This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The spin alignment of rho mesons in a pion gas

Yi-Liang Yin Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China    Wen-Bo Dong Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China    Jin-Yi Pang College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China    Shi Pu Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China    Qun Wang Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China School of Mechanics and Physics, Anhui University of Science and Technology, Huainan,Anhui 232001, China
Abstract

We study the spin alignment of neutral rho mesons in a pion gas using spin kinetic or Boltzmann equations. The ρππ\rho\pi\pi coupling is given by the chiral effective theory. The collision terms at the leading and next-to-leading order in spin Boltzmann equations are derived. The evolution of the spin density matrix of the neutral rho meson is simulated with different initial conditions. The numerical results show that the interaction of pions and neutral rho mesons creates very small spin alignment in the central rapidity region if there is no rho meson in the system at the initial time. Such a small spin alignment in the central rapidity region will decay rapidly toward zero in later time. If there are rho mesons with a sizable spin alignment at the initial time the spin alignment will also decrease rapidly. We also considered the effect on ρ00\rho_{00} from the elliptic flow of pions in the blast wave model. With vanishing spin alignment at the initial time, the deviation of ρ00\rho_{00} from 1/3 is positive but very small.

I Introduction

The orbital angular momentum and spin are intrinsically connected with each other, as demonstrated in the Barnett effect (RevModPhys.7.129, ) and Einstein-de-Haas effect (dehaas:1915, ) in materials. In peripheral collisions of heavy ions, a part of the orbital angular momentum (OAM) in the initial state can be distributed into the strong interaction matter via spin-orbit couplings in the form of the hadron’s spin polarization with respect to the direction of OAM (reaction plane), which is called the global polarization (Liang:2004ph, ; Liang:2004xn, ; Betz:2007kg, ; Gao:2007bc, ; Becattini:2007sr, ). The spin polarization of hyperons can be measured through their weak decays in which the parity symmetry is broken (PhysRevLett.36.1113, ). The global polarization of Λ\Lambda hyperons (including anti-paricles) has been measured by STAR collaboration in Au+Au collisions at 3-200 GeV (STAR:2017ckg, ; STAR:2018gyt, ), by HADES collaboration in Au+Au and Ag+Ag collisions at 2.42-2.55 GeV (HADES:2022enx, ) and by ALICE collaboration in Pb+Pb collisions at 5.02 TeV (ALICE:2021pzu, ). The global polarization of Ξ\Xi and Ω\Omega hyperons (including anti-particles) has also been measured by STAR collaboration in Au+Au collisions at 200 GeV (STAR:2020xbm, ). These experimental measurements have been explained by various theoretical models (mainly hydrodynamics and transport models) (Karpenko:2016jyx, ; Li:2017slc, ; Xie:2017upb, ; Sun:2017xhx, ; Baznat:2017jfj, ; Shi:2017wpk, ; Xia:2018tes, ; Wei:2018zfb, ; Fu:2020oxj, ; Ryu:2021lnx, ; Fu:2021pok, ; Deng:2021miw, ; Becattini:2021iol, ; Wu:2022mkr, ). We refer the readers to some recent review articles in this field (Wang:2017jpl, ; Florkowski:2018fap, ; Gao:2020lxh, ; Huang:2020dtn, ; Gao:2020vbh, ; Becattini:2020ngo, ; Becattini:2022zvf, ).

Most vector mesons decay through strong interaction that preserves the parity symmetry, so the spin polarization of vector mesons cannot be measured in the same way as hyperons. The spin density matrix ρλ1λ2\rho_{\lambda_{1}\lambda_{2}} for the spin-1 vector meson is a 3×33\times 3 complex matrix with unit trace, trρ=1\mathrm{tr}\rho=1, where λ1\lambda_{1} and λ2=0,±1\lambda_{2}=0,\pm 1 denote the spin states along the spin quantization direction. The 00-element ρ00\rho_{00} for the vector meson can be measured by the angular distribution of its decay product or daugther particle (Schilling:1969um, ; Liang:2004xn, ; Yang:2017sdk, ; Tang:2018qtu, ), so ρ001/3\rho_{00}-1/3 is an observable that can describe the spin alignment of the vector meson. If ρ00=1/3\rho_{00}=1/3, the angular distribution of the daughter particle is isotropic and the vector meson has no spin alignment. If ρ00>1/3\rho_{00}>1/3, the polarization vector of the meson is aligned more in the spin quantization direction. If ρ00<1/3\rho_{00}<1/3, the polarization vector of the meson is aligned more in the transverse direction perpendicular to the spin quantization direction. The global spin alignment of ϕ\phi and K0K^{0*} mesons has recently been measured by STAR collaboration (STAR:2022fan, ). It is found that ρ00ϕ\rho_{00}^{\phi} is significantly larger than 1/3 at lower energies, while ρ00K0\rho_{00}^{K^{0*}} is consistent with 1/3.

There are many sources to the spin alignment of vector mesons (Yang:2017sdk, ; Xia:2020tyd, ; Gao:2021rom, ; Muller:2021hpe, ; Li:2022vmb, ; Wagner:2022gza, ; Kumar:2022ylt, ; Dong:2023cng, ; Kumar:2023ghs, ; Gao:2023wwo, ). In Ref. (Sheng:2019kmk, ), some of us proposed that a large deviation of ρ00\rho_{00} from 1/3 for ϕ\phi mesons may possibly come from the ϕ\phi field, a strong force field with vacuum quantum number induced by the current of pseudo-Goldstone bosons. Such a proposal is based on a nonrelativistic quark coalescence model for the spin density matrix of vector mesons (Yang:2017sdk, ; Sheng:2019kmk, ), which is only valid for static vector mesons. In Ref. (Sheng:2022ffb, ), the relativistic version of the quark coalescence model has been constructed based on the spin Boltzmann equation with collisions. The model is successful in describing the experimental data for ρ00\rho_{00} for ϕ\phi mesons (Sheng:2022wsy, ). Recently some of us made a prediction for the rapidity dependence of the spin alignment with the same set of parameters (Sheng:2023urn, ), which was later confirmed by the preliminary data of STAR (Xi:2023quarkmatter, ). We refer the readers to some recent review articles about the spin alignment of vector mesons (Chen:2023hnb, ; Wang:2023fvy, ; Sheng:2023chinphyb, ).

In this paper, we try to study the spin alignment of the ρ0\rho^{0} meson in a pion gas. As is well-known, the lifetime of the ρ0\rho^{0} meson is very short and mainly decays inside the medium. As the result, the interaction between ρ0\rho^{0} and π±\pi^{\pm} mesons in the hadron phase of heavy-ion collisions has significant impact on the spin alignment of the rho meson. This is very different from the ϕ\phi meson which is mainly formed by hadronization of quarks. This study is relevant to the search for the chiral magnetic effect (CME) (Kharzeev:2004ey, ; Kharzeev:2007jp, ; Fukushima:2008xe, ) since the decay of ρ0\rho^{0} to π±\pi^{\pm} provides a significant contribution to the background in the γ\gamma correlator (STAR:2013ksd, ; STAR:2013zgu, ; Wang:2016iov, ) and the spin alignment of ρ0\rho^{0} may have an effect on CME observables (Tang:2019pbl, ; Shen:2022gtl, ).

The paper is organized as follows. In Sec. II, an effective Lagrangian is given for the ρππ\rho\pi\pi coupling (Fujiwara:1984pk, ). In Sec. III, from the Kadanoff-Baym (KB) equation for Green’s functions for pseudoscalar and vector mesons in the closed-time-path (CTP) formalism (Kadanoff2018QuantumSM, ), we derive the spin Boltzmann equations for vector mesons with collisions (Sheng:2022ffb, ). In Sec. IV, we derive the collision terms at the leading order (LO) and next-to-leading order (NLO) with the medium effect. The numerical results are given in Sec. V. In the final section, Sec. VI, are the conclusion and discussion.

The sign convention for the metric tensor is gμν=gμν=diag(1,1,1,1)g_{\mu\nu}=g^{\mu\nu}=\mathrm{diag}\left(1,-1,-1,-1\right), where we use Greek letters to denote four-dimension indices of vectors or tensors. The four-momentum is defined as p=pμ=(p0,𝐩)p=p^{\mu}=\left(p^{0},\mathbf{p}\right) and pμ=(p0,𝐩)p_{\mu}=\left(p^{0},-\mathbf{p}\right), where p0p^{0} is the particle’s energy. For an on-shell particle, we have p0=Ep=𝐩2+m2p^{0}=E_{p}=\sqrt{\mathbf{p}^{2}+m^{2}}.

II Effective Lagrangian

We consider the chiral effective theory with SU(2) flavor symmetry. The ρ\rho meson is introduced via the hidden gauge field. The effective Lagrangian for a system of ρ0\rho^{0}, π+\pi^{+} and π\pi^{-} mesons reads

\displaystyle\mathcal{L} =\displaystyle= ρ+π+int,\displaystyle\mathcal{L}_{\rho}+\mathcal{L}_{\pi}+\mathcal{L}_{\mathrm{int}}, (1)

where ρ\mathcal{L}_{\rho}, π\mathcal{L}_{\pi} and int\mathcal{L}_{\mathrm{int}} are the Lagrangians for free ρ0\rho^{0}, free π±\pi^{\pm}, and their interaction, respectively. They are given by

ρ=\displaystyle\mathcal{L}_{\rho}= 14FμνFμν+12mρ2AμAμ,\displaystyle-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\frac{1}{2}m_{\rho}^{2}A_{\mu}A^{\mu},
π=\displaystyle\mathcal{L}_{\pi}= μϕμϕmπ2ϕϕ,\displaystyle\partial_{\mu}\phi^{\dagger}\partial^{\mu}\phi-m_{\pi}^{2}\phi^{\dagger}\phi,
int=\displaystyle\mathcal{L}_{\mathrm{int}}= igρππAμ(ϕμϕϕμϕ),\displaystyle ig_{\rho\pi\pi}A^{\mu}\Big{(}\phi^{\dagger}\partial_{\mu}\phi-\phi\partial_{\mu}\phi^{\dagger}\Big{)}, (2)

where AμA_{\mu} is the real vector field for ρ0\rho^{0}, Fμν=μAννAμF_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu} is the field strength tensor, mρ=770m_{\rho}=770 MeV and mπ=139m_{\pi}=139 MeV are masses of the rho meson and pion respectively, ϕ\phi (ϕ\phi^{\dagger}) denotes the complex scalar field for π+\pi^{+} (π\pi^{-}), and gρππ5.9g_{\rho\pi\pi}\approx 5.9 is the coupling constant for the ρππ\rho\pi\pi vertex. The Lagrangian (1) is our starting point to derive the collision terms.

III Wigner functions and spin Boltzmann equation

In this section we will introduce Wigner functions and spin kinetic or Boltzmann equations for vector mesons. The spin kinetic or Boltzmann equations can be derived from the KB equation in the CTP formalism (Martin:1959jp, ; Keldysh:1964ud, ; Kadanoff2018QuantumSM, ; Chou:1984es, ; Blaizot:2001nr, ; Berges:2004yj, ; Cassing:2008nn, ; Cassing:2021fkc, ). The spin kinetic or Boltzmann equations with collision terms are recent focus and have been derived for spin-1/2 massive fermions (Yang:2020hri, ; Sheng:2021kfc, ) and for vector mesons (Sheng:2022ffb, ; Sheng:2022wsy, ; Wagner:2023cct, ) in the CTP formalism. They can also be derived in other methods for spin-1/2 massive fermions (Weickgenannt:2019dks, ; Li:2019qkf, ; Sheng:2022ssd, ; Weickgenannt:2020aaf, ; Weickgenannt:2021cuo, ; Lin:2021mvw, ; Lin:2022tma, ; Wagner:2022amr, ) and for vector mesons (Wagner:2023cct, ). The building blocks of kinetic or Boltzmann equations are Wigner functions in phase space that are defined from two-point Green’s functions (Vasak:1987um, ; Heinz:1983nx, ; Blaizot:2001nr, ; Wang:2001dm, ; Gao:2012ix, ; Chen:2012ca, ; Becattini:2013fla, ; Gao:2019znl, ; Weickgenannt:2019dks, ; Hattori:2019ahi, ; Wang:2019moi, ; Weickgenannt:2020aaf, ; Yang:2020hri, ; Liu:2020flb, ; Weickgenannt:2021cuo, ; Sheng:2021kfc, ), see, e.g., Refs. (Gao:2020pfu, ; Hidaka:2022dmn, ) for recent reviews.

The real vector and complex scalar fields can be quantized as

Aμ(x)\displaystyle A^{\mu}(x) =\displaystyle= λ=0,±1d3p(2π)32Epρ\displaystyle\sum_{\lambda=0,\pm 1}\int\frac{d^{3}p}{\left(2\pi\hbar\right)^{3}2E_{p}^{\rho}} (3)
×[ϵμ(λ,𝐩)aV(λ,𝐩)eipx/+ϵμ(λ,𝐩)aV(λ,𝐩)eipx/],\displaystyle\times\left[\epsilon^{\mu}(\lambda,{\bf p})a_{V}(\lambda,{\bf p})e^{-ip\cdot x/\hbar}+\epsilon^{\mu\ast}(\lambda,{\bf p})a_{V}^{\dagger}(\lambda,{\bf p})e^{ip\cdot x/\hbar}\right],
ϕ(x)\displaystyle\phi(x) =\displaystyle= d3k(2π)32Ekπ[a(𝐤)eikx/+b(𝐤)eikx/],\displaystyle\int\frac{d^{3}k}{\left(2\pi\hbar\right)^{3}2E_{k}^{\pi}}\left[a({\bf k})e^{-ik\cdot x/\hbar}+b^{\dagger}({\bf k})e^{ik\cdot x/\hbar}\right], (4)

where Epρ=𝐩2+mρ2E_{p}^{\rho}=\sqrt{\mathbf{p}^{2}+m_{\rho}^{2}} and Ekπ=𝐤2+mπ2E_{k}^{\pi}=\sqrt{\mathbf{k}^{2}+m_{\pi}^{2}} are the energies of ρ\rho and π\pi respectively, λ\lambda denotes the spin state with respect to the spin quantization direction, and ϵμ(λ,𝐩)\epsilon^{\mu}(\lambda,{\bf p}) is the polarization vector

ϵμ(λ,𝐩)\displaystyle\epsilon^{\mu}(\lambda,\mathbf{p}) =\displaystyle= (𝐩ϵλmρ,ϵλ+𝐩ϵλmρ(Ep+mρ)𝐩),\displaystyle\left(\frac{\mathbf{p}\cdot\boldsymbol{\epsilon}_{\lambda}}{m_{\rho}},\boldsymbol{\epsilon}_{\lambda}+\frac{\mathbf{p}\cdot\boldsymbol{\epsilon}_{\lambda}}{m_{\rho}(E_{p}+m_{\rho})}\mathbf{p}\right), (5)

with ϵλ\boldsymbol{\epsilon}_{\lambda} being the polarization three-vector of the vector meson in its rest frame and given by

ϵ0=\displaystyle\boldsymbol{\epsilon}_{0}= (0,1,0),\displaystyle(0,1,0),
ϵ+1=\displaystyle\boldsymbol{\epsilon}_{+1}= 12(i,0,1),\displaystyle-\frac{1}{\sqrt{2}}(i,0,1),
ϵ1=\displaystyle\boldsymbol{\epsilon}_{-1}= 12(i,0,1).\displaystyle\frac{1}{\sqrt{2}}(-i,0,1). (6)

Here ϵ0\boldsymbol{\epsilon}_{0} is the spin quantization direction and is chosen to be +y+y direction. The polarization vector ϵμ(λ,𝐩)\epsilon^{\mu}(\lambda,{\bf p}) has following properties

pμϵμ(λ,𝐩)=0\displaystyle p_{\mu}\epsilon^{\mu}(\lambda,{\bf p})=0
ϵ(λ,𝐩)ϵ(λ,𝐩)=δλλ\displaystyle\epsilon(\lambda,{\bf p})\cdot\epsilon^{*}(\lambda^{\prime},{\bf p})=-\delta_{\lambda\lambda^{\prime}}
λϵμ(λ,𝐩)ϵν(λ,𝐩)=(gμνpμpνmρ2).\displaystyle\sum_{\lambda}\epsilon^{\mu}(\lambda,{\bf p})\epsilon^{\nu*}(\lambda,{\bf p})=-\left(g^{\mu\nu}-\frac{p^{\mu}p^{\nu}}{m_{\rho}^{2}}\right). (7)

Then we can define the two-point Green’s functions on the CTP for the vector and pseudoscalar meson,

GCTPμν(x1,x2)\displaystyle G_{CTP}^{\mu\nu}(x_{1},x_{2}) =\displaystyle= TCAμ(x1)Aν(x2),\displaystyle\left\langle T_{C}A^{\mu}(x_{1})A^{\nu}(x_{2})\right\rangle, (8)
SCTP(x1,x2)\displaystyle S_{CTP}(x_{1},x_{2}) =\displaystyle= TCϕ(x1)ϕ(x2).\displaystyle\left\langle T_{C}\phi(x_{1})\phi^{\dagger}(x_{2})\right\rangle. (9)

The two-point Green’s functions GμνG_{\mu\nu}^{\lessgtr} for the vector meson at the leading order are given as (Sheng:2022ffb, ),

Gμν<(x,p)\displaystyle G_{\mu\nu}^{<}(x,p) =\displaystyle= 2πλ1,λ2δ(p2mρ2){θ(p0)ϵμ(λ1,𝐩)ϵν(λ2,𝐩)fλ1λ2(x,𝐩)\displaystyle 2\pi\hbar\sum_{\lambda_{1},\lambda_{2}}\delta\left(p^{2}-m_{\rho}^{2}\right)\left\{\theta(p^{0})\epsilon_{\mu}\left(\lambda_{1},{\bf p}\right)\epsilon_{\nu}^{\ast}\left(\lambda_{2},{\bf p}\right)f_{\lambda_{1}\lambda_{2}}(x,{\bf p})\right. (10)
+θ(p0)ϵμ(λ1,𝐩)ϵν(λ2,𝐩)[δλ2λ1+fλ2λ1(x,𝐩)]},\displaystyle\left.+\theta(-p^{0})\epsilon_{\mu}^{\ast}\left(\lambda_{1},-{\bf p}\right)\epsilon_{\nu}\left(\lambda_{2},-{\bf p}\right)\left[\delta_{\lambda_{2}\lambda_{1}}+f_{\lambda_{2}\lambda_{1}}(x,-{\bf p})\right]\right\},
Gμν>(x,p)\displaystyle G_{\mu\nu}^{>}(x,p) =\displaystyle= 2πλ1,λ2δ(p2mρ2){θ(p0)ϵμ(λ1,𝐩)ϵν(λ2,𝐩)[δλ1λ2+fλ1λ2(x,𝐩)]\displaystyle 2\pi\hbar\sum_{\lambda_{1},\lambda_{2}}\delta\left(p^{2}-m_{\rho}^{2}\right)\left\{\theta(p^{0})\epsilon_{\mu}\left(\lambda_{1},{\bf p}\right)\epsilon_{\nu}^{\ast}\left(\lambda_{2},{\bf p}\right)\left[\delta_{\lambda_{1}\lambda_{2}}+f_{\lambda_{1}\lambda_{2}}(x,{\bf p})\right]\right. (11)
+θ(p0)ϵμ(λ1,𝐩)ϵν(λ2,𝐩)fλ2λ1(x,𝐩)},\displaystyle\left.+\theta(-p^{0})\epsilon_{\mu}^{\ast}\left(\lambda_{1},-{\bf p}\right)\epsilon_{\nu}\left(\lambda_{2},-{\bf p}\right)f_{\lambda_{2}\lambda_{1}}(x,-{\bf p})\right\},

where fλ1λ2(x,𝐩)f_{\lambda_{1}\lambda_{2}}(x,{\bf p}) is the matrix valued spin dependent distribution (MVSD) for the rho meson,

fλ1λ2(x,𝐩)d4u2(2π)3δ(pu)eiux/aρ(λ2,𝐩𝐮2)aρ(λ1,𝐩+𝐮2).f_{\lambda_{1}\lambda_{2}}(x,{\bf p})\equiv\int\frac{d^{4}u}{2(2\pi\hbar)^{3}}\delta(p\cdot u)e^{-iu\cdot x/\hbar}\left\langle a_{\rho}^{\dagger}\left(\lambda_{2},{\bf p}-\frac{{\bf u}}{2}\right)a_{\rho}\left(\lambda_{1},{\bf p}+\frac{{\bf u}}{2}\right)\right\rangle. (12)

One can check that fλ1λ2(x,𝐩)f_{\lambda_{1}\lambda_{2}}(x,{\bf p}) is an Hermitian matrix, fλ1λ2(x,𝐩)=fλ2λ1(x,𝐩)f_{\lambda_{1}\lambda_{2}}^{*}(x,{\bf p})=f_{\lambda_{2}\lambda_{1}}(x,{\bf p}). The two-point Green’s function for π±\pi^{\pm} at the leading order is

S<(x,k)=\displaystyle S^{<}(x,k)= 2πδ(k2mπ2)\displaystyle 2\pi\hbar\delta\left(k^{2}-m_{\pi}^{2}\right)
×{θ(k0)fπ+(x,𝐤)+θ(k0)[1+fπ(x,𝐤)]},\displaystyle\times\left\{\theta(k^{0})f_{\pi^{+}}(x,\mathbf{k})+\theta(-k^{0})\left[1+f_{\pi^{-}}(x,-\mathbf{k})\right]\right\}, (13)
S>(x,k)=\displaystyle S^{>}(x,k)= 2πδ(k2mπ2)\displaystyle 2\pi\hbar\delta\left(k^{2}-m_{\pi}^{2}\right)
×{θ(k0)[1+fπ+(x,𝐤)]+θ(k0)fπ(x,𝐤)},\displaystyle\times\left\{\theta(k^{0})\left[1+f_{\pi^{+}}(x,\mathbf{k})\right]+\theta(-k^{0})f_{\pi^{-}}(x,-\mathbf{k})\right\}, (14)

where fπ±(x,𝐩)f_{\pi^{\pm}}(x,\mathbf{p}) is the distribution for π±\pi^{\pm}. For notational convenience, we use GG and pp to denote the Green’s function and momentum for the rho meson respectively, while we use SS and kk to denote the Green’s function and momentum for π±\pi^{\pm} respectively.

We start from the KB equation to derive the spin Boltzmann equation for the vector meson (Sheng:2022ffb, )

pxG<,μν(x,p)14[pμηxG<,ην(x,p)+pνηxG<,μη(x,p)]\displaystyle p\cdot\partial_{x}G^{<,\mu\nu}(x,p)-\frac{1}{4}\left[p^{\mu}\partial_{\eta}^{x}G^{<,\eta\nu}(x,p)+p^{\nu}\partial_{\eta}^{x}G^{<,\mu\eta}(x,p)\right] (15)
=\displaystyle= 14[Σα<,μ(x,p)G>,αν(x,p)Σα>,μ(x,p)G<,αν(x,p)]\displaystyle\frac{1}{4}\left[\Sigma_{\;\;\;\;\alpha}^{<,\mu}\left(x,p\right)G^{>,\alpha\nu}\left(x,p\right)-\Sigma_{\;\;\;\;\alpha}^{>,\mu}\left(x,p\right)G^{<,\alpha\nu}\left(x,p\right)\right]
+14[Gα>,μ(x,p)Σ<,αν(x,p)Gα<,μ(x,p)Σ>,αν(x,p)].\displaystyle+\frac{1}{4}\left[G_{\ \ \ \ \alpha}^{>,\mu}\left(x,p\right)\Sigma^{<,\alpha\nu}\left(x,p\right)-G_{\ \ \ \ \alpha}^{<,\mu}\left(x,p\right)\Sigma^{>,\alpha\nu}\left(x,p\right)\right].

In the above equation, the Poisson bracket terms are not considered. Multiplying ϵμ(λ1,𝐩)ϵν(λ2,𝐩)\epsilon_{\mu}^{*}\left(\lambda_{1},{\bf p}\right)\epsilon_{\nu}\left(\lambda_{2},{\bf p}\right) to both side of Eq. (15) and choose p0>0p_{0}>0 part, we obtain

pxfλ1λ2(x,𝐩)\displaystyle p\cdot\partial_{x}f_{\lambda_{1}\lambda_{2}}(x,\mathbf{p}) =\displaystyle= 14δλ2λ2ϵμ(λ1,𝐩)ϵα(λ1,𝐩)\displaystyle-\frac{1}{4}\delta_{\lambda_{2}\lambda_{2}^{\prime}}\epsilon_{\mu}^{*}\left(\lambda_{1},{\bf p}\right)\epsilon^{\alpha}\left(\lambda_{1}^{\prime},{\bf p}\right) (16)
×{[δλ1λ2+fλ1λ2(x,𝐩)]Σα<,μ(x,p)fλ1λ2(x,𝐩)Σα>,μ(x,p)}\displaystyle\times\left\{\left[\delta_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}+f_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}(x,{\bf p})\right]\Sigma_{\;\;\;\;\alpha}^{<,\mu}\left(x,p\right)-f_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}(x,{\bf p})\Sigma_{\;\;\;\;\alpha}^{>,\mu}\left(x,p\right)\right\}
14δλ1λ1ϵν(λ2,𝐩)ϵα(λ2,𝐩)\displaystyle-\frac{1}{4}\delta_{\lambda_{1}\lambda_{1}^{\prime}}\epsilon_{\nu}\left(\lambda_{2},{\bf p}\right)\epsilon_{\alpha}^{\ast}\left(\lambda_{2}^{\prime},{\bf p}\right)
×{[δλ1λ2+fλ1λ2(x,𝐩)]Σ<,αν(x,p)fλ1λ2(x,𝐩)Σ>,αν(x,p)}.\displaystyle\times\left\{\left[\delta_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}+f_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}(x,{\bf p})\right]\Sigma^{<,\alpha\nu}\left(x,p\right)-f_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}(x,{\bf p})\Sigma^{>,\alpha\nu}\left(x,p\right)\right\}.

The above equation is the spin Boltzmann equation for the vector meson in terms of MVSDs. The MVSDs of spin-1/2 fermions are defined in Refs. (Becattini:2013fla, ; Sheng:2021kfc, ) and those for vector mesons are defined in Refs. (Sheng:2022wsy, ; Sheng:2022ffb, ). The spin density matrix is just the normalized MVSD

ρλ1λ2=fλ1λ2λfλλ=fλ1λ2Trf.\rho_{\lambda_{1}\lambda_{2}}=\frac{f_{\lambda_{1}\lambda_{2}}}{\sum_{\lambda}f_{\lambda\lambda}}=\frac{f_{\lambda_{1}\lambda_{2}}}{\mathrm{Tr}f}. (17)

The spin alignment is given by the 00 element ρ00\rho_{00}.

We make a few remarks about the spin kinetic or Boltzmann equation (16). The collision terms in the right-hand side of Eq. (16) are the result of the on-shell approximation. In such an approximation, the retarded and advanced components of self-energies and two-point Green’s functions are neglected so that the collision terms only depend on the “<” and “>” components. Hence the contributions to the spin density matrix of vector mesons come from collisions of on-shell particles including the vector meson’s annihilation and production processes. The contribution from different retarded and advanced self-energies for transverse and longitudinal modes in equilbrium is called the off-shell contribution (Kim:2019ybi, ; Li:2022vmb, ; Dong:2023cng, ; Seck:2023oyt, ), which belongs to a different kind of the contribution from the one we consider in this paper.

In the next section we will derive the self-energy Σμν\Sigma_{\mu\nu} and then collision terms incorporating the interaction part of the Lagrangian.

IV Collision terms

For clarification, we decompose the collision terms, the right-hand-side (r.h.s.) of Eq. (16), into Ccoal/dissC_{\mathrm{coal}/\mathrm{diss}} and CscatC_{\mathrm{scat}} for the coalescence-dissociation and scattering processes respectively, where Ccoal/dissC_{\mathrm{coal}/\mathrm{diss}} have contrbutions at LO and NLO, Ccoal/diss=Ccoal/diss(0)+Ccoal/diss(1)C_{\mathrm{coal}/\mathrm{diss}}=C_{\mathrm{coal}/\mathrm{diss}}^{(0)}+C_{\mathrm{coal}/\mathrm{diss}}^{(1)}, while CscatC_{\mathrm{scat}} is of NLO. Note that we only consider contributions up to NLO in this paper. Then Eq. (16) can be written as

pEpρxfλ1λ2(x,𝐩)\displaystyle\frac{p}{E_{p}^{\rho}}\cdot\partial_{x}f_{\lambda_{1}\lambda_{2}}(x,\mathbf{p}) =\displaystyle= Ccoal/diss+Cscat,\displaystyle C_{\mathrm{coal}/\mathrm{diss}}+C_{\mathrm{scat}}, (18)

where the spin indices λ1\lambda_{1}, λ2\lambda_{2} and phase space variables x,𝐩x,\mathbf{p} have been suppressed in collision terms. In this work, for simplicity, we adopt the gradient expansion in space and neglect spatial gradients of fλ1λ2f_{\lambda_{1}\lambda_{2}} at the leading order. This corresponds to the assumption that the system is homogeneous in space. So Eq. (18) becomes

tfλ1λ2(x,𝐩)\displaystyle\partial_{t}f_{\lambda_{1}\lambda_{2}}(x,\mathbf{p}) =\displaystyle= Ccoal/diss+Cscat.\displaystyle C_{\mathrm{coal}/\mathrm{diss}}+C_{\mathrm{scat}}. (19)

We will evaluate Ccoal/dissC_{\mathrm{coal}/\mathrm{diss}} and CscatC_{\mathrm{scat}} one by one.

IV.1 Leading order

The Feynman rule for the ρππ\rho\pi\pi vertex is in Fig. (1). In Feynman diagrams, solid lines represent ρ0\rho^{0} meson’s on-shell states (external lines) or propagators (internal lines) and dashed lines represent π±\pi^{\pm} meson’s on-shell states (external lines) or propagators (internal lines). The arrow on the ρ0\rho^{0} meson’s propagator only labels the momentum direction, since ρ0\rho^{0} is the charge neutral particle, while the arrow on π±\pi^{\pm} meson’s propagator labels the momentum direction of π+\pi^{+} or the inverse momentum direction of π\pi^{-}.

Refer to caption
Figure 1: The Feynman rule for the ρππ\rho\pi\pi vertex, where the solid line represents ρ0\rho^{0}’s on-shell state and dashed lines represent π±\pi^{\pm}’s on-shell states.

The self-energies corresponding to leading order (LO) Feynman diagrams in Fig. (2) are given as

Σμν<(x,p)\displaystyle\Sigma_{\mu\nu}^{<}(x,p) =\displaystyle= gV2d4k1(2π)4d4k2(2π)4(2π)4δ(4)(pk1+k2)\displaystyle-g_{V}^{2}\int\frac{d^{4}k_{1}}{(2\pi\hbar)^{4}}\int\frac{d^{4}k_{2}}{(2\pi\hbar)^{4}}(2\pi\hbar)^{4}\delta^{(4)}\left(p-k_{1}+k_{2}\right) (20)
×(k1μ+k2μ)(k1ν+k2ν)S<(x,k1)S>(x,k2),\displaystyle\times\left(k_{1\mu}+k_{2\mu}\right)\left(k_{1\nu}+k_{2\nu}\right)S^{<}(x,k_{1})S^{>}(x,k_{2}),
Σμν>(x,p)\displaystyle\Sigma_{\mu\nu}^{>}(x,p) =\displaystyle= gV2d4k1(2π)4d4k2(2π)4(2π)4δ(4)(pk1+k2)\displaystyle-g_{V}^{2}\int\frac{d^{4}k_{1}}{(2\pi\hbar)^{4}}\int\frac{d^{4}k_{2}}{(2\pi\hbar)^{4}}\left(2\pi\hbar\right)^{4}\delta^{(4)}\left(p-k_{1}+k_{2}\right) (21)
×(k1μ+k2μ)(k1ν+k2ν)S>(x,k1)S<(x,k2).\displaystyle\times\left(k_{1\mu}+k_{2\mu}\right)\left(k_{1\nu}+k_{2\nu}\right)S^{>}(x,k_{1})S^{<}(x,k_{2}).
Refer to caption
(a)
Refer to caption
(b)
Figure 2: Leading-order Feynman diagrams for (a) Σμν<(x,p)\Sigma_{\mu\nu}^{<}(x,p) and (b) Σμν>(x,p)\Sigma_{\mu\nu}^{>}(x,p), where dashed lines represent propagators of π±\pi^{\pm} mesons. The external moment pp is flowing from left to right.

In deriving Eq. (16), we have chosen p0>0p^{0}>0, so k10k_{1}^{0} and k20k_{2}^{0} must satisfy k10>0k_{1}^{0}>0 and k20<0k_{2}^{0}<0, which means the on-shell process ρ0π+π\rho^{0}\leftrightarrow\pi^{+}\pi^{-} is allowed but π±ρ0π±\pi^{\pm}\leftrightarrow\rho^{0}\pi^{\pm} is forbidden. The discussion about the sign of k10k_{1}^{0} and k20k_{2}^{0} can be found in Ref. (Sheng:2022ffb, ).

Consequently, the LO self-energies in (20) and (21) can be put into the form

Σμν<(x,p)\displaystyle\Sigma_{\mu\nu}^{<}(x,p) =\displaystyle= gV2d3k1(2π)32Ek1πd3k2(2π)32Ek2π(2π)4δ(4)(pk1k2)\displaystyle-g_{V}^{2}\int\frac{d^{3}k_{1}}{(2\pi\hbar)^{3}2E_{k_{1}}^{\pi}}\int\frac{d^{3}k_{2}}{(2\pi\hbar)^{3}2E_{k_{2}}^{\pi}}(2\pi\hbar)^{4}\delta^{(4)}\left(p-k_{1}-k_{2}\right) (22)
×(k1μk2μ)(k1νk2ν)fπ+(x,𝐤1)fπ(x,𝐤2),\displaystyle\times\left(k_{1\mu}-k_{2\mu}\right)\left(k_{1\nu}-k_{2\nu}\right)f_{\pi^{+}}(x,\mathbf{k}_{1})f_{\pi^{-}}(x,\mathbf{k}_{2}),
Σμν>(x,p)\displaystyle\Sigma_{\mu\nu}^{>}(x,p) =\displaystyle= gV2d3k1(2π)32Ek1πd3k2(2π)32Ek2π(2π)4δ(4)(pk1k2)\displaystyle-g_{V}^{2}\int\frac{d^{3}k_{1}}{(2\pi\hbar)^{3}2E_{k_{1}}^{\pi}}\int\frac{d^{3}k_{2}}{(2\pi\hbar)^{3}2E_{k_{2}}^{\pi}}(2\pi\hbar)^{4}\delta^{(4)}\left(p-k_{1}-k_{2}\right) (23)
×(k1μk2μ)(k1νk2ν)[1+fπ+(x,𝐤1)][1+fπ(x,𝐤2)].\displaystyle\times\left(k_{1\mu}-k_{2\mu}\right)\left(k_{1\nu}-k_{2\nu}\right)\left[1+f_{\pi^{+}}(x,\mathbf{k}_{1})\right]\left[1+f_{\pi^{-}}(x,\mathbf{k}_{2})\right].

Substituting above equations into Eq. (16), we obtain

Ccoal/diss(0)(ρ0π+π)\displaystyle C_{\mathrm{coal}/\mathrm{diss}}^{(0)}\left(\rho^{0}\leftrightarrow\pi^{+}\pi^{-}\right) =\displaystyle= gV2Epρd3k(2π)34EkπEpkπ2πδ(EpρEkπEpkπ)\displaystyle\frac{g_{V}^{2}}{E_{p}^{\rho}}\int\frac{d^{3}k}{(2\pi\hbar)^{3}4E_{k}^{\pi}E_{p-k}^{\pi}}2\pi\hbar\delta\left(E_{p}^{\rho}-E_{k}^{\pi}-E_{p-k}^{\pi}\right) (24)
×[δλ2λ2kϵ(λ1,𝐩)kϵ(λ1,𝐩)+δλ1λ1kϵ(λ2,𝐩)kϵ(λ2,𝐩)]\displaystyle\times\left[\delta_{\lambda_{2}\lambda_{2}^{\prime}}k\cdot\epsilon^{*}(\lambda_{1},\mathbf{p})k\cdot\epsilon(\lambda_{1}^{\prime},\mathbf{p})+\delta_{\lambda_{1}\lambda_{1}^{\prime}}k\cdot\epsilon(\lambda_{2},\mathbf{p})k\cdot\epsilon^{*}(\lambda_{2}^{\prime},\mathbf{p})\right]
×{fπ+(x,𝐤)fπ(x,𝐩𝐤)[δλ1λ2+fλ1λ2(x,𝐩)]\displaystyle\times\left\{f_{\pi^{+}}(x,\mathbf{k})f_{\pi^{-}}(x,{\bf p}-\mathbf{k})\left[\delta_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}+f_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}(x,{\bf p})\right]\right.
[1+fπ+(x,𝐤)][1+fπ(x,𝐩𝐤)]fλ1λ2(x,𝐩)},\displaystyle\left.-\left[1+f_{\pi^{+}}(x,\mathbf{k})\right]\left[1+f_{\pi^{-}}(x,{\bf p}-\mathbf{k})\right]f_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}(x,{\bf p})\right\},

where we have used Eq. (7).

IV.2 Next-to-leading order

The Feynman diagrams for Σ<(x,p)\Sigma^{<}(x,p) at next-to-leading order (NLO) are shown in Fig. (3). Considering the difference between Σ<(x,p)\Sigma^{<}(x,p) and Σ>(x,p)\Sigma^{>}(x,p) is to interchange between the positive and negative branch, we can evaluate Σ<(x,p)\Sigma^{<}(x,p) first and then replace \lessgtr with \gtrless in Σ<(x,p)\Sigma^{<}(x,p) to obtain Σ>(x,p)\Sigma^{>}(x,p). The free pion’s Feynman propagators with time and reverse-time order are

SF(k)\displaystyle S^{F}(k) =\displaystyle= ik2mπ2,\displaystyle\frac{i}{k^{2}-m_{\pi}^{2}}, (25)
SF¯(k)\displaystyle S^{\overline{F}}(k) =\displaystyle= ik2mπ2.\displaystyle\frac{-i}{k^{2}-m_{\pi}^{2}}. (26)

The medium corrections for SFS^{F} and SF¯S^{\overline{F}} will be discussed in the next subsection.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Figure 3: Feynman diagrams for Σμν<(x,p)\Sigma_{\mu\nu}^{<}(x,p) at the next-to-leading order. The solid lines represent ρ0\rho^{0} meson’s propagators and dashed lines represent the propagators of π±\pi^{\pm} mesons. The external momentum pp is flowing from left to right.

We can see that Fig. (3)(a) and (b) are different in orientations of pion loops, and Fig. (3)(c) and (d) are different in time branches for two middle points with momentum p1p_{1}. In Fig. (3) we choose a particular direction for p1p_{1} in the vector meson’s propagator, actually one is free to choose any direction without changing the final result. Other combinations of time branches for upper vertices in Fig. (3)(a) and (b) and middle vertices in Fig. (3)(c) and (d) correspond to loop corrections to propagators and vertices respectively, which need renormalization as in quantum field theory in vacuum. For example, in Fig. (3)(a), other combinations of time branches for two upper vertices (from left to right) are ++++ and --, which correspond to the loop correction to the right and left pion propagator respectively, as shown in Fig. 4. As another example, in Fig. (3)(c), other combinations of time branches for two upper vertices (from left to right) are ++++ and --, which correspond to the loop correction to the right and left vertex respectively, as shown in Fig. 4.

Refer to caption
(a)
Refer to caption
(b)
Figure 4: Examples of propagator and vertex corrections.

Now we can obtain collision terms at NLO. The result has three parts corresponding to three processes, ρ0π+ρ0π+\rho^{0}\pi^{+}\leftrightarrow\rho^{0}\pi^{+}, ρ0πρ0π\rho^{0}\pi^{-}\leftrightarrow\rho^{0}\pi^{-} and ρ0ρ0π+π\rho^{0}\rho^{0}\leftrightarrow\pi^{+}\pi^{-},

Cscat(ρ0π±ρ0π±)\displaystyle C_{\mathrm{scat}}\left(\rho^{0}\pi^{\pm}\leftrightarrow\rho^{0}\pi^{\pm}\right) =\displaystyle= 4gV4Epρd3k1(2π)32Ek1πd3k2(2π)32Ek2πd3p1(2π)32Ep1ρ\displaystyle\frac{4g_{V}^{4}}{E_{p}^{\rho}}\int\frac{d^{3}k_{1}}{\left(2\pi\hbar\right)^{3}2E_{k_{1}}^{\pi}}\int\frac{d^{3}k_{2}}{\left(2\pi\hbar\right)^{3}2E_{k_{2}}^{\pi}}\int\frac{d^{3}p_{1}}{\left(2\pi\hbar\right)^{3}2E_{p_{1}}^{\rho}} (27)
×(2π)4δ(4)(p+k2p1k1)\displaystyle\times\left(2\pi\hbar\right)^{4}\delta^{(4)}\left(p+k_{2}-p_{1}-k_{1}\right)
×[δλ2λ2D(1)(s1,λ1)D(1)(s2,λ1)+δλ1λ1D(1)(s1,λ2)D(1)(s2,λ2)]\displaystyle\times\left[\delta_{\lambda_{2}\lambda_{2}^{\prime}}D_{(1)}(s_{1},\lambda_{1})D_{(1)}^{*}(s_{2},\lambda_{1}^{\prime})+\delta_{\lambda_{1}\lambda_{1}^{\prime}}D_{(1)}(s_{1},\lambda_{2}^{\prime})D_{(1)}^{*}(s_{2},\lambda_{2})\right]
×[fs1s2(x,𝐩1)fπ±(x,𝐤1)(1+fπ±(x,𝐤2))(δλ1λ2+fλ1λ2(x,𝐩))\displaystyle\times\left[f_{s_{1}s_{2}}(x,\mathbf{p}_{1})f_{\pi^{\pm}}(x,\mathbf{k}_{1})\left(1+f_{\pi^{\pm}}(x,\mathbf{k}_{2})\right)\left(\delta_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}+f_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}(x,{\bf p})\right)\right.
(δs1s2+fs1s2(x,𝐩1))(1+fπ±(x,𝐤1))fπ±(x,𝐤2)fλ1λ2(x,𝐩)],\displaystyle\left.-\left(\delta_{s_{1}s_{2}}+f_{s_{1}s_{2}}(x,\mathbf{p}_{1})\right)\left(1+f_{\pi^{\pm}}(x,\mathbf{k}_{1})\right)f_{\pi^{\pm}}(x,\mathbf{k}_{2})f_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}(x,{\bf p})\right],
Ccoal/diss(1)(ρ0ρ0π+π)\displaystyle C_{\mathrm{coal}/\mathrm{diss}}^{(1)}\left(\rho^{0}\rho^{0}\leftrightarrow\pi^{+}\pi^{-}\right) =\displaystyle= 4gV4Epρd3k1(2π)32Ek1πd3k2(2π)32Ek2πd3p1(2π)32Ep1ρ\displaystyle\frac{4g_{V}^{4}}{E_{p}^{\rho}}\int\frac{d^{3}k_{1}}{\left(2\pi\hbar\right)^{3}2E_{k_{1}}^{\pi}}\int\frac{d^{3}k_{2}}{\left(2\pi\hbar\right)^{3}2E_{k_{2}}^{\pi}}\int\frac{d^{3}p_{1}}{\left(2\pi\hbar\right)^{3}2E_{p_{1}}^{\rho}} (28)
×(2π)4δ(4)(p+p1k1k2)\displaystyle\times\left(2\pi\hbar\right)^{4}\delta^{(4)}\left(p+p_{1}-k_{1}-k_{2}\right)
×[δλ2λ2D(2)(s1,λ1)D(2)(s2,λ1)+δλ1λ1D(2)(s1,λ2)D(2)(s2,λ2)]\displaystyle\times\left[\delta_{\lambda_{2}\lambda_{2}^{\prime}}D_{(2)}(s_{1},\lambda_{1}^{\prime})D_{(2)}^{*}(s_{2},\lambda_{1})+\delta_{\lambda_{1}\lambda_{1}^{\prime}}D_{(2)}(s_{1},\lambda_{2})D_{(2)}^{*}(s_{2},\lambda_{2}^{\prime})\right]
×[fπ+(x,𝐤1)fπ(x,𝐤2)(δs1s2+fs1s2(x,𝐩1))(δλ1λ2+fλ1λ2(x,𝐩))\displaystyle\times\left[f_{\pi^{+}}(x,\mathbf{k}_{1})f_{\pi^{-}}(x,\mathbf{k}_{2})\left(\delta_{s_{1}s_{2}}+f_{s_{1}s_{2}}(x,\mathbf{p}_{1})\right)\left(\delta_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}+f_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}(x,{\bf p})\right)\right.
(1+fπ+(x,𝐤1))(1+fπ(x,𝐤2))fs1s2(x,𝐩1)fλ1λ2(x,𝐩)],\displaystyle\left.-\left(1+f_{\pi^{+}}(x,\mathbf{k}_{1})\right)\left(1+f_{\pi^{-}}(x,\mathbf{k}_{2})\right)f_{s_{1}s_{2}}(x,\mathbf{p}_{1})f_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}}(x,{\bf p})\right],

where we have used s1s_{1} and s2s_{2} to label spin states in propagators of ρ0\rho^{0}, used Eq. (7) and the on-shell condition, and defined

D(1)(s,λ)=\displaystyle D_{(1)}(s,\lambda)= [k1ϵ(s,𝐩1)][k2ϵ(λ,𝐩)](p+k2)2mπ2+[k2ϵ(s,𝐩1)][k1ϵ(λ,𝐩)](pk1)2mπ2,\displaystyle\frac{\left[k_{1}\cdot\epsilon\left(s,\mathbf{p}_{1}\right)\right]\left[k_{2}\cdot\epsilon^{*}\left(\lambda,{\bf p}\right)\right]}{\left(p+k_{2}\right)^{2}-m_{\pi}^{2}}+\frac{\left[k_{2}\cdot\epsilon\left(s,\mathbf{p}_{1}\right)\right]\left[k_{1}\cdot\epsilon^{*}\left(\lambda,{\bf p}\right)\right]}{\left(p-k_{1}\right)^{2}-m_{\pi}^{2}},
D(2)(s,λ)=\displaystyle D_{(2)}(s,\lambda)= [k1ϵ(s,𝐩1)][k2ϵ(λ,𝐩)](pk2)2mπ2+[k2ϵ(s,𝐩1)][k1ϵ(λ,𝐩)](pk1)2mπ2.\displaystyle\frac{\left[k_{1}\cdot\epsilon\left(s,\mathbf{p}_{1}\right)\right]\left[k_{2}\cdot\epsilon\left(\lambda,{\bf p}\right)\right]}{\left(p-k_{2}\right)^{2}-m_{\pi}^{2}}+\frac{\left[k_{2}\cdot\epsilon\left(s,\mathbf{p}_{1}\right)\right]\left[k_{1}\cdot\epsilon\left(\lambda,{\bf p}\right)\right]}{\left(p-k_{1}\right)^{2}-m_{\pi}^{2}}. (29)

One can check that the collision terms are Hermitian in consistence with fλ1λ2f_{\lambda_{1}\lambda_{2}}.

So far we have completed the derivation of the spin Boltzmann equation with collision terms at LO and NLO.

IV.3 Regulation of pion propagators

In the collision term Cscat(ρ0π±ρ0π±)C_{\mathrm{scat}}\left(\rho^{0}\pi^{\pm}\leftrightarrow\rho^{0}\pi^{\pm}\right), there are pion propagators which may diverge at the pion mass pole. To regulate these pion propagators, we introduce self-energy corrections with medium effects as

SF(k)\displaystyle S^{F}(k) =\displaystyle= ik2mπ2ΣF(k)\displaystyle\frac{i}{k^{2}-m_{\pi}^{2}-\Sigma^{F}(k)} (30)
SF¯(k)\displaystyle S^{\overline{F}}(k) =\displaystyle= ik2mπ2+ΣF¯(k),\displaystyle\frac{-i}{k^{2}-m_{\pi}^{2}+\Sigma^{\overline{F}}(k)}, (31)

where ΣF\Sigma^{F} is the self-energy for pions. The real part of the self-energy gives the mass correction, while the imaginary part is associated with the medium effect. In this work, we only consider the imaginary part of the self-energy since the mass correction from the real part is much smaller.

The Feynman diagram for the pion self-energy ΣF\Sigma^{F} at LO is shown in Fig.(5) which is given by

iΣF(k)\displaystyle-i\Sigma^{F}(k) =\displaystyle= gV2d4k1(2π)4SF(k1)GαβF(kk1)(k+k1)α(k+k1)β.\displaystyle-g_{V}^{2}\int\frac{d^{4}k_{1}}{\left(2\pi\hbar\right)^{4}}S^{F}(k_{1})G_{\alpha\beta}^{F}(k-k_{1})\left(k+k_{1}\right)^{\alpha}\left(k+k_{1}\right)^{\beta}. (32)

where the Feynman propagators in medium read

SF(k)\displaystyle S^{F}(k) =\displaystyle= ik2mπ2+iϵ+2πδ(k2mπ2)[θ(k0)fπ+(𝐤)+θ(k0)fπ(𝐤)],\displaystyle\frac{i}{k^{2}-m_{\pi}^{2}+i\epsilon}+2\pi\hbar\delta\left(k^{2}-m_{\pi}^{2}\right)\left[\theta(k^{0})f_{\pi^{+}}(\mathbf{k})+\theta(-k^{0})f_{\pi^{-}}(-\mathbf{k})\right], (33)
GαβF(p)\displaystyle G_{\alpha\beta}^{F}(p) =\displaystyle= i(gαβpαpβ/mρ2)p2mρ2+iϵ+(2π)δ(p2mρ2)\displaystyle-\frac{i\left(g_{\alpha\beta}-p_{\alpha}p_{\beta}/m_{\rho}^{2}\right)}{p^{2}-m_{\rho}^{2}+i\epsilon}+\left(2\pi\hbar\right)\delta\left(p^{2}-m_{\rho}^{2}\right) (34)
×[θ(p0)ϵα(s1,𝐩)ϵβ(s2,𝐩)fs1s2(𝐩)+θ(p0)ϵα(s1,𝐩)ϵβ(s2,𝐩)fs2s1(𝐩)],\displaystyle\times\left[\theta(p^{0})\epsilon_{\alpha}\left(s_{1},{\bf p}\right)\epsilon_{\beta}^{*}\left(s_{2},{\bf p}\right)f_{s_{1}s_{2}}(\mathbf{p})+\theta(-p^{0})\epsilon_{\alpha}^{\ast}\left(s_{1},-{\bf p}\right)\epsilon_{\beta}\left(s_{2},-{\bf p}\right)f_{s_{2}s_{1}}(-\mathbf{p})\right],

which can be derived by substituting Eqs. (3) and (4) into Eqs. (8) and (9).

Refer to caption
Figure 5: The Feynman diagram for pion self-energy ΣF\Sigma^{F} at LO. The solid line represents the ρ0\rho^{0} propagator and the dashed line represents the pion propagator.

Substituting Eqs. (33), (34) into Eq. (32), we obtain the imaginary part of the self-energy

Γ(k)\displaystyle\Gamma(k) \displaystyle\equiv ImΣF(k)=2gV2θ(k0)d3k1(2π)32Ek1πd3p(2π)32Epρ\displaystyle\mathrm{Im}\Sigma^{F}(k)=2g_{V}^{2}\theta(k^{0})\int\frac{d^{3}k_{1}}{(2\pi\hbar)^{3}2E_{k_{1}}^{\pi}}\int\frac{d^{3}p}{(2\pi\hbar)^{3}2E_{p}^{\rho}} (35)
×(2π)4δ(4)(k+k1p)fπ(𝐤1)[mπ2(k1p)2mρ2]\displaystyle\times(2\pi\hbar)^{4}\delta^{(4)}\left(k+k_{1}-p\right)f_{\pi^{-}}(\mathbf{k}_{1})\left[m_{\pi}^{2}-\frac{\left(k_{1}\cdot p\right)^{2}}{m_{\rho}^{2}}\right]
+2gV2θ(k0)d3k1(2π)32Ek1πd3p(2π)32Epρ\displaystyle+2g_{V}^{2}\theta(-k^{0})\int\frac{d^{3}k_{1}}{(2\pi\hbar)^{3}2E_{k_{1}}^{\pi}}\int\frac{d^{3}p}{(2\pi\hbar)^{3}2E_{p}^{\rho}}
×(2π)4δ(4)(kk1+p)fπ+(𝐤1)[mπ2(k1p)2mρ2],\displaystyle\times(2\pi\hbar)^{4}\delta^{(4)}\left(k-k_{1}+p\right)f_{\pi^{+}}(\mathbf{k}_{1})\left[m_{\pi}^{2}-\frac{\left(k_{1}\cdot p\right)^{2}}{m_{\rho}^{2}}\right],

where we have assumed that kk is near the mass-shell, since the self-energy’s correction to k2mπ2k^{2}-m_{\pi}^{2} in Eq. (30) is negligible if kk is far off-shell. Under such an assumption, processes such as π+π+ρ0\pi^{+}\rightarrow\pi^{+}\rho^{0} are forbidden, so the self-energy can be simplified. With the imaginary part of the self-energy in (35), the function D(1)(s,λ)D_{(1)}(s,\lambda) in Cscat(ρ0π±ρ0π±)C_{\mathrm{scat}}\left(\rho^{0}\pi^{\pm}\leftrightarrow\rho^{0}\pi^{\pm}\right) in Eq. (29) becomes

Dπ+(1)(s,λ)=\displaystyle D_{\pi^{+}(1)}(s,\lambda)= [k1ϵ(s,𝐩1)][k2ϵ(λ,𝐩)](p+k2)2mπ2+iΓ(p+k2)+[k2ϵ(s,𝐩1)][k1ϵ(λ,𝐩)](pk1)2mπ2+iΓ(p+k1),\displaystyle\frac{\left[k_{1}\cdot\epsilon\left(s,\mathbf{p}_{1}\right)\right]\left[k_{2}\cdot\epsilon^{*}\left(\lambda,{\bf p}\right)\right]}{\left(p+k_{2}\right)^{2}-m_{\pi}^{2}+i\Gamma(p+k_{2})}+\frac{\left[k_{2}\cdot\epsilon\left(s,\mathbf{p}_{1}\right)\right]\left[k_{1}\cdot\epsilon^{*}\left(\lambda,{\bf p}\right)\right]}{\left(p-k_{1}\right)^{2}-m_{\pi}^{2}+i\Gamma(-p+k_{1})},
Dπ(1)(s,λ)=\displaystyle D_{\pi^{-}(1)}(s,\lambda)= [k1ϵ(s,𝐩1)][k2ϵ(λ,𝐩)](p+k2)2mπ2+iΓ(pk2)+[k2ϵ(s,𝐩1)][k1ϵ(λ,𝐩)](pk1)2mπ2+iΓ(pk1).\displaystyle\frac{\left[k_{1}\cdot\epsilon\left(s,\mathbf{p}_{1}\right)\right]\left[k_{2}\cdot\epsilon^{*}\left(\lambda,{\bf p}\right)\right]}{\left(p+k_{2}\right)^{2}-m_{\pi}^{2}+i\Gamma(-p-k_{2})}+\frac{\left[k_{2}\cdot\epsilon\left(s,\mathbf{p}_{1}\right)\right]\left[k_{1}\cdot\epsilon^{*}\left(\lambda,{\bf p}\right)\right]}{\left(p-k_{1}\right)^{2}-m_{\pi}^{2}+i\Gamma(p-k_{1})}. (36)

which are different for ρ0π+ρ0π+\rho^{0}\pi^{+}\leftrightarrow\rho^{0}\pi^{+} and ρ0πρ0π\rho^{0}\pi^{-}\leftrightarrow\rho^{0}\pi^{-} processes.

V Numerical results

V.1 Initial condition without elliptic flow

Since we are studying the spin alignment of ρ0\rho^{0} in a pion gas, we assume the pion density is much larger than the density of ρ0\rho^{0}, fλ1λ2fπ±f_{\lambda_{1}\lambda_{2}}\ll f_{\pi^{\pm}}, so the influence of ρ0\rho^{0} mesons on pions is negligible. We further assume that π±\pi^{\pm} are in global thermal equilibrium, so they obey the Bose-Einstein distribution

fπ±(x,𝐩)=fπ±(𝐩)=1exp[β(Epμπ)]1,f_{\pi^{\pm}}(x,\mathbf{p})=f_{\pi^{\pm}}(\mathbf{p})=\frac{1}{\exp\left[\beta\left(E_{p}\mp\mu_{\pi}\right)\right]-1}, (37)

where β=1/T\beta=1/T is the inverse temperature, μπ\mu_{\pi} is the chemical potential for π+\pi^{+}. Here we neglected the spatial dependence of distributions. We choose μπ\mu_{\pi}=0, and T=156.5T=156.5 MeV corresponding to the chemical freezeout temperature. Because fλ1λ2fπ±f_{\lambda_{1}\lambda_{2}}\ll f_{\pi^{\pm}} we can neglect the terms of order fλ1λ22f_{\lambda_{1}\lambda_{2}}^{2} relative to fλ1λ2f_{\lambda_{1}\lambda_{2}}. Since the temperature is much less than mρm_{\rho}, the contribution from the process ρ0ρ0π+π\rho^{0}\rho^{0}\leftrightarrow\pi^{+}\pi^{-} is negligible (two orders of magnitude smaller) relative to Ccoal/diss(0)(ρ0π+π)C_{\mathrm{coal}/\mathrm{diss}}^{(0)}\left(\rho^{0}\leftrightarrow\pi^{+}\pi^{-}\right).

In summary, the collision terms that we take into account are Ccoal/diss(0)(ρ0π+π)C_{\mathrm{coal}/\mathrm{diss}}^{(0)}\left(\rho^{0}\leftrightarrow\pi^{+}\pi^{-}\right) and Cscat(ρ0π±ρ0π±)C_{\mathrm{scat}}\left(\rho^{0}\pi^{\pm}\leftrightarrow\rho^{0}\pi^{\pm}\right). For fπ+=fπf_{\pi^{+}}=f_{\pi^{-}}, we can simply have Cscat(ρ0π+ρ0π+)=Cscat(ρ0πρ0π)C_{\mathrm{scat}}\left(\rho^{0}\pi^{+}\leftrightarrow\rho^{0}\pi^{+}\right)=C_{\mathrm{scat}}\left(\rho^{0}\pi^{-}\leftrightarrow\rho^{0}\pi^{-}\right).

Considering the spin Boltzmann equation (18) is an integral-differential equation, we use Monte Carlo method to solve it. We build a 50×\times50×\times50 lattice in momentum space for ρ0\rho^{0} with lattice cell size 100×\times100×\times100 MeV3, so the range pxp_{x}, pyp_{y} and pzp_{z} is [2.5,2.5]\left[-2.5,2.5\right] GeV, which is big enough compared with the temperature. The value of ρ00=f00/Tr(f)\rho_{00}=f_{00}/\mathrm{Tr}(f) represents the spin alignment of ρ0\rho^{0} mesons.

In the first case, we consider the initial condition without neutral rho mesons, i.e. fλ1λ2(t=0)=0f_{\lambda_{1}\lambda_{2}}(t=0)=0. The time step for simulation is chosen to be 5×1065\times 10^{-6} MeV-1103\approx 10^{-3} fm/c. The spin alignments of rho mesons as functions of pTp_{T} in the pseudorapidity range |η|<1|\eta|<1 at different time are shown in Fig. (6). The spin alignments (pTp_{T} integrated) in different pseudorapidity ranges are shown in Fig. (7). The precision of ρ00\rho_{00} is about 10310^{-3} in Monte Carlo method, so the results less than 10310^{-3} are not reliable. However, we can still see the time and pseudorapidity dependence of the spin alignment from these results.

Refer to caption
Figure 6: The spin alignment as functions of pTp_{T} at different time. The initial distribution of rho mesons is set to fλ1λ2(t=0)=0f_{\lambda_{1}\lambda_{2}}(t=0)=0.
Refer to caption
Figure 7: The pTp_{T}-integrated spin alignment in different pseudorapidity ranges for the initial distribution fλ1λ2(t=0)=0f_{\lambda_{1}\lambda_{2}}(t=0)=0.

We notice that ρ00\rho_{00} is slightly larger than 1/3 in the central rapidity region of rho mesons though the pion distribution is isotropic. It is because that we choose +y+y to be the spin quantization direction, which is different from xx and zz. More specifically, the produced rho mesons with momenta in ±y\pm y direction have ρ00>1/3\rho_{00}>1/3, while those with momenta near the xzxz plane have ρ00<1/3\rho_{00}<1/3. The spin alignment in the whole momentum space must be zero because of the isotropic pion distribution and angular momentum conservation, as shown by the green line in Fig. (7). Therefore if we exclude rho mesons with momenta near ±z\pm z direction, i.e. the forward and backward rapidity region, we have ρ00>1/3\rho_{00}>1/3. The larger central pseudorapidity range we choose, the smaller spin alignment we obtain. Since the scattering term contributes significantly to a thermalization effect, we notice that the spin alignment decreases rapidly with time.

In the second case, we consider a more realistic initial condition by assuming an initial value of the spin alignment at the hadronization time when the rho meson is formed by recombination of quarks. We set the initial distribution of the rho meson as a thermal distribution with the spin alignment ρ00=0.4\rho_{00}=0.4 (larger than 1/3), then the matrix valued spin distribution is put into the form

fλ1λ2\displaystyle f_{\lambda_{1}\lambda_{2}} =\displaystyle= diag(0.9,1.2,0.9)×fBE,\displaystyle\mathrm{diag}(0.9,1.2,0.9)\times f_{\mathrm{BE}}, (38)

where fBEf_{\mathrm{BE}} is the Bose-Einstein distribution for the rho meson with zero chemical potential. The time step for simulation is chosen to be 5×1055\times 10^{-5} MeV1{}^{-1}\approx0.01 fm/c. In the pseudorapidity range |η|<1|\eta|<1, the numerical results for the spin alignment as functions of pTp_{T} at different time are shown in Fig. (8). The results for the pTp_{T}-integrated spin alignment in different pseudorapidity ranges are shown in Fig. (9). We can see that the spin alignment is almost independent of the pseudorapidity range, because it is mostly contributed from initial rho mesons with non-vanishing spin alignment instead of from newly generated rho mesons. More importantly, we see that ρ001/3\rho_{00}-1/3 decreases rapidly from the initial value 0.066 to 0.006 at t=4t=4 fm/c, meaning that the initial value of the spin alignment can be easily washed out by the interaction between rho mesons and pions.

Refer to caption
Figure 8: The spin alignment as functions of pTp_{T} in |η|<1|\eta|<1 at different time with the initial distribution (38) that corresponds to ρ00=0.4>1/3\rho_{00}=0.4>1/3.
Refer to caption
Figure 9: The pTp_{T}-integrated spin alignment in different pseudorapidity ranges with the initial distribution (38).

We can also consider ρ00=0.27\rho_{00}=0.27 (less than 1/3) at the initial time. Then the matrix valued spin distribution is set to

fλ1λ2\displaystyle f_{\lambda_{1}\lambda_{2}} =\displaystyle= diag(1.1,0.8,1.1)×fBE.\displaystyle\mathrm{diag}(1.1,0.8,1.1)\times f_{\mathrm{BE}}. (39)

The results are shown in Figs. (10) and (11). We see that the spin alignment relaxes to 1/3 rapidly.

Refer to caption
Figure 10: The spin alignment as functions of pTp_{T} at different time with the initial distribution (39) that corresponds to ρ00=0.27<1/3\rho_{00}=0.27<1/3.
Refer to caption
Figure 11: The pTp_{T}-integrated spin alignment in different pseudorapidity ranges with the initial distribution (39).

V.2 Initial condition with elliptic flow

In order to see the v2v_{2} influence on the spin alignment of ρ0\rho^{0}, we use the blast wave model (Bondorf:1978kz, ; Siemens:1978pb, ; Schnedermann:1993ws, ; Retiere:2003kf, ) to describe the space-time evolution of the fireball in heavy-ion collisions. The idea is as follows. We assume Eq. (19) describes the time evolution of fλ1λ2(x,𝐩)f_{\lambda_{1}\lambda_{2}}(x,\mathbf{p}) in the fluid element’s comoving frame located at xx. The fluid four-velocity uμ(x)u^{\mu}(x) is described by the blast wave model for the boost invariant expansion of the fireball along zz direction. The emission function of the blast wave model has the form (Retiere:2003kf, )

S(r,ϕs,p)\displaystyle S(r,\phi_{s},p) =\displaystyle= θ(Rr)F(u,p),\displaystyle\theta(R-r)F(u,p), (40)

where RR is the fireball’s radius, rr and ϕs\phi_{s} are the radial position and the azimutal angle inside the fireball, pp is the particle’s momentum, F(u,p)F(u,p) is some kind of the momentum distribution function depending on the fluid velocity that can be parameterized as

uμ(r,ϕs)=(coshρ(r,ϕs),sinhρ(r,ϕs)cosϕs,sinhρ(r,ϕs)sinϕs,0),u^{\mu}(r,\phi_{s})=\left(\cosh\rho(r,\phi_{s}),\sinh\rho(r,\phi_{s})\cos\phi_{s},\sinh\rho(r,\phi_{s})\sin\phi_{s},0\right), (41)

where the radial flow rapidity ρ\rho is given by

ρ(r,ϕs)\displaystyle\rho(r,\phi_{s}) =\displaystyle= rR[ρ0+ρ2cos(2ϕs)].\displaystyle\frac{r}{R}\left[\rho_{0}+\rho_{2}\cos(2\phi_{s})\right]. (42)

Here ρ0\rho_{0} and ρ2\rho_{2} are two parameters, and ρ2\rho_{2} gives the elliptic flow. Note that without loss of generality we have set space-time rapidity zero in uμ(r,ϕs)u^{\mu}(r,\phi_{s}) corresponding to z=0z=0.

Refer to caption
Figure 12: The spin alignment of the neutral rho meson at z=0z=0 for |η|<1|\eta|<1 in the blast wave model with the elliptic flow.

The parameters are chosen as R=13R=13 fm, ρ0=0.89\rho_{0}=0.89, ρ2=0.06\rho_{2}=0.06 (Retiere:2003kf, ). We assume fλ1λ2=0f_{\lambda_{1}\lambda_{2}}=0 at the initial time. Then with Eq. (40) and these parameters we can calculate the spin alignment at z=0z=0 as follows

ρ00\displaystyle\rho_{00} =\displaystyle= |η|<1d3p0Rr𝑑r𝑑ϕsf00(u,p)|η|<1d3p0Rr𝑑r𝑑ϕstrf(u,p),\displaystyle\frac{\int_{|\eta|<1}d^{3}p\int_{0}^{R}rdrd\phi_{s}f_{00}(u,p)}{\int_{|\eta|<1}d^{3}p\int_{0}^{R}rdrd\phi_{s}\mathrm{tr}f(u,p)}, (43)

where we set F(u,p)F(u,p) to fλ1λ2(u,p)f_{\lambda_{1}\lambda_{2}}(u,p). It is obvious that ρ00\rho_{00} in Eq. (43) encodes the effect of the elliptic flow. The results for ρ00\rho_{00} are shown in Fig. 12 indicating that its deviation from 1/3 is positive but in the order of 10410^{-4}.

VI Conclusions and discussions

Using two-point Green’s functions and Kadanoff-Baym equation in the closed-time path formalism for vector mesons developed in the previous work (Sheng:2022ffb, ), we derived spin kinetic or Boltzmann equations for neutral rho mesons in a pion gas. The ρππ\rho\pi\pi coupling is described by the chiral effective theory. The collision terms in the pion gas at the leading and next-to-leading order are obtained. We simulated the evolution of the matrix valued spin distribution (spin density matrix) of neutral rho mesons by the Monte Carlo method. In the simulation, we have assumed the Bose-Einstein distribution for pions with T=156.5T=156.5 MeV and vanishing chemical potential. The numerical results show that the interaction of pions and neutral rho mesons creates very small spin alignment for rho mesons in the central rapidity region if there is no rho meson in the system at the initial time. But there is no spin alignment in the full rapidity range since pions’ momenta are isotropic. Such a small spin alignment in the central rapidity region will decay rapidly toward zero in later time. If there are rho mesons with a sizable spin alignment at the initial time the spin alignment will also decrease rapidly. We also considered the effect on ρ00\rho_{00} from the elliptic flow of pions in the blast wave model. With vanishing spin alignment at the initial time, the deviation of ρ00\rho_{00} from 1/3 is positive but very small.

The work can be improved or extended by loosening some approximations or restrictions. For example, we can consider fluctuations in the temperature and the distribution of pions in collision terms, or we can consider other vector mesons in a hadrons gas. These can be done in the future.

Acknowledgements.
We thank A,-H. Tang for suggesting this topic for us and for insightful discussion. We thank J.-H. Gao, X.-G. Huang, S. Lin, E. Speranza, D. Wagner, D.-L. Yang for helpful discussion. This work is supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) under Grant No. XDB34030102, and by the National Natural Science Foundation of China (NSFC) under Grant No. 12135011 and 12075235.

References

  • (1) S. J. Barnett, Rev. Mod. Phys. 7, 129 (1935).
  • (2) A. Einstein and W. de Haas, Deutsche Physikalische Gesellschaft, Verhandlungen 17, 152 (1915).
  • (3) Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. 94, 102301 (2005), nucl-th/0410079, [Erratum: Phys.Rev.Lett. 96, 039901 (2006)].
  • (4) Z.-T. Liang and X.-N. Wang, Phys. Lett. B 629, 20 (2005), nucl-th/0411101.
  • (5) B. Betz, M. Gyulassy, and G. Torrieri, Phys. Rev. C 76, 044901 (2007), 0708.0035.
  • (6) J.-H. Gao et al., Phys. Rev. C 77, 044902 (2008), 0710.2943.
  • (7) F. Becattini, F. Piccinini, and J. Rizzo, Phys. Rev. C 77, 024906 (2008), 0711.1253.
  • (8) G. Bunce et al., Phys. Rev. Lett. 36, 1113 (1976).
  • (9) STAR, L. Adamczyk et al., Nature 548, 62 (2017), 1701.06657.
  • (10) STAR, J. Adam et al., Phys. Rev. C 98, 014910 (2018), 1805.04400.
  • (11) HADES, R. Abou Yassine et al., Phys. Lett. B 835, 137506 (2022), 2207.05160.
  • (12) ALICE, S. Acharya et al., Phys. Rev. Lett. 128, 172005 (2022), 2107.11183.
  • (13) STAR, J. Adam et al., Phys. Rev. Lett. 126, 162301 (2021), 2012.13601.
  • (14) I. Karpenko and F. Becattini, Eur. Phys. J. C 77, 213 (2017), 1610.04717.
  • (15) H. Li, L.-G. Pang, Q. Wang, and X.-L. Xia, Phys. Rev. C 96, 054908 (2017), 1704.01507.
  • (16) Y. Xie, D. Wang, and L. P. Csernai, Phys. Rev. C 95, 031901 (2017), 1703.03770.
  • (17) Y. Sun and C. M. Ko, Phys. Rev. C 96, 024906 (2017), 1706.09467.
  • (18) M. Baznat, K. Gudima, A. Sorin, and O. Teryaev, Phys. Rev. C 97, 041902 (2018), 1701.00923.
  • (19) S. Shi, K. Li, and J. Liao, Phys. Lett. B 788, 409 (2019), 1712.00878.
  • (20) X.-L. Xia, H. Li, Z.-B. Tang, and Q. Wang, Phys. Rev. C 98, 024905 (2018), 1803.00867.
  • (21) D.-X. Wei, W.-T. Deng, and X.-G. Huang, Phys. Rev. C 99, 014905 (2019), 1810.00151.
  • (22) B. Fu, K. Xu, X.-G. Huang, and H. Song, Phys. Rev. C 103, 024903 (2021), 2011.03740.
  • (23) S. Ryu, V. Jupic, and C. Shen, Phys. Rev. C 104, 054908 (2021), 2106.08125.
  • (24) B. Fu, S. Y. F. Liu, L. Pang, H. Song, and Y. Yin, Phys. Rev. Lett. 127, 142301 (2021), 2103.10403.
  • (25) X.-G. Deng, X.-G. Huang, and Y.-G. Ma, (2021), 2109.09956.
  • (26) F. Becattini, M. Buzzegoli, G. Inghirami, I. Karpenko, and A. Palermo, Phys. Rev. Lett. 127, 272302 (2021), 2103.14621.
  • (27) X.-Y. Wu, C. Yi, G.-Y. Qin, and S. Pu, Phys. Rev. C 105, 064909 (2022), 2204.02218.
  • (28) Q. Wang, Nucl. Phys. A 967, 225 (2017), 1704.04022.
  • (29) W. Florkowski, A. Kumar, and R. Ryblewski, Prog. Part. Nucl. Phys. 108, 103709 (2019), 1811.04409.
  • (30) J.-H. Gao, Z.-T. Liang, Q. Wang, and X.-N. Wang, Lect. Notes Phys. 987, 195 (2021), 2009.04803.
  • (31) X.-G. Huang, J. Liao, Q. Wang, and X.-L. Xia, (2020), 2010.08937.
  • (32) J.-H. Gao, G.-L. Ma, S. Pu, and Q. Wang, Nucl. Sci. Tech. 31, 90 (2020), 2005.10432.
  • (33) F. Becattini and M. A. Lisa, Ann. Rev. Nucl. Part. Sci. 70, 395 (2020), 2003.03640.
  • (34) F. Becattini, Rept. Prog. Phys. 85, 122301 (2022), 2204.01144.
  • (35) K. Schilling, P. Seyboth, and G. E. Wolf, Nucl. Phys. B 15, 397 (1970), [Erratum: Nucl.Phys.B 18, 332 (1970)].
  • (36) Y.-G. Yang, R.-H. Fang, Q. Wang, and X.-N. Wang, Phys. Rev. C 97, 034917 (2018), 1711.06008.
  • (37) A. H. Tang et al., Phys. Rev. C 98, 044907 (2018), 1803.05777, [Erratum: Phys.Rev.C 107, 039901 (2023)].
  • (38) STAR, M. S. Abdallah et al., Nature 614, 244 (2023), 2204.02302.
  • (39) X.-L. Xia, H. Li, X.-G. Huang, and H. Zhong Huang, Phys. Lett. B 817, 136325 (2021), 2010.01474.
  • (40) J.-H. Gao, Phys. Rev. D 104, 076016 (2021), 2105.08293.
  • (41) B. Müller, B. Müller, D.-L. Yang, and D.-L. Yang, Phys. Rev. D 105, L011901 (2022), 2110.15630, [Erratum: Phys.Rev.D 106, 039904 (2022)].
  • (42) F. Li and S. Y. F. Liu, (2022), 2206.11890.
  • (43) D. Wagner, N. Weickgenannt, and E. Speranza, Phys. Rev. Res. 5, 013187 (2023), 2207.01111.
  • (44) A. Kumar, B. Müller, and D.-L. Yang, Phys. Rev. D 107, 076025 (2023), 2212.13354.
  • (45) W.-B. Dong, Y.-L. Yin, X.-L. Sheng, S.-Z. Yang, and Q. Wang, (2023), 2311.18400.
  • (46) A. Kumar, B. Müller, and D.-L. Yang, Phys. Rev. D 108, 016020 (2023), 2304.04181.
  • (47) J.-H. Gao and S.-Z. Yang, (2023), 2308.16616.
  • (48) X.-L. Sheng, L. Oliva, and Q. Wang, Phys. Rev. D 101, 096005 (2020), 1910.13684, [Erratum: Phys.Rev.D 105, 099903 (2022)].
  • (49) X.-L. Sheng, L. Oliva, Z.-T. Liang, Q. Wang, and X.-N. Wang, (2022), 2206.05868.
  • (50) X.-L. Sheng, L. Oliva, Z.-T. Liang, Q. Wang, and X.-N. Wang, Phys. Rev. Lett. 131, 042304 (2023), 2205.15689.
  • (51) X.-L. Sheng, S. Pu, and Q. Wang, (2023), 2308.14038.
  • (52) B.-S. Xi, New insights into global spin alignment in heavy-ion collisions: Measurements of ϕ\phi, J/ψ\mathrm{J}/\psi and ρ0\rho^{0} at STAR, in Proceedings of the XXXth International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2023), p. xxx, Houston, Texas, USA, 2023, to appear in Nuclear Physics A.
  • (53) J. Chen, Z.-T. Liang, Y.-G. Ma, and Q. Wang, Sci. Bull. 68, 874 (2023), 2305.09114.
  • (54) X.-N. Wang, Nucl. Sci. Tech. 34, 15 (2023), 2302.00701.
  • (55) X.-L. Sheng, Z.-T. Liang, and Q. Wang, Acta Phys. Sin. (in Chinese) 72, 072502 (2023).
  • (56) D. Kharzeev, Phys. Lett. B633, 260 (2006), hep-ph/0406125.
  • (57) D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A803, 227 (2008), 0711.0950.
  • (58) K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev. D78, 074033 (2008), 0808.3382.
  • (59) STAR, L. Adamczyk et al., Phys. Rev. C 88, 064911 (2013), 1302.3802.
  • (60) STAR, L. Adamczyk et al., Phys. Rev. C 89, 044908 (2014), 1303.0901.
  • (61) F. Wang and J. Zhao, Phys. Rev. C 95, 051901 (2017), 1608.06610.
  • (62) A. H. Tang, Chin. Phys. C 44, 054101 (2020), 1903.04622.
  • (63) D. Shen, J. Chen, A. Tang, and G. Wang, Phys. Lett. B 839, 137777 (2023), 2212.03056.
  • (64) T. Fujiwara et al., Prog. Theor. Phys. 74, 128 (1985).
  • (65) L. P. Kadanoff and G. Baym, Quantum statistical mechanics : Green’s function methods in equilibrium and nonequilibrium problems, 2018.
  • (66) P. C. Martin and J. S. Schwinger, Phys. Rev. 115, 1342 (1959).
  • (67) L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964).
  • (68) K.-c. Chou, Z.-b. Su, B.-l. Hao, and L. Yu, Phys. Rept. 118, 1 (1985).
  • (69) J.-P. Blaizot and E. Iancu, Phys. Rept. 359, 355 (2002), hep-ph/0101103.
  • (70) J. Berges, AIP Conf. Proc. 739, 3 (2004), hep-ph/0409233.
  • (71) W. Cassing, Eur. Phys. J. ST 168, 3 (2009), 0808.0715.
  • (72) W. Cassing, Lect. Notes Phys. 989, pp. (2021).
  • (73) D.-L. Yang, K. Hattori, and Y. Hidaka, JHEP 07, 070 (2020), 2002.02612.
  • (74) X.-L. Sheng, N. Weickgenannt, E. Speranza, D. H. Rischke, and Q. Wang, Phys. Rev. D 104, 016029 (2021), 2103.10636.
  • (75) D. Wagner, N. Weickgenannt, and E. Speranza, Phys. Rev. D 108, 116017 (2023), 2306.05936.
  • (76) N. Weickgenannt, X.-L. Sheng, E. Speranza, Q. Wang, and D. H. Rischke, Phys. Rev. D 100, 056018 (2019), 1902.06513.
  • (77) S. Li and H.-U. Yee, Phys. Rev. D 100, 056022 (2019), 1905.10463.
  • (78) X.-L. Sheng, Q. Wang, and D. H. Rischke, (2022), 2202.10160.
  • (79) N. Weickgenannt, E. Speranza, X.-l. Sheng, Q. Wang, and D. H. Rischke, Phys. Rev. Lett. 127, 052301 (2021), 2005.01506.
  • (80) N. Weickgenannt, E. Speranza, X.-l. Sheng, Q. Wang, and D. H. Rischke, Phys. Rev. D 104, 016022 (2021), 2103.04896.
  • (81) S. Lin, Phys. Rev. D 105, 076017 (2022), 2109.00184.
  • (82) S. Lin and Z. Wang, JHEP 12, 030 (2022), 2206.12573.
  • (83) D. Wagner, N. Weickgenannt, and D. H. Rischke, Phys. Rev. D 106, 116021 (2022), 2210.06187.
  • (84) D. Vasak, M. Gyulassy, and H. T. Elze, Annals Phys. 173, 462 (1987).
  • (85) U. W. Heinz, Phys. Rev. Lett. 51, 351 (1983).
  • (86) Q. Wang, K. Redlich, H. Stoecker, and W. Greiner, Phys. Rev. Lett. 88, 132303 (2002), nucl-th/0111040.
  • (87) J.-H. Gao, Z.-T. Liang, S. Pu, Q. Wang, and X.-N. Wang, Phys. Rev. Lett. 109, 232301 (2012), 1203.0725.
  • (88) J.-W. Chen, S. Pu, Q. Wang, and X.-N. Wang, Phys. Rev. Lett. 110, 262301 (2013), 1210.8312.
  • (89) F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, Annals Phys. 338, 32 (2013), 1303.3431.
  • (90) J.-H. Gao and Z.-T. Liang, Phys. Rev. D 100, 056021 (2019), 1902.06510.
  • (91) K. Hattori, Y. Hidaka, and D.-L. Yang, Phys. Rev. D 100, 096011 (2019), 1903.01653.
  • (92) Z. Wang, X. Guo, S. Shi, and P. Zhuang, Phys. Rev. D 100, 014015 (2019), 1903.03461.
  • (93) Y.-C. Liu, K. Mameda, and X.-G. Huang, Chin. Phys. C 44, 094101 (2020), 2002.03753, [Erratum: Chin.Phys.C 45, 089001 (2021)].
  • (94) J.-H. Gao, Z.-T. Liang, and Q. Wang, Int. J. Mod. Phys. A 36, 2130001 (2021), 2011.02629.
  • (95) Y. Hidaka, S. Pu, Q. Wang, and D.-L. Yang, (2022), 2201.07644.
  • (96) H. Kim and P. Gubler, Phys. Lett. B 805, 135412 (2020), 1911.08737.
  • (97) F. Seck et al., (2023), 2309.03189.
  • (98) J. P. Bondorf, S. I. A. Garpman, and J. Zimanyi, Nucl. Phys. A 296, 320 (1978).
  • (99) P. J. Siemens and J. O. Rasmussen, Phys. Rev. Lett. 42, 880 (1979).
  • (100) E. Schnedermann, J. Sollfrank, and U. W. Heinz, Phys. Rev. C 48, 2462 (1993), nucl-th/9307020.
  • (101) F. Retiere and M. A. Lisa, Phys. Rev. C 70, 044907 (2004), nucl-th/0312024.