This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The structure of tiles in pn×q{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{q} and pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}

Shilei Fan Shilei FAN: School of Mathematics and Statistics, and Key Lab NAA–MOE, Central China Normal University, Wuhan 430079, China [email protected] Mamateli Kadir Mamateli Kadir: School of Mathematics and Statistics & Research Center of Modern Mathematics and Applications, Kashi University, Kashi 844000, China [email protected]  and  Peishan Li Peishan Li: School of Mathematics and Statistics, and Hubei Key Lab–Math. Sci., Central China Normal University, Wuhan 430079, China [email protected]
Abstract.

In this paper, we provide a geometric characterization of tiles in the finite abelian groups pn×q\mathbb{Z}_{p^{n}}\times\mathbb{Z}_{q} and pn×p\mathbb{Z}_{p^{n}}\times\mathbb{Z}_{p} using the concept of a pp-homogeneous tree, which provides an intuitively visualizable criterion.

Key words and phrases:
Tiles, finite groups, pp-homogeneous.
2010 Mathematics Subject Classification:
Primary 43A99; Secondary 05B45, 26E30.
S. L. FAN and P. S. Li are partially supported by NSFC (grants No. 12331004 and No. 12231013) and by NSF of Xinjiang Uygur Autonomous Region (Grant No. 2024D01A160). M. Kadir is supported by the NSF of China (Grant No. 12361015), the Fundamental Research Founds for Colleges of XinJiang Education Department, China (Grant No. XJEDU2023P108).

1. Introduction

Let GG be a locally compact abelian group. Consider a Borel measurable subset Ω\Omega in GG with 0<𝔪(Ω)<0<\mathfrak{m}(\Omega)<\infty, where 𝔪\mathfrak{m} denotes a Haar measure on GG. We say that Ω\Omega is a tile of GG by translation if there exists a set TGT\subset G such that

tT1Ω(xt)=1,𝔪a.e.xG,\sum_{t\in T}1_{\Omega}(x-t)=1,\mathfrak{m}\ a.e.x\in G,

where 1A1_{A} denotes the indicator function of a set AA in GG. Such a set TT is called a tiling complement of Ω\Omega and (Ω,T)(\Omega,T) is called a tiling pair.

Let G^\widehat{G} be the dual group of GG consisting of the continuous characters of GG. The set Ω\Omega is called a spectral set if there exists a set ΛG^\Lambda\subset\widehat{G} of continuous characters of GG which form a Hilbert basis of the space L2(Ω)L^{2}(\Omega). Such a set Λ\Lambda is called a spectrum of Ω\Omega and (Ω,Λ)(\Omega,\Lambda) is called a spectral pair.

In harmonic and functional analysis, a fundamental question asks whether a geometric property of sets (tiling) and an analytic property (spectrality) are always two sides of the same coin. This question was initially posed by Fuglede [10] for finite-dimensional Euclidean spaces, stemmed from a question of Segal on the commutativity of certain partial differential operators.

Conjecture (Fuglede 1974).

A Borel set Ωd\Omega\subset\mathbb{R}^{d} of positive and finite Lebesgue measure is a spectral set if and only if it is a tile.

The original Fuglede conjecture has been disproven in its full generality for dimensions 3 and above for both directions [8, 17, 18, 23, 28]. This means that neither implication (tiling implies spectral and vice versa) holds true in these higher dimensions. However, the connection between tiling and spectral properties remains an active area of research, particularly in lower dimensions. The conjecture is still open for the one-dimensional and two-dimensional cases ({\mathbb{R}} and 2{\mathbb{R}}^{2}). There might be a deeper relationship to be discovered in these simpler settings (see [3] for a focused look on dimension 11).

Despite the general counterexamples, the conjecture has been successfully proven for convex sets [12, 11, 20] in all dimensions. On the other hand, there has been a growing interest in extending the Fuglede conjecture beyond the realm of Euclidean spaces. Fuglede himself hinted at the possibility of exploring the conjecture in different settings. This has led to a more general version of the conjecture applicable to locally compact abelian groups. Formally stated, Fuglede’s conjecture on a locally compact abelian group GG asks: Is a Borel set ΩG\Omega\subset G of positive and finite Haar measure is a spectral set if and only if it is a tile?

The generalized Fuglede conjecture has been proved for different groups, particularly for finite abelian groups. These successes include groups like pn\mathbb{Z}_{p^{n}} [19], pd\mathbb{Z}_{p}^{d} (p=2p=2 and d6d\leq 6; pp is an odd prime and d=2d=2; p=3,5,7p=3,5,7 and d=3d=3) [1, 5, 9, 13], p×pn\mathbb{Z}_{p}\times\mathbb{Z}_{p^{n}} [13, 25, 29], p×pq\mathbb{Z}_{p}\times\mathbb{Z}_{pq} [16] and pq×pq\mathbb{Z}_{pq}\times\mathbb{Z}_{pq} [4], pnqm\mathbb{Z}_{p^{n}q^{m}} (p<qp<q and m9m\leq 9 or n6n\leq 6; pm2<q4p^{m-2}<q^{4}) [14, 21, 22], pqr\mathbb{Z}_{pqr} [24], p2qr\mathbb{Z}_{p^{2}qr} [26] and pqrs\mathbb{Z}_{pqrs} [15], where p,q,r,sp,q,r,s are distinct primes. Fan et al. [6, 7] established the validity of the conjecture for the field p{\mathbb{Q}}_{p} of pp-adic numbers, and obtained the geometric structure of tiles and spectral sets in p{\mathbb{Q}}_{p}. The concept of pp–homogeneous tree structure was introduced in [7] to characterize the tile in pn\mathbb{Z}_{p^{n}}.

It is known that spectral conjecture holds on pn×q{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{q} and pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}. However, the geometric structures of tiles were not mentioned. In this paper, we provide a geometric characterization of tiles in the finite abelian groups pn×q{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{q} and pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} by the concept of pp-homogeneous tree.

Firstly, we give a quick recall of the concept pp-homogeneous set in the cyclic group pn{\mathbb{Z}}_{p^{n}}. Consider the group pn={0,1,,pn1}{\mathbb{Z}}_{p^{n}}=\{0,1,\cdots,p^{n}-1\} as a finite tree 𝒯(n)\mathcal{T}^{(n)}, where nn is an integer (see Figure 1). The vertices of 𝒯(n)\mathcal{T}^{(n)} are the sets of pγ, 0γn{\mathbb{Z}}_{p^{\gamma}},\ 0\leq\gamma\leq n and translations of them. The point of p{\mathbb{Z}}_{p} corresponding to the point of vertices at level γ\gamma. The set of edges consists of pairs (x,y)pγ×pγ+1(x,y)\in{\mathbb{Z}}_{p^{\gamma}}\times\mathbb{Z}_{p^{\gamma+1}} such that xy(modpγ)x\equiv y(\bmod p^{\gamma}), where 0γn10\leq\gamma\leq n-1. Each subset CpnC\subset{\mathbb{Z}}_{p^{n}} will determine a subtree of 𝒯(n)\mathcal{T}^{(n)}, denoted by 𝒯C\mathcal{T}_{C}, which consists of the paths from the root to the boundary points in CC.

Refer to caption
Figure 1. Consider the set 34={0,1,2,,80}{\mathbb{Z}}_{3^{4}}=\{0,1,2,\cdots,80\} as a tree 𝒯(4)\mathcal{T}^{\left(4\right)}.
Refer to caption
Figure 2. The subtree 𝒯C\mathcal{T}_{C} of 𝒯(3)\mathcal{T}^{\left(3\right)} with C={0,2,3,4,,24,26}C=\{0,2,3,4,\cdots,24,26\}.

Let I{0,1,2,,n1}I\subseteq\{0,1,2,\dots,n-1\}, J{0,1,2,,n1}\IJ\in\{0,1,2,\dots,n-1\}\backslash I. We say a subtree 𝒯C\mathcal{T}_{C} of 𝒯(n)\mathcal{T}^{(n)} is a 𝒯I\mathcal{T}_{I}-form, if each point on the II-th levels of the tree 𝒯C\mathcal{T}_{C} has pp descendants, and the each point on the JJ-th levels only has one descendant. A 𝒯I\mathcal{T}_{I}-form tree is called a finite pp-homogeneous tree. We call a set CpnC\subset{\mathbb{Z}}_{p^{n}} a pp-homogeneous set, if the corresponding tree 𝒯C\mathcal{T}_{C} is a pp-homogeneous tree. A special subtree 𝒯I\mathcal{T}_{I} is shown in figure 3.

Refer to caption
Figure 3. For p=3p=3, a 𝒯I{{\mathcal{T}}_{I}}-form tree with n=5n=5, I={0,2,4}I=\{0,2,4\}.

1.1. The structure of tiles in pn×q{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{q}

In [2], Coven and Meyerowitz introduced the so called CM conditions, which play a crucial role in characterizing a set AA that tiles the finite cyclic group N{\mathbb{Z}}_{N} by translations.

Let ANA\subseteq{\mathbb{Z}}_{N} be a multi-set, and let mam_{a} denote the multiplicity of aAa\in A. The mask polynomial of AA is defined as

A(x)=aAmaxa.A(x)=\sum_{a\in A}m_{a}x^{a}.

Denote by ωN=e2πi/N\omega_{N}=e^{2\pi i/N}, which is a primitive NN-th root of unity.

Denote by Φs(x)\Phi_{s}(x) the ss-th cyclotomic polynomial. Let SS denote the set of prime powers dividing NN, and define

SA={sS:Φs(x)A(x)}.S_{A}=\{s\in S:\Phi_{s}(x)\mid A(x)\}.

Consider the following algebraic conditions

  • (T1)

    |A|=A(1)=sSAΦs(1)|A|=A(1)=\prod_{s\in S_{A}}\Phi_{s}(1).

  • (T2)

    Let s1,,smSAs_{1},\dots,s_{m}\in S_{A} be powers of different primes. Then the polynomial Φs1sm(x)\Phi_{s_{1}\dotsm s_{m}}(x) divides A(x)A(x).

It is proved in [2] that if AA satisfies properties (T1) and (T2), then AA tiles N{\mathbb{Z}}_{N} by translations.

Write the cyclic group pnq{\mathbb{Z}}_{p^{n}q} as the product form pn×q{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{q}. We give a geometric characterization of tiles in pn×q{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{q} by their pp-homogeneous structure. For a set EE, denote by |E||E| the cardinality of EE.

Theorem 1.1.

Let Ω=j=0q1(Ωj×{j})\Omega=\bigsqcup\limits_{j=0}^{q-1}(\Omega_{j}\times\left\{j\right\}) be a tile in pn×q{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{q} with Ωjpn\Omega_{j}\subset{\mathbb{Z}}_{p^{n}}. Then we have the following two cases.

  1. (1)

    If |Ω|=pm|\Omega|=p^{m}, then Ω0,Ω1,,Ωq1\Omega_{0},\Omega_{1},\dots,\Omega_{q-1} are disjoint, and j=0q1Ωj\bigsqcup\limits_{j=0}^{q-1}\Omega_{j} is pp-homogeneous.

  2. (2)

    If |Ω|=pmq|\Omega|={p^{m}}q, then |Ωi|=pm|{\Omega_{i}}|={p^{m}} for any ii, and all Ωi\Omega_{i} are pp-homogeneous with a common branched level set.

1.2. The structure of tiles in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}

Now we shall investigate the geometric structure of tiles in the group pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}. Let Ω\Omega be a tile of pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}. It is evident that |Ω||\Omega| divide pn+1p^{n+1}. Hence, assume that |Ω|=pi|\Omega|=p^{i} for some 1in1\leq i\leq n. Define a map π1\pi_{1} from the group pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} to the group pn{\mathbb{Z}}_{p^{n}} by

π1(a,b)=a, for (a,b)pn×p.\pi_{1}(a,b)=a,\quad\hbox{ for }(a,b)\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}.

Let

𝒵Ω={gpn×p:1Ω^(g)=0}\mathcal{Z}_{\Omega}=\Big{\{}g\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}:\widehat{1_{\Omega}}(g)=0\Big{\}}

be the set of zeros of the Fourier transform of the function 1Ω1_{\Omega}. We have the following characterization theorem of tiles in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}.

Theorem 1.2.

Assume (Ω,T)(\Omega,T) is a tiling pair in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} with |Ω|=pt|\Omega|=p^{t}. Let

Ω={i{0,n1}:(pi,0)𝒵Ω}.\mathcal{I}_{\Omega}=\big{\{}i\in\{0,\cdots\ n-1\}:(p^{i},0)\in\mathcal{Z}_{\Omega}\big{\}}.

We distinguish three cases.

  1. (1)

    If |Ω|=t|\mathcal{I}_{\Omega}|=t, then the set π1(Ω)\pi_{1}(\Omega) is a pp-homogeneous in pn{\mathbb{Z}}_{p^{n}} with |π1(Ω)|=pt.|\pi_{1}(\Omega)|=p^{t}.

  2. (2)

    If |Ω|=t1|\mathcal{I}_{\Omega}|=t-1 and (pj,b)𝒵Ω(p^{j},b)\notin\mathcal{Z}_{\Omega} for each j{0,1,,n}Ωj\in\{0,1,\cdots,n\}\setminus\mathcal{I}_{\Omega} and bpb\in{\mathbb{Z}}_{p}^{*}, then the sets

    Ωi={xpn:(x,i)Ω}\Omega_{i}=\{x\in{\mathbb{Z}}_{p^{n}}:(x,i)\in\Omega\}

    are pp-homogenous in pn{\mathbb{Z}}_{p^{n}} with a same branched level set and |Ωi|=pt1|\Omega_{i}|=p^{t-1}.

  3. (3)

    If |Ω|=t1|\mathcal{I}_{\Omega}|=t-1 and (pj,b)𝒵Ω(p^{j},b)\in\mathcal{Z}_{\Omega} for some j{0,1,,n}Ωj\in\{0,1,\cdots,n\}\setminus\mathcal{I}_{\Omega} and bpb\in{\mathbb{Z}}_{p}^{*}, then the set

    Ω~={x+b0ypnj01:(x,y)Ω}\widetilde{\Omega}=\{x+b_{0}yp^{n-j_{0}-1}:(x,y)\in\Omega\}

    is pp-homogeneous in pn{\mathbb{Z}}_{p^{n}} with |Ω~|=pt|\widetilde{\Omega}|=p^{t}, where j0j_{0} is the minimal number in {0,1,,n}Ω\{0,1,\cdots,n\}\setminus\mathcal{I}_{\Omega} such that (pj0,b0)𝒵Ω(p^{j_{0}},b_{0})\in\mathcal{Z}_{\Omega} for some b0pb_{0}\in{\mathbb{Z}}_{p}^{*}. For all (x,y)Ω(x,y)\in\Omega, the sets

    Ωx,y:={xpn:(x,y)Ω and xxmodpnj01}\Omega_{x,y}:=\{x^{\prime}\in{\mathbb{Z}}_{p^{n}}:(x^{\prime},y)\in\Omega\text{ and }x^{\prime}\equiv x\mod p^{n-j_{0}-1}\ \}

    are pp-homogenous with a same branched level set.

2. Preliminaries

In this section, we present preliminaries for the proof of the main results. We start with the recall of the Fourier transform on finite abelian groups, basic properties of spectral sets and tiles on finite abelian groups, pp-homogeneous sets and {\mathbb{Z}}-module generated by the pnp^{n}-th roots of unity.

Let GG be a finite abelian group, and let \mathbb{C} be the set of complex numbers. A character on GG is a group homomorphism χ:G\chi:G\to\mathbb{C}. The dual group of a finite abelian group GG, denoted as G^\widehat{G}, is the character group of GG.

For a finite abelian group GG, it can be written as n1×n2××ns{\mathbb{Z}}_{n_{1}}\times{\mathbb{Z}}_{n_{2}}\times\cdots\times{\mathbb{Z}}_{n_{s}} with n1n2nsn_{1}\mid n_{2}\mid\cdots\mid n_{s}. For g=(g1,g2,,gs)Gg=(g_{1},g_{2},\dots,g_{s})\in G, denote by χg\chi_{g} the character

χg(x1,,xs)=e2πij=1sxjgjnj.\chi_{g}(x_{1},\dots,x_{s})=e^{2\pi i\sum_{j=1}^{s}\frac{x_{j}g_{j}}{n_{j}}}.

For g,hGg,h\in G, it is clear that

χg+h(x)=χg(x)χh(x).\chi_{g+h}(x)=\chi_{g}(x)\cdot\chi_{h}(x).

The dual group G^\widehat{G} is isomorphic to itself, i.e.

G^=^n1×^n2××^nsn1×n2××ns.\widehat{G}=\widehat{{\mathbb{Z}}}_{n_{1}}\times\widehat{{\mathbb{Z}}}_{n_{2}}\times\cdots\times\widehat{{\mathbb{Z}}}_{n_{s}}\cong{\mathbb{Z}}_{n_{1}}\times{\mathbb{Z}}_{n_{2}}\times\cdots\times{\mathbb{Z}}_{n_{s}}.

For two finite abelian groups G1,G2G_{1},G_{2}, let GG be their product G1×G2G_{1}\times G_{2}. It is known that G^=G1^×G2^G1×G2\widehat{G}=\widehat{G_{1}}\times\widehat{G_{2}}\cong G_{1}\times G_{2}, and each character in G^\widehat{G} can be written as

χ(g1,g2)(x1,x2)=χg1(x1)χg2(x2),\chi_{(g_{1},g_{2})}(x_{1},x_{2})=\chi_{g_{1}}(x_{1})\chi_{g_{2}}(x_{2}),

where g1G1g_{1}\in G_{1} and g2G2g_{2}\in G_{2}.

2.1. Fourier transform on the finite groups.

The Fourier transform on GG is a linear transformation that maps a function f:Gf:G\rightarrow\mathbb{C} to a function f^:G^\widehat{f}:\widehat{G}\rightarrow\mathbb{C} defined as follows:

f^(g)=xGf(x)χg(x)\widehat{f}(g)=\sum_{x\in G}f(x)\cdot\chi_{g}(x)

where χg\chi_{g} is the character of GG corresponding to gg, and f(x)f(x) is the value of the function ff at the element xx in GG.

For AGA\subset G, denote by

𝒵A:={xG^:1A^(x)=0}\mathcal{Z}_{A}:=\big{\{}x\in\widehat{G}:\widehat{1_{A}}(x)=0\big{\}}

the set of zeros of the Fourier transform of the indicator function 1A1_{A}. It is clear that 𝒵A\mathcal{Z}_{A} is invariant under translation.

Lemma 2.1.

For each gGg\in G, we have

𝒵A=𝒵A+g.\mathcal{Z}_{A}=\mathcal{Z}_{A+g}.
Proof.

Assume that ξ𝒵A\xi\in\mathcal{Z}_{A} which is equivalent to 1A^(ξ)=xAχξ(x)=0.\widehat{1_{A}}(\xi)=\sum_{x\in A}\chi_{\xi}(x)=0. Hence,

1A+g^(ξ)=xA+gχξ(x)=xAχξ(x+g)=χξ(g)xAχξ(x)=0.\widehat{1_{A+g}}(\xi)=\sum_{x\in A+g}\chi_{\xi}(x)=\sum_{x\in A}\chi_{\xi}(x+g)=\chi_{\xi}(g)\sum_{x\in A}\chi_{\xi}(x)=0.

The following lemma states that the set of zeros of the Fourier transform of the indicator function of a set is invariant under special multiplication.

Lemma 2.2 ([29]).

If g𝒵Ag\in\mathcal{Z}_{A}, then rg𝒵Arg\in\mathcal{Z}_{A} for any integer rr with gcd(r,|G|)=1\gcd(r,|G|)=1.

Let GG be the product of finite abelian groups H,SH,S. Let AG=H×SA\subset G=H\times S. For each sSs\in S, define

As={hH:(h,s)A}.A_{s}=\big{\{}h\in H:(h,s)\in A\big{\}}.
Lemma 2.3.

If (h,s)𝒵A(h,s)\in\mathcal{Z}_{A} for each sSs\in S, then h𝒵Ash\in\mathcal{Z}_{A_{s}} for each sSs\in S.

Proof.

Note that

A=sSAs×{s}.A=\bigcup_{s\in S}A_{s}\times\{s\}.

Since for each sSs\in S, (h,s)𝒵A(h,s)\in\mathcal{Z}_{A}, it follows that

(2.1) (x,y)Aχ(h,s)(x,y)=sSχs(y)xAsχh(x)=0.\displaystyle\sum_{(x,y)\in A}\chi_{(h,s)}(x,y)=\sum_{s\in S}\chi_{s}(y)\sum_{x\in A_{s}}\chi_{h}(x)=0.

Let Xs=xAsχh(x)X_{s}=\sum_{x\in A_{s}}\chi_{h}(x) and let 𝐗=(Xs)sS\mathbf{X}=(X_{s})_{s\in S} be the row vector with elements XsX_{s}. Let MS=(χα(s))α,sSM_{S}=(\chi_{\alpha}(s))_{\alpha,s\in S} be the Fourier matrix of SS. By Equality (2.1), we obtain the following system of linear equations

MS𝐗=(000).M_{S}\cdot\mathbf{X}=\begin{pmatrix}0\\ 0\\ \vdots\\ 0\end{pmatrix}.

The coefficient matrix MSM_{S} is of full rank, therefore Xs=0X_{s}=0 for each sSs\in S, which implies that

1As^(h)=xAsχh(x)=Xs=0.\widehat{1_{A_{s}}}(h)=\sum_{x\in A_{s}}\chi_{h}(x)=X_{s}=0.

2.2. Basic properties of tiles.

In this section, we give some properties of tiles in finite abelian groups. Considering a tiling pair, we have the following equivalent characterization.

Lemma 2.4 ([25]).

Let Ω,TG\Omega,T\subseteq G. Then the following statements are equivalent:

  1. (1)

    (Ω,T)(\Omega,T) is a tiling pair.

  2. (2)

    (T,Ω)(T,\Omega) is a tiling pair.

  3. (3)

    (Ω+x,T+y)(\Omega+x,T+y) is a tiling pair for any x,yGx,y\in G.

  4. (4)

    |Ω||T|=|G||\Omega|\cdot|T|=|G| and (ΩΩ)(TT)={0}.(\Omega-\Omega)\cap(T-T)=\{0\}.

  5. (5)

    |Ω||T|=|G||\Omega|\cdot|T|=|G| and 𝒵Ω𝒵T=G{0}.\mathcal{Z}_{\Omega}\cup\mathcal{Z}_{T}=G\setminus\{0\}.

Lemma 2.5 ([27, Theorem 3.17]).

Assume that (Ω,T)(\Omega,T) is a tiling pair of a finite abelian group GG. For any integer kk with (k,|T|)(k,|T|)=1, (Ω,kT)(\Omega,kT) is also a tiling pair.

2.3. {\mathbb{Z}}-module generated by pnp^{n}-th roots of unity.

Let m2m\geq 2 be an integer and ωm=e2πi/m\omega_{m}=e^{2\pi i/m}, which is a primitive mm-th root of unity. Denote

m={(a0,a1,,am1)m:j=0m1ajωmj=0},\mathcal{M}_{m}=\Big{\{}(a_{0},a_{1},\cdots,a_{m-1})\in\mathbb{Z}^{m}:\ \sum_{j=0}^{m-1}a_{j}\omega_{m}^{j}=0\Big{\}},

which form a \mathbb{Z}-module. In the following we assume that m=pnm=p^{n} is a prime power.

Lemma 2.6 ([7]).

Let (a0,a1,,apn1)pn(a_{0},a_{1},\cdots,a_{p^{n}-1})\in\mathcal{M}_{p^{n}}. Then for any integer 0kpn110\leq k\leq p^{n-1}-1, we have ak=ak+jpn1a_{k}=a_{k+jp^{n-1}} for all j=0,1,,p1j=0,1,\cdots,p-1.

We will use Lemma 2.6 in the following two particular forms. The first one is an immediate consequence.

Lemma 2.7 ([7]).

Let (b0,b1,,bp1)p(b_{0},b_{1},\cdots,b_{p-1})\in\mathcal{M}_{p}. Then subject to a permutation of (b0,b1,,bp1)(b_{0},b_{1},\cdots,b_{p-1}), there exist 0rpn110\leq r\leq p^{n-1}-1, such that

bjr+jpn1modpnb_{j}\equiv r+jp^{n-1}\bmod p^{n}

for all j=0,1,,p1j=0,1,\cdots,p-1.

Lemma 2.8 ([7]).

Let CC be a finite subset of \mathbb{Z}. If cCe2πic/pn=0\sum_{c\in C}e^{2\pi ic/{p^{n}}}=0, then p|C|p\mid|C| and CC can be decomposed into |C|/p|C|/p disjoint subsets C1,C2,,C|C|/pC_{1},C_{2},\cdots,C_{|C|/p}, such that each subset consists of pp points and

cCje2πic/pn=0.\sum_{c\in C_{j}}e^{2\pi ic/{p^{n}}}=0.

2.4. pp-homogeneity of tiles in pn{\mathbb{Z}}_{p^{n}}

Let nn be a positive integer. To any finite sequence t0t1tn1{0,1,,p1}nt_{0}t_{1}\cdots t_{n-1}\in\{0,1,\dots,p-1\}^{n}, we associate the integer

c=c(t0t1tn1)=i=0n1tipi{0,1,,pn1}.c=c(t_{0}t_{1}\cdots t_{n-1})=\sum_{i=0}^{n-1}t_{i}p^{i}\in\{0,1,\dots,p^{n}-1\}.

This establishes a bijection between pn{\mathbb{Z}}_{p^{n}} and {0,1,,p1}n\{0,1,\dots,p-1\}^{n}, which we consider as a finite tree, denoted by 𝒯(n){\mathcal{T}}^{(n)} (see Figure 1).

The set of vertices of 𝒯(n){\mathcal{T}}^{(n)} is the disjoint union of the sets pγ{\mathbb{Z}}_{p^{\gamma}}, for 0γn0\leq\gamma\leq n. Each vertex, except the root, is identified with a sequence t0t1tγ1t_{0}t_{1}\cdots t_{\gamma-1} in pγ{\mathbb{Z}}_{p^{\gamma}}, where 0γn0\leq\gamma\leq n and ti{0,1,,p1}t_{i}\in\{0,1,\dots,p-1\}. The set of edges consists of pairs (x,y)pγ×pγ+1(x,y)\in{\mathbb{Z}}_{p^{\gamma}}\times{\mathbb{Z}}_{p^{\gamma+1}} such that xy(modpγ)x\equiv y\pmod{p^{\gamma}}, where 0γn10\leq\gamma\leq n-1. The points in pγ{\mathbb{Z}}_{p^{\gamma}} are corresponding to the vertices at level γ\gamma. Each point cc of pn{\mathbb{Z}}_{p^{n}} is identified with a boundary vertex i=0n1tipi{0,1,,pn1}\sum_{i=0}^{n-1}t_{i}p^{i}\in\{0,1,\dots,p^{n}-1\} which is located at level nn.

Each subset CpnC\subset{\mathbb{Z}}_{p^{n}} determines a subtree of 𝒯(n){\mathcal{T}}^{(n)}, denoted by 𝒯C{\mathcal{T}}_{C}, which consists of the paths from the root to the boundary points in CC. For each 0γn0\leq\gamma\leq n, we denote by

Cmodpγ:={x{0,1,,pγ1}:yC such that xy(modpγ)}C_{\bmod p^{\gamma}}:=\big{\{}x\in\{0,1,\dots,p^{\gamma}-1\}:\exists\ y\in C\text{ such that }x\equiv y\pmod{p^{\gamma}}\big{\}}

the subset of CC modulo pγp^{\gamma}.

The set of vertices of 𝒯C{\mathcal{T}}_{C} is the disjoint union of the sets CmodpγC_{\bmod p^{\gamma}}, for 0γn0\leq\gamma\leq n. The set of edges consists of pairs (x,y)Cmodpγ×Cmodpγ+1(x,y)\in C_{\bmod p^{\gamma}}\times C_{\bmod p^{\gamma+1}} such that xy(modpγ)x\equiv y\pmod{p^{\gamma}}, where 0γn10\leq\gamma\leq n-1.

For vertices uCmodpγ+1u\in C_{\bmod p^{\gamma+1}} and sCmodpγs\in C_{\bmod p^{\gamma}}, we call ss the parent of uu or uu a descendant of ss if there exists an edge between ss and uu.

Now, we proceed to construct a class of subtrees of 𝒯(n){\mathcal{T}}^{(n)}. Let II be a subset of {0,1,,n1}\{0,1,\dots,n-1\}, and let JJ be its complement. Thus, II and JJ form a partition of {0,1,,n1}\{0,1,\dots,n-1\}, and either set may be empty.

We say a subtree 𝒯C{\mathcal{T}}_{C} of 𝒯(n){\mathcal{T}}^{(n)} is of 𝒯I{\mathcal{T}}_{I}-form if its vertices satisfy the following conditions:

  1. (1)

    If iIi\in I and t0t1ti1t_{0}t_{1}\dots t_{i-1} is given, then tit_{i} can take any value in {0,1,,p1}\{0,1,\dots,p-1\}. In other words, every vertex in Cmodpi1C_{\bmod p^{i-1}} has pp descendants.

  2. (2)

    If iJi\in J and t0t1ti1t_{0}t_{1}\dots t_{i-1} is given, we fix a value in {0,1,,p1}\{0,1,\dots,p-1\} that tit_{i} must take. That is, tit_{i} takes only one value from {0,1,,p1}\{0,1,\cdots,p-1\}, which depends on t0t1ti1t_{0}t_{1}\dots t_{i-1}. In other words, every vertex in Cmodpi1C_{\bmod p^{i-1}} has one descendant.

Note that such a subtree depends not only on II and JJ but also on the specific values assigned to tit_{i} for iJi\in J. A 𝒯I{\mathcal{T}}_{I}-form tree is called a finite pp-homogeneous tree, see Figure 4 for an example.

A set CpnC\subset{\mathbb{Z}}_{p^{n}} is said to be pp-homogeneous subset of pn{\mathbb{Z}}_{p^{n}} with branched level set II if the corresponding tree 𝒯C{\mathcal{T}}_{C} is pp-homogeneous of form 𝒯I{\mathcal{T}}_{I}.

Refer to caption
Figure 4. For p=2p=2, a pp-homogeneous tree.
Refer to caption
Figure 5. Consider set {0,4,8,9,13,17,18,22,26}\{0,4,8,9,13,17,18,22,26\} as a pp-homogeneous tree.
Example 2.9.

Let p=3p=3, n=3n=3, C={0,4,8,9,13,17,18,22,26}C=\{0,4,8,9,13,17,18,22,26\} (see figure 5). We have:

0\displaystyle 0 =01+03+032,4=11+13+032,8=21+23+032,\displaystyle=0\cdot 1+0\cdot 3+0\cdot 3^{2},\quad 4=1\cdot 1+1\cdot 3+0\cdot 3^{2},\quad 8=2\cdot 1+2\cdot 3+0\cdot 3^{2},
9\displaystyle 9 =01+03+132,13=11+13+132,17=21+23+132,\displaystyle=0\cdot 1+0\cdot 3+1\cdot 3^{2},\quad 13=1\cdot 1+1\cdot 3+1\cdot 3^{2},\quad 17=2\cdot 1+2\cdot 3+1\cdot 3^{2},
18\displaystyle 18 =01+03+232,22=11+13+232,26=21+23+232.\displaystyle=0\cdot 1+0\cdot 3+2\cdot 3^{2},\quad 22=1\cdot 1+1\cdot 3+2\cdot 3^{2},\quad 26=2\cdot 1+2\cdot 3+2\cdot 3^{2}.

A criterion for a subset CpnC\subset{\mathbb{Z}}_{p^{n}} to be pp-homogeneous is given in [7].

Lemma 2.10 ([7, Theorem 2.9]).

Let nn be a positive integer, and let CpnC\subset{\mathbb{Z}}_{p^{n}} be a multiset. Suppose that

  1. (1)

    |C|pk|C|\leq p^{k} for some integer kk with 1kn1\leq k\leq n;

  2. (2)

    there exist kk integers 1j1<j2<<jkn1\leq j_{1}<j_{2}<\dots<j_{k}\leq n such that

    cCe2πicpjt=0for all 1tk.\sum_{c\in C}e^{2\pi icp^{-j_{t}}}=0\quad\text{for all }1\leq t\leq k.

Then |C|=pk|C|=p^{k} and CC is pp-homogeneous. Moreover, the tree 𝒯C{\mathcal{T}}_{C} is a 𝒯I{\mathcal{T}}_{I}-form tree with branched level set I={j11,j21,,jk1}I=\{j_{1}-1,j_{2}-1,\dots,j_{k}-1\}.

Lemma 2.11 ([7, Theorem 4.2]).

Let nn be a positive integer, and let CpnC\subset{\mathbb{Z}}_{p^{n}}. Then CC tiles pn{\mathbb{Z}}_{p^{n}} if and only if CC is p-homogeneous.

3. The structure of tiles on pnq{\mathbb{Z}}_{p^{n}q}

In this section, we primarily utilize the results established in [7] and [2] to characterize the structure of tiles on pnq{\mathbb{Z}}_{p^{n}q}.

The structural properties of tiles in pn{\mathbb{Z}}_{p^{n}} are characterized by pp-homogeneity, as showed in [7]. Furthermore, the equivalence of spectral sets and tiles in pnq{\mathbb{Z}}_{p^{n}q}, where pp and qq are distinct primes, was proven in [2]. This fundamental fact serves as a cornerstone in subsequent proofs within this section.

3.1. CM condition for tiles in finite group N{\mathbb{Z}}_{N}.

Let ANA\subseteq{\mathbb{Z}}_{N} be a multi-set, and let mam_{a} denote the multiplicity of aAa\in A. The mask polynomial of AA is defined as

A(x)=aAmaxa.A(x)=\sum_{a\in A}m_{a}x^{a}.

Denote by ωN=e2πi/N\omega_{N}=e^{2\pi i/N}, which is a primitive NN-th root of unity. For any d{0,1,,N1}d\in\{0,1,\dots,N-1\}, it is straightforward to verify that A(ωNd)=0A(\omega_{N}^{d})=0 is equivalent to 1A^(d)=0\widehat{1_{A}}(d)=0.

Denote by Φs(x)\Phi_{s}(x) the ss-th cyclotomic polynomial.

Lemma 3.1 ([24, Lemma 2.4]).

Let AA be a subset of N{\mathbb{Z}}_{N}. Let pp be a prime factor of NN, and aNa\in{\mathbb{Z}}_{N}. Then the following statements hold.

  1. (1)

    A(ωNa)=0A(\omega_{N}^{a})=0 if and only if A(ωNag)=0A(\omega_{N}^{ag})=0 for any gNg\in{\mathbb{Z}}_{N}^{*}.

  2. (2)

    For any dNd\mid N, A(ωNd)=0A(\omega_{N}^{d})=0 if and only if ΦNd(X)A(X).\Phi_{\frac{N}{d}}(X)\mid A(X).

  3. (3)

    Suppose that |{pdN:A(ωNN/pd)=0}|=k|\{p^{d}\in{\mathbb{Z}}_{N}:A(\omega_{N}^{N/p^{d}})=0\}|=k. Then pk|A|p^{k}\mid|A|.

Let SS denote the set of prime powers dividing NN, and define

SA={sS:Φs(x)A(x)}.S_{A}=\{s\in S:\Phi_{s}(x)\mid A(x)\}.

Coven and Meyerowitz introduced the following two properties in [2], which play a crucial role in characterizing a set AA that tile N{\mathbb{Z}}_{N} by translations:

  • (T1)

    |A|=A(1)=sSAΦs(1)|A|=A(1)=\prod_{s\in S_{A}}\Phi_{s}(1).

  • (T2)

    Let s1,,smSAs_{1},\dots,s_{m}\in S_{A} be powers of different primes. Then the polynomial Φs1sm(x)\Phi_{s_{1}\dotsm s_{m}}(x) divides A(x)A(x).

The following results are established in [2].

Theorem 3.2 ([2]).

Let ΩN\Omega\subset{\mathbb{Z}}_{N}.

  • If Ω\Omega satisfies properties (T1) and (T2), then Ω\Omega tiles N{\mathbb{Z}}_{N} by translations.

  • If Ω\Omega tiles N{\mathbb{Z}}_{N} by translations, then (T1) holds.

  • If Ω\Omega tiles N{\mathbb{Z}}_{N} by translations and |Ω||\Omega| has at most two prime factors, then (T2) holds.

Corollary 3.3.

For N=pnqN=p^{n}q, any tile Ω\Omega in N{\mathbb{Z}}_{N} satisfies properties (T1) and (T2).

3.2. The structure of tiles in pnq{\mathbb{Z}}_{p^{n}q}

Now, let N=pnqN=p^{n}q with pp, qq are distinct primes. For a set ApnqA\subset{\mathbb{Z}}_{p^{n}q}, denote 𝒵A={xpnq:1A^(x)=0}{\mathcal{Z}}_{A}=\{x\in{\mathbb{Z}}_{p^{n}q}:{\widehat{1_{A}}}(x)=0\}. Let

A={0an1:paq𝒵A}.\mathcal{I}_{A}=\big{\{}0\leq a\leq n-1:\ p^{a}q\in{\mathcal{Z}}_{A}\big{\}}.
Lemma 3.4.

Let (Ω,T)(\Omega,T) be a tiling pair in pnq{\mathbb{Z}}_{p^{n}q}. Then the cardinality of Ω\Omega is either ptp^{t} or ptqp^{t}q, where 0tn0\leq t\leq n. In both cases |Ω|=t|\mathcal{I}_{\Omega}|=t and Ω\mathcal{I}_{\Omega} and T\mathcal{I}_{T} forms a disjoint union of {0,1,,n1}\{0,1,\cdots,n-1\}.

Proof.

Since (Ω,T)(\Omega,T) is a tiling pair in pnq{\mathbb{Z}}_{p^{n}q}, it follows that |Ω|pnq|\Omega|\mid p^{n}q. Hence |Ω|=pt|\Omega|=p^{t} or |Ω|=ptq|\Omega|=p^{t}q for some 0tn0\leq t\leq n. Note that for any 0an10\leq a\leq n-1, paq𝒵Ω𝒵Tp^{a}q\in\mathcal{Z}_{\Omega}\cup\mathcal{Z}_{T}. By statement (3) of Lemma 3.1, |Ω|=t|\mathcal{I}_{\Omega}|=t, |T|=nt|\mathcal{I}_{T}|=n-t and Ω\mathcal{I}_{\Omega} and T\mathcal{I}_{T} forms a disjoint union of {0,1,,n1}\{0,1,\cdots,n-1\}. ∎

Note that pnq{\mathbb{Z}}_{p^{n}q} is isomorphic to the group pn×q{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{q} by the isomorphism

x(x1,x2) with x1x(modpn),x2x(modq).x\mapsto(x_{1},x_{2})\quad\hbox{ with }x_{1}\equiv x\!\!\!\pmod{p^{n}},x_{2}\equiv x\!\!\!\pmod{q}.

Let π1:pn×qpn\pi_{1}:{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{q}\to{\mathbb{Z}}_{p^{n}} and π2:pn×qq\pi_{2}:{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{q}\to{\mathbb{Z}}_{q} be the projection maps. In the reminder of this section, we consider the product form pn×q{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{q}.

For a function ff on pn×q{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{q}, the Fourier transform of ff is

f^(x,y)=(u,v)pn×qf(x,y)e2πi(uxpn+vyq).\widehat{f}(x,y)=\sum_{(u,v)\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{q}}f(x,y)e^{2\pi i(\frac{ux}{p^{n}}+\frac{vy}{q})}.

Hence, it follows that (pa,0)𝒵A(p^{a},0)\in\mathcal{Z}_{A} if and only if aAa\in\mathcal{I}_{A}.

Proof of Theorem 1.1 .

(1) Case |Ω|=pt|\Omega|=p^{t}. Note that

1Ω^(pa,0)=(u,v)pn×qe2πiupna.\widehat{1_{\Omega}}(p^{a},0)=\sum_{(u,v)\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{q}}e^{2\pi i\frac{u}{p^{n-a}}}.

Consider π1(Ω)\pi_{1}(\Omega) as a multi-set in pn{\mathbb{Z}}_{p^{n}}, where the multiplicity of xpnx\in{\mathbb{Z}}_{p^{n}} is given by |π11(x)||\pi_{1}^{-1}(x)|. Therefore, 1Ω^(pa,0)=0\widehat{1_{\Omega}}(p^{a},0)=0 if and only if 1π1(Ω)^(pa)=0\widehat{1_{\pi_{1}(\Omega)}}(p^{a})=0.

By Lemma 2.10, it follows that the multiplicity of each point π1(Ω)\pi_{1}(\Omega) is one and π1(Ω)\pi_{1}(\Omega) corresponds to a 𝒯I{\mathcal{T}}_{I}-form pp-homogeneous tree with I=n1ΩI=n-1-\mathcal{I}_{\Omega}.

(2) Case |Ω|=ptq|\Omega|=p^{t}q. Assume that (Ω,T)(\Omega,T) is a tiling pair. Then we have |T|=pnt|T|=p^{n-t}. By statement (3) of Lemma 3.1, Ω(ωNpn)=0\Omega(\omega_{N}^{p^{n}})=0, which is equivalent to Φq(X)Ω(X).\Phi_{q}(X)\mid\Omega(X). Hence, for any aIΩa\in I_{\Omega}, by Corollary 3.3 and statement (2) of Lemma 3.1, we have Ω(ωNpa)=0\Omega(\omega_{N}^{p^{a}})=0, which is equivalent to (pa,j)𝒵Ω(p^{a},j)\in\mathcal{Z}_{\Omega} with jpa(modq).j\equiv p^{a}\pmod{q}. Actually, this implies that (pa,j)𝒵Ω(p^{a},j)\in\mathcal{Z}_{\Omega} for all aΩa\in\mathcal{I}_{\Omega} and j{0,,q1}j\in\{0,\cdots,q-1\}. Moreover, it is clear that (0,j)𝒵Ω(0,j)\in\mathcal{Z}_{\Omega} for all j{1,,q1}j\in\{1,\cdots,q-1\}. Take a pp-homogeneous 𝒯J{\mathcal{T}}_{J}-form subset T0pnT_{0}\subset{\mathbb{Z}}_{p^{n}}. Then (Ω,T0×{0})(\Omega,T_{0}\times\{0\}) forms a tiling pair, which implies that each (Ωj,T0)(\Omega_{j},T_{0}) forms a tiling pair of pn{\mathbb{Z}}_{p^{n}}. ∎

4. The structure of tiles in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}

4.1. Equidistribution property

For x=(x1,x2),y=(y1,y2)pn×p\textbf{x}=(x_{1},x_{2}),~{}\textbf{y}=(y_{1},y_{2})\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}, we define the inner product in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} by the formula

x,y=x1y1+pn1x2y2pn.\langle\textbf{x},\textbf{y}\rangle=x_{1}y_{1}+p^{n-1}x_{2}y_{2}\in{\mathbb{Z}}_{p^{n}}.

We define

H(d,t):={𝐱pn×p:𝐱,d=t},H(\textbf{d},t):=\{\mathbf{x}\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}:\langle\mathbf{x},\textbf{d}\rangle=t\},

for dpn×p\textbf{d}\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} and tpnt\in{\mathbb{Z}}_{p^{n}}. We call such set a plane in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}.

For rpnr\in{\mathbb{Z}}_{p^{n}}^{\ast} and d=(d1,d2)pn×p\textbf{d}=(d_{1},d_{2})\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}, we define the scalar product as:

rd=(d~1,d~2)pn×p,r\textbf{d}=(\tilde{d}_{1},\tilde{{d}}_{2})\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p},

where d~1rd1modpn\tilde{{d}}_{1}\equiv r{d}_{1}\bmod p^{n} and d~2rd2modp\tilde{{d}}_{2}\equiv r{d}_{2}\bmod p.

The following lemma provide the equidistribution property of a set Apn×pA\subset{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}.

Lemma 4.1 ([24, Lemma 3.1]).

Let Apn×pA\subseteq{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} and 𝐝pn×p\mathbf{d}\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}. The following are equivalent:

  1. (1)

    1A^(𝐝)=0\widehat{1_{A}}(\mathbf{d})=0;

  2. (2)

    1A^(r𝐝)=0\widehat{1_{A}}(r\mathbf{d})=0, for any rpnr\in{\mathbb{Z}}_{p^{n}}^{\ast};

  3. (3)

    |AH(𝐝,t)|=|AH(𝐝,t)||A\cap H(\mathbf{d},t)|=|A\cap H(\mathbf{d},t^{\prime})|, if ttmodpn1t\equiv t^{\prime}\bmod p^{n-1}.

For 𝐮,𝐯pn×p\mathbf{u},\mathbf{v}\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}, we define the relation 𝐮𝐯\mathbf{u}\sim\mathbf{v}, if there exists rpnr\in{\mathbb{Z}}_{p^{n}}^{\ast} such that 𝐮=r𝐯\mathbf{u}=r\mathbf{v}. Thus, the equivalent classes in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} by ``"``\sim" are

(1,0),(c,pi)for allcpn×pandi{0,2,,n1}.(1,0),(c,p^{i})\quad\text{for all}~{}c\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}\quad\text{and}\quad i\in\{0,2,\cdots,n-1\}.

Thus, by Lemma 4.1, when we study the set of zeros 𝒵A\mathcal{Z}_{A} of a set Apn×pA\subseteq{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}, we only need to consider the elements which have the above forms.

Now we give the divisibility property for a set in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}.

Lemma 4.2 ([29] Lemma 3.2).

Let Apn×pA\subseteq{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}. If (pi1,a),(pi2,0),,(pis,0)𝒵A(p^{i_{1}},a),(p^{i_{2}},0),\cdots,(p^{i_{s}},0)\in\mathcal{Z}_{A} for some apna\in{\mathbb{Z}}_{p^{n}} and 0i1<i2<<isn10\leq{i_{1}}<{i_{2}}<...<{i_{s}}\leq n-1, then ps|A|p^{s}\mid|A|.

4.2. Proof of the theorem 1.2

In this subsection, we are concerned tiles in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}. Let Ω\Omega be a non-trivial tile in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}, then, due to Lemma 2.4, we have that |Ω||pn+1|\Omega|\big{|}p^{n+1}. Thus, we can assume that |Ω|=pt|\Omega|=p^{t} for some 1tn1\leq t\leq n.

For a set Apn×pA\subset{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}, denote

𝒵A={(x,y)pn×p:1A^(x,y)=0}.{\mathcal{Z}}_{A}=\big{\{}(x,y)\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}:\widehat{1_{A}}(x,y)=0\big{\}}.

Let

A={0in1:(pi,0)𝒵A}.\mathcal{I}_{A}=\big{\{}0\leq i\leq n-1:(p^{i},0)\in{\mathcal{Z}}_{A}\big{\}}.
Lemma 4.3.

Let Ω\Omega be a tile of pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} with |Ω|=pt|\Omega|=p^{t} for some 1tn1\leq t\leq n. Then |Ω|=t1|\mathcal{I}_{\Omega}|=t-1 or tt.

Proof.

Let TT be a tiling complement of Ω\Omega in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}. Then |T|=pnt+1|T|=p^{n-t+1}. By Lemma 4.2, we have that |Ω|t|\mathcal{I}_{\Omega}|\leqslant t and |T|nt+1|\mathcal{I}_{T}|\leqslant n-t+1. On the other hand, since

𝒵Ω𝒵T=pn×p\{(0,0)},\mathcal{Z}_{\Omega}\cup\mathcal{Z}_{T}={\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}\backslash\{(0,0)\},

we have |Ω|+|T|n|\mathcal{I}_{\Omega}|+|\mathcal{I}_{T}|\geqslant n. Thus, t1|Ω|tt-1\leqslant|\mathcal{I}_{\Omega}|\leqslant t, that means |Ω|=t|\mathcal{I}_{\Omega}|=t or t1t-1. ∎

Define a map π1\pi_{1} from pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} to pn{\mathbb{Z}}_{p^{n}} by

π1(a,b)=a, for (a,b)pn×p.\pi_{1}(a,b)=a,\hbox{ for }(a,b)\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}.
Proposition 4.4.

Let Ω\Omega be a tile in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} with |Ω|=pt|\Omega|=p^{t} and |Ω|=t|\mathcal{I}_{\Omega}|=t. Then π1(Ω)\pi_{1}(\Omega) is a pp-homogeneous set in pn{\mathbb{Z}}_{p^{n}} with |π1(Ω)|=pt|\pi_{1}(\Omega)|=p^{t}.

Proof.

Write Ω=j=0p1(Ωj×{j})\Omega=\bigsqcup\limits_{j=0}^{p-1}(\Omega_{j}\times\left\{j\right\}) with Ωjpn\Omega_{j}\subset{\mathbb{Z}}_{p^{n}}. For each iΩi\in\mathcal{I}_{\Omega}, we have

1Ω^(pi,0)\displaystyle\widehat{1_{\Omega}}(p^{i},0) =j=0p11Ωj×{j}^(pi,0)\displaystyle=\sum_{j=0}^{p-1}\widehat{1_{\Omega_{j}\times\{j\}}}(p^{i},0)
=j=0p11Ωj^(pi)\displaystyle=\sum_{j=0}^{p-1}\widehat{1_{\Omega_{j}}}(p^{i})
=1Ω0Ω1Ωp1^(pi)\displaystyle=\widehat{1_{\Omega_{0}\cup\Omega_{1}\cup\cdots\cup\Omega_{p-1}}}(p^{i})
=0.\displaystyle=0.

By Lemmas 2.10 and 2.11, π1(Ω)=Ω0Ω1Ωp1\pi_{1}(\Omega)={\Omega_{0}}\cup{\Omega_{1}}\cup\cdots\cup{\Omega_{p-1}} is a pp-homogeneous set in pn{\mathbb{Z}}_{p^{n}} and |π1(Ω)|=pt|\pi_{1}(\Omega)|=p^{t}. ∎

Now assume |Ω|=t1|\mathcal{I}_{\Omega}|=t-1. Let 𝒥={0,1,n1}\Ω\mathcal{J}=\{0,1,\cdots n-1\}\backslash\mathcal{I}_{\Omega}.

Lemma 4.5.

Let Ω\Omega be a tile in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} with |Ω|=pt|\Omega|=p^{t} and |Ω|=t1|\mathcal{I}_{\Omega}|=t-1 for some 1tn1\leq t\leq n. If for each i{0,1,,n1}Ωi\in\{0,1,\cdots,n-1\}\setminus\mathcal{I}_{\Omega} and bpb\in{\mathbb{Z}}_{p}^{*}, (pi,b)𝒵Ω(p^{i},b)\notin\mathcal{Z}_{\Omega}, then (0,1)𝒵Ω(0,1)\in\mathcal{Z}_{\Omega}.

Proof.

Let TT be a tiling complement of Ω\Omega. By assumption, we have

{(pj,b):j𝒥,bp}𝒵T.\{(p^{j},b):j\in\mathcal{J},b\in{\mathbb{Z}}_{p}\}\subset\mathcal{Z}_{T}.

If (0,1)𝒵T(0,1)\in\mathcal{Z}_{T}, we define

Λ={sn(0,1)+(j𝒥sjpj,0):sj,sn{0,1,,p1}}.\Lambda=\big{\{}s_{n}(0,1)+(\sum_{j\in\mathcal{J}}s_{j}p^{j},0):s_{j},s_{n}\in\{0,1,\cdots,p-1\}\big{\}}.

Then, for any λλΛ\lambda\neq\lambda^{\prime}\in\Lambda, we have

λλ=rn(0,1)+(j𝒥rjpj, 0),\lambda-\lambda^{\prime}=r_{n}(0,1)+(\sum_{j\in\mathcal{J}}r_{j}p^{j},\ 0),

where rj,rn{p+1,,p1}r_{j},r_{n}\in\{-p+1,\cdots,\ p-1\}. Notice that

rn(0,1)+(jJrjpj, 0){(0,1),ifrn0andrj=0forj𝒥;(pl,rl1rn),ifrn0,rl0andrj=0for 1j<l;(pl, 0),ifrn=0,rl0andrj=0for 1j<l.r_{n}(0,1)+(\sum_{j\in J}r_{j}p^{j},\ 0)\sim\begin{cases}(0,1),&\text{if}\ r_{n}\neq 0\ \text{and}\ r_{j}=0\ \text{for}\ j\in\mathcal{J};\\ (p^{l},r_{l}^{-1}r_{n}),&\text{if}\ r_{n}\neq 0,r_{l}\neq 0\ \text{and}\ r_{j}=0\ \text{for}\ 1\leq j<l;\\ (p^{l},\ 0),&\text{if}\ r_{n}=0,\ r_{l}\neq 0\ \text{and}\ r_{j}=0\ \text{for}\ 1\leq j<l.\end{cases}

Therefore, (ΛΛ){(0,0)}𝒵T(\Lambda-\Lambda)\setminus\{(0,0)\}\subseteq\mathcal{Z}_{T}, which implies the characters {χλ}λΛ\{\chi_{\lambda}\}_{\lambda\in\Lambda} are orthogonal in L2(T)L^{2}(T). However, |Λ|=pnt+2>|T||\Lambda|=p^{n-t+2}>|T|, which is a contradiction, since the dimension of L2(T)L^{2}(T) is |T||T|. Thus, (0,1)𝒵Ω(0,1)\in\mathcal{Z}_{\Omega}. ∎

Note that pn=0p^{n}=0 in pn{\mathbb{Z}}_{p^{n}}. Let Ω\Omega be tile of pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} with |Ω|=pt|\Omega|=p^{t} and |Ω|=t1|\mathcal{I}_{\Omega}|=t-1. Define

γΩ=min{j{0,1,,n}Ω:(pj,b)𝒵Ω for some bp}.\gamma_{\Omega}=\min\big{\{}j\in\{0,1,\cdots,n\}\setminus\mathcal{I}_{\Omega}:(p^{j},b)\in\mathcal{Z}_{\Omega}\hbox{ for some }b\in{\mathbb{Z}}_{p}^{*}\big{\}}.

By Lemma 4.5, γΩ\gamma_{\Omega} is well defined.

Lemma 4.6.

Let Ω\Omega be a tile in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} with |Ω|=pt|\Omega|=p^{t} and |Ω|=t1|\mathcal{I}_{\Omega}|=t-1 for some 1tn1\leq t\leq n. Then for any tiling complement TT, we have (pi,b)𝒵T(p^{i},b)\notin\mathcal{Z}_{T} for all iΩi\in\mathcal{I}_{\Omega} with i<γΩi<\gamma_{\Omega}, b{0,1,,p1}.b\in\{0,1,\cdots,p-1\}. Consequently, (pi,b)𝒵Ω(p^{i},b)\in\mathcal{Z}_{\Omega}.

Proof.

Let TT be a tiling complement of Ω\Omega and 𝒥={0,1,,n1}Ω\mathcal{J}=\{0,1,\cdots,n-1\}\setminus\mathcal{I}_{\Omega}. Assume that there is an iΩi\in\mathcal{I}_{\Omega} with i<γΩi<\gamma_{\Omega} such that (pi,b)𝒵T(p^{i},b)\in\mathcal{Z}_{T} for bpb\in{\mathbb{Z}}_{p}. Define

Λ={(j𝒥sjpj,0)+si(pi,b):si,sj{0,1,,p1}}.\Lambda=\Big{\{}(\sum\limits_{j\in\mathcal{J}}s_{j}p^{j},0)+s_{i}(p^{i},b):s_{i},s_{j}\in\{0,1,\cdots,p-1\}\Big{\}}.

For any λλΛ\lambda\neq\lambda^{\prime}\in\Lambda, we have

λλ=(j𝒥rjpj,0)+ri(pi,b),\lambda-\lambda^{\prime}=(\sum\limits_{j\in\mathcal{J}}r_{j}p^{j},0)+r_{i}(p^{i},b),

where ri,rj{p+1,,p1}r_{i},r_{j}\in\{-p+1,\cdots,p-1\}. Observe that

j𝒥rj(pj,0)+ri(pi,b)(pi,b)\sum_{j\in\mathcal{J}}r_{j}(p^{j},0)+~{}r_{i}(p^{i},b)\sim(p^{i},b)

if ri0\ r_{i}\neq 0 and rj=0r_{j}=0 for j<ij<i. And

j𝒥rj(pj,0)+ri(pi,b)(pl,rl1rib)\sum_{j\in\mathcal{J}}r_{j}(p^{j},0)+~{}r_{i}(p^{i},b)\sim(p^{l},r_{l}^{-1}r_{i}b)

if ll is the minimal number such that rl0r_{l}\neq 0 and l<il<i. Therefore

(ΛΛ)\{(0,0)}𝒵T,(\Lambda-\Lambda)\backslash\{(0,0)\}\subseteq\mathcal{Z}_{T},

which implies the characters {χλ}λΛ\{\chi_{\lambda}\}_{\lambda\in\Lambda} are orthogonal in L2(T)L^{2}(T). However, |Λ|=pnt+2>|T||\Lambda|=p^{n-t+2}>|T|, which is a contradiction, since the dimension of L2(T)L^{2}(T) is |T||T|. ∎

We distinguish two cases:

(1)γΩ=n,(2)γΩ<n.(1)\ \gamma_{\Omega}=n,\quad(2)\ \gamma_{\Omega}<n.

Firstly, we deal with the case γΩ=n\gamma_{\Omega}=n.

Proposition 4.7.

Let Ω\Omega be tile of pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} with |Ω|=pt|\Omega|=p^{t}, |Ω|=t1|\mathcal{I}_{\Omega}|=t-1 and γΩ=n.\gamma_{\Omega}=n. Then for each bpb\in{\mathbb{Z}}_{p}, the set Ωb={xpn:(x,b)Ω}\Omega_{b}=\{x\in{\mathbb{Z}}_{p^{n}}:(x,b)\in\Omega\} is a pp-homogeneous subset of pn{\mathbb{Z}}_{p^{n}} with branched level set n1Ωn-1-\mathcal{I}_{\Omega}.

Proof.

By Lemmas 4.5 and 4.6, we have

{(0,b):bp}𝒵Ω\left\{(0,b):b\in{\mathbb{Z}}_{p}\right\}\subset\mathcal{Z}_{\Omega}

and

{(pi,b):iΩ,bp}𝒵Ω.\left\{(p^{i},b):i\in\mathcal{I}_{\Omega},b\in{\mathbb{Z}}_{p}\right\}\subset\mathcal{Z}_{\Omega}.

Let T0T_{0} be a subset of pn{\mathbb{Z}}_{p^{n}} with pj𝒵T0p^{j}\in\mathcal{Z}_{T_{0}} for j𝒥={0,,n1}Ωj\in\mathcal{J}=\{0,\cdots,n-1\}\setminus\mathcal{I}_{\Omega}. Take T=T0×{0}T=T_{0}\times\{0\}, which is a subset of pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}. By calculating the zero set 𝒵T\mathcal{Z}_{T}, it follows that (Ω,T)(\Omega,T) is a tiling pair of pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}. Hence, for each bpb\in{\mathbb{Z}}_{p}, (Ωb,T0)(\Omega_{b},T_{0}) is a tiling pair of pn{\mathbb{Z}}_{p^{n}}, which implies Ωb={xpn:(x,b)Ω}\Omega_{b}=\{x\in{\mathbb{Z}}_{p^{n}}:(x,b)\in\Omega\} is a pp-homogeneous subset of pn{\mathbb{Z}}_{p^{n}} with branched level set n1Ωn-1-\mathcal{I}_{\Omega}. ∎

Now, we shall deal the case γΩ<n\gamma_{\Omega}<n.

Proposition 4.8.

Let Ω\Omega be a tile in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p} with γΩ<n\gamma_{\Omega}<n, |Ω|=pt|\Omega|=p^{t} and |Ω|=t1|\mathcal{I}_{\Omega}|=t-1 for some 1tn11\leq t\leq n-1. Assume that (pγΩ,α)𝒵Ω(p^{\gamma_{\Omega}},\alpha)\in\mathcal{Z}_{\Omega} and let =Ω{γΩ}\mathcal{I}=\mathcal{I}_{\Omega}\cup\{\gamma_{\Omega}\}. Then the set

Ω~={x+αypnγΩ1:(x,y)Ω}\widetilde{\Omega}=\left\{x+\alpha yp^{n-\gamma_{\Omega}-1}:(x,y)\in\Omega\right\}

is a pp-homogeneous set in pn{\mathbb{Z}}_{p^{n}}.

Proof.

Consider the multi-set

Ω~={x+αypnγΩ1:(x,y)Ω}pn.\widetilde{\Omega}=\left\{x+\alpha yp^{n-\gamma_{\Omega}-1}:(x,y)\in\Omega\right\}\subset{\mathbb{Z}}_{p^{n}}.

It is obvious that |Ω~|=pt|\widetilde{\Omega}|=p^{t}. Now, we shall show that pj𝒵Ω~p^{j}\in\mathcal{Z}_{\widetilde{\Omega}} for jj\in\mathcal{I}.

For jΩj\in\mathcal{I}_{\Omega} with j>γΩj>\gamma_{\Omega}, we have

1Ω~^(pj)=(x,y)Ωe2πi(x+αypnγΩ1)pjpn=(x,y)Ωe2πixpjpn=1Ω^(pj,0)=0.\widehat{1_{\widetilde{\Omega}}}(p^{j})=\sum_{(x,y)\in\Omega}e^{2\pi i\frac{(x+\alpha yp^{n-\gamma_{\Omega}-1})p^{j}}{p^{n}}}=\sum_{(x,y)\in\Omega}e^{2\pi i\frac{xp^{j}}{p^{n}}}=\widehat{1_{\Omega}}(p^{j},0)=0.

For j=γΩj=\gamma_{\Omega}, we have

1Ω~^(pγΩ)=(x,y)Ωe2πi(x+αypnγΩ1)pγΩpn=(x,y)Ωe2πixpγΩ+αypn1pn=1Ω^(pγΩ,α)=0.\widehat{1_{\widetilde{\Omega}}}(p^{\gamma_{\Omega}})=\sum_{(x,y)\in\Omega}e^{2\pi i\frac{(x+\alpha yp^{n-\gamma_{\Omega}-1})p^{\gamma_{\Omega}}}{p^{n}}}=\sum_{(x,y)\in\Omega}e^{2\pi i\frac{xp^{\gamma_{\Omega}}+\alpha yp^{n-1}}{p^{n}}}=\widehat{1_{\Omega}}(p^{\gamma_{\Omega}},\alpha)=0.

Now we consider the case j<γΩj<\gamma_{\Omega}. By the definition of γΩ\gamma_{\Omega}, we have (pj,b)𝒵Ω(p^{j},b)\in\mathcal{Z}_{\Omega} for each bpb\in{\mathbb{Z}}_{p}. For each bpb\in{\mathbb{Z}}_{p}, let Ωb={xpn:(x,b)pn×p}\Omega_{b}=\{x\in{\mathbb{Z}}_{p^{n}}:(x,b)\in{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}\}. By Lemma 2.3, we have pj𝒵Ωbp^{j}\in\mathcal{Z}_{\Omega_{b}} for each bpb\in{\mathbb{Z}}_{p}. By the definition of Ω~\widetilde{\Omega}, we have

1Ω~^(pj)\displaystyle\widehat{1_{\widetilde{\Omega}}}(p^{j}) =(x,y)Ωe2πi(x+αypnγΩ1)pjpn\displaystyle=\sum_{(x,y)\in\Omega}e^{2\pi i\frac{(x+\alpha yp^{n-\gamma_{\Omega}-1})p^{j}}{p^{n}}}
=bpxΩbe2πixpj+αbpn+j1γΩpn\displaystyle=\sum_{b\in{\mathbb{Z}}_{p}}\sum_{x\in\Omega_{b}}e^{2\pi i\frac{xp^{j}+\alpha bp^{n+j-1-\gamma_{\Omega}}}{p^{n}}}
=bp1Ωb+αbpn+j1γΩ^(pj).\displaystyle=\sum_{b\in{\mathbb{Z}}_{p}}\widehat{1_{\Omega_{b}+\alpha bp^{n+j-1-\gamma_{\Omega}}}}(p^{j}).

By Lemma 2.1, we have 1Ω~^(pj)=0\widehat{1_{\widetilde{\Omega}}}(p^{j})=0. Hence, {pj:j}𝒵Ω~\{p^{j}:j\in\mathcal{I}\}\subset\mathcal{Z}_{\widetilde{\Omega}}. Note that ||=t|\mathcal{I}|=t and |Ω~|=pt|\widetilde{\Omega}|=p^{t}. By Lemma 2.10, Ω~\widetilde{\Omega} is pp-homogeneous with branch level set n1.n-1-\mathcal{I}.

Lemma 4.9.

Let Ω\Omega be a tile in pn×p{\mathbb{Z}}_{p^{n}}\times{\mathbb{Z}}_{p}. Assume that Ω={i1,i2,,it1}\mathcal{I}_{\Omega}=\{i_{1},i_{2},\cdots,i_{t-1}\} with i1<<is<γΩ<is+1<<it1i_{1}<\cdots<i_{s}<\gamma_{\Omega}<i_{s+1}<\cdots<i_{t-1}. Then for each (x,y)Ω(x,y)\in\Omega, the sets

Ωx,y:={xpn:(x,y)Ω and xxmodpnγΩ1}\Omega_{x,y}:=\{x^{\prime}\in{\mathbb{Z}}_{p^{n}}:(x^{\prime},y)\in\Omega\text{ and }x^{\prime}\equiv x\!\!\mod p^{n-\gamma_{\Omega}-1}\ \}

is pp-homogenous with the branched level set n1{i1,i2,is}n-1-\{i_{1},i_{2}\cdots,i_{s}\}.

Proof.

Assume that Ω={i1,i2,,it1}\mathcal{I}_{\Omega}=\{i_{1},i_{2},\cdots,i_{t-1}\} with i1<<is<γΩ<is+1<<it1i_{1}<\cdots<i_{s}<\gamma_{\Omega}<i_{s+1}<\cdots<i_{t-1}.

We shall characterize the structure of the tile Ω\Omega by induction. We distinguish two cases.

Refer to caption
Figure 6. The corresponding tree of Ω~\widetilde{\Omega}, where the blue edges determined by the hyperplanes H((pγΩ,α),k){H}((p^{\gamma_{\Omega}},\alpha),k).

Case 1: Assume γΩ<i1<i2<<it1\gamma_{\Omega}<i_{1}<i_{2}<\cdots<i_{t-1}. The set Ω~\widetilde{\Omega} corresponding to a pp-homogeneous tree with branched level set

n1{γΩ,i1,i2,,it1}.n-1-\{\gamma_{\Omega},i_{1},i_{2},\cdots,i_{t-1}\}.

The branched levels (ni11),(ni21),(nit11)(n-i_{1}-1),(n-i_{2}-1),\cdots(n-i_{t-1}-1) is determined by the projection π1(Ω)\pi_{1}(\Omega), that is, the vertices at (ni11)(n-i_{1}-1)th, (ni21)(n-i_{2}-1)th,th,\cdots, (nit11)(n-i_{t-1}-1)th levels of the corresponding tree of the set π1(Ω)\pi_{1}(\Omega) have pp descendants. On the other hand, there is α{1,,p1}such that (pγΩ,α)𝒵Ω\alpha\in\{1,\cdots,p-1\}~{}\text{such that }~{}(p^{\gamma_{\Omega}},\alpha)\in\mathcal{Z}_{\Omega}. Thus, we have

1Ω^(pγΩ,α)=(x,y)Ωe2πixpγΩ+αypn1pn=0.\widehat{1_{\Omega}}(p^{\gamma_{\Omega}},\alpha)=\sum\limits_{(x,y)\in\Omega}{{e^{2\pi i\frac{xp^{\gamma_{\Omega}}+\alpha yp^{n-1}}{{p^{n}}}}}}=0.

By Lemma 4.1, we get

(4.1) |ΩH((pγΩ,α),k)|=|ΩH((pγΩ,α),k+jpn1)|.|\Omega\cap{H}((p^{\gamma_{\Omega}},\alpha),k)|=|\Omega\cap{H}((p^{\gamma_{\Omega}},\alpha),k+jp^{n-1})|.

By the above argument, we conclude that for (x,y)Ω(x,y)\in\Omega, the sets Ωx,y={x}\Omega_{x,y}=\{x\} is a single point.

Case 2: Assume i1<<is<γΩ<is+1<it1i_{1}<\cdots<i_{s}<\gamma_{\Omega}<i_{s+1}\cdots<i_{t-1}. By Lemma 2.3, the condition (pi1,b)𝒵Ω(p^{i_{1}},b)\in\mathcal{Z}_{\Omega} for each bpb\in{\mathbb{Z}}_{p} implies that pi1𝒵Ωbp^{i_{1}}\in\mathcal{Z}_{\Omega_{b}} for each bb. Then for each bpb\in{\mathbb{Z}}_{p}, either Ωb=\Omega_{b}=\emptyset, or p|Ωb|p\mid|\Omega_{b}| and Ωb\Omega_{b} can decomposed into |Ωb|/p|\Omega_{b}|/p subsets satisfy that each subset contains pp elements and each two distinct point x,yx,y in a same subset such that pn1i1(xy)p^{n-1-i_{1}}\mid(x-y) and pni1(xy)p^{n-i_{1}}\nmid(x-y). By induction, for each bpb\in{\mathbb{Z}}_{p}, either Ωb=\Omega_{b}=\emptyset, or ps|Ωb|p^{s}\mid|\Omega_{b}| and Ωb\Omega_{b} can decomposed into |Ωb|/ps|\Omega_{b}|/p^{s} subsets Ωb,s,0|Ωb|/ps\Omega^{s}_{b,\ell},0\leq\ell\leq|\Omega_{b}|/p^{s}, satisfy that each subset corresponding to a pp-homogenous tree with branch level set n1{i1,,is}n-1-\{i_{1},\cdots,i_{s}\}.

The set Ω~\widetilde{\Omega} corresponding to a pp-homogeneous tree with branched level set

n1{i1,,is,,γΩ,is+1,,it1}.n-1-\{i_{1},\cdots,i_{s},\cdots,\gamma_{\Omega},i_{s+1},\cdots,i_{t-1}\}.

The branched levels (nit11),(nit21),(nis+11)(n-i_{t-1}-1),(n-i_{t-2}-1),\cdots(n-i_{s+1}-1) is determined by the projection π1(Ω)\pi_{1}(\Omega), that is, the vertices at (ni11)(n-i_{1}-1)th, (ni21)(n-i_{2}-1)th,th,\cdots, (nit11)(n-i_{t-1}-1)th levels of the corresponding tree of the set π1(Ω)\pi_{1}(\Omega) have pp descendants.

On the other hand, there is α{1,,p1}such that (pγΩ,α)𝒵Ω\alpha\in\{1,\cdots,p-1\}~{}\text{such that }~{}(p^{\gamma_{\Omega}},\alpha)\in\mathcal{Z}_{\Omega}. Thus, we have

1Ω^(pγΩ,α)=(x,y)Ωe2πixpγΩ+αypn1pn=0.\widehat{1_{\Omega}}(p^{\gamma_{\Omega}},\alpha)=\sum\limits_{(x,y)\in\Omega}{{e^{2\pi i\frac{xp^{\gamma_{\Omega}}+\alpha yp^{n-1}}{{p^{n}}}}}}=0.

By Lemma 4.1, we get

(4.2) |ΩH((pγΩ,α),k)|=|ΩH((pγΩ,α),k+jpn1)|.|\Omega\cap{H}((p^{\gamma_{\Omega}},\alpha),k)|=|\Omega\cap{H}((p^{\gamma_{\Omega}},\alpha),k+jp^{n-1})|.

Note that for each Ωb,s,0|Ωb|/ps\Omega^{s}_{b,\ell},0\leq\ell\leq|\Omega_{b}|/p^{s}, the set Ωb,sH((pγΩ,α),k)\Omega^{s}_{b,\ell}\subset{H}((p^{\gamma_{\Omega}},\alpha),k) for some kk. By counting the cardinality of H((pγΩ,α),k){H}((p^{\gamma_{\Omega}},\alpha),k). We know that ΩH((pγΩ,α),k)\Omega\cap{H}((p^{\gamma_{\Omega}},\alpha),k) is either empty or Ωb,s\Omega^{s}_{b,\ell} for some bb and \ell. Hence, for each (x,y)Ω(x,y)\in\Omega, the sets

Ωx,y:={xpn:(x,y)Ω and xxmodpnγΩ1}\Omega_{x,y}:=\{x^{\prime}\in{\mathbb{Z}}_{p^{n}}:(x^{\prime},y)\in\Omega\text{ and }x^{\prime}\equiv x\!\!\mod p^{n-\gamma_{\Omega}-1}\ \}

is pp-homogenous with the branched level set n1{i1,i2,is}n-1-\{i_{1},i_{2}\cdots,i_{s}\}.

Theorem 1.2 follows from Propositions 4.4, 4.7, 4.8 and Lemma 4.9.

Refer to caption
Figure 7. Corresponding tree of 𝒯Ω~\mathcal{T}_{\widetilde{\Omega}}, where the blue edges determined by the hyperplanes H((pγΩ,α),k){H}((p^{\gamma_{\Omega}},\alpha),k).

References

  • [1] C. Aten, B. Ayachi, E. Bau, D. FitzPatrick, A. Iosevich, H. Liu, A. Lott, I. MacKinnon, S. Maimon, S. Nan, J. Pakianathan, G. Petridis, C. Rojas Mena, A. Sheikh, T. Tribone, J. Weill, and C. Yu. Tiling sets and spectral sets over finite fields. J. Funct. Anal., 273(8):2547–2577, 2017.
  • [2] E. M. Coven and A. Meyerowitz. Tiling the integers with translates of one finite set. J. Algebra, 212(1):161–174, 1999.
  • [3] D. E. Dutkay and C.-K. Lai. Some reductions of the spectral set conjecture to integers. Math. Proc. Cambridge Philos. Soc., 156(1):123–135, 2014.
  • [4] T. Fallon, G. Kiss, and G. Somlai. Spectral sets and tiles in p2×q2\mathbb{Z}_{p}^{2}\times\mathbb{Z}_{q}^{2}. J. Funct. Anal., 282(12):109472, 2022.
  • [5] T. Fallon, A. Mayeli, and D. Villano. The fuglede’s conjecture holds in 𝔽p3\mathbb{F}_{p}^{3} for p=5,7p=5,7. Proc. Amer. Math. Soc. to appear.
  • [6] A. Fan, S. Fan, L. Liao, and R. Shi. Fuglede’s conjecture holds in p\mathbb{Q}_{p}. Math. Ann., 375(1-2):315–341, 2019.
  • [7] A. Fan, S. Fan, and R. Shi. Compact open spectral sets in p\mathbb{Q}_{p}. J. Funct. Anal., 271(12):3628–3661, 2016.
  • [8] B. Farkas, M. Matolcsi, and P. Móra. On Fuglede’s conjecture and the existence of universal spectra. J. Fourier Anal. Appl., 12(5):483–494, 2006.
  • [9] S. J. Ferguson and N. Sothanaphan. Fuglede’s conjecture fails in 4 dimensions over odd prime fields. Discrete Math., 343(1):111507, 7, 2020.
  • [10] B. Fuglede. Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal., 16:101–121, 1974.
  • [11] R. Greenfeld and N. Lev. Fuglede’s spectral set conjecture for convex polytopes. Anal. PDE, 10(6):1497–1538, 2017.
  • [12] A. Iosevich, N. Katz, and T. Tao. The Fuglede spectral conjecture holds for convex planar domains. Math. Res. Lett., 10(5-6):559–569, 2003.
  • [13] A. Iosevich, A. Mayeli, and J. Pakianathan. The Fuglede conjecture holds in p×p\mathbb{Z}_{p}\times\mathbb{Z}_{p}. Anal. PDE, 10(4):757–764, 2017.
  • [14] G. Kiss, R. D. Malikiosis, G. Somlai, and M. Vizer. On the discrete Fuglede and Pompeiu problems. Anal. PDE, 13(3):765–788, 2020.
  • [15] G. Kiss, R. D. Malikiosis, G. Somlai, and M. Vizer. Fuglede’s conjecture holds for cyclic groups of order pqrspqrs. J. Fourier Anal. Appl., 28(79), 2022.
  • [16] G. Kiss and G. Somlai. Fuglede’s conjecture holds on p2×q\mathbb{Z}_{p}^{2}\times\mathbb{Z}_{q}. Proc. Amer. Math. Soc., 149(10):4181–4188, 2021.
  • [17] M. N. Kolountzakis and M. Matolcsi. Complex Hadamard matrices and the spectral set conjecture. Collect. Math., (Vol. Extra):281–291, 2006.
  • [18] M. N. Kolountzakis and M. Matolcsi. Tiles with no spectra. Forum Math., 18(3):519–528, 2006.
  • [19] I. Ł aba. The spectral set conjecture and multiplicative properties of roots of polynomials. J. London Math. Soc. (2), 65(3):661–671, 2002.
  • [20] N. Lev and M. Matolcsi. The Fuglede conjecture for convex domains is true in all dimensions. Acta Math., 228(2):385–420, 2022.
  • [21] R. D. Malikiosis. On the structure of spectral and tiling subsets of cyclic groups. Forum Math., Sigma, pages 10:e23 1–42, 2022.
  • [22] R. D. Malikiosis and M. N. Kolountzakis. Fuglede’s conjecture on cyclic groups of order pnqp^{n}q. Discrete Anal., pages Paper No. 12, 16, 2017.
  • [23] M. Matolcsi. Fuglede’s conjecture fails in dimension 4. Proc. Amer. Math. Soc., 133(10):3021–3026, 2005.
  • [24] R. Shi. Fuglede’s conjecture holds on cyclic groups pqr\mathbb{Z}_{pqr}. Discrete Anal., pages Paper No. 14, 14, 2019.
  • [25] R. Shi. Equi-distributed property and spectral set conjecture on p2×p\mathbb{Z}_{p^{2}}\times\mathbb{Z}_{p}. J. Lond. Math. Soc. (2), 102(3):1030–1046, 2020.
  • [26] G. Somlai. Spectral sets in p2qr\mathbb{Z}_{p^{2}qr} tile. Discrete Anal., pages Paper No. 5, 10, 2023.
  • [27] S. Szabó and A. D. Sands. Factoring groups into subsets, volume 257 of Lecture Notes in Pure and Applied Mathematics. CRC Press, Boca Raton, FL, 2009.
  • [28] T. Tao. Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett., 11(2-3):251–258, 2004.
  • [29] T. Zhang. Fuglede’s conjecture holds in p×pn\mathbb{Z}_{p}\times\mathbb{Z}_{p^{n}}. SIAM J. Discrete Math., 37(2):1180–1197, 2023.