S}+\sqrt{2}\mu)Y_{\nu}\;, (56)
mϕrϕr=18((gYXgX+gX2)(vd2vu2)+2gX2(vη2vη¯2))+vηvSYXλC\displaystyle m_{{\phi}_{r}{\phi}_{r}}=\frac{1}{8}\Big{(}(g_{YX}g_{X}+g_{X}^{2})(v_{d}^{2}-v_{u}^{2})+2g_{X}^{2}(v_{\eta}^{2}-v_{\bar{\eta}}^{2})\Big{)}+v_{\eta}v_{S}Y_{X}{\lambda}_{C}
+mν~2+12vu2|Yν|2+vη¯(2vη¯|YX|2+2TX).\displaystyle\hskip 51.21504pt+m_{\tilde{\nu}}^{2}+\frac{1}{2}v_{u}^{2}|Y_{\nu}|^{2}+v_{\bar{\eta}}(2v_{\bar{\eta}}|Y_{X}|^{2}+\sqrt{2}T_{X})\;. (57)

This matrix is diagonalized by ZRZ^{R}

ZRmν~R2ZR,=m2,ν~Rdia.\displaystyle Z^{R}m^{2}_{\tilde{\nu}^{R}}Z^{R,{\dagger}}=m_{2,\tilde{\nu}^{R}}^{dia}\;. (58)

The mass matrix for CP-odd sneutrino (σl,σr)({\sigma}_{l},{\sigma}_{r}) is also deduced here

mν~I2=(mσlσlmσrσlTmσlσrmσrσr),\displaystyle m^{2}_{\tilde{\nu}^{I}}=\left(\begin{array}[]{cc}m_{{\sigma}_{l}{\sigma}_{l}}&m^{T}_{{\sigma}_{r}{\sigma}_{l}}\\ m_{{\sigma}_{l}{\sigma}_{r}}&m_{{\sigma}_{r}{\sigma}_{r}}\end{array}\right)\;, (61)
mσlσl=18((g12+gYX2+g22+gYXgX)(vd2vu2)+2gYXgX(vη2vη¯2))\displaystyle m_{{\sigma}_{l}{\sigma}_{l}}=\frac{1}{8}\Big{(}(g_{1}^{2}+g_{YX}^{2}+g_{2}^{2}+g_{YX}g_{X})(v_{d}^{2}-v_{u}^{2})+2g_{YX}g_{X}(v_{\eta}^{2}-v_{\bar{\eta}}^{2})\Big{)}
+12vu2YνTYν+mL~2,\displaystyle\hskip 51.21504pt+\frac{1}{2}v_{u}^{2}{Y_{\nu}^{T}Y_{\nu}}+m_{\tilde{L}}^{2}\;, (62)
mσlσr=12vuTνvuvη¯YXYν12vd(λHvS+2μ)Yν,\displaystyle m_{{\sigma}_{l}{\sigma}_{r}}=\frac{1}{\sqrt{2}}v_{u}T_{\nu}-v_{u}v_{\bar{\eta}}{Y_{X}Y_{\nu}}-\frac{1}{2}v_{d}({\lambda}_{H}v_{S}+\sqrt{2}\mu)Y_{\nu}, (63)
mσrσr=18((gYXgX+gX2)(vd2vu2)+2gX2(vη2vη¯2))vηvSYXλC\displaystyle m_{{\sigma}_{r}{\sigma}_{r}}=\frac{1}{8}\Big{(}(g_{YX}g_{X}+g_{X}^{2})(v_{d}^{2}-v_{u}^{2})+2g_{X}^{2}(v_{\eta}^{2}-v_{\bar{\eta}}^{2})\Big{)}-v_{\eta}v_{S}Y_{X}{\lambda}_{C}
+mν~2+12vu2|Yν|2+vη¯(2vη¯YXYX2TX).\displaystyle\hskip 51.21504pt+m_{\tilde{\nu}}^{2}+\frac{1}{2}v_{u}^{2}|Y_{\nu}|^{2}+v_{\bar{\eta}}(2v_{\bar{\eta}}Y_{X}Y_{X}-\sqrt{2}T_{X})\;. (64)

This matrix is diagonalized by ZIZ^{I}

ZImν~I2ZI,=m2,ν~Idia.\displaystyle Z^{I}m^{2}_{\tilde{\nu}^{I}}Z^{I,{\dagger}}=m_{2,\tilde{\nu}^{I}}^{dia}\;. (65)

Mass matrix for charginos in the basis:(W~\tilde{W}^{-},H~d\tilde{H}_{d}^{-}),(W~+\tilde{W}^{+},H~u+\tilde{H}_{u}^{+})

mχ~=(M212g2vu12g2vd12λHvS+μ),\displaystyle m_{{\tilde{\chi}}^{-}}=\left({\begin{array}[]{*{20}{c}}M_{2}&\frac{1}{\sqrt{2}}g_{2}v_{u}\\ \frac{1}{\sqrt{2}}g_{2}v_{d}&\frac{1}{\sqrt{2}}\lambda_{H}v_{S}+\mu\\ \end{array}}\right)\;, (68)

The matrix is diagonalized by U and V

Umχ~V=mχ~dia.\displaystyle U^{*}m_{{\tilde{\chi}}^{-}}V^{\dagger}=m_{{\tilde{\chi}}^{-}}^{dia}. (69)

The mass matrix for charged Higgs in the basis:(HdH_{d}^{-},Hu+,H_{u}^{+,*}),(Hd,H_{d}^{-,*},Hu+H_{u}^{+})

mH2=(mHdHd,mHu+,Hd,mHdHu+mHu+,Hu+),\displaystyle m_{H^{-}}^{2}=\left({\begin{array}[]{*{20}{c}}m_{{H_{d}^{-}}H_{d}^{-,*}}&m_{H_{u}^{+,*}H_{d}^{-,*}}^{*}\\ m_{H_{d}^{-}H_{u}^{+}}&m_{H_{u}^{+,*}H_{u}^{+}}\\ \end{array}}\right)\;, (72)
mHdHd,=18((g22+gX2)vd2+(gX2+g22)vu2+(g12+gYX2)(vu2+vd2)2gX2vη¯2\displaystyle m_{{H_{d}^{-}}H_{d}^{-,*}}=\frac{1}{8}((g_{2}^{2}+g_{X}^{2})v_{d}^{2}+(-g_{X}^{2}+g_{2}^{2})v_{u}^{2}+(g_{1}^{2}+g_{YX}^{2})(-v_{u}^{2}+v_{d}^{2})-2g_{X}^{2}v_{\bar{\eta}}^{2}
+2(gYXgX(vη¯2vu2+vd2+vη2)+gX2vη2)\displaystyle\hskip 51.21504pt+2(g_{YX}g_{X}(-v_{\bar{\eta}}^{2}-v_{u}^{2}+v_{d}^{2}+v_{\eta}^{2})+g_{X}^{2}v_{\eta}^{2})
+12(2μ2+22vS(μλH)+vS2λH2,\displaystyle\hskip 51.21504pt+\frac{1}{2}(2\mid\mu\mid^{2}+2\sqrt{2}v_{S}\Re(\mu\lambda_{H}^{*})+v_{S}^{2}\mid\lambda_{H}\mid^{2}\;, (73)
mHdHu+=12(2(λHlW+Bμ)+λH(22vSMSvdvuλH+vηvη¯λC+2vSTλH))\displaystyle m_{H_{d}^{-}H_{u}^{+}}=\frac{1}{2}(2(\lambda_{H}l_{W}^{*}+B_{\mu})+\lambda_{H}(2\sqrt{2}v_{S}M_{S}^{*}-v_{d}v_{u}\lambda_{H}^{*}+v_{\eta}v_{\bar{\eta}}\lambda_{C}^{*}+\sqrt{2}v_{S}T_{\lambda_{H}}))
+14g22vdvu,\displaystyle\hskip 51.21504pt+\frac{1}{4}g_{2}^{2}v_{d}v_{u}\;, (74)
mHu+,Hu+=18((gX2+g22)vd2+(g22+gX2)vu2+(g12+gYX2)(vd2+vu2)2gX2vη2\displaystyle m_{H_{u}^{+,*}H_{u}^{+}}=\frac{1}{8}((-g_{X}^{2}+g_{2}^{2})v_{d}^{2}+(g_{2}^{2}+g_{X}^{2})v_{u}^{2}+(g_{1}^{2}+g_{YX}^{2})(-v_{d}^{2}+v_{u}^{2})-2g_{X}^{2}v_{\eta}^{2}
+2(gYXgX(vd2vη2+vu2+vη¯2)+gX2vη¯2))\displaystyle\hskip 51.21504pt+2(g_{YX}g_{X}(-v_{d}^{2}-v_{\eta}^{2}+v_{u}^{2}+v_{\bar{\eta}}^{2})+g_{X}^{2}v_{\bar{\eta}}^{2}))
+12(2μ2+22vS(μλH)+vS2λH2).\displaystyle\hskip 51.21504pt+\frac{1}{2}(2\mid\mu\mid^{2}+2\sqrt{2}v_{S}\Re(\mu\lambda_{H}^{*})+v_{S}^{2}\mid\lambda_{H}\mid^{2})\;. (75)

This matrix is diagonalized by Z+Z^{+}

Z+mH2Z+,=m2,Hdia.\displaystyle Z^{+}m_{H^{-}}^{2}Z^{+,{\dagger}}=m_{2,H^{-}}^{dia}\;. (76)

The mass matrix for neutralino in the basis(λB~\lambda_{\tilde{B}},W~0\tilde{W}^{0},H~d0\tilde{H}_{d}^{0},H~u0\tilde{H}_{u}^{0},λX~\lambda_{\tilde{X}},η~\tilde{\eta},η¯~\tilde{\bar{\eta}},s~\tilde{s}) is

mχ~0=(M10g12vdg12vuMBB0000M2g22vdg22vu0000g12vdg22vd0mH~u0H~d0mλX¯H~d000λHvu2g12vug22vumH~d0H~u00mλX¯H~u000λHvd2MBB0mH~d0λX¯mH~u0λX¯MBLgXvηgXvη¯00000gXvη012λCvS12λCvη¯0000gXvη¯12λCvS012λCvη0012λHvu12λHvd012λCvη¯12λCvηms~s~),\displaystyle m_{\tilde{\chi}^{0}}=\left({\begin{array}[]{*{20}{c}}M_{1}&0&-\frac{g_{1}}{2}v_{d}&\frac{g_{1}}{2}v_{u}&M_{{BB}^{\prime}}&0&0&0\\ 0&M_{2}&\frac{g_{2}}{2}v_{d}&-\frac{g_{2}}{2}v_{u}&0&0&0&0\\ -\frac{g_{1}}{2}v_{d}&\frac{g_{2}}{2}v_{d}&0&m_{{\tilde{H}_{u}^{0}}{\tilde{H}_{d}^{0}}}&m_{\lambda_{\bar{X}}\tilde{H}_{d}^{0}}&0&0&-\frac{\lambda_{H}v_{u}}{\sqrt{2}}\\ \frac{g_{1}}{2}v_{u}&-\frac{g_{2}}{2}v_{u}&m_{{\tilde{H}_{d}^{0}}{\tilde{H}_{u}^{0}}}&0&m_{\lambda_{\bar{X}}{\tilde{H}_{u}^{0}}}&0&0&-\frac{\lambda_{H}v_{d}}{\sqrt{2}}\\ M_{{BB}^{\prime}}&0&m_{\tilde{H}_{d}^{0}\lambda_{\bar{X}}}&m_{\tilde{H}_{u}^{0}\lambda_{\bar{X}}}&M_{BL}&-g_{X}{v_{\eta}}&g_{X}v_{\bar{\eta}}&0\\ 0&0&0&0&-g_{X}{v_{\eta}}&0&\frac{1}{\sqrt{2}}\lambda_{C}v_{S}&\frac{1}{\sqrt{2}}\lambda_{C}v_{\bar{\eta}}\\ 0&0&0&0&g_{X}v_{\bar{\eta}}&\frac{1}{\sqrt{2}}\lambda_{C}v_{S}&0&\frac{1}{\sqrt{2}}\lambda_{C}v_{\eta}\\ 0&0&-\frac{1}{\sqrt{2}}\lambda_{H}v_{u}&-\frac{1}{\sqrt{2}}\lambda_{H}v_{d}&0&\frac{1}{\sqrt{2}}\lambda_{C}v_{\bar{\eta}}&\frac{1}{\sqrt{2}}\lambda_{C}v_{\eta}&m_{\tilde{s}\tilde{s}}\\ \end{array}}\right)\;, (85)
mH~d0H~u0=12λHvSμ,mH~d0λX¯=12(gYX+gX)vd,\displaystyle m_{{\tilde{H}_{d}^{0}}{\tilde{H}_{u}^{0}}}=-\frac{1}{\sqrt{2}}\lambda_{H}v_{S}-\mu,~{}~{}m_{{\tilde{H}_{d}^{0}}\lambda_{\bar{X}}}=-\frac{1}{2}(g_{YX}+g_{X}){v_{d}},
mH~u0λX¯=12(gYX+gX)vu,ms~s~=2MS+2κvS.\displaystyle\ m_{\tilde{H}_{u}^{0}\lambda_{\bar{X}}}=\frac{1}{2}(g_{YX}+g_{X})v_{u},~{}~{}m_{\tilde{s}\tilde{s}}=2M_{S}+\sqrt{2}\kappa v_{S}\;. (86)

This matrix is diagonalized by NN,

Nmχ~0N=mχ~0dia.\displaystyle N^{*}m_{{\tilde{\chi}}^{0}}N^{\dagger}=m_{{\tilde{\chi}}^{0}}^{dia}\;. (87)

References

  • (1) N.F. Ramsey, Rept. Prog. Phys. 45 95-113 (1982)
  • (2) A. Shindler, Eur. Phys. J. A 57 128 (2021)
  • (3) J. Baron, et al., (ACME Collaboration) Science 343 269 (2014)
  • (4) V. Andreev, et al., (ACME Collaboration) Nature 562 355-60 (2018)
  • (5) A. Crivellin, M. Hoferichter, P.S. Wellenburg Phys. Rev. D 98 113002 (2018)
  • (6) P.A. Zyla, et al.,(Particle Data Group), PTEP 8 083-01 (2020)
  • (7) F. del Aguila, M. B. Gavela, J. A. Grifols, et al., Phys. Lett. B 126 71-73 (1983); Erratum: Phys. Lett. B 129 473 (1983)
  • (8) T. Ibrahim, P. Nath, Phys. Rev. D 58 111301 (1998); Erratum: Phys. Rev. D 60 099902 (1999)
  • (9) S. Atag, E. Gurkanli, JHEP 1606 118 (2016)
  • (10) T. Abe, N. Omoto, O. Seto et al., Phys. Rev. D 98 075029 (2018)
  • (11) J. Rosiek, Phys.Rev. D 41 3464 (1990)
  • (12) H.P. Nilles, Phys. Rept. 110 1 (1984)
  • (13) H.E. Haber, G.L. Kane, Phys. Rept. 117 75 (1985)
  • (14) S.M. Zhao, T.F. Feng, X.J. Zhan, et al., JHEP 07 124 (2015)
  • (15) F. Staub, SARAH, (2008) arXiv:0806.0538
  • (16) F. Staub, Comput. Phys. Commun. 185 1773 (2014)
  • (17) F. Staub, Adv. High Energy Phys. 2015 840780 (2015)
  • (18) M. Carena, J.R. Espinosaos, C.E.M. Wagner, et al., Phys. Lett. B 355 209 (1995)
  • (19) M. Carena, S. Gori, N.R. Shah, et al., JHEP 1203 014 (2012)
  • (20) S. Heinemeyer, D. Stockinger and G. Weiglein, Nucl. Phys. B 699 103 (2004)
  • (21) T.F. Feng, T. Huang, X.Q. Li, et al., Phys. Rev. D 68 016004 (2003)
  • (22) M. Pospelov, A. Ritz, Annals Phys. 318 119-169 (2005)
  • (23) T. Abe, J. Hisano, T. Kitahara, K. Tobioka, JHEP 1401 106 (2014)
  • (24) S. Ipek, Phys. Rev. D 89 073012 (2014)
  • (25) W. Bernreuther, L. Chen, O. Nachtmann, Phys. Rev. D 103 096011 (2021)
  • (26) A. Pilaftsis, Phys. Rev. D 58 096010 (1998)
  • (27) M. Carena, J. Ellis, A. Pilaftsis, et al., Nucl. Phys. B 586 92 (2000)
  • (28) N. Yamanaka, Phys. Rev. D 87 011701 (2013)
  • (29) X.G. He, C.J. Lee, S.F. Li, J. Tandean, JHEP 1408 019 (2014)
  • (30) X.G. He, C.J. Lee, S.F. Li, J. Tandean, Phys. Rev. D 89 091901 (2014)
  • (31) S.M. Zhao, T.F. Feng, M.J. Zhang, et al., JHEP 02 130 (2020)
  • (32) M.E. Peskin, D.V. Schroeder, An introduction to quantum field theory, Addison Wesley: Reading U.S.A. (1995)
  • (33) G. Belanger, J.D. Silva, H.M. Tran, Phys. Rev. D 95 115017 (2017)
  • (34) V. Barger, P.F. Perez, S. Spinner, Phys. Rev. Lett. 102 181802 (2009)
  • (35) P.H. Chankowski, S. Pokorski, J. Wagner, Eur. Phys. J. C 47 187 (2006)
  • (36) L.H. Su, S.M. Zhao, X.X. Dong, et al., Eur. Phys. J. C 81 433 (2021)
  • (37) T.F. Feng, L. Sun, X.Y. Yang, Nucl. Phys. B 800 221-252 (2008)
  • (38) X.Y. Yang, T.F. Feng, Phys. Lett. B 675 43 (2009)
  • (39) CMS collaboration, Phys. Lett. B 716 30 (2012)
  • (40) ATLAS collaboration, Phys. Lett. B 716 1 (2012)
  • (41) Particle Data collaboration, Review of Particle Physics, Prog. Theor. Exp. Phys. 2020 083C01 (2020)
  • (42) ATLAS collaboration, Phys. Lett. B 796 68 (2019)
  • (43) G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, Phys. Rev. D 74 033011 (2006)
  • (44) M. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, Phys. Rev. D 70 093009 (2004)
  • (45) L. Basso, Adv. High Energy Phys. 2015 980687 (2015)
  • (46) T. Moroi, Phys. Rev. D 53 11 (1996)