This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The stringy scaling loop expansion and stringy scaling violation

Sheng-Hong Lai [email protected] Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, ROC    Jen-Chi Lee [email protected] Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, ROC National Center for Theoretical Physics, ROC    Yi Yang [email protected] Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, ROC Center for Theoretical and Computational Physics, National Yang Ming Chiao Tung University, Hsinchu, ROC National Center for Theoretical Physics, ROC
Abstract

We propose a systematic approximation scheme to calculate general nn-point HSSAHSSA of open bosonic string theory. This stringy scaling loop expansion contains finite number of vacuum diagram terms at each loop order of scattering energy due to a vacuum diagram contraint and a topological graph constraint. In addition, we calculate coefficient and give the vacuum diagram representation and its Feynman rules for each term in the expansion of the HSSAHSSA. As an application to extending our previous calculation of nn-point leading order stringy scaling behavior of HSSAHSSA, we explicitly calculate some examples of 44-point next to leading order stringy scaling violation terms.

I Introduction

In contrast to the finite number of coupling vertices in field theory, there are infinite nn-point coupling vertices with arbitrary nn in string theory due to the infinite number of particles in the string spectrum. This makes the calculation of nn-point string scattering amplitudes (SSASSA) with n5n\geq 5 much more complicated. Indeed, as was shown by the present authors recently that [1, 2, 3, 4] only 44-point SSASSA can be expressed in terms of finite number of terms of Lauricella SSASSA (LSSALSSA). Higher nn-point SSASSA with n5n\geq 5 contain infinite number of terms of LSSALSSA [5].

On the other hand, for the case of 44-point SSASSA, it has long been known that all 44-point V1V2V3V4\left\langle V_{1}V_{2}V_{3}V_{4}\right\rangle hard SSASSA (EE\rightarrow\infty, fixed ϕ\phi) of different string states at each fixed mass level of VjV_{j} (j=1,2,3,4j=1,2,3,4) vertex share the same functional form [6, 7, 8, 9]. See the reviews [10, 11]. That is, all 44-point hard SSASSA (HSSAHSSA) at each fixed mass level are proportional to each other with constant ratios [12, 13, 14, 15] (independent of the scattering angle ϕ\phi, or the deficit of the kinematics variable dim=1\mathcal{M}=1). Moreover, the present authors discovered recently that the reduction of both the number of kinematics variable dependence on the ratios and the number of independent HSSAHSSA for the 44-point HSSAHSSA can be generalized to arbitrary nn-point HSSAHSSA with n5n\geq 5 [17, 16]. As an example, all 66-point HSSAHSSA at each fixed mass level are related to each other and the ratios are [17]

𝒯({p1,p2,p3},m,q)𝒯({0,0,0},0,0)=(2m)!m!(12M2)2m+q(cosθ1)p1(sinθ1cosθ2)p2(sinθ1sinθ2)p3\frac{\mathcal{T}^{\left(\left\{p_{1},p_{2},p_{3}\right\},m,q\right)}}{\mathcal{T}^{\left(\left\{0,0,0\right\},0,0\right)}}=\frac{\left(2m\right)!}{m!}\left(\frac{-1}{2M_{2}}\right)^{2m+q}\left(\cos\theta_{1}\right)^{p_{1}}\left(\sin\theta_{1}\cos\theta_{2}\right)^{p_{2}}\left(\sin\theta_{1}\sin\theta_{2}\right)^{p_{3}} (1.1)

where the number of kinematics variables reduced from 88 to 22, θ1\theta_{1} and θ2\theta_{2}, and dim=82=6\mathcal{M}=8-2=6.

These stringy scaling behaviors are reminiscent of Bjorken scaling [18] and the Callan-Gross relation [19] in deep inelastic scattering of electron and proton in the quark-parton model of QCDQCD where, to the leading order in energy, the two structure functions W1(Q2,ν)W_{1}(Q^{2},\nu) and W2(Q2,ν)W_{2}(Q^{2},\nu) scale, and become not functions of 22 kinematics variables Q2Q^{2} and ν\nu independently but only of their ratio Q2/νQ^{2}/\nu. The number of independent kinematics variables thus reduces from 22 to 11, or the deficit dim=21=1\mathcal{M}=2-1=1. That is, the structure functions scale as [18]

MW1(Q2,ν)F1(x), νW2(Q2,ν)F2(x) (dim=1)MW_{1}(Q^{2},\nu)\rightarrow F_{1}(x),\text{ \ \ }\nu W_{2}(Q^{2},\nu)\rightarrow F_{2}(x)\text{ (dim}\mathcal{M}=1\text{)} (1.2)

where xx is the Bjorken variable and MM is the proton mass. Moreover, due to the spin-12\frac{1}{2} assumption of quark, Callan and Gross derived the relation [19]

2xF1(x)=F2(x).2xF_{1}(x)=F_{2}(x). (1.3)

One easily sees that Eq.(1.1) is the stringy generalization of QCDQCD scaling in Eq.(1.2) and Eq.(1.3). The next interesting issue is then to understand the possible next to leading order stringy scaling violation, similar to the QCDQCD corrections of Bjorken scaling or Bjorken scaling violation through GLAP equation [20, 21] or current algebra.

To compare and make an anology between the stringy scaling and the Bjorken scaling, we give a table for the two behaviors:


Bosonic string QCD
SL(K+3,C)SL(K+3,C) SU(3)SU(3)
UV soft (exponential fall-off) Asymptotic freedom
Nambu-Goto string model Quark-parton model
Stringy scaling Bjorken scaling
Stringy scaling loop expansion (stringy scaling violation) GLAP Eq. (Bjorken scaling violation).

Note that it was shown recently that all nn-point SSA (n4n\geq 4) of the open bosonic string theory can be expressed in terms of the Lauricella functions and form representation of the exact SL(K+3,C)SL(K+3,C) symmetry group [4]. On the other hand, it is interesting to see that while the stringy scaling behavior was recognized only very recently, historically, the Bjorken scaling was proposed before the invention of the idea of parton model, and the discovery of asymptotic freedom was also motivated by the proposal of Bjorken scaling.

To uncover the issue once and for all, in this paper we propose a systematic approximation scheme to calculate general nn-point HSSAHSSA order by order. We will show that the stringy scaling loop expansion scheme we proposed corresponds to finite number of vacuum diagram terms (even for n5n\geq 5) at each order of scattering energy due to a vacuum diagram contraint and a topological graph constraint. Comparing to the traditional effective action calculation for each loop diagram with infinite number of external legs in field theory, finite number of vacuum diagrams without external legs are much more easier to deal with.

In addition, we give the vacuum diagram representation and its Feynman rules for each term in the expansion of the HSSAHSSA. In general, there can be many vacuum diagrams, connected and disconnected, corresponds to one term in the expansion. In particular, we match coefficient of each term with sum of the inverse symmetry factors [22] corresponding to all diagrams of the term. As an application to extending our previous calculation of nn-point leading order stringy scaling behavior, we explicitly calculate some examples of 44-point next to leading order stringy scaling violation terms.

This paper is organized as following. In the next section, we begin with the stringy scaling loop expansion of the 44-point HSSAHSSA. We will calculate in details the functional form and coefficient of each term in the expansion. Moreover, we give Feynman rules of vacuum diagram representation for each term in the expansion. In section III and IV, we generalize the calculation to the 55-point and general nn-point HSSAHSSA respectively. In section V, we demonstrate explicitly how to draw all the vacuum diagram representation, connected and disconnected, for each term of the expansion. In particular, we will sum over the inverse symmetry factors of all diagrams of the term to consistently match with the coefficient of the term. In section VI, we use the results of section II to calculate some examples of 44-point next to leading order stringy scaling violation terms.. A brief conclusion is given in section VII.

II Stringy scaling loop expansion of 44-point Amplitudes

It can be exprecitly demonstrated that [5] the tut-u channel of all 44-point SSASSA with four arbitrary tensor states can be written as the following integral form (after SL(2,R)SL(2,R) fixing) [5]

𝒯(Λ)=1𝑑x u(x)eΛf(x),\mathcal{T}(\Lambda)=\int_{1}^{\infty}dx\mbox{ }u(x)e^{-\Lambda f(x)}, (2.1)

where Λ(1,2)=k1k2\Lambda\equiv-(1,2)=-k_{1}\cdot k_{2} . The explicit calculation of 44-point SSASSA with four arbitrary tensor states can be found in [5]. As a simple example, the HSSAHSSA of three tachyons and one high energy state v2v_{2} [8, 9]

|N,2m,q=(α1T)N2m2q(α1L)2m(α2L)q|0;k\left|N,2m,q\right\rangle=\left(\alpha_{-1}^{T}\right)^{N-2m-2q}\left(\alpha_{-1}^{L}\right)^{2m}\left(\alpha_{-2}^{L}\right)^{q}\left|0;k\right\rangle (2.2)

with eP=1M2(E2,k2,0)=k2M2e^{P}=\frac{1}{M_{2}}(E_{2},\mathrm{k}_{2},\vec{0})=\frac{k_{2}}{M_{2}} the momentum polarization, eL=1M2(k2,E2,0)e^{L}=\frac{1}{M_{2}}(\mathrm{k}_{2},E_{2},\vec{0}) the longitudinal polarization and the transverse polarization eT=(0,0,1)e^{T}=(0,0,1) can be written as [8, 9]

𝒯(N,2m,q)\displaystyle\mathcal{T}^{(N,2m,q)} =1𝑑xx(1,2)(1x)(2,3)[eTk1xeTk31x]N2m2q\displaystyle=\int_{1}^{\infty}dxx^{(1,2)}(1-x)^{(2,3)}\left[\frac{e^{T}\cdot k_{1}}{x}-\frac{e^{T}\cdot k_{3}}{1-x}\right]^{N-2m-2q}
[ePk1xePk31x]2m[ePk1x2ePk3(1x)2]q,\displaystyle\cdot\left[\frac{e^{P}\cdot k_{1}}{x}-\frac{e^{P}\cdot k_{3}}{1-x}\right]^{2m}\left[-\frac{e^{P}\cdot k_{1}}{x^{2}}-\frac{e^{P}\cdot k_{3}}{(1-x)^{2}}\right]^{q}, (2.3)

which can then be put into the form in Eq.(2.1) with

Λ\displaystyle\Lambda (1,2)s22E2,\displaystyle\equiv-(1,2)\rightarrow\frac{s}{2}\rightarrow 2E^{2}, (2.4)
τ\displaystyle\tau (2,3)(1,2)tssin2ϕ2,\displaystyle\equiv-\frac{(2,3)}{(1,2)}\rightarrow-\frac{t}{s}\rightarrow\sin^{2}\frac{\phi}{2}, (2.5)
f(x)\displaystyle f(x) lnxτln(1x),\displaystyle\equiv\ln x-\tau\ln(1-x), (2.6)
u(x)\displaystyle u(x) [(1,2)M2]2m+q(1x)N+2m+2q(f)2m(f′′)q(eTk3)N2m2q.\displaystyle\equiv\left[\frac{(1,2)}{M_{2}}\right]^{2m+q}(1-x)^{-N+2m+2q}(f^{\prime})^{2m}(f^{\prime\prime})^{q}(-e^{T}\cdot k_{3})^{N-2m-2q}. (2.7)

In general for four arbitrary string states, we can expand the amplitude in Eq.(2.1) around the saddle point for large Λ\Lambda to obtain

𝒯(Λ)\displaystyle\mathcal{T}(\Lambda) =1𝑑x u(x)eΛf(x)\displaystyle=\int_{1}^{\infty}dx\text{ }u\left(x\right)e^{-\Lambda f\left(x\right)}
=1𝑑x(p=0u0(p)p!(xx0)p)eΛf012Λf0′′(xx0)2Λj=3f0(j)j!(xx0)j\displaystyle=\int_{1}^{\infty}dx\left(\sum_{p=0}\frac{u_{0}^{\left(p\right)}}{p!}\left(x-x_{0}\right)^{p}\right)e^{-\Lambda f_{0}-\frac{1}{2}\Lambda f_{0}^{\prime\prime}\left(x-x_{0}\right)^{2}-\Lambda\sum_{j=3}\frac{f_{0}^{\left(j\right)}}{j!}\left(x-x_{0}\right)^{j}}
=eΛf01𝑑x(p=0q=0(Λ)qu0(p)i!p!(xx0)p[j=3f0(j)j!(xx0)j]q)e12Λf0′′(xx0)2.\displaystyle=e^{-\Lambda f_{0}}\int_{1}^{\infty}dx\left(\sum_{p=0}\sum_{q=0}\frac{\left(-\Lambda\right)^{q}u_{0}^{\left(p\right)}}{i!p!}\left(x-x_{0}\right)^{p}\left[\sum_{j=3}\frac{f_{0}^{\left(j\right)}}{j!}\left(x-x_{0}\right)^{j}\right]^{q}\right)e^{-\frac{1}{2}\Lambda f_{0}^{\prime\prime}\left(x-x_{0}\right)^{2}}. (2.8)

Let’s rewrite the bracket term in the last line of the above equation as

[j=3f0(j)j!(xx0)j]q\displaystyle\left[\sum_{j=3}\frac{f_{0}^{\left(j\right)}}{j!}\left(x-x_{0}\right)^{j}\right]^{q} =[n1=3an1zn1][n2=3an2zn2][nq=3anqznq]\displaystyle=\left[\sum_{n_{1}=3}a_{n_{1}}z^{n_{1}}\right]\left[\sum_{n_{2}=3}a_{n_{2}}z^{n_{2}}\right]\cdots\left[\sum_{n_{q}=3}a_{n_{q}}z^{n_{q}}\right]
=n1,nq=3an1anqzr=1qnr=n1,nq=0an1+3anq+3zr=1q(nr+3).\displaystyle=\sum_{n_{1},\cdots n_{q}=3}a_{n_{1}}\cdots a_{n_{q}}z^{\sum_{r=1}^{q}n_{r}}=\sum_{n_{1},\cdots n_{q}=0}a_{n_{1}+3}\cdots a_{n_{q}+3}z^{\sum_{r=1}^{q}(n_{r}+3)}. (2.9)

Inserting Eq.(2.9) into Eq.(2.8), and using the Gaussian integral

𝑑zz2ne12z2=2π(2n)!2nn!\int_{-\infty}^{\infty}dzz^{2n}e^{-\frac{1}{2}z^{2}}=\sqrt{2\pi}\frac{(2n)!}{2^{n}n!} (2.10)

to perform the integration, we obtain

𝒯(Λ)\displaystyle\mathcal{T}(\Lambda) =2πΛf0′′eΛf0q=0n1,nq=0p=0()q(2M+2q)!q!2M+q(M+q)!\displaystyle=\sqrt{\frac{2\pi}{\Lambda f_{0}^{\prime\prime}}}e^{-\Lambda f_{0}}\sum_{q=0}\sum_{n_{1},\cdots n_{q}=0}\sum_{p=0}\frac{(-)^{q}(2M+2q)!}{q!2^{M+q}(M+q)!}
u0(p)f0(n1+3)f0(nq+3)p!(n1+3)!(nq+3)!(f0′′)M+q1ΛM\displaystyle\cdot\frac{u_{0}^{(p)}f_{0}^{(n_{1}+3)}\cdots f_{0}^{(n_{q}+3)}}{p!(n_{1}+3)!\cdots(n_{q}+3)!(f_{0}^{\prime\prime})^{M+q}}\frac{1}{\Lambda^{M}}
2πΛf0′′eΛf0[𝒜(Λ0)+1Λ𝒜(Λ1)+1Λ2𝒜(Λ2)+O(1ΛM)]\displaystyle\equiv\sqrt{\frac{2\pi}{\Lambda f_{0}^{\prime\prime}}}e^{-\Lambda f_{0}}\left[\mathcal{A}(\Lambda^{0})+\frac{1}{\Lambda}\mathcal{A}(\Lambda^{-1})+\frac{1}{\Lambda^{2}}\mathcal{A}(\Lambda^{-2})+O\left(\frac{1}{\Lambda^{M}}\right)\right] (2.11)

where

2M=p+r=1q(nr+1)0.2M=p+\sum_{r=1}^{q}(n_{r}+1)\geq 0. (2.12)

In Eq.(2.12), MM, pp, qq and nrn_{r} are nonnegative integers. It is important to note that for a given inverse energy order 1ΛM\frac{1}{\Lambda^{M}}, there are only finite number of terms in Eq.(2.11) due to the condition in Eq.(2.12). We can now explicitly calculate 𝒜(Λ)\mathcal{A}(\Lambda) in Eq.(2.11) order by order.

For the leading order M=0M=0, we have p=0p=0, q=0q=0 and there is no nrn_{r}. The amplitude is

𝒜(Λ0)=u0.\mathcal{A}(\Lambda^{0})=u_{0}. (2.13)

For the next to leading order M=1M=1, there are 44 terms:

𝒜1(Λ1)\displaystyle\mathcal{A}_{1}(\Lambda^{-1}) =u0f0(4)8(f0′′)2, (p=0,q=1,n1=1)\displaystyle=-\frac{u_{0}f_{0}^{(4)}}{8(f_{0}^{\prime\prime})^{2}},\text{\ }(p=0,q=1,n_{1}=1) (2.14)
𝒜2(Λ1)\displaystyle\mathcal{A}_{2}(\Lambda^{-1}) =5u0(f0(3))224(f0′′)3, (p=0,q=2,n1=n2=0)\displaystyle=\frac{5u_{0}(f_{0}^{(3)})^{2}}{24(f_{0}^{\prime\prime})^{3}},\text{ \ }(p=0,q=2,n_{1}=n_{2}=0) (2.15)
𝒜3(Λ1)\displaystyle\mathcal{A}_{3}(\Lambda^{-1}) =u0f0(3)2(f0′′)2, (p=1,q=1,n1=0)\displaystyle=-\frac{u_{0}^{\prime}f_{0}^{(3)}}{2(f_{0}^{\prime\prime})^{2}},\text{\ }(p=1,q=1,n_{1}=0) (2.16)
𝒜4(Λ1)\displaystyle\mathcal{A}_{4}(\Lambda^{-1}) =u0′′2f0′′. (p=2,q=0)\displaystyle=\frac{u_{0}^{\prime\prime}}{2f_{0}^{\prime\prime}}.\text{\ }(p=2,q=0) (2.17)

For the next next to leading order M=2M=2, there are 1212 terms:

𝒜1(Λ2)\displaystyle\mathcal{A}_{1}(\Lambda^{-2}) =u0f0(6)48(f0′′)3, (p=0,q=1,n1=3)\displaystyle=-\frac{u_{0}f_{0}^{(6)}}{48(f_{0}^{\prime\prime})^{3}},\text{\ }(p=0,q=1,n_{1}=3) (2.18)
𝒜2(Λ2)\displaystyle\mathcal{A}_{2}(\Lambda^{-2}) =7u0f0(3)f0(5)48(f0′′)4, (p=0,q=2,(n1,n2)=(2,0) or (0,2))\displaystyle=\frac{7u_{0}f_{0}^{(3)}f_{0}^{(5)}}{48(f_{0}^{\prime\prime})^{4}},\text{ \ }(p=0,q=2,(n_{1},n_{2})=(2,0)\text{ or }(0,2)) (2.19)
𝒜3(Λ2)\displaystyle\mathcal{A}_{3}(\Lambda^{-2}) =35u0(f0(4))2384(f0′′)4, (p=0,q=2,n1=n2=1)\displaystyle=\frac{35u_{0}(f_{0}^{(4)})^{2}}{384(f_{0}^{\prime\prime})^{4}},\text{\ }(p=0,q=2,n_{1}=n_{2}=1) (2.20)
𝒜4(Λ2)\displaystyle\mathcal{A}_{4}(\Lambda^{-2}) =35u0f0(4)(f0(3))264(f0′′)5, (p=0,q=3,(n1,n2,n3)=(1,0,0) or permutation)\displaystyle=-\frac{35u_{0}f_{0}^{(4)}(f_{0}^{(3)})^{2}}{64(f_{0}^{\prime\prime})^{5}},\text{\ }(p=0,q=3,(n_{1},n_{2},n_{3})=(1,0,0)\text{ or permutation}) (2.21)
𝒜5(Λ2)\displaystyle\mathcal{A}_{5}(\Lambda^{-2}) =385u0(f0(3))41152(f0′′)6, (p=0,q=4,n1=n2=n3=n4=0)\displaystyle=\frac{385u_{0}(f_{0}^{(3)})^{4}}{1152(f_{0}^{\prime\prime})^{6}},\text{\ }(p=0,q=4,n_{1}=n_{2}=n_{3}=n_{4}=0) (2.22)
𝒜6(Λ2)\displaystyle\mathcal{A}_{6}(\Lambda^{-2}) =u0f0(5)8(f0′′)3, (p=1,q=1,n1=2)\displaystyle=-\frac{u_{0}^{{}^{\prime}}f_{0}^{(5)}}{8(f_{0}^{\prime\prime})^{3}},\text{\ }(p=1,q=1,n_{1}=2) (2.23)
𝒜7(Λ2)\displaystyle\mathcal{A}_{7}(\Lambda^{-2}) =35u0f0(3)f0(4)48(f0′′)4, (p=1,q=2,(n1,n2)=(1,0) or (0,1))\displaystyle=\frac{35u_{0}^{{}^{\prime}}f_{0}^{(3)}f_{0}^{(4)}}{48(f_{0}^{\prime\prime})^{4}},\text{\ }(p=1,q=2,(n_{1},n_{2})=(1,0)\text{ or }(0,1)) (2.24)
𝒜8(Λ2)\displaystyle\mathcal{A}_{8}(\Lambda^{-2}) =35u0(f0(3))248(f0′′)5, (p=1,q=3,n1=n2=n3=0)\displaystyle=-\frac{35u_{0}^{{}^{\prime}}(f_{0}^{(3)})^{2}}{48(f_{0}^{\prime\prime})^{5}},\text{\ }(p=1,q=3,n_{1}=n_{2}=n_{3}=0) (2.25)
𝒜9(Λ2)\displaystyle\mathcal{A}_{9}(\Lambda^{-2}) =5u0′′f0(4)16(f0′′)3, (p=2,q=1,n1=1)\displaystyle=-\frac{5u_{0}^{{}^{\prime\prime}}f_{0}^{(4)}}{16(f_{0}^{\prime\prime})^{3}},\text{\ }(p=2,q=1,n_{1}=1) (2.26)
𝒜10(Λ2)\displaystyle\mathcal{A}_{10}(\Lambda^{-2}) =35u0′′(f0(3))248(f0′′)4, (p=2,q=2,n1=n2=0)\displaystyle=\frac{35u_{0}^{\prime\prime}(f_{0}^{(3)})^{2}}{48(f_{0}^{\prime\prime})^{4}},\text{\ }(p=2,q=2,n_{1}=n_{2}=0) (2.27)
𝒜11(Λ2)\displaystyle\mathcal{A}_{11}(\Lambda^{-2}) =5u0(3)f0(3)12(f0′′)3, (p=3,q=1,n1=0)\displaystyle=-\frac{5u_{0}^{(3)}f_{0}^{(3)}}{12(f_{0}^{\prime\prime})^{3}},\text{\ }(p=3,q=1,n_{1}=0) (2.28)
𝒜12(Λ2)\displaystyle\mathcal{A}_{12}(\Lambda^{-2}) =u0(4)8(f0′′)2 .(p=4,q=0, No nr)\displaystyle=\frac{u_{0}^{(4)}}{8(f_{0}^{\prime\prime})^{2}}\text{\ }.(p=4,q=0,\text{ No }n_{r}) (2.29)

To study the general higher order amplitudes, we note that a typical term at each order ΛM\Lambda^{-M} in the expansion of Eq.(2.11) can be written as

𝒜(ΛM)(2P)!P!2P1m![n31(n!)V(n)V(n)!]u0(m)n3(f0(n))V(n)(f0(2))P.\mathcal{A}(\Lambda^{-M})\sim\frac{\left(2P\right)!}{P!2^{P}}\frac{1}{m!}\left[\underset{n\geq 3}{\prod}\frac{1}{\left(-n!\right)^{V\left(n\right)}V\left(n\right)!}\right]\cdot\frac{u_{0}^{\left(m\right)}\underset{n\geq 3}{\prod}\left(f_{0}^{\left(n\right)}\right)^{V\left(n\right)}}{\left(f_{0}^{\left(2\right)}\right)^{P}}. (2.30)

The rules (corresponding to symmetry factors of Feynman rules in field theory, see section V for more details) to assign constant factors in the bracket of Eq.(2.30) are

u0(m)\displaystyle u_{0}^{\left(m\right)} 1m!,\displaystyle\Rightarrow\frac{1}{m!}, (2.31)
n3(f0(n))V(n)\displaystyle\underset{n\geq 3}{\prod}\left(f_{0}^{\left(n\right)}\right)^{V\left(n\right)} n31(n!)V(n)V(n)!,\displaystyle\Rightarrow\underset{n\geq 3}{\prod}\frac{1}{\left(-n!\right)^{V\left(n\right)}V\left(n\right)!}, (2.32)
(f0(2))P\displaystyle\left(f_{0}^{\left(2\right)}\right)^{P} (2P)!P!2P=(2P1)!!.\displaystyle\Rightarrow\frac{\left(2P\right)!}{P!2^{P}}=\left(2P-1\right)!!. (2.33)

Note that the factor in Eq.(2.33) can be interpreted as the coefficient of x2Px_{2}^{P} term in the expansion of the incomplete Bell polynomials Bn,kB_{n,k} (x1,x2,,xnk+1)(x_{1},x_{2},\cdots,x_{n-k+1}) with n=2Pn=2P and k=Pk=P since there are PP propagators each with 22 end points. We have verified coefficients of all terms in Eq.(2.14) to Eq.(2.17) calculated previously in 𝒜j(Λ1)\mathcal{A}_{j}(\Lambda^{-1}) and all terms in Eq.(2.18) to Eq.(2.29) calculated in 𝒜j(Λ2)\mathcal{A}_{j}(\Lambda^{-2}) by using Eq.(2.30).

It is remarkable that each typical term in Eq.(2.30) corresponds to (at least) one vacuum Feynman diagram (no external legs). Here we list the rules regarding the expansion and the construction of a vacuum diagram corresponds to the typical term in Eq.(2.30):

  • V(n)V\left(n\right) nn-vertex (f0(n))V(n)\sim\left(f_{0}^{\left(n\right)}\right)^{V\left(n\right)} for n3n\geq 3,

  • PP propagators (f0(2))P\sim\left(f_{0}^{(2)}\right)^{P},

  • a loop with mm legs \sim u0(m)u_{0}^{\left(m\right)} ( if m=0m=0, u0u_{0} will be treated as a disconnedted loop),

  • M=M= # of loops - # of the connected components 1\geq 1,

  • Note that some terms in Eq.(2.30) can correspond to more than one diagram. However, for each order of MM, there are only finite number of terms (diagrams) in the stringy scaling loop expansion scheme.

The constraints for the parameters are

Pn=3V(n)\displaystyle P-\sum_{n=3}V\left(n\right) =M,\displaystyle=M\text{,} (2.34)
m+n=3nV(n)\displaystyle m+\sum_{n=3}nV\left(n\right) =2Pvacuum diagram.\displaystyle=2P\Rightarrow\text{vacuum diagram.} (2.35)

Note that Eq.(2.34) can be read from Eq.(2.11), and Eq.(2.35) is equivalent to Eq.(2.12). On the other hand, Eq.(2.34) means that MM is the difference between the number of f0(n)f_{0}^{\left(n\right)} in the numerator and the number of f0(2)f_{0}^{(2)} in the denominator, and Eq.(2.35) means that the number of differentiations of ff in the numerator equals to the number of differentiations in the denominator. We will see that Eq.(2.34) and Eq.(2.35) give a vacuum diagram representation for each term in Eq.(2.30). While Eq.(2.35) gives the vacuum diagram condition, topologically, Eq.(2.34) follows from the Euler characteristics χ(𝕄)\chi(\mathbb{M}) with dim𝕄=1\mathbb{M}=1

χ(𝕄)=n=3V(n)P=M\chi(\mathbb{M})=\sum_{n=3}V\left(n\right)-P=-M (2.36)

where the number of the nn-vertex is V(n)V\left(n\right), the number of edges is PP and the number of faces of the 1D1D graph manifold 𝕄\mathbb{M} is zero. Indeed, for this case, the Euler characteristics can also be written as

χ(𝕄)=b0b1=M\chi(\mathbb{M})=b_{0}-b_{1}=-M (2.37)

where bjb_{j} is the jjth Betti number of 𝕄\mathbb{M}. Here b0b_{0} counts the number of the connected components of the diagram and b1b_{1} counts the total number of loops of the diagram.

Eliminating PP from the above constraints Eq.(2.34) and Eq.(2.35), we obtain the following equation

n=32l(n2)V(n)=2Mm0.\sum_{n=3}^{2l}\left(n-2\right)V\left(n\right)=2M-m\geq 0. (2.38)

For a given integer M1M\geq 1,

m=0,1,,2M.m=0,1,\cdots,2M. (2.39)

One can solve all non-negative integer solutions for V(n)V\left(n\right) with n3n\geq 3 in Eq.(2.38).

For the Λ1\Lambda^{-1} order, i.e. M=1M=1, we get

V(3)0210V(4)10004 terms\begin{tabular}[c]{|c|c|c|c|c|}\hline\cr$m$&$0$&$0$&$1$&$2$\\ \hline\cr$V\left(3\right)$&$0$&$2$&$1$&$0$\\ \hline\cr$V\left(4\right)$&$1$&$0$&$0$&$0$\\ \hline\cr\end{tabular}\Rightarrow 4\text{ terms}
m0012 (2.40)

as expected from the previous calculation.

For the Λ2\Lambda^{-2} order, i.e.M=2M=2, we get

m000001112234V(3)041203012010V(4)000120010100V(5)001000100000V(6)10000000000012 terms\begin{tabular}[c]{|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline\cr$m$&$0$&$0$&$0$&$0$&$0$&$1$&$1$&$1$&$2$&$2$&$3$&$4$\\ \hline\cr$V\left(3\right)$&$0$&$4$&$1$&$2$&$0$&$3$&$0$&$1$&$2$&$0$&$1$&$0$\\ \hline\cr$V\left(4\right)$&$0$&$0$&$0$&$1$&$2$&$0$&$0$&$1$&$0$&$1$&$0$&$0$\\ \hline\cr$V\left(5\right)$&$0$&$0$&$1$&$0$&$0$&$0$&$1$&$0$&$0$&$0$&$0$&$0$\\ \hline\cr$V\left(6\right)$&$1$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$\\ \hline\cr\end{tabular}\Rightarrow 12\text{ terms} (2.41)

as expected from the previous calculation.

For the higher order amplitudes, the total number of terms are

M123456789# of terms41230671392725089151597.\begin{tabular}[c]{|c|c|c|c|c|c|c|c|c|c|c|}\hline\cr$M$&$1$&$2$&$3$&$4$&$5$&$6$&$7$&$8$&$9$&$\cdots$\\ \hline\cr$\#$ of terms&$4$&$12$&$30$&$67$&$139$&$272$&$508$&$915$&$1597$&$\cdots$\\ \hline\cr\end{tabular}. (2.42)

On the other hand, for a given MM, we can count the number of terms for each mm

m012345678910totalM=12114M=25321112M=31175321130M=422151175321167M=54230221511753211139.\begin{tabular}[c]{|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline\cr$m$&$0$&$1$&$2$&$3$&$4$&$5$&$6$&$7$&$8$&$9$&$10$&total\\ \hline\cr$M=1$&$2$&$1$&$1$&&&&&&&&&$4$\\ \hline\cr$M=2$&$5$&$3$&$2$&$1$&$1$&&&&&&&$12$\\ \hline\cr$M=3$&$11$&$7$&$5$&$3$&$2$&$1$&$1$&&&&&$30$\\ \hline\cr$M=4$&$22$&$15$&$11$&$7$&$5$&$3$&$2$&$1$&$1$&&&$67$\\ \hline\cr$M=5$&$42$&$30$&$22$&$15$&$11$&$7$&$5$&$3$&$2$&$1$&$1$&$139$\\ \hline\cr\end{tabular}\ \ \ . (2.43)

We observe from the above table that the distribution on mm for a given MM

1,1,2,3,5,7,11,15,22,30,42,1,1,2,3,5,7,11,15,22,30,42,\cdots (2.44)

can be generated by the generating function

n=1(1qn)1\displaystyle\prod\limits_{n=1}^{\infty}\left(1-q^{n}\right)^{-1} =1+q+2q2+3q3+5q4+7q5+11q6+15q7\displaystyle=1+q+2q^{2}+3q^{3}+5q^{4}+7q^{5}+11q^{6}+15q^{7}
+22q8+30q9+42q10+56q11+77q12+\displaystyle+22q^{8}+30q^{9}+42q^{10}+56q^{11}+77q^{12}+\cdots
=n=0P(n)qn\displaystyle=\sum_{n=0}^{\infty}P(n)q^{n} (2.45)

which is the inversed Dedekind eta function. It corresponds to the scalar partition function on the torus containing the information of the number of states at each energy level or character of a conformal family. P(n)P(n) in Eq.(2.45) is the number of ways of writing nn as a sum of positive integer. From Eq.(2.38), we easily see that the numer of terms N(M,m)N_{(M,m)} for given MM and mm presented in Eq.(2.43) is

N(M,m)=P(2Mm).N_{(M,m)}=P(2M-m). (2.46)

III Stringy scaling loop expansion of 55-point Amplitudes

The 55-point SSASSA can be written in the following integral form (after SL(2,R)SL(2,R) fixing)

𝒯(Λ)=𝑑x2𝑑x3 u(x2,x3)eΛf(x2,x3), Λ=k1k2,\mathcal{T}(\Lambda)=\int dx_{2}dx_{3}\text{ }u\left(x_{2},x_{3}\right)e^{-\Lambda f\left(x_{2},x_{3}\right)},\text{ }\Lambda=-k_{1}\cdot k_{2}, (3.1)

where

f(x2,x3)=k1k2Λlnx2k1k3Λlnx3k2k3Λln(x3x2)k2k4Λln(1x2)k3k4Λln(1x3).f\left(x_{2},x_{3}\right)=-\frac{k_{1}\cdot k_{2}}{\Lambda}\ln x_{2}-\frac{k_{1}\cdot k_{3}}{\Lambda}\ln x_{3}-\frac{k_{2}\cdot k_{3}}{\Lambda}\ln\left(x_{3}-x_{2}\right)-\frac{k_{2}\cdot k_{4}}{\Lambda}\ln\left(1-x_{2}\right)-\frac{k_{3}\cdot k_{4}}{\Lambda}\ln\left(1-x_{3}\right). (3.2)

Since we are going to use the Gaussian approximation and perform the integration of Eq.(3.1) by Eq.(2.10), for the time being, we will ignore the range of integration in Eq.(3.1).

As a simple example, for the 55-point HSSAHSSA with 44 tachyons and 11 high energy state at mass level M2=2(N1)M^{2}=2(N-1)

|p1,p2;2m,2q=(α1T1)N+p1(α1T2)p2(α1L)2m(α2L)q|0;k\left|p_{1},p_{2};2m,2q\right\rangle=\left(\alpha_{-1}^{T_{1}}\right)^{N+p_{1}}\left(\alpha_{-1}^{T_{2}}\right)^{p_{2}}\left(\alpha_{-1}^{L}\right)^{2m}\left(\alpha_{-2}^{L}\right)^{q}\left|0;k\right\rangle (3.3)

where p1+p2=2(m+q)p_{1}+p_{2}=-2(m+q) with two transverse directions T1T_{1} and T2T_{2}, u(x2,x3)u\left(x_{2},x_{3}\right) can be calculated to be

u(x2,x3)=(kT1)N+p1(kT2)p2(kTr)pr(kL)2m(kL)q,u\left(x_{2},x_{3}\right)=\left(k^{T_{1}}\right)^{N+p_{1}}\left(k^{T_{2}}\right)^{p_{2}}\cdots\left(k^{T_{r}}\right)^{p_{r}}\left(k^{L}\right)^{2m}\left(k^{\prime L}\right)^{q}, (3.4)

where we have defined

k=kix1x2kix3x2kix4x2.k=-\frac{k_{i}}{x_{1}-x_{2}}-\frac{k_{i}}{x_{3}-x_{2}}-\frac{k_{i}}{x_{4}-x_{2}}. (3.5)

We perform Taylor expansions on the saddle point (x20,x30)\left(x_{20},x_{30}\right) of both the uu and ff  functions to obtain

𝒯(Λ)\displaystyle\mathcal{T}(\Lambda) =𝑑x2𝑑x3 [u(x20,x30)+]\displaystyle=\int dx_{2}dx_{3}\text{ }\left[u\left(x_{20},x_{30}\right)+\cdots\right]
eΛ[f(x20,x30)+122f(x2,x3)x22(x2x20)2+2f(x2,x3)x2x3(x2x20)(x3x30)+2f(x2,x3)x32(x3x30)2+]\displaystyle\cdot e^{-\Lambda\left[f\left(x_{20},x_{30}\right)+\frac{1}{2}\frac{\partial^{2}f\left(x_{2},x_{3}\right)}{\partial x_{2}^{2}}\left(x_{2}-x_{20}\right)^{2}+\frac{\partial^{2}f\left(x_{2},x_{3}\right)}{\partial x_{2}\partial x_{3}}\left(x_{2}-x_{20}\right)\left(x_{3}-x_{30}\right)+\frac{\partial^{2}f\left(x_{2},x_{3}\right)}{\partial x_{3}^{2}}\left(x_{3}-x_{30}\right)^{2}+\cdots\right]} (3.6)

where (x20,x30)\left(x_{20},x_{30}\right) satisfies

f(x20,x30)x2=0, f(x20,x30)x3=0.\frac{\partial f\left(x_{20},x_{30}\right)}{\partial x_{2}}=0,\text{ \ \ }\frac{\partial f\left(x_{20},x_{30}\right)}{\partial x_{3}}=0. (3.7)

We observe that in the Taylor expansion of the function ff , there are crossing terms such as 2f(x2,x3)x2x3\frac{\partial^{2}f\left(x_{2},x_{3}\right)}{\partial x_{2}\partial x_{3}} which involves (x2x20)(x3x30)(x_{2}-x_{20})(x_{3}-x_{30}). These crossing terms will result in an infinite number of terms at each order Λ\Lambda of expansion of 𝒯(Λ)\mathcal{T}(\Lambda) in the limit as Λ\Lambda\rightarrow\infty . Therefore, we need to do a change of variables here to eliminate these crossing terms and obtain

𝒯(Λ)=𝑑x2𝑑x3 [u(x20,x30)+]eΛ[f(x20,x30)+122f(x2,x3)x22(x2x20)2+122f(x2,x3)x32(x3x30)2+]\mathcal{T}(\Lambda)=\int dx_{2}^{\prime}dx_{3}^{\prime}\text{ }\left[u\left(x_{20}^{\prime},x_{30}^{\prime}\right)+\cdots\right]e^{-\Lambda\left[f\left(x_{20}^{\prime},x_{30}^{\prime}\right)+\frac{1}{2}\frac{\partial^{2}f\left(x_{2}^{\prime},x_{3}^{\prime}\right)}{\partial x_{2}^{\prime 2}}\left(x_{2}^{\prime}-x_{20}^{\prime}\right)^{2}+\frac{1}{2}\frac{\partial^{2}f\left(x_{2}^{\prime},x_{3}^{\prime}\right)}{\partial x_{3}^{\prime 2}}\left(x_{3}^{\prime}-x_{30}^{\prime}\right)^{2}+\cdots\right]} (3.8)

where (x20,x30)\left(x_{20}^{\prime},x_{30}^{\prime}\right) satisfies

f(x20,x30)x2=0, f(x20,x30)x3=0.\frac{\partial f\left(x_{20}^{\prime},x_{30}^{\prime}\right)}{\partial x_{2}^{\prime}}=0,\text{ \ \ }\frac{\partial f\left(x_{20}^{\prime},x_{30}^{\prime}\right)}{\partial x_{3}^{\prime}}=0. (3.9)

Let’s define the coefficients in the Taylor expansion of ff and uu at (x20,x30)\left(x_{20}^{\prime},x_{30}^{\prime}\right) as follows:

u(x20,x30)\displaystyle u\left(x_{20}^{\prime},x_{30}^{\prime}\right) =u0,\displaystyle=u_{0}, (3.10)
m2+m3u(x20,x30)(x2)m2(x3)m3\displaystyle\frac{\partial^{m_{2}+m_{3}}u\left(x_{20}^{\prime},x_{30}^{\prime}\right)}{\partial\left(x_{2}^{\prime}\right)^{m_{2}}\partial\left(x_{3}^{\prime}\right)^{m_{3}}} =u0(m2,m3),\displaystyle=u_{0}^{\left(m_{2},m_{3}\right)}, (3.11)
n2+n3f(x20,x30)(x2)n2(x3)n3\displaystyle\frac{\partial^{n_{2}+n_{3}}f\left(x_{20}^{\prime},x_{30}^{\prime}\right)}{\partial\left(x_{2}^{\prime}\right)^{n_{2}}\partial\left(x_{3}^{\prime}\right)^{n_{3}}} =f0(n2,n3).\displaystyle=f_{0}^{\left(n_{2},n_{3}\right)}. (3.12)

We can then simplify the integral into the following form

𝒯(Λ)=𝑑x2𝑑x3 [u0+]eΛ[f0+12f0(2,0)(x2x20)2+12f0(0,2)(x3x30)2+].\mathcal{T}(\Lambda)=\int dx_{2}^{\prime}dx_{3}^{\prime}\text{ }\left[u_{0}+\cdots\right]e^{-\Lambda\left[f_{0}+\frac{1}{2}f_{0}^{\left(2,0\right)}\left(x_{2}^{\prime}-x_{20}^{\prime}\right)^{2}+\frac{1}{2}f_{0}^{\left(0,2\right)}\left(x_{3}^{\prime}-x_{30}^{\prime}\right)^{2}+\cdots\right]}. (3.13)

Expanding the integral up to the second order in Λ\Lambda, we obtain the following expression:

𝒯(Λ)=2πΛf0(2,0)2πΛf0(0,2)[u0+1Λ(Λ1)+1Λ2(Λ2)+O(1Λ3)]\mathcal{T}(\Lambda)=\sqrt{\frac{2\pi}{\Lambda f_{0}^{\left(2,0\right)}}}\sqrt{\frac{2\pi}{\Lambda f_{0}^{\left(0,2\right)}}}\left[u_{0}+\frac{1}{\Lambda}\mathcal{B}(\Lambda^{-1})+\frac{1}{\Lambda^{2}}\mathcal{B}\left(\Lambda^{-2}\right)+O\left(\frac{1}{\Lambda^{3}}\right)\right] (3.14)

where

(Λ1)\displaystyle\mathcal{B}(\Lambda^{-1}) =38u0(f0(2,1))2(f0(2,0))2(f0(0,2))+38u0(f0(1,2))2(f0(2,0))(f0(0,2))2+524u0(f0(3,0))2(f0(2,0))3+524u0(f0(0,3))2(f0(0,2))3\displaystyle=\frac{3}{8}\frac{u_{0}\left(f_{0}^{\left(2,1\right)}\right)^{2}}{\left(f_{0}^{\left(2,0\right)}\right)^{2}\left(f_{0}^{\left(0,2\right)}\right)}+\frac{3}{8}\frac{u_{0}\left(f_{0}^{\left(1,2\right)}\right)^{2}}{\left(f_{0}^{\left(2,0\right)}\right)\left(f_{0}^{\left(0,2\right)}\right)^{2}}+\frac{5}{24}\frac{u_{0}\left(f_{0}^{\left(3,0\right)}\right)^{2}}{\left(f_{0}^{\left(2,0\right)}\right)^{3}}+\frac{5}{24}\frac{u_{0}\left(f_{0}^{\left(0,3\right)}\right)^{2}}{\left(f_{0}^{\left(0,2\right)}\right)^{3}} (3.15)
14u0(f0(2,2))(f0(2,0))(f0(0,2))18u0(f0(4,0))(f0(2,0))218u0(f0(0,4))(f0(0,2))2+14u0(f0(2,1))(f0(0,3))(f0(2,0))(f0(0,2))214u0(f0(1,2))(f0(3,0))(f0(2,0))2(f0(0,2))\displaystyle-\frac{1}{4}\frac{u_{0}\left(f_{0}^{\left(2,2\right)}\right)}{\left(f_{0}^{\left(2,0\right)}\right)\left(f_{0}^{\left(0,2\right)}\right)}-\frac{1}{8}\frac{u_{0}\left(f_{0}^{\left(4,0\right)}\right)}{\left(f_{0}^{\left(2,0\right)}\right)^{2}}-\frac{1}{8}\frac{u_{0}\left(f_{0}^{\left(0,4\right)}\right)}{\left(f_{0}^{\left(0,2\right)}\right)^{2}}+\frac{1}{4}\frac{u_{0}\left(f_{0}^{\left(2,1\right)}\right)\left(f_{0}^{\left(0,3\right)}\right)}{\left(f_{0}^{\left(2,0\right)}\right)\left(f_{0}^{\left(0,2\right)}\right)^{2}}\frac{1}{4}\frac{u_{0}\left(f_{0}^{\left(1,2\right)}\right)\left(f_{0}^{\left(3,0\right)}\right)}{\left(f_{0}^{\left(2,0\right)}\right)^{2}\left(f_{0}^{\left(0,2\right)}\right)} (3.16)
12u0(1,0)(f0(1,2))(f0(2,0))(f0(0,2))12u0(0,1)(f0(2,1))(f0(2,0))(f0(0,2))12u0(1,0)(f0(3,0))(f0(2,0))212u0(0,1)(f0(0,3))(f0(0,2))2\displaystyle-\frac{1}{2}\frac{u_{0}^{\left(1,0\right)}\left(f_{0}^{\left(1,2\right)}\right)}{\left(f_{0}^{\left(2,0\right)}\right)\left(f_{0}^{\left(0,2\right)}\right)}-\frac{1}{2}\frac{u_{0}^{\left(0,1\right)}\left(f_{0}^{\left(2,1\right)}\right)}{\left(f_{0}^{\left(2,0\right)}\right)\left(f_{0}^{\left(0,2\right)}\right)}-\frac{1}{2}\frac{u_{0}^{\left(1,0\right)}\left(f_{0}^{\left(3,0\right)}\right)}{\left(f_{0}^{\left(2,0\right)}\right)^{2}}-\frac{1}{2}\frac{u_{0}^{\left(0,1\right)}\left(f_{0}^{\left(0,3\right)}\right)}{\left(f_{0}^{\left(0,2\right)}\right)^{2}} (3.17)
+12u0(2,0)(f0(2,0))+12u0(0,2)(f0(0,2)).\displaystyle+\frac{1}{2}\frac{u_{0}^{\left(2,0\right)}}{\left(f_{0}^{\left(2,0\right)}\right)}+\frac{1}{2}\frac{u_{0}^{\left(0,2\right)}}{\left(f_{0}^{\left(0,2\right)}\right)}. (3.18)

There are 1515 terms in (Λ1)\mathcal{B}(\Lambda^{-1}) above and 151151 terms in (Λ2)\mathcal{B}\left(\Lambda^{-2}\right) calculated by direct expansion using Maple, which are consistent with the results we will calculate by hand in the following.

Indeed, similar to the argument we adopted in Eq.(2.30), a typical term of general higher order ΛM\Lambda^{-M} including its coefficient can be written as

(ΛM)\displaystyle\mathcal{B}\left(\Lambda^{-M}\right) (2P2)!P2!2P2(2P3)!P3!2P31m2!m3![n2+n331(n2!n3!)V(n2,n3)V(n2,n3)!]\displaystyle\sim\frac{\left(2P_{2}\right)!}{P_{2}!2^{P_{2}}}\frac{\left(2P_{3}\right)!}{P_{3}!2^{P_{3}}}\frac{1}{m_{2}!m_{3}!}\left[\underset{n_{2}+n_{3}\geq 3}{\prod}\frac{1}{\left(-n_{2}!n_{3}!\right)^{V\left(n_{2},n_{3}\right)}V\left(n_{2},n_{3}\right)!}\right]
u0(m2,m3)n2+n33(f0(n2,n3))V(n2,n3)(f0(2,0))P2(f0(0,2))P3\displaystyle\cdot\frac{u_{0}^{\left(m_{2},m_{3}\right)}\underset{n_{2}+n_{3}\geq 3}{\prod}\left(f_{0}^{\left(n_{2},n_{3}\right)}\right)^{V\left(n_{2},n_{3}\right)}}{\left(f_{0}^{\left(2,0\right)}\right)^{P_{2}}\left(f_{0}^{\left(0,2\right)}\right)^{P_{3}}} (3.19)

where there are P2P_{2} and P3P_{3} propogators corresponding to x2x_{2}^{\prime} and x3x_{3}^{\prime}, respectively. In particular, for the order 𝒜(Λ1)\mathcal{A}(\Lambda^{-1}), Eq.(2.30) consistently gives all 1515 terms in Eq.(3.15) to Eq.(3.18). Here we list some rules regarding the expansion and the construction of a vacuum diagram corresponds to the typical term in Eq.(3.19):

  • M=M= # of loops - # of the connected components 1\geq 1,

  • u0(m2,m3)u_{0}^{\left(m_{2},m_{3}\right)} represents a loop with m2m_{2} external legs corresponding to f0(2,0)f_{0}^{\left(2,0\right)} propagators and, m3m_{3} external legs corresponding to f0(0,2)f_{0}^{\left(0,2\right)} propagators, respectively. For the case of m2=m3=0m_{2}=m_{3}=0, u0u_{0} will be treated as a disconnected loop.

  • f0(n2,n3)f_{0}^{\left(n_{2},n_{3}\right)} with n2+n33n_{2}+n_{3}\geq 3 represents a vertex with n2n_{2} legs corresponding to f0(2,0)f_{0}^{\left(2,0\right)} propagators and n3n_{3} legs corresponding to f0(0,2)f_{0}^{\left(0,2\right)} propagators. V(n2,n3)V\left(n_{2},n_{3}\right) is the number of f0(n2,n3)f_{0}^{\left(n_{2},n_{3}\right)} vertex.

  • f0(2,0)f_{0}^{\left(2,0\right)} and f0(0,2)f_{0}^{\left(0,2\right)} are two different kinds of propagators.

  • MM is the difference between the sum of the numbers of f0(n2,n3)f_{0}^{\left(n_{2},n_{3}\right)} in the numerator and the sum of numbers of denominators f0(2,0)f_{0}^{\left(2,0\right)} and f0(0,2)f_{0}^{\left(0,2\right)}

    P2+P3n2+n33V(n2,n3)=MP_{2}+P_{3}-\sum_{n_{2}+n_{3}\geq 3}V\left(n_{2},n_{3}\right)=M (3.20)
  • The number of differentiations with respect to the variables x2,3x_{2,3}^{\prime} in the numerator equals to the number of differentiations with respect to the same variables x2,3x_{2,3}^{\prime} in the denominator, respectively

    m2+n2+n33n2V(n2,n3)\displaystyle m_{2}+\sum_{n_{2}+n_{3}\geq 3}n_{2}V\left(n_{2},n_{3}\right) =2P2,\displaystyle=2P_{2}, (3.21)
    m3+n2+n33n3V(n2,n3)\displaystyle m_{3}+\sum_{n_{2}+n_{3}\geq 3}n_{3}V\left(n_{2},n_{3}\right) =2P3.\displaystyle=2P_{3}. (3.22)

    Eliminating P2P_{2} and P3P_{3} from the above constraints, Eq.(3.20), Eq.(3.21) and Eq.(3.22), we obtain the following equation

    n2+n33(n2+n32)V(n2,n3)=2M(m2+m3)0,\sum_{n_{2}+n_{3}\geq 3}\left(n_{2}+n_{3}-2\right)V\left(n_{2},n_{3}\right)=2M-\left(m_{2}+m_{3}\right)\geq 0, (3.23)

    which is the 55-point generalization of Eq.(2.38). We are now ready to solve Eq.(3.23) order by order. We first define m=m2+m3m=m_{2}+m_{3}.

For the case of M=1M=1, the upper bound of n2+n3n_{2}+n_{3} is 44 and Eq.(3.23) reduces to

n2+n3=34(n2+n32)V(n2,n3)=2m0\sum_{n_{2}+n_{3}=3}^{4}\left(n_{2}+n_{3}-2\right)V\left(n_{2},n_{3}\right)=2-m\geq 0 (3.24)

or

V(3,0)+V(2,1)+V(1,2)+V(0,3)\displaystyle V\left(3,0\right)+V\left(2,1\right)+V\left(1,2\right)+V\left(0,3\right)
+2[V(4,0)+V(3,1)+V(2,2)+V(1,3)+V(0,4)]\displaystyle+2\left[V\left(4,0\right)+V\left(3,1\right)+V\left(2,2\right)+V\left(1,3\right)+V\left(0,4\right)\right]
=2m.\displaystyle=2-m. (3.25)

The 1515 solutions of Eq.(3.25) are listed in the following table

m2000000000101020m3000000000010102V(3,0)200010000100000V(2,1)020001000010000V(1,2)002010000001000V(0,3)000201000000100V(4,0)000000100000000V(3,1)000000000000000V(2,2)000000010000000V(1,3)000000000000000V(0,4)000000001000000.\begin{tabular}[c]{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline\cr$m_{2}$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$1$&$0$&$1$&$0$&$2$&$0$\\ \hline\cr$m_{3}$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$1$&$0$&$1$&$0$&$2$\\ \hline\cr$V\left(3,0\right)$&$2$&$0$&$0$&$0$&$1$&$0$&$0$&$0$&$0$&$1$&$0$&$0$&$0$&$0$&$0$\\ \hline\cr$V\left(2,1\right)$&$0$&$2$&$0$&$0$&$0$&$1$&$0$&$0$&$0$&$0$&$1$&$0$&$0$&$0$&$0$\\ \hline\cr$V\left(1,2\right)$&$0$&$0$&$2$&$0$&$1$&$0$&$0$&$0$&$0$&$0$&$0$&$1$&$0$&$0$&$0$\\ \hline\cr$V\left(0,3\right)$&$0$&$0$&$0$&$2$&$0$&$1$&$0$&$0$&$0$&$0$&$0$&$0$&$1$&$0$&$0$\\ \hline\cr$V\left(4,0\right)$&$0$&$0$&$0$&$0$&$0$&$0$&$1$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$\\ \hline\cr$V\left(3,1\right)$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$\\ \hline\cr$V\left(2,2\right)$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$1$&$0$&$0$&$0$&$0$&$0$&$0$&$0$\\ \hline\cr$V\left(1,3\right)$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$\\ \hline\cr$V\left(0,4\right)$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$1$&$0$&$0$&$0$&$0$&$0$&$0$\\ \hline\cr\end{tabular}\ \ . (3.26)

Note that the first 44 lines of the table correspond to 44 terms in Eq.(3.15), the 55th and the 66th lines correspond to the last 22 terms of Eq.(3.16), the 77th to the 99th lines correspond to the first 33 terms of Eq.(3.16), the 1010th to the 1313th lines correspond to 44 terms of Eq.(3.17) and finally the last 22 line of the table correspond to 22 terms of Eq.(3.18).

For the case of M=2M=2, the upper bound of n2+n3n_{2}+n_{3} is 66 and Eq.(3.23) reduces to

n2+n3=36(n2+n32)V(n2,n3)=4m0,\sum_{n_{2}+n_{3}=3}^{6}\left(n_{2}+n_{3}-2\right)V\left(n_{2},n_{3}\right)=4-m\geq 0, (3.27)

which gives

V3+2V4+3V5+4V6=4mV_{3}+2V_{4}+3V_{5}+4V_{6}=4-m (3.28)

where

V3\displaystyle V_{3} =V(3,0)+V(2,1)+V(1,2)+V(0,3),\displaystyle=V\left(3,0\right)+V\left(2,1\right)+V\left(1,2\right)+V\left(0,3\right), (3.29)
V4\displaystyle V_{4} =[V(4,0)+V(3,1)+V(2,2)+V(1,3)+V(0,4)],\displaystyle=\left[V\left(4,0\right)+V\left(3,1\right)+V\left(2,2\right)+V\left(1,3\right)+V\left(0,4\right)\right], (3.30)
V5\displaystyle V_{5} =V(5,0)+V(4,1)+V(3,2)+V(2,3)+V(1,4)+V(0,5),\displaystyle=V\left(5,0\right)+V\left(4,1\right)+V\left(3,2\right)+V\left(2,3\right)+V\left(1,4\right)+V\left(0,5\right), (3.31)
V6\displaystyle V_{6} =V(6,0)+V(5,1)+V(4,2)+V(3,3)+V(2,4)+V(1,5)+V(0,6).\displaystyle=V\left(6,0\right)+V\left(5,1\right)+V\left(4,2\right)+V\left(3,3\right)+V\left(2,4\right)+V\left(1,5\right)+V\left(0,6\right). (3.32)

The 151151 solutions of Eq.(3.28) are listed in the following table

m2m_{2} 0 11 0 22 11 0 33 22 11 0 44 33 22 11 0
m3m_{3} 0 0 11 0 11 22 0 11 22 33 0 11 22 33 44
#\# of terms 7070 2323 2323 99 66 99 22 22 22 22 11 0 11 0 11
(3.33)

where the last line counts the number of solutions for each (m2(m_{2} , m3)m_{3}). For the case of m2+m3=0m_{2}+m_{3}=0, for example, one has (m2(m_{2} , m3)=(0m_{3})=(0 , 0)0) and the 7070 solutions are

V343+12+22+1+11+1+1+121+11000V40000011021+10V500000001000V600000000001# of terms44641121412544.\begin{tabular}[c]{|c|c|c|c|c|c|c|c|c|c|c|c|}\hline\cr$V_{3}$&$4$&$3+1$&$2+2$&$2+1+1$&$1+1+1+1$&$2$&$1+1$&$1$&$0$&$0$&$0$\\ \hline\cr$V_{4}$&$0$&$0$&$0$&$0$&$0$&$1$&$1$&$0$&$2$&$1+1$&$0$\\ \hline\cr$V_{5}$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$1$&$0$&$0$&$0$\\ \hline\cr$V_{6}$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$0$&$1$\\ \hline\cr$\#$ of terms&$4$&$4$&$6$&$4$&$1$&$12$&$14$&$12$&$5$&$4$&$4$\\ \hline\cr\end{tabular}. (3.34)

For the case of m2+m3=2m_{2}+m_{3}=2, one has (m2(m_{2} , m3)=(1,1)m_{3})=(1,1), (2,0)(2,0), (0,2)(0,2) and there are 66, 99, 99 solutions respectively

(m2,m3)(1,1)(2,0)(0,2)V31+1021+1021+10V401001001# of terms42423423.\ \ \ \begin{tabular}[c]{|l|l|l|l|l|l|l|l|l|}\hline\cr$\left(m_{2},m_{3}\right)$&\vrule\lx@intercol$\left(1,1\right)$\hfil\lx@intercol\vrule\lx@intercol &\vrule\lx@intercol$\left(2,0\right)$\hfil\lx@intercol\vrule\lx@intercol &\vrule\lx@intercol$\left(0,2\right)$\hfil\lx@intercol\vrule\lx@intercol\\ \hline\cr$V_{3}$&$1+1$&$0$&$2$&$1+1$&$0$&$2$&$1+1$&$0$\\ \hline\cr$V_{4}$&$0$&$1$&$0$&$0$&$1$&$0$&$0$&$1$\\ \hline\cr\# of terms&$4$&$2$&$4$&$2$&$3$&$4$&$2$&$3$\\ \hline\cr\end{tabular}. (3.35)

For the case of M=3M=3, there are 10191019 terms in the expansion. In sum, for the 55-point HSSAHSSA with energy order M3M\leq 3, we can count the number of terms for each mm

m0123456totalM=011M=194215M=270462483151M=335931220192391241019.\begin{tabular}[c]{|c|c|c|c|c|c|c|c|c|}\hline\cr$m$&$0$&$1$&$2$&$3$&$4$&$5$&$6$&total\\ \hline\cr$M=0$&$1$&&&&&&&$1$\\ \hline\cr$M=1$&$9$&$4$&$2$&&&&&$15$\\ \hline\cr$M=2$&$70$&$46$&$24$&$8$&$3$&&&$151$\\ \hline\cr$M=3$&$359$&$312$&$201$&$92$&$39$&$12$&$4$&$1019$\\ \hline\cr\end{tabular}. (3.36)

Eq.(3.36) is the 55-point generalization of the 44-point case calculated in Eq.(2.43). We expect that there exists some distribution formula for Eq.(3.36) similar toP(2Mm)P(2M-m) in Eq.(2.46).

IV Stringy scaling loop expansion of nn-point Amplitudes

The most general nn-points SSASSA can be written as (after SL(2,R)SL(2,R) fixing)

𝒯(Λ)=dn3xi u(xi)eΛf(xi), (i=2,,n2),\mathcal{T}(\Lambda)=\int d^{n-3}x_{i}\text{ }u\left(x_{i}\right)e^{-\Lambda f\left(x_{i}\right)},\text{ }\left(i=2,\cdots,n-2\right), (4.1)

where

f=i<jkikjΛln(xjxi), Λ=k1k2.f=-\underset{i<j}{\sum}\frac{k_{i}\cdot k_{j}}{\Lambda}\ln\left(x_{j}-x_{i}\right),\text{ }\Lambda=-k_{1}\cdot k_{2}. (4.2)

For the nn-point HSSAHSSA with n1n-1 tachyons and 11 high energy state at mass level M2=2(N1)M^{2}=2(N-1)

|{pi},2m,2q=(α1T1)N+p1(α1T2)p2(α1Tr)pr(α1L)2m(α2L)q|0;k\left|\left\{p_{i}\right\},2m,2q\right\rangle=\left(\alpha_{-1}^{T_{1}}\right)^{N+p_{1}}\left(\alpha_{-1}^{T_{2}}\right)^{p_{2}}\cdots\left(\alpha_{-1}^{T_{r}}\right)^{p_{r}}\left(\alpha_{-1}^{L}\right)^{2m}\left(\alpha_{-2}^{L}\right)^{q}\left|0;k\right\rangle (4.3)

where i=1rpi=2(m+q)\sum_{i=1}^{r}p_{i}=-2(m+q) with r24r\leq 24, the number of transverse directions, u(xi)u\left(x_{i}\right) can be calculated to be

u=(kT1)N+p1(kT2)p2(kTr)pr(kL)2m(kL)q,u=\left(k^{T_{1}}\right)^{N+p_{1}}\left(k^{T_{2}}\right)^{p_{2}}\cdots\left(k^{T_{r}}\right)^{p_{r}}\left(k^{L}\right)^{2m}\left(k^{\prime L}\right)^{q}, (4.4)

where we have defined

k=i2,nkixix2.k=-\sum_{i\neq 2,n}\frac{k_{i}}{x_{i}-x_{2}}. (4.5)

We then perform a Taylor expansion on the multi-variables’ critical points

dn3xi [u(xi0)+]eΛ[f(x20)+12i,j2f0xixj(xixi0)(xjxj0)+13!i,j,k3f0xixjxk(xixi0)(xjxj0)(xkxk0)+]\int d^{n-3}x_{i}\text{ }\left[u\left(x_{i0}\right)+\cdots\right]e^{-\Lambda\left[f\left(x_{20}\right)+\frac{1}{2}\underset{i,j}{\sum}\frac{\partial^{2}f_{0}}{\partial x_{i}\partial x_{j}}\left(x_{i}-x_{i0}\right)\left(x_{j}-x_{j0}\right)+\frac{1}{3!}\underset{i,j,k}{\sum}\frac{\partial^{3}f_{0}}{\partial x_{i}\partial x_{j}\partial x_{k}}\left(x_{i}-x_{i0}\right)\left(x_{j}-x_{j0}\right)\left(x_{k}-x_{k0}\right)+\cdots\right]} (4.6)

where (x20,x30,,x(n3)0)\left(x_{20},x_{30},\cdots,x_{\left(n-3\right)0}\right) satisfied

f(x20,x30,,x(n3)0)x2\displaystyle\frac{\partial f\left(x_{20},x_{30},\cdots,x_{\left(n-3\right)0}\right)}{\partial x_{2}} =0,\displaystyle=0,
\displaystyle\vdots
f(x20,x30,,x(n3)0)xn3\displaystyle\frac{\partial f\left(x_{20},x_{30},\cdots,x_{\left(n-3\right)0}\right)}{\partial x_{n-3}} =0.\displaystyle=0. (4.7)

For the same reason as in the previous 55-point case, we need to do a change of variables to eliminate crossing terms and obtain

dn3xi [u(x20,x30,,x(n3)0)+]\displaystyle\int d^{n-3}x_{i}^{\prime}\text{ }\left[u\left(x_{20}^{\prime},x_{30}^{\prime},\cdots,x_{\left(n-3\right)0}^{\prime}\right)+\cdots\right]
eΛ[f(x20)+12i,j2f(x20,x30,,xn30)xixj(xixi0)(xjxj0)+13!i,j,k3f(x20,x30,,x(n3)0)xixjxk(xixi0)(xjxj0)(xkxk0)+]\displaystyle\cdot e^{-\Lambda\left[f\left(x_{20}^{\prime}\right)+\frac{1}{2}\underset{i,j}{\sum}\frac{\partial^{2}f\left(x_{20}^{\prime},x_{30}^{\prime},\cdots,x_{n-30}^{\prime}\right)}{\partial x_{i}^{\prime}\partial x_{j}^{\prime}}\left(x_{i}^{\prime}-x_{i0}^{\prime}\right)\left(x_{j}^{\prime}-x_{j0}^{\prime}\right)+\frac{1}{3!}\underset{i,j,k}{\sum}\frac{\partial^{3}f\left(x_{20}^{\prime},x_{30}^{\prime},\cdots,x_{\left(n-3\right)0}^{\prime}\right)}{\partial x_{i}^{\prime}\partial x_{j}^{\prime}\partial x_{k}^{\prime}}\left(x_{i}^{\prime}-x_{i0}^{\prime}\right)\left(x_{j}^{\prime}-x_{j0}^{\prime}\right)\left(x_{k}^{\prime}-x_{k0}^{\prime}\right)+\cdots\right]} (4.8)

where (x20,x30,,xn30)\left(x_{20}^{\prime},x_{30}^{\prime},\cdots,x_{n-30}^{\prime}\right) satisfied

f(x20,x30,,x(n3)0)x2\displaystyle\frac{\partial f\left(x_{20}^{\prime},x_{30}^{\prime},\cdots,x_{\left(n-3\right)0}^{\prime}\right)}{\partial x_{2}} =0,\displaystyle=0,
\displaystyle\vdots
f(x20,x30,,x(n3)0)xn3\displaystyle\frac{\partial f\left(x_{20}^{\prime},x_{30}^{\prime},\cdots,x_{\left(n-3\right)0}^{\prime}\right)}{\partial x_{n-3}} =0.\displaystyle=0. (4.9)

We define the coefficients in the Taylor expansion of ff and uu at (x20,x30,,x(n3)0)\left(x_{20}^{\prime},x_{30}^{\prime},\cdots,x_{\left(n-3\right)0}^{\prime}\right) as follows

u(x20,x30,,x(n3)0)\displaystyle u\left(x_{20}^{\prime},x_{30}^{\prime},\cdots,x_{\left(n-3\right)0}^{\prime}\right) =u0,\displaystyle=u_{0}, (4.10)
m2++mn3u(x20,x30,,x(n3)0)(x2)m2(xn3)mn3\displaystyle\frac{\partial^{m_{2}+\cdots+m_{n-3}}u\left(x_{20}^{\prime},x_{30}^{\prime},\cdots,x_{\left(n-3\right)0}^{\prime}\right)}{\partial\left(x_{2}^{\prime}\right)^{m_{2}}\cdots\partial\left(x_{n-3}^{\prime}\right)^{m_{n-3}}} =u0(m2,,mn3)=u0{mi},\displaystyle=u_{0}^{\left(m_{2},\cdots,m_{n-3}\right)}=u_{0}^{\left\{m_{i}\right\}}, (4.11)
n2++nn3f(x20,x30,,x(n3)0)(x2)n2(xn3)nn3\displaystyle\frac{\partial^{n_{2}+\cdots+n_{n-3}}f\left(x_{20}^{\prime},x_{30}^{\prime},\cdots,x_{\left(n-3\right)0}^{\prime}\right)}{\partial\left(x_{2}^{\prime}\right)^{n_{2}}\cdots\partial\left(x_{n-3}^{\prime}\right)^{n_{n-3}}} =f0(n2,,nn3)=f0{ni}.\displaystyle=f_{0}^{\left(n_{2},\cdots,n_{n-3}\right)}=f_{0}^{\left\{n_{i}\right\}}. (4.12)

We can then simplify the integral into the following form

dn3xi [u0+]eΛ[f0+12i=2n2f0{ni}(xixi0)2+13!n2++nn2=3(f0{ni}i=2n2(xixi0)ni)+]\displaystyle\int d^{n-3}x_{i}^{\prime}\text{ }\left[u_{0}+\cdots\right]e^{-\Lambda\left[f_{0}+\frac{1}{2}\sum\limits_{i=2}^{n-2}f_{0}^{\left\{n_{i}\right\}}\left(x_{i}^{\prime}-x_{i0}^{\prime}\right)^{2}+\frac{1}{3!}\sum\limits_{n_{2}+\cdots+n_{n-2}=3}\left(f_{0}^{\left\{n_{i}\right\}}{\displaystyle\prod\limits_{i=2}^{n-2}}\left(x_{i}^{\prime}-x_{i0}^{\prime}\right)^{n_{i}}\right)+\cdots\right]}
=j=2n22πΛj2f0[u0+1Λ𝒞(Λ1)+1Λ2𝒞(Λ2)+O(1Λ3)].\displaystyle={\displaystyle\prod\limits_{j=2}^{n-2}}\sqrt{\frac{2\pi}{\Lambda\partial_{j}^{2}f_{0}}}\left[u_{0}+\frac{1}{\Lambda}\mathcal{C}(\Lambda^{-1})+\frac{1}{\Lambda^{2}}\mathcal{C}\left(\Lambda^{-2}\right)+O\left(\frac{1}{\Lambda^{3}}\right)\right]. (4.13)

After performing the integrations, a typical term in order ΛM\Lambda^{-M} of the above equation can be written as

𝒞(ΛM)[j=2n2(2Pj)!Pj!2Pj1mj!][Σni31V({ni})!(j=2n2nj!)V({ni})]u0{mi}Σni3(f0{ni})V({ni})j=2n2(j2f0)Pj\mathcal{C}\left(\Lambda^{-M}\right)\sim\left[{\displaystyle\prod\limits_{j=2}^{n-2}}\frac{\left(2P_{j}\right)!}{P_{j}!2^{P_{j}}}\frac{1}{m_{j}!}\right]\cdot\left[\underset{\Sigma n_{i}\geq 3}{\prod}\frac{1}{V\left(\left\{n_{i}\right\}\right)!}\left(-{\displaystyle\prod\limits_{j=2}^{n-2}}n_{j}!\right)^{-V\left(\left\{n_{i}\right\}\right)}\right]\cdot\frac{u_{0}^{\left\{m_{i}\right\}}\underset{\Sigma n_{i}\geq 3}{\prod}\left(f_{0}^{\left\{n_{i}\right\}}\right)^{V\left(\left\{n_{i}\right\}\right)}}{{\displaystyle\prod\limits_{j=2}^{n-2}}\left(\partial_{j}^{2}f_{0}\right)^{P_{j}}} (4.14)

where V({ni})V\left(\left\{n_{i}\right\}\right) is the number of f0{ni}f_{0}^{\left\{n_{i}\right\}} vertex and there are PjP_{j} propogators corresponding to xjx_{j}^{\prime}, j=2,3,n2j=2,3\cdots,n-2. Similar rules after Eq.(3.19) can be easily set up. Moreover, for the nn-point case, Eq.(3.20) is now replaced by

j=2n2Pjn2++nn23V({ni})=M,\sum_{j=2}^{n-2}P_{j}-\sum_{n_{2}+\cdots+n_{n-2}\geq 3}V\left(\left\{n_{i}\right\}\right)=M, (4.15)

and Eq.(3.21) and Eq.(3.22) are replaced by

mj+n2++nn23njV({ni})=2Pj.(j=2,,n2).m_{j}+\sum_{n_{2}+\cdots+n_{n-2}\geq 3}n_{j}V\left(\left\{n_{i}\right\}\right)=2P_{j}.\left(j=2,\cdots,n-2\right). (4.16)

Finally, eliminating PjP_{j} from the above constraints, Eq.(4.15) and Eq.(4.16), we obtain the following equation

(n2++nn23n2+n3++nn22)V({ni})=2Mj=2n2mj0.\left(\sum_{n_{2}+\cdots+n_{n-2}\geq 3}n_{2}+n_{3}+\cdots+n_{n-2}-2\right)V\left(\left\{n_{i}\right\}\right)=2M-\sum_{j=2}^{n-2}m_{j}\geq 0. (4.17)

which is the nn-point generalization of Eq.(3.23) and Eq.(2.38). One can now solve Eq.(4.17) order by order as we did previously for the 44-point and 55-point cases.

V Vacuum diagram representation of HSSA

In this section, similar to the Feynman diagram representation in field theory, we give a vacuum diagram representation for stringy scaling loop expansion of HSSAHSSA. We will see that in general for each term of the expansion, there can be many diagrams correspond to it. In particular, we will sum over the inverse symmetry factors of all diagrams of the term to consistently match with the coefficient of the term.

We begin with the 44-point HSSAHSSA with order M=1M=1, namely Eq.(2.14) to Eq.(2.17). The corresponding diagrams are

𝒜1(Λ1)\displaystyle\mathcal{A}_{1}(\Lambda^{-1}) =u0f0(4)8(f0′′)2=123[Uncaptioned image],\displaystyle=-\frac{u_{0}f_{0}^{(4)}}{8(f_{0}^{\prime\prime})^{2}}=-\frac{1}{2^{3}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M1A1.eps}}, (5.1)
𝒜2(Λ1)\displaystyle\mathcal{A}_{2}(\Lambda^{-1}) =5u0(f0(3))224(f0′′)3=123[Uncaptioned image]+123![Uncaptioned image],\displaystyle=\frac{5u_{0}(f_{0}^{(3)})^{2}}{24(f_{0}^{\prime\prime})^{3}}=\frac{1}{2^{3}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M1A21.eps}}+\frac{1}{2\cdot 3!}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M1A22.eps}}, (5.2)
𝒜3(Λ1)\displaystyle\mathcal{A}_{3}(\Lambda^{-1}) =u0f0(3)2(f0′′)2=12[Uncaptioned image],\displaystyle=-\frac{u_{0}^{\prime}f_{0}^{(3)}}{2(f_{0}^{\prime\prime})^{2}}=-\frac{1}{2}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M1A3.eps}}, (5.3)
𝒜4(Λ1)\displaystyle\mathcal{A}_{4}(\Lambda^{-1}) =u0′′2f0′′=12[Uncaptioned image].\displaystyle=\frac{u_{0}^{\prime\prime}}{2f_{0}^{\prime\prime}}=\frac{1}{2}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M1A4.eps}}. (5.4)

We see that there are two diagrams corresponding to one term in Eq.(5.2). We will see that there will be even more diagrams corresponding to one term in the higher order expansion as will see next.

We next consider the 44-point HSSAHSSA with order M=2M=2, namely Eq.(2.18) to Eq.(2.29). The diagram representations including the inverse symmetry factors for each term are

𝒜1(Λ2)\displaystyle\mathcal{A}_{1}(\Lambda^{-2}) =u0f0(6)48(f0′′)3=13!23[Uncaptioned image],\displaystyle=-\frac{u_{0}f_{0}^{(6)}}{48(f_{0}^{\prime\prime})^{3}}=-\frac{1}{3!\cdot 2^{3}}\raisebox{-12.91663pt}{\includegraphics[scale={0.5}]{figures/M2A1.eps}}, (5.5)
𝒜2(Λ2)\displaystyle\mathcal{A}_{2}(\Lambda^{-2}) =7u0f0(3)f0(5)48(f0′′)4=13!2![Uncaptioned image]+1223[Uncaptioned image],\displaystyle=\frac{7u_{0}f_{0}^{(3)}f_{0}^{(5)}}{48(f_{0}^{\prime\prime})^{4}}=\frac{1}{3!\cdot 2!}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A21.eps}}+\frac{1}{2\cdot 2^{3}}\raisebox{-12.91663pt}{\includegraphics[scale={0.5}]{figures/M2A22.eps}}, (5.6)
𝒜3(Λ2)\displaystyle\mathcal{A}_{3}(\Lambda^{-2}) =35u0(f0(4))2384(f0′′)4=124![Uncaptioned image]+124[Uncaptioned image]+1282[Uncaptioned image],\displaystyle=\frac{35u_{0}(f_{0}^{(4)})^{2}}{384(f_{0}^{\prime\prime})^{4}}=\frac{1}{2\cdot 4!}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A31.eps}}+\frac{1}{2^{4}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A32.eps}}+\frac{1}{2\cdot 8^{2}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A33.eps}}, (5.7)
𝒜4(Λ2)\displaystyle\mathcal{A}_{4}(\Lambda^{-2}) =35u0f0(4)(f0(3))264(f0′′)5=18[Uncaptioned image]123![Uncaptioned image]18[Uncaptioned image]\displaystyle=-\frac{35u_{0}f_{0}^{(4)}(f_{0}^{(3)})^{2}}{64(f_{0}^{\prime\prime})^{5}}=-\frac{1}{8}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A41.eps}}-\frac{1}{2\cdot 3!}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A42.eps}}-\frac{1}{8}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A43.eps}}
18[Uncaptioned image]116[Uncaptioned image]1823![Uncaptioned image]188[Uncaptioned image],\displaystyle-\frac{1}{8}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A44.eps}}-\frac{1}{16}\raisebox{-12.91663pt}{\includegraphics[scale={0.5}]{figures/M2A45.eps}}-\frac{1}{8\cdot 2\cdot 3!}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A46.eps}}-\frac{1}{8\cdot 8}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A47.eps}}, (5.8)
𝒜5(Λ2)\displaystyle\mathcal{A}_{5}(\Lambda^{-2}) =385u0(f0(3))41152(f0′′)6=14![Uncaptioned image]+116[Uncaptioned image]+13!23[Uncaptioned image]\displaystyle=\frac{385u_{0}(f_{0}^{(3)})^{4}}{1152(f_{0}^{\prime\prime})^{6}}=\frac{1}{4!}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A51.eps}}+\frac{1}{16}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A52.eps}}+\frac{1}{3!\cdot 2^{3}}\raisebox{-12.91663pt}{\includegraphics[scale={0.5}]{figures/M2A53.eps}}
+123[Uncaptioned image]+124[Uncaptioned image]+1226[Uncaptioned image]\displaystyle+\frac{1}{2^{3}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A54.eps}}+\frac{1}{2^{4}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A55.eps}}+\frac{1}{2\cdot 2^{6}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A56.eps}}
+1233!2[Uncaptioned image]+122(3!)22[Uncaptioned image],\displaystyle+\frac{1}{2^{3}\cdot 3!\cdot 2}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A57.eps}}+\frac{1}{2^{2}\cdot\left(3!\right)^{2}\cdot 2}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A58.eps}}, (5.9)
𝒜6(Λ2)\displaystyle\mathcal{A}_{6}(\Lambda^{-2}) =u0f0(5)8(f0′′)3=123[Uncaptioned image],\displaystyle=-\frac{u_{0}^{{}^{\prime}}f_{0}^{(5)}}{8(f_{0}^{\prime\prime})^{3}}=-\frac{1}{2^{3}}\raisebox{-12.91663pt}{\includegraphics[scale={0.5}]{figures/M2A6.eps}}, (5.10)
𝒜7(Λ2)\displaystyle\mathcal{A}_{7}(\Lambda^{-2}) =35u0f0(3)f0(4)48(f0′′)4=122[Uncaptioned image]+13![Uncaptioned image]+122[Uncaptioned image]+124[Uncaptioned image],\displaystyle=\frac{35u_{0}^{{}^{\prime}}f_{0}^{(3)}f_{0}^{(4)}}{48(f_{0}^{\prime\prime})^{4}}=\frac{1}{2^{2}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A71.eps}}+\frac{1}{3!}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A72.eps}}+\frac{1}{2^{2}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A73.eps}}+\frac{1}{2^{4}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A74.eps}}, (5.11)
𝒜8(Λ2)\displaystyle\mathcal{A}_{8}(\Lambda^{-2}) =35u0(f0(3))248(f0′′)5=122[Uncaptioned image]122[Uncaptioned image]18[Uncaptioned image]\displaystyle=-\frac{35u_{0}^{{}^{\prime}}(f_{0}^{(3)})^{2}}{48(f_{0}^{\prime\prime})^{5}}=-\frac{1}{2^{2}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A81.eps}}-\frac{1}{2^{2}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A82.eps}}-\frac{1}{8}\raisebox{-12.91663pt}{\includegraphics[scale={0.5}]{figures/M2A83.eps}}
1223[Uncaptioned image]1223![Uncaptioned image],\displaystyle-\frac{1}{2\cdot 2^{3}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A84.eps}}-\frac{1}{2\cdot 2\cdot 3!}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A85.eps}}, (5.12)
𝒜9(Λ2)\displaystyle\mathcal{A}_{9}(\Lambda^{-2}) =5u0′′f0(4)16(f0′′)3=14[Uncaptioned image]1223[Uncaptioned image],\displaystyle=-\frac{5u_{0}^{{}^{\prime\prime}}f_{0}^{(4)}}{16(f_{0}^{\prime\prime})^{3}}=-\frac{1}{4}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A91.eps}}-\frac{1}{2\cdot 2^{3}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A92.eps}}, (5.13)
𝒜10(Λ2)\displaystyle\mathcal{A}_{10}(\Lambda^{-2}) =35u0′′(f0(3))248(f0′′)4=122[Uncaptioned image]+1223![Uncaptioned image]+1222[Uncaptioned image]\displaystyle=\frac{35u_{0}^{\prime\prime}(f_{0}^{(3)})^{2}}{48(f_{0}^{\prime\prime})^{4}}=\frac{1}{2^{2}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A101.eps}}+\frac{1}{2^{2}\cdot 3!}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A102.eps}}+\frac{1}{2\cdot 2^{2}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A103.eps}}
+14[Uncaptioned image]+18[Uncaptioned image],\displaystyle+\frac{1}{4}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A104.eps}}+\frac{1}{8}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A105.eps}}, (5.14)
𝒜11(Λ2)\displaystyle\mathcal{A}_{11}(\Lambda^{-2}) =5u0(3)f0(3)12(f0′′)3=13![Uncaptioned image]122[Uncaptioned image],\displaystyle=-\frac{5u_{0}^{(3)}f_{0}^{(3)}}{12(f_{0}^{\prime\prime})^{3}}=-\frac{1}{3!}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A111.eps}}-\frac{1}{2^{2}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A112.eps}}, (5.15)
𝒜12(Λ2)\displaystyle\mathcal{A}_{12}(\Lambda^{-2}) =u0(4)8(f0′′)2=123[Uncaptioned image].\displaystyle=\frac{u_{0}^{(4)}}{8(f_{0}^{\prime\prime})^{2}}=\frac{1}{2^{3}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/M2A12.eps}}. (5.16)

It is important to note that the coefficient of each term in 𝒜j(Λ1)\mathcal{A}_{j}(\Lambda^{-1}) and 𝒜k(Λ2)\mathcal{A}_{k}(\Lambda^{-2}) matches with the sum of the inverse symmetry factors of all diagrams corresponding to the term. For the example of the term 𝒜5(Λ2)\mathcal{A}_{5}(\Lambda^{-2}), there are 88 diagrams corresponding to it. The sum of the inverse symmetry factors [22] gives

14!+116+13!23+123+124+1226+1233!2+122(3!)22=3851152=(2P)!P!2P1m!n3((1n!)V(n)V(n)!)\frac{1}{4!}+\frac{1}{16}+\frac{1}{3!\cdot 2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2\cdot 2^{6}}+\frac{1}{2^{3}\cdot 3!\cdot 2}+\frac{1}{2^{2}\cdot\left(3!\right)^{2}\cdot 2}=\frac{385}{1152}=\frac{\left(2P\right)!}{P!2^{P}}\frac{1}{m!}\underset{n\geq 3}{\prod}\left(\frac{\left(\frac{-1}{n!}\right)^{V\left(n\right)}}{V\left(n\right)!}\right)

which is consistent with Eq.(2.30) for P=6P=6, m=0m=0, n=3n=3 and V(3)=4V(3)=4. The result of this coefficient is also consistent with Eq.(2.11). Note that, to the order 𝒜k(Λ2)\mathcal{A}_{k}(\Lambda^{-2}), there are 3,4,53,4,5 and 66-point vertices in the diagrams which are much more than those in the case of usual quantum field theory. There are 3030 terms of 44-point HSSAHSSA 𝒜j(Λ3)\mathcal{A}_{j}(\Lambda^{-3}) with order M=3M=3. The corresponding diagrams can be similarly written down.

The 55-point HSSAHSSA with order M=1M=1 are

1(Λ1)\displaystyle\mathcal{B}_{1}(\Lambda^{-1}) =38u0(f0(2,1))2(f0(2,0))2(f0(0,2))=122[Uncaptioned image]+123[Uncaptioned image],\displaystyle=\frac{3}{8}\frac{u_{0}\left(f_{0}^{\left(2,1\right)}\right)^{2}}{\left(f_{0}^{\left(2,0\right)}\right)^{2}\left(f_{0}^{\left(0,2\right)}\right)}=\frac{1}{2^{2}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A1-1.eps}}+\frac{1}{2^{3}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A1-2.eps}}, (5.17)
2(Λ1)\displaystyle\mathcal{B}_{2}(\Lambda^{-1}) =38u0(f0(1,2))2(f0(2,0))(f0(0,2))2=122[Uncaptioned image]+123[Uncaptioned image],\displaystyle=\frac{3}{8}\frac{u_{0}\left(f_{0}^{\left(1,2\right)}\right)^{2}}{\left(f_{0}^{\left(2,0\right)}\right)\left(f_{0}^{\left(0,2\right)}\right)^{2}}=\frac{1}{2^{2}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A2-1.eps}}+\frac{1}{2^{3}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A2-2.eps}}, (5.18)
3(Λ1)\displaystyle\mathcal{B}_{3}(\Lambda^{-1}) =524u0(f0(3,0))2(f0(2,0))3=123![Uncaptioned image]+123[Uncaptioned image],\displaystyle=\frac{5}{24}\frac{u_{0}\left(f_{0}^{\left(3,0\right)}\right)^{2}}{\left(f_{0}^{\left(2,0\right)}\right)^{3}}=\frac{1}{2\cdot 3!}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A3-1.eps}}+\frac{1}{2^{3}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A3-2.eps}}, (5.19)
4(Λ1)\displaystyle\mathcal{B}_{4}(\Lambda^{-1}) =524u0(f0(0,3))2(f0(0,2))3=123![Uncaptioned image]+123[Uncaptioned image],\displaystyle=\frac{5}{24}\frac{u_{0}\left(f_{0}^{\left(0,3\right)}\right)^{2}}{\left(f_{0}^{\left(0,2\right)}\right)^{3}}=\frac{1}{2\cdot 3!}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A4-1.eps}}+\frac{1}{2^{3}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A4-2.eps}}, (5.20)
5(Λ1)\displaystyle\mathcal{B}_{5}(\Lambda^{-1}) =14u0(f0(2,2))(f0(2,0))(f0(0,2))=122[Uncaptioned image],\displaystyle=-\frac{1}{4}\frac{u_{0}\left(f_{0}^{\left(2,2\right)}\right)}{\left(f_{0}^{\left(2,0\right)}\right)\left(f_{0}^{\left(0,2\right)}\right)}=-\frac{1}{2^{2}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A5.eps}}, (5.21)
6(Λ1)\displaystyle\mathcal{B}_{6}(\Lambda^{-1}) =18u0(f0(4,0))(f0(2,0))2=122![Uncaptioned image],\displaystyle=-\frac{1}{8}\frac{u_{0}\left(f_{0}^{\left(4,0\right)}\right)}{\left(f_{0}^{\left(2,0\right)}\right)^{2}}=-\frac{1}{2\cdot 2!}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A6.eps}}, (5.22)
7(Λ1)\displaystyle\mathcal{B}_{7}(\Lambda^{-1}) =18u0(f0(0,4))(f0(0,2))2=122![Uncaptioned image],\displaystyle=-\frac{1}{8}\frac{u_{0}\left(f_{0}^{\left(0,4\right)}\right)}{\left(f_{0}^{\left(0,2\right)}\right)^{2}}=-\frac{1}{2\cdot 2!}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A7.eps}}, (5.23)
8(Λ1)\displaystyle\mathcal{B}_{8}(\Lambda^{-1}) =14u0(f0(2,1))(f0(0,3))(f0(2,0))(f0(0,2))2=122[Uncaptioned image],\displaystyle=\frac{1}{4}\frac{u_{0}\left(f_{0}^{\left(2,1\right)}\right)\left(f_{0}^{\left(0,3\right)}\right)}{\left(f_{0}^{\left(2,0\right)}\right)\left(f_{0}^{\left(0,2\right)}\right)^{2}}=\frac{1}{2^{2}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A8.eps}}, (5.24)
9(Λ1)\displaystyle\mathcal{B}_{9}(\Lambda^{-1}) =14u0(f0(1,2))(f0(3,0))(f0(2,0))2(f0(0,2))=122[Uncaptioned image],\displaystyle=\frac{1}{4}\frac{u_{0}\left(f_{0}^{\left(1,2\right)}\right)\left(f_{0}^{\left(3,0\right)}\right)}{\left(f_{0}^{\left(2,0\right)}\right)^{2}\left(f_{0}^{\left(0,2\right)}\right)}=\frac{1}{2^{2}}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A9.eps}}, (5.25)
10(Λ1)\displaystyle\mathcal{B}_{10}(\Lambda^{-1}) =12u0(1,0)(f0(1,2))(f0(2,0))(f0(0,2))=12[Uncaptioned image],\displaystyle=-\frac{1}{2}\frac{u_{0}^{\left(1,0\right)}\left(f_{0}^{\left(1,2\right)}\right)}{\left(f_{0}^{\left(2,0\right)}\right)\left(f_{0}^{\left(0,2\right)}\right)}=-\frac{1}{2}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A10.eps}}, (5.26)
11(Λ1)\displaystyle\mathcal{B}_{11}(\Lambda^{-1}) =12u0(0,1)(f0(2,1))(f0(2,0))(f0(0,2))=12[Uncaptioned image],\displaystyle=-\frac{1}{2}\frac{u_{0}^{\left(0,1\right)}\left(f_{0}^{\left(2,1\right)}\right)}{\left(f_{0}^{\left(2,0\right)}\right)\left(f_{0}^{\left(0,2\right)}\right)}=-\frac{1}{2}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A11.eps}}, (5.27)
12(Λ1)\displaystyle\mathcal{B}_{12}(\Lambda^{-1}) =12u0(1,0)(f0(3,0))(f0(2,0))2=12[Uncaptioned image],\displaystyle=-\frac{1}{2}\frac{u_{0}^{\left(1,0\right)}\left(f_{0}^{\left(3,0\right)}\right)}{\left(f_{0}^{\left(2,0\right)}\right)^{2}}=-\frac{1}{2}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A12.eps}}, (5.28)
13(Λ1)\displaystyle\mathcal{B}_{13}(\Lambda^{-1}) =12u0(0,1)(f0(0,3))(f0(0,2))2=12[Uncaptioned image],\displaystyle=-\frac{1}{2}\frac{u_{0}^{\left(0,1\right)}\left(f_{0}^{\left(0,3\right)}\right)}{\left(f_{0}^{\left(0,2\right)}\right)^{2}}=-\frac{1}{2}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A13.eps}}, (5.29)
14(Λ1)\displaystyle\mathcal{B}_{14}(\Lambda^{-1}) =12u0(2,0)(f0(2,0))=12[Uncaptioned image],\displaystyle=\frac{1}{2}\frac{u_{0}^{\left(2,0\right)}}{\left(f_{0}^{\left(2,0\right)}\right)}=\frac{1}{2}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A14.eps}}, (5.30)
15(Λ1)\displaystyle\mathcal{B}_{15}(\Lambda^{-1}) =12u0(0,2)(f0(0,2))=12[Uncaptioned image]\displaystyle=\frac{1}{2}\frac{u_{0}^{\left(0,2\right)}}{\left(f_{0}^{\left(0,2\right)}\right)}=\frac{1}{2}\raisebox{-4.30554pt}{\includegraphics[scale={0.5}]{figures/n5A15.eps}} (5.31)

where black lines represent the propagators corresponding to f0(2,0)f_{0}^{\left(2,0\right)}, and red lines represent the propagators corresponding to f0(0,2)f_{0}^{\left(0,2\right)}. The coefficient of each term in j(Λ1)\mathcal{B}_{j}(\Lambda^{-1}) also matches with the sum of the inverse symmetry factors of all diagrams corresponding to the term. There are 151151 terms of 55-point HSSAHSSA j(Λ2)\mathcal{B}_{j}(\Lambda^{-2}) with order M=2M=2. The corresponding diagrams can be similarly written down.

VI Stringy scaling violation

In this section, we apply the stringy scaling loop expansion developed in the previous sections to calculate the HSSAHSSA. We begin with the 44-point HSSAHSSA. For this case it has been known that all leading order HSSAHSSA at each fixed mass level share the same functional form and is independent of the scattering angle ϕ\phi. The ratios among 44-point HSSAHSSA at a fixed mass level NN was calculated to be [6, 7, 8, 9]

𝒯(N,2m,q)𝒯(N,0,0)=(2m)!m!(12M2)2m+q.(independent of ϕ !)\frac{\mathcal{T}^{\left(N,2m,q\right)}}{\mathcal{T}^{\left(N,0,0\right)}}=\frac{\left(2m\right)!}{m!}\left(\frac{-1}{2M_{2}}\right)^{2m+q}.\text{({independent of }}\phi\text{ !)} (6.1)

In Eq.(6.1) 𝒯(N,2m,q)\mathcal{T}^{\left(N,2m,q\right)} is the 44-point HSSAHSSA of any string vertex VjV_{j} with j=1,3,4j=1,3,4 and V2V_{2} is the high energy state in Eq.(2.2); and 𝒯(N,0,0)\mathcal{T}^{\left(N,0,0\right)} is the 44-point HSSAHSSA of any string vertex VjV_{j} with j=1,3,4j=1,3,4, and V2V_{2} is the leading Regge trajectory string state at mass level NN. Note that in Eq.(6.1) we have omitted the tensor indice of VjV_{j} with j=1,3,4j=1,3,4 and keep only those of V2V_{2} in 𝒯(N,2m,q)\mathcal{T}^{\left(N,2m,q\right)}. It is important to note that to calculate the nontrivial leading order amplitude 𝒯(N,2m,q)\mathcal{T}^{\left(N,2m,q\right)}, one needs to calculate the HSSAHSSA up to the order 1Λm\frac{1}{\Lambda^{m}}. As an example, for the case of N=3N=3 in Eq.(2.2), Eq.(2.3) leads to

(α1T)3|0;k,(m,q)\displaystyle\left(\alpha_{-1}^{T}\right)^{3}\left|0;k\right\rangle,\left(m,q\right) =(0,0),𝒯(3,0,0)142Λ32(1+τ)92τ32\displaystyle=\left(0,0\right),\mathcal{T}^{\left(3,0,0\right)}\sim\frac{\frac{1}{4}\sqrt{2}\Lambda^{\frac{3}{2}}\left(-1+\tau\right)^{\frac{9}{2}}}{\tau^{\frac{3}{2}}} (6.2)
+\displaystyle+ 1482Λ(1+τ)32(τ427τ3+88τ299τ+37)τ52,\displaystyle\frac{\frac{1}{48}\sqrt{2}\sqrt{\Lambda}\left(-1+\tau\right)^{\frac{3}{2}}\left(\tau^{4}-27\tau^{3}+88\tau^{2}-99\tau+37\right)}{-\tau^{\frac{5}{2}}}, (6.3)
(α1T)(α2L)|0;k,(m,q)\displaystyle\left(\alpha_{-1}^{T}\right)\left(\alpha_{-2}^{L}\right)\left|0;k\right\rangle,\left(m,q\right) =(0,1),𝒯(3,0,1)122Λ32(1+τ)92Mτ32\displaystyle=\left(0,1\right),\mathcal{T}^{\left(3,0,1\right)}\sim\frac{\frac{1}{2}\sqrt{2}\Lambda^{\frac{3}{2}}\left(-1+\tau\right)^{\frac{9}{2}}}{M\tau^{\frac{3}{2}}} (6.4)
+\displaystyle+ 1242Λ(1+τ)32(13τ415τ3+28τ263τ+37)τ52M,\displaystyle\frac{\frac{1}{24}\sqrt{2}\sqrt{\Lambda}\left(-1+\tau\right)^{\frac{3}{2}}\left(13\tau^{4}-15\tau^{3}+28\tau^{2}-63\tau+37\right)}{\tau^{\frac{5}{2}}M}, (6.5)
(α1T)(α1L)2|0;k,(m,q)\displaystyle\left(\alpha_{-1}^{T}\right)\left(\alpha_{-1}^{L}\right)^{2}\left|0;k\right\rangle,\left(m,q\right) =(1,0),𝒯(3,2,0)122Λ32(1+τ)92Mτ32\displaystyle=\left(1,0\right),\mathcal{T}^{\left(3,2,0\right)}\sim\frac{\frac{1}{2}\sqrt{2}\Lambda^{\frac{3}{2}}\left(-1+\tau\right)^{\frac{9}{2}}}{M\tau^{\frac{3}{2}}} (6.6)
+1242Λ(1+τ)32(13τ415τ3+52τ2111τ+61)τ52M\displaystyle+\frac{\frac{1}{24}\sqrt{2}\sqrt{\Lambda}\left(-1+\tau\right)^{\frac{3}{2}}\left(13\tau^{4}-15\tau^{3}+52\tau^{2}-111\tau+61\right)}{-\tau^{\frac{5}{2}}M} (6.7)

where τ=sin2ϕ2\tau=\sin^{2}\frac{\phi}{2}. We have calculated the three HSSAHSSA up to the next to leading order. Note that the three leading order amplitudes in Eq.(6.2), Eq.(6.4) and Eq.(6.6) are proportional to each other and the ratios are independent of the scattering angle (stringy scaling). However, the three next to leading order amplitudes in Eq.(6.3), Eq.(6.5) and Eq.(6.7) are NOT proportional to each other (stringy scaling violation).

Since m=0m=0 for Eq.(6.2) and Eq.(6.4), one only needs to calculate Eq.(2.13). However since m=1m=1 for Eq.(6.6), the naive order amplitude Eq.(2.13) vanishes and one needs to calculate 1Λ\frac{1}{\Lambda} order terms or Eq.(2.14) to Eq.(2.17). Similarly, to obtain Eq.(6.3) and Eq.(6.5), one needs to calculate Eq.(2.14) to Eq.(2.17). To obtain Eq.(6.7), one needs to calculate 1Λ2\frac{1}{\Lambda^{2}} terms in Eq.(2.18) to Eq.(2.29).

VII Conclusion

Motivated by the QCD Bjorken scaling [18] and its scaling violation correction by GLAP equation [20, 21], in this paper, we propose a systematic approximation scheme to calculate general nn-point HSSAHSSA of open bosonic string theory. This stringy scaling loop expansion contains finite number of vacuum diagram terms at each loop order of scattering energy due to a vacuum diagram contraint and a topological graph constraint. The 44-point leading oder results of this calculation give the linear relations among HSSAHSSA first conjectured by Gross in 1988 [12, 13, 14, 15] and later proved by Taiwan group [1, 2, 3, 4] . These linear relations gave the first evidence of the stringy scaling behavior of HSSAHSSA with dim=1\mathcal{M}=1. The nn-point leading order results with n5n\geq 5 gave the general stringy scaling behavior of HSSAHSSA with dim=(r+1)(2nr6)2\mathcal{M}=\frac{\left(r+1\right)\left(2n-r-6\right)}{2} [17, 16].

In addition, we give the vacuum diagram representation and its Feynman rules for each term in the stringy scaling loop expansion of the HSSAHSSA. In general, there can be many vacuum diagrams, connected and disconnected, corresponds to one term in the expansion. Moreover, we match coefficient of each term with sum of the inverse symmetry factors corresponding to all diagrams of the term.

Finally, as an application to extending our previous calculation of nn-point leading order stringy scaling behavior of HSSAHSSA, we explicitly calculate some examples of 44-point next to leading order stringy scaling violation terms.

The stringy scaling loop expansion scheme we proposed for the calculation of HSSAHSSA in this paper is in parallel to the Feynman diagram expansion for the calculation of field theory amplitudes. However, in the stringy scaling loop expansion we give a general formula for the coefficient of each term in the arbitrary higher order expansion which is difficult to calculate in the corresponding field theory calculation. Moreover, the general formula we get is consistent with the sum of the inverse symmetry factors corresponding to all diagrams of the term.The calculation of these coefficients in field theory are related to Wick theorem and symmetry factors which are tedious to handle in the higher order field theory expansion.

In addition to the stringy scaling violation [23], we expect more interesting applications of this stringy scaling loop expansion scheme.

Acknowledgements.
We thank C. T. Chan for his early participation of some calculation of section II. This work is supported in part by the Ministry of Science and Technology (MoST) and S.T. Yau center of National Yang Ming Chiao Tung University (NYCU), Taiwan.

References

  • [1] Sheng-Hong Lai, Jen-Chi Lee, and Yi Yang. The Lauricella functions and exact string scattering amplitudes. Journal of High Energy Physics, 2016(11):62, 2016.
  • [2] S. H. Lai, J. C. Lee and Yi Yang, ”The SL(K+3,C)SL(K+3,C) Symmetry of the Bosonic String Scattering Amplitudes”, Nucl. Phys. B 941 (2019) 53-71.
  • [3] S. H. Lai, J. C. Lee and Yi Yang, ”Solving Lauricella String Scattering Amplitudes through recurrence relations”, JHEP 09 (2017) 130.
  • [4] S. H. Lai, J. C. Lee and Yi Yang, ”Recent developments of the Lauricella string scattering amplitudes and their exact SL(K+3,C)SL(K+3,C) Symmetry”, Symmetry 13 (2021) 454, arXiv:2012.14726 [hep-th].
  • [5] S. H. Lai, J. C. Lee and Yi Yang, ”Residues of bosonic string scattering amplitudes and the Lauricella functions”, Nucl. Phys. B 991 (2023) 116214; arXiv: 2109.08601 [hep-th].
  • [6] Chuan-Tsung Chan and Jen-Chi Lee. Stringy symmetries and their high-energy limits. Phys. Lett. B, 611(1):193–198, 2005.
  • [7] Chuan-Tsung Chan and Jen-Chi Lee. Zero-norm states and high-energy symmetries of string theory. Nucl. Phys. B, 690(1):3–20, 2004.
  • [8] Chuan-Tsung Chan, Pei-Ming Ho, Jen-Chi Lee, Shunsuke Teraguchi, and Yi Yang. High-energy zero-norm states and symmetries of string theory. Phys. Rev. Lett., 96(17):171601, 2006.
  • [9] Chuan-Tsung Chan, Pei-Ming Ho, Jen-Chi Lee, Shunsuke Teraguchi, and Yi Yang. Solving all 4-point correlation functions for bosonic open string theory in the high-energy limit. Nucl. Phys. B, 725(1):352–382, 2005.
  • [10] Jen-Chi Lee and Yi Yang. Review on high energy string scattering amplitudes and symmetries of string theory. arXiv preprint arXiv:1510.03297, 2015.
  • [11] Jen-Chi Lee and Yi Yang. Overview of high energy string scattering amplitudes and symmetries of string theory. Symmetry, 11(8):1045, 2019.
  • [12] David J Gross and Paul F Mende. The high-energy behavior of string scattering amplitudes. Phys. Lett. B, 197(1):129–134, 1987.
  • [13] David J Gross and Paul F Mende. String theory beyond the Planck scale. Nucl. Phys. B, 303(3):407–454, 1988.
  • [14] David J. Gross. High-Energy Symmetries of String Theory. Phys. Rev. Lett., 60:1229, 1988.
  • [15] David J Gross and JL Manes. The high energy behavior of open string scattering. Nucl. Phys. B, 326(1):73–107, 1989.
  • [16] Sheng-Hong Lai, Jen-Chi Lee and Yi Yang, ”Stringy scaling of n-point Regge string scattering amplitudes”, JHEP 09 (2023), hep-th 2303.17909.
  • [17] Sheng-Hong Lai, Jen-Chi Lee and Yi Yang, ”Stringy scaling of n-point hard string scattering amplitudes”, hep-th 2207.09236.
  • [18] J. D. Bjorken, Phys. Rev. 179 (1969) 1547.
  • [19] C. G. Callan and D. Gross, Phys. Rev. Lett. 22 (1969) 156.
  • [20] V.N. Gribov and L. Lipatov, Sov. J. Nucl. Phys.15, 438 (1972).
  • [21] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
  • [22] M. E. Peskin and D. V. Schroeder, ”An Introduction to Quantum Field Theory”, Addison-Wesley Publishing Company (1995).
  • [23] Oleg Andreev, Scaling laws in hadronic processes and string theory”, hep-th/0209256 (2002).