This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\InitializeBibliographyStyle

The singularities of Selberg- and Dotsenko–Fateev-like integrals

Ethan Sussman [email protected] Department of Mathematics, Massachusetts Institute of Technology, Massachusetts 02139-4307, USA
(Date: December 22nd, 2023 (Published version), January 8th, 2023 (Preprint).)
Abstract.

We discuss the meromorphic continuation of certain hypergeometric integrals modeled on the Selberg integral, including the 3-point and 4-point functions of BPZ’s minimal models of 2D CFT as described by Felder & Silvotti and Dotsenko & Fateev (the “Coulomb gas formalism”). This is accomplished via a geometric analysis of the singularities of the integrands. In the case that the integrand is symmetric (as in the Selberg integral itself) or, more generally, what we call “DF-symmetric,” we show that a number of apparent singularities are removable, as required for the construction of the minimal models via these methods.

2020 Mathematics Subject Classification:
Primary 32A20; Secondary 33C60, 33C90, 81T40

1. Introduction

Let

N={(x1,,xN)[0,1]N:x1xN}\triangle_{N}=\{(x_{1},\ldots,x_{N})\in[0,1]^{N}:x_{1}\leq\cdots\leq x_{N}\} (1.1)

denote the standard NN-simplex, which we consider as a subset of N\mathbb{C}^{N}. We study in this note Selberg-like integrals, by which we mean definite integrals of the form

SN[F](𝜶,𝜷,𝜸)=NF(x1,,xN)j=1Nxjαj(1xj)βj1j<kN(xkxj)2γj,kdx1dxN,S_{N}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=\int_{\triangle_{N}}F(x_{1},\ldots,x_{N})\prod_{j=1}^{N}x_{j}^{\alpha_{j}}(1-x_{j})^{\beta_{j}}\prod_{1\leq j<k\leq N}(x_{k}-x_{j})^{2\gamma_{j,k}}\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{N}, (1.2)

for N+N\in\mathbb{N}^{+}, FC(N)F\in C^{\infty}(\triangle_{N}), and 𝜶={αj}j=1N,𝜷={βj}j=1N,𝜸={γj,k=γk,j}1j<kN\bm{\alpha}=\{\alpha_{j}\}_{j=1}^{N},\bm{\beta}=\{\beta_{j}\}_{j=1}^{N},\bm{\gamma}=\{\gamma_{j,k}=\gamma_{k,j}\}_{1\leq j<k\leq N}\subset\mathbb{C} such that the integrand above is absolutely integrable on N\triangle_{N}. Integrals of this form are relevant to an array of topics in mathematical physics [FW08]. However, it is often necessary to consider exponents 𝜶,𝜷,𝜸\bm{\alpha},\bm{\beta},\bm{\gamma} for which the integral above is not absolutely convergent, in which case a meromorphic extension needs to be performed. In some applications, only the behavior of this extension at generic exponents is required. In others, such as the application – discussed below – to the construction of the minimal models of 2D CFT, it is necessary to consider particular values, e.g. γj,k=1\gamma_{j,k}=-1. Unfortunately, for these particular values, previous work on the subject is not sufficient.

We will identify indexed collections of complex numbers (and tuples thereof) with column vectors. For example, we identify 𝜸\bm{\gamma} with an element of N(N1)/2\smash{\mathbb{C}^{N(N-1)/2}} and

(𝜶,𝜷,𝜸)N×N×N(N1)/2(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\mathbb{C}^{N}\times\mathbb{C}^{N}\times\mathbb{C}^{N(N-1)/2} (1.3)

with an element of 2N+N(N1)/2\mathbb{C}^{2N+N(N-1)/2}. Similar identifications will be made throughout the rest of the paper without further comment. Let

ΩN={(𝜶,𝜷,𝜸)2N+N(N1)/2:j=1Nxjαj(1xj)βj1j<kN(xkxj)2γj,kL1(N)}\Omega_{N}=\bigg{\{}(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\mathbb{C}^{2N+N(N-1)/2}:\prod_{j=1}^{N}x_{j}^{\alpha_{j}}(1-x_{j})^{\beta_{j}}\prod_{1\leq j<k\leq N}(x_{k}-x_{j})^{2\gamma_{j,k}}\in L^{1}(\triangle_{N})\bigg{\}} (1.4)

denote the (open, nonempty) subset of 2N+N(N1)/2\mathbb{C}^{2N+N(N-1)/2} consisting of the (𝜶,𝜷,𝜸)2N+N(N1)/2(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\mathbb{C}^{2N+N(N-1)/2} for which the integrand in eq. 1.2 is absolutely integrable on N\triangle_{N}. We begin with SN[F]S_{N}[F] defined as a function SN[F]:ΩNS_{N}[F]:\Omega_{N}\to\mathbb{C}. It can be checked – see §2 – that, letting

αj,(𝜶,𝜷,𝜸)=j0=1jαj0+2j0,k{1,,N}1j0<kjγj0,k,βj,(𝜶,𝜷,𝜸)=j0=Nj+1Nβj0+2j0,k{1,,N}Nj+1j0<kNγj0,k\displaystyle\begin{split}\alpha_{j,*}(\bm{\alpha},\bm{\beta},\bm{\gamma})&=\sum_{j_{0}=1}^{j}\alpha_{j_{0}}+2\sum_{\begin{subarray}{c}j_{0},k\in\{1,\ldots,N\}\\ 1\leq j_{0}<k\leq j\end{subarray}}\gamma_{j_{0},k},\\ \beta_{j,*}(\bm{\alpha},\bm{\beta},\bm{\gamma})&=\sum_{j_{0}=N-j+1}^{N}\beta_{j_{0}}+2\sum_{\begin{subarray}{c}j_{0},k\in\{1,\dots,N\}\\ N-j+1\leq j_{0}<k\leq N\end{subarray}}\gamma_{j_{0},k}\end{split} (1.5)

for each j{1,,N}j\in\{1,\ldots,N\}, and letting

γj,k,(𝜶,𝜷,𝜸)=2j0,k0{1,,N}jj0<k0kγj0,k0\gamma_{j,k,*}(\bm{\alpha},\bm{\beta},\bm{\gamma})=2\sum_{\begin{subarray}{c}j_{0},k_{0}\in\{1,\ldots,N\}\\ j\leq j_{0}<k_{0}\leq k\end{subarray}}\gamma_{j_{0},k_{0}} (1.6)

for each pair of j,k{1,,N}j,k\in\{1,\ldots,N\} with j<kj<k,

ΩN=[j=1N{αj,>j}][j=1N{βj,>j}][1j<kN{γj,k,>(kj)}].\Omega_{N}=\Big{[}\bigcap_{j=1}^{N}\{\Re\alpha_{j,*}>-j\}\Big{]}\cap\Big{[}\bigcap_{j=1}^{N}\{\Re\beta_{j,*}>-j\}\Big{]}\cap\Big{[}\bigcap_{1\leq j<k\leq N}\{\Re\gamma_{j,k,*}>-(k-j)\}\Big{]}. (1.7)

So, ΩN\Omega_{N} is nonempty, open, and convex (in particular, connected) and contains all (𝜶,𝜷,𝜸)2N+N(N1)/2(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\smash{\mathbb{C}^{2N+N(N-1)/2}} such that the real parts of the components of 𝜶,𝜷,𝜸\bm{\alpha},\bm{\beta},\bm{\gamma} are sufficiently large.

To simplify the formula above, let γ0,k,=αk,\gamma_{0,k,*}=\alpha_{k,*} and γN+1j,N+1,=βj,\gamma_{N+1-j,N+1,*}=\beta_{j,*}. Then

ΩN=0j<kN+1{(𝜶,𝜷,𝜸)2N+N(N1)/2:γj,k,>(kj)}.\Omega_{N}=\bigcap_{0\leq j<k\leq N+1}\{(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\mathbb{C}^{2N+N(N-1)/2}:\Re\gamma_{j,k,*}>-(k-j)\}. (1.8)

Our first goal is to prove that SN[F]S_{N}[F] can be analytically continued to a subset

Ω˙N2N+N(N1)/2\dot{\Omega}_{N}\subseteq\mathbb{C}^{2N+N(N-1)/2} (1.9)

having full measure in 2N+N(N1)/2\mathbb{C}^{2N+N(N-1)/2}.

In order to describe precisely the structure of the singularity at 2N+N(N1)/2\Ω˙N\mathbb{C}^{2N+N(N-1)/2}\backslash\dot{\Omega}_{N}, we introduce some terminology. Let 𝚃(N)\mathtt{T}(N) denote the collection of maximal families 𝙸\mathtt{I} of consecutive subsets {0,,N+1}\mathcal{I}\subsetneq\{0,\ldots,N+1\} such that

  • 2||N+12\leq|\mathcal{I}|\leq N+1 for all 𝙸\mathcal{I}\in\mathtt{I} and

  • if ,𝙸\mathcal{I},\mathcal{I}^{\prime}\in\mathtt{I} satisfy \mathcal{I}\cap\mathcal{I}^{\prime}\neq\varnothing, then either \mathcal{I}\subseteq\mathcal{I}^{\prime} or \mathcal{I}^{\prime}\subseteq\mathcal{I}.

𝚃\mathtt{T}” stands either for “tree” in “full binary trees” or “Tamari” in Tamari lattice [Tam62][Gey94], and the elements of 𝚃(N)\mathtt{T}(N) can be thought of as specifying the valid ways of adding a maximal number of nonredundant parentheses to a string of N+2N+2 identical characters. There are #𝚃(N)=CN+1\#\mathtt{T}(N)=C_{N+1} such ways, where CN+1C_{N+1} is the (N+1)(N+1)st Catalan number. To each 𝙸\mathcal{I}\in\mathtt{I}, we associate the facet

f={(x1,,xN)N:xj=xk for all j,k}\mathrm{f}_{\mathcal{I}}=\{(x_{1},\ldots,x_{N})\in\triangle_{N}:x_{j}=x_{k}\text{ for all }j,k\in\mathcal{I}\} (1.10)

of N\triangle_{N}, where x0=0x_{0}=0 and xN+1=1x_{N+1}=1. Let oo_{\mathcal{I}}\in\mathbb{N} denote the order of vanishing of FF at f\mathrm{f}_{\mathcal{I}}. (So, o=0o_{\mathcal{I}}=0 unless FF is vanishing identically at f\mathrm{f}_{\mathcal{I}}.)

Theorem 1.1.

There exist entire functions SN;reg,𝙸[F]:2N+N(N1)/2S_{N;\mathrm{reg},\mathtt{I}}[F]:\mathbb{C}^{2N+N(N-1)/2}\to\mathbb{C} associated to the 𝙸𝚃(N)\mathtt{I}\in\mathtt{T}(N) such that

SN[F](𝜶,𝜷,𝜸)=𝙸𝚃(N)SN;reg,𝙸[F](𝜶,𝜷,𝜸)𝙸Γ(o+||1+γmin,max,)S_{N}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=\sum_{\mathtt{I}\in\mathtt{T}(N)}S_{N;\mathrm{reg},\mathtt{I}}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})\prod_{\mathcal{I}\in\mathtt{I}}\Gamma(o_{\mathcal{I}}+|\mathcal{I}|-1+\gamma_{\min\mathcal{I},\max\mathcal{I},*}) (1.11)

for all (𝛂,𝛃,𝛄)ΩN(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\Omega_{N}. ∎

Here, Γ:\{n:n}\Gamma:\mathbb{C}\backslash\{-n:n\in\mathbb{N}\}\to\mathbb{C} is the gamma function. As a consequence of the theorem, there exists an entire function SN;reg[F]:2N+N(N1)/2S_{N;\mathrm{reg}}[F]:\mathbb{C}^{2N+N(N-1)/2}\to\mathbb{C} such that

SN[F](𝜶,𝜷,𝜸)=SN;reg[F](𝜶,𝜷,𝜸)0j<kN+1Γ(kj+γj,k,)S_{N}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=S_{N;\mathrm{reg}}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})\prod_{0\leq j<k\leq N+1}\Gamma(k-j+\gamma_{j,k,*}) (1.12)

for all (𝜶,𝜷,𝜸)ΩN(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\Omega_{N}.

Corollary 1.1.1.

The function SN[F]:ΩNS_{N}[F]:\Omega_{N}\to\mathbb{C} admits an analytic continuation S˙N[F]:Ω˙N\dot{S}_{N}[F]:\dot{\Omega}_{N}\to\mathbb{C} to the domain

Ω˙N=𝜶,𝜷,𝜸2N+N(N1)/2\[(j=1N{αj,jδj})(j=1N{βj,jδj})(1j<kN{γj,k,(kj)dj,k})],\dot{\Omega}_{N}=\mathbb{C}^{2N+N(N-1)/2}_{\bm{\alpha},\bm{\beta},\bm{\gamma}}\Big{\backslash}\Big{[}\Big{(}\bigcup_{j=1}^{N}\{\alpha_{j,*}\in\mathbb{Z}^{\leq-j-\delta_{j}}\}\Big{)}\cup\Big{(}\bigcup_{j=1}^{N}\{\beta_{j,*}\in\mathbb{Z}^{\leq-j-\text{\reflectbox{$\delta$}}_{j}}\}\Big{)}\\ \cup\Big{(}\bigcup_{1\leq j<k\leq N}\{\gamma_{j,k,*}\in\mathbb{Z}^{\leq-(k-j)-d_{j,k}}\}\Big{)}\Big{]}, (1.13)

where n={m:mn}\mathbb{Z}^{\leq n}=\{m\in\mathbb{Z}:m\leq n\} and δj=δj[F]=o{0,,j}\delta_{j}=\delta_{j}[F]=o_{\{0,\ldots,j\}}, δj=δj[F]=o{Nj+1,,N+1}\text{\reflectbox{$\delta$}}_{j}=\text{\reflectbox{$\delta$}}_{j}[F]=o_{\{N-j+1,\ldots,N+1\}}, and dj,k=dj,k[F]=o{j,,k}d_{j,k}=d_{j,k}[F]=o_{\{j,\ldots,k\}}. ∎

The set Ω˙N\dot{\Omega}_{N} contains all elements of 2N+N(N1)/2\mathbb{C}^{2N+N(N-1)/2} lying outside of a locally finite arrangement of affine hyperplanes.

Consider F[x1,,xN]F\in\mathbb{C}[x_{1},\ldots,x_{N}]. Letting [F]d1,,dN[F]_{d_{1},\ldots,d_{N}} denote the coefficient of x1d1xNdNx_{1}^{d_{1}}\cdots x_{N}^{d_{N}} in FF, and letting 𝗋𝖾𝖿𝗅:(x1,,xN)(1x1,,1xN)\mathsf{refl}:(x_{1},\ldots,x_{N})\mapsto(1-x_{1},\ldots,1-x_{N}), we have

δj[F]\displaystyle\delta_{j}[F] =min{d1++dj:[F]d1,,dj,dj+1,,dN0 for some dj+1,,dN},\displaystyle=\min\{d_{1}+\cdots+d_{j}:[F]_{d_{1},\ldots,d_{j},d_{j+1},\ldots,d_{N}}\neq 0\text{ for some }d_{j+1},\ldots,d_{N}\in\mathbb{N}\}, (1.14)
δj[F]\displaystyle\text{\reflectbox{$\delta$}}_{j}[F] =min{dN++dN+1j:[F𝗋𝖾𝖿𝗅]d1,,dNj,dN+1j,,dN0 for some d1,,dNj}.\displaystyle=\min\{d_{N}+\cdots+d_{N+1-j}:[F\circ\mathsf{refl}]_{d_{1},\ldots,d_{N-j},d_{N+1-j},\ldots,d_{N}}\neq 0\text{ for some }d_{1},\ldots,d_{N-j}\in\mathbb{N}\}. (1.15)
Example.

The simplest case is when N=1N=1 and F=1F=1 identically, when the integral is given by

S1(α,β,γ)=B(α+1,β+1)=01xα(1x)βdx=Γ(1+α)Γ(1+β)Γ(2+α+β),S_{1}(\alpha,\beta,\gamma)=B(\alpha+1,\beta+1)=\int_{0}^{1}x^{\alpha}(1-x)^{\beta}\,\mathrm{d}x=\frac{\Gamma(1+\alpha)\Gamma(1+\beta)}{\Gamma(2+\alpha+\beta)}, (1.16)

defined initially for α,β>1\Re\alpha,\Re\beta>-1 via the definite integral and then extended meromorphically via the formula on the right-hand side above (or via another method). This is Euler’s β\beta-function. One method of meromorphic continuation involves the Pochhammer contour (a.k.a. Pochhammer double loop)

b1a1baπ1(\{0,1}),b^{-1}a^{-1}ba\in\pi_{1}(\mathbb{C}\backslash\{0,1\}), (1.17)

where a,ba,b are the generators of π1(\{0,1})\pi_{1}(\mathbb{C}\backslash\{0,1\}) corresponding to one (say, counterclockwise) circuit around each of 0,10,1 respectively.

011
Figure 1. The Pochhammer contour in \{0,1}\mathbb{C}\backslash\{0,1\}, up to homotopy.

Then, b1a1bab^{-1}a^{-1}ba can be lifted to a closed contour pp in the cover \mathcal{M} of \{0,1}\mathbb{C}\backslash\{0,1\} corresponding to the commutator subgroup of π1(\{0,1})\pi_{1}(\mathbb{C}\backslash\{0,1\}). Then, choosing the basepoint of pp appropriately,

B(α+1,β+1)=11e2πiα11e2πiβpxα(1x)βdx,B(\alpha+1,\beta+1)=\frac{1}{1-e^{-2\pi i\alpha}}\frac{1}{1-e^{-2\pi i\beta}}\int_{p}x^{\alpha}(1-x)^{\beta}\,\mathrm{d}x, (1.18)

where we are now considering xα(1x)βx^{\alpha}(1-x)^{\beta} as an analytic function on \mathcal{M}. The theorem above tells us that there exist entire S1;reg,()S_{1;\mathrm{reg},(\bullet\bullet)\bullet}, S1;reg,()S_{1;\mathrm{reg},\bullet(\bullet\bullet)} such that

B(α+1,β+1)=Γ(1+α)S1;reg,()(α,β)+Γ(1+β)S1;reg,()(α,β).B(\alpha+1,\beta+1)=\Gamma(1+\alpha)S_{1;\mathrm{reg},(\bullet\bullet)\bullet}(\alpha,\beta)+\Gamma(1+\beta)S_{1;\mathrm{reg},\bullet(\bullet\bullet)}(\alpha,\beta). (1.19)

This splitting is not so obvious from the formula B(α+1,β+1)=Γ(1+α)Γ(1+β)/Γ(2+α+β)B(\alpha+1,\beta+1)=\Gamma(1+\alpha)\Gamma(1+\beta)/\Gamma(2+\alpha+\beta). ∎

Example.

Now consider the case when N=2N=2 and F=1F=1. It can be computed that the Selberg-like integral is then

S2(𝜶,𝜷,𝜸)=Γ(1+α1)Γ(1+β2)Γ(2+2γ1,2+α1+α2)Γ(1+2γ1,2)Γ(2+α1+2γ1,2)Γ(3+α1+α2+β2+2γ1,2)F23(a,b;1),S_{2}(\bm{\alpha},\bm{\beta},\bm{\gamma})=\frac{\Gamma(1+\alpha_{1})\Gamma(1+\beta_{2})\Gamma(2+2\gamma_{1,2}+\alpha_{1}+\alpha_{2})\Gamma(1+2\gamma_{1,2})}{\Gamma(2+\alpha_{1}+2\gamma_{1,2})\Gamma(3+\alpha_{1}+\alpha_{2}+\beta_{2}+2\gamma_{1,2})}{}_{3}F_{2}(a,b;1), (1.20)

where a=(a1,a2,a3)=(1+α1,β1,2+2γ1,2+α1+α2)a=(a_{1},a_{2},a_{3})=(1+\alpha_{1},-\beta_{1},2+2\gamma_{1,2}+\alpha_{1}+\alpha_{2}) and b=(b1,b2)=(2+α1+2γ1,2,3+α1+α2+β2+2γ1,2)b=(b_{1},b_{2})=(2+\alpha_{1}+2\gamma_{1,2},3+\alpha_{1}+\alpha_{2}+\beta_{2}+2\gamma_{1,2}), where Fqp{}_{p}F_{q} denotes the generalized hypergeometric function. For N=2N=2, the theorem above reads

S2(𝜶,𝜷,𝜸)=Γ(1+α1)Γ(2+α1+α2+2γ1,2)S2;reg,(())(𝜶,𝜷,𝜸)+Γ(1+α1)Γ(1+β2)S2;reg,()()(𝜶,𝜷,𝜸)+Γ(1+β2)Γ(2+β1+β2+2γ1,2)S2;reg,(())(𝜶,𝜷,𝜸)+Γ(1+2γ1,2)Γ(2+β1+β2+2γ1,2)S2;reg,(())(𝜶,𝜷,𝜸)+Γ(1+2γ1,2)Γ(2+α1+α2+2γ1,2)S2;reg,(())(𝜶,𝜷,𝜸),S_{2}(\bm{\alpha},\bm{\beta},\bm{\gamma})=\Gamma(1+\alpha_{1})\Gamma(2+\alpha_{1}+\alpha_{2}+2\gamma_{1,2})S_{2;\mathrm{reg},((\bullet\bullet)\bullet)\bullet}(\bm{\alpha},\bm{\beta},\bm{\gamma})+\\ \Gamma(1+\alpha_{1})\Gamma(1+\beta_{2})S_{2;\mathrm{reg},(\bullet\bullet)(\bullet\bullet)}(\bm{\alpha},\bm{\beta},\bm{\gamma})+\Gamma(1+\beta_{2})\Gamma(2+\beta_{1}+\beta_{2}+2\gamma_{1,2})S_{2;\mathrm{reg},\bullet(\bullet(\bullet\bullet))}(\bm{\alpha},\bm{\beta},\bm{\gamma})\\ +\Gamma(1+2\gamma_{1,2})\Gamma(2+\beta_{1}+\beta_{2}+2\gamma_{1,2})S_{2;\mathrm{reg},\bullet((\bullet\bullet)\bullet)}(\bm{\alpha},\bm{\beta},\bm{\gamma})\\ +\Gamma(1+2\gamma_{1,2})\Gamma(2+\alpha_{1}+\alpha_{2}+2\gamma_{1,2})S_{2;\mathrm{reg},(\bullet(\bullet\bullet))\bullet}(\bm{\alpha},\bm{\beta},\bm{\gamma}), (1.21)

but once again this splitting is not so obvious from the exact formula eq. 1.20. This example is explored more in the appendix. ∎

The proof below is lower-brow than the twisted homological constructions of [KT86, §5][KT86a], Aomoto [Aom87], and others [TV03][War09], as it is based on the method described in [Var95, Chp. 10]. This involves the geometric analysis of the singularities of the Selberg(-like) integrand. The key observation is that if the NN-simplex is blown up to the NN-dimensional associahedron [Sta63][MSS02, §1.6][Pos09] (see Figure 2, Figure 6), then the Selberg integrand – which is not polyhomogeneous on N\triangle_{N} – becomes one-step polyhomogeneous (a.k.a “classical”) on the resolution. See §2 for details. This observation appears, in an essentially equivalent form (albeit with different terminology), already in [KT86][KT86a][MY03], though the term “associahedron” does not appear there. Closely related observations have appeared in the physics literature [Miz17][CKW18][CMT19][Miz20].

The application of polyhomogeneity to the proof of the theorem above is given in §3. The classicality of the lift of the Selberg integrand on the associahedron allows us to reduce the problem to what is essentially a product of one-dimensional cases. The faces of the associahedron are in bijective correspondence with the quantities defined in eq. 1.5, eq. 1.6. The correspondence is depicted in Figure 2 in the case N=3N=3.

α1+α2+α3+2γ1,2+2γ1,3+2γ2,3\alpha_{1}+\alpha_{2}+\alpha_{3}+2\gamma_{1,2}+2\gamma_{1,3}+2\gamma_{2,3}2γ2,32\gamma_{2,3}α1+α2+2γ1,2\alpha_{1}+\alpha_{2}+2\gamma_{1,2}2γ1,2+2γ1,3+2γ2,32\gamma_{1,2}+2\gamma_{1,3}+2\gamma_{2,3}α1\alpha_{1}2γ1,22\gamma_{1,2}β1+β2+β3+2γ1,2+2γ1,3+2γ2,3\beta_{1}+\beta_{2}+\beta_{3}+2\gamma_{1,2}+2\gamma_{1,3}+2\gamma_{2,3}β3\beta_{3}β2+β3+2γ2,3\beta_{2}+\beta_{3}+2\gamma_{2,3}
Figure 2. The 3-dimensional associahedron, with its faces labeled by the associated functions in eq. 1.5, eq. 1.6. The C4=14C_{4}=14 vertices are in correspondence with the 14 elements 𝚃(3)\mathtt{T}(3).

The quantities αj,,βj,,γj,k,\alpha_{j,*},\beta_{j,*},\gamma_{j,k,*} are the orders of the Selberg integrand at the corresponding faces. Each 𝙸𝚃(N)\mathtt{I}\in\mathtt{T}(N) is associated with a minimal facet of the associahedron, and the 𝙸\mathcal{I}\in\mathtt{I} are associated with the faces containing that facet. Thus, we have a geometric interpretation of each of the terms in eq. 1.11.

The theorem cannot be sharpened while maintaining generality. Indeed, the proof of the theorem shows that if F>0F>0 everywhere in N\triangle_{N} (including the boundary), then

SN;reg[F](𝜶,𝜷,𝜸)0S_{N;\mathrm{reg}}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})\neq 0 (1.22)

for any (𝜶,𝜷,𝜸)2N+N(N1)/2(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\mathbb{R}^{2N+N(N-1)/2} for which both of

  • γj,k,(kj)\gamma_{j,k,*}\in\mathbb{Z}^{\leq-(k-j)} for precisely one pair of j,k{0,,N+1}j,k\in\{0,\ldots,N+1\} with j<kj<k,

  • γj,k,>(kj)\gamma_{j,k,*}>-(k-j) for all other j,kj,k

hold, as for such (𝜶,𝜷,𝜸)(\bm{\alpha},\bm{\beta},\bm{\gamma}) the quantity SN;reg[F](𝜶,𝜷,𝜸)S_{N;\mathrm{reg}}[F](\bm{\alpha},\bm{\beta},\bm{\gamma}) is proportional to a convergent integral of a positive integrand over the corresponding face of the associahedron. Consequently, SN[F]:ΩNS_{N}[F]:\Omega_{N}\to\mathbb{C} cannot be analytically continued to the complement of any strictly smaller collection of hyperplanes than that in eq. 1.13.

However, for the desired application, we do not need full generality. Of special importance is the case when 𝜶,𝜷,𝜸\bm{\alpha},\bm{\beta},\bm{\gamma} are each “constant,” meaning that, for some α,β,γ\alpha,\beta,\gamma\in\mathbb{C},

  • αi=α\alpha_{i}=\alpha and βi=β\beta_{i}=\beta for all i{1,,N}i\in\{1,\ldots,N\}, and

  • γj,k=γ\gamma_{j,k}=\gamma for all j,k{1,,N}j,k\in\{1,\ldots,N\} with j<kj<k.

In this case, we simply write

SN[F](α,β,γ)=NF(x1,,xN)j=1Nxjα(1xj)β1j<kN(xkxj)2γdx1dxN.S_{N}[F](\alpha,\beta,\gamma)=\int_{\triangle_{N}}F(x_{1},\ldots,x_{N})\prod_{j=1}^{N}x_{j}^{\alpha}(1-x_{j})^{\beta}\prod_{1\leq j<k\leq N}(x_{k}-x_{j})^{2\gamma}\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{N}. (1.23)

We now consider F[x1,,xN]𝔖NF\in\mathbb{C}[x_{1},\ldots,x_{N}]^{\mathfrak{S}_{N}}, i.e. symmetric polynomial FF. This case includes, of course, Selberg’s original example, in which F=1F=1, as well as the 3-point coefficients of the (1,s)(1,s)- and (r,1)(r,1)-primary fields and their descendants in the BPZ minimal models. It also includes certain Selberg-like integrals considered by Aomoto [Aom87], Kadell [Kad97, Kad93], and others [Alb+11]. The computation of such integrals is listed as an open problem in [KT86].

Below, we will introduce a more general notion of “DF-symmetric” Selberg-like integrals, this including the other 3-point coefficients. For the purposes of an introductory discussion we focus on the – already interesting – symmetric case.

The integral eq. 1.23 is defined initially on the subset UN[F]α,β,γ3U_{N}[F]\subset\mathbb{C}^{3}_{\alpha,\beta,\gamma} given by

UN[F]={(α,β,γ)3:j(α+(j1)γ)>1δj[F] and j(β+(j1)γ)>1δj[F] for all j{1,,N}, and γ>1N1},U_{N}[F]=\Big{\{}(\alpha,\beta,\gamma)\in\mathbb{C}^{3}:\Re j(\alpha+(j-1)\gamma)>-1-\delta_{j}[F]\text{ and }\\ \Re j(\beta+(j-1)\gamma)>-1-\text{\reflectbox{$\delta$}}_{j}[F]\text{ for all $j\in\{1,\ldots,N\}$, and }\Re\gamma>-\frac{1}{N-1}\Big{\}}, (1.24)

which contains

UN=UN[1]={(α,β,γ)3:min{α,β}+min{0,(N1)γ}>1 and γ>1N1}.U_{N}=U_{N}[1]=\Big{\{}(\alpha,\beta,\gamma)\in\mathbb{C}^{3}:\min\{\Re\alpha,\Re\beta\}+\min\{0,(N-1)\gamma\}>-1\text{ and }\Re\gamma>-\frac{1}{N-1}\Big{\}}. (1.25)

An immediate corollary of the theorem above is that the function SN[F]:UN[F]S_{N}[F]:U_{N}[F]\to\mathbb{C} defined by eq. 1.23 admits an analytic continuation S˙N[F](α,β,γ):U˙N[F]\dot{S}_{N}[F](\alpha,\beta,\gamma):\dot{U}_{N}[F]\to\mathbb{C} to the domain U˙N[F]UN[F]\dot{U}_{N}[F]\supsetneq U_{N}[F] given by

U˙N[F]=α,β,γ3\[(j=1N{j(α+(j1)γ)jδj})(j=1N{j(β+(j1)γ)jδj})(j=1N1{j(j+1)γj})].\dot{U}_{N}[F]=\mathbb{C}^{3}_{\alpha,\beta,\gamma}\Big{\backslash}\Big{[}\Big{(}\bigcup_{j=1}^{N}\{j(\alpha+(j-1)\gamma)\in\mathbb{Z}^{\leq-j-\delta_{j}}\}\Big{)}\cup\Big{(}\bigcup_{j=1}^{N}\{j(\beta+(j-1)\gamma)\in\mathbb{Z}^{\leq-j-\text{\reflectbox{$\delta$}}_{j}}\}\Big{)}\\ \cup\Big{(}\bigcup_{j=1}^{N-1}\{j(j+1)\gamma\in\mathbb{Z}^{-j}\}\Big{)}\Big{]}. (1.26)
Example.

Consider F=1F=1, i.e. the Selberg integral. In this case, Selberg proved in [Sel44] that SN(α,β,γ)=SN[1](α,β,γ)S_{N}(\alpha,\beta,\gamma)=S_{N}[1](\alpha,\beta,\gamma) is given by

SN(α,β,γ)=1N!j=1NΓ(1+α+(j1)γ)Γ(1+β+(j1)γ)Γ(1+jγ)Γ(2+α+β+(N+j2)γ)Γ(1+γ).S_{N}(\alpha,\beta,\gamma)=\frac{1}{N!}\prod_{j=1}^{N}\frac{\Gamma(1+\alpha+(j-1)\gamma)\Gamma(1+\beta+(j-1)\gamma)\Gamma(1+j\gamma)}{\Gamma(2+\alpha+\beta+(N+j-2)\gamma)\Gamma(1+\gamma)}. (1.27)

See [FW08] for a review of the history of this result. ∎

The example of the Selberg integral suggests that, in the symmetric case, eq. 1.26 is not the maximal domain of analyticity. Set

degj[F]=max{d1++dj:[F]d1,,dj,dj+1,,dN0 for some dj+1,,dN}.\deg_{j}[F]=\max\{d_{1}+\cdots+d_{j}:[F]_{d_{1},\ldots,d_{j},d_{j+1},\ldots,d_{N}}\neq 0\text{ for some }d_{j+1},\ldots,d_{N}\in\mathbb{N}\}. (1.28)

(Since FF is symmetric, degj[F]=degj[F𝗋𝖾𝖿𝗅]\deg_{j}[F]=\deg_{j}[F\circ\mathsf{refl}].) Then:

Theorem 1.2.

For any F[x1,,xN]𝔖NF\in\mathbb{C}[x_{1},\ldots,x_{N}]^{\mathfrak{S}_{N}}, there exists an entire function SN;Reg[F]:α,β,γ3S_{N;\mathrm{Reg}}[F]:\mathbb{C}^{3}_{\alpha,\beta,\gamma}\to\mathbb{C} such that

SN[F](α,β,γ)=[j=1NΓ(1+δ¯j+α+(j1)γ)Γ(1+δ¯j+β+(j1)γ)Γ(1+jγ)Γ(2+d¯j+α+β+(N+j2)γ)Γ(1+γ)]×SN;Reg[F](α,β,γ)S_{N}[F](\alpha,\beta,\gamma)=\Big{[}\prod_{j=1}^{N}\frac{\Gamma(1+\bar{\delta}_{j}+\alpha+(j-1)\gamma)\Gamma(1+\bar{\text{\reflectbox{$\delta$}}}_{j}+\beta+(j-1)\gamma)\Gamma(1+j\gamma)}{\Gamma(2+\bar{d}_{j}+\alpha+\beta+(N+j-2)\gamma)\Gamma(1+\gamma)}\Big{]}\\ \times S_{N;\mathrm{Reg}}[F](\alpha,\beta,\gamma) (1.29)

for all (α,β,γ)UN(\alpha,\beta,\gamma)\in U_{N}, where δ¯j=j1δj[F]\bar{\delta}_{j}=\lceil j^{-1}\delta_{j}[F]\rceil, δ¯j=j1δj[F]\bar{\text{\reflectbox{$\delta$}}}_{j}=\lceil j^{-1}\text{\reflectbox{$\delta$}}_{j}[F]\rceil, and d¯j=(Nj+1)1degj[F]\bar{d}_{j}=\lfloor(N-j+1)^{-1}\deg_{j}[F]\rfloor for each j{1,,N}j\in\{1,\ldots,N\}. ∎

Thus, SN[F](α,β,γ)S_{N}[F](\alpha,\beta,\gamma) admits an analytic continuation S̊N[F](α,β,γ):ŮN[F]\mathring{S}_{N}[F](\alpha,\beta,\gamma):\mathring{U}_{N}[F]\to\mathbb{C} to the domain ŮN[F]U˙N[F]\mathring{U}_{N}[F]\supsetneq\dot{U}_{N}[F] defined by

ŮN[F]=α,β,γ3\[(j=1N{α+δ¯j+(j1)γ1})(j=1N{β+δ¯j+(j1)γ1})(j=1N1{(j+1)γ1,γ})].\displaystyle\begin{split}\mathring{U}_{N}[F]=\mathbb{C}^{3}_{\alpha,\beta,\gamma}\Big{\backslash}\Big{[}&\Big{(}\bigcup_{j=1}^{N}\{\alpha+\bar{\delta}_{j}+(j-1)\gamma\in\mathbb{Z}^{\leq-1}\}\Big{)}\cup\\ &\Big{(}\bigcup_{j=1}^{N}\{\beta+\bar{\text{\reflectbox{$\delta$}}}_{j}+(j-1)\gamma\in\mathbb{Z}^{\leq-1}\}\Big{)}\cup\Big{(}\bigcup_{j=1}^{N-1}\{(j+1)\gamma\in\mathbb{Z}^{\leq-1},\gamma\notin\mathbb{Z}\}\Big{)}\Big{]}.\end{split} (1.30)

Observe that eq. 1.30 allows γ=1\gamma=-1.

In the case of the original Selberg integral, 1.2 describes precisely the singularities and zeroes of the meromorphic continuation of the original integral, and SN;Reg=SN;Reg[1]S_{N;\mathrm{Reg}}=S_{N;\mathrm{Reg}}[1] is just constant. The functions S2[F]S_{2}[F] and S2;Reg[F]S_{2;\mathrm{Reg}}[F] are explored in §A.

The proof of the theorem above consists of several steps:

  1. (1)

    The first step is the removal of the fictitious singularities of S˙N[F](α,β,γ)\dot{S}_{N}[F](\alpha,\beta,\gamma) only in γ\gamma (as required e.g. in the Coulomb gas formalism with both kinds of screening charges).

    The basic idea is to employ the relation – which can be found in a heuristic form in [DF85, Ap. A] – between the symmetrization of SN[F](𝜶,𝜷,𝜸)S_{N}[F](\bm{\alpha},\bm{\beta},\bm{\gamma}) and the “DF-like” integral

    IN[F](𝜶,𝜷,𝜸)=N[j=1Nxjαj(1xj)βj]×[1j<kN(xkxj+i0)2γj,k]Fdx1dxN,\qquad\qquad I_{N}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=\int_{\square_{N}}\Big{[}\prod_{j=1}^{N}x_{j}^{\alpha_{j}}(1-x_{j})^{\beta_{j}}\Big{]}\\ \times\Big{[}\prod_{1\leq j<k\leq N}(x_{k}-x_{j}+i0)^{2\gamma_{j,k}}\Big{]}F\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{N}, (1.31)

    where N=[0,1]N\square_{N}=[0,1]^{N}. We can analytically continue IN[F]I_{N}[F] via an argument similar to that used to prove 1.1. Unlike that of SN[F](𝜶,𝜷,𝜸)S_{N}[F](\bm{\alpha},\bm{\beta},\bm{\gamma}), this extension has no singularities associated with hyperplanes of constant γ\gamma. The true singularities of the extension of SN[F](α,β,γ)S_{N}[F](\alpha,\beta,\gamma) associated with hyperplanes of constant γ\gamma show up in the relation with the extension of IN[F](α,β,γ)I_{N}[F](\alpha,\beta,\gamma).

  2. (2)

    The second step removes the other unwanted singularities away from the loci of two or more unwanted singularities, via some identities proven via Aomoto [Aom87] in the F=1F=1 case (and [DF85, Ap. A], at a physicist’s level of rigor). The use of these identities for computing the original Selberg integral is sketched in [FW08]. It seems there cannot be a similar computation of SN[F]S_{N}[F] in the degF>1\deg F>1 case, so a statement about the singularities is the best we can do.

    The simplex NN\triangle_{N}\subset\mathbb{R}^{N} can be thought of as a subset of

    (\{0,1})N=(P1\{0,1,})N(\mathbb{C}\backslash\{0,1\})^{N}=(\mathbb{C}P^{1}\backslash\{0,1,\infty\})^{N} (1.32)

    via the embedding P1\mathbb{R}\hookrightarrow\mathbb{C}\hookrightarrow\mathbb{C}P^{1}, and the rough idea of this step of the proof is to relate the integrals above to the result of replacing N\triangle_{N} with LNNL^{\boxtimes N}\triangle_{N} for LL one of the six linear fractional transformations preserving P1\{0,1,}\mathbb{C}P^{1}\backslash\{0,1,\infty\}. Only three of these are essentially different, and one of these three is just the identity and therefore uninteresting. The other two integrals each have meromorphic extensions with different manifest singularities. Using 4.2, these functions can be related to each other, and this can be used to remove most of the apparent singularities that are not present in all three functions. Some singularities are present in the relations between the integrals, and these cannot be removed.

    Once this has been done, the final step is the application of Hartog’s theorem to remove the remaining removable singularities, which now lie on a codimension two subvariety of 3\mathbb{C}^{3}.

This argument is carried out in §4.1. The version more relevant to [DF85] (with the additional steps needed) is in §4.2.

We call IN[F]I_{N}[F] a “DF-like” integral because similar integrals appear, albeit at a somewhat formal level, in [DF85]. A similar construction appears in [Fel89].

Let Σ𝚃(N)\Sigma\mathtt{T}(N) denote the collection of maximal collections 𝙸\mathtt{I} of pairs (x0,S)(x_{0},S) of x0{0,1}x_{0}\in\{0,1\} and nonempty subsets S{1,,N}S\subseteq\{1,\ldots,N\} such that, given (x0,S),(x0,Q)𝙸(x_{0},S),(x_{0},Q)\in\mathtt{I}, either SQS\subseteq Q or QSQ\subseteq S.

Theorem 1.3.

There exist entire functions IN;reg,𝙸[F]:𝛂,𝛃,𝛄2N+N(N1)/2I_{N;\mathrm{reg},\mathtt{I}}[F]:\mathbb{C}^{2N+N(N-1)/2}_{\bm{\alpha},\bm{\beta},\bm{\gamma}}\to\mathbb{C} associated to the 𝙸Σ𝚃(N)\mathtt{I}\in\Sigma\mathtt{T}(N) such that

IN[F](𝜶,𝜷,𝜸)=𝙸Σ𝚃(N)[(1,S)𝙸Γ(|S|+jSβj+2j,kS,j<kγj,k)]×[(0,S)𝙸Γ(|S|+jSαj+2j,kS,j<kγj,k)]IN;reg,𝙸[F](𝜶,𝜷,𝜸)I_{N}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=\sum_{\mathtt{I}\in\Sigma\mathtt{T}(N)}\Big{[}\prod_{(1,S)\in\mathtt{I}}\Gamma\Big{(}|S|+\sum_{j\in S}\beta_{j}+2\sum_{j,k\in S,j<k}\gamma_{j,k}\Big{)}\Big{]}\\ \times\Big{[}\prod_{(0,S)\in\mathtt{I}}\Gamma\Big{(}|S|+\sum_{j\in S}\alpha_{j}+2\sum_{j,k\in S,j<k}\gamma_{j,k}\Big{)}\Big{]}I_{N;\mathrm{reg},\mathtt{I}}[F](\bm{\alpha},\bm{\beta},\bm{\gamma}) (1.33)

for all (𝛂,𝛃,𝛄)(\bm{\alpha},\bm{\beta},\bm{\gamma}) for which the left-hand side is a well-defined integral. ∎

In particular, IN[F](𝜶,𝜷,𝜸)I_{N}[F](\bm{\alpha},\bm{\beta},\bm{\gamma}) admits an analytic extension I˙N[F](𝜶,𝜷,𝜸)\dot{I}_{N}[F](\bm{\alpha},\bm{\beta},\bm{\gamma}) to an open, dense set

V˙N=𝜶,𝜷,𝜸2N+N(N1)/2\[(S{1,,N}{αS,|S|})(S{1,,N}{βS,|S|})].\dot{V}_{N}=\mathbb{C}_{\bm{\alpha},\bm{\beta},\bm{\gamma}}^{2N+N(N-1)/2}\Big{\backslash}\Big{[}\Big{(}\bigcup_{S\subseteq\{1,\ldots,N\}}\{\alpha_{S,*}\in\mathbb{Z}^{\leq-|S|}\}\Big{)}\cup\Big{(}\bigcup_{S\subseteq\{1,\ldots,N\}}\{\beta_{S,*}\in\mathbb{Z}^{\leq-|S|}\}\Big{)}\Big{]}. (1.34)

1.1. Some comments on the Coulomb gas formalism

Here, we discuss a particular application to the Coulomb gas formalism (a.k.a. “free field realization,” “Feigin–Fuchs representation,” etcetera) of 2D CFT [DF84][DF85][DF85a][FS89][PFM97, Chp. 9][FW08]. This approach of Dotsenko–Fateev to the construction of the “minimal models” of Belavin–Polyakov–Zamolodchikov (BPZ) [BPZ84] has been the subject of substantial interest, but it appears that it has not yet been placed on entirely rigorous mathematical footing. The construction in [FS89][FS92] of the 3-point coefficients of the (1,s)(1,s)- and (r,1)(r,1)-primary fields and their descendants in the minimal models is satisfactorily rigorous, but it has remained an open problem to handle the rest of the primary fields at a similarly satisfactory degree of rigor. From our perspective, the issue is an insufficient treatment of the meromorphic continuation of Selberg-like integrals, which are instead treated somewhat formally in the original works.

The issue is that Dotsenko & Fateev (DF) take some of the γ\gamma’s to be 1-1 — see e.g. [DF85, Appendix A][FS92, p. 27][FW08, §2] — and then the integrand above is, say for F=1F=1, no longer integrable over the integral’s domain. As a consequence, the integrals in [DF85, Appendix A] are formal. Dotsenko & Fateev suggest making sense of them via meromorphic continuation in the exponents of the integrand, but they do not prove that a suitable meromorphic continuation exists, nor do they discuss the singularities of the extension in sufficient detail to justify their manipulations. Here, we have constructed a suitable extension and analyzed its singularities in detail.

The reason why it is necessary to take some of the γ\gamma’s to be 1-1 is that, for fixed central charge, there are two sorts of vertex operators Vα±V_{\alpha_{\pm}} used in screening operators. Both are necessary to produce all solutions of the BPZ equations. The relevant vertex operators are those of conformal weights h±=1h_{\pm}=1. If the central charge is cc, the two screening charges have conformal weights given in terms of α±\alpha_{\pm} by

h±=α±22α±α0,h_{\pm}=\alpha_{\pm}^{2}-2\alpha_{\pm}\alpha_{0}, (1.35)

according to the conventions in [PFM97, §9.2.1], where c=124α02c=1-24\alpha_{0}^{2}, so, by Vieta, αα+=1\alpha_{-}\alpha_{+}=-1. The correlation functions involving these screening charges are Dotsenko–Fateev integrals with γj,k=αα+=1\gamma_{j,k}=\alpha_{-}\alpha_{+}=-1, as follows from the commutation properties of vertex operators. See [PFM97, §9] for further exposition.

A construction of Kanie–Tsuchiya [KT86][KT86a], rediscovered by Mimachi–Yoshida [MY04, MY03][Yos03], yields the existence of some meromorphic continuation defined for almost all values of the exponents. This extension is not quite sufficient for our purposes: it has removable singularities that, while removable, are nontrivial to actually prove removable. In particular, the Kanie–Tsuchiya construction has an apparent isolated singularity at γ=1\gamma=-1 (see [KT86a, §5, above Thm. 5]), along with at a few other problematic affine hyperplanes in the space of possible parameters. One of the advantageous features of the meromorphic continuation here is that it lacks these problematic apparent singularities and therefore applies to the cases considered in the physics literature.

Most of the rigorous work on the analysis of integrals of Dotsenko–Fateev type — see e.g.  [FK15][FK15a][FK15b][FK15c][LV19] for some recent work — focuses on screened multipoint correlation functions with at most one screening charge screening per insertion point. Such integrals are related to the N=1N=1 case of SN(𝜶,𝜷,𝜸)S_{N}(\bm{\alpha},\bm{\beta},\bm{\gamma}). Not much has been done about the N>1N>1 case. Moreover, while a fair amount of work has gone into the study of general hypergeometric integrals associated to hyperplane arrangements — the literature on this topic is large, so we just cite [Var95][AK11] — it does not seem possible to deduce the specific, concrete results below from results in the current literature.

Note that Ω˙N=Ω˙N[1]\dot{\Omega}_{N}=\dot{\Omega}_{N}[1], as defined in eq. 1.13, does not contain (𝜶,𝜷,𝜸)(\bm{\alpha},\bm{\beta},\bm{\gamma}) with γj,k=1\gamma_{j,k}=-1 for |jk|=1|j-k|=1, so 1.1 is insufficient for the construction of the BPZ minimal models. This is one of the motivations for proving the sharper theorems above.

The Γ(2+d¯j+α+β+(N+j2)γ)\Gamma(2+\bar{d}_{j}+\alpha+\beta+(N+j-2)\gamma) term in the denominator of eq. 1.29 implies that S̊N[F](α,β,γ)=0\mathring{S}_{N}[F](\alpha,\beta,\gamma)=0 for all

(α,β,γ)ŮN[F]{α+β+(N+j2)γ2d¯j for some j{1,,N}}.(\alpha,\beta,\gamma)\in\mathring{U}_{N}[F]\cap\{\alpha+\beta+(N+j-2)\gamma\in\mathbb{Z}^{\leq-2-\bar{d}_{j}}\text{ for some }j\in\{1,\ldots,N\}\}. (1.36)

When constructing the 3-point coefficients of the BPZ minimal models, this is one mechanism preventing the fusion of (0,s)(0,s)-primary fields (which are not included in the model) with the primary fields that are included. In BPZ’s terminology, this is the truncation of the operator algebras, as originally argued for on the basis of the constraint of OPE associativity — see [BPZ84, §6][PFM97, Chp. 7.3.2].

For the full application to [DF84, DF85], we use the following notion of “DF-symmetric” polynomials. Given λ\lambda\in\mathbb{C} and 𝚂{1,,N}\mathtt{S}\subseteq\{1,\ldots,N\}, let DFSym(N,𝚂,λ)\operatorname{DFSym}(N,\mathtt{S},\lambda) denote the set of F[x1,x11,,xN,xN1]F\in\mathbb{C}[x_{1},x_{1}^{-1},\ldots,x_{N},x_{N}^{-1}] such that:

  • given any σ𝔖N\sigma\in\mathfrak{S}_{N} such that σ:𝚂𝚂\sigma:\mathtt{S}\to\mathtt{S}, i.e. in the Young subgroup associated to 𝚂\mathtt{S},

    F=FσF=F\circ\sigma (1.37)

    where we are identifying σ\sigma with the map N{xi}i=1N{xσ(i)}i=1NN\mathbb{C}^{N}\ni\{x_{i}\}_{i=1}^{N}\to\{x_{\sigma(i)}\}_{i=1}^{N}\in\mathbb{C}^{N}, and

  • for any j𝚂j\in\mathtt{S} and k{1,,N}\𝚂k\in\{1,\ldots,N\}\backslash\mathtt{S},

    λ(xjF)|xj=xk=xk(F|xj=xk)[x1,x11,x^j,x^j1,xN].\lambda\Big{(}\frac{\partial}{\partial x_{j}}F\Big{)}\Big{|}_{x_{j}=x_{k}}=\frac{\partial}{\partial x_{k}}\Big{(}F\Big{|}_{x_{j}=x_{k}}\Big{)}\in\mathbb{C}[x_{1},x_{1}^{-1}\ldots,\hat{x}_{j},\hat{x}_{j}^{-1}\ldots,x_{N}]. (1.38)

In particular, DFSym(N,{1,,N},λ)=[x1,x11,,xN,xN1]𝔖N\operatorname{DFSym}(N,\{1,\ldots,N\},\lambda)=\mathbb{C}[x_{1},x_{1}^{-1},\ldots,x_{N},x_{N}^{-1}]^{\mathfrak{S}_{N}}, so in this sense DF-symmetry is a generalization of ordinary symmetry. Our disallowal of Laurent polynomials FF in the symmetric case was without loss of generality, as, were FF Laurent, we could shuffle factors of x1xNx_{1}\cdots x_{N} between the polynomial and the rest of the Selberg integrand. However, it is useful here to allow general Laurent polynomials.

For each λ\lambda and 𝚂\mathtt{S}, DFSym(N,𝚂,λ)\operatorname{DFSym}(N,\mathtt{S},\lambda) is a (unital) \mathbb{C}-subalgebra of [x1,x11,xN,xN1]\mathbb{C}[x_{1},x_{1}^{-1}\ldots,x_{N},x_{N}^{-1}]. It is nontrivial. If 𝚂\mathtt{S} is a proper subset of {1,,N}\{1,\ldots,N\}, then

λj𝚂xj+λ+k{1,,N}\𝚂xkDFSym(N,𝚂,λ),λj𝚂1xj+λ+k{1,,N}\𝚂1xkDFSym(N,𝚂,λ)\displaystyle\begin{split}\lambda_{-}\sum_{j\in\mathtt{S}}x_{j}+\lambda_{+}\sum_{k\in\{1,\ldots,N\}\backslash\mathtt{S}}x_{k}&\in\operatorname{DFSym}(N,\mathtt{S},\lambda),\\ \lambda_{-}\sum_{j\in\mathtt{S}}\frac{1}{x_{j}}+\lambda_{+}\sum_{k\in\{1,\ldots,N\}\backslash\mathtt{S}}\frac{1}{x_{k}}&\in\operatorname{DFSym}(N,\mathtt{S},\lambda)\end{split} (1.39)

is a nonzero member for λ+\lambda_{+} defined by λ1(λ+λ+)=λ\lambda_{-}^{-1}(\lambda_{-}+\lambda_{+})=\lambda, so DFSym(N,𝚂,λ)\operatorname{DFSym}(N,\mathtt{S},\lambda) contains polynomials of all degrees.

The key method of constructing DF-symmetric Laurent polynomials is the following:

Example.

For any M+M\in\mathbb{N}^{+} and matrix-valued polynomials φ,ψxM×M[x]\varphi,\psi\in x\mathbb{C}^{M\times M}[x] such that the coefficients of φ\varphi are strictly upper-triangular, the coefficients of ψ\psi are strictly lower-triangular. Suppose that the AA’s all commute with each other and that the BB’s all commute with each other. (We do not assume that the AA’s commute with the BB’s.) Then, the matrix elements of

exp(λj𝚂ψ(xj1)+λ+k{1,,N}\𝚂ψ(xk1))exp(λj𝚂φ(xj)+λ+k{1,,N}\𝚂φ(xk))\exp\Big{(}\lambda_{-}\sum_{j\in\mathtt{S}}\psi(x_{j}^{-1})+\lambda_{+}\sum_{k\in\{1,\ldots,N\}\backslash\mathtt{S}}\psi(x_{k}^{-1})\Big{)}\exp\Big{(}\lambda_{-}\sum_{j\in\mathtt{S}}\varphi(x_{j})+\lambda_{+}\sum_{k\in\{1,\ldots,N\}\backslash\mathtt{S}}\varphi(x_{k})\Big{)} (1.40)

lie in DFSym(N,𝚂,λ)\operatorname{DFSym}(N,\mathtt{S},\lambda), where λ=λ1(λ+λ+)\lambda=\lambda_{-}^{-1}(\lambda_{-}+\lambda_{+}). The vertex operators which Dotsenko and Fateev integrate to define the minimal model 3-point coefficients have this form up to some scalar factors which are part of the Selberg integrand. In this example, the coefficients of φ\varphi are annihilation operations on some Fock space, and the coefficients of ψ\psi are creation operators, with all operators truncated to some finite dimensional subspace of the Fock space. That the creation operators in eq. 1.40 are all to the left of the annihilation operators is normal ordering.

See [DF84][KT86a][KT86][Fel89][PFM97, Chp. 9]. ∎

For a set 𝚂{1,,N}\mathtt{S}\subseteq\{1,\ldots,N\} and α±,β±,γ±,γ0\alpha_{\pm},\beta_{\pm},\gamma_{\pm},\gamma_{0}\in\mathbb{C}, let 𝜶DF0,𝚂\bm{\alpha}^{\mathrm{DF0},\mathtt{S}}, 𝜷DF0,𝚂N\bm{\beta}^{\mathrm{DF0},\mathtt{S}}\in\mathbb{C}^{N} be given by

αj={α+(j𝚂),α(j𝚂),βj={β+(j𝚂),β(j𝚂),\displaystyle\begin{split}\alpha_{j}&=\begin{cases}\alpha_{+}&(j\in\mathtt{S}),\\ \alpha_{-}&(j\notin\mathtt{S}),\end{cases}\\ \beta_{j}&=\begin{cases}\beta_{+}&(j\in\mathtt{S}),\\ \beta_{-}&(j\notin\mathtt{S}),\end{cases}\end{split} (1.41)

and let 𝜸DF0,𝚂N(N1)/2\bm{\gamma}^{\mathrm{DF0},\mathtt{S}}\in\mathbb{C}^{N(N-1)/2} be given by

γj,k\displaystyle\gamma_{j,k} ={γ+(j,k𝚂),γ0(j𝚂,k𝚂 or vice versa),γ(j,k𝚂).\displaystyle=\begin{cases}\gamma_{+}&(j,k\in\mathtt{S}),\\ \gamma_{0}&(j\in\mathtt{S},k\notin\mathtt{S}\text{ or vice versa}),\\ \gamma_{-}&(j,k\notin\mathtt{S}).\end{cases} (1.42)

Let

W˙NDF0,𝚂[F]={(α,α+,β,β+,γ,γ0,γ+)7:(𝜶DF0,𝚂,𝜷DF0,𝚂,𝜸DF0,𝚂)V˙N[F]},\dot{W}_{N}^{\mathrm{DF0},\mathtt{S}}[F]=\{(\alpha_{-},\alpha_{+},\beta_{-},\beta_{+},\gamma_{-},\gamma_{0},\gamma_{+})\in\mathbb{C}^{7}:(\bm{\alpha}^{\mathrm{DF0},\mathtt{S}},\bm{\beta}^{\mathrm{DF0},\mathtt{S}},\bm{\gamma}^{\mathrm{DF0},\mathtt{S}})\in\dot{V}_{N}[F]\}, (1.43)

where V˙N[F]\dot{V}_{N}[F] is defined by eq. 1.34. Define, for (α,α+,β,β+,γ,γ0,γ+)W˙NDF0,𝚂[F](\alpha_{-},\alpha_{+},\beta_{-},\beta_{+},\gamma_{-},\gamma_{0},\gamma_{+})\in\dot{W}_{N}^{\mathrm{DF0},\mathtt{S}}[F],

I˙NDF0,𝚂[F](α,α+,β,β+,γ,γ0,γ+)=I˙N[F](𝜶DF0,𝚂,𝜷DF0,𝚂,𝜸DF0,𝚂).\dot{I}_{N}^{\mathrm{DF0},\mathtt{S}}[F](\alpha_{-},\alpha_{+},\beta_{-},\beta_{+},\gamma_{-},\gamma_{0},\gamma_{+})=\dot{I}_{N}[F](\bm{\alpha}^{\mathrm{DF0},\mathtt{S}},\bm{\beta}^{\mathrm{DF0},\mathtt{S}},\bm{\gamma}^{\mathrm{DF0},\mathtt{S}}). (1.44)

Now let W˙NDF,𝚂[F]\dot{W}_{N}^{\mathrm{DF},\mathtt{S}}[F] denote the set of (α+,β+,γ+)3(\alpha_{+},\beta_{+},\gamma_{+})\in\mathbb{C}^{3} such that γ+0\gamma_{+}\neq 0 and, setting

γ=γ+1,α=γα+,β=γβ+\gamma_{-}=\gamma_{+}^{-1},\quad\alpha_{-}=-\gamma_{-}\alpha_{+},\quad\beta_{-}=-\gamma_{-}\beta_{+} (1.45)

— cf. [DF85, eq. A.2] — it is the case that (α,α+,β,β+,γ,1,γ+)W˙NDF0,𝚂[F](\alpha_{-},\alpha_{+},\beta_{-},\beta_{+},\gamma_{-},-1,\gamma_{+})\in\dot{W}_{N}^{\mathrm{DF0},\mathtt{S}}[F]. This is an open and dense subset of 3\mathbb{C}^{3}. Let

I˙NDF,𝚂[F](α+,β+,γ+)=I˙NDF0,𝚂[F](γ+1α+,α+,γ+1β+,β+,γ+1,1,γ+).\dot{I}_{N}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})=\dot{I}_{N}^{\mathrm{DF0},\mathtt{S}}[F](-\gamma_{+}^{-1}\alpha_{+},\alpha_{+},-\gamma_{+}^{-1}\beta_{+},\beta_{+},\gamma_{+}^{-1},-1,\gamma_{+}). (1.46)

for (α+,β+,γ+)W˙NDF,𝚂[F](\alpha_{+},\beta_{+},\gamma_{+})\in\dot{W}_{N}^{\mathrm{DF},\mathtt{S}}[F]. Set N+=|𝚂|N_{+}=|\mathtt{S}| and N=NN+N_{-}=N-N_{+}.

Theorem 1.4.

Fix γ+\{0,1}\gamma_{+}\in\mathbb{C}\backslash\{0,1\} and 𝚂{1,,N}\mathtt{S}\subseteq\{1,\ldots,N\}. Suppose that

FDFSym(N,𝚂,γ+1(1γ+)).F\in\operatorname{DFSym}(N,\mathtt{S},\gamma_{+}^{-1}(1-\gamma_{+})). (1.47)

Then, there exists an entire function IN;RegDF,𝚂[F](α+,β+,γ+):α+,β+2I_{N;\mathrm{Reg}}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+}):\mathbb{C}^{2}_{\alpha_{+},\beta_{+}}\to\mathbb{C} such that

I˙NDF,𝚂[F](α+,β+,γ+)=[±j=1N±sin(π(α±+β±+(N±+j2)γ±))sin(π(α±+(j1)γ±))sin(π(β±+(j1)γ±))]×IN;RegDF,𝚂[F](α+,β+,γ+)\dot{I}_{N}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})=\Big{[}\prod_{\pm}\prod_{j=1}^{N_{\pm}}\frac{\sin(\pi(\alpha_{\pm}+\beta_{\pm}+(N_{\pm}+j-2)\gamma_{\pm}))}{\sin(\pi(\alpha_{\pm}+(j-1)\gamma_{\pm}))\sin(\pi(\beta_{\pm}+(j-1)\gamma_{\pm}))}\Big{]}\\ \times I_{N;\mathrm{Reg}}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+}) (1.48)

when α,β,γ\alpha_{-},\beta_{-},\gamma_{-} are related to α+,β+,γ+\alpha_{+},\beta_{+},\gamma_{+} by eq. 1.45 and the left-hand side is well-defined. ∎

If desired, it is possible to replace the sines with Γ\Gamma-functions with appropriate integral shifts.

Example.

When F=1F=1, Dotsenko and Fateev claim in [DF85, Eqs. A.8, A.35]111There seem to be a couple typos in [DF85, Eq. A.35]. Equation 1.49 has these fixed. The first few cases of eq. 1.49 have been numerically checked, so as to verify that the fixes are correct. that the integral above is given by

I˙NDF,𝚂[1](α+,β+,γ+)γ2NN+[j=1N±eiπ(j1)γ±Γ(jγ±)sin(πjγ±)Γ(γ±)sin(πγ±)]×[j=1Neiπ(j1)γΓ(jγN±)sin(πjγ)Γ(γ)sin(πγ)][j=1N±Γ(1+α±+(j1)γ±)Γ(1+β±+(j1)γ±)Γ(22N+α±+β±+(N±2+j)γ±)]×[j=1NΓ(1+α+(j1)γN±)Γ(1+β+(j1)γN±)Γ(2N±+α+β+(N2+j)γ)]\dot{I}_{N}^{\mathrm{DF},\mathtt{S}}[1](\alpha_{+},\beta_{+},\gamma_{+})\propto\gamma_{\mp}^{2N_{-}N_{+}}\Big{[}\prod_{j=1}^{N_{\pm}}e^{-i\pi(j-1)\gamma_{\pm}}\frac{\Gamma(j\gamma_{\pm})\sin(\pi j\gamma_{\pm})}{\Gamma(\gamma_{\pm})\sin(\pi\gamma_{\pm})}\Big{]}\\ \times\Big{[}\prod_{j=1}^{N_{\mp}}e^{-i\pi(j-1)\gamma_{\mp}}\frac{\Gamma(j\gamma_{\mp}-N_{\pm})\sin(\pi j\gamma_{\mp})}{\Gamma(\gamma_{\mp})\sin(\pi\gamma_{\mp})}\Big{]}\Big{[}\prod_{j=1}^{N_{\pm}}\frac{\Gamma(1+\alpha_{\pm}+(j-1)\gamma_{\pm})\Gamma(1+\beta_{\pm}+(j-1)\gamma_{\pm})}{\Gamma(2-2N_{\mp}+\alpha_{\pm}+\beta_{\pm}+(N_{\pm}-2+j)\gamma_{\pm})}\Big{]}\\ \times\Big{[}\prod_{j=1}^{N_{\mp}}\frac{\Gamma(1+\alpha_{\mp}+(j-1)\gamma_{\mp}-N_{\pm})\Gamma(1+\beta_{\mp}+(j-1)\gamma_{\mp}-N_{\pm})}{\Gamma(2-N_{\pm}+\alpha_{\mp}+\beta_{\mp}+(N_{\mp}-2+j)\gamma_{\mp})}\Big{]} (1.49)

for each choice of sign. ∎

2. Associahedra

We use the term ‘mwc’ to mean manifold-with-corners in the sense of Melrose – e.g. [Mel][HMM97], these possessing CC^{\infty}-structure. Roughly, a mwc is locally diffeomorphic to an open neighborhood of [0,)N\smash{[0,\infty)^{N}}, and there is an additional requirement that boundary hypersurfaces be embedded. In this section, we define the mwcs that will be used to resolve the singularities of Selberg- and Dotsenko–Fateev-like integrands:

  • in §2.1, we define the associahedra K,m,nK_{\ell,m,n}, used to meromorphically continue the Selberg-like integrals, and

  • in §2.2 we define the mwcs A,m,nA_{\ell,m,n}, used to meromorphically continue the DF-like integrals.

Since K0,N,0K_{0,N,0} is the usual NN-dimensional associahedra, we refer to the mwcs defined below as associahedra as well, hence the title of this section. If MM is a mwc, we use (M)\mathcal{F}(M) to denote the set of faces of MM, where by faces we mean only the boundary hypersurfaces. We use “facet” to refer to the higher codimension boundary components.

It is worth comparing Melrose’s notion of mwc to that of polyhedron. A mwc is locally a polyhedron, but the converse is not true, as the basic requirement of MM being locally diffeomorphic to a relatively open neighborhood of [0,)N\smash{[0,\infty)^{N}} means that every facet fM\mathrm{f}\subsetneq M is the intersection of at most NN faces. While the (closed) ball, tetrahedron, cube, and dodecahedron are all mwcs, the octahedron and icosahedron are not. It is necessary for the argument in §3 that the associahedra A,m,nA_{\ell,m,n} and K,m,nK_{\ell,m,n} are not just polyhedra, but rather mwcs. The reason is that, since [0,)N[0,\infty)^{N} is a product of half-closed intervals, any mwc is locally diffeomorphic to a product of open or half-closed intervals. This product structure is exploited in §3. In contrast, the octahedron is not, in any reasonable sense, a product of one-dimensional manifolds-with-boundary near its vertices.

To summarize, the notion of “mwc” used here plays a similar role in our analysis to that of “polyhedra in general position” in [Var95, §10.7], but the notions are not equivalent. For the purposes of this paper, we find it more natural (and technically simpler, as it avoids the need for polyhedral realizations) to use the language of mwcs.

We keep track of the full CC^{\infty}-structure of these mwcs below. Were it required, we could keep track of CωC^{\omega}- (i.e. real analytic) structure, but since this would require going somewhat beyond the existent literature on mwcs, and since this level of precision is not needed for the rest of the paper, we will restrict ourselves to the smooth category.

If f\mathrm{f} is a facet of MM, then the blowup [M;f][M;\mathrm{f}] is a mwc, and the blowdown map

bd:[M;f]M\mathrm{bd}:[M;\mathrm{f}]\to M (2.1)

is smooth. For convenience, we can identify the interior [M;f][M;\mathrm{f}]^{\circ} with MM^{\circ}. (If F\mathrm{F} is a codimension 1\leq 1 facet of MM, then we can identify [M;F][M;\mathrm{F}] with MM itself.) Naturally, if f\mathrm{f} has codimension 2\geq 2, then

([M;f])={[F;fF]:F(M)}{ff},\mathcal{F}([M;\mathrm{f}])=\{[\mathrm{F};\mathrm{f}\cap\mathrm{F}]:\mathrm{F}\in\mathcal{F}(M)\}\cup\{\mathrm{ff}\}, (2.2)

where ff=bd1(f)\mathrm{ff}=\mathrm{bd}^{-1}(\mathrm{f}) is the front face of the blowup. Then, given boundary-defining-functions (bdfs) xFC(M;+)x_{\mathrm{F}}\in C^{\infty}(M;\mathbb{R}^{+}) of the faces F(M)\mathrm{F}\in\mathcal{F}(M), we can choose bdfs x[F;fF],xffx_{[\mathrm{F};\mathrm{f}\cap\mathrm{F}]},x_{\mathrm{ff}} of the faces of [M;f][M;\mathrm{f}] such that, for each F(M)\mathrm{F}\in\mathcal{F}(M),

xFbd={x[F;fF]xff(fF),x[F;fF](otherwise).x_{\mathrm{F}}\circ\mathrm{bd}=\begin{cases}x_{[\mathrm{F};\mathrm{f}\cap\mathrm{F}]}x_{\mathrm{ff}}&(\mathrm{f}\subseteq\mathrm{F}),\\ x_{[\mathrm{F};\mathrm{f}\cap\mathrm{F}]}&(\text{otherwise}).\end{cases} (2.3)

(We identify polyhomogeneous – in particular, smooth – functions on [M;f][M;\mathrm{f}] with their restrictions to the interior, so, going forwards, we can drop the “bd\circ\,\mathrm{bd}.”) Specifically, in addition to defining x[F;fF]=xFx_{[\mathrm{F};\mathrm{f}\cap\mathrm{F}]}=x_{\mathrm{F}} if fF\mathrm{f}\not\subseteq\mathrm{F}, we can take

xff\displaystyle x_{\mathrm{ff}} =F(M),fFxF,\displaystyle=\sum_{\mathrm{F}\in\mathcal{F}(M),\mathrm{f}\subseteq\mathrm{F}}x_{\mathrm{F}}, (2.4)
and, if fF\mathrm{f}\subseteq\mathrm{F}, then
x[F;fF]\displaystyle x_{[\mathrm{F};\mathrm{f}\cap\mathrm{F}]} =xF(F(M),fFxF)1.\displaystyle=x_{\mathrm{F}}\Big{(}\sum_{\mathrm{F}\in\mathcal{F}(M),\mathrm{f}\subseteq\mathrm{F}}x_{\mathrm{F}}\Big{)}^{-1}. (2.5)

This follows from the analogous result for blowing up a facet of [0,)N[0,\infty)^{N}. Note that because MM is a mwc and not just a polyhedron, if F1,,Fd(M)\mathrm{F}_{1},\ldots,\mathrm{F}_{d}\in\mathcal{F}(M) are distinct faces with δFδ\cap_{\delta}\mathrm{F}_{\delta}\neq\varnothing, then the connected components of δFδ\cap_{\delta}\mathrm{F}_{\delta} are codimension dd facets of MM. (The 2D lens is an example of a mwc with two faces whose intersection is disconnected.)

If UU is an open subset of a mwc, then UU can be considered as a mwc in its own right. We will say that some function xC(U;[0,))x\in C^{\infty}(U;[0,\infty)) is a bdf in UU of F(M)\mathrm{F}\in\mathcal{F}(M) if it is a bdf of the face FU\mathrm{F}\cap U of UU, assuming that FU\mathrm{F}\cap U\neq\varnothing, in which case it is automatically a face of UU. Let ¯t=t{,+}\overline{\mathbb{R}}_{t}=\mathbb{R}_{t}\cup\{-\infty,+\infty\} denote the “radial” compactification of \mathbb{R}. This is a (CC^{\infty}-)manifold-with-boundary, with 1/t1/t serving as a bdf for {}\{\infty\} in {t>0}\{t>0\} and 1/t-1/t serving as a bdf for {}\{-\infty\} in {t<0}\{t<0\}.

2.1. The Associahedra K,m,nK_{\ell,m,n}

We now define the mwc K,m,nK_{\ell,m,n} for ,m,n\ell,m,n\in\mathbb{N} not all zero. The blowup procedure below is a generalization of that in [KT86]. We begin with the set

,m,n={(x1,,xN)¯N:x1x0x+1x+m1x+m+1xN},\triangle_{\ell,m,n}=\{(x_{1},\ldots,x_{N})\in\overline{\mathbb{R}}^{N}:x_{1}\leq\cdots\leq x_{\ell}\leq 0\\ \leq x_{\ell+1}\leq\cdots\leq x_{\ell+m}\leq 1\leq x_{\ell+m+1}\leq\cdots\leq x_{N}\}, (2.6)

where N=+m+nN=\ell+m+n. This is a compact sub-mwc of ¯N\overline{\mathbb{R}}^{N}. Naturally,

,m,n,0,0×0,m,0×0,0,n.\triangle_{\ell,m,n}\cong\triangle_{\ell,0,0}\times\triangle_{0,m,0}\times\triangle_{0,0,n}. (2.7)

Also, ,0,0\triangle_{\ell,0,0}\cong\triangle_{\ell}, 0,m,0m\triangle_{0,m,0}\cong\triangle_{m}, and 0,0,nn\triangle_{0,0,n}\cong\triangle_{n}.

For example, in the case N=2N=2, we have six cases. These are 2,0,0,0,2,0,0,0,2\triangle_{2,0,0},\triangle_{0,2,0},\triangle_{0,0,2}, each of which is diffeomorphic to the triangle 2\triangle_{2}, and 1,1,0,1,0,1,0,1,1\triangle_{1,1,0},\triangle_{1,0,1},\triangle_{0,1,1}, each of which is diffeomorphic to the square 2\square_{2}.

If ,n=0\ell,n=0, in which case m=Nm=N, then ,m,n\triangle_{\ell,m,n} is just the standard NN-simplex N\triangle_{N}.

We call a subset /(N+3)\mathcal{I}\subseteq\mathbb{Z}/(N+3)\mathbb{Z} consecutive if it is of the form {kmod(N+3),,k+κmod(N+3)}\{k\bmod(N+3),\cdots,k+\kappa\bmod(N+3)\mathbb{Z}\} for some k/(N+3)k\in\mathbb{Z}/(N+3)\mathbb{Z} and κ\kappa\in\mathbb{N}. (Thus, the empty set will not be considered consecutive.)

We label the facets (of any codimension, possibly zero) of ,m,n\triangle_{\ell,m,n} using (unordered) partitions 𝙸\mathtt{I} of /(N+3)\mathbb{Z}/(N+3)\mathbb{Z} into consecutive subsets \mathcal{I}, with no two of 0,+1,+m+2/(N+3)0,\ell+1,\ell+m+2\in\mathbb{Z}/(N+3)\mathbb{Z} appearing together in any element 𝙸\mathcal{I}\in\mathtt{I}. Specifically,

f0,𝙸={(x1,,xN),m,n:(𝙸{jtj=±(0)j,ktj=tk(0))},\mathrm{f}_{0,\mathtt{I}}=\left\{(x_{1},\ldots,x_{N})\in\triangle_{\ell,m,n}:\left(\mathcal{I}\in\mathtt{I}\Rightarrow\begin{cases}j\in\mathcal{I}\Rightarrow t_{j}=\pm\infty&(0\in\mathcal{I})\\ j,k\in\mathcal{I}\Rightarrow t_{j}=t_{k}&(0\notin\mathcal{I})\end{cases}\right)\right\}, (2.8)

where

  • tj=xjt_{j}=x_{j} for j=1,,j=1,\ldots,\ell,

  • t+1=0t_{\ell+1}=0,

  • t+1+j=x+jt_{\ell+1+j}=x_{\ell+j} for j=1,,mj=1,\ldots,m,

  • t+m+2=1t_{\ell+m+2}=1, and

  • t+m+2+j=x+m+jt_{\ell+m+2+j}=x_{\ell+m+j} for j=1,,nj=1,\ldots,n.

The dimension of f0,𝙸\mathrm{f}_{0,\mathtt{I}} is given by

dimf0,𝙸=|𝙸|3.\operatorname{dim}\mathrm{f}_{0,\mathtt{I}}=|\mathtt{I}|-3. (2.9)

For notational simplicity, if 𝙸0𝙸\mathtt{I}_{0}\subseteq\mathtt{I} is 𝙸\mathtt{I} with the singletons removed, then we define f𝙸0=f0,𝙸\mathrm{f}_{\mathtt{I}_{0}}=\mathrm{f}_{0,\mathtt{I}}. Thus, f\mathrm{f}_{\varnothing} denotes the “bulk” of ,m,n\triangle_{\ell,m,n}, and the faces of ,m,n\triangle_{\ell,m,n} are of the form f{}\mathrm{f}_{\{\mathcal{I}\}} for \mathcal{I} a consecutive pair. Rephrasing eq. 2.9,

codimf𝙸=𝙸(||1).\operatorname{codim}\mathrm{f}_{\mathtt{I}}=\sum_{\mathcal{I}\in\mathtt{I}}(|\mathcal{I}|-1). (2.10)

As a bdf of f{}\mathrm{f}_{\{\mathcal{I}\}} for ={kmod/(N+3),k+1mod/(N+3)}\mathcal{I}=\{k\bmod\mathbb{Z}/(N+3)\mathbb{Z},k+1\bmod\mathbb{Z}/(N+3)\} when k{1,,N+1}k\in\{1,\ldots,N+1\}, we can take

xf{}=tk+1tk.x_{\mathrm{f}_{\{\mathcal{I}\}}}=t_{k+1}-t_{k}. (2.11)

For the remaining two cases of F{0,1}\mathrm{F}_{\{0,1\}} (which only exists if 1\ell\geq 1) and f{N+2,N+3}\mathrm{f}_{\{N+2,N+3\}} (which only exists if n1n\geq 1), we can take xf{0,1}=1/x1x_{\mathrm{f}_{\{0,1\}}}=-1/x_{1} and xf{N+2,N+3}=1/xNx_{\mathrm{f}_{\{N+2,N+3\}}}=1/x_{N}.

Let ,m,n=,m,n()\mathcal{F}_{\ell,m,n}=\mathcal{F}_{\ell,m,n}(\triangle) denote the family of facets f𝙸\mathrm{f}_{\mathtt{I}} of ,m,n\triangle_{\ell,m,n} such that 𝙸={}\mathtt{I}=\{\mathcal{I}\} for some consecutive subset /(N+3)\mathcal{I}\subset\mathbb{Z}/(N+3)\mathbb{Z} of size ||2|\mathcal{I}|\geq 2 not containing any two of 0,+1,+m+20,\ell+1,\ell+m+2. In other words, ,m,n\mathcal{F}_{\ell,m,n} is the set of facets f𝙸\mathrm{f}_{\mathtt{I}} for 𝙸\mathtt{I} defining a partition of /(N+3)\mathbb{Z}/(N+3)\mathbb{Z} into a single interval of length at least two (not containing any two of 0,+1,+m+20,\ell+1,\ell+m+2) and a number of singletons which are being omitted from the notation.

For each d{0,,N}d\in\{0,\ldots,N\}, let ,m,n;d\mathcal{F}_{\ell,m,n;d} denote the set of elements of ,m,n\mathcal{F}_{\ell,m,n} of dimension dd. Then, the mwc K,m,nK_{\ell,m,n} is defined by the iterated blowup

K,m,n=[,m,n;,m,n,0;;,m,n,N]=[[,m,n;,m,n;0];,m,n;N].K_{\ell,m,n}=[\triangle_{\ell,m,n};\mathcal{F}_{\ell,m,n,0};\cdots;\mathcal{F}_{\ell,m,n,N}]=[\cdots[\triangle_{\ell,m,n};\mathcal{F}_{\ell,m,n;0}]\cdots;\mathcal{F}_{\ell,m,n;N}]. (2.12)

I.e., we first blow up the elements of the collection ,m,n;0\mathcal{F}_{\ell,m,n;0} (which may be empty, namely if ,m,n\ell,m,n are all nonzero), and then, proceeding from higher to lower codimension, iteratively blow up the lifts of the facets in ,m,n;d\mathcal{F}_{\ell,m,n;d} (meaning the closures of the lifts of the interiors).

We should check that the blowup eq. 2.12 is well-defined, which concretely means that, for each dd, the blow-ups in the step in which we blow up the lifts of the elements of ,m,n;d\mathcal{F}_{\ell,m,n;d} commute. This can be done via a somewhat tedious inductive argument, which we only sketch.

When the time has come to blow up the facets ff\mathrm{f}\neq\mathrm{f}^{\prime} in the lifted ,m,n;d\mathcal{F}_{\ell,m,n;d}, their intersection is – if nonempty – either a point (which we denote K0,0,0K_{0,0,0}) or else an associahedron K,m,nK_{\ell_{\cap},m_{\cap},n_{\cap}} (which will not change upon performing further blowups) of dimension <N<N, and a neighborhood thereof is diffeomorphic to

[0,1)tNd×K,m,n×[0,1)tNd,[0,1)^{N-d}_{t}\times K_{\ell_{\cap},m_{\cap},n_{\cap}}\times[0,1)_{t^{\prime}}^{N-d}, (2.13)

with f\mathrm{f} corresponding to {t=0}\{t=0\} and f\mathrm{f}^{\prime} corresponding to {t=0}\{t^{\prime}=0\}; the blowups of these two faces in the product above commute, with the result being naturally diffeomorphic to

[[0,1)tNd,{0}]×K,m,n×[[0,1)tNd;{0}].[[0,1)^{N-d}_{t},\{0\}]\times K_{\ell_{\cap},m_{\cap},n_{\cap}}\times[[0,1)_{t^{\prime}}^{N-d};\{0\}]. (2.14)

In order to prove the claimed decomposition, eq. 2.13, it is first useful to note when ff=\mathrm{f}\cap\mathrm{f}^{\prime}=\varnothing. If ,\mathcal{I},\mathcal{I}^{\prime} satisfy ||=Nd+1=|||\mathcal{I}|=N-d+1=|\mathcal{I}^{\prime}| and \mathcal{I}\cap\mathcal{I}^{\prime}\neq\varnothing, then the corresponding facets

f\displaystyle\mathrm{f} =cl[,m,n;,m,n,0;;,m,n,d1]f{}\displaystyle=\mathrm{cl}_{[\triangle_{\ell,m,n};\mathcal{F}_{\ell,m,n,0};\cdots;\mathcal{F}_{\ell,m,n,d-1}]}\mathrm{f}^{\circ}_{\{\mathcal{I}\}} (2.15)
f\displaystyle\mathrm{f}^{\prime} =cl[,m,n;,m,n,0;;,m,n,d1]f{}\displaystyle=\mathrm{cl}_{[\triangle_{\ell,m,n};\mathcal{F}_{\ell,m,n,0};\cdots;\mathcal{F}_{\ell,m,n,d-1}]}\mathrm{f}^{\circ}_{\{\mathcal{I}^{\prime}\}} (2.16)

of [,m,n;,m,n,0;;,m,n,d1][\triangle_{\ell,m,n};\mathcal{F}_{\ell,m,n,0};\cdots;\mathcal{F}_{\ell,m,n,d-1}] satisfy ff=\mathrm{f}\cap\mathrm{f}^{\prime}=\varnothing. Indeed, \mathcal{I}\cap\mathcal{I}^{\prime}\neq\varnothing implies

f{}f{}=f{},m,n(),\mathrm{f}_{\{\mathcal{I}\}}\cap\mathrm{f}_{\{\mathcal{I}^{\prime}\}}=\mathrm{f}_{\{\mathcal{I}\cup\mathcal{I}^{\prime}\}}\in\mathcal{F}_{\ell,m,n}(\triangle), (2.17)

and since this is blown up in an earlier stage of the construction, f\mathrm{f} and f\mathrm{f}^{\prime} cannot intersect.

So, if our two facets f,f\mathrm{f},\mathrm{f}^{\prime} to be blown up have nonempty intersection, then they must be the lifts of f{}\mathrm{f}_{\{\mathcal{I}\}} and f{}\mathrm{f}_{\{\mathcal{I}^{\prime}\}} for ,\mathcal{I},\mathcal{I}^{\prime} satisfying =\mathcal{I}\cap\mathcal{I}^{\prime}=\varnothing. The intersection ff\mathrm{f}\cap\mathrm{f}^{\prime} lies in the preimage of f{}f{}=f{,}\mathrm{f}_{\{\mathcal{I}\}}\cap\mathrm{f}_{\{\mathcal{I}^{\prime}\}}=\mathrm{f}_{\{\mathcal{I},\mathcal{I}^{\prime}\}}. This facet of ,m,n\triangle_{\ell,m,n} is of the form ,m,n\triangle_{\ell_{\cap},m_{\cap},n_{\cap}} for +m+n=2dN0\ell_{\cap}+m_{\cap}+n_{\cap}=2d-N\geq 0. As seen inductively, the lift of this facet after performing the blow-ups so far is K,m,nK_{\ell_{\cap},m_{\cap},n_{\cap}}, although this is not crucial for the proof that the construction is well-defined. Since this has dimension 2dN2d-N, a neighborhood of this facet in our partially blown-up manifold automatically has the form

L=[0,1)2N2d×K,m,n,L=[0,1)^{2N-2d}\times K_{\ell_{\cap},m_{\cap},n_{\cap}}, (2.18)

so it just needs to be checked that f,f\mathrm{f},\mathrm{f}^{\prime} sit inside of this in the expected way. The dd-dimensional facets of LL containing (0,,0)×K,m,n(0,\cdots,0)\times K_{\ell_{\cap},m_{\cap},n_{\cap}} all have the form [0,)Nd×K,m,n[0,\infty)^{N-d}\times K_{\ell_{\cap},m_{\cap},n_{\cap}} for one of the (2N2dNd)\binom{2N-2d}{N-d} divisors [0,)Nd[0,)2N2d[0,\infty)^{N-d}\subseteq[0,\infty)^{2N-2d}. Thus, we can decompose

[0,1)2N2d=[0,1)t#×[0,1)t#×[0,)t′′δ,[0,1)^{2N-2d}=[0,1)^{\#}_{t}\times[0,1)^{\#^{\prime}}_{t^{\prime}}\times[0,\infty)^{\delta}_{t^{\prime\prime}}, (2.19)

for some δ\delta\in\mathbb{N}, such that f\mathrm{f} corresponds to {t=t′′=0}\{t=t^{\prime\prime}=0\} and f\mathrm{f}^{\prime} corresponds to {t=t′′=0}\{t^{\prime}=t^{\prime\prime}=0\}. But, if δ0\delta\neq 0, then ff\mathrm{f}\cap\mathrm{f}^{\prime} is too big, so δ=0\delta=0. Thus, since f,f\mathrm{f},\mathrm{f}^{\prime} both have dimension dd, it must be the case that #=#=Nd\#=\#^{\prime}=N-d. This completes our sketch.

We now discuss the combinatorial structure of K,m,nK_{\ell,m,n}. All of the faces of ,m,n\triangle_{\ell,m,n} are in ,m,n;N1\mathcal{F}_{\ell,m,n;N-1}, so every face of K,m,nK_{\ell,m,n} is the front face of one of our blowups. So, the faces of K,m,nK_{\ell,m,n} are in bijection with the elements of ,m,n\mathcal{F}_{\ell,m,n} and thus with \mathcal{I} as above. Such a subset is uniquely specified by its endpoints j,k/(N+3)j,k\in\mathbb{Z}/(N+3)\mathbb{Z}, since only two consecutive subsets of /(N+3)\mathbb{Z}/(N+3)\mathbb{Z} have the same endpoints as \mathcal{I}, namely \mathcal{I} itself and {j,k}\smash{\mathcal{I}^{\complement}}\cup\{j,k\}, and the latter contains two of 0,+1,+m+20,\ell+1,\ell+m+2. Let 𝒥,m,n\mathcal{J}_{\ell,m,n} denote the set of unordered pairs {j,k}\{j,k\} arising in this way. For {j,k}𝒥,m,n\{j,k\}\in\mathcal{J}_{\ell,m,n}, let (j,k)=(k,j)\mathcal{I}(j,k)=\mathcal{I}(k,j) denote the unique consecutive subset of /(N+3)\mathbb{Z}/(N+3)\mathbb{Z} having these endpoints and containing at most one member of {0,+1,+m+2}\{0,\ell+1,\ell+m+2\}. For such j,kj,k, let Fj,k=Fk,j\mathrm{F}_{j,k}=\mathrm{F}_{k,j} denote the corresponding face of K,m,nK_{\ell,m,n}, and let xFj,k=xFk,jx_{\mathrm{F}_{j,k}}=x_{\mathrm{F}_{k,j}} denote a bdf of that face constructed inductively as in the introduction to this section. (Note that these bdfs may depend on the particular order in which the elements of the ,m,n;d\mathcal{F}_{\ell,m,n;d} are blown up.)

There are 21N(N+3)2^{-1}N(N+3) faces in K,m,nK_{\ell,m,n}.

Example.

Consider the case N=2N=2. Then, up to essential equivalence, the cases to consider are K1,1,0K_{1,1,0} and K0,2,0K_{0,2,0}. These are depicted in Figure 3. The mwc K1,1,0K_{1,1,0} is identical to A1,1,0A_{1,1,0}; in §2.2 we introduce notation for labeling the faces of the A,m,nA_{\ell,m,n}, and this notation appears in Figure 4 alongside that used for the K,m,nK_{\ell,m,n}.

F3,4=F()\mathrm{F}_{3,4}=\mathrm{F}_{\bullet\circ(\bullet\circ)}F2,3=F()\mathrm{F}_{2,3}=\mathrm{F}_{\bullet(\circ\bullet)\circ}F0,1=F()\mathrm{F}_{0,1}=\mathrm{F}_{(\circ\bullet)\circ\bullet\circ}F1,2=F()\mathrm{F}_{1,2}=\mathrm{F}_{(\bullet\circ)\bullet\circ}F1,3=F()\mathrm{F}_{1,3}=\mathrm{F}_{(\bullet\circ\bullet)\circ}x2x_{2}w1w_{1}F1,2=F()\mathrm{F}_{1,2}=\mathrm{F}_{(\circ\bullet)\bullet\circ}F3,4=F()\mathrm{F}_{3,4}=\mathrm{F}_{\circ\bullet(\bullet\circ)}F2,3=F()\mathrm{F}_{2,3}=\mathrm{F}_{\circ(\bullet\bullet)\circ}F1,3=F()\mathrm{F}_{1,3}=\mathrm{F}_{(\circ\bullet\bullet)\circ}F2,4=F()\mathrm{F}_{2,4}=\mathrm{F}_{\circ(\bullet\bullet\circ)}1x21-x_{2}x1x_{1}
Figure 3. The associahedra K1,1,0K_{1,1,0} (left) and K0,2,0K_{0,2,0} (right), realized as polyhedra roughly in accordance with the blowup procedure. In the first figure, the horizontal axis is roughly w1=1/(1x1)w_{1}=1/(1-x_{1}), increasing to the right. In the second figure, it is just (roughly) x1x_{1}. In both figures, the vertical axis is (roughly) x2x_{2}.

We have introduced an additional notation for the faces of K,m,nK_{\ell,m,n}, indicating \mathcal{I} in the subscript using the following conventions:

  • The elements 0,+1,+m+2/50,\ell+1,\ell+m+2\in\mathbb{Z}/5\mathbb{Z} are depicted using a ‘\circ,’ and 0 is omitted if not included in \mathcal{I}.

  • The other elements of /5\mathbb{Z}/5\mathbb{Z} are depicted using a ‘\bullet.’

  • Except for 0, the elements of /5\mathbb{Z}/5\mathbb{Z} are depicted in order. If 0 is to be depicted, it is listed either first or last.

The elements included in \mathcal{I} are enclosed in parentheses. ∎

Example.

Consider the case N=3N=3. Then, up to essential equivalence, the cases to consider are K1,1,1K_{1,1,1}, K1,2,0K_{1,2,0}, and K0,3,0K_{0,3,0}. These are depicted in Figure 4, Figure 5, Figure 6. The mwc K1,1,1K_{1,1,1} is identical to A1,1,1A_{1,1,1}.

We have modified the “\bullet” notation from the previous example and used it to label the faces in the figures, alongside the notation used in the rest of this section. For instance, when considering K0,3,0K_{0,3,0}, “()\circ(\bullet\bullet\bullet)\circ” denotes {2,3,4}/6\{2,3,4\}\subset\mathbb{Z}/6\mathbb{Z}. When considering K1,2,0K_{1,2,0}, “()\circ(\bullet\circ\bullet)\!\bullet\circ” denotes {1,2,3}\{1,2,3\}. When considering K1,1,1K_{1,1,1}, “)(\bullet)\bullet\circ(\bullet\circ” denotes {0,1,5}\{0,1,5\}. ∎

F4,5=F()=F{3},;1\;\;\mathrm{F}_{4,5}=\mathrm{F}_{\bullet\circ\bullet(\circ\bullet)}=\mathrm{F}_{\{3\},\varnothing;1}F0,1=F()=F{1},;\mathrm{F}_{0,1}=\mathrm{F}_{(\circ\bullet)\circ\bullet\circ\bullet}=\mathrm{F}_{\{1\},\varnothing;\infty}F1,5=F)(=F{1},{3};\mathrm{F}_{1,5}=\mathrm{F}_{\circ\bullet)\circ\bullet\circ(\bullet}=\mathrm{F}_{\{1\},\{3\};\infty}F2,3=F()=F{2},;0\mathrm{F}_{2,3}=\mathrm{F}_{\bullet(\circ\bullet)\circ\bullet}=\mathrm{F}_{\{2\},\varnothing;0}x2x_{2}y3y_{3}w1w_{1}F1,3=F()=F{1},{2};0\mathrm{F}_{1,3}=\mathrm{F}_{(\bullet\circ\bullet)\circ\bullet}=\mathrm{F}_{\{1\},\{2\};0}F3,4=F()=F{2},{};1\mathrm{F}_{3,4}=\mathrm{F}_{\bullet\circ(\bullet\circ)\bullet}=\mathrm{F}_{\{2\},\{\varnothing\};1}F3,5=F()=F{2},{3};1\mathrm{F}_{3,5}=\mathrm{F}_{\bullet\circ(\bullet\circ\bullet)}=\mathrm{F}_{\{2\},\{3\};1}F1,2=F()=F{1},{};0\mathrm{F}_{1,2}=\mathrm{F}_{(\bullet\circ)\bullet\circ\bullet}=\mathrm{F}_{\{1\},\{\varnothing\};0}F0,5=F5,6=F()=F,{3};\mathrm{F}_{0,5}=\mathrm{F}_{5,6}=\mathrm{F}_{\bullet\circ\bullet\circ(\bullet\circ)}=\mathrm{F}_{\varnothing,\{3\};\infty}
Figure 4. The mwc K1,1,1K_{1,1,1}, with labeled faces, realized as a polyhedron roughly in accordance with the blowup procedure. Here w1=1/(1x1)w_{1}=1/(1-x_{1}) and y3=(x31)/x3y_{3}=(x_{3}-1)/x_{3}. The faces in the line of sight are F1,2=F()\mathrm{F}_{1,2}=\mathrm{F}_{(\bullet\circ)\bullet\circ\bullet}, F1,3=F()\mathrm{F}_{1,3}=\mathrm{F}_{(\bullet\circ\bullet)\circ\bullet}, F3,4=F()\mathrm{F}_{3,4}=\mathrm{F}_{\bullet\circ(\bullet\circ)\bullet}, F3,5=F()\mathrm{F}_{3,5}=\mathrm{F}_{\bullet\circ(\bullet\circ\bullet)}, and F0,5=F()\mathrm{F}_{0,5}=\mathrm{F}_{\bullet\circ\bullet\circ(\bullet\circ)}.
\floatbox

[\capbeside\thisfloatsetupcapbesideposition=left,top,capbesidewidth=8cm,capbesidesep=none]figure[\FBwidth] F3,4=F()\;\;\mathrm{F}_{3,4}=\mathrm{F}_{\bullet\circ(\bullet\bullet)\circ}F2,3=F()\mathrm{F}_{2,3}=\mathrm{F}_{\bullet(\circ\bullet)\bullet\circ}F0,1=F()\mathrm{F}_{0,1}=\mathrm{F}_{(\circ\bullet)\circ\bullet\bullet\circ}F3,5=F()\mathrm{F}_{3,5}=\mathrm{F}_{\bullet\circ(\bullet\bullet\circ)}F1,4=F()\mathrm{F}_{1,4}=\mathrm{F}_{(\bullet\circ\bullet\bullet)\circ}F2,4=F()\mathrm{F}_{2,4}=\mathrm{F}_{\bullet(\circ\bullet\bullet)\circ}x2\quad\quad x_{2}x3x2x_{3}-x_{2}w1w_{1}F4,5=F()\mathrm{F}_{4,5}=\mathrm{F}_{\bullet\circ\bullet(\bullet\circ)}F1,2=F()\mathrm{F}_{1,2}=\mathrm{F}_{(\bullet\circ)\bullet\bullet\circ}F1,3=F()\mathrm{F}_{1,3}=\mathrm{F}_{(\bullet\circ\bullet)\bullet\circ}

Figure 5. The mwc K1,2,0K_{1,2,0}, with labeled faces, realized as a polyhedron roughly in accordance with the blowup procedure. As above, w1=1/(1x1)w_{1}=1/(1-x_{1}). The faces in the line of site are F1,2=F()\mathrm{F}_{1,2}=F_{(\bullet\circ)\bullet\bullet\circ}, F1,3=F()\mathrm{F}_{1,3}=\mathrm{F}_{(\bullet\circ\bullet)\bullet\circ}, and F4,5=F()\mathrm{F}_{4,5}=\mathrm{F}_{\bullet\circ\bullet(\bullet\circ)}.
\floatbox

[\capbeside\thisfloatsetupcapbesideposition=left,bottom,capbesidewidth=8cm,capbesidesep=none]figure[\FBwidth] F1,4=F()\mathrm{F}_{1,4}=\mathrm{F}_{(\circ\bullet\bullet\bullet)\circ}F3,4=F()\mathrm{F}_{3,4}=\mathrm{F}_{\circ\bullet(\bullet\bullet)\circ}F1,3=F()\mathrm{F}_{1,3}=\mathrm{F}_{(\circ\bullet\bullet)\bullet\circ}F2,4=F()\mathrm{F}_{2,4}=\mathrm{F}_{\circ(\bullet\bullet\bullet)\circ}F1,2=F()\mathrm{F}_{1,2}=\mathrm{F}_{(\circ\bullet)\bullet\bullet\circ}F2,3=F()\mathrm{F}_{2,3}=\mathrm{F}_{\circ(\bullet\bullet)\bullet\circ}F2,5=F()\mathrm{F}_{2,5}=\mathrm{F}_{\circ(\bullet\bullet\bullet\circ)}x2x1\quad\quad x_{2}-x_{1}x3x2x_{3}-x_{2}x1x_{1}F4,5=F()\mathrm{F}_{4,5}=\mathrm{F}_{\circ\bullet\bullet(\bullet\circ)}F3,5=F()\mathrm{F}_{3,5}=\mathrm{F}_{\circ\bullet(\bullet\bullet\circ)}

Figure 6. The mwc K0,3,0K_{0,3,0}, with labeled faces, realized as a polyhedron roughly in accordance with the blowup procedure. The faces in the line of sight are F4,5=F()\mathrm{F}_{4,5}=\mathrm{F}_{\circ\bullet\bullet(\bullet\circ)} and F3,5=F()\mathrm{F}_{3,5}=\mathrm{F}_{\circ\bullet(\bullet\bullet\circ)}. Cf. [KT86, Fig. 5.2], where the full blowup procedure is depicted.

The K,m,nK_{\ell,m,n} satisfy the following “universal property:”

  • For any subsets S{1,,}S\subseteq\{1,\ldots,\ell\}, Q{+1,,+m}Q\subseteq\{\ell+1,\ldots,\ell+m\}, R{+m+1,,N}R\subseteq\{\ell+m+1,\ldots,N\} that are not all empty, let 𝖿𝗈𝗋𝗀:,m,n|S|,|Q|,|R|\mathsf{forg}:\triangle_{\ell,m,n}\to\triangle_{|S|,|Q|,|R|} denote the forgetful map forgetting the variables xjx_{j} for jSQRj\notin S\cup Q\cup R. Then, 𝖿𝗈𝗋𝗀\mathsf{forg} lifts to a smooth b\mathrm{b}-map [Mel]

    𝖿𝗈𝗋𝗀¯:K,m,nK|S|,|Q|,|R|.\overline{\mathsf{forg}}:K_{\ell,m,n}\to K_{|S|,|Q|,|R|}. (2.20)

    Given any face F\mathrm{F} of K|S|,|Q|,|R|K_{|S|,|Q|,|R|}, 𝖿𝗈𝗋𝗀¯xF\overline{\mathsf{forg}}^{*}x_{\mathrm{F}} vanishes to first order at each face in 𝖿𝗈𝗋𝗀¯1(F)\overline{\mathsf{forg}}^{-1}(\mathrm{F}).

This can be proven by inducting on the number of blowups.

Proposition 2.1.

Suppose that μC(,m,n;Ω,m,n)\mu\in C^{\infty}(\triangle_{\ell,m,n};\Omega\triangle_{\ell,m,n}) is a strictly positive smooth density on ,m,n\triangle_{\ell,m,n}. Then, the lift of μ\mu to K,m,nK_{\ell,m,n} has the form

[{j,k}𝒥,m,nxFj,k|jk|1]μ¯\Big{[}\prod_{\{j,k\}\in\mathcal{J}_{\ell,m,n}}x_{\mathrm{F}_{j,k}}^{|j-k|-1}\Big{]}\overline{\mu} (2.21)

for a strictly positive μ¯C(K,m,n;ΩK,m,n)\overline{\mu}\in C^{\infty}(K_{\ell,m,n};\Omega K_{\ell,m,n}). Here, for j,k/(N+3)j,k\in\mathbb{Z}/(N+3)\mathbb{Z}, we use the notation |jk|=min{|j0k0|,|k0j0|:j0,k0:j0jmod(N+3),k0kmod(N+3)}|j-k|=\min\{|j_{0}-k_{0}|,|k_{0}-j_{0}|:j_{0},k_{0}\in\mathbb{Z}:j_{0}\equiv j\bmod(N+3),k_{0}\equiv k\bmod(N+3)\}. ∎

In the product, each unordered pair is counted only once.

Proof.

We recall the following lemma:

  • Suppose that MM is a mwc and μC(M;ΩM)\mu\in C^{\infty}(M;\Omega M) is a strictly positive smooth density on MM. Then, if f\mathrm{f} is a facet of MM of codimension d+d\in\mathbb{N}^{+}, the lift of μ\mu to [M;f][M;\mathrm{f}] has the form xffd1νx^{d-1}_{\mathrm{ff}}\nu and ν\nu a strictly positive smooth density on [M;f][M;\mathrm{f}].

Working in local coordinates, this follows from the case of blowing up a facet in [0,)N[0,\infty)^{N}. In this case, we can use cylindrical coordinates (that is, spherical coordinates if the facet we are blowing up is the corner). The result follows from the form of the Lebesgue measure in cylindrical coordinates.

The proposition follows from an inductive application of the lemma, once we note that |jk||j-k| is the codimension of Fj,k\mathrm{F}_{j,k}. ∎

Proposition 2.2.

The Lebesgue measure on N\mathbb{R}^{N}, which defines a strictly positive smooth density on ,m,n\triangle_{\ell,m,n}^{\circ}, has the form

[j=1(1xj)2][j=+m+1Nxj2]μ\Big{[}\prod_{j=1}^{\ell}(1-x_{j})^{2}\Big{]}\Big{[}\prod_{j=\ell+m+1}^{N}x_{j}^{2}\Big{]}\mu (2.22)

for μC(,m,n;Ω,m,n)\mu\in C^{\infty}(\triangle_{\ell,m,n};\Omega\triangle_{\ell,m,n}) a strictly positive smooth density on ,m,n\triangle_{\ell,m,n}. ∎

Proof.

It is the case that the 1-form dxjΩ1,m,n\,\mathrm{d}x_{j}\in\Omega^{1}\triangle_{\ell,m,n}^{\circ} defines an extendable 1-form on ,m,n\triangle_{\ell,m,n} if j{+1,,+m}j\in\{\ell+1,\cdots,\ell+m\}, and the extension is nonvanishing. The same holds for

  • dwj=(1xj)2dxj\,\mathrm{d}w_{j}=(1-x_{j})^{-2}\,\mathrm{d}x_{j} for wj=1/(1xj)w_{j}=1/(1-x_{j}) if j{1,,}j\in\{1,\ldots,\ell\} and

  • dyj=xj2dxj\,\mathrm{d}y_{j}=x_{j}^{-2}\,\mathrm{d}x_{j} for yj=(xj1)/xjy_{j}=(x_{j}-1)/x_{j} if j{+m+1,,N}j\in\{\ell+m+1,\cdots,N\},

since ,m,n\triangle_{\ell,m,n} is a submanifold of ¯N\overline{\mathbb{R}}^{N}. The μ\mu in eq. 2.22 can therefore be taken to be |dw1dwdx+1dx+mdy+m+1dyN||\mathrm{d}w_{1}\wedge\cdots\wedge\,\mathrm{d}w_{\ell}\wedge\,\mathrm{d}x_{\ell+1}\wedge\cdots\wedge\,\mathrm{d}x_{\ell+m}\wedge\,\mathrm{d}y_{\ell+m+1}\wedge\cdots\wedge\,\mathrm{d}y_{N}|, which lies in C(,m,n;Ω,m,n)C^{\infty}(\triangle_{\ell,m,n};\Omega\triangle_{\ell,m,n}) and is strictly positive. ∎

We now record the results of lifting the factors xi,1xix_{i},1-x_{i}, and xjxkx_{j}-x_{k} comprising the Selberg integrand to K,m,nK_{\ell,m,n}. Beginning with the first two cases:

  • If i{1,,}i\in\{1,\ldots,\ell\}, then

    xi\displaystyle-x_{i} [j=+m+3N+3k=ixFj,k1][j=1ik=+1+m+1xFj,k]C(K,m,n;+),\displaystyle\in\Big{[}\prod_{j=\ell+m+3}^{N+3}\prod_{k=i}^{\ell}x_{\mathrm{F}_{j,k}}^{-1}\Big{]}\Big{[}\prod_{j=1}^{i}\prod_{k=\ell+1}^{\ell+m+1}x_{\mathrm{F}_{j,k}}\Big{]}C^{\infty}(K_{\ell,m,n};\mathbb{R}^{+}), (2.23)
    1xi\displaystyle 1-x_{i} [j=+m+3N+3k=ixFj,k1]C(K,m,n;+).\displaystyle\in\Big{[}\prod_{j=\ell+m+3}^{N+3}\prod_{k=i}^{\ell}x_{\mathrm{F}_{j,k}}^{-1}\Big{]}C^{\infty}(K_{\ell,m,n};\mathbb{R}^{+}). (2.24)
  • If i{+1,,+m}i\in\{\ell+1,\ldots,\ell+m\}, then

    xi\displaystyle x_{i} [j=1+1k=i+1+m+1xFj,k]C(K,m,n;+),\displaystyle\in\Big{[}\prod_{j=1}^{\ell+1}\prod_{k=i+1}^{\ell+m+1}x_{\mathrm{F}_{j,k}}\Big{]}C^{\infty}(K_{\ell,m,n};\mathbb{R}^{+}), (2.25)
    1xi\displaystyle 1-x_{i} [j=+2i+1k=+m+2N+2xFj,k]C(K,m,n;+).\displaystyle\in\Big{[}\prod_{j=\ell+2}^{i+1}\prod_{k=\ell+m+2}^{N+2}x_{\mathrm{F}_{j,k}}\Big{]}C^{\infty}(K_{\ell,m,n};\mathbb{R}^{+}). (2.26)
  • If i{+m+1,,N}i\in\{\ell+m+1,\ldots,N\}, then

    xi\displaystyle x_{i} [j=+m+3i+2k=0xFj,k1]C(K,m,n;+),\displaystyle\in\Big{[}\prod_{j=\ell+m+3}^{i+2}\prod_{k=0}^{\ell}x_{\mathrm{F}_{j,k}}^{-1}\Big{]}C^{\infty}(K_{\ell,m,n};\mathbb{R}^{+}), (2.27)
    (1xi)\displaystyle-(1-x_{i}) [j=+m+3i+2k=0xFj,k1][j=+2+m+2k=i+2N+2xFj,k]C(K,m,n;+).\displaystyle\in\Big{[}\prod_{j=\ell+m+3}^{i+2}\prod_{k=0}^{\ell}x_{\mathrm{F}_{j,k}}^{-1}\Big{]}\Big{[}\prod_{j=\ell+2}^{\ell+m+2}\prod_{k=i+2}^{N+2}x_{\mathrm{F}_{j,k}}\Big{]}C^{\infty}(K_{\ell,m,n};\mathbb{R}^{+}). (2.28)

If N=1N=1, then these are all trivial to prove. By applying the universal property of the associahedra, the N2N\geq 2 case follows from the N=1N=1 case.

In a similar manner, by working out the case of K0,2,0K_{0,2,0} in detail and applying the universal property, we get, for k>jk>j:

  • If j,k{+1,,+m}j,k\in\{\ell+1,\ldots,\ell+m\}, then

    xkxj[j0=1+1k0=k+1+m+1xFj0,k0][j0=+2j+1k0=k+1N+2xFj0,k0]C(K,m,n;+).x_{k}-x_{j}\in\Big{[}\prod_{j_{0}=1}^{\ell+1}\prod_{k_{0}=k+1}^{\ell+m+1}x_{\mathrm{F}_{j_{0},k_{0}}}\Big{]}\Big{[}\prod_{j_{0}=\ell+2}^{j+1}\prod_{k_{0}=k+1}^{N+2}x_{\mathrm{F}_{j_{0},k_{0}}}\Big{]}C^{\infty}(K_{\ell,m,n};\mathbb{R}^{+}). (2.29)

Indeed, in the case of ,n=0\ell,n=0 and m=2m=2, this says that x2x1xF1,3xF2,3xF2,4C(K0,2,0;+)x_{2}-x_{1}\in x_{\mathrm{F}_{1,3}}x_{\mathrm{F_{2,3}}}x_{\mathrm{F_{2,4}}}C^{\infty}(K_{0,2,0};\mathbb{R}^{+}). Indeed, if we construct K0,2,0K_{0,2,0} by first blowing up F1,3\mathrm{F}_{1,3} and then blowing up F2,4\mathrm{F}_{\mathrm{2,4}}, we get

xF1,3=x2,xF2,3=x2x12x2x22x1,xF2,4=2x2x22x1x2,x_{\mathrm{F}_{1,3}}=x_{2},\qquad x_{\mathrm{F}_{2,3}}=\frac{x_{2}-x_{1}}{2x_{2}-x_{2}^{2}-x_{1}},\qquad x_{\mathrm{F}_{2,4}}=\frac{2x_{2}-x_{2}^{2}-x_{1}}{x_{2}}, (2.30)

so that xF1,3xF2,3xF2,4=x2x1x_{\mathrm{F}_{1,3}}x_{\mathrm{F_{2,3}}}x_{\mathrm{F_{2,4}}}=x_{2}-x_{1}, on the nose. On the other hand, if we reverse the order of the blowups, then we get

xF1,3=x2x121x1,xF2,3,0=x2x1x2x12,xF2,4=1x1,x_{\mathrm{F}_{1,3}}=\frac{x_{2}-x_{1}^{2}}{1-x_{1}},\qquad x_{\mathrm{F}_{2,3},0}=\frac{x_{2}-x_{1}}{x_{2}-x_{1}^{2}},\qquad x_{\mathrm{F}_{2,4}}=1-x_{1}, (2.31)

so we still get xF1,3xF2,3xF2,4=x2x1x_{\mathrm{F}_{1,3}}x_{\mathrm{F_{2,3}}}x_{\mathrm{F_{2,4}}}=x_{2}-x_{1}.

From this, we can deduce the following.

  • If j,k{1,,}j,k\in\{1,\ldots,\ell\}, then, in terms of wi=xi/(1xi)w_{i}=-x_{i}/(1-x_{i}), (xkxj)=(1wj)1(1wk)1(wjwk)(x_{k}-x_{j})=(1-w_{j})^{-1}(1-w_{k})^{-1}(w_{j}-w_{k}), so,

    xkxj[j0=jk0=+m+3N+3xFj0,k01][j0=1jk0=k+m+1xFj0,k0]C(K,m,n;+).x_{k}-x_{j}\in\Big{[}\prod_{j_{0}=j}^{\ell}\prod_{k_{0}=\ell+m+3}^{N+3}x_{\mathrm{F}_{j_{0},k_{0}}}^{-1}\Big{]}\Big{[}\prod_{j_{0}=1}^{j}\prod_{k_{0}=k}^{\ell+m+1}x_{\mathrm{F}_{j_{0},k_{0}}}\Big{]}C^{\infty}(K_{\ell,m,n};\mathbb{R}^{+}). (2.32)
  • If j,k{+m+1,,N}j,k\in\{\ell+m+1,\ldots,N\}, then, in terms of yi=1/xiy_{i}=1/x_{i}, (xkxj)=yj1yk1(yjyk)(x_{k}-x_{j})=y_{j}^{-1}y_{k}^{-1}(y_{j}-y_{k}), so

    xkxj[j0=+2j+2k0=k+2N+2xFj0,k0][j0=+m+3k+2k0=0xFj0,k01]C(K,m,n;+).x_{k}-x_{j}\in\Big{[}\prod_{j_{0}=\ell+2}^{j+2}\prod_{k_{0}=k+2}^{N+2}x_{\mathrm{F}_{j_{0},k_{0}}}\Big{]}\Big{[}\prod_{j_{0}=\ell+m+3}^{k+2}\prod_{k_{0}=0}^{\ell}x_{\mathrm{F}{j_{0},k_{0}}}^{-1}\Big{]}C^{\infty}(K_{\ell,m,n};\mathbb{R}^{+}). (2.33)

The next three follow from the K1,1,0K_{1,1,0}, K1,0,1K_{1,0,1}, and K0,1,1K_{0,1,1} cases. We illustrate the K1,1,0K_{1,1,0} case, and the others are similar.

  • If j{1,,}j\in\{1,\ldots,\ell\} and k{+1,,+m}k\in\{\ell+1,\ldots,\ell+m\}, then (xkxj)=(1wj)1(wj+xkxkwj)(x_{k}-x_{j})=(1-w_{j})^{-1}(w_{j}+x_{k}-x_{k}w_{j}), so

    xkxj[j0=jk0=+m+3N+3xFj0,k01][j0=1jk0=k+1+m+1xFj0,k0]C(K,m,n;+).x_{k}-x_{j}\in\Big{[}\prod_{j_{0}=j}^{\ell}\prod_{k_{0}=\ell+m+3}^{N+3}x_{\mathrm{F}_{j_{0},k_{0}}}^{-1}\Big{]}\Big{[}\prod_{j_{0}=1}^{j}\prod_{k_{0}=k+1}^{\ell+m+1}x_{\mathrm{F}_{j_{0},k_{0}}}\Big{]}C^{\infty}(K_{\ell,m,n};\mathbb{R}^{+}). (2.34)

    In the case ,m=1\ell,m=1, n=0n=0, this says that (x2x1)xF1,51xF1,3C(K1,1,0;+)(x_{2}-x_{1})\in x_{\mathrm{F}_{1,5}}^{-1}x_{\mathrm{F}_{1,3}}C^{\infty}(K_{1,1,0};\mathbb{R}^{+}). Indeed, the bdf xF1,3x_{\mathrm{F}_{1,3}} of F1,3\mathrm{F}_{1,3} in K1,1,0K_{1,1,0} is defined by

    xF1,3=(1w1)+x2=x11x1+x2,x_{\mathrm{F}_{1,3}}=(1-w_{1})+x_{2}=-\frac{x_{1}}{1-x_{1}}+x_{2}, (2.35)

    and xF1,5=xF0,1=w1=1/(1x1)x_{\mathrm{F}_{1,5}}=x_{\mathrm{F}_{0,1}}=w_{1}=1/(1-x_{1}). So,

    xF1,51xF1,3=x2x1x1x2.x_{\mathrm{F}_{1,5}}^{-1}x_{\mathrm{F}_{1,3}}=x_{2}-x_{1}-x_{1}x_{2}. (2.36)

    The supposed C(K1,1,0;+)C^{\infty}(K_{1,1,0};\mathbb{R}^{+}) term above is therefore (x2x1)(x2x1x1x2)1=(1x2x1/(x2x1))1(x_{2}-x_{1})(x_{2}-x_{1}-x_{1}x_{2})^{-1}=(1-x_{2}x_{1}/(x_{2}-x_{1}))^{-1}. One way (besides checking in a system of local coordinate charts) to see that this is smooth (and positive) on K1,1,0K_{1,1,0} is the identity

    x2x1x2x1=xF1,2xF1,3xF2,3xF1,2+xF2,3xF0,1.-\frac{x_{2}x_{1}}{x_{2}-x_{1}}=\frac{x_{\mathrm{F}_{1,2}}x_{\mathrm{F}_{1,3}}x_{\mathrm{F}_{2,3}}}{x_{\mathrm{F}_{1,2}}+x_{\mathrm{F}_{2,3}}x_{\mathrm{F}_{0,1}}}. (2.37)

    The faces F0,1,F2,3\mathrm{F}_{0,1},\mathrm{F}_{2,3} are disjoint from F1,2\mathrm{F}_{1,2} (see Figure 3), so the denominator on the right-hand side of eq. 2.37 is nonvanishing, so the quotient is indeed smooth.

    Likewise:

  • If j{+1,,+m}j\in\{\ell+1,\ldots,\ell+m\} and k{+m+1,,N}k\in\{\ell+m+1,\ldots,N\}, then (xkxj)=yk1(1xjyk)(x_{k}-x_{j})=y_{k}^{-1}(1-x_{j}y_{k}), so

    xkxj[j0=+2j+1k0=k+2N+2xFj0,k0][j0=0k0=+m+3k+2xFj0,k01]C(K,m,n;+).x_{k}-x_{j}\in\Big{[}\prod_{j_{0}=\ell+2}^{j+1}\prod_{k_{0}=k+2}^{N+2}x_{\mathrm{F}_{j_{0},k_{0}}}\Big{]}\Big{[}\prod_{j_{0}=0}^{\ell}\prod_{k_{0}=\ell+m+3}^{k+2}x_{\mathrm{F}_{j_{0},k_{0}}}^{-1}\Big{]}C^{\infty}(K_{\ell,m,n};\mathbb{R}^{+}). (2.38)
  • If j{1,,}j\in\{1,\ldots,\ell\} and k{+m+1,,N}k\in\{\ell+m+1,\ldots,N\}, then (xkxj)=yk1(1wj)1(1wj+wjyk)(x_{k}-x_{j})=y_{k}^{-1}(1-w_{j})^{-1}(1-w_{j}+w_{j}y_{k}), so

    xkxj[j0=jk0=k+3N+3xFj0,k01][j0=0k0=+m+3k+2xFj0,k01]C(K,m,n;+).x_{k}-x_{j}\in\Big{[}\prod_{j_{0}=j}^{\ell}\prod_{k_{0}=k+3}^{N+3}x_{\mathrm{F}_{j_{0},k_{0}}}^{-1}\Big{]}\Big{[}\prod_{j_{0}=0}^{\ell}\prod_{k_{0}=\ell+m+3}^{k+2}x_{\mathrm{F}_{j_{0},k_{0}}}^{-1}\Big{]}C^{\infty}(K_{\ell,m,n};\mathbb{R}^{+}). (2.39)

We associate to each face F(K,m,n)\mathrm{F}_{\bullet}\in\mathcal{F}(K_{\ell,m,n}) an affine functional

ρ:2N+N(N1)/2(𝜶,𝜷,𝜸)ρ(𝜶,𝜷,𝜸).\rho_{\bullet}:\mathbb{C}^{2N+N(N-1)/2}\ni(\bm{\alpha},\bm{\beta},\bm{\gamma})\mapsto\rho_{\bullet}(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\mathbb{C}. (2.40)

Suppose that we are given some 𝜶,𝜷N\bm{\alpha},\bm{\beta}\in\mathbb{C}^{N} and 𝜸={γj,k=γk,j}1j<kNN(N1)/2\bm{\gamma}=\{\gamma_{j,k}=\gamma_{k,j}\}_{1\leq j<k\leq N}\in\mathbb{C}^{N(N-1)/2}. If one of

  1. (I)

    j,k{1,,}j,k\in\{1,\ldots,\ell\}

  2. (II)

    j,k{+2,,+m+1}j,k\in\{\ell+2,\ldots,\ell+m+1\},

  3. (III)

    j,k{+m+3,,N+2}j,k\in\{\ell+m+3,\ldots,N+2\}

holds, then, letting kk denote the larger of {j,k}\{j,k\},

ρj,k=kj+2jj0<k0kγj0,k0,\rho_{j,k}=k-j+2\sum_{j^{\prime}\leq j_{0}<k_{0}\leq k^{\prime}}\gamma_{j_{0},k_{0}}, (2.41)

where, for each i{j,k}i\in\{j,k\}, i=ii^{\prime}=i if i{1,,}i\in\{1,\ldots,\ell\}, i=i1i^{\prime}=i-1 if i{+2,,+m+1}i\in\{\ell+2,\ldots,\ell+m+1\}, and i=i2i^{\prime}=i-2 if i{+m+3,,N+2}i\in\{\ell+m+3,\ldots,N+2\}. The other cases are:

  • If j{1,,+1}j\in\{1,\ldots,\ell+1\} and k{+1,,+m+1}k\in\{\ell+1,\ldots,\ell+m+1\} and jkj\neq k, then

    ρj,k=kj1+i=jαi+i=+2kαi1+2jj0<k0k1γj0,k0.\rho_{j,k}=k-j-1+\sum_{i=j}^{\ell}\alpha_{i}+\sum_{i=\ell+2}^{k}\alpha_{i-1}+2\sum_{j\leq j_{0}<k_{0}\leq k-1}\gamma_{j_{0},k_{0}}. (2.42)
  • If j{+2,,+m+2}j\in\{\ell+2,\ldots,\ell+m+2\} and k{+m+2,,N+2}k\in\{\ell+m+2,\ldots,N+2\} and jkj\neq k, then

    ρj,k=kj1+i=j+m+1βi1+i=+m+3kβi2+2j1j0<k0k2γj0,k0.\rho_{j,k}=k-j-1+\sum_{i=j}^{\ell+m+1}\beta_{i-1}+\sum_{i=\ell+m+3}^{k}\beta_{i-2}+2\sum_{j-1\leq j_{0}<k_{0}\leq k-2}\gamma_{j_{0},k_{0}}. (2.43)
  • If j{0,,}j\in\{0,\ldots,\ell\} and k{+m+3,,N+3}k\in\{\ell+m+3,\ldots,N+3\} and at least one of j0,kN+3j\neq 0,k\neq N+3 holds, then

    ρj,k=kjN4i=1jαii=1jβii=kN+2αi2i=kN+2βi22j=1ji=1,ijNγi,j2k=k2Ni=1,ik2Nγi,k+21j<kjγj,k+2k2j<kNγj,k+2j=1jk=k2Nγj,k.\rho_{j,k}=k-j-N-4-\sum_{i=1}^{j}\alpha_{i}-\sum_{i=1}^{j}\beta_{i}-\sum_{i=k}^{N+2}\alpha_{i-2}-\sum_{i=k}^{N+2}\beta_{i-2}-2\sum_{j^{\prime}=1}^{j}\sum_{i=1,i\neq j^{\prime}}^{N}\gamma_{i,j^{\prime}}\\ -2\sum_{k^{\prime}=k-2}^{N}\sum_{i=1,i\neq k^{\prime}-2}^{N}\gamma_{i,k^{\prime}}+2\sum_{1\leq j^{\prime}<k^{\prime}\leq j}\gamma_{j^{\prime},k^{\prime}}+2\sum_{k-2\leq j^{\prime}<k^{\prime}\leq N}\gamma_{j^{\prime},k^{\prime}}+2\sum_{j^{\prime}=1}^{j}\sum_{k^{\prime}=k-2}^{N}\gamma_{j^{\prime},k^{\prime}}. (2.44)
Proposition 2.3.

Given any 𝛂,𝛃N\bm{\alpha},\bm{\beta}\in\mathbb{C}^{N} and 𝛄={γj,k=γk,j}1j<kNN(N1)/2\bm{\gamma}=\{\gamma_{j,k}=\gamma_{k,j}\}_{1\leq j<k\leq N}\in\mathbb{C}^{N(N-1)/2}, the Selberg-like integrand

i=1N|xi|αi|1xi|βi1j<kN(xkxj)2γj,k|dx1dxN|C(,m,n;Ω,m,n)\prod_{i=1}^{N}|x_{i}|^{\alpha_{i}}|1-x_{i}|^{\beta_{i}}\prod_{1\leq j<k\leq N}(x_{k}-x_{j})^{2\gamma_{j,k}}|\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{N}|\in C^{\infty}(\triangle^{\circ}_{\ell,m,n};\Omega\triangle^{\circ}_{\ell,m,n}) (2.45)

lifts, via the blowdown map bd:K,m,n,m,n\mathrm{bd}:K_{\ell,m,n}\to\triangle_{\ell,m,n}, to an extendable density of the form

[{j,k}𝒥,m,nxFj,kρj,k]μ,m,n(𝜶,𝜷,𝜸),\Big{[}\prod_{\{j,k\}\in\mathcal{J}_{\ell,m,n}}x_{\mathrm{F}_{j,k}}^{\rho_{j,k}}\Big{]}\mu_{\ell,m,n}(\bm{\alpha},\bm{\beta},\bm{\gamma}), (2.46)

for some strictly positive smooth density μ,m,n(𝛂,𝛃,𝛄)C(K,m,n;ΩK,m,n)\mu_{\ell,m,n}(\bm{\alpha},\bm{\beta},\bm{\gamma})\in C^{\infty}(K_{\ell,m,n};\Omega K_{\ell,m,n}), depending entirely on 𝛂,𝛃,𝛄\bm{\alpha},\bm{\beta},\bm{\gamma}. ∎

Proof.

Each ρj,k\rho_{j,k} is an affine function of 𝜶,𝜷,𝜸\bm{\alpha},\bm{\beta},\bm{\gamma}, so it suffices to check 2N+N(N1)/2+12N+N(N-1)/2+1 cases, the case when all three of 𝜶,𝜷,𝜸\bm{\alpha},\bm{\beta},\bm{\gamma} are zero and 2N+N(N1)/22N+N(N-1)/2 cases where the triple (𝜶,𝜷,𝜸)(\bm{\alpha},\bm{\beta},\bm{\gamma}) ranges over a basis of 2N+N(N1)/2\mathbb{C}^{2N+N(N-1)/2}. Write

ρj,k(𝜶,𝜷,𝜸)=ρj,k(0)+ρj,k(1)(𝜶,𝜷,𝜸),\rho_{j,k}(\bm{\alpha},\bm{\beta},\bm{\gamma})=\rho_{j,k}^{(0)}+\rho_{j,k}^{(1)}(\bm{\alpha},\bm{\beta},\bm{\gamma}), (2.47)

where ρj,k(0)=ρj,k(𝟎,𝟎,𝟎)\rho_{j,k}^{(0)}=\rho_{j,k}(\bm{0},\bm{0},\bm{0}) and ρj,k(1)(𝜶,𝜷,𝜸)=ρj,k(𝜶,𝜷,𝜸)ρj,k(0)\rho_{j,k}^{(1)}(\bm{\alpha},\bm{\beta},\bm{\gamma})=\rho_{j,k}(\bm{\alpha},\bm{\beta},\bm{\gamma})-\rho_{j,k}^{(0)} is the linear part of ρj,k\rho_{j,k}. Thus, we want to show that, upon lifting to K,m,nK_{\ell,m,n},

|dx1dxN|\displaystyle|\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{N}| [{j,k}𝒥,m,nxFj,kρj,k(0)]C(K,m,n;ΩK,m,n),\displaystyle\in\Big{[}\prod_{\{j,k\}\in\mathcal{J}_{\ell,m,n}}x_{\mathrm{F}_{j,k}}^{\rho_{j,k}^{(0)}}\Big{]}C^{\infty}(K_{\ell,m,n};\Omega K_{\ell,m,n}), (2.48)
i=1N|xi|αi|1xi|βi1j<kN(xkxj)2γj,k\displaystyle\prod_{i=1}^{N}|x_{i}|^{\alpha_{i}}|1-x_{i}|^{\beta_{i}}\prod_{1\leq j<k\leq N}(x_{k}-x_{j})^{2\gamma_{j,k}} [{j,k}𝒥,m,nxFj,kρj,k(1)(𝜶,𝜷,𝜸)]C(K,m,n;+),\displaystyle\in\Big{[}\prod_{\{j,k\}\in\mathcal{J}_{\ell,m,n}}x_{\mathrm{F}_{j,k}}^{\rho_{j,k}^{(1)}(\bm{\alpha},\bm{\beta},\bm{\gamma})}\Big{]}C^{\infty}(K_{\ell,m,n};\mathbb{R}^{+}), (2.49)

with it sufficing to check eq. 2.49 on a basis of 2N+N(N1)/2\mathbb{C}^{2N+N(N-1)/2}.

  • Equation 2.48 is simply a restatement of 2.2.

  • For a basis of 2N+N(N1)/2\mathbb{C}^{2N+N(N-1)/2}, we look at (𝜶,𝜷,𝜸)(\bm{\alpha},\bm{\beta},\bm{\gamma}) such that all of the components α1,,αN\alpha_{1},\ldots,\alpha_{N}, β1,,βN\beta_{1},\ldots,\beta_{N}, γ1,2,\gamma_{1,2},\cdots of 𝜶,𝜷,𝜸\bm{\alpha},\bm{\beta},\bm{\gamma} are all 0 except for one, which we set to 11. The result then follows, via a bit of algebra, from eq. 2.23 through eq. 2.39.

Let 𝚃(,m,n)\mathtt{T}(\ell,m,n) denote the collection of maximal families 𝙸\mathtt{I} of consecutive subsets /(N+3)\mathcal{I}\subsetneq\mathbb{Z}/(N+3)\mathbb{Z} such that

  • 2||N+12\leq|\mathcal{I}|\leq N+1 for all 𝙸\mathcal{I}\in\mathtt{I},

  • no two of 0,+1,+m+20,\ell+1,\ell+m+2 are in any 𝙸\mathcal{I}\in\mathtt{I} together, and

  • if ,𝙸\mathcal{I},\mathcal{I}^{\prime}\in\mathtt{I} satisfy \mathcal{I}\cap\mathcal{I}^{\prime}\neq\varnothing, then either \mathcal{I}\subseteq\mathcal{I}^{\prime} or \mathcal{I}^{\prime}\subseteq\mathcal{I}.

The elements of 𝚃(,m,n)\mathtt{T}(\ell,m,n) can be thought of as specifying valid ways of adding parentheses to group together the elements of /(N+3)\mathbb{Z}/(N+3)\mathbb{Z} without grouping any of 0,+1,+m+20,\ell+1,\ell+m+2 together. The minimal facets of K,m,nK_{\ell,m,n} are in bijective correspondence with the elements of 𝚃(,m,n)\mathtt{T}(\ell,m,n), with

f𝙸=(j,k)𝙸Fj,k\mathrm{f}_{\mathtt{I}}=\bigcap_{\mathcal{I}(j,k)\in\mathtt{I}}\mathrm{F}_{j,k} (2.50)

the facet corresponding to 𝙸\mathtt{I}.

2.2. The Associahedra A,m,nA_{\ell,m,n}

We now define the mwc A,m,nA_{\ell,m,n} for ,m,n\ell,m,n\in\mathbb{N} not all zero. We begin with the N=+m+nN=\ell+m+n hypercube N=[0,1]N\square_{N}=[0,1]^{N}. Parametrizing N\square_{N} by (t1,,tN)(t_{1},\ldots,t_{N}), the hypercube is identified with

[,0]x1,,x×[0,1]x+1,,x+mm×[1,]x+m+1,,xNn[-\infty,0]^{\ell}_{x_{1},\ldots,x_{\ell}}\times[0,1]^{m}_{x_{\ell+1},\ldots,x_{\ell+m}}\times[1,\infty]^{n}_{x_{\ell+m+1},\ldots,x_{N}} (2.51)

via the coordinate changes ti=1/(1xi)t_{i}=1/(1-x_{i}) for xi[,0]x_{i}\in[-\infty,0] and i{1,,}i\in\{1,\ldots,\ell\} and ti=(xi1)/xit_{i}=(x_{i}-1)/x_{i} for xi[1,]x_{i}\in[1,\infty] and i{+m+1,,N}i\in\{\ell+m+1,\ldots,N\}.

The facets of N\square_{N} we label by sextuples (S,Q,S,Q,S′′,Q′′)(S,Q,S^{\prime},Q^{\prime},S^{\prime\prime},Q^{\prime\prime}) consisting of (possibly empty) subsets S,Q{1,,}S,Q\subseteq\{1,\ldots,\ell\}, S,Q{+1,,+m}S^{\prime},Q^{\prime}\subseteq\{\ell+1,\ldots,\ell+m\}, and S′′,Q′′{+m+1,,N}S^{\prime\prime},Q^{\prime\prime}\subseteq\{\ell+m+1,\ldots,N\} such that SQ=SQ=S′′Q′′=S\cap Q=S^{\prime}\cap Q^{\prime}=S^{\prime\prime}\cap Q^{\prime\prime}=\varnothing. Let

FS,Q,S,Q,S′′,Q′′={(t1,,tN)N:jSSS′′tj=0jQQQ′′tj=1}.\mathrm{F}_{S,Q,S^{\prime},Q^{\prime},S^{\prime\prime},Q^{\prime\prime}}=\left\{(t_{1},\ldots,t_{N})\in\square_{N}:\begin{array}[]{c}j\in S\cup S^{\prime}\cup S^{\prime\prime}\Rightarrow t_{j}=0\\ \;j\in Q\cup Q^{\prime}\cup Q^{\prime\prime}\Rightarrow t_{j}=1\end{array}\right\}. (2.52)

For instance, N=F,,,,,\square_{N}=\mathrm{F}_{\varnothing,\varnothing,\varnothing,\varnothing,\varnothing,\varnothing}.

Now let ,m,n=,m,n()\mathcal{F}_{\ell,m,n}=\mathcal{F}_{\ell,m,n}(\square) denote the family of facets defined by

,m,n=({FS,,,,,Q′′}S,Q′′{F,Q,S,,,}Q,S{F,,,Q,S′′,}Q,S′′)\{N}\mathcal{F}_{\ell,m,n}=(\{\mathrm{F}_{S,\varnothing,\varnothing,\varnothing,\varnothing,Q^{\prime\prime}}\}_{S,Q^{\prime\prime}}\cup\{\mathrm{F}_{\varnothing,Q,S^{\prime},\varnothing,\varnothing,\varnothing}\}_{Q,S^{\prime}}\cup\{\mathrm{F}_{\varnothing,\varnothing,\varnothing,Q^{\prime},S^{\prime\prime},\varnothing}\}_{Q^{\prime},S^{\prime\prime}})\backslash\{\square_{N}\} (2.53)

where S,S,SQ,Q,Q′′S,S^{\prime},S^{\prime}Q,Q^{\prime},Q^{\prime\prime} range over all subsets as above. For each d{0,,N1}d\in\{0,\ldots,N-1\}, let ,m,n;d\mathcal{F}_{\ell,m,n;d} denote the set of elements of ,m,n\mathcal{F}_{\ell,m,n} of dimension dd. Then, A,m,nA_{\ell,m,n} is defined by the iterated blowup

A,m,n=[N;,m,n]=[N;,m,n;0;;,m,n;N1].A_{\ell,m,n}=[\square_{N};\mathcal{F}_{\ell,m,n}]=[\square_{N};\mathcal{F}_{\ell,m,n;0};\cdots;\mathcal{F}_{\ell,m,n;N-1}]. (2.54)

As in the previous section, we should check that, for each d=1,,Nd=1,\ldots,N, having already blown up ,m,n;d0\mathcal{F}_{\ell,m,n;d_{0}} for d0<dd_{0}<d, the blowups of the closures of the lifts of the interiors of all of the F,m,n;d\mathrm{F}\in\mathcal{F}_{\ell,m,n;d} all commute. One way to see this is to split

N=S,S,S′′,m,n(S,S,S′′),\square_{N}=\bigcup_{S,S^{\prime},S^{\prime\prime}}\square_{\ell,m,n}(S,S^{\prime},S^{\prime\prime}), (2.55)

where SS varies over all subsets of {1,,}\{1,\ldots,\ell\}, SS^{\prime} varies over all subsets of {+1,,+m}\{\ell+1,\ldots,\ell+m\}, and S′′S^{\prime\prime} varies over all subsets of {+m+1,,N}\{\ell+m+1,\ldots,N\}, and

,m,n(S,S,S′′)={(t1,,tN)N:iSSS′′ti[0,2/3)iSSS′′ti(1/3,1]}.\square_{\ell,m,n}(S,S^{\prime},S^{\prime\prime})=\left\{(t_{1},\ldots,t_{N})\in\square_{N}:\begin{array}[]{c}i\in S\cup S^{\prime}\cup S^{\prime\prime}\Rightarrow t_{i}\in[0,2/3)\\ i\notin S\cup S^{\prime}\cup S^{\prime\prime}\Rightarrow t_{i}\in(1/3,1]\end{array}\right\}. (2.56)

Once we have established that blowing up ,m,n;0,,,m,n;d1\mathcal{F}_{\ell,m,n;0},\cdots,\mathcal{F}_{\ell,m,n;d-1} is fine, then

[N;,m,n;0;;,m,n;d1]=S,S,S′′[,m,n(S,S,S′′);,m,n;0;;,m,n;d1][\square_{N};\mathcal{F}_{\ell,m,n;0};\cdots;\mathcal{F}_{\ell,m,n;d-1}]=\bigcup_{S,S^{\prime},S^{\prime\prime}}[\square_{\ell,m,n}(S,S^{\prime},S^{\prime\prime});\mathcal{F}_{\ell,m,n;0};\cdots;\mathcal{F}_{\ell,m,n;d-1}] (2.57)

naturally, with the left-hand side being well-defined if the right-hand side is. Thus, it suffices to check that the blowups [,m,n(S,S,S′′);,m,n;0;;,m,n;d][\square_{\ell,m,n}(S,S^{\prime},S^{\prime\prime});\mathcal{F}_{\ell,m,n;0};\cdots;\mathcal{F}_{\ell,m,n;d}] are all well-defined. To see this, identify

,m,n(S,S,S′′)=([0,23){ti}iSS×(13,1]{ti}i(S′′)(S′′))×([0,23){ti}iSS×(13,1]{ti}iSS)×([0,23){ti}iS′′S′′×(13,1]{ti}i(S)(S))\square_{\ell,m,n}(S,S^{\prime},S^{\prime\prime})=\Big{(}\Big{[}0,\frac{2}{3}\Big{)}^{S}_{\{t_{i}\}_{i\in S}}\times\Big{(}\frac{1}{3},1\Big{]}^{(S^{\prime\prime})^{\complement}}_{\{t_{i}\}_{i\in(S^{\prime\prime})^{\complement}}}\Big{)}\times\Big{(}\Big{[}0,\frac{2}{3}\Big{)}^{S^{\prime}}_{\{t_{i}\}_{i\in S^{\prime}}}\times\Big{(}\frac{1}{3},1\Big{]}^{S^{\complement}}_{\{t_{i}\}_{i\in S^{\complement}}}\Big{)}\\ \times\Big{(}\Big{[}0,\frac{2}{3}\Big{)}^{S^{\prime\prime}}_{\{t_{i}\}_{i\in S^{\prime\prime}}}\times\Big{(}\frac{1}{3},1\Big{]}^{(S^{\prime})^{\complement}}_{\{t_{i}\}_{i\in(S^{\prime})^{\complement}}}\Big{)} (2.58)

and note that the blowup prescription is just that of performing the total boundary (tb) blowup [HMM97] on each of the three factors. (Note that this is not the same as the total boundary blowup of the product of the factors.) Here,

  • S={1,,}\SS^{\complement}=\{1,\ldots,\ell\}\backslash S,

  • (S)={+1,,+m}\S(S^{\prime})^{\complement}=\{\ell+1,\ldots,\ell+m\}\backslash S^{\prime},

  • and (S′′)={+m+1,,N}\S′′(S^{\prime\prime})^{\complement}=\{\ell+m+1,\ldots,N\}\backslash S^{\prime\prime}.

Thus,

A,m,n=S,S,S′′[([0,23)S×(13,1](S′′))tb×([0,23)S×(13,1]S)tb×([0,23)S′′×(13,1](S))tb].A_{\ell,m,n}=\bigcup_{S,S^{\prime},S^{\prime\prime}}\Big{[}\\ \Big{(}\Big{[}0,\frac{2}{3}\Big{)}^{S}\times\Big{(}\frac{1}{3},1\Big{]}^{(S^{\prime\prime})^{\complement}}\Big{)}_{\mathrm{tb}}\times\Big{(}\Big{[}0,\frac{2}{3}\Big{)}^{S^{\prime}}\times\Big{(}\frac{1}{3},1\Big{]}^{S^{\complement}}\Big{)}_{\mathrm{tb}}\times\Big{(}\Big{[}0,\frac{2}{3}\Big{)}^{S^{\prime\prime}}\times\Big{(}\frac{1}{3},1\Big{]}^{(S^{\prime})^{\complement}}\Big{)}_{\mathrm{tb}}\Big{]}. (2.59)
t2t_{2}t3t_{3}t1t_{1}
A1,1,1A_{1,1,1}
A1,2,0A_{1,2,0}
A0,3,0A_{0,3,0}
Figure 7. The 33-cube 3\square_{3} and the three blowups A1,1,1=K1,1,1A_{1,1,1}=K_{1,1,1}, A1,2,0A_{1,2,0}, A0,3,0A_{0,3,0} thereof. The ,m,n(S,S,S′′)\square_{\ell,m,n}(S,S^{\prime},S^{\prime\prime}) are eight subcubes corresponding to the eight vertices of 3\square_{3}. One such cube is depicted in red.
F,{3};0\mathrm{F}_{\varnothing,\{3\};0}F,{1};\mathrm{F}_{\varnothing,\{1\};\infty}F,{2};0\mathrm{F}_{\varnothing,\{2\};0}F,{2,3};0\mathrm{F}_{\varnothing,\{2,3\};0}F,{1};0\mathrm{F}_{\varnothing,\{1\};0}F,{2};1\mathrm{F}_{\varnothing,\{2\};1}F,{3};1\mathrm{F}_{\varnothing,\{3\};1}F,{2,3};1\mathrm{F}_{\varnothing,\{2,3\};1}F{1},{2,3};0\mathrm{F}_{\{1\},\{2,3\};0}F{1},{3};0\mathrm{F}_{\{1\},\{3\};0}F{1},{2};0\mathrm{F}_{\{1\},\{2\};0}
F,{3};0\mathrm{F}_{\varnothing,\{3\};0}F,{1};0\mathrm{F}_{\varnothing,\{1\};0}F,{2};0\mathrm{F}_{\varnothing,\{2\};0}F,{1,2};0\mathrm{F}_{\varnothing,\{1,2\};0}F,{2,3};0\mathrm{F}_{\varnothing,\{2,3\};0}F,{1,3};0\mathrm{F}_{\varnothing,\{1,3\};0}F,{1,2,3};0\mathrm{F}_{\varnothing,\{1,2,3\};0}F,{3};1\mathrm{F}_{\varnothing,\{3\};1}F,{1,2,3};1\mathrm{F}_{\varnothing,\{1,2,3\};1}F,{1,2};1\mathrm{F}_{\varnothing,\{1,2\};1}F,{2};1\mathrm{F}_{\varnothing,\{2\};1}F,{1};1\mathrm{F}_{\varnothing,\{1\};1}F,{1,3};1\mathrm{F}_{\varnothing,\{1,3\};1}F,{2,3};1\mathrm{F}_{\varnothing,\{2,3\};1}
Figure 8. The eleven faces of A1,2,0A_{1,2,0} and the fourteen faces of A0,3,0A_{0,3,0}.

The faces of A,m,nA_{\ell,m,n} are in bijection with the elements of ,m,n\mathcal{F}_{\ell,m,n}. We label the faces of A,m,nA_{\ell,m,n} as follows:

  • for S{1,,}S\subseteq\{1,\ldots,\ell\} and Q{+m+1,,N}Q\subseteq\{\ell+m+1,\ldots,N\}, the face corresponding to FS,,,,,Q\mathrm{F}_{S,\varnothing,\varnothing,\varnothing,\varnothing,Q} is labeled as FS,Q;=FQ,S;\mathrm{F}_{S,Q;\infty}=\mathrm{F}_{Q,S;\infty},

  • for Q{1,,}Q\subseteq\{1,\ldots,\ell\} and S{+1,,+m}S\subseteq\{\ell+1,\ldots,\ell+m\}, the face corresponding to F,Q,S,,,\mathrm{F}_{\varnothing,Q,S,\varnothing,\varnothing,\varnothing} is labeled as as FS,Q;0=FQ,S;0\mathrm{F}_{S,Q;0}=\mathrm{F}_{Q,S;0}, and

  • for S{+m+1,,N}S\subseteq\{\ell+m+1,\ldots,N\} and Q{+1,,+m}Q\subseteq\{\ell+1,\ldots,\ell+m\}, the face corresponding to F,,,Q,S,\mathrm{F}_{\varnothing,\varnothing,\varnothing,Q,S,\varnothing} is labeled as FS,Q;1=FQ,S;1\mathrm{F}_{S,Q;1}=\mathrm{F}_{Q,S;1}.

Here, S,QS,Q are not allowed to both be empty.

For any subsets S{1,,}S\subseteq\{1,\ldots,\ell\}, Q{+1,,+m}Q\subseteq\{\ell+1,\ldots,\ell+m\}, R{+m+1,,N}R\subseteq\{\ell+m+1,\ldots,N\} that are not all empty, let 𝖿𝗈𝗋𝗀:,m,n|S|,|Q|,|R|\mathsf{forg}:\square_{\ell,m,n}\to\square_{|S|,|Q|,|R|} denote the forgetful map forgetting the coordinates xix_{i} for iSQRi\notin S\cup Q\cup R, Then, 𝖿𝗈𝗋𝗀\mathsf{forg} lifts to a smooth b-map

𝖿𝗈𝗋𝗀¯:A,m,nA|S|,|Q|,|R|,\overline{\mathsf{forg}}:A_{\ell,m,n}\to A_{|S|,|Q|,|R|}, (2.60)

and given any face F\mathrm{F} of A|S|,|Q|,|R|\smash{A_{|S|,|Q|,|R|}}, the pullback 𝖿𝗈𝗋𝗀¯xF\overline{\mathsf{forg}}^{*}x_{\mathrm{F}} vanishes to first order at each face F0\mathrm{F}_{0} satisfying

F0𝖿𝗈𝗋𝗀¯1(F).F_{0}\subseteq\overline{\mathsf{forg}}^{-1}(\mathrm{F}). (2.61)

This is the “universal property” of the A,m,nA_{\ell,m,n}. Via the decomposition in eq. 2.59, it follows from the corresponding universal property of the total boundary blowup of a product, which is essentially given by B.2.

Proposition 2.4.

Suppose that μ\mu is a strictly positive smooth density on ,m,n\square_{\ell,m,n}. Then, the lift of μ\mu to A,m,nA_{\ell,m,n} has the form

[S{1,,}Q{+m+1,,N}xFS,Q;|SQ|1][S{1,,}Q{+1,,+m}xFS,Q;0|SQ|1][S{+1,,+m}Q{+m+1,,N}xFS,Q;1|SQ|1]μ¯\Big{[}\prod_{\begin{subarray}{c}S\subseteq\{1,\ldots,\ell\}\\ Q\subseteq\{\ell+m+1,\ldots,N\}\end{subarray}}x_{\mathrm{F}_{S,Q;\infty}}^{|S\cup Q|-1}\Big{]}\Big{[}\prod_{\begin{subarray}{c}S\subseteq\{1,\ldots,\ell\}\\ Q\subseteq\{\ell+1,\ldots,\ell+m\}\end{subarray}}x_{\mathrm{F}_{S,Q;0}}^{|S\cup Q|-1}\Big{]}\Big{[}\prod_{\begin{subarray}{c}S\subseteq\{\ell+1,\ldots,\ell+m\}\\ Q\subseteq\{\ell+m+1,\ldots,N\}\end{subarray}}x_{\mathrm{F}_{S,Q;1}}^{|S\cup Q|-1}\Big{]}\overline{\mu} (2.62)

for a strictly positive smooth density μ¯C(A,m,n;ΩA,m,n)\overline{\mu}\in C^{\infty}(A_{\ell,m,n};\Omega A_{\ell,m,n}) on A,m,nA_{\ell,m,n}. ∎

As a notational convenience, we are setting xF,;x0=1x_{\mathrm{F}_{\varnothing,\varnothing;x_{0}}}=1 for each x0{0,1,}x_{0}\in\{0,1,\infty\}.

Proof.

Follows via induction on the number of blowups, as in the proof of 2.1. ∎

Proposition 2.5.

The Lebesgue measure on N\mathbb{R}^{N}, which defines a strictly positive smooth density on ,m,n\square_{\ell,m,n}^{\circ}, has the form

[j=1(1xj)2][j=+m+1Nxj2]μ\Big{[}\prod_{j=1}^{\ell}(1-x_{j})^{2}\Big{]}\Big{[}\prod_{j=\ell+m+1}^{N}x_{j}^{2}\Big{]}\mu (2.63)

for some strictly positive smooth density μC(,m,n;Ω,m,n)\mu\in C^{\infty}(\square_{\ell,m,n};\Omega\square_{\ell,m,n}) on ,m,n\square_{\ell,m,n}. ∎

Proof.

Follows from the same computation as in 2.2. ∎

Proposition 2.6.

For each pair of distinct i,j{1,,N}i,j\in\{1,\ldots,N\} such that either i,j{1,,}i,j\in\{1,\ldots,\ell\}, i,j{+1,,+m}i,j\in\{\ell+1,\ldots,\ell+m\}, or i,j{+m+1,,N}i,j\in\{\ell+m+1,\ldots,N\}, the set Hj,k=clA,m,n{p,m,n:xj=xk}H_{j,k}=\mathrm{cl}_{A_{\ell,m,n}}\{p\in\square_{\ell,m,n}^{\circ}:x_{j}=x_{k}\} is a p-submanifold of A,m,nA_{\ell,m,n}. ∎

See [MS08, §1.2] for the definition of “p-submanifold.”

Proof.

Consider the neighborhood bd1(,m,n(S,S,S′′))A,m,n\mathrm{bd}^{-1}(\square_{\ell,m,n}(S,S^{\prime},S^{\prime\prime}))\subseteq A_{\ell,m,n}. If one of j,kj,k is in SSS′′S\cup S^{\prime}\cup S^{\prime\prime} and the other is not, then the intersection of Hj,kH_{j,k} with bd1(,m,n(S,S,S′′))\mathrm{bd}^{-1}(\square_{\ell,m,n}(S,S^{\prime},S^{\prime\prime})) is a submanifold disjoint from the boundary and therefore a p-submanifold. It therefore suffices to consider the case when j,kSSS′′j,k\in S\cup S^{\prime}\cup S^{\prime\prime} (and the case when neither are in SSS′′S\cup S^{\prime}\cup S^{\prime\prime} is similar). For notational simplicity, we only consider the case when j,kSj,k\in S^{\prime}. Then,

Hj,kbd1(,m,n(S,S,S′′))=([0,23)S×(13,1](S′′))tb×(H~j,k([0,23)S×(13,1]S)tb)×([0,23)S′′×(13,1](S))tb,H_{j,k}\cap\mathrm{bd}^{-1}(\square_{\ell,m,n}(S,S^{\prime},S^{\prime\prime}))=\\ \Big{(}\Big{[}0,\frac{2}{3}\Big{)}^{S}\times\Big{(}\frac{1}{3},1\Big{]}^{(S^{\prime\prime})^{\complement}}\Big{)}_{\mathrm{tb}}\times\Big{(}\tilde{H}_{j,k}\cap\Big{(}\Big{[}0,\frac{2}{3}\Big{)}^{S^{\prime}}\times\Big{(}\frac{1}{3},1\Big{]}^{S^{\complement}}\Big{)}_{\mathrm{tb}}\Big{)}\times\Big{(}\Big{[}0,\frac{2}{3}\Big{)}^{S^{\prime\prime}}\times\Big{(}\frac{1}{3},1\Big{]}^{(S^{\prime})^{\complement}}\Big{)}_{\mathrm{tb}}, (2.64)

where H~j,k\tilde{H}_{j,k} is the closure of {xj=xk}\{x_{j}=x_{k}\} in ([0,2/3)S×(1/3,1]S)tb([0,2/3)^{S^{\prime}}\times(1/3,1]^{S^{\complement}})_{\mathrm{tb}}, which is a p-submanifold [MS08] (this also follows from B.1). Thus, Hj,kbd1(,m,n(S,S,S′′))H_{j,k}\cap\mathrm{bd}^{-1}(\square_{\ell,m,n}(S,S^{\prime},S^{\prime\prime})) is a p-submanifold of bd1(,m,n(S,S,S′′))\mathrm{bd}^{-1}(\square_{\ell,m,n}(S,S^{\prime},S^{\prime\prime})). As the neighborhoods bd1(,m,n(S,S,S′′))\mathrm{bd}^{-1}(\square_{\ell,m,n}(S,S^{\prime},S^{\prime\prime})) cover A,m,nA_{\ell,m,n}, the conclusion follows. ∎

This result is illustrated in Figure 9.

We now record the results of lifting xix_{i} and 1xi1-x_{i} to A,m,nA_{\ell,m,n}, these being derivable via the universal property.

  • If i{1,,}i\in\{1,\ldots,\ell\}, then

    xi\displaystyle-x_{i} [iQ{1,,}S{+m+1,,N}xFS,Q;1][iS{1,,}Q{+1,,+m}xFS,Q;0]C(A,m,n;+),\displaystyle\in\Big{[}\prod_{\begin{subarray}{c}i\in Q\subseteq\{1,\ldots,\ell\}\\ S\subseteq\{\ell+m+1,\ldots,N\}\end{subarray}}x_{\mathrm{F}_{S,Q;\infty}}^{-1}\Big{]}\Big{[}\prod_{\begin{subarray}{c}i\in S\subseteq\{1,\ldots,\ell\}\\ Q\subseteq\{\ell+1,\ldots,\ell+m\}\end{subarray}}x_{\mathrm{F}_{S,Q;0}}\Big{]}C^{\infty}(A_{\ell,m,n};\mathbb{R}^{+}), (2.65)
    (1xi)\displaystyle(1-x_{i}) [iQ{1,,}S{+m+1,,N}xFS,Q;1]C(A,m,n;+).\displaystyle\in\Big{[}\prod_{\begin{subarray}{c}i\in Q\subseteq\{1,\ldots,\ell\}\\ S\subseteq\{\ell+m+1,\ldots,N\}\end{subarray}}x_{\mathrm{F}_{S,Q;\infty}}^{-1}\Big{]}C^{\infty}(A_{\ell,m,n};\mathbb{R}^{+}). (2.66)
  • If i{+1,,+m}i\in\{\ell+1,\ldots,\ell+m\}, then

    xi\displaystyle x_{i} [S{1,,}iQ{+1,,+m}xFS,Q;0]C(A,m,n;+),\displaystyle\in\Big{[}\prod_{\begin{subarray}{c}S\subseteq\{1,\ldots,\ell\}\\ i\in Q\subseteq\{\ell+1,\ldots,\ell+m\}\end{subarray}}x_{\mathrm{F}_{S,Q;0}}\Big{]}C^{\infty}(A_{\ell,m,n};\mathbb{R}^{+}), (2.67)
    (1xi)\displaystyle(1-x_{i}) [iS{+1,,+m}Q{+m+1,,N}xFS,Q;1]C(A,m,n;+).\displaystyle\in\Big{[}\prod_{\begin{subarray}{c}i\in S\subseteq\{\ell+1,\ldots,\ell+m\}\\ Q\subseteq\{\ell+m+1,\ldots,N\}\end{subarray}}x_{\mathrm{F}_{S,Q;1}}\Big{]}C^{\infty}(A_{\ell,m,n};\mathbb{R}^{+}). (2.68)
  • If i{+m+1,,N}i\in\{\ell+m+1,\ldots,N\}, then

    xi\displaystyle x_{i} [iS{+m+1,,N}Q{1,,}xFS,Q;1]C(A,m,n;+),\displaystyle\in\Big{[}\prod_{\begin{subarray}{c}i\in S\subseteq\{\ell+m+1,\ldots,N\}\\ Q\subseteq\{1,\ldots,\ell\}\end{subarray}}x_{\mathrm{F}_{S,Q;\infty}}^{-1}\Big{]}C^{\infty}(A_{\ell,m,n};\mathbb{R}^{+}), (2.69)
    (1xi)\displaystyle-(1-x_{i}) [S{+1,,+m}iQ{+m+1,,N}xFS,Q;1][iS{+m+1,,N}Q{1,,}xFS,Q;1]C(A,m,n;+).\displaystyle\in\Big{[}\prod_{\begin{subarray}{c}S\subseteq\{\ell+1,\ldots,\ell+m\}\\ i\in Q\subseteq\{\ell+m+1,\ldots,N\}\end{subarray}}x_{\mathrm{F}_{S,Q;1}}\Big{]}\Big{[}\prod_{\begin{subarray}{c}i\in S\subseteq\{\ell+m+1,\ldots,N\}\\ Q\subseteq\{1,\ldots,\ell\}\end{subarray}}x_{\mathrm{F}_{S,Q;\infty}}^{-1}\Big{]}C^{\infty}(A_{\ell,m,n};\mathbb{R}^{+}). (2.70)

Let 1={1,,}\mathcal{I}_{1}=\{1,\ldots,\ell\}, 2={+1,,+m}\mathcal{I}_{2}=\{\ell+1,\ldots,\ell+m\}, and 3={+m+1,,N}\mathcal{I}_{3}=\{\ell+m+1,\ldots,N\}. For j,kj,k\in\mathcal{I}_{\bullet} for the same {1,2,3}\bullet\in\{1,2,3\}, let yj,ky_{j,k} denote a defining function of Hj,kH_{j,k}, with the sign chosen so as to have the same sign as xjxkx_{j}-x_{k}. Then, for all distinct j,k{1,,N}j,k\in\{1,\ldots,N\},

(xjxk)Yj,kXj,kC(A,m,n;+),(x_{j}-x_{k})\in Y_{j,k}X_{j,k}C^{\infty}(A_{\ell,m,n};\mathbb{R}^{+}), (2.71)

where Xj,k=Xk,jX_{j,k}=X_{k,j} is given by

Xj,k={[S3jQ1 or kQ1xFS,Q;1][j,kS1Q2xFS,Q;0](j,k1),[S1j,kQ2xFS,Q;0][j,kS2Q3xFS,Q;1](j,k2),[S2j,kQ3xFS,Q;1][jS3 or kS3Q1xFS,Q;1](j,k3),[jS1Q3xFS,Q;1][jS1kQ2xFS,Q;0](j1,k2),[S1kQ3xFS,Q;1][jS2kQ3xFS,Q;1](j2,k3),[S1,Q3{j,k}SQxFS,Q;1](j3,k1),X_{j,k}=\begin{cases}\Big{[}\prod_{\begin{subarray}{c}S\subseteq\mathcal{I}_{3}\\ j\in Q\subseteq\mathcal{I}_{1}\text{ or }k\in Q\subseteq\mathcal{I}_{1}\end{subarray}}x_{\mathrm{F}_{S,Q;\infty}}^{-1}\Big{]}\Big{[}\prod_{\begin{subarray}{c}j,k\in S\subseteq\mathcal{I}_{1}\\ Q\subseteq\mathcal{I}_{2}\end{subarray}}x_{\mathrm{F}_{S,Q;0}}\Big{]}&(j,k\in\mathcal{I}_{1}),\\ \Big{[}\prod_{\begin{subarray}{c}S\subseteq\mathcal{I}_{1}\\ j,k\in Q\subseteq\mathcal{I}_{2}\end{subarray}}x_{\mathrm{F}_{S,Q;0}}\Big{]}\Big{[}\prod_{\begin{subarray}{c}j,k\in S\subseteq\mathcal{I}_{2}\\ Q\subseteq\mathcal{I}_{3}\end{subarray}}x_{\mathrm{F}_{S,Q;1}}\Big{]}&(j,k\in\mathcal{I}_{2}),\\ \Big{[}\prod_{\begin{subarray}{c}S\subseteq\mathcal{I}_{2}\\ j,k\in Q\subseteq\mathcal{I}_{3}\end{subarray}}x_{\mathrm{F}_{S,Q;1}}\Big{]}\Big{[}\prod_{\begin{subarray}{c}j\in S\subseteq\mathcal{I}_{3}\text{ or }k\in S\subseteq\mathcal{I}_{3}\\ Q\subseteq\mathcal{I}_{1}\end{subarray}}x_{\mathrm{F}_{S,Q;\infty}}^{-1}\Big{]}&(j,k\in\mathcal{I}_{3}),\\ \Big{[}\prod_{\begin{subarray}{c}j\in S\subseteq\mathcal{I}_{1}\\ Q\subseteq\mathcal{I}_{3}\end{subarray}}x_{\mathrm{F}_{S,Q;\infty}}^{-1}\Big{]}\Big{[}\prod_{\begin{subarray}{c}j\in S\subseteq\mathcal{I}_{1}\\ k\in Q\subseteq\mathcal{I}_{2}\end{subarray}}x_{\mathrm{F}_{S,Q;0}}\Big{]}&(j\in\mathcal{I}_{1},k\in\mathcal{I}_{2}),\\ \Big{[}\prod_{\begin{subarray}{c}S\subseteq\mathcal{I}_{1}\\ k\in Q\subseteq\mathcal{I}_{3}\end{subarray}}x_{\mathrm{F}_{S,Q;\infty}}^{-1}\Big{]}\Big{[}\prod_{\begin{subarray}{c}j\in S\subseteq\mathcal{I}_{2}\\ k\in Q\subseteq\mathcal{I}_{3}\end{subarray}}x_{\mathrm{F}_{S,Q;1}}\Big{]}&(j\in\mathcal{I}_{2},k\in\mathcal{I}_{3}),\\ \Big{[}\prod_{\begin{subarray}{c}S\subseteq\mathcal{I}_{1},Q\subseteq\mathcal{I}_{3}\\ \{j,k\}\cap S\cup Q\neq\varnothing\end{subarray}}x_{\mathrm{F}_{S,Q;\infty}}^{-1}\Big{]}&(j\in\mathcal{I}_{3},k\in\mathcal{I}_{1}),\end{cases} (2.72)

and Yj,k=yj,kY_{j,k}=y_{j,k} if, for some {1,2,3}\bullet\in\{1,2,3\}, we have j,kj,k\in\mathcal{I}_{\bullet}, and Yj,k=±1Y_{j,k}=\pm 1 otherwise.

We associate to each face F(A,m,n)\mathrm{F}_{\bullet}\in\mathcal{F}(A_{\ell,m,n}) an affine functional

ϱ:2N+N(N1)/2(𝜶,𝜷,𝜸)ϱF(𝜶,𝜷,𝜸).\varrho_{\bullet}:\mathbb{C}^{2N+N(N-1)/2}\ni(\bm{\alpha},\bm{\beta},\bm{\gamma})\mapsto\varrho_{\mathrm{F}_{\bullet}}(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\mathbb{C}. (2.73)

Suppose that we are given some 𝜶,𝜷N\bm{\alpha},\bm{\beta}\in\mathbb{C}^{N} and 𝜸={γj,k=γk,j}1j<kNN(N1)/2\bm{\gamma}=\{\gamma_{j,k}=\gamma_{k,j}\}_{1\leq j<k\leq N}\in\mathbb{C}^{N(N-1)/2}. Then, ϱ(𝜶,𝜷,𝜸)\varrho_{\bullet}(\bm{\alpha},\bm{\beta},\bm{\gamma}) is defined as follows:

  • For S{1,,}S\subseteq\{1,\ldots,\ell\} and Q{+1,,+m}Q\subseteq\{\ell+1,\ldots,\ell+m\},

    ϱS,Q;0=|S|+|Q|1+jSQαj+2j,kSQj>kγj,k.\varrho_{S,Q;0}=|S|+|Q|-1+\sum_{j\in S\cup Q}\alpha_{j}+2\sum_{\begin{subarray}{c}j,k\in S\cup Q\\ j>k\end{subarray}}\gamma_{j,k}. (2.74)
  • For S{+1,,+m}S\subseteq\{\ell+1,\ldots,\ell+m\} and Q{+m+1,,N}Q\subseteq\{\ell+m+1,\ldots,N\},

    ϱS,Q;1=|S|+|Q|1+jSQβj+2j,kSQj>kγj,k.\varrho_{S,Q;1}=|S|+|Q|-1+\sum_{j\in S\cup Q}\beta_{j}+2\sum_{\begin{subarray}{c}j,k\in S\cup Q\\ j>k\end{subarray}}\gamma_{j,k}. (2.75)
  • For S{+m+1,,N}S\subseteq\{\ell+m+1,\ldots,N\} and Q{1,,}Q\subseteq\{1,\ldots,\ell\},

    ϱS,Q;=|S||Q|1jSQαjjSQβj2j>kjSQ or kSQγj,k.\varrho_{S,Q;\infty}=-|S|-|Q|-1-\sum_{j\in S\cup Q}\alpha_{j}-\sum_{j\in S\cup Q}\beta_{j}-2\sum_{\begin{subarray}{c}j>k\\ j\in S\cup Q\text{ or }k\in S\cup Q\end{subarray}}\gamma_{j,k}. (2.76)

Then, letting Δ,m,n\Delta\subset\square_{\ell,m,n} be defined by Δ==13jk,j,k{xj=xk}\Delta=\cup_{\bullet=1}^{3}\cup_{j\neq k,j,k\in\mathcal{I}_{\bullet}}\{x_{j}=x_{k}\}:

Proposition 2.7.

Given any 𝛂,𝛃N\bm{\alpha},\bm{\beta}\in\mathbb{C}^{N} and 𝛄={γj,k=γk,j}1j<kNN(N1)/2\bm{\gamma}=\{\gamma_{j,k}=\gamma_{k,j}\}_{1\leq j<k\leq N}\in\mathbb{C}^{N(N-1)/2},

i=1N|xi|αi|1xi|βi1j<kN(xkxj+i0)2γj,k|dx1dxN|C(,m,n\Δ;Ω(,m,n\Δ))\prod_{i=1}^{N}|x_{i}|^{\alpha_{i}}|1-x_{i}|^{\beta_{i}}\prod_{1\leq j<k\leq N}(x_{k}-x_{j}+i0)^{2\gamma_{j,k}}|\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{N}|\in C^{\infty}(\square_{\ell,m,n}^{\circ}\backslash\Delta;\mathbb{C}\otimes\Omega(\square^{\circ}_{\ell,m,n}\backslash\Delta)) (2.77)

lifts, via the blowdown map bd:A,m,n,m,n\mathrm{bd}:A_{\ell,m,n}\to\square_{\ell,m,n}, to

[S{1,,}Q{+1,,+m}xFS,Q;0ϱS,Q;0][S{+1,,+m}Q{+m+1,,N}xFS,Q;1ϱS,Q;1][S{+m+1,,N}Q{1,,}xFS,Q;ϱS,Q;][1j<k(yk,j+i0)2γj,k]×[+1j<k+m(yk,j+i0)2γj,k][+m+1j<kN(yk,j+i0)2γj,k]μ,m,n\Big{[}\prod_{\begin{subarray}{c}S\subseteq\{1,\ldots,\ell\}\\ Q\subseteq\{\ell+1,\ldots,\ell+m\}\end{subarray}}x_{\mathrm{F}_{S,Q;0}}^{\varrho_{S,Q;0}}\Big{]}\Big{[}\prod_{\begin{subarray}{c}S\subseteq\{\ell+1,\ldots,\ell+m\}\\ Q\subseteq\{\ell+m+1,\ldots,N\}\end{subarray}}x_{\mathrm{F}_{S,Q;1}}^{\varrho_{S,Q;1}}\Big{]}\Big{[}\prod_{\begin{subarray}{c}S\subseteq\{\ell+m+1,\ldots,N\}\\ Q\subseteq\{1,\ldots,\ell\}\end{subarray}}x_{\mathrm{F}_{S,Q;\infty}}^{\varrho_{S,Q;\infty}}\Big{]}\Big{[}\prod_{1\leq j<k\leq\ell}(y_{k,j}+i0)^{2\gamma_{j,k}}\Big{]}\\ \times\Big{[}\prod_{\ell+1\leq j<k\leq\ell+m}(y_{k,j}+i0)^{2\gamma_{j,k}}\Big{]}\Big{[}\prod_{\ell+m+1\leq j<k\leq N}(y_{k,j}+i0)^{2\gamma_{j,k}}\Big{]}\mu_{\ell,m,n} (2.78)

for some strictly positive smooth density μ,m,nC(A,m,n;ΩA,m,n)\mu_{\ell,m,n}\in C^{\infty}(A_{\ell,m,n};\Omega A_{\ell,m,n}) on A,m,nA_{\ell,m,n}, depending entirely on 𝛂,𝛃,𝛄\bm{\alpha},\bm{\beta},\bm{\gamma}. ∎

Proof.

Follows from the preceding computations, along with 2.5. ∎

If MM is an orientable mwc, we say that a collection 𝒫\mathcal{P} of interior p-submanifolds each of codimension one is consistently orientable if we can choose an orientation on each such that, for any pMp\in M, the subset

P𝒫,pP++NpPTpM\sum_{P\in\mathcal{P},p\in P}{}^{++}N^{*}_{p}P\subset T^{*}_{p}M (2.79)

does not contain zero, where ++NP+NPTM{}^{++}N^{*}P\subset{}^{+}N^{*}P\subset T^{*}M is the induced positively oriented conormal bundle, sans the zero section, and TMT^{*}M is the extendable cotangent bundle of MM. Whether or not this holds does not depend on the choice of orientation of MM. Choosing defining functions {yP}P𝒫C(M;)\{y_{P}\}_{P\in\mathcal{P}}\subset C^{\infty}(M;\mathbb{R}) for the P𝒫P\in\mathcal{P} such that

dyP(p)+NpP\mathrm{d}y_{P}(p)\in{}^{+}N^{*}_{p}P (2.80)

for each pPp\in P, we say that the {yP}P𝒫\{y_{P}\}_{P\in\mathcal{P}} are consistently oriented defining functions.

Example.

In 0,3,0=(0,1)3\square_{0,3,0}^{\circ}=(0,1)^{3}, consider 𝒫={H1,2,H2,3,H3,1}\mathcal{P}=\{H_{1,2}^{\circ},H_{2,3}^{\circ},H_{3,1}^{\circ}\}. The functions x2x1x_{2}-x_{1}, x3x2x_{3}-x_{2}, x1x3x_{1}-x_{3} are not consistently oriented defining functions, as

0=d(x2x1)+d(x3x2)+d(x1x3),0=\,\mathrm{d}(x_{2}-x_{1})+\,\mathrm{d}(x_{3}-x_{2})+\,\mathrm{d}(x_{1}-x_{3}), (2.81)

but x2x1x_{2}-x_{1}, x3x2x_{3}-x_{2}, and x3x1x_{3}-x_{1} are. ∎

Let

𝒫={Hj,k}j,k1,jk{Hj,k}j,k2,jk{Hj,k}j,k3,jk.\mathcal{P}=\{H_{j,k}\}_{j,k\in\mathcal{I}_{1},j\neq k}\cup\{H_{j,k}\}_{j,k\in\mathcal{I}_{2},j\neq k}\cup\{H_{j,k}\}_{j,k\in\mathcal{I}_{3},j\neq k}. (2.82)
A1,2,0A_{1,2,0}
A0,3,0A_{0,3,0}
Figure 9. The sets Hj,k𝒫H_{j,k}\in\mathcal{P} in A1,2,0A_{1,2,0} and A0,3,0A_{0,3,0}. Pictured are H1,2\color[rgb]{0.66,0.0,0.0}\definecolor[named]{pgfstrokecolor}{rgb}{0.66,0.0,0.0}H_{1,2}, H1,3\color[rgb]{0.0,0.0,0.66}\definecolor[named]{pgfstrokecolor}{rgb}{0.0,0.0,0.66}H_{1,3}, and H2,3\color[rgb]{0.0,0.66,0}\definecolor[named]{pgfstrokecolor}{rgb}{0.0,0.66,0}H_{2,3}, where the axes are oriented as in Figure 7. In A0,3,0A_{0,3,0}, the intersection H1,2H1,3H2,3H_{1,2}\cap H_{1,3}\cap H_{2,3} has been indicated with an extra dashed line.
Proposition 2.8.

The collection 𝒫\mathcal{P} defined by eq. 2.82 is consistently orientable, and {yk,j}j<k\{y_{k,j}\}_{j<k} is a set of consistently oriented defining functions. ∎

Proof.

We will show that, for any pA,m,np\in A_{\ell,m,n} and {λj,k}pHj,k𝒫[0,)\{\lambda_{j,k}\}_{p\in H_{j,k}\in\mathcal{P}}\in[0,\infty), if the 1-form

Hj,k𝒫 s.t. pHj,kλj,kdyk,jΩ1(A,m,n)\sum_{H_{j,k}\in\mathcal{P}\text{ s.t. }p\in H_{j,k}}\lambda_{j,k}\mathrm{d}y_{k,j}\in\Omega^{1}(A_{\ell,m,n}) (2.83)

vanishes at pp, then λj,k=0\lambda_{j,k}=0 for all Hj,k𝒫H_{j,k}\in\mathcal{P} such that pHj,kp\in H_{j,k}. Put differently, we want to show that if 𝙿\mathtt{P} is any partition of {1,,N}\{1,\ldots,N\} into nonempty subsets S1,2,3S\subset\mathcal{I}_{1},\mathcal{I}_{2},\mathcal{I}_{3}, then, given any {λj,k}j,kS𝙿,j<k0\{\lambda_{j,k}\}_{j,k\in S\in\mathtt{P},j<k}\subset\mathbb{R}^{\geq 0} not all zero, then

j,kS𝙿j<kλj,kdyk,j\sum_{\begin{subarray}{c}j,k\in S\in\mathtt{P}\\ j<k\end{subarray}}\lambda_{j,k}\,\mathrm{d}y_{k,j} (2.84)

is nonvanishing on j,kS𝙿,j<kHj,k\cap_{j,k\in S\in\mathtt{P},j<k}H_{j,k}. If 𝙿\mathtt{P} consists only of singletons, then this is vacuously true, so it suffices to consider the case when at least one member of 𝙿\mathtt{P} has cardinality >1>1.

This is certainly true for p,m,np\in\square_{\ell,m,n}^{\circ}, as dyk,jdxkdxj\mathrm{d}y_{k,j}\propto\,\mathrm{d}x_{k}-\,\mathrm{d}x_{j} on ,m,nHj,k\square_{\ell,m,n}^{\circ}\cap H_{j,k}, where the coefficient of proportionality is positive. Indeed, by the results above,

xkxj=fj,kyk,jx_{k}-x_{j}=f_{j,k}y_{k,j} (2.85)

for some fj,kC(A,m,n;0)f_{j,k}\in C^{\infty}(A_{\ell,m,n};\mathbb{R}^{\geq 0}) that is nonvanishing in the interior, so

dyk,j=fj,k1(dxkdxj)fj,k1yk,jdfj,k\,\mathrm{d}y_{k,j}=f_{j,k}^{-1}(\mathrm{d}x_{k}-\,\mathrm{d}x_{j})-f_{j,k}^{-1}y_{k,j}\,\mathrm{d}f_{j,k} (2.86)

in ,m,n\square_{\ell,m,n}^{\circ}, which is equal to fj,k1(dxkdxj)f_{j,k}^{-1}(\mathrm{d}x_{k}-\,\mathrm{d}x_{j}) on Hj,k,m,nH_{j,k}\cap\square_{\ell,m,n}^{\circ}, as claimed. This argument does not work for pA,m,np\in\partial A_{\ell,m,n}, as fj,kf_{j,k} may vanish there.

A homogeneity argument can be used to show that, for any pA,m,np\in\smash{\partial A_{\ell,m,n}}, there exists a tubular neighborhood T:UU0T:U\to U_{0} of a neighborhood U0F0U_{0}\subset F_{0} of pp in F0F_{0}, where F0F_{0} is the smallest facet containing pp, such that the intersections UPU\cap P of this neighborhood with the P𝒫P\in\mathcal{P} are all vertical subsets, meaning of the form T1(B)T^{-1}(B) for some BU0B\subset U_{0}. This implies that if the 1-form above vanishes at pp, then it also vanishes on the fiber of the tubular neighborhood over pp and hence somewhere in ,m,n(Hj,kpHj,k)\square^{\circ}_{\ell,m,n}\cap(\bigcap_{H_{j,k}\ni p}H_{j,k}).

We illustrate the preceding argument with an example. Consider the case when the only one of ,m,n\ell,m,n that is nonzero is mm, and consider pHj,k𝒫Hj,kp\in\cap_{H_{j,k}\in\mathcal{P}}H_{j,k}. The set Hj,k𝒫Hj,kA0,N,0\cap_{H_{j,k}\in\mathcal{P}}H_{j,k}\subset A_{0,N,0} (the “small diagonal”) is a p-submanifold located away from all but the very first two blowups involved in the construction of A0,N,0A_{0,N,0}. Near this p-submanifold, A0,N,0A_{0,N,0} is canonically diffeomorphic to [0,N,0,{𝟎},{𝟏}][\square_{0,N,0},\{\bf 0\},\{\bf 1\}], the result of blowing up two opposite corners of the NN-cube. We consider the situation near the blowup of

{𝟎}=F,,{1,,N},,,,\{{\bf 0}\}=\mathrm{F}_{\varnothing,\varnothing,\{1,\ldots,N\},\varnothing,\varnothing,\varnothing}, (2.87)

and the situation near the opposite corner is similar. In the interior of the front face of that blowup, we can use ϱ=x1\varrho=x_{1} as a bdf and coordinates x^j=xj/x1\hat{x}_{j}=x_{j}/x_{1} for j=2,,Nj=2,\ldots,N as parametrizing the face itself. In terms of these coordinates,

Hj,k𝒫Hj,k={x^2,,x^N=1}\cap_{H_{j,k}\in\mathcal{P}}H_{j,k}=\{\hat{x}_{2},\cdots,\hat{x}_{N}=1\} (2.88)

locally, and, for 1j<kN1\leq j<k\leq N, we can write yk,j=y~k,jC(A0,N,0;+)y_{k,j}=\tilde{y}_{k,j}C^{\infty}(A_{0,N,0};\mathbb{R}^{+}) for y~k,j\tilde{y}_{k,j} given locally by y~k,j=ϱ1(xkxj)=x^kx^j\tilde{y}_{k,j}=\varrho^{-1}(x_{k}-x_{j})=\hat{x}_{k}-\hat{x}_{j}, where x^1=1\hat{x}_{1}=1. This satisfies

dy~k,j={dx^k(j=1),dx^kdx^j(j1).\,\mathrm{d}\tilde{y}_{k,j}=\begin{cases}\mathrm{d}\hat{x}_{k}&(j=1),\\ \mathrm{d}\hat{x}_{k}-\,\mathrm{d}\hat{x}_{j}&(j\neq 1).\end{cases} (2.89)

So, if λk,j0\lambda_{k,j}\geq 0, then 1j<kNλj,kdy~k,j=0λj,k=0\sum_{1\leq j<k\leq N}\lambda_{j,k}\mathrm{d}\tilde{y}_{k,j}=0\Rightarrow\lambda_{j,k}=0 for all k,jk,j. Since the yk,jy_{k,j} differ from the y~k,j\tilde{y}_{k,j} by a (smooth) positive factor, the yk,jy_{k,j} have the same property on Hj,k𝒫Hj,k\cap_{H_{j,k}\in\mathcal{P}}H_{j,k}.

There is a more direct argument using the coordinates in B.1 (with the decomposition eq. 2.59). Namely, using eq. 2.59, the result follows from the analogous result for [0,1)tbN[0,1)_{\mathrm{tb}}^{N}. Given any σ𝔖N\sigma\in\mathfrak{S}_{N}, consider the coordinates ϱ,x^σ(2),,x^σ(N)\varrho,\hat{x}_{\sigma(2)},\cdots,\hat{x}_{\sigma(N)} defined in B.1, these giving a CC^{\infty}-atlas as σ\sigma varies over all permutations. In these coordinate systems, the relevant p-submanifolds are, locally,

Hj,k={x^j+1x^k=1}[0,1)tbN,H_{j,k}=\{\hat{x}_{j+1}\cdots\hat{x}_{k}=1\}\subset[0,1)_{\mathrm{tb}}^{N}, (2.90)

so have defining functions yk,j=1+x^j+1x^ky_{k,j}=-1+\hat{x}_{j+1}\cdots\hat{x}_{k}. This satisfies

dyk,j=i=j+1kdx^ix^i\,\mathrm{d}y_{k,j}=\sum_{i=j+1}^{k}\frac{\,\mathrm{d}\hat{x}_{i}}{\hat{x}_{i}} (2.91)

on Hj,kH_{j,k}. The 1-forms, ωj,k=i=j+1kx^i1dx^i\omega_{j,k}=\sum_{i=j+1}^{k}\hat{x}_{i}^{-1}\,\mathrm{d}\hat{x}_{i}, defined by the right-hand side of eq. 2.91 satisfy

{λj,k}1j<kN and j,kS𝙿[0,) and 1j<kN and j,kS𝙿λj,kωj,k=0λj,k=0 for all j<k in S𝙿,\{\lambda_{j,k}\}_{1\leq j<k\leq N\text{ and }j,k\in S\in\mathtt{P}}\subset[0,\infty)\text{ and }\sum_{1\leq j<k\leq N\text{ and }j,k\in S\in\mathtt{P}}\lambda_{j,k}\omega_{j,k}=0\\ \Rightarrow\lambda_{j,k}=0\text{ for all $j<k$ in $S\in\mathtt{P}$}, (2.92)

from which the result follows.

Let Σ𝚃(,m,n)\Sigma\mathtt{T}(\ell,m,n) denote the collection of maximal families 𝙸\mathtt{I} of pairs (x0,S)(x_{0},S) of x0{0,1,}x_{0}\in\{0,1,\infty\} and nonempty S{1,,N}S\subseteq\{1,\ldots,N\} such that

  • if (x0,S),(x0,Q)𝙸(x_{0},S),(x_{0},Q)\in\mathtt{I}, either SQS\subseteq Q or QSQ\subseteq S,

  • (x0,S)𝙸{S3=(x0=0),S1=(x0=1),S2=(x0=).(x_{0},S)\in\mathtt{I}\Rightarrow\begin{cases}S\cap\mathcal{I}_{3}=\varnothing&(x_{0}=0),\\ S\cap\mathcal{I}_{1}=\varnothing&(x_{0}=1),\\ S\cap\mathcal{I}_{2}=\varnothing&(x_{0}=\infty).\end{cases} (2.93)

The minimal facets of A,m,nA_{\ell,m,n} are in bijective correspondence with the elements of Σ𝚃(,m,n)\Sigma\mathtt{T}(\ell,m,n), with

f𝙸=(x0,𝒮)𝙸,SQ𝒮FS,Q;x0\mathrm{f}_{\mathtt{I}}=\bigcap_{(x_{0},\mathcal{S})\in\mathtt{I},\;S\cup Q\subseteq\mathcal{S}}\mathrm{F}_{S,Q;x_{0}} (2.94)

the facet corresponding to 𝙸\mathtt{I}.

3. Meromorphic continuation

We now turn to the analytic extension of Selberg-like integrals to dense, open subsets of the space of possible exponents. As discussed in the introduction, the results in this section are apparently sharp for generic Selberg-like integrals, but for e.g. symmetric Selberg-like integrals they are only preliminary. Nevertheless, the results we prove here will be useful in establishing the sharp results later. For our discussion of the symmetric and DF-symmetric cases, it is useful to consider somewhat more general integrals than eq. 1.2. Let ,m,n\ell,m,n\in\mathbb{N} satisfy +m+n=N+\ell+m+n=N\in\mathbb{N}^{+}. Fix a finite collection 𝒟\mathcal{D} of indexed sets

{dF}F(K,m,n).\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(K_{\ell,m,n})}\subseteq\mathbb{R}. (3.1)

Define

S,m,n[F](𝜶,𝜷,𝜸)=,m,n[i=1N|xi|αi|1xi|βi][1j<kN(xkxj)2γj,k]Fdx1dxN,S_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=\int_{\triangle_{\ell,m,n}}\Big{[}\prod_{i=1}^{N}|x_{i}|^{\alpha_{i}}|1-x_{i}|^{\beta_{i}}\Big{]}\Big{[}\prod_{1\leq j<k\leq N}(x_{k}-x_{j})^{2\gamma_{j,k}}\Big{]}F\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{N}, (3.2)

for (𝜶,𝜷,𝜸)Ω,m,n[𝒟](\bm{\alpha},\bm{\beta},\bm{\gamma})\in\Omega_{\ell,m,n}[\mathcal{D}], where

  • Ω,m,n[𝒟]\Omega_{\ell,m,n}[\mathcal{D}] denotes the set of (𝜶,𝜷,𝜸)N𝜶×N𝜷×N(N1)/2𝜸(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\mathbb{C}^{N}_{\bm{\alpha}}\times\mathbb{C}^{N}_{\bm{\beta}}\times\mathbb{C}^{N(N-1)/2}_{\bm{\gamma}} such that

    [i=1N|xi|αi|1xi|βi][1j<kN(xkxj)2γj,k][F(K,m,n)xFdF]L1(,m,n,dx1dxN)\Big{[}\prod_{i=1}^{N}|x_{i}|^{\alpha_{i}}|1-x_{i}|^{\beta_{i}}\Big{]}\Big{[}\prod_{1\leq j<k\leq N}(x_{k}-x_{j})^{2\gamma_{j,k}}\Big{]}\Big{[}\prod_{\mathrm{F}\in\mathcal{F}(K_{\ell,m,n})}x_{\mathrm{F}}^{d_{\mathrm{F}}}\Big{]}\in L^{1}(\triangle_{\ell,m,n},\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{N}) (3.3)

    for all {dF}F(K,m,n)𝒟\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(K_{\ell,m,n})}\in\mathcal{D}, and

  • FF has the form

    F={dF}F(K,m,n)[F(K,m,n)xFdF]F{dF}F(K,m,n)F=\sum_{\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(K_{\ell,m,n})}}\Big{[}\prod_{\mathrm{F}\in\mathcal{F}(K_{\ell,m,n})}x_{\mathrm{F}}^{d_{\mathrm{F}}}\Big{]}F_{\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(K_{\ell,m,n})}} (3.4)

    for some F{dF}F(K,m,n)C(K,m,n)F_{\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(K_{\ell,m,n})}}\in C^{\infty}(K_{\ell,m,n}).

We denote the set of such FF by 𝒜𝒟(K,m,n)\mathcal{A}^{\mathcal{D}}(K_{\ell,m,n}). From the definition eq. 2.6 of ,m,n\triangle_{\ell,m,n}, the integrand is nonvanishing there, so the the absolute values in eq. 3.2 amount to a choice of branch.

Observe that Ω,m,n[𝒟]\Omega_{\ell,m,n}[\mathcal{D}] is a nonempty, open, and connected subset of 2N+N(N1)/2\mathbb{C}^{2N+N(N-1)/2}. In the case N=1N=1, we consider Ω,m,n[𝒟]\Omega_{\ell,m,n}[\mathcal{D}] as a subset of 2α,β\mathbb{C}^{2}_{\alpha,\beta}.

We write Ω[F]\Omega[F] to denote Ω,m,n[𝒟]\Omega_{\ell,m,n}[\mathcal{D}] for arbitrary 𝒟\mathcal{D} such that F𝒜𝒟(K,m,n)F\in\mathcal{A}^{\mathcal{D}}(K_{\ell,m,n}). Let

Ω,m,n=Ω,m,n[{{0}F(K,m,n)}].\Omega_{\ell,m,n}=\Omega_{\ell,m,n}[\{\{0\}_{\mathrm{F}\in\mathcal{F}(K_{\ell,m,n})}\}]. (3.5)

If φC(,m,n)\varphi\in C^{\infty}(\triangle_{\ell,m,n}), then we can consider φ\varphi as an element of C(K,m,n)C^{\infty}(K_{\ell,m,n}), so S,m,n[φ]:Ω,m,nS_{\ell,m,n}[\varphi]:\Omega_{\ell,m,n}\to\mathbb{C} is well-defined, and Ω,m,n[φ]Ω,m,n\Omega_{\ell,m,n}[\varphi]\supseteq\Omega_{\ell,m,n}. If f[x1,,xN]f\in\mathbb{C}[x_{1},\ldots,x_{N}], then the lift of fφf\varphi is also a classical symbol on K,m,nK_{\ell,m,n} (it is smooth if ,n=0\ell,n=0, but not necessarily otherwise), so

S,m,n[fφ]:Ω,m,n[f]S_{\ell,m,n}[f\varphi]:\Omega_{\ell,m,n}[f]\to\mathbb{C} (3.6)

is well-defined, except now we may have Ω,m,n[fφ]Ω,m,n\Omega_{\ell,m,n}[f\varphi]\not\subseteq\Omega_{\ell,m,n} if 0\ell\neq 0 or n0n\neq 0.

In the special case when ,n=0\ell,n=0 and m=Nm=N, we use the abbreviations Ω0,N,0=ΩN\Omega_{0,N,0}=\Omega_{N}, Ω0,N,0[]=ΩN[]\Omega_{0,N,0}[\bullet]=\Omega_{N}[\bullet], and

S0,N,0[F](𝜶,𝜷,𝜸)=SN[F](𝜶,𝜷,𝜸),S_{0,N,0}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=S_{N}[F](\bm{\alpha},\bm{\beta},\bm{\gamma}), (3.7)

this being consistent with our earlier notation.

As in the introduction, when 𝜶,𝜷,𝜸\bm{\alpha},\bm{\beta},\bm{\gamma} are constant, we just write ‘α\alpha’ in place of ‘𝜶\bm{\alpha},’ ‘β\beta’ in place of ‘𝜷\bm{\beta},’ and ‘γ\gamma’ in place of ‘𝜸\bm{\gamma}.’ Let U,m,n[]U_{\ell,m,n}[\bullet] denote the set of (α,β,γ)3(\alpha,\beta,\gamma)\in\mathbb{C}^{3} such that (𝜶,𝜷,𝜸)Ω,m,n[](\bm{\alpha},\bm{\beta},\bm{\gamma})\in\Omega_{\ell,m,n}[\bullet] holds when 𝜶=α\bm{\alpha}=\alpha, 𝜷=β\bm{\beta}=\beta, and 𝜸=γ\bm{\gamma}=\gamma.

Similar abbreviations will be used throughout the rest of this paper.

In addition to the general Selberg-like integral above, we have the following general integral of Dotsenko–Fateev type:

I,m,n[F](𝜶,𝜷,𝜸)=,m,n[i=1N|xi|αi|1xi|βi][1j<kN(xkxj+i0)2γj,k]Fdx1dxNI_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=\int_{\square_{\ell,m,n}}\Big{[}\prod_{i=1}^{N}|x_{i}|^{\alpha_{i}}|1-x_{i}|^{\beta_{i}}\Big{]}\Big{[}\prod_{1\leq j<k\leq N}(x_{k}-x_{j}+i0)^{2\gamma_{j,k}}\Big{]}F\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{N} (3.8)

for (𝜶,𝜷,𝜸)V,m,n[𝒟](\bm{\alpha},\bm{\beta},\bm{\gamma})\in V_{\ell,m,n}[\mathcal{D}], where now 𝒟\mathcal{D} denotes a finite collection of indexed sets {dF}F(A,m,n)\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(A_{\ell,m,n})}\subseteq\mathbb{C},

  • V,m,n[𝒟]V_{\ell,m,n}[\mathcal{D}] denotes the set of (𝜶,𝜷,𝜸)2N+N(N1)/2(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\mathbb{C}^{2N+N(N-1)/2} for which the integrand in eq. 3.8 lies in L1(,m,n,dx1dxN)L^{1}(\square_{\ell,m,n},\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{N}) – that is the set of (𝜶,𝜷,𝜸)(\bm{\alpha},\bm{\beta},\bm{\gamma}) such that

    [i=1N|xi|αi|1xi|βi][1j<kN|xkxj|2γj,k][F(K,m,n)xFdF]L1(,m,n,dx1dxN)\Big{[}\prod_{i=1}^{N}|x_{i}|^{\alpha_{i}}|1-x_{i}|^{\beta_{i}}\Big{]}\Big{[}\prod_{1\leq j<k\leq N}|x_{k}-x_{j}|^{2\gamma_{j,k}}\Big{]}\Big{[}\prod_{\mathrm{F}\in\mathcal{F}(K_{\ell,m,n})}x_{\mathrm{F}}^{d_{\mathrm{F}}}\Big{]}\in L^{1}(\square_{\ell,m,n},\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{N}) (3.9)

    for all {dF}F(A,m,n)𝒟\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(A_{\ell,m,n})}\in\mathcal{D}, and

  • FF has the form eq. 3.4 for F{dF}F(A,m,n)C(A,m,n)F_{\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(A_{\ell,m,n})}}\in C^{\infty}(A_{\ell,m,n}).

In eq. 3.8, xγ=eπiγeγlog|x|x^{\gamma}=e^{\pi i\gamma}e^{\gamma\log|x|} if x<0x<0 and xγ=eγlogxx^{\gamma}=e^{\gamma\log x} if x>0x>0. We apply abbreviations for Dotsenko–Fateev-like integrals that are analogous to those used for Selberg-like integrals.

Let W,m,n[]W_{\ell,m,n}[\bullet] denote the set of (α,β,γ)3(\alpha,\beta,\gamma)\in\mathbb{C}^{3} such that (𝜶,𝜷,𝜸)V,m,n[](\bm{\alpha},\bm{\beta},\bm{\gamma})\in V_{\ell,m,n}[\bullet] holds when 𝜶=α\bm{\alpha}=\alpha, 𝜷=β\bm{\beta}=\beta, and 𝜸=γ\bm{\gamma}=\gamma. Let W,m,nDF0[F]W_{\ell,m,n}^{\mathrm{DF0}}[F] denote the set of (α,α+,β,β+,γ,γ0,γ+)7(\alpha_{-},\alpha_{+},\beta_{-},\beta_{+},\gamma_{-},\gamma_{0},\gamma_{+})\in\mathbb{C}^{7} such that (𝜶DF0,𝜷DF0,𝜸DF0)V,m,n[F](\bm{\alpha}^{\mathrm{DF0}},\bm{\beta}^{\mathrm{DF0}},\bm{\gamma}^{\mathrm{DF0}})\in V_{\ell,m,n}[F]. Let

IDF0;𝚂,m,n[F](α,α+,β,β+,γ,γ0,γ+)=I,m,n[F](𝜶DF0,𝜷DF0,𝜸DF0).I^{\mathrm{DF0};\mathtt{S}}_{\ell,m,n}[F](\alpha_{-},\alpha_{+},\beta_{-},\beta_{+},\gamma_{-},\gamma_{0},\gamma_{+})=I_{\ell,m,n}[F](\bm{\alpha}^{\mathrm{DF0}},\bm{\beta}^{\mathrm{DF0}},\bm{\gamma}^{\mathrm{DF0}}). (3.10)

This section is split into many short subsections. The general analytic framework in which the extension is performed is discussed in §3.1, and the specific application to Selberg-like integrals is contained in §3.2. We prove a family of identities relating I,m,n,I,n,m,In,,m,I_{\ell,m,n},I_{\ell,n,m},I_{n,\ell,m},\cdots in §3.3. As preparation for our discussion of singularity removal in the DF-symmetric case, we discuss in §3.4 an alternative regularization procedure suggested by Dotsenko–Fateev that works for some suboptimal range of parameters (in particular allowing γ0=1\gamma_{0}=-1, but not allowing the real parts of α,α+,β,β+\alpha_{-},\alpha_{+},\beta_{-},\beta_{+} to be too negative). It should be remarked that this regularization technique can be combined with that in §3.1 to yield proofs of the main theorems without the technicalities associated with needing to understand the analyticity of products of distributions like (y±i0)λ(y\pm i0)^{\lambda} in λ\lambda. As this lacks the purely analytic flavor of the proof in §3.1, it is not the approach we follow here. The I,m,nI_{\ell,m,n} are related to the Selberg-like integrals S,m,nS_{\ell,m,n} in §3.5. A key lemma used in the removal of singularities is in §3.6. This lemma is a generalization of a result proven by Aomoto [Aom87] and discussed heuristically by Dotsenko–Fateev [DF85]. For completeness and later convenience, we record in §3.7 the symmetric and DF-symmetric cases of the results in §3.2 regarding the Dotsenko–Fateev integrals.

Let 𝔖,m,n=𝔖×𝔖m×𝔖n\mathfrak{S}_{\ell,m,n}=\mathfrak{S}_{\ell}\times\mathfrak{S}_{m}\times\mathfrak{S}_{n}, which we consider as the subgroup of 𝔖N\mathfrak{S}_{N} leaving each of 1,2,3\mathcal{I}_{1},\mathcal{I}_{2},\mathcal{I}_{3} invariant, where 1,2,3\mathcal{I}_{1},\mathcal{I}_{2},\mathcal{I}_{3} are as in the previous section, a.k.a. the Young subgroup associated with the partition {1,,n}=123\{1,\ldots,n\}=\mathcal{I}_{1}\sqcup\mathcal{I}_{2}\sqcup\mathcal{I}_{3}. Given a permutation σ𝔖,m,n\sigma\in\mathfrak{S}_{\ell,m,n}, let

I,m,n[F](𝜶,𝜷,𝜸)σ=,m,n[i=1N|xi|αi|1xi|βi][1j<kN(xσ(k)xσ(j)+i0)2γσ(j),σ(k)]Fdx1dxN,I_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma}=\int_{\square_{\ell,m,n}}\Big{[}\prod_{i=1}^{N}|x_{i}|^{\alpha_{i}}|1-x_{i}|^{\beta_{i}}\Big{]}\Big{[}\prod_{1\leq j<k\leq N}(x_{\sigma(k)}-x_{\sigma(j)}+i0)^{2\gamma_{\sigma(j),\sigma(k)}}\Big{]}F\,\mathrm{d}x_{1}\cdots\,\mathrm{d}x_{N}, (3.11)

defined for (𝜶,𝜷,𝜸)V,m,n[F](\bm{\alpha},\bm{\beta},\bm{\gamma})\in V_{\ell,m,n}[F]. If we define 𝜶σ,𝜷σ,𝜸σ\bm{\alpha}^{\sigma},\bm{\beta}^{\sigma},\bm{\gamma}^{\sigma} by αjσ=ασ(j)\alpha_{j}^{\sigma}=\alpha_{\sigma(j)}, βjσ=βσ(j)\beta_{j}^{\sigma}=\beta_{\sigma(j)}, and γj,kσ=γσ(j),σ(k)\gamma_{j,k}^{\sigma}=\gamma_{\sigma(j),\sigma(k)}, and

Fσ(y1,,yN)=F(yσ1(1),,yσ1(N)),F^{\sigma}(y_{1},\ldots,y_{N})=F(y_{\sigma^{-1}(1)},\ldots,y_{\sigma^{-1}(N)}), (3.12)

then I,m,n[F](𝜶,𝜷,𝜸)σ=I,m,n[Fσ](𝜶σ,𝜷σ,𝜸σ)I_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma}=I_{\ell,m,n}[F^{\sigma}](\bm{\alpha}^{\sigma},\bm{\beta}^{\sigma},\bm{\gamma}^{\sigma}). This relation will be very useful below. More generally, for any σ𝔖N\sigma\in\mathfrak{S}_{N}, let

I,m,n[F](𝜶,𝜷,𝜸)σ\displaystyle I_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma} =I,m,n[Fσ](𝜶σ,𝜷σ,𝜸σ)\displaystyle=I_{\ell,m,n}[F^{\sigma}](\bm{\alpha}^{\sigma},\bm{\beta}^{\sigma},\bm{\gamma}^{\sigma}) (3.13)
S,m,n[F](𝜶,𝜷,𝜸)σ\displaystyle S_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma} =S,m,n[Fσ](𝜶σ,𝜷σ,𝜸σ),\displaystyle=S_{\ell,m,n}[F^{\sigma}](\bm{\alpha}^{\sigma},\bm{\beta}^{\sigma},\bm{\gamma}^{\sigma}), (3.14)

defined for (𝜶,𝜷,𝜸)V,m,n[F](\bm{\alpha},\bm{\beta},\bm{\gamma})\in V_{\ell,m,n}[F] in the former case or for

(𝜶,𝜷,𝜸)Ω,m,n[F]σ={(𝜶,𝜷,𝜸)2N+N(N1)/2:(𝜶σ,𝜷σ,𝜸σ)Ω,m,n[Fσ]}(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\Omega_{\ell,m,n}[F]^{\sigma}=\{(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\mathbb{C}^{2N+N(N-1)/2}:(\bm{\alpha}^{\sigma},\bm{\beta}^{\sigma},\bm{\gamma}^{\sigma})\in\Omega_{\ell,m,n}[F^{\sigma}]\} (3.15)

in the latter case. We will use similar notation for other subsets of 2N+N(N1)/2\mathbb{C}^{2N+N(N-1)/2} below, as well as for the meromorphic extensions of S,m,n[F]S_{\ell,m,n}[F] and I,m,n[F]I_{\ell,m,n}[F].

3.1. Some generalities

Let NN\in\mathbb{N} be arbitrary. For a Fréchet space 𝒳\mathcal{X}, let 𝒪(N;𝒳)\mathscr{O}(\mathbb{C}^{N};\mathcal{X}) denote the Fréchet space of entire 𝒳\mathcal{X}-valued functions on N\mathbb{C}^{N}, where the topology is that of uniform convergence in compact subsets, as measured with respect to each Fréchet seminorm on 𝒳\mathcal{X}, and similarly for 𝒳\mathcal{X} an LF-space. Let (N)\mathcal{E}^{\prime}(\mathbb{R}^{N}) denote the LCTVS of compactly supported distributions on N\mathbb{R}^{N}. By the Schwartz representation theorem,

(N)=mHcm,s(N),\mathcal{E}^{\prime}(\mathbb{R}^{N})=\cup_{m\in\mathbb{R}}H_{\mathrm{c}}^{m,s}(\mathbb{R}^{N}), (3.16)

where Hcm(N)H_{\mathrm{c}}^{m}(\mathbb{R}^{N}) is the set of compactly supported elements of Hm(N)H^{m}(\mathbb{R}^{N}).

Let N+N\in\mathbb{N}^{+}, k{0,,N}k\in\{0,\ldots,N\}, and κ\kappa\in\mathbb{N}. For any

ψCc(kt1,,tk;(Nktk+1,,tN))=m,sCc(kt1,,tk;Hsc,cm,s(Nk))\psi\in C_{\mathrm{c}}^{\infty}(\mathbb{R}^{k}_{t_{1},\cdots,t_{k}};\mathcal{E}^{\prime}(\mathbb{R}^{N-k}_{t_{k+1},\cdots,t_{N}}))=\bigcup_{m,s\in\mathbb{R}}C_{\mathrm{c}}^{\infty}(\mathbb{R}^{k}_{t_{1},\cdots,t_{k}};H_{\mathrm{sc,c}}^{m,s}(\mathbb{R}^{N-k})) (3.17)

let, for 𝝆=(ρ1,,ρk)\bm{\rho}=(\rho_{1},\ldots,\rho_{k}),

IN,k,κ[ψ](𝝆)=00t1ρ1tkρk1,ψ(t1,,tk,)dt1dtk,I_{N,k,\kappa}[\psi](\bm{\rho})=\int_{0}^{\infty}\cdots\int_{0}^{\infty}t_{1}^{\rho_{1}}\cdots t_{k}^{\rho_{k}}\langle 1,\psi(t_{1},\ldots,t_{k},-)\rangle\,\mathrm{d}t_{1}\cdots\,\mathrm{d}t_{k}, (3.18)

which we abbreviate as

IN,k,κ[ψ](𝝆)=Nkt1ρ1tkρkψ(t)dNt.I_{N,k,\kappa}[\psi](\bm{\rho})=\int_{\mathbb{R}^{N}_{k}}t_{1}^{\rho_{1}}\cdots t_{k}^{\rho_{k}}\psi(t)\,\mathrm{d}^{N}t. (3.19)

Here, Nk=[0,)kt1,,tk×nktk+1,,tN\mathbb{R}^{N}_{k}=[0,\infty)^{k}_{t_{1},\cdots,t_{k}}\times\mathbb{R}^{n-k}_{t_{k+1},\cdots,t_{N}}, and IN,k,κ[ψ](𝝆)I_{N,k,\kappa}[\psi](\bm{\rho}) is defined initially for ρ1,,ρk>1\Re\rho_{1},\cdots,\Re\rho_{k}>-1, for which the right-hand side of eq. 3.18 is a well-defined integral.

Let Hsc,cm,s(N)H_{\mathrm{sc,c}}^{m,s}(\mathbb{R}^{N}) denote the set of compactly supported elements of Hscm,s(N)=rsHm(N)H_{\mathrm{sc}}^{m,s}(\mathbb{R}^{N})=\langle r\rangle^{-s}H^{m}(\mathbb{R}^{N}). Let

𝒪(k×κ;Cc(kt1,,tk;(Nktk+1,,tN)))=Ωm,s𝒪(Ω;Cc(kt1,,tk;Hsc,cm,s(Nk))),\mathscr{O}(\mathbb{C}^{k}\times\mathbb{C}^{\kappa};C_{\mathrm{c}}^{\infty}(\mathbb{R}^{k}_{t_{1},\cdots,t_{k}};\mathcal{E}^{\prime}(\mathbb{R}^{N-k}_{t_{k+1},\cdots,t_{N}})))=\bigcap_{\Omega}\bigcup_{m,s\in\mathbb{R}}\mathscr{O}(\Omega;C_{\mathrm{c}}^{\infty}(\mathbb{R}^{k}_{t_{1},\cdots,t_{k}};H_{\mathrm{sc,c}}^{m,s}(\mathbb{R}^{N-k}))), (3.20)

endowed with the strongest topology such that the inclusions

Ω𝒪(Ω;Cc(kt1,,tk;Hsc,cm,s(Nk)))𝒪(k×κ;Cc(kt1,,tk;(Nktk+1,,tN)))\bigcap_{\Omega}\mathscr{O}(\Omega;C_{\mathrm{c}}^{\infty}(\mathbb{R}^{k}_{t_{1},\cdots,t_{k}};H_{\mathrm{sc,c}}^{m,s}(\mathbb{R}^{N-k})))\hookrightarrow\mathscr{O}(\mathbb{C}^{k}\times\mathbb{C}^{\kappa};C_{\mathrm{c}}^{\infty}(\mathbb{R}^{k}_{t_{1},\cdots,t_{k}};\mathcal{E}^{\prime}(\mathbb{R}^{N-k}_{t_{k+1},\cdots,t_{N}}))) (3.21)

are all continuous, where the left-hand side is an LF space. Here, Ω\Omega is varying over bounded domains in k×κ\mathbb{C}^{k}\times\mathbb{C}^{\kappa}. We are identifying functions on k×κ\mathbb{C}^{k}\times\mathbb{C}^{\kappa} with their restrictions to subdomains. In other words, an element of the space defined by eq. 3.20 is locally an analytic family of elements of Cc(kt1,,tk;Hsc,cm,s(Nk))C_{\mathrm{c}}^{\infty}(\mathbb{R}^{k}_{t_{1},\cdots,t_{k}};H_{\mathrm{sc,c}}^{m,s}(\mathbb{R}^{N-k})) for some m,sm,s\in\mathbb{R} which are allowed to depend on Ω\Omega.

Proposition 3.1.

Suppose that, for each 𝛒k\bm{\rho}\in\mathbb{C}^{k} and 𝛅κ\bm{\delta}\in\mathbb{C}^{\kappa}, we are given some ψ(;𝛒,𝛅)\psi(-;\bm{\rho},\bm{\delta}) as in eq. 3.17, depending entirely on 𝛒,𝛅\bm{\rho},\bm{\delta} in the sense that the map

k×κ(𝝆,𝜹)ψCc(k;(Nk))\mathbb{C}^{k}\times\mathbb{C}^{\kappa}\ni(\bm{\rho},\bm{\delta})\mapsto\psi\in C_{\mathrm{c}}^{\infty}(\mathbb{R}^{k};\mathcal{E}^{\prime}(\mathbb{R}^{N-k})) (3.22)

is entire, i.e. lies in 𝒪(k×κ;Cc(kt1,,tk;(Nktk+1,,tN)))\mathscr{O}(\mathbb{C}^{k}\times\mathbb{C}^{\kappa};C_{\mathrm{c}}^{\infty}(\mathbb{R}^{k}_{t_{1},\cdots,t_{k}};\mathcal{E}^{\prime}(\mathbb{R}^{N-k}_{t_{k+1},\cdots,t_{N}}))). Define

IN,k,κ[ψ](𝝆,𝜹)=IN,k,κ[ψ(𝝆,𝜹)](𝝆).I_{N,k,\kappa}[\psi](\bm{\rho},\bm{\delta})=I_{N,k,\kappa}[\psi(\bm{\rho},\bm{\delta})](\bm{\rho}). (3.23)

Then, the function JN,k,κ[ψ]J_{N,k,\kappa}[\psi] defined by

IN,k,κ[ψ](𝝆,𝜹)=[j=1kΓ(ρj+1)]JN,k,κ[ψ](𝝆,𝜹)I_{N,k,\kappa}[\psi](\bm{\rho},\bm{\delta})=\Big{[}\prod_{j=1}^{k}\Gamma(\rho_{j}+1)\Big{]}J_{N,k,\kappa}[\psi](\bm{\rho},\bm{\delta}) (3.24)

extends to an entire function on 𝛒k×𝛅κ\mathbb{C}_{\bm{\rho}}^{k}\times\mathbb{C}_{\bm{\delta}}^{\kappa}. Moreover, the function

JN,k,κ[]:𝒪(k×κ;Cc(kt1,,tk;(Nktk+1,,tN)))ψJN,k,κ[ψ]𝒪(k×κ)J_{N,k,\kappa}[-]:\mathscr{O}(\mathbb{C}^{k}\times\mathbb{C}^{\kappa};C^{\infty}_{\mathrm{c}}(\mathbb{R}^{k}_{t_{1},\ldots,t_{k}};\mathcal{E}^{\prime}(\mathbb{R}^{N-k}_{t_{k+1},\ldots,t_{N}})))\ni\psi\mapsto J_{N,k,\kappa}[\psi]\in\mathscr{O}(\mathbb{C}^{k}\times\mathbb{C}^{\kappa}) (3.25)

is continuous. ∎

Cf. [GS64][Var95, Lemma 10.7.9].

Proof.

The k=0k=0 case is essentially tautologous.

We now proceed inductively on kk. Let k1k\geq 1, and assume that we have proven the result for smaller kk. Expanding ψ\psi in Taylor series around t1=0t_{1}=0, there exist

ψ(j)\displaystyle\psi^{(j)} 𝒪(k×κ;Cc(k1t2,,tk;(Nktk+1,,tN)))\displaystyle\in\mathscr{O}\left(\mathbb{C}^{k}\times\mathbb{C}^{\kappa};C^{\infty}_{\mathrm{c}}\big{(}\mathbb{R}^{k-1}_{t_{2},\ldots,t_{k}};\mathcal{E}^{\prime}(\mathbb{R}^{N-k}_{t_{k+1},\ldots,t_{N}})\big{)}\right) (3.26)
E(j)\displaystyle E^{(j)} 𝒪(k×κ;C(t1;Cc(k1t2,,tk;(Nktk+1,,tN)))),\displaystyle\in\mathscr{O}\left(\mathbb{C}^{k}\times\mathbb{C}^{\kappa};C^{\infty}\big{(}\mathbb{R}_{t_{1}};C^{\infty}_{\mathrm{c}}(\mathbb{R}^{k-1}_{t_{2},\ldots,t_{k}};\mathcal{E}^{\prime}(\mathbb{R}^{N-k}_{t_{k+1},\ldots,t_{N}}))\big{)}\right), (3.27)

which can be regarded as smooth functions (or generalized functions) of t1,,tNt_{1},\ldots,t_{N}, depending analytically on parameters 𝝆k\bm{\rho}\in\mathbb{C}^{k} and 𝜹κ\bm{\delta}\in\mathbb{C}^{\kappa}. such that

ψ(t1,,tN;𝝆,𝜹)=j=0Jt1jψ(j)(t2,,tN;𝝆,𝜹)+t1J+1E(J+1)(t1,,tN;𝝆,𝜹)\psi(t_{1},\cdots,t_{N};\bm{\rho},\bm{\delta})=\sum_{j=0}^{J}t_{1}^{j}\psi^{(j)}(t_{2},\cdots,t_{N};\bm{\rho},\bm{\delta})+t_{1}^{J+1}E^{(J+1)}(t_{1},\cdots,t_{N};\bm{\rho},\bm{\delta}) (3.28)

for all JJ\in\mathbb{N}. Let Kk+κK\subset\mathbb{C}^{k+\kappa} be an arbitrary nonempty compact set. There exists some T>0T>0 such that suppψ(;𝝆,𝜹){Tt1T}\operatorname{supp}\psi(-;\bm{\rho},\bm{\delta})\subseteq\{-T\leq t_{1}\leq T\} for all (𝝆,𝜹)K(\bm{\rho},\bm{\delta})\in K. Then, if ρ1,,ρk>1\Re\rho_{1},\cdots,\Re\rho_{k}>-1 and (𝝆,𝜹)K(\bm{\rho},\bm{\delta})\in K,

IN,k,κ[ψ](𝝆,𝜹)=j=0JIN1,k1,κ[ψ(j)](𝝆^,𝜹)ρ1+j+1Tρ1+j+1+0Tt1ρ1+J+1IN1,k1[E(J+1)(t1,)](𝝆^,𝜹)dt1,I_{N,k,\kappa}[\psi](\bm{\rho},\bm{\delta})=\sum_{j=0}^{J}\frac{I_{N-1,k-1,\kappa}[\psi^{(j)}](\hat{\bm{\rho}},\bm{\delta})}{\rho_{1}+j+1}T^{\rho_{1}+j+1}+\int_{0}^{T}t_{1}^{\rho_{1}+J+1}I_{N-1,k-1}[E^{(J+1)}(t_{1},-)](\hat{\bm{\rho}},\bm{\delta})\,\mathrm{d}t_{1}, (3.29)

where 𝝆^=(ρ2,,ρk)\hat{\bm{\rho}}=(\rho_{2},\cdots,\rho_{k}). We now define JN,k,κ[ψ](𝝆,𝜹):{ρ1>2J}×κ𝜹J_{N,k,\kappa}[\psi](\bm{\rho},\bm{\delta}):\{\Re\rho_{1}>-2-J\}\times\mathbb{C}^{\kappa}_{\bm{\delta}}\to\mathbb{C} by

JN,k,κ[ψ](𝝆,𝜹)=1Γ(ρ1+1)j=0JJN1,k1,κ[ψ(j)](𝝆^,𝜹)ρ1+j+1Tρ1+j+1+1Γ(ρ1+1)0Tt1ρ1+J+1JN1,k1[E(J+1)(t1,)](𝝆^,𝜹)dt1.J_{N,k,\kappa}[\psi](\bm{\rho},\bm{\delta})=\frac{1}{\Gamma(\rho_{1}+1)}\sum_{j=0}^{J}\frac{J_{N-1,k-1,\kappa}[\psi^{(j)}](\hat{\bm{\rho}},\bm{\delta})}{\rho_{1}+j+1}T^{\rho_{1}+j+1}\\ +\frac{1}{\Gamma(\rho_{1}+1)}\int_{0}^{T}t_{1}^{\rho_{1}+J+1}J_{N-1,k-1}[E^{(J+1)}(t_{1},-)](\hat{\bm{\rho}},\bm{\delta})\,\mathrm{d}t_{1}. (3.30)

By construction, eq. 3.24 holds when ρ1,,ρk>1\Re\rho_{1},\cdots,\Re\rho_{k}>-1. By the continuity clause of the inductive hypothesis, the integral in eq. 3.29 is a well-defined Bochner integral, for each individual (𝝆,𝜹){ρ1>2J}×κ(\bm{\rho},\bm{\delta})\in\{\Re\rho_{1}>-2-J\}\times\mathbb{C}^{\kappa}. Moreover, the right-hand side of eq. 3.30 depends analytically on (𝝆,𝜹){ρ1>1J}×κ(\bm{\rho},\bm{\delta})\in\{\Re\rho_{1}>-1-J\}\times\mathbb{C}^{\kappa}. By the inductive hypothesis, this is true for the sum on the first line (multiplied by Γ(ρ1+1)1\Gamma(\rho_{1}+1)^{-1}), as the simple poles due to the factors of 1/(ρ1+j+1)1/(\rho_{1}+j+1) cancel with those of Γ(ρ1+1)\Gamma(\rho_{1}+1). So, in order to show that the whole right-hand side of eq. 3.30 depends analytically on (𝝆,𝜹)(\bm{\rho},\bm{\delta}) in this domain, we can show it for

0Tt1ρ1+J+1JN1,k1[E(J+1)(t1,)](𝝆^,𝜹)dt1.\int_{0}^{T}t_{1}^{\rho_{1}+J+1}J_{N-1,k-1}[E^{(J+1)}(t_{1},-)](\hat{\bm{\rho}},\bm{\delta})\,\mathrm{d}t_{1}. (3.31)

Justifying differentiation under the integral sign, this is a C1C^{1}-function of (ρ1,ρ1){(u,v)2,u>1J}(\Re\rho_{1},\Im\rho_{1})\in\{(u,v)\in\mathbb{R}^{2},u>-1-J\}, and it satisfies the Cauchy–Riemann equations, so it follows that the integral in eq. 3.31 is analytic as a function of ρ1{ρ1>1J}\rho_{1}\in\{\Re\rho_{1}>-1-J\}, for each fixed 𝝆^k1\hat{\bm{\rho}}\in\mathbb{C}^{k-1} and 𝜹κ\bm{\delta}\in\mathbb{C}^{\kappa}. Adding 𝝆^,𝜹\hat{\bm{\rho}},\bm{\delta}-dependence does not change the argument.

So, the formula eq. 3.29 yields an analytic extension of IN,k,κI_{N,k,\kappa}, and we can take a union over all JJ\in\mathbb{N}, the various partial extensions agreeing with each other via analyticity. The continuity clause is evident from the formula eq. 3.30 and the inductive hypothesis. ∎

Consequently, IN,k,κ[ψ]I_{N,k,\kappa}[\psi] admits an analytic continuation I˙N,k,κ[ψ]:Ω\dot{I}_{N,k,\kappa}[\psi]:\Omega\to\mathbb{C} to the set Ω=(k𝝆\j{1,,k}{ρj1})×κ𝜹\Omega=(\mathbb{C}^{k}_{\bm{\rho}}\backslash\bigcup_{j\in\{1,\ldots,k\}}\{\rho_{j}\in\mathbb{Z}^{\leq-1}\})\times\mathbb{C}^{\kappa}_{\bm{\delta}}, and the map

I˙N,k,κ[]:𝒪(k×κ;Cc(kt1,,tk;(Nktk+1,,tN)))ψI˙N,k,κ[ψ]𝒪(Ω)\dot{I}_{N,k,\kappa}[-]:\mathscr{O}(\mathbb{C}^{k}\times\mathbb{C}^{\kappa};C^{\infty}_{\mathrm{c}}(\mathbb{R}^{k}_{t_{1},\ldots,t_{k}};\mathcal{E}^{\prime}(\mathbb{R}^{N-k}_{t_{k+1},\ldots,t_{N}})))\ni\psi\mapsto\dot{I}_{N,k,\kappa}[\psi]\in\mathscr{O}(\Omega) (3.32)

is continuous.

If 𝒫\mathcal{P} is a consistently orientable collection of codimension-1 interior p-submanifolds on a mwc MM, then, letting xFx_{\mathrm{F}} for F(M)\mathrm{F}\in\mathcal{F}(M) denote a bdf of the face F\mathrm{F}, it is the case that, for any 𝜹𝒫\bm{\delta}\in\mathbb{C}^{\mathcal{P}} and 𝝆(M)\bm{\rho}\in\mathbb{C}^{\mathcal{F}(M)}, the product

ω(𝝆,𝜹)=F(M)xFρFP𝒫(yP+i0)δP:C˙c(M;ΩM)μlimε0+MF(M)P𝒫xFρF(yP+iε)δPμ\omega(\bm{\rho},\bm{\delta})=\prod_{\mathrm{F}\in\mathcal{F}(M)}x_{\mathrm{F}}^{\rho_{\mathrm{F}}}\prod_{P\in\mathcal{P}}(y_{P}+i0)^{\delta_{P}}:\dot{C}^{\infty}_{\mathrm{c}}(M;\Omega M)\ni\mu\mapsto\lim_{\varepsilon\to 0^{+}}\int_{M}\prod_{\mathrm{F}\in\mathcal{F}(M)}\prod_{P\in\mathcal{P}}x_{\mathrm{F}}^{\rho_{\mathrm{F}}}(y_{P}+i\varepsilon)^{\delta_{P}}\mu (3.33)

is a well-defined classical distribution on MM, where {yP}P𝒫\{y_{P}\}_{P\in\mathcal{P}} are consistently oriented defining functions. (Here, C˙c(M;ΩM)\dot{C}^{\infty}_{\mathrm{c}}(M;\Omega M) is the set of compactly supported smooth densities on MM that are Schwartz at each boundary hypersurface.) That is, ω\omega is an extendable distribution on MM and defines, for small ϵ>0\epsilon>0, an element of C([0,ϵ)xF;𝒟(F))C^{\infty}([0,\epsilon)_{x_{\mathrm{F}}};\mathcal{D}^{\prime}(\mathrm{F})) for each face F\mathrm{F}. We write the right-hand side of eq. 3.33 as Mω(𝝆,𝜹)μ\int_{M}\omega(\bm{\rho},\bm{\delta})\mu. More generally, if μCc(M;ΩM)\mu\in C_{\mathrm{c}}^{\infty}(M;\Omega M), then

limε0+MF(M)P𝒫xFρF(yP+iε)δPμ=Mω(𝝆,𝜹)μ\lim_{\varepsilon\to 0^{+}}\int_{M}\prod_{\mathrm{F}\in\mathcal{F}(M)}\prod_{P\in\mathcal{P}}x_{\mathrm{F}}^{\rho_{\mathrm{F}}}(y_{P}+i\varepsilon)^{\delta_{P}}\mu=\int_{M}\omega(\bm{\rho},\bm{\delta})\mu (3.34)

exists whenever ρF>1\rho_{\mathrm{F}}>-1 for all F(M)\mathrm{F}\in\mathcal{F}(M).

Let ϰ\varkappa\in\mathbb{N}. Suppose that we are given some entire family

μ:(M)×𝒫×ϰCc(M;ΩM)\mu:\mathbb{C}^{\mathcal{F}(M)}\times\mathbb{C}^{\mathcal{P}}\times\mathbb{C}^{\varkappa}\to C^{\infty}_{\mathrm{c}}(M;\Omega M) (3.35)

of compactly supported smooth densities μ(𝝆,𝜹,𝝀)Cc(M;ΩM)\mu(\bm{\rho},\bm{\delta},\bm{\lambda})\in C^{\infty}_{\mathrm{c}}(M;\Omega M) on MM. Consider the function

I[M,μ](𝝆,𝜹,𝝀):{(𝝆,𝜹,𝝀)(M)×𝒫×ϰ:ρF>1 for all F(M)}I[M,\mu](\bm{\rho},\bm{\delta},\bm{\lambda}):\{(\bm{\rho},\bm{\delta},\bm{\lambda})\in\mathbb{C}^{\mathcal{F}(M)}\times\mathbb{C}^{\mathcal{P}}\times\mathbb{C}^{\varkappa}:\rho_{\mathrm{F}}>-1\text{ for all }\mathrm{F}\in\mathcal{F}(M)\}\to\mathbb{C} (3.36)

defined by

I[M,μ](𝝆,𝜹,𝝀)=Mω(𝝆,𝜹)μ(𝝆,𝜹,𝝀).I[M,\mu](\bm{\rho},\bm{\delta},\bm{\lambda})=\int_{M}\omega(\bm{\rho},\bm{\delta})\mu(\bm{\rho},\bm{\delta},\bm{\lambda}). (3.37)
Proposition 3.2.

Suppose that, for some N0+N_{0}\in\mathbb{N}^{+}, we are given an affine map L=(L1,L2,L3):N0ϱ(M)𝛒×𝒫𝛅×ϰ𝛌L=(L_{1},L_{2},L_{3}):\smash{\mathbb{C}^{N_{0}}_{\bm{\varrho}}}\to\smash{\mathbb{C}^{\mathcal{F}(M)}_{\bm{\rho}}}\times\mathbb{C}^{\mathcal{P}}_{\bm{\delta}}\times\mathbb{C}^{\varkappa}_{\bm{\lambda}} such that, for each F(M)\mathrm{F}\in\mathcal{F}(M), the affine functional

(L)F:N0ϱ(L1ϱ)F(L\bullet)_{\mathrm{F}}:\mathbb{C}^{N_{0}}\ni\bm{\varrho}\mapsto(L_{1}\bm{\varrho})_{\mathrm{F}}\in\mathbb{C} (3.38)

is nonconstant. Then, there exist entire functions Ireg,f[M,μ](L):N0ϱI_{\mathrm{reg},\mathrm{f}}[M,\mu](L\bullet):\mathbb{C}^{N_{0}}_{\bm{\varrho}}\to\mathbb{C} associated to the minimal facets f\mathrm{f} of MM such that

I[M,μ](Lϱ)=f[F(M),FfΓ(1+(Lϱ)F)]Ireg,f[M,μ](Lϱ)I[M,\mu](L\bm{\varrho})=\sum_{\mathrm{f}}\Big{[}\prod_{\mathrm{F}\in\mathcal{F}(M),\mathrm{F}\supseteq\mathrm{f}}\Gamma(1+(L\varrho)_{\mathrm{F}})\Big{]}I_{\mathrm{reg},\mathrm{f}}[M,\mu](L\bm{\varrho}) (3.39)

for all ϱN0\bm{\varrho}\in\mathbb{C}^{N_{0}} for which the left-hand side is defined by eq. 3.37. ∎

Proof.

Pass to a partition of unity subordinate to a system of coordinate charts on MM and apply 3.1 locally. ∎

Then, letting ={(L)F:F(M)}\mathcal{L}=\{(L\bullet)_{\mathrm{F}}:\mathrm{F}\in\mathcal{F}(M)\},

[Λ1Γ(1+Λ(ϱ))#Λ]I[M,μ](Lϱ)\Big{[}\prod_{\Lambda\in\mathcal{L}}\frac{1}{\Gamma(1+\Lambda(\bm{\varrho}))^{\#_{\Lambda}}}\Big{]}I[M,\mu](L\bm{\varrho}) (3.40)

extends to an entire function ϱN0\mathbb{C}_{\bm{\varrho}}^{N_{0}}\to\mathbb{C}, where #Λ+\#_{\Lambda}\in\mathbb{N}^{+} is the maximum size of any set S(M)S\subseteq\mathcal{F}(M) of faces such that FSF\cap_{\mathrm{F}\in S}\mathrm{F}\neq\varnothing and (L)F=Λ(L\bullet)_{\mathrm{F}}=\Lambda for all FS\mathrm{F}\in S. Indeed, this follows from the proposition above since, for each facet f\mathrm{f},

[Λ1Γ(1+Λ(ϱ))#Λ]F(M),FfΓ(1+(Lϱ)F)\Big{[}\prod_{\Lambda\in\mathcal{L}}\frac{1}{\Gamma(1+\Lambda(\bm{\varrho}))^{\#_{\Lambda}}}\Big{]}\prod_{\mathrm{F}\in\mathcal{F}(M),\mathrm{F}\supseteq\mathrm{f}}\Gamma(1+(L\bm{\varrho})_{\mathrm{F}}) (3.41)

is entire.

3.2. Specialization to generic Selberg- and DF-like integrals

We now apply the results of the previous section to the specific case of the integrals eq. 3.2 and eq. 3.8. Fix ,m,n\ell,m,n\in\mathbb{N} satisfying +m+n=N\ell+m+n=N, N+N\in\mathbb{N}^{+}.

3.2.1. The Selberg case

Fix F𝒜𝒟(K,m,n)F\in\mathcal{A}^{\mathcal{D}}(K_{\ell,m,n}). Let ρj,k=ρj,k(𝜶,𝜷,𝜸)\rho_{j,k}=\rho_{j,k}(\bm{\alpha},\bm{\beta},\bm{\gamma}) be defined by eq. 2.41, eq. 2.42, eq. 2.43, and eq. 2.44. Recalling the definition of 𝚃(,m,n)\mathtt{T}(\ell,m,n) given in §2.1:

Proposition 3.3.

There exist entire functions

S,m,n;reg,𝙸,{dF}F(K,m,n)[F]:2N+N(N1)/2𝜶,𝜷,𝜸,S_{\ell,m,n;\mathrm{reg},\mathtt{I},\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(K_{\ell,m,n})}}[F]:\mathbb{C}^{2N+N(N-1)/2}_{\bm{\alpha},\bm{\beta},\bm{\gamma}}\to\mathbb{C}, (3.42)

associated to pairs of minimal facets f\mathrm{f} of K,m,nK_{\ell,m,n} and collections {dF}F(,m,n)𝒟\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(_{\ell,m,n})}\in\mathcal{D} of weights such that

S,m,n[F](𝜶,𝜷,𝜸)=𝙸𝚃(,m,n){dF}F(K,m,n)𝒟[(j,k)𝙸Γ(1+ρj,k+dFj,k)]×S,m,n;reg,𝙸,{dF}F(K,m,n)[F](𝜶,𝜷,𝜸)S_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=\sum_{\mathtt{I}\in\mathtt{T}(\ell,m,n)}\sum_{\{d_{\mathrm{F}}\}_{\mathrm{F}}\in\mathcal{F}(K_{\ell,m,n})\in\mathcal{D}}\Big{[}\prod_{\mathcal{I}(j,k)\in\mathtt{I}}\Gamma(1+\rho_{j,k}+d_{\mathrm{F}_{j,k}})\Big{]}\\ \times S_{\ell,m,n;\mathrm{reg},\mathtt{I},\{d_{\mathrm{F}}\}_{\mathrm{F}}\in\mathcal{F}(K_{\ell,m,n})}[F](\bm{\alpha},\bm{\beta},\bm{\gamma}) (3.43)

for all (𝛂,𝛃,𝛄)Ω,m,n[𝒟](\bm{\alpha},\bm{\beta},\bm{\gamma})\in\Omega_{\ell,m,n}[\mathcal{D}]. ∎

Proof.

This is a corollary of 2.3 and 3.2, using the fact that the minimal facets of K,m,nK_{\ell,m,n} are in correspondence with the elements of 𝚃(,m,n)\mathtt{T}(\ell,m,n) via eq. 2.50. ∎

Consequently, there exists an analytic extension S˙,m,n[F]:Ω˙,m,n[𝒟]\dot{S}_{\ell,m,n}[F]:\dot{\Omega}_{\ell,m,n}[\mathcal{D}]\to\mathbb{C} of S,m,n[F]:Ω,m,n[𝒟]S_{\ell,m,n}[F]:\Omega_{\ell,m,n}[\mathcal{D}]\to\mathbb{C}, where

Ω˙,m,n[𝒟]=2N+N(N1)/2𝜶,𝜷,𝜸\[{dF}F(K,m,n)𝒟({j,k}𝒥,m,n{ρj,k+dFj,k1})].\dot{\Omega}_{\ell,m,n}[\mathcal{D}]=\mathbb{C}^{2N+N(N-1)/2}_{\bm{\alpha},\bm{\beta},\bm{\gamma}}\Big{\backslash}\Big{[}\bigcup_{\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(K_{\ell,m,n})}\in\mathcal{D}}\Big{(}\bigcup_{\{j,k\}\in\mathcal{J}_{\ell,m,n}}\\ \{\rho_{j,k}+d_{\mathrm{F}_{j,k}}\in\mathbb{Z}^{\leq-1}\}\Big{)}\Big{]}. (3.44)

This is an open and connected subset of full measure; namely, it is the complement of a locally finite collection of complex (affine) hyperplanes in 2N+N(N1)/2\mathbb{C}^{2N+N(N-1)/2}. In the case m=Nm=N, this agrees with eq. 1.13.

As a corollary of the previous proposition, there exists an entire function

S,m,n;reg[F]:2N+N(N1)/2𝜶,𝜷,𝜸S_{\ell,m,n;\mathrm{reg}}[F]:\mathbb{C}^{2N+N(N-1)/2}_{\bm{\alpha},\bm{\beta},\bm{\gamma}}\to\mathbb{C} (3.45)

such that

S,m,n[F](𝜶,𝜷,𝜸)=[{j,k}𝒥,m,nΓ(1+ρj,k+dFj,kmin)]S,m,n;reg[F](𝜶,𝜷,𝜸)S_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=\Big{[}\prod_{\{j,k\}\in\mathcal{J}_{\ell,m,n}}\Gamma(1+\rho_{j,k}+d_{\mathrm{F}_{j,k}}^{\mathrm{min}})\Big{]}S_{\ell,m,n;\mathrm{reg}}[F](\bm{\alpha},\bm{\beta},\bm{\gamma}) (3.46)

holds for all (𝜶,𝜷,𝜸)Ω,m,n[𝒟](\bm{\alpha},\bm{\beta},\bm{\gamma})\in\Omega_{\ell,m,n}[\mathcal{D}], where dminF=min{dF:{dF0}F0(K,m,n)𝒟}d^{\mathrm{min}}_{\mathrm{F}}=\min\{d_{\mathrm{F}}:\{d_{\mathrm{F}_{0}}\}_{\mathrm{F}_{0}\in\mathcal{F}(K_{\ell,m,n})}\in\mathcal{D}\}.

The case of the proposition above where m=Nm=N gives 1.1. Indeed, if FC(N)F\in C^{\infty}(\triangle_{N}), FF lifts to an element of C(K0,N,0)C^{\infty}(K_{0,N,0}), and the orders of vanishing of FF at the relevant facets of N\triangle_{N} imply the same order of vanishing at the lift in K0,N,0K_{0,N,0}.

3.2.2. The Dotsenko–Fateev case

Fix F𝒜𝒟(A,m,n)F\in\mathcal{A}^{\mathcal{D}}(A_{\ell,m,n}), where 𝒟\mathcal{D} is now a collection of orders for the faces of A,m,nA_{\ell,m,n}. Recalling the definition of Σ𝚃(,m,n)\Sigma\mathtt{T}(\ell,m,n) given in §2.2:

Proposition 3.4.

There exist entire functions

I,m,n;reg,𝙸,{dF}F(A,m,n)[F]:2N+N(N1)/2𝜶,𝜷,𝜸I_{\ell,m,n;\mathrm{reg},\mathtt{I},\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(A_{\ell,m,n})}}[F]:\mathbb{C}^{2N+N(N-1)/2}_{\bm{\alpha},\bm{\beta},\bm{\gamma}}\to\mathbb{C} (3.47)

associated to the 𝙸Σ𝚃(,m,n)\mathtt{I}\in\Sigma\mathtt{T}(\ell,m,n) such that

I,m,n[F](𝜶,𝜷,𝜸)=𝙸Σ𝚃(,m,n){dF}F(A,m,n)𝒟([(x0,𝒮)𝙸Γ(1+ϱS,Q;x0+dFS,Q;x0)]×I,m,n;reg,𝙸{dF}F(A,m,n)[F](𝜶,𝜷,𝜸))I_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=\sum_{\mathtt{I}\in\Sigma\mathtt{T}(\ell,m,n)}\sum_{\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(A_{\ell,m,n})}\in\mathcal{D}}\Big{(}\Big{[}\prod_{(x_{0},\mathcal{S})\in\mathtt{I}}\Gamma(1+\varrho_{S,Q;x_{0}}+d_{\mathrm{F}_{S,Q;x_{0}}})\Big{]}\\ \times I_{\ell,m,n;\mathrm{reg},\mathtt{I}\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(A_{\ell,m,n})}}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})\Big{)} (3.48)

for all (𝛂,𝛃,𝛄)V,m,n[𝒟](\bm{\alpha},\bm{\beta},\bm{\gamma})\in V_{\ell,m,n}[\mathcal{D}], where we have abbreviated 1𝒮\mathcal{I}_{1}\cap\mathcal{S}, 2𝒮\mathcal{I}_{2}\cap\mathcal{S}, and 3𝒮\mathcal{I}_{3}\cap\mathcal{S} as SS or QQ as appropriate. ∎

Proof.

Follows from 2.7 and 3.2. ∎

Consequently, I,m,n[F]:V,m,n[𝒟]I_{\ell,m,n}[F]:V_{\ell,m,n}[\mathcal{D}]\to\mathbb{C} admits an analytic continuation I˙,m,n[F]:V˙,m,n[𝒟]\dot{I}_{\ell,m,n}[F]:\dot{V}_{\ell,m,n}[\mathcal{D}]\to\mathbb{C}, where

V˙,m,n[𝒟]=2N+N(N1)/2𝜶,𝜷,𝜸\{dF}F(A,m,n)x0{0,1,}S,Q{ϱS,Q;x0+dFS,Q;x01}.\dot{V}_{\ell,m,n}[\mathcal{D}]=\mathbb{C}^{2N+N(N-1)/2}_{\bm{\alpha},\bm{\beta},\bm{\gamma}}\Big{\backslash}\bigcup_{\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(A_{\ell,m,n})}}\bigcup_{x_{0}\in\{0,1,\infty\}}\bigcup_{S,Q}\{\varrho_{S,Q;x_{0}}+d_{\mathrm{F}_{S,Q;x_{0}}}\in\mathbb{Z}^{\leq-1}\}. (3.49)

Note that V˙,m,n[F]σ𝔖,m,nΩ˙,m,n[F]σ\dot{V}_{\ell,m,n}[F]\supseteq\cap_{\sigma\in\mathfrak{S}_{\ell,m,n}}\dot{\Omega}_{\ell,m,n}[F]^{\sigma}, as every functional (𝜶,𝜷,𝜸)ϱS,Q;x0(𝜶,𝜷,𝜸)(\bm{\alpha},\bm{\beta},\bm{\gamma})\mapsto\varrho_{S,Q;x_{0}}(\bm{\alpha},\bm{\beta},\bm{\gamma}) has the form ρj,k(𝜶σ,𝜷σ,𝜸σ)\rho_{j,k}(\bm{\alpha}^{\sigma},\bm{\beta}^{\sigma},\bm{\gamma}^{\sigma}) for some σ𝔖,m,n\sigma\in\mathfrak{S}_{\ell,m,n} and {j,k}𝒥,m,n\{j,k\}\in\mathcal{J}_{\ell,m,n}.

As a corollary of the previous proposition, there exists a function

I,m,n;reg[F]:2N+N(N1)/2𝜶,𝜷,𝜸I_{\ell,m,n;\mathrm{reg}}[F]:\mathbb{C}^{2N+N(N-1)/2}_{\bm{\alpha},\bm{\beta},\bm{\gamma}}\to\mathbb{C} (3.50)

such that, for all (𝜶,𝜷,𝜸)V,m,n[𝒟](\bm{\alpha},\bm{\beta},\bm{\gamma})\in V_{\ell,m,n}[\mathcal{D}],

I,m,n[F](𝜶,𝜷,𝜸)=[x0{0,1,}S,QΓ(1+ϱS,Q;x0+dFS,Q;x0min)]I,m,n;reg[F](𝜶,𝜷,𝜸),I_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=\Big{[}\prod_{x_{0}\in\{0,1,\infty\}}\prod_{S,Q}\Gamma(1+\varrho_{S,Q;x_{0}}+d_{\mathrm{F}_{S,Q;x_{0}}}^{\mathrm{min}})\Big{]}I_{\ell,m,n;\mathrm{reg}}[F](\bm{\alpha},\bm{\beta},\bm{\gamma}), (3.51)

where S,QS,Q vary over subsets of 1={1,,}\mathcal{I}_{1}=\{1,\ldots,\ell\}, 2={+1,,+m}\mathcal{I}_{2}=\{\ell+1,\ldots,\ell+m\}, and 3={+m+1,,N}\mathcal{I}_{3}=\{\ell+m+1,\ldots,N\}, depending on x0x_{0}.

The m=Nm=N case of the previous proposition is 1.3.

3.3. A simple identity

For each permutation σ\sigma of {0,1,}\{0,1,\infty\}. Let

(,m,n)={(,m,n)(σ=1),(n,m,)(σ=(0 1)),(,n,m)(σ=(0)),(m,,n)(σ=(1)),(n,,m)(σ=(0 1)),(m,n,)(σ=(1 0)).(\ell^{\prime},m^{\prime},n^{\prime})=\begin{cases}(\ell,m,n)&(\sigma=1),\\ (n,m,\ell)&(\sigma=(0\;1)),\\ (\ell,n,m)&(\sigma=(0\;\infty)),\\ (m,\ell,n)&(\sigma=(1\;\infty)),\\ (n,\ell,m)&(\sigma=(0\;1\;\infty)),\\ (m,n,\ell)&(\sigma=(1\;0\;\infty)).\end{cases} (3.52)

In other words, if the elements of {0,1,}\{0,1,\infty\} label the vertices of a triangle and the edges are labeled accordingly – that is, ‘\ell’ labels the edge between 0 and \infty, ‘mm’ labels the edge between 0 and 11, and ‘nn’ labels the edge between 11 and \infty – then (,m,n)(\ell^{\prime},m^{\prime},n^{\prime}) is the permutation of (,m,n)(\ell,m,n) resulting from applying σ\sigma to the triangle and reading off the new labels.

Let 𝖳σ:P1P1\mathsf{T}_{\sigma}:\mathbb{C}P^{1}\to\mathbb{C}P^{1} denote the unique automorphism acting on {0,1,}\{0,1,\infty\} via σ\sigma. These are

𝖳1(z)=z,𝖳(0 1)(z)=1z,𝖳(0)(z)=1z,𝖳(1)(z)=z1z,\mathsf{T}_{1}(z)=z,\quad\mathsf{T}_{(0\;1)}(z)=1-z,\quad\mathsf{T}_{(0\;\infty)}(z)=\frac{1}{z},\quad\mathsf{T}_{(1\;\infty)}(z)=-\frac{z}{1-z}, (3.53)
𝖳(0 1)(z)=11z,𝖳(0 1)(z)=z1z.\mathsf{T}_{(0\;1\;\infty)}(z)=\frac{1}{1-z},\qquad\mathsf{T}_{(0\;\infty\;1)}(z)=\frac{z-1}{z}. (3.54)

Let σparam:2N+N(N1)/22N+N(N1)/2\sigma^{\mathrm{param}}:\mathbb{C}^{2N+N(N-1)/2}\to\mathbb{C}^{2N+N(N-1)/2} denote the affine map

σparam(𝜶,𝜷,𝜸)={(𝜶,𝜷,𝜸)(σ=1),(𝜷,𝜶,𝜸)(σ=(0 1)),(2𝜶𝜷2𝜸𝟏,𝜷,𝜸)(σ=(0)),(𝜶,2𝜶𝜷2𝜸𝟏,𝜸)(σ=(1)),(2𝜶𝜷2𝜸𝟏,𝜶,𝜸)(σ=(0 1)),(𝜷,2𝜶𝜷2𝜸𝟏,𝜸)(σ=(1 0)),\sigma^{\mathrm{param}}(\bm{\alpha},\bm{\beta},\bm{\gamma})=\begin{cases}(\bm{\alpha},\bm{\beta},\bm{\gamma})&(\sigma=1),\\ (\bm{\beta},\bm{\alpha},\bm{\gamma})&(\sigma=(0\;1)),\\ (-2-\bm{\alpha}-\bm{\beta}-2\bm{\gamma}\lrcorner\bf 1,\bm{\beta},\bm{\gamma})&(\sigma=(0\;\infty)),\\ (\bm{\alpha},-2-\bm{\alpha}-\bm{\beta}-2\bm{\gamma}\lrcorner\bf 1,\bm{\gamma})&(\sigma=(1\;\infty)),\\ (-2-\bm{\alpha}-\bm{\beta}-2\bm{\gamma}\lrcorner\bf 1,\bm{\alpha},\bm{\gamma})&(\sigma=(0\;1\;\infty)),\\ (\bm{\beta},-2-\bm{\alpha}-\bm{\beta}-2\bm{\gamma}\lrcorner\bf 1,\bm{\gamma})&(\sigma=(1\;0\;\infty)),\end{cases} (3.55)

where 𝜸𝟏N\bm{\gamma}\lrcorner{\bf 1}\in\mathbb{C}^{N} has jjth component kjγj,k\sum_{k\neq j}\gamma_{j,k}. Let rev𝔖,m,n\mathrm{rev}\in\mathfrak{S}_{\ell^{\prime},m^{\prime},n^{\prime}} denote the permutation that reverses the order of the elements in each of the sets {1,,}\{1,\ldots,\ell^{\prime}\}, {+1,,+m}\{\ell^{\prime}+1,\ldots,\ell^{\prime}+m^{\prime}\}, and {+m+1,,N}\{\ell^{\prime}+m^{\prime}+1,\ldots,N\}. Let |σ||\sigma| denote the order of σ\sigma.

Proposition 3.5.

If (𝛂,𝛃,𝛄)V˙,m,n(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\dot{V}_{\ell,m,n}, then σparam(𝛂,𝛃,𝛄)V˙,m,n\sigma^{\mathrm{param}}(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\dot{V}_{\ell^{\prime},m^{\prime},n^{\prime}}, and if (𝛂,𝛃,𝛄)Ω˙,m,n(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\dot{\Omega}_{\ell,m,n}, then σparam(𝛂,𝛃,𝛄)Ω˙,m,nrev|σ|\sigma^{\mathrm{param}}(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\dot{\Omega}_{\ell^{\prime},m^{\prime},n^{\prime}}^{\mathrm{rev}^{|\sigma|}}, and

I˙,m,n[1](𝜶,𝜷,𝜸)=I˙,m,n[1](σparam(𝜶,𝜷,𝜸))rev|σ|,S˙,m,n[1](𝜶,𝜷,𝜸)=S˙,m,n[1](σparam(𝜶,𝜷,𝜸))rev|σ|\displaystyle\begin{split}\dot{I}_{\ell,m,n}[1](\bm{\alpha},\bm{\beta},\bm{\gamma})&=\dot{I}_{\ell^{\prime},m^{\prime},n^{\prime}}[1](\sigma^{\mathrm{param}}(\bm{\alpha},\bm{\beta},\bm{\gamma}))^{\mathrm{rev}^{|\sigma|}},\\ \dot{S}_{\ell,m,n}[1](\bm{\alpha},\bm{\beta},\bm{\gamma})&=\dot{S}_{\ell^{\prime},m^{\prime},n^{\prime}}[1](\sigma^{\mathrm{param}}(\bm{\alpha},\bm{\beta},\bm{\gamma}))^{\mathrm{rev}^{|\sigma|}}\end{split} (3.56)

for all (𝛂,𝛃,𝛄)Ω˙,m,n(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\dot{\Omega}_{\ell,m,n}. ∎

Proof.

It can be checked case-by-case that

{ϱS,Q;σparam:{0,1,},S,Q as above}={ϱS,Q;:{0,1,},S,Q as above},\{\varrho_{S,Q;\bullet}\circ\sigma^{\mathrm{param}}:\bullet\in\{0,1,\infty\},S,Q\text{ as above}\}=\{\varrho_{S,Q;\bullet}:\bullet\in\{0,1,\infty\},S,Q\text{ as above}\}, (3.57)

where on the left-hand side (S,Q)(S,Q) varies over appropriate pairs of subsets of {1,,}\{1,\ldots,\ell^{\prime}\}, {+1,,+m}\{\ell^{\prime}+1,\ldots,\ell^{\prime}+m^{\prime}\}, and {+m+1,,N}\{\ell^{\prime}+m^{\prime}+1,\ldots,N\} and on the right-hand side (S,Q)(S,Q) varies over appropriate pairs of subsets {1,,}\{1,\ldots,\ell\}, {+1,,+m}\{\ell+1,\ldots,\ell+m\}, and {+m+1,,N}\{\ell+m+1,\ldots,N\}, depending on \bullet. It can be seen from eq. 3.57 that

V˙,m,n=(σparam)1(V˙,m,n).\dot{V}_{\ell,m,n}=(\sigma^{\mathrm{param}})^{-1}(\dot{V}_{\ell^{\prime},m^{\prime},n^{\prime}}). (3.58)

The case of Ω˙,m,n\dot{\Omega}_{\ell,m,n} is similar but more complicated.

Equation 3.56 can be proven for (𝜶,𝜷,𝜸)Ω,m,n(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\Omega_{\ell,m,n} by way of a change-of-variables by substituting x=𝖳σ1(y)x=\mathsf{T}_{\sigma^{-1}}(y). The full result follows via analytic continuation. ∎

3.4. An imperfect alternative

For 𝙸{(,0],[0,1],[1,)}\mathtt{I}\in\{(-\infty,0],[0,1],[1,\infty)\} and r>0r>0, let Γ𝙸,±,r:(0,1)\Gamma_{\mathtt{I},\pm,r}:(0,1)\to\mathbb{C} be defined by

Γ[0,1],±,r(t)={t±irt(t(0,1/3)),t±ir/3(t[1/3,2/3]),t±ir/3ir(t2/3)(t(2/3,1)),\Gamma_{[0,1],\pm,r}(t)=\begin{cases}t\pm irt&(t\in(0,1/3)),\\ t\pm ir/3&(t\in[1/3,2/3]),\\ t\pm ir/3\mp ir(t-2/3)&(t\in(2/3,1)),\end{cases} (3.59)

Γ[1,),±,r(t)=Γ[0,1],,r(1t)1\Gamma_{[1,\infty),\pm,r}(t)=\Gamma_{[0,1],\mp,r}(1-t)^{-1}, and Γ(,0],±,r(t)=1Γ[1,),,r(1t)\Gamma_{(-\infty,0],\pm,r}(t)=1-\Gamma_{[1,\infty),\mp,r}(1-t). Note that the images of these contours are permuted amongst themselves by the transformations 𝖳σ\mathsf{T}_{\sigma} above.

z\Im zz\Re zΓ[0,1],+,1\Gamma_{[0,1],+,1}Γ[0,1],+,4\Gamma_{[0,1],+,4}011Γ[1,),+,1\Gamma_{[1,\infty),+,1}Γ(,0],+,1\Gamma_{(-\infty,0],+,1}
Figure 10. The contours Γ(,0],+,1\Gamma_{(-\infty,0],+,1}, Γ[0,1],+,1\Gamma_{[0,1],+,1}, Γ[0,1],+,4\Gamma_{[0,1],+,4}, Γ[1,),+,1\Gamma_{[1,\infty),+,1}. Cf. [DF85, Figure 16]. (For our purposes, the contours drawn by Dotsenko & Fateev approach ±\pm\infty with imaginary part too small. This is why our Γ𝙸,±,r\Gamma_{\mathtt{I},\pm,r} look different for 𝙸[0,1]\mathtt{I}\neq[0,1].

Suppose that F[x1,x11,,xN,xN1]F\in\mathbb{C}[x_{1},x_{1}^{-1},\ldots,x_{N},x_{N}^{-1}]. For any compact 𝖪\mathsf{K}\Subset\mathbb{C} with nonempty interior, let O=O[F,𝖪]O=O[F,\mathsf{K}] denote the set, which depends on ,m,n\ell,m,n\in\mathbb{N}, though we suppress this dependence notationally, of (𝜶,𝜷)2N(\bm{\alpha},\bm{\beta})\in\mathbb{C}^{2N} such that

Γ(,0],+,0Γ(,0],+,1[Γ[0,1],+,0Γ[0,1],+,m1[Γ[1,),+,0Γ[1,),+,n1(j=1Nzjαj(1zj)βj)1j<kN(zkzj)2γj,kF0dzNdz+m+1]dz+mdz+1]dzdz1\int_{\Gamma_{(-\infty,0],+,0}}\cdots\int_{\Gamma_{(-\infty,0],+,\ell-1}}\Big{[}\int_{\Gamma_{[0,1],+,0}}\cdots\int_{\Gamma_{[0,1],+,m-1}}\Big{[}\int_{\Gamma_{[1,\infty),+,0}}\cdots\int_{\Gamma_{[1,\infty),+,n-1}}\\ \Big{(}\prod_{j=1}^{N}z_{j}^{\alpha_{j}}(1-z_{j})^{\beta_{j}}\Big{)}\prod_{1\leq j<k\leq N}(z_{k}-z_{j})^{2\gamma_{j,k}}F_{0}\,\mathrm{d}z_{N}\cdots\,\mathrm{d}z_{\ell+m+1}\Big{]}\,\mathrm{d}z_{\ell+m}\cdots\,\mathrm{d}z_{\ell+1}\Big{]}\,\mathrm{d}z_{\ell}\cdots\,\mathrm{d}z_{1} (3.60)

is an absolutely convergent Lebesgue integral whenever γj,k𝖪\gamma_{j,k}\in\mathsf{K} for all j,k{1,,N}j,k\in\{1,\ldots,N\} with j<kj<k, for every monomial F0F_{0} in FF. In the definition of the integral above we are defining the integrand such that the branch cuts are not encountered. For such (𝜶,𝜷,𝜸)(\bm{\alpha},\bm{\beta},\bm{\gamma}),

(𝜶,𝜷,𝜸)V˙,m,n[F],(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\dot{V}_{\ell,m,n}[F], (3.61)

and the integral in eq. 3.60 is equal to I˙,m,n(𝜶,𝜷,𝜸)[F]\dot{I}_{\ell,m,n}(\bm{\alpha},\bm{\beta},\bm{\gamma})[F], assuming that we choose our branches appropriately. The latter part of this statement can be proven by checking that the integral defined above depends analytically on its parameters and agrees with I,m,n(𝜶,𝜷,𝜸)[F]I_{\ell,m,n}(\bm{\alpha},\bm{\beta},\bm{\gamma})[F] for (𝜶,𝜷,𝜸)V,m,n[F](\bm{\alpha},\bm{\beta},\bm{\gamma})\in V_{\ell,m,n}[F], which in turn is proven via a contour deformation argument.

The set OO is nonempty, open, and contains an affine cone. If

  • αj\alpha_{j} has sufficiently large real part for j12j\in\mathcal{I}_{1}\cup\mathcal{I}_{2} and sufficiently negative real part for j3j\in\mathcal{I}_{3}, and

  • βj\beta_{j} has sufficiently large real part for j23j\in\mathcal{I}_{2}\cup\mathcal{I}_{3} and sufficiently negative real part for j1j\in\mathcal{I}_{1},

then (𝜶,𝜷)O[F,𝖪](\bm{\alpha},\bm{\beta})\in O[F,\mathsf{K}], where what “sufficiently large” means depends on 𝖪\mathsf{K}. Consequently, given any subset S𝔖×𝔖m×𝔖nS\subseteq\mathfrak{S}_{\ell}\times\mathfrak{S}_{m}\times\mathfrak{S}_{n}, the set OSO^{S\cap} defined by

OS={(𝜶,𝜷)2N:(𝜶σ,𝜷σ)O[Fσ,𝖪σ] for all σS}O^{S\cap}=\{(\bm{\alpha},\bm{\beta})\in\mathbb{C}^{2N}:(\bm{\alpha}^{\sigma},\bm{\beta}^{\sigma})\in O[F^{\sigma},\mathsf{K}^{\sigma}]\text{ for all }\sigma\in S\} (3.62)

is open and nonempty. If 𝖪\mathsf{K} contains e.g. 1-1, then O[F,𝖪]O[F,\mathsf{K}] contains some (𝜶,𝜷)(\bm{\alpha},\bm{\beta}) such that (𝜶,𝜷,𝜸)V,m,n[F](\bm{\alpha},\bm{\beta},\bm{\gamma})\notin V_{\ell,m,n}[F]. So, eq. 3.60 gives us an alternative definition of I˙,m,n(𝜶,𝜷,𝜸)[F]\dot{I}_{\ell,m,n}(\bm{\alpha},\bm{\beta},\bm{\gamma})[F] for some range of parameters.

Proposition 3.6.

Consider {1,2,3}\bullet\in\{1,2,3\} and j,kj,k\in\mathcal{I}_{\bullet} with j<kj<k and |jk|=1|j-k|=1. Suppose that γj,k\gamma_{j,k}\in\mathbb{Z}. Let τ𝔖,m,n\tau\in\mathfrak{S}_{\ell,m,n} denote the transposition swapping j,kj,k. Then,

I,m,n[F](𝜶,𝜷,𝜸)I,m,n[F](𝜶,𝜷,𝜸)τ=Γ(,0],+,0;1Γ(,0],+,1;[Γ[0,1],+,0;+1Γ[0,1],+,m1;+m[Γ[1,),+,0;+m+1Γ[1,),+,n1;N(j0=1Nzj0αj0(1zj0)βj0)×(1j0<k0N(zk0zj0)2γj0,k0)FdzNdz+m+1]dz+mdz+1]dzdz1,I_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})-I_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\tau}=\int_{\Gamma_{(-\infty,0],+,0;1}}\cdots\int_{\Gamma_{(-\infty,0],+,\ell-1;\ell}}\Big{[}\\ \int_{\Gamma_{[0,1],+,0;\ell+1}}\cdots\int_{\Gamma_{[0,1],+,m-1;\ell+m}}\Big{[}\int_{\Gamma_{[1,\infty),+,0;\ell+m+1}}\cdots\int_{\Gamma_{[1,\infty),+,n-1;N}}\Big{(}\prod_{j_{0}=1}^{N}z_{j_{0}}^{\alpha_{j_{0}}}(1-z_{j_{0}})^{\beta_{j_{0}}}\Big{)}\\ \times\Big{(}\prod_{1\leq j_{0}<k_{0}\leq N}(z_{k_{0}}-z_{j_{0}})^{2\gamma_{j_{0},k_{0}}}\Big{)}F\,\mathrm{d}z_{N}\cdots\,\mathrm{d}z_{\ell+m+1}\Big{]}\,\mathrm{d}z_{\ell+m}\cdots\,\mathrm{d}z_{\ell+1}\Big{]}\,\mathrm{d}z_{\ell}\cdots\,\mathrm{d}z_{1}, (3.63)

whenever (𝛂,𝛃,𝛄)O{1,τ}(\bm{\alpha},\bm{\beta},\bm{\gamma})\in O^{\cap\{1,\tau\}}, where Γ𝙸,+,r;i=Γ𝙸,+,r;i\Gamma_{\mathtt{I},+,r;i}=\Gamma_{\mathtt{I},+,r;i} unless i=ji=j, in which case Γ𝙸,+,r;i=Γ𝙸,+,r;i({zi0}i0j)\Gamma_{\mathtt{I},+,r;i}=\Gamma_{\mathtt{I},+,r;i}(\{z_{i_{0}}\}_{i_{0}\neq j}) is a small counterclockwise circle around zkz_{k} not winding around any of the other zz’s or 0,10,1. ∎

Proof.

It suffices to consider the case F=1F=1. Indeed, if FF is a monomial, then we can simply absorb it into a redefinition of 𝜶\bm{\alpha}. The set O{1,τ}O^{\cap\{1,\tau\}} is decreasing with the set of monomials in FF, so once the result has been proven for monomials, it follows for all Laurent polynomials.

For =2\bullet=2, the proposition follows via a straightforward countour deformation argument. The case {1,3}\bullet\in\{1,3\} can be reduced to =3\bullet=3 via 3.5. ∎

3.5. Symmetrization

Let F𝒜𝒟(A,m,n)F\in\mathcal{A}^{\mathcal{D}}(A_{\ell,m,n}).

Proposition 3.7.

For any (𝛂,𝛃,𝛄)σ𝔖,m,nΩ˙,m,n[F]σ(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\cap_{\sigma\in\mathfrak{S}_{\ell,m,n}}\dot{\Omega}_{\ell,m,n}[F]^{\sigma},

I˙,m,n[F](𝜶,𝜷,𝜸)=σ𝔖,m,neiΘ(σ1)S˙,m,n[F](𝜶,𝜷,𝜸)σ,\dot{I}_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=\sum_{\sigma\in\mathfrak{S}_{\ell,m,n}}e^{i\Theta(\sigma^{-1})}\dot{S}_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma}, (3.64)

where Θ(σ)=2π1j<kN1σ(j)>σ(k)γj,k\Theta(\sigma)=2\pi\sum_{1\leq j<k\leq N}1_{\sigma(j)>\sigma(k)}\gamma_{j,k}. ∎

Proof.

By analyticity, it suffices to prove the result when the quantities above are well-defined Lebesgue integrals. Decomposing ,m,n\square_{\ell,m,n} into !m!n!\ell!m!n! copies of ,m,n\triangle_{\ell,m,n},

I,m,n[F](𝜶,𝜷,𝜸)=σ𝔖,m,n,m,nj=1N|xj|ασ(j)|1xj|βσ(j)1j<kN(xσ1(k)xσ1(j)+i0)2γj,k×F(xσ1(1),,xσ1(N))dNx.I_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=\sum_{\sigma\in\mathfrak{S}_{\ell,m,n}}\int_{\triangle_{\ell,m,n}}\prod_{j=1}^{N}|x_{j}|^{\alpha_{\sigma(j)}}|1-x_{j}|^{\beta_{\sigma(j)}}\prod_{1\leq j<k\leq N}(x_{\sigma^{-1}(k)}-x_{\sigma^{-1}(j)}+i0)^{2\gamma_{j,k}}\\ \times F(x_{\sigma^{-1}(1)},\cdots,x_{\sigma^{-1}(N)})\,\mathrm{d}^{N}x. (3.65)

The right-hand side is

σ𝔖,m,neiΘ(σ1),m,nj=1N|xj|ασ(j)|1xj|βσ(j)1j<kN(xkxj)2γσ(j),σ(k)(Fσ)dNx,\sum_{\sigma\in\mathfrak{S}_{\ell,m,n}}e^{i\Theta(\sigma^{-1})}\int_{\triangle_{\ell,m,n}}\prod_{j=1}^{N}|x_{j}|^{\alpha_{\sigma(j)}}|1-x_{j}|^{\beta_{\sigma(j)}}\prod_{1\leq j<k\leq N}(x_{k}-x_{j})^{2\gamma_{\sigma(j),\sigma(k)}}(F^{\sigma})\,\mathrm{d}^{N}x, (3.66)

which is the right-hand side of eq. 3.64. ∎

Proposition 3.8.

Suppose that 𝛂,𝛃,𝛄\bm{\alpha},\bm{\beta},\bm{\gamma} are invariant under all σ𝔖,m,n\sigma\in\mathfrak{S}_{\ell,m,n}, and suppose now that F[x1,,xN]𝔖,m,nF\in\mathbb{C}[x_{1},\ldots,x_{N}]^{\mathfrak{S}_{\ell,m,n}}. Then, for all (𝛂,𝛃,𝛄)Ω˙,m,n[F](\bm{\alpha},\bm{\beta},\bm{\gamma})\in\dot{\Omega}_{\ell,m,n}[F],

I˙,m,n[F](𝜶,𝜷,𝜸)=[k=11e2πikγ11e2πiγ1][k=1m1e2πikγ21e2πiγ2][k=1n1e2πikγ31e2πiγ3]S˙,m,n[F](𝜶,𝜷,𝜸),\dot{I}_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=\Big{[}\prod_{k=1}^{\ell}\frac{1-e^{2\pi ik\gamma_{1}}}{1-e^{2\pi i\gamma_{1}}}\Big{]}\Big{[}\prod_{k=1}^{m}\frac{1-e^{2\pi ik\gamma_{2}}}{1-e^{2\pi i\gamma_{2}}}\Big{]}\Big{[}\prod_{k=1}^{n}\frac{1-e^{2\pi ik\gamma_{3}}}{1-e^{2\pi i\gamma_{3}}}\Big{]}\dot{S}_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma}), (3.67)

where, for each {1,2,3}\bullet\in\{1,2,3\}, γ=γj,k\gamma_{\bullet}=\gamma_{j,k} for all distinct j,kj,k\in\mathcal{I}_{\bullet}. ∎

Here, we are treating (1e2πiγ)1(1e2πikγ)(1-e^{2\pi i\gamma})^{-1}(1-e^{2\pi ik\gamma}) as an entire function.

Proof.

Applying the previous proposition,

I,m,n[F](𝜶,𝜷,𝜸)=[σ𝔖eπio.o.(σ)γ][σ𝔖meπio.o.(σ)γ][σ𝔖neπio.o.(σ)γ]S,m,n[F](𝜶,𝜷,𝜸),I_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})=\Big{[}\sum_{\sigma\in\mathfrak{S}_{\ell}}e^{\pi i\operatorname{o.o.}(\sigma)\gamma}\Big{]}\Big{[}\sum_{\sigma\in\mathfrak{S}_{m}}e^{\pi i\operatorname{o.o.}(\sigma)\gamma}\Big{]}\Big{[}\sum_{\sigma\in\mathfrak{S}_{n}}e^{\pi i\operatorname{o.o.}(\sigma)\gamma}\Big{]}S_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma}), (3.68)

where o.o.(σ)\operatorname{o.o.}(\sigma) is the number of out-of-order pairs in σ\sigma. We appeal to the algebraic identity

[ζ]σ𝔖Nζo.o.(σ)=n=0N1m=0nζm=n=1N1ζn1ζ,\mathbb{Z}[\zeta]\ni\sum_{\sigma\in\mathfrak{S}_{N}}\zeta^{\operatorname{o.o.}(\sigma)}=\prod_{n=0}^{N-1}\sum_{m=0}^{n}\zeta^{m}=\prod_{n=1}^{N}\frac{1-\zeta^{n}}{1-\zeta}, (3.69)

which holds for all NN\in\mathbb{N} and encodes the bijection between 𝔖N\mathfrak{S}_{N} and the set of possible runs of the bubble sort algorithm. Plugging in ζ=eπiγ\zeta=e^{\pi i\gamma}, eq. 3.68 becomes eq. 3.67. ∎

3.6. The Aomoto-Dotsenko–Fateev relations

Fix N+N\in\mathbb{N}^{+} and F[x1,x11,,xN,xN1]F\in\mathbb{C}[x_{1},x_{1}^{-1},\ldots,x_{N},x_{N}^{-1}]. For each j{1,,N}j\in\{1,\ldots,N\}, let σj𝔖N\sigma_{j}\in\mathfrak{S}_{N} be the permutation that takes 11 and inserts it in the jjth position while maintaining the relative order of the other terms. That is, σj=(1jj1 2)\sigma_{j}=(1\;j\;j-1\;\cdots\;2).

For any +\ell\in\mathbb{N}^{+} and m,nm,n\in\mathbb{N} with +m+n=N\ell+m+n=N, let

Λ˙,m,n[F]=V˙,m,n[F]V˙1,m+1,n[F]σV˙1,m,n+1[F]σ+m=V˙,m,n[F]V˙1,m+1,n[F]σ+mV˙1,m,n+1[F]σN,\displaystyle\begin{split}\dot{\Lambda}_{\ell,m,n}[F]&=\dot{V}_{\ell,m,n}[F]\cap\dot{V}_{\ell-1,m+1,n}[F]^{\sigma_{\ell}}\cap\dot{V}_{\ell-1,m,n+1}[F]^{\sigma_{\ell+m}}\\ &=\dot{V}_{\ell,m,n}[F]\cap\dot{V}_{\ell-1,m+1,n}[F]^{\sigma_{\ell+m}}\cap\dot{V}_{\ell-1,m,n+1}[F]^{\sigma_{N}},\end{split} (3.70)
˙,m,n[F]=(j=1Ω˙,m,n[F]σj)(j=+mΩ˙1,m+1,n[F]σj)(j=+mNΩ˙1,m,n+1[F]σj).\dot{\mho}_{\ell,m,n}[F]=(\cap_{j=1}^{\ell}\dot{\Omega}_{\ell,m,n}[F]^{\sigma_{j}})\cap(\cap_{j=\ell}^{\ell+m}\dot{\Omega}_{\ell-1,m+1,n}[F]^{\sigma_{j}})\cap(\cap_{j=\ell+m}^{N}\dot{\Omega}_{\ell-1,m,n+1}[F]^{\sigma_{j}}). (3.71)

Note that ˙,m,n[F],Λ˙,m,n[F]\dot{\mho}_{\ell,m,n}[F],\dot{\Lambda}_{\ell,m,n}[F] are open, dense, and connected subsets of 2N+N(N1)/2\mathbb{C}^{2N+N(N-1)/2}, being the complements of locally finite unions of complex affine hyperplanes.

Proposition 3.9.

For any (𝛂,𝛃,𝛄)˙,m,n[F](\bm{\alpha},\bm{\beta},\bm{\gamma})\in\dot{\mho}_{\ell,m,n}[F],

0=j=1e±iθjS˙,m,n[F](𝜶,𝜷,𝜸)σj+j=+me±iϑjS˙1,m+1,n[F](𝜶,𝜷,𝜸)σj+j=+mNe±iφjS˙1,m,n+1[F](𝜶,𝜷,𝜸)σj0=\sum_{j=1}^{\ell}e^{\pm i\theta_{j}}\dot{S}_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{j}}+\sum_{j=\ell}^{\ell+m}e^{\pm i\vartheta_{j}}\dot{S}_{\ell-1,m+1,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{j}}\\ +\sum_{j=\ell+m}^{N}e^{\pm i\varphi_{j}}\dot{S}_{\ell-1,m,n+1}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{j}} (3.72)

holds for each choice of sign, where θj=2π2j0jγ1,j0\theta_{j}=2\pi\sum_{2\leq j_{0}\leq j}\gamma_{1,j_{0}}, ϑj=πα+2π2j0jγ1,j0\vartheta_{j}=\pi\alpha+2\pi\sum_{2\leq j_{0}\leq j}\gamma_{1,j_{0}}, and φj=πα+πβ+2π2j0jγ1,j0\varphi_{j}=\pi\alpha+\pi\beta+2\pi\sum_{2\leq j_{0}\leq j}\gamma_{1,j_{0}}. ∎

Proof.

Without loss of generality, we may assume F=1F=1. Let ,m,n\mho_{\ell,m,n} denote the subset of (𝜶,𝜷,𝜸)2N+N(N1)/2(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\mathbb{C}^{2N+N(N-1)/2} defined by

,m,n={(𝜶,𝜷,𝜸):(𝜶σj,𝜷σj,𝜸σj){Ω,m,n(j{1,,1})Ω1,m+1,n(j{+1,,+m1})Ω1,m,n+1(j{+m+1,,N})Ω,m,nΩ1,m+1,n(j=)Ω1,m+1,nΩ1,m,n+1(j=+m)}.\mho_{\ell,m,n}=\left\{(\bm{\alpha},\bm{\beta},\bm{\gamma}):(\bm{\alpha}^{\sigma_{j}},\bm{\beta}^{\sigma_{j}},\bm{\gamma}^{\sigma_{j}})\in\begin{cases}\Omega_{\ell,m,n}&(j\in\{1,\ldots,\ell-1\})\\ \Omega_{\ell-1,m+1,n}&(j\in\{\ell+1,\ldots,\ell+m-1\})\\ \Omega_{\ell-1,m,n+1}&(j\in\{\ell+m+1,\ldots,N\})\\ \Omega_{\ell,m,n}\cap\Omega_{\ell-1,m+1,n}&(j=\ell)\\ \Omega_{\ell-1,m+1,n}\cap\Omega_{\ell-1,m,n+1}&(j=\ell+m)\end{cases}\right\}. (3.73)

Let ε>0\varepsilon>0. For each ϝ1,ϝ2,ϝ3>0\digamma_{1},\digamma_{2},\digamma_{3}>0 and γ¯,γ¯((N1)1,0)\underline{\gamma},\overline{\gamma}\in(-(N-1)^{-1},0) with γ¯<γ¯\underline{\gamma}<\overline{\gamma}, let 0,ϝ,γ¯,γ¯\mho_{0,\digamma,\underline{\gamma},\overline{\gamma}} (suppressing the ,m,n\ell,m,n dependence for brevity) denote the set of (𝜶,𝜷,𝜸)2N+N(N1)/2(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\mathbb{C}^{2N+N(N-1)/2} such that

  • γ¯<γj,k<γ¯\underline{\gamma}<\Re\gamma_{j,k}<\overline{\gamma} for all j,k{1,,N}j,k\in\{1,\ldots,N\} with jkj\neq k,

  • ϝ1<αj<ϝ2\digamma_{1}<\Re\alpha_{j}<\digamma_{2} for each j{2,,}j\in\{2,\ldots,\ell\}, αj>ϝ1\Re\alpha_{j}>\digamma_{1} for each j{+1,,+m}j\in\{\ell+1,\ldots,\ell+m\}, and αj<ϝ3\Re\alpha_{j}<-\digamma_{3} for each j{+m+1,,N}j\in\{\ell+m+1,\ldots,N\},

  • ϝ1<βj<ϝ2\digamma_{1}<\Re\beta_{j}<\digamma_{2} for each j{+m+1,,N}j\in\{\ell+m+1,\ldots,N\}, βj>ϝ1\Re\beta_{j}>\digamma_{1} for each j{+1,,+m}j\in\{\ell+1,\ldots,\ell+m\}, and βj<ϝ3\Re\beta_{j}<-\digamma_{3} for j{2,,}j\in\{2,\ldots,\ell\},

where ϝ=(ϝ1,ϝ2,ϝ3)\digamma=(\digamma_{1},\digamma_{2},\digamma_{3}). The set 0,ϝ,γ¯,γ¯\mho_{0,\digamma,\underline{\gamma},\overline{\gamma}} is open and nonempty. By eq. 1.7 and the analogue of eq. 1.7 for the m<Nm<N case, there exist ϝ00,ϝ0,ϝ01>0\digamma_{00},\digamma_{0},\digamma_{01}>0 (depending on ,m,n,γ¯,γ¯\ell,m,n,\underline{\gamma},\overline{\gamma}) such that

ϝ,γ¯,γ¯=def{(𝜶,𝜷,𝜸)0,ϝ,γ¯,γ¯ and (α1,β1)Ω1,0,0Ω0,1,0Ω0,0,1},m,n\mho_{\digamma,\underline{\gamma},\overline{\gamma}}\overset{\mathrm{def}}{=}\{(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\mho_{0,\digamma,\underline{\gamma},\overline{\gamma}}\text{ and }(\alpha_{1},\beta_{1})\in\Omega_{1,0,0}\cap\Omega_{0,1,0}\cap\Omega_{0,0,1}\}\subset\mho_{\ell,m,n} (3.74)

whenever ϝ2>ϝ1>ϝ0\digamma_{2}>\digamma_{1}>\digamma_{0} and ϝ3>ϝ01ϝ2+ϝ00\digamma_{3}>\digamma_{01}\digamma_{2}+\digamma_{00}. Observe that Ω1,0,0Ω0,1,0Ω0,0,1\Omega_{1,0,0}\cap\Omega_{0,1,0}\cap\Omega_{0,0,1} is the subset of 2α,β\mathbb{C}^{2}_{\alpha,\beta} defined by the inequalities 1<α,β-1<\Re\alpha,\Re\beta and α+β<1\Re\alpha+\Re\beta<-1. The set

{(r1,r2)2:1<r1,r2 and r1+r2<1}\{(r_{1},r_{2})\in\mathbb{R}^{2}:-1<r_{1},r_{2}\text{ and }r_{1}+r_{2}<-1\} (3.75)

is a nonempty triangle. So, ϝ,γ¯,γ¯\mho_{\digamma,\underline{\gamma},\overline{\gamma}} is an open and nonempty subset of 2N+N(N1)/2\mathbb{C}^{2N+N(N-1)/2} and moreover of ˙,m,n\dot{\mho}_{\ell,m,n}.

For such ϝ\digamma and (𝜶,𝜷,𝜸)ϝ,γ¯,γ¯(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\mho_{\digamma,\underline{\gamma},\overline{\gamma}}, eq. 3.72 (with F=1F=1) just reads

0=j=1e±iθjS,m,n[1](𝜶,𝜷,𝜸)σj+j=+me±iϑjS1,m+1,n[1](𝜶,𝜷,𝜸)σj+j=+mNe±iφjS1,m,n+1[1](𝜶,𝜷,𝜸)σj0=\sum_{j=1}^{\ell}e^{\pm i\theta_{j}}S_{\ell,m,n}[1](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{j}}+\sum_{j=\ell}^{\ell+m}e^{\pm i\vartheta_{j}}S_{\ell-1,m+1,n}[1](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{j}}\\ +\sum_{j=\ell+m}^{N}e^{\pm i\varphi_{j}}S_{\ell-1,m,n+1}[1](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{j}} (3.76)

(note the absence of the dots over the SS’s). By the analyticity of all of the functions in eq. 3.72 on ˙,m,n\dot{\mho}_{\ell,m,n}, it suffices to prove that eq. 3.76 holds for such (𝜶,𝜷,𝜸)(\bm{\alpha},\bm{\beta},\bm{\gamma}).

By Fubini’s theorem, the right-hand side of eq. 3.76 is

1,m,nω(x2,,xN)[+(x1±i0)α1(1x1±i0)β1(j=2N(xjx±i0)2γ1,j)dx]dx2dxN,\int_{\triangle_{\ell-1,m,n}}\omega(x_{2},\ldots,x_{N})\Big{[}\int_{-\infty}^{+\infty}(-x_{1}\pm i0)^{\alpha_{1}}(1-x_{1}\pm i0)^{\beta_{1}}\Big{(}\prod_{j=2}^{N}(x_{j}-x\pm i0)^{2\gamma_{1,j}}\Big{)}\,\mathrm{d}x\Big{]}\,\mathrm{d}x_{2}\cdots\,\mathrm{d}x_{N}, (3.77)

where ω(x2,,xN)=[j=2N|xj|αj|1xj|βj]2j<kN(xkxj)2γj,k\omega(x_{2},\ldots,x_{N})=[\prod_{j=2}^{N}|x_{j}|^{\alpha_{j}}|1-x_{j}|^{\beta_{j}}]\prod_{2\leq j<k\leq N}(x_{k}-x_{j})^{2\gamma_{j,k}}. The claim then follows from

0=+(x±i0)α(1x±i0)β(j=2N(xjx±i0)2γj)dx,0=\int_{-\infty}^{+\infty}(-x\pm i0)^{\alpha}(1-x\pm i0)^{\beta}\Big{(}\prod_{j=2}^{N}(x_{j}-x\pm i0)^{2\gamma_{j}}\Big{)}\,\mathrm{d}x, (3.78)

which holds for every (x2,,xN)(\{0,1})N1(x_{2},\ldots,x_{N})\in(\mathbb{R}\backslash\{0,1\})^{N-1} such that x2,,xNx_{2},\ldots,x_{N} are pairwise distinct and all α,β,γ2,,γN\alpha,\beta,\gamma_{2},\ldots,\gamma_{N}\in\mathbb{C} for which

  • the integrand of eq. 3.78 lies in L1()L^{1}(\mathbb{R}) and

  • γj(1,0)\Re\gamma_{j}\in(-1,0) for all j{2,,N}j\in\{2,\ldots,N\}.

Denote the right-hand side of eq. 3.78 by ±=±(x2,,xN;α,β,γ2,,γN)\mathcal{I}_{\pm}=\mathcal{I}_{\pm}(x_{2},\ldots,x_{N};\alpha,\beta,\gamma_{2},\ldots,\gamma_{N}). For R>max{|x1|,,|xN1|}R>\max\{|x_{1}|,\ldots,|x_{N-1}|\},

0=Γ(R)(z±i0)α(1z±i0)βj=2N(xjz±i0)2γjdz,0=\int_{\Gamma_{\mp}(R)}(-z\pm i0)^{\alpha}(1-z\pm i0)^{\beta}\prod_{j=2}^{N}(x_{j}-z\pm i0)^{2\gamma_{j}}\,\mathrm{d}z, (3.79)

where Γ±(R)=Γ±(R)(x2,,xN)\Gamma_{\pm}(R)=\Gamma_{\pm}(R)(x_{2},\ldots,x_{N})\subset\mathbb{C} is the semicircular contour (with N+1N+1 semicircular insets placed so that the contour avoids x2,,xNx_{2},\ldots,x_{N}) connecting R-R and +R+R, with the arc and semicircular insets in the half-plane {z:±z0}\{z\in\mathbb{C}:\pm\Im z\geq 0\}. See Figure 11. In eq. 3.79, the integrand is defined taking the branch cut along the negative real axis, so

(xz±i0)2γj={exp(2γj(log|xz|+iarg(xz)))(+ case,z0),exp(2γj(log|xz|2πi+iarg(xz)))( case,z0),(x-z\pm i0)^{2\gamma_{j}}=\begin{cases}\exp(2\gamma_{j}(\log|x-z|+i\operatorname{arg}(x-z)))&(\text{$+$ case},\Im z\leq 0),\\ \exp(2\gamma_{j}(\log|x-z|-2\pi i+i\operatorname{arg}(x-z)))&(\text{$-$ case},\Im z\geq 0),\end{cases} (3.80)

for any xx\in\mathbb{R}, where arg(xz)[0,2π)\operatorname{arg}(x-z)\in[0,2\pi). We orient Γ+\Gamma_{+} counter-clockwise and Γ\Gamma_{-} clockwise.

z\Im zz\Re z011x2x_{2}x1x_{1}x3x_{3}R-RRR
Figure 11. The contour Γ+(R)\Gamma_{+}(R) in the case =2,m=1,n=0\ell=2,m=1,n=0.

Let Γ++(R)\Gamma_{++}(R) denote the large arc of Γ+(R)\Gamma_{+}(R) and Γ+0(R)\Gamma_{+0}(R) denote the rest, and likewise let Γ(R)\Gamma_{--}(R) denote the large arc of Γ(R)\Gamma_{-}(R) and Γ0(R)\Gamma_{-0}(R) denote the rest. Then,

±=limRΓ0(R)(z±i0)α(1z±i0)βj=2N(xjz±i0)2γjdz.\mathcal{I}_{\pm}=\lim_{R\to\infty}\int_{\Gamma_{\mp 0}(R)}(-z\pm i0)^{\alpha}(1-z\pm i0)^{\beta}\prod_{j=2}^{N}(x_{j}-z\pm i0)^{2\gamma_{j}}\,\mathrm{d}z. (3.81)

On the other hand, for RR sufficiently large,

|Γ(R)(z±i0)α(1z±i0)βj=2N(xjz±i0)2γjdx|π(2R)1+α+β=O(Rε)\Big{|}\int_{\Gamma_{\mp\mp}(R)}(-z\pm i0)^{\alpha}(1-z\pm i0)^{\beta}\prod_{j=2}^{N}(x_{j}-z\pm i0)^{2\gamma_{j}}\,\mathrm{d}x\Big{|}\leq\pi(2R)^{1+\Re\alpha+\Re\beta}=O(R^{-\varepsilon}) (3.82)

for some ε>0\varepsilon>0 depending on (α,β)Ω1,0,0Ω0,1,0Ω0,0,1(\alpha,\beta)\in\Omega_{1,0,0}\cap\Omega_{0,1,0}\cap\Omega_{0,0,1}. Combining eq. 3.79, eq. 3.81, and eq. 3.82, we get ±=0\mathcal{I}_{\pm}=0. ∎

Proposition 3.10.

For any F[x1,x11,,xN,xN1]F\in\mathbb{C}[x_{1},x_{1}^{-1},\ldots,x_{N},x_{N}^{-1}],

0=I˙,m,n[F](𝜶,𝜷,𝜸)+e+πi(α+2j=2γ1,j)I˙1,m+1,n[F](𝜶,𝜷,𝜸)σ+e+πi(α+β+2j=2+mγ1,j)I˙1,m,n+1[F](𝜶,𝜷,𝜸)σ+m0=\dot{I}_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})+e^{+\pi i(\alpha+2\sum_{j=2}^{\ell}\gamma_{1,j})}\dot{I}_{\ell-1,m+1,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{\ell}}\\ +e^{+\pi i(\alpha+\beta+2\sum_{j=2}^{\ell+m}\gamma_{1,j})}\dot{I}_{\ell-1,m,n+1}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{\ell+m}} (3.83)
0=I˙,m,n[F](𝜶,𝜷,𝜸)σ+eπi(α+2j=2γ1,j)I˙1,m+1,n[F](𝜶,𝜷,𝜸)σ+m+eπi(α+β+2j=2+mγ1,j)I˙1,m,n+1[F](𝜶,𝜷,𝜸)σN0=\dot{I}_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{\ell}}+e^{-\pi i(\alpha+2\sum_{j=2}^{\ell}\gamma_{1,j})}\dot{I}_{\ell-1,m+1,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{\ell+m}}\\ +e^{-\pi i(\alpha+\beta+2\sum_{j=2}^{\ell+m}\gamma_{1,j})}\dot{I}_{\ell-1,m,n+1}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{N}} (3.84)

both hold, for all (𝛂,𝛃,𝛄)Λ˙,m,n[F](\bm{\alpha},\bm{\beta},\bm{\gamma})\in\dot{\Lambda}_{\ell,m,n}[F]. ∎

Proof.

Let 𝔖,m,n\mathfrak{S}^{\prime}_{\ell,m,n} denote the Young subgroup of 𝔖,m,n\mathfrak{S}_{\ell,m,n} consisting of permutations which fix 11, i.e.

𝔖,m,n={σ𝔖,m,n s.t. σ(1)=1}.\mathfrak{S}^{\prime}_{\ell,m,n}=\{\sigma\in\mathfrak{S}_{\ell,m,n}\text{ s.t. }\sigma(1)=1\}. (3.85)

Via analyticity, it suffices to prove this for all (𝜶,𝜷,𝜸)σ𝔖,m,n˙,m,n[F]σ(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\cap_{\sigma\in\mathfrak{S}^{\prime}_{\ell,m,n}}\dot{\mho}_{\ell,m,n}[F]^{\sigma}.

For such (𝜶,𝜷,𝜸)(\bm{\alpha},\bm{\beta},\bm{\gamma}), we can cite the previous proposition to get

0=σ𝔖,m,neπiΘ(σ1)[j=1e±iθjσS˙,m,n[F](𝜶,𝜷,𝜸)σjσ+j=+me±iϑjσS˙1,m+1,n[F](𝜶,𝜷,𝜸)σjσ+j=+mNe±iφjσS˙1,m,n+1[F](𝜶,𝜷,𝜸)σjσ],0=\sum_{\sigma\in\mathfrak{S}_{\ell,m,n}^{\prime}}e^{\pi i\Theta(\sigma^{-1})}\Big{[}\sum_{j=1}^{\ell}e^{\pm i\theta_{j}^{\sigma}}\dot{S}_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{j}\sigma}\\ +\sum_{j=\ell}^{\ell+m}e^{\pm i\vartheta_{j}^{\sigma}}\dot{S}_{\ell-1,m+1,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{j}\sigma}+\sum_{j=\ell+m}^{N}e^{\pm i\varphi_{j}^{\sigma}}\dot{S}_{\ell-1,m,n+1}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{j}\sigma}\Big{]}, (3.86)

where θjσ=2π2j0jγ1,σ(j0)\theta_{j}^{\sigma}=2\pi\sum_{2\leq j_{0}\leq j}\gamma_{1,\sigma(j_{0})}, ϑjσ=πα+2π2j0jγ1,σ(j0)\vartheta_{j}^{\sigma}=\pi\alpha+2\pi\sum_{2\leq j_{0}\leq j}\gamma_{1,\sigma(j_{0})}, and φjσ=πα+πβ+2π2j0jγ1,σ(j0)\varphi_{j}^{\sigma}=\pi\alpha+\pi\beta+2\pi\sum_{2\leq j_{0}\leq j}\gamma_{1,\sigma(j_{0})}. The order of multiplication is such that σjσ\sigma_{j}\sigma is a permutation satisfying (σjσ)(1)=j(\sigma_{j}\sigma)(1)=j. In eq. 3.86, Θ\Theta is defined as in 3.7.

Every σ0𝔖,m,n\sigma_{0}\in\mathfrak{S}_{\ell,m,n} has the form σ0=σjσ\sigma_{0}=\sigma_{j}\sigma for some j{1,,N}j\in\{1,\ldots,N\} and σ𝔖,m,n\sigma\in\mathfrak{S}_{\ell,m,n} satisfying σ(1)=1\sigma(1)=1. It can be seen that

Θ(σ10)=Θ(σ1)+θjσ.\Theta(\sigma^{-1}_{0})=\Theta(\sigma^{-1})+\theta_{j}^{\sigma}. (3.87)

Using 3.7, we check that the two cases of eq. 3.86 yield the two results, eq. 3.83 and eq. 3.84. For instance,

σ𝔖,m,neπiΘ(σ1)j=1e+iθjσS˙,m,n[F](𝜶,𝜷,𝜸)σjσ=σ𝔖,m,neπiΘ(σ1)S˙,m,n[F](𝜶,𝜷,𝜸)σ=I˙,m,n[F](𝜶,𝜷,𝜸).\displaystyle\begin{split}\sum_{\sigma\in\mathfrak{S}_{\ell,m,n}^{\prime}}e^{\pi i\Theta(\sigma^{-1})}\sum_{j=1}^{\ell}e^{+i\theta_{j}^{\sigma}}\dot{S}_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma_{j}\sigma}&=\sum_{\sigma\in\mathfrak{S}_{\ell,m,n}}e^{\pi i\Theta(\sigma^{-1})}\dot{S}_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma})^{\sigma}\\ &=\dot{I}_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma}).\end{split} (3.88)

Similar statements apply to the other two sums in eq. 3.86 in the ‘++’ case, thus yielding eq. 3.83. Similar computations apply to the ‘-’ case. ∎

3.7. The symmetric and DF-symmetric cases

Fix F𝒜𝒟(A,m,n)F\in\mathcal{A}^{\mathcal{D}}(A_{\ell,m,n}), not necessarily symmetric. We assume that dFS,Q;d_{\mathrm{F}_{S,Q;\bullet}}\in\mathbb{Z} for all FS,Q;(A,m,n)\mathrm{F}_{S,Q;\bullet}\in\mathcal{F}(A_{\ell,m,n}). Let

δk\displaystyle\delta_{k} =min{dFS,Q;0:S1,Q2,|SQ|=k}\displaystyle=\min\{d_{\mathrm{F}_{S,Q;0}}:S\subseteq\mathcal{I}_{1},Q\subseteq\mathcal{I}_{2},|S\cup Q|=k\} (3.89)
for each k{1,,+m}k\in\{1,\ldots,\ell+m\},
δk\displaystyle\text{\reflectbox{$\delta$}}_{k} =min{dFS,Q;1:S2,Q3,|SQ|=k}\displaystyle=\min\{d_{\mathrm{F}_{S,Q;1}}:S\subseteq\mathcal{I}_{2},Q\subseteq\mathcal{I}_{3},|S\cup Q|=k\} (3.90)
for each k{1,,m+n}k\in\{1,\ldots,m+n\}, and
dk\displaystyle d_{k} =min{dFS,Q;:S3,Q1,|SQ|=k}\displaystyle=-\min\{d_{\mathrm{F}_{S,Q;\infty}}:S\subseteq\mathcal{I}_{3},Q\subseteq\mathcal{I}_{1},|S\cup Q|=k\} (3.91)

for each k{1,,+n}k\in\{1,\ldots,\ell+n\}. Here, we are ranging over all {dF}F(A,m,n)𝒟\{d_{\mathrm{F}}\}_{\mathrm{F}\in\mathcal{F}(A_{\ell,m,n})}\in\mathcal{D}.

Let W˙,m,n[𝒟]\dot{W}_{\ell,m,n}[\mathcal{D}] denote the set of (α,β,γ)3(\alpha,\beta,\gamma)\in\mathbb{C}^{3} such that (𝜶,𝜷,𝜸)V˙,m,n[𝒟](\bm{\alpha},\bm{\beta},\bm{\gamma})\in\smash{\dot{V}_{\ell,m,n}[\mathcal{D}]} whenever 𝜶,𝜷,𝜸\bm{\alpha},\bm{\beta},\bm{\gamma} have components given by αj=α\alpha_{j}=\alpha and βj=β\beta_{j}=\beta for all indices j{1,,N}j\in\{1,\ldots,N\} and γj,k=γ\gamma_{j,k}=\gamma for all j,k{1,,N}j,k\in\{1,\ldots,N\} with j<kj<k.

Proposition 3.11.

There exists an entire function I,m,n;Reg[F]:3I_{\ell,m,n;\mathrm{Reg}}[F]:\mathbb{C}^{3}\to\mathbb{C} such that

I˙,m,n[F](α,β,γ)=[k=1+mΓ(δk+k(1+α+(k1)γ))][k=1m+nΓ(δk+k(1+β+(k1)γ))]×[k=1+nΓ(dkk(1+α+β+(2Nk1)γ))]I,m,n;Reg[F](α,β,γ)\dot{I}_{\ell,m,n}[F](\alpha,\beta,\gamma)=\Big{[}\prod_{k=1}^{\ell+m}\Gamma(\delta_{k}+k(1+\alpha+(k-1)\gamma))\Big{]}\Big{[}\prod_{k=1}^{m+n}\Gamma(\text{\reflectbox{$\delta$}}_{k}+k(1+\beta+(k-1)\gamma))\Big{]}\\ \times\Big{[}\prod_{k=1}^{\ell+n}\Gamma(-d_{k}-k(1+\alpha+\beta+(2N-k-1)\gamma))\Big{]}I_{\ell,m,n;\mathrm{Reg}}[F](\alpha,\beta,\gamma) (3.92)

for all (α,β,γ)W˙,m,n[𝒟](\alpha,\beta,\gamma)\in\dot{W}_{\ell,m,n}[\mathcal{D}]. ∎

Proof.

Follows from 3.4. ∎

For later reference, consider the special case F[x1,,xN]𝔖NF\in\mathbb{C}[x_{1},\ldots,x_{N}]^{\mathfrak{S}_{N}}. Referring to eq. 1.14, eq. 1.15, and eq. 1.28, set dFS,Q;0=δj[F]d_{\mathrm{F}_{S,Q;0}}=\delta_{j}[F], dFS,Q;1=δj[F]d_{\mathrm{F}_{S,Q;1}}=\text{\reflectbox{$\delta$}}_{j}[F], and dFS,Q;=degj[F]d_{\mathrm{F}_{S,Q;\infty}}=\deg_{j}[F], for S,Q{1,,N}S,Q\subseteq\{1,\ldots,N\} as usual, where, for each SS and QQ, j=|SQ|j=|S\cup Q|. Then, as follows straightforwardly from eq. 2.23, eq. 2.25, eq. 2.27,

FF(A,m,n)xFdFC(A,m,n).F\in\prod_{\mathrm{F}\in\mathcal{F}(A_{\ell,m,n})}x_{\mathrm{F}}^{d_{\mathrm{F}}}C^{\infty}(A_{\ell,m,n}). (3.93)

Thus, letting 𝒟\mathcal{D} denote the collection of the integers above, F𝒜𝒟(A,m,n)F\in\mathcal{A}^{\mathcal{D}}(A_{\ell,m,n}). We can therefore apply the results above, with δj=δj[F]\delta_{j}=\delta_{j}[F], δj=δj[F]\text{\reflectbox{$\delta$}}_{j}=\text{\reflectbox{$\delta$}}_{j}[F], and dj=degj[F]d_{j}=-\deg_{j}[F].

We now turn to the “DF0-symmetric” case. For any 𝚂{1,,N}\mathtt{S}\subseteq\{1,\ldots,N\}, let

W˙,m,nDF0,𝚂[F]={(α,α+,β,β+,γ,γ0,γ+)7:(𝜶DF0,𝜷DF0,𝜸DF0)V˙,m,n[F]}.\dot{W}_{\ell,m,n}^{\mathrm{DF0},\mathtt{S}}[F]=\{(\alpha_{-},\alpha_{+},\beta_{-},\beta_{+},\gamma_{-},\gamma_{0},\gamma_{+})\in\mathbb{C}^{7}:(\bm{\alpha}^{\mathrm{DF0}},\bm{\beta}^{\mathrm{DF0}},\bm{\gamma}^{\mathrm{DF0}})\in\dot{V}_{\ell,m,n}[F]\}. (3.94)

This is a dense, open, and connected subset of 7\mathbb{C}^{7} and depends on 𝚂\mathtt{S} only through the numbers |𝚂j||\mathtt{S}\cap\mathcal{I}_{j}|. Actually, we need a slightly refined version of this later; let

W˙,m,nDF1,𝚂[F]={(α,1,α,2,α,3,α+,1,α+,2,α+,3,β,1,β,2,β,3,β+,1,β+,2,β+,3,γ,γ0,γ+)9:(𝜶DF1,𝜷DF1,𝜸DF0)V˙,m,n[F]},\dot{W}_{\ell,m,n}^{\mathrm{DF1},\mathtt{S}}[F]=\{(\alpha_{-,1},\alpha_{-,2},\alpha_{-,3},\alpha_{+,1},\alpha_{+,2},\alpha_{+,3},\beta_{-,1},\beta_{-,2},\beta_{-,3},\beta_{+,1},\beta_{+,2},\beta_{+,3},\gamma_{-},\gamma_{0},\gamma_{+})\in\mathbb{C}^{9}\\ :(\bm{\alpha}^{\mathrm{DF1}},\bm{\beta}^{\mathrm{DF1}},\bm{\gamma}^{\mathrm{DF0}})\in\dot{V}_{\ell,m,n}[F]\}, (3.95)

where 𝜶DF1,𝜷DF1\bm{\alpha}^{\mathrm{DF1}},\bm{\beta}^{\mathrm{DF1}} are defined as their DF0-counterparts, but defining the jjth component using α+,ν\alpha_{+,\nu} in place of α+\alpha_{+} and β+,ν\beta_{+,\nu} in place of β+\beta_{+} for νν\nu\in\mathcal{I}_{\nu}.

For (α,α+,β,β+,γ,γ0,γ+)W˙DF0,𝚂,m,n[F](\alpha_{-},\alpha_{+},\beta_{-},\beta_{+},\gamma_{-},\gamma_{0},\gamma_{+})\in\dot{W}^{\mathrm{DF0},\mathtt{S}}_{\ell,m,n}[F], let

I˙DF0;𝚂,m,n[F](α,α+,β,β+,γ,γ0,γ+)=I˙,m,n[F](𝜶DF0,𝜷DF0,𝜸DF0).\dot{I}^{\mathrm{DF0};\mathtt{S}}_{\ell,m,n}[F](\alpha_{-},\alpha_{+},\beta_{-},\beta_{+},\gamma_{-},\gamma_{0},\gamma_{+})=\dot{I}_{\ell,m,n}[F](\bm{\alpha}^{\mathrm{DF}0},\bm{\beta}^{\mathrm{DF}0},\bm{\gamma}^{\mathrm{DF}0}). (3.96)

Let +=𝚂1\ell_{+}=\mathtt{S}\cap\mathcal{I}_{1}, =+\ell_{-}=\ell-\ell_{+}, m+=𝚂2m_{+}=\mathtt{S}\cap\mathcal{I}_{2}, m=mm+m_{-}=m-m_{+}, n+=𝚂3n_{+}=\mathtt{S}\cap\mathcal{I}_{3}, and n=nn+n_{-}=n-n_{+}. Set N+=|𝚂|N_{+}=|\mathtt{S}| and N=NN+N_{-}=N-N_{+}.

Suppose now that F𝒜𝒟(A,m,n)F\in\mathcal{A}^{\mathcal{D}}(A_{\ell,m,n}) is symmetric in the variables {xi}i𝚂\{x_{i}\}_{i\in\mathtt{S}} and {xi}i𝚂\{x_{i}\}_{i\notin\mathtt{S}} separately. Let

δj,j+\displaystyle\delta_{j_{-},j_{+}} =min{dFS,Q;0:S1,Q2,|(SQ)\𝚂|=j,|(SQ)𝚂|=j+}\displaystyle=\min\{d_{\mathrm{F}_{S,Q;0}}:S\subseteq\mathcal{I}_{1},Q\subseteq\mathcal{I}_{2},|(S\cup Q)\backslash\mathtt{S}|=j_{-},|(S\cup Q)\cap\mathtt{S}|=j_{+}\} (3.97)
for j{1,,+m}j_{-}\in\{1,\ldots,\ell_{-}+m_{-}\} and j+{1,,++m+}j_{+}\in\{1,\ldots,\ell_{+}+m_{+}\},
δj,j+\displaystyle\text{\reflectbox{$\delta$}}_{j_{-},j_{+}} =min{dFS,Q;1:S2,Q3,|(SQ)\𝚂|=j,|(SQ)𝚂|=j+}\displaystyle=\min\{d_{\mathrm{F}_{S,Q;1}}:S\subseteq\mathcal{I}_{2},Q\subseteq\mathcal{I}_{3},|(S\cup Q)\backslash\mathtt{S}|=j_{-},|(S\cup Q)\cap\mathtt{S}|=j_{+}\} (3.98)
for j{1,,m+n}j_{-}\in\{1,\ldots,m_{-}+n_{-}\} and j+{1,,m++n+}j_{+}\in\{1,\ldots,m_{+}+n_{+}\}, and
dj,j+\displaystyle d_{j_{-},j_{+}} =min{dFS,Q;:S3,Q1,|(SQ)\𝚂|=j,|(SQ)𝚂|=j+}\displaystyle=-\min\{d_{\mathrm{F}_{S,Q;\infty}}:S\subseteq\mathcal{I}_{3},Q\subseteq\mathcal{I}_{1},|(S\cup Q)\backslash\mathtt{S}|=j_{-},|(S\cup Q)\cap\mathtt{S}|=j_{+}\} (3.99)

for j{1,,+n}j_{-}\in\{1,\ldots,\ell_{-}+n_{-}\} and j+{1,,++n+}j_{+}\in\{1,\ldots,\ell_{+}+n_{+}\}. A similar argument to that above yields:

Proposition 3.12.

There exists an entire function I,m,n;RegDF0;𝚂[F]:7I_{\ell,m,n;\mathrm{Reg}}^{\mathrm{DF0};\mathtt{S}}[F]:\mathbb{C}^{7}\to\mathbb{C} such that

I˙,m,nDF0[F](α,α+,β,β+,γ,γ0,γ+)=I,m,n;RegDF0[F](α,α+,β,β+,γ,γ0,γ+)×[j=1+mj+=1++m+Γ(δj,j++j(1+α+(j1)γ)+j+(1+α++(j+1)γ+)+2γ0jj+)]×[j=1m+nj+=1m++n+Γ(δj,j++j(1+β+(j1)γ)+j+(1+β++(j+1)γ+)+2γ0jj+)]×[j=1+nj+=1++n+Γ(dj,j+j(1+α+β+(2Nj1)γ)j+(1+α++β++(2N+j+1)γ+)2γ0jj+)]\dot{I}_{\ell,m,n}^{\mathrm{DF0}}[F](\alpha_{-},\alpha_{+},\beta_{-},\beta_{+},\gamma_{-},\gamma_{0},\gamma_{+})=I_{\ell,m,n;\mathrm{Reg}}^{\mathrm{DF0}}[F](\alpha_{-},\alpha_{+},\beta_{-},\beta_{+},\gamma_{-},\gamma_{0},\gamma_{+})\\ \times\Big{[}\prod_{j_{-}=1}^{\ell_{-}+m_{-}}\prod_{j_{+}=1}^{\ell_{+}+m_{+}}\Gamma(\delta_{j_{-},j_{+}}+j_{-}(1+\alpha_{-}+(j_{-}-1)\gamma_{-})+j_{+}(1+\alpha_{+}+(j_{+}-1)\gamma_{+})+2\gamma_{0}j_{-}j_{+})\Big{]}\\ \times\Big{[}\prod_{j_{-}=1}^{m_{-}+n_{-}}\prod_{j_{+}=1}^{m_{+}+n_{+}}\Gamma(\text{\reflectbox{$\delta$}}_{j_{-},j_{+}}+j_{-}(1+\beta_{-}+(j_{-}-1)\gamma_{-})+j_{+}(1+\beta_{+}+(j_{+}-1)\gamma_{+})+2\gamma_{0}j_{-}j_{+})\Big{]}\\ \times\Big{[}\prod_{j_{-}=1}^{\ell_{-}+n_{-}}\prod_{j_{+}=1}^{\ell_{+}+n_{+}}\Gamma(-d_{j_{-},j_{+}}-j_{-}(1+\alpha_{-}+\beta_{-}+(2N_{-}-j_{-}-1)\gamma_{-})\\ -j_{+}(1+\alpha_{+}+\beta_{+}+(2N_{+}-j_{+}-1)\gamma_{+})-2\gamma_{0}j_{-}j_{+})\Big{]} (3.100)

holds whenever (α,α+,β,β+,γ,γ0,γ+)W˙,m,nDF0[F](\alpha_{-},\alpha_{+},\beta_{-},\beta_{+},\gamma_{-},\gamma_{0},\gamma_{+})\in\dot{W}_{\ell,m,n}^{\mathrm{DF0}}[F]. ∎

4. Removing singularities

As in previous sections, fix ,m,n\ell,m,n\in\mathbb{N} not all zero, and let N=+m+nN=\ell+m+n and 1={1,,}\mathcal{I}_{1}=\{1,\ldots,\ell\}, 2={+1,,+m}\mathcal{I}_{2}=\{\ell+1,\ldots,\ell+m\}, and 3={+m+1,,N}\mathcal{I}_{3}=\{\ell+m+1,\ldots,N\}. For kk\in\mathbb{N}, let

ϝk:γ\{kγ1 and γ}\digamma_{k}:\mathbb{C}_{\gamma}\backslash\{k\gamma\in\mathbb{Z}^{\leq-1}\text{ and }\gamma\notin\mathbb{Z}\}\to\mathbb{C} (4.1)

denote the analytic function given by ϝk(γ)=Γ(1+γ)1Γ(1+kγ)\digamma_{k}(\gamma)=\Gamma(1+\gamma)^{-1}\Gamma(1+k\gamma) for kγ1k\gamma\notin\mathbb{Z}^{\leq-1}. We can consider ϝk1\digamma_{k}^{-1} as an entire function.

4.1. The symmetric case

Fix F[x1,,xN]𝔖NF\in\mathbb{C}[x_{1},\ldots,x_{N}]^{\mathfrak{S}_{N}}, and let δj,δj,dj\delta_{j},\text{\reflectbox{$\delta$}}_{j},d_{j}\in\mathbb{N} be as above.

Let U˙,m,n[F]\dot{U}_{\ell,m,n}[F] denote the set of (α,β,γ)3(\alpha,\beta,\gamma)\in\mathbb{C}^{3} such that (𝜶,𝜷,𝜸)Ω˙,m,n[F](\bm{\alpha},\bm{\beta},\bm{\gamma})\in\dot{\Omega}_{\ell,m,n}[F] whenever 𝜶,𝜷,𝜸\bm{\alpha},\bm{\beta},\bm{\gamma} have components given by αj=α\alpha_{j}=\alpha and βj=β\beta_{j}=\beta for all indices j{1,,N}j\in\{1,\ldots,N\} and γj,k=γ\gamma_{j,k}=\gamma for all j<kj<k. Thus, we can define

S˙,m,n[F](α,β,γ)=S˙,m,n[F](𝜶,𝜷,𝜸)\dot{S}_{\ell,m,n}[F](\alpha,\beta,\gamma)=\dot{S}_{\ell,m,n}[F](\bm{\alpha},\bm{\beta},\bm{\gamma}) (4.2)

for any (α,β,γ)U˙,m,n[F](\alpha,\beta,\gamma)\in\dot{U}_{\ell,m,n}[F].

Proposition 4.1.

The function S,m,nreg[F]:U˙,m,n[F]S_{\ell,m,n}^{\mathrm{reg}}[F]:\dot{U}_{\ell,m,n}[F]\to\mathbb{C} defined by

S,m,nreg[F](α,β,γ)=[k=1+mΓ(δk+k(1+α+(k1)γ))]1×[k=1m+nΓ(δk+k(1+β+(k1)γ))]1[k=1+nΓ(dkk(1+α+β+(N+k2)γ))]1×[k=11ϝk(γ)][k=1m1ϝk(γ)][k=1n1ϝk(γ)]S˙,m,n[F](α,β,γ)S_{\ell,m,n}^{\mathrm{reg}}[F](\alpha,\beta,\gamma)=\Big{[}\prod_{k=1}^{\ell+m}\Gamma(\delta_{k}+k(1+\alpha+(k-1)\gamma))\Big{]}^{-1}\\ \times\Big{[}\prod_{k=1}^{m+n}\Gamma(\text{\reflectbox{$\delta$}}_{k}+k(1+\beta+(k-1)\gamma))\Big{]}^{-1}\Big{[}\prod_{k=1}^{\ell+n}\Gamma(-d_{k}-k(1+\alpha+\beta+(N+k-2)\gamma))\Big{]}^{-1}\\ \times\Big{[}\prod_{k=1}^{\ell}\frac{1}{\digamma_{k}(\gamma)}\Big{]}\Big{[}\prod_{k=1}^{m}\frac{1}{\digamma_{k}(\gamma)}\Big{]}\Big{[}\prod_{k=1}^{n}\frac{1}{\digamma_{k}(\gamma)}\Big{]}\dot{S}_{\ell,m,n}[F](\alpha,\beta,\gamma) (4.3)

extends to an entire function 3α,β,γ\mathbb{C}^{3}_{\alpha,\beta,\gamma}\to\mathbb{C}. ∎

Proof.
  • Since the prefactor on the right-hand side of eq. 4.3 consisting of all of the Γ\Gamma-function reciprocals is entire, Sreg,m,n[F]\smash{S^{\mathrm{reg}}_{\ell,m,n}[F]} extends to an analytic function on U˙,m,n[F]\dot{U}_{\ell,m,n}[F], the domain of S˙,m,n[F](α,β,γ)\dot{S}_{\ell,m,n}[F](\alpha,\beta,\gamma).

  • For all (α,β,γ)U˙,m,n[F](\alpha,\beta,\gamma)\in\dot{U}_{\ell,m,n}[F], we have

    [k=11e2πikγ1e2πiγϝk(γ)][k=1m1e2πikγ1e2πiγϝk(γ)][k=1n1e2πikγ1e2πiγϝk(γ)]S,m,nreg[F](α,β,γ)=I,m,n;Reg[F](α,β,γ)\Big{[}\prod_{k=1}^{\ell}\frac{1-e^{2\pi ik\gamma}}{1-e^{2\pi i\gamma}}\digamma_{k}(\gamma)\Big{]}\Big{[}\prod_{k=1}^{m}\frac{1-e^{2\pi ik\gamma}}{1-e^{2\pi i\gamma}}\digamma_{k}(\gamma)\Big{]}\Big{[}\prod_{k=1}^{n}\frac{1-e^{2\pi ik\gamma}}{1-e^{2\pi i\gamma}}\digamma_{k}(\gamma)\Big{]}S_{\ell,m,n}^{\mathrm{reg}}[F](\alpha,\beta,\gamma)\\ =I_{\ell,m,n;\mathrm{Reg}}[F](\alpha,\beta,\gamma) (4.4)

    by 3.8. By 3.11, this extends to an entire function 3α,β,γ\mathbb{C}^{3}_{\alpha,\beta,\gamma}\to\mathbb{C}.

    The product ϝk(γ)(1e2πikγ)(1e2πiγ)1\digamma_{k}(\gamma)(1-e^{2\pi ik\gamma})(1-e^{2\pi i\gamma})^{-1}, with its removable singularities removed, vanishes if and only if kγk\gamma\in\mathbb{N} and γ\gamma\notin\mathbb{N}. Thus, S,m,nreg[F]S_{\ell,m,n}^{\mathrm{reg}}[F] extends to an analytic function on

    3α,β,γ\k=2M{kγ,γ},\mathbb{C}^{3}_{\alpha,\beta,\gamma}\backslash\cup_{k=2}^{M}\{k\gamma\in\mathbb{N},\gamma\notin\mathbb{N}\}, (4.5)

    where M=max{,m,n}M=\max\{\ell,m,n\}.

Combining these two observations, S,m,nreg[F]S_{\ell,m,n}^{\mathrm{reg}}[F] extends to an analytic function on U˙,m,n[F](3α,β,γ\k=2M{kγ,γ})\dot{U}_{\ell,m,n}[F]\cup(\mathbb{C}^{3}_{\alpha,\beta,\gamma}\backslash\cup_{k=2}^{M}\{k\gamma\in\mathbb{N},\gamma\notin\mathbb{N}\}).

The set k=2M{kγ,γ}\cup_{k=2}^{M}\{k\gamma\in\mathbb{N},\gamma\notin\mathbb{N}\} is a union of hyperplanes, and it is disjoint from

k=1N{k(k+1)γk},\bigcup_{k=1}^{N}\{k(k+1)\gamma\in\mathbb{Z}^{\leq-k}\}, (4.6)

so U˙,m,n[F](3α,β,γ\k=2M{kγ,γ})\dot{U}_{\ell,m,n}[F]\cup(\mathbb{C}^{3}_{\alpha,\beta,\gamma}\backslash\cup_{k=2}^{M}\{k\gamma\in\mathbb{N},\gamma\notin\mathbb{N}\}) is the complement in 3α,β,γ\mathbb{C}^{3}_{\alpha,\beta,\gamma} of a locally finite collection of complex codimension-2 affine subspaces of 3\mathbb{C}^{3}. The result therefore follows from Hartog’s extension theorem. ∎

For any +\ell\in\mathbb{N}^{+} and m,nm,n\in\mathbb{N},

{(α,β,γ)3:(𝜶,𝜷,𝜸)˙,m,n[F]}=U˙,m,n[F]U˙1,m+1,n[F]U˙1,m,n+1[F].\{(\alpha,\beta,\gamma)\in\mathbb{C}^{3}:(\bm{\alpha},\bm{\beta},\bm{\gamma})\in\dot{\mho}_{\ell,m,n}[F]\}=\dot{U}_{\ell,m,n}[F]\cap\dot{U}_{\ell-1,m+1,n}[F]\cap\dot{U}_{\ell-1,m,n+1}[F]. (4.7)

The symmetric case of 3.9 reads, after multiplying through by 1e±2iγ1-e^{\pm 2i\gamma},

0=(1e±2πiγ)S˙,m,n[F](α,β,γ)+e±πi(α+2(1)γ)(1e±2πi(m+1)γ)S˙1,m+1,n[F](α,β,γ)+e±πi(α+β+2(1+m)γ)(1e±2πi(n+1)γ)S˙1,m,n+1[F](α,β,γ)0=(1-e^{\pm 2\pi i\ell\gamma})\dot{S}_{\ell,m,n}[F](\alpha,\beta,\gamma)+e^{\pm\pi i(\alpha+2(\ell-1)\gamma)}(1-e^{\pm 2\pi i(m+1)\gamma})\dot{S}_{\ell-1,m+1,n}[F](\alpha,\beta,\gamma)\\ +e^{\pm\pi i(\alpha+\beta+2(\ell-1+m)\gamma)}(1-e^{\pm 2\pi i(n+1)\gamma})\dot{S}_{\ell-1,m,n+1}[F](\alpha,\beta,\gamma) (4.8)

for all (α,β,γ)(\alpha,\beta,\gamma) in the set defined by eq. 4.7. Define

ON;0\displaystyle O_{N;0} ={(α,β,γ)3:α+jγ for any j{0,,N1}},\displaystyle=\{(\alpha,\beta,\gamma)\in\mathbb{C}^{3}:\alpha+j\gamma\notin\mathbb{Z}\text{ for any }j\in\{0,\ldots,N-1\}\}, (4.9)
ON;1\displaystyle O_{N;1} ={(α,β,γ)3:β+jγ for any j{0,,N1}}.\displaystyle=\{(\alpha,\beta,\gamma)\in\mathbb{C}^{3}:\beta+j\gamma\notin\mathbb{Z}\text{ for any }j\in\{0,\ldots,N-1\}\}. (4.10)
Proposition 4.2 (Cf. [DF85][Aom87][FW08]).
  • For all (α,β,γ)U˙N,0,0[F]U˙0,N,0[F]ON;1(\alpha,\beta,\gamma)\in\dot{U}_{N,0,0}[F]\cap\dot{U}_{0,N,0}[F]\cap O_{N;1},

    S˙0,N,0[F](α,β,γ)=(1)N[m=0N1sin(π(α+β+(N+m1)γ))sin(π(β+mγ))]S˙N,0,0[F](α,β,γ).\dot{S}_{0,N,0}[F](\alpha,\beta,\gamma)=(-1)^{N}\Big{[}\prod_{m=0}^{N-1}\frac{\sin(\pi(\alpha+\beta+(N+m-1)\gamma))}{\sin(\pi(\beta+m\gamma))}\Big{]}\dot{S}_{N,0,0}[F](\alpha,\beta,\gamma). (4.11)
  • For all (α,β,γ)U˙0,N,0[F]U˙0,0,N[F]ON;0(\alpha,\beta,\gamma)\in\dot{U}_{0,N,0}[F]\cap\dot{U}_{0,0,N}[F]\cap O_{N;0},

    S˙0,N,0[F](α,β,γ)=(1)N[m=0N1sin(π(α+β+(N+m1)γ))sin(π(α+mγ))]S˙0,0,N[F](α,β,γ).\dot{S}_{0,N,0}[F](\alpha,\beta,\gamma)=(-1)^{N}\Big{[}\prod_{m=0}^{N-1}\frac{\sin(\pi(\alpha+\beta+(N+m-1)\gamma))}{\sin(\pi(\alpha+m\gamma))}\Big{]}\dot{S}_{0,0,N}[F](\alpha,\beta,\gamma). (4.12)

Proof.

We prove the second claim, and the proof of the first is similar. Suppose that

(α,β,γ)n=0NU˙0,Nn,n[F]n=0N1U˙1,N1n,n[F].(\alpha,\beta,\gamma)\in\bigcap_{n=0}^{N}\dot{U}_{0,N-n,n}[F]\cap\bigcap_{n=0}^{N-1}\dot{U}_{1,N-1-n,n}[F]. (4.13)

We can apply eq. 4.8 for =1\ell=1 and all pairs of m,n{0,,N1}m,n\in\{0,\ldots,N-1\} such that m+n=N1m+n=N-1. Combining the plus and minus cases of eq. 4.8 to eliminate the S˙1,Nn1,n[F]\dot{S}_{1,N-n-1,n}[F] term,

12i[e+πiα1e+2πi(m+1)γ1e+2πiγeπiα1e2πi(m+1)γ1e2πiγ]S˙0,Nn,n[F](α,β,γ)=12i[e+πi(α+β+2(Nn1)γ)1e+2πi(n+1)γ1e+2πiγeπi(α+β+2(Nn1)γ)1e2πi(n+1)γ1e2πiγ]×S˙0,Nn1,n+1[F](α,β,γ)\frac{1}{2i}\Big{[}e^{+\pi i\alpha}\frac{1-e^{+2\pi i(m+1)\gamma}}{1-e^{+2\pi i\gamma}}-e^{-\pi i\alpha}\frac{1-e^{-2\pi i(m+1)\gamma}}{1-e^{-2\pi i\gamma}}\Big{]}\dot{S}_{0,N-n,n}[F](\alpha,\beta,\gamma)\\ =-\frac{1}{2i}\Big{[}e^{+\pi i(\alpha+\beta+2(N-n-1)\gamma)}\frac{1-e^{+2\pi i(n+1)\gamma}}{1-e^{+2\pi i\gamma}}-e^{-\pi i(\alpha+\beta+2(N-n-1)\gamma)}\frac{1-e^{-2\pi i(n+1)\gamma}}{1-e^{-2\pi i\gamma}}\Big{]}\\ \times\dot{S}_{0,N-n-1,n+1}[F](\alpha,\beta,\gamma) (4.14)

if γ\gamma\notin\mathbb{Z}. We calculate:

12i[e+πiα1e+2πi(Nn)γ1e+2πiγeπiα1e2πi(Nn)γ1e2πiγ]=2s(γ)s(α+(Nn1)γ)s((Nn)γ)1cos(2πγ)\frac{1}{2i}\Big{[}e^{+\pi i\alpha}\frac{1-e^{+2\pi i(N-n)\gamma}}{1-e^{+2\pi i\gamma}}-e^{-\pi i\alpha}\frac{1-e^{-2\pi i(N-n)\gamma}}{1-e^{-2\pi i\gamma}}\Big{]}=\frac{2s(\gamma)s(\alpha+(N-n-1)\gamma)s((N-n)\gamma)}{1-\cos(2\pi\gamma)} (4.15)

and

12i[e+πi(α+β+2(Nn1)γ)1e+2πi(n+1)γ1e+2πiγeπi(α+β+2(Nn1)γ)1e2πi(n+1)γ1e2πiγ]=2s(γ)1cos(2πγ)s(α+β+(2Nn2)γ)s((n+1)γ),\frac{1}{2i}\Big{[}e^{+\pi i(\alpha+\beta+2(N-n-1)\gamma)}\frac{1-e^{+2\pi i(n+1)\gamma}}{1-e^{+2\pi i\gamma}}-e^{-\pi i(\alpha+\beta+2(N-n-1)\gamma)}\frac{1-e^{-2\pi i(n+1)\gamma}}{1-e^{-2\pi i\gamma}}\Big{]}\\ =\frac{2s(\gamma)}{1-\cos(2\pi\gamma)}s(\alpha+\beta+(2N-n-2)\gamma)s((n+1)\gamma), (4.16)

where s(t)=sin(πt)s(t)=\sin(\pi t). So, for (α,β,γ)(\alpha,\beta,\gamma) as above such that none of the trigonometric factors on the right-hand side of eq. 4.15 vanish,

S˙0,Nn,n[F](α,β,γ)=s(α+β+(2Nn2)γ)s((n+1)γ)s(α+(Nn1)γ)s((Nn)γ)S˙0,N1n,n+1[F](α,β,γ).\dot{S}_{0,N-n,n}[F](\alpha,\beta,\gamma)=-\frac{s(\alpha+\beta+(2N-n-2)\gamma)s((n+1)\gamma)}{s(\alpha+(N-n-1)\gamma)s((N-n)\gamma)}\dot{S}_{0,N-1-n,n+1}[F](\alpha,\beta,\gamma). (4.17)

Applying this recursively for n=0,,N1n=0,\ldots,N-1, we end up with eq. 4.12.

In summary, eq. 4.12 holds for a nonempty, open subset of (α,β,γ)U˙0,N,0[F]U˙0,0,N[F]ON;0(\alpha,\beta,\gamma)\in\dot{U}_{0,N,0}[F]\cap\dot{U}_{0,0,N}[F]\cap O_{N;0}. By analyticity, the result follows. ∎

Proposition 4.3.

The function SN;Reg[F](α,β,γ)S_{N;\mathrm{Reg}}[F](\alpha,\beta,\gamma) defined by

SN;Reg[F](α,β,γ)=[j=1NΓ(2+d¯j+α+β+(N+j2)γ)Γ(1+δ¯j+α+(j1)γ)Γ(1+δ¯j+β+(j1)γ)ϝj(γ)]SN[F](α,β,γ)S_{N;\mathrm{Reg}}[F](\alpha,\beta,\gamma)=\Big{[}\prod_{j=1}^{N}\frac{\Gamma(2+\bar{d}_{j}+\alpha+\beta+(N+j-2)\gamma)}{\Gamma(1+\bar{\delta}_{j}+\alpha+(j-1)\gamma)\Gamma(1+\bar{\text{\reflectbox{$\delta$}}}_{j}+\beta+(j-1)\gamma)\digamma_{j}(\gamma)}\Big{]}S_{N}[F](\alpha,\beta,\gamma) (4.18)

extends to an entire function SN;Reg[F]:3α,β,γS_{N;\mathrm{Reg}}[F]:\mathbb{C}^{3}_{\alpha,\beta,\gamma}\to\mathbb{C}. ∎

Proof.

We begin by defining the following open (and dense) subsets of 3\mathbb{C}^{3}:

QN;0={(α,β,γ)3:δ¯j+α+(j1)γ for any j{1,,N}},QN;1={(α,β,γ)3:δ¯j+β+(j1)γ for any j{1,,N}},QN;={(α,β,γ)3:d¯j+α+β+(N+j2)γ2 for any j{1,,N}},UN;0={(α,β,γ)3:δj+j(α+(j1)γ)j for any j{1,,N}},UN;1={(α,β,γ)3:δj+j(β+(j1)γ)j for any j{1,,N}},UN;={(α,β,γ)3:djj(1+α+β+(N+j2)γ)0 for any j{1,,N}}={(α,β,γ)3:dj+j(1+α+β+(N+j2)γ) for any j{1,,N}}.\displaystyle\begin{split}Q_{N;0}&=\{(\alpha,\beta,\gamma)\in\mathbb{C}^{3}:\bar{\delta}_{j}+\alpha+(j-1)\gamma\notin\mathbb{N}\text{ for any }j\in\{1,\ldots,N\}\},\\ Q_{N;1}&=\{(\alpha,\beta,\gamma)\in\mathbb{C}^{3}:\bar{\text{\reflectbox{$\delta$}}}_{j}+\beta+(j-1)\gamma\notin\mathbb{N}\text{ for any }j\in\{1,\ldots,N\}\},\\ Q_{N;\infty}&=\{(\alpha,\beta,\gamma)\in\mathbb{C}^{3}:\bar{d}_{j}+\alpha+\beta+(N+j-2)\gamma\notin\mathbb{Z}^{\leq-2}\text{ for any }j\in\{1,\ldots,N\}\},\\ U_{N;0}&=\{(\alpha,\beta,\gamma)\in\mathbb{C}^{3}:\delta_{j}+j(\alpha+(j-1)\gamma)\notin\mathbb{Z}^{\leq-j}\text{ for any }j\in\{1,\ldots,N\}\},\\ U_{N;1}&=\{(\alpha,\beta,\gamma)\in\mathbb{C}^{3}:\text{\reflectbox{$\delta$}}_{j}+j(\beta+(j-1)\gamma)\notin\mathbb{Z}^{\leq-j}\text{ for any }j\in\{1,\ldots,N\}\},\\ U_{N;\infty}&=\{(\alpha,\beta,\gamma)\in\mathbb{C}^{3}:-d_{j}-j(1+\alpha+\beta+(N+j-2)\gamma)\notin\mathbb{Z}^{\leq 0}\text{ for any }j\in\{1,\ldots,N\}\}\\ &=\{(\alpha,\beta,\gamma)\in\mathbb{C}^{3}:d_{j}+j(1+\alpha+\beta+(N+j-2)\gamma)\notin\mathbb{N}\text{ for any }j\in\{1,\ldots,N\}\}.\end{split} (4.19)
Refer to caption
Refer to caption
Refer to caption
Figure 12. The sets in 𝒮1,𝒮2,𝒮3\mathcal{S}_{1},\mathcal{S}_{2},\mathcal{S}_{3} in 3α,β,γ{β=1/5}\mathbb{R}^{3}_{\alpha,\beta,\gamma}\cap\{\beta=1/5\} in the case N=2N=2.

We write

SN;Reg[F](α,β,γ)=Υ0(α,β,γ)Υ1(α,β,γ)×[j=1NΓ(δj+j(1+α+(j1)γ))Γ(δj+j(1+β+(j1)γ))ϝj(γ)]1SN[F](α,β,γ)S_{N;\mathrm{Reg}}[F](\alpha,\beta,\gamma)=\Upsilon_{0}(\alpha,\beta,\gamma)\Upsilon_{1}(\alpha,\beta,\gamma)\\ \times\Big{[}\prod_{j=1}^{N}\Gamma(\delta_{j}+j(1+\alpha+(j-1)\gamma))\Gamma(\text{\reflectbox{$\delta$}}_{j}+j(1+\beta+(j-1)\gamma))\digamma_{j}(\gamma)\Big{]}^{-1}S_{N}[F](\alpha,\beta,\gamma) (4.20)

for

Υ0(α,β,γ)\displaystyle\Upsilon_{0}(\alpha,\beta,\gamma) =j=1NΓ(δj+j(1+α+(j1)γ))Γ(δj+j(1+β+(j1)γ))Γ(1+δ¯j+α+(j1)γ)Γ(1+δ¯j+β+(j1)γ),\displaystyle=\prod_{j=1}^{N}\frac{\Gamma(\delta_{j}+j(1+\alpha+(j-1)\gamma))\Gamma(\text{\reflectbox{$\delta$}}_{j}+j(1+\beta+(j-1)\gamma))}{\Gamma(1+\bar{\delta}_{j}+\alpha+(j-1)\gamma)\Gamma(1+\bar{\text{\reflectbox{$\delta$}}}_{j}+\beta+(j-1)\gamma)}, (4.21)
Υ1(α,β,γ)\displaystyle\Upsilon_{1}(\alpha,\beta,\gamma) =j=1NΓ(2+d¯j+α+β+(N+j2)γ).\displaystyle=\prod_{j=1}^{N}\Gamma(2+\bar{d}_{j}+\alpha+\beta+(N+j-2)\gamma). (4.22)

By 4.1, the second line on the right-hand side of eq. 4.20 defines an entire function. Since Υ0\Upsilon_{0} extends to an analytic function on UN;0UN;1U_{N;0}\cap U_{N;1} and Υ1\Upsilon_{1} extends to an analytic function on QN;Q_{N;\infty}, SN;Reg[F]S_{N;\mathrm{Reg}}[F] extends to an analytic function on UN;0UN;1QN;U_{N;0}\cap U_{N;1}\cap Q_{N;\infty}.

In ON;0U˙0,N,0U˙0,0,NO_{N;0}\cap\dot{U}_{0,N,0}\cap\dot{U}_{0,0,N}, 4.2 gives

SN;Reg[F](α,β,γ)=(1)NΥ2(α,β,γ)Υ3(α,β,γ)×[j=1NΓ(djj(1+α+β+(N+j2)γ))Γ(δj+j(1+β+(j1)γ))ϝj(γ)]1S˙0,0,N[F](α,β,γ),S_{N;\mathrm{Reg}}[F](\alpha,\beta,\gamma)=(-1)^{N}\Upsilon_{2}(\alpha,\beta,\gamma)\Upsilon_{3}(\alpha,\beta,\gamma)\\ \times\Big{[}\prod_{j=1}^{N}\Gamma(-d_{j}-j(1+\alpha+\beta+(N+j-2)\gamma))\Gamma(\text{\reflectbox{$\delta$}}_{j}+j(1+\beta+(j-1)\gamma))\digamma_{j}(\gamma)\Big{]}^{-1}\dot{S}_{0,0,N}[F](\alpha,\beta,\gamma), (4.23)

where

Υ2=j=1NΓ(δj+j(1+β+(j1)γ))s(α+(j1)γ)Γ(1+δ¯j+α+(j1)γ)Γ(1+δ¯j+β+(j1)γ)\Upsilon_{2}=\prod_{j=1}^{N}\frac{\Gamma(\text{\reflectbox{$\delta$}}_{j}+j(1+\beta+(j-1)\gamma))}{s(\alpha+(j-1)\gamma)\Gamma(1+\bar{\delta}_{j}+\alpha+(j-1)\gamma)\Gamma(1+\bar{\text{\reflectbox{$\delta$}}}_{j}+\beta+(j-1)\gamma)} (4.24)
Υ3=j=1Ns(α+β+(N+j2)γ)Γ(2+d¯j+α+β+(N+j2)γ)×Γ(djj(1+α+β+(N+j2)γ)).\Upsilon_{3}=\prod_{j=1}^{N}s(\alpha+\beta+(N+j-2)\gamma)\Gamma(2+\bar{d}_{j}+\alpha+\beta+(N+j-2)\gamma)\\ \times\Gamma(-d_{j}-j(1+\alpha+\beta+(N+j-2)\gamma)). (4.25)

By 4.1, the function on the second line of eq. 4.23 extends to an entire function of α,β,γ\alpha,\beta,\gamma. On the other hand, Υ2\Upsilon_{2} extends to an analytic function on QN;0UN;1Q_{N;0}\cap U_{N;1}, and Υ3\Upsilon_{3} extends to an analytic function on UN;U_{N;\infty}. Combining these observations, SN;Reg[F]S_{N;\mathrm{Reg}}[F] analytically continues to QN;0UN;1UN;Q_{N;0}\cap U_{N;1}\cap U_{N;\infty}.

Likewise, SN;Reg[F]S_{N;\mathrm{Reg}}[F] extends analytically to UN;0QN;1UN;U_{N;0}\cap Q_{N;1}\cap U_{N;\infty}, using ON;1O_{N;1} in place of ON;0O_{N;0} and the other part of 4.2.

So, SN;Reg[F](α,β,γ)S_{N;\mathrm{Reg}}[F](\alpha,\beta,\gamma) analytically continues to

U=(UN;0UN;1QN;)(UN;0QN;1UN;)(QN;0UN;1UN;).U=(U_{N;0}\cap U_{N;1}\cap Q_{N;\infty})\cup(U_{N;0}\cap Q_{N;1}\cap U_{N;\infty})\cup(Q_{N;0}\cap U_{N;1}\cap U_{N;\infty}). (4.26)

This is

U=3\[(H1𝒮1,H2𝒮2,H3𝒮3H1H2H3)],U=\mathbb{C}^{3}\Big{\backslash}\Big{[}\Big{(}\bigcup_{H_{1}\in\mathcal{S}_{1},H_{2}\in\mathcal{S}_{2},H_{3}\in\mathcal{S}_{3}}H_{1}\cap H_{2}\cap H_{3})\Big{]}, (4.27)

where

  • 𝒮1\mathcal{S}_{1} is the set of hyperplanes that are contained in the complement of one of UN;0,UN;1,QN;U_{N;0},U_{N;1},Q_{N;\infty},

  • 𝒮2\mathcal{S}_{2} is the set of hyperplanes that are contained in the complement of one of UN;0,QN;1,UN;U_{N;0},Q_{N;1},U_{N;\infty}, and

  • 𝒮3\mathcal{S}_{3} is the set of hyperplanes that are contained in the complement of one of QN;0,UN;1,UN;Q_{N;0},U_{N;1},U_{N;\infty}.

Let

={H1H2H3:H1𝒮1,H2𝒮2,H3𝒮3},\mathcal{H}=\{H_{1}\cap H_{2}\cap H_{3}\neq\varnothing:H_{1}\in\mathcal{S}_{1},H_{2}\in\mathcal{S}_{2},H_{3}\in\mathcal{S}_{3}\}, (4.28)

so that SN;Reg[F]S_{N;\mathrm{Reg}}[F] defines an analytic function on U=3\HHU=\mathbb{C}^{3}\backslash\smash{\cup_{H\in\mathcal{H}}}H. Observe that every HH\in\mathcal{H} is an affine subspace of 3\mathbb{C}^{3} of complex codimension two or three (since 𝒮1𝒮2𝒮3=\mathcal{S}_{1}\cap\mathcal{S}_{2}\cap\mathcal{S}_{3}=\varnothing), and the collection \mathcal{H} is locally finite.

Hartog’s theorem therefore implies that SN;Reg[F]S_{N;\mathrm{Reg}}[F] analytically continues to the entirety of 3\mathbb{C}^{3}. ∎

This completes the proof of 1.2.

4.2. The DF-symmetric case

Given γ+\{0,1}\gamma_{+}\in\mathbb{C}\backslash\{0,1\} and α+,β+\alpha_{+},\beta_{+}\in\mathbb{C}, let γ=γ+1\gamma_{-}=\gamma_{+}^{-1}, α=γα+\alpha_{-}=-\gamma_{-}\alpha_{+}, and β=γβ+\beta_{-}=-\gamma_{-}\beta_{+} as in the introduction. Fix 𝚂{1,,N}\mathtt{S}\subseteq\{1,\ldots,N\}.

Given γ+0,1\gamma_{+}\neq 0,1 and FDFSym(N;𝚂,λ)F\in\operatorname{DFSym}(N;\mathtt{S},\lambda) for λ=γ+1(γ+1)\lambda=\gamma_{+}^{-1}(\gamma_{+}-1), let W˙,m,nDF,𝚂[F;γ+]\dot{W}_{\ell,m,n}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}] denote the set of (α+,β+)2(\alpha_{+},\beta_{+})\in\mathbb{C}^{2} such that

(α,α+,β,β+,γ,1,γ+)W˙,m,nDF0,𝚂[F].(\alpha_{-},\alpha_{+},\beta_{-},\beta_{+},\gamma_{-},-1,\gamma_{+})\in\dot{W}_{\ell,m,n}^{\mathrm{DF0},\mathtt{S}}[F]. (4.29)

For (α+,β+)W˙,m,nDF,𝚂[F;γ+](\alpha_{+},\beta_{+})\in\dot{W}_{\ell,m,n}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}], let

I˙,m,nDF;𝚂[F](α+,β+,γ+)=I,m,nDF0;𝚂[F](α,α+,β,β+,γ,1,γ+).\dot{I}_{\ell,m,n}^{\mathrm{DF};\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})=I_{\ell,m,n}^{\mathrm{DF0};\mathtt{S}}[F](\alpha_{-},\alpha_{+},\beta_{-},\beta_{+},\gamma_{-},-1,\gamma_{+}). (4.30)

Then, as adumbrated by Dotsenko and Fateev:

Proposition 4.4.

For any σ𝔖,m,n\sigma\in\mathfrak{S}_{\ell,m,n},

I˙,m,nDF;𝚂[F](α+,β+,γ+)=I˙,m,nDF;𝚂[F](α+,β+,γ+)σ\dot{I}_{\ell,m,n}^{\mathrm{DF};\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})=\dot{I}_{\ell,m,n}^{\mathrm{DF};\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})^{\sigma} (4.31)

for all (α+,β+)W˙,m,nDF,𝚂[F;γ+](\alpha_{+},\beta_{+})\in\dot{W}_{\ell,m,n}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}]. ∎

Since W˙,m,nDF,𝚂[F]\dot{W}_{\ell,m,n}^{\mathrm{DF},\mathtt{S}}[F] depends only on 𝚂\mathtt{S} through |𝚂1|,|𝚂2|,|𝚂3||\mathtt{S}\cap\mathcal{I}_{1}|,|\mathtt{S}\cap\mathcal{I}_{2}|,|\mathtt{S}\cap\mathcal{I}_{3}|,

W˙,m,nDF,𝚂[F;γ+]=W˙,m,nDF,𝚂[F;γ+]σ,\dot{W}_{\ell,m,n}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}]=\dot{W}_{\ell,m,n}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}]^{\sigma}, (4.32)

so the right-hand side of eq. 4.31 is defined for any (α+,β+)W˙,m,nDF,𝚂[F;γ+](\alpha_{+},\beta_{+})\in\dot{W}_{\ell,m,n}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}].

Proof.

Since 𝔖,m,n\mathfrak{S}_{\ell,m,n} is generated by transpositions τ\tau of adjacent elements of 1,2,3\mathcal{I}_{1},\mathcal{I}_{2},\mathcal{I}_{3}, it suffices to consider the case when σ\sigma is such a transposition, τ\tau. For notational simplicity, we consider the case when τ\tau is a transposition of some j,j+12j,j+1\in\mathcal{I}_{2} and j𝚂j\in\mathtt{S}. The other cases are similar but involve some notational changes.

Let W˙,m,nDF,1,𝚂[F;γ+]6\dot{W}_{\ell,m,n}^{\mathrm{DF},1,\mathtt{S}}[F;\gamma_{+}]\subseteq\mathbb{C}^{6} denote the set of (α1,+,α2,+,α3,+,β1,+,β2,+,β3,+)6(\alpha_{1,+},\alpha_{2,+},\alpha_{3,+},\beta_{1,+},\beta_{2,+},\beta_{3,+})\in\mathbb{C}^{6} such that

(α,1,α,2,α,3,α+,1,α+,2,α+,3,β,1,β,2,β,3,β+,1,β+,2,β+,3,γ,1,γ+)W˙,m,nDF1,𝚂[F],(\alpha_{-,1},\alpha_{-,2},\alpha_{-,3},\alpha_{+,1},\alpha_{+,2},\alpha_{+,3},\beta_{-,1},\beta_{-,2},\beta_{-,3},\beta_{+,1},\beta_{+,2},\beta_{+,3},\gamma_{-},-1,\gamma_{+})\in\dot{W}_{\ell,m,n}^{\mathrm{DF1},\mathtt{S}}[F], (4.33)

where α,ν=γα+,ν\alpha_{-,\nu}=-\gamma_{-}\alpha_{+,\nu} and β,ν=γβ+,ν\beta_{-,\nu}=-\gamma_{-}\beta_{+,\nu}. It suffices to prove that, for any σ𝔖,m,n\sigma\in\mathfrak{S}_{\ell,m,n},

I˙,m,nDF,1,;𝚂[F](α,1,α,2,α,3,α+,1,α+,2,α+,3,β,1,β,2,β,3,β+,1,β+,2,β+,3,γ+)=I˙,m,nDF,1;𝚂[F](α,1,α,2,α,3,α+,1,α+,2,α+,3,β,1,β,2,β,3,β+,1,β+,2,β+,3,γ+)σ\dot{I}_{\ell,m,n}^{\mathrm{DF},1,;\mathtt{S}}[F](\alpha_{-,1},\alpha_{-,2},\alpha_{-,3},\alpha_{+,1},\alpha_{+,2},\alpha_{+,3},\beta_{-,1},\beta_{-,2},\beta_{-,3},\beta_{+,1},\beta_{+,2},\beta_{+,3},\gamma_{+})\\ =\dot{I}_{\ell,m,n}^{\mathrm{DF},1;\mathtt{S}}[F](\alpha_{-,1},\alpha_{-,2},\alpha_{-,3},\alpha_{+,1},\alpha_{+,2},\alpha_{+,3},\beta_{-,1},\beta_{-,2},\beta_{-,3},\beta_{+,1},\beta_{+,2},\beta_{+,3},\gamma_{+})^{\sigma} (4.34)

for all (α1,+,α2,+,α3,+,β1,+,β2,+,β3,+)W˙,m,nDF,1,𝚂[F;γ+](\alpha_{1,+},\alpha_{2,+},\alpha_{3,+},\beta_{1,+},\beta_{2,+},\beta_{3,+})\in\dot{W}_{\ell,m,n}^{\mathrm{DF},1,\mathtt{S}}[F;\gamma_{+}], where

I˙,m,nDF,1;𝚂[F](α,1,α,2,α,3,α+,1,α+,2,α+,3,β,1,β,2,β,3,β+,1,β+,2,β+,3,γ+)=I˙,m,n[F](𝜶DF,1,𝜷DF,1,𝜸DF),\dot{I}_{\ell,m,n}^{\mathrm{DF},1;\mathtt{S}}[F](\alpha_{-,1},\alpha_{-,2},\alpha_{-,3},\alpha_{+,1},\alpha_{+,2},\alpha_{+,3},\beta_{-,1},\beta_{-,2},\beta_{-,3},\beta_{+,1},\beta_{+,2},\beta_{+,3},\gamma_{+})=\\ \dot{I}_{\ell,m,n}[F](\bm{\alpha}^{\mathrm{DF},1},\bm{\beta}^{\mathrm{DF},1},\bm{\gamma}^{\mathrm{DF}}), (4.35)

where 𝜶DF,1,𝜷DF,1\bm{\alpha}^{\mathrm{DF},1},\bm{\beta}^{\mathrm{DF},1} are defined as 𝜶DF1,𝜷DF1\bm{\alpha}^{\mathrm{DF}1},\bm{\beta}^{\mathrm{DF}1}, using α,ν=γα+,ν\alpha_{-,\nu}=-\gamma_{-}\alpha_{+,\nu} and β,ν=γβ+,ν\beta_{-,\nu}=-\gamma_{-}\beta_{+,\nu}.

First observe that there exists a nonempty, open subset

OW˙,m,nDF,1,𝚂[F;γ+]O\subset\dot{W}_{\ell,m,n}^{\mathrm{DF},1,\mathtt{S}}[F;\gamma_{+}] (4.36)

(containing an affine cone) such that (𝜶DF,1,𝜷DF,1,𝜸DF)O{1,τ}(\bm{\alpha}^{\mathrm{DF},1},\bm{\beta}^{\mathrm{DF},1},\bm{\gamma}^{\mathrm{DF}})\in O^{\{1,\tau\}} whenever (α+,1,,β+,3)O(\alpha_{+,1},\ldots,\beta_{+,3})\in O, where O{1,τ}O^{\{1,\tau\}} is defined as in §3.4. We can choose OO such that α±,2,β±,2>0\Re\alpha_{\pm,2},\Re\beta_{\pm,2}>0 everywhere in OO.

Since W˙,m,nDF,𝚂[F;γ+]\dot{W}_{\ell,m,n}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}] is connected, it suffices via analyticity to prove the result for

(α1,+,α2,+,α3,+,β1,+,β2,+,β3,+)O.(\alpha_{1,+},\alpha_{2,+},\alpha_{3,+},\beta_{1,+},\beta_{2,+},\beta_{3,+})\in O. (4.37)

We write α±\alpha_{\pm} in place of α±,2\alpha_{\pm,2} and β±\beta_{\pm} in place of β±,2\beta_{\pm,2} below.

We can apply 3.6 for (α+,1,,β+,3)O(\alpha_{+,1},\ldots,\beta_{+,3})\in O. By 3.6, it suffices to check that, whenever all of the zkz_{k}’s besides zjz_{j} and zj+1z_{j+1} are somewhere in the interior of the corresponding contour in eq. 3.63,

Γ[0,1],+,jzjα+(1zj)β+zj+1α(1zj+1)β(1j0<k0N{j0,k0}{j,j+1}(zk0zj0)2γj0,k0)Fdzjdzj+1=0,\int_{\Gamma_{[0,1],+,j-\ell}}\oint z_{j}^{\alpha_{+}}(1-z_{j})^{\beta_{+}}z_{j+1}^{\alpha_{-}}(1-z_{j+1})^{\beta_{-}}\Big{(}\prod_{\begin{subarray}{c}1\leq j_{0}<k_{0}\leq N\\ \{j_{0},k_{0}\}\cap\{j,j+1\}\neq\varnothing\end{subarray}}(z_{k_{0}}-z_{j_{0}})^{2\gamma_{j_{0},k_{0}}}\Big{)}F\,\mathrm{d}z_{j}\,\mathrm{d}z_{j+1}=0, (4.38)

where the inner integral is taken over a small circle around zj+1z_{j+1}, for each zj+1Γ[0,1],+,j\{0,1}z_{j+1}\in\Gamma_{[0,1],+,j-\ell}\backslash\{0,1\}.

Since the integrand is holomorphic in zjz_{j} in a punctured neighborhood of zj+1z_{j+1}, we apply the Cauchy residue theorem to deduce that the left-hand side is proportional to

Γ[0,1],+,jG0Gzj|zj=zj+1dzj+1,\int_{\Gamma_{[0,1],+,j-\ell}}G_{0}\frac{\partial G}{\partial z_{j}}\Big{|}_{z_{j}=z_{j+1}}\,\mathrm{d}z_{j+1}, (4.39)

where

G0(z1,,zN)\displaystyle G_{0}(z_{1},\ldots,z_{N}) =zj+1α(1zj+1)β[j0([N]\𝚂)\{j+1}(zj+1zj0)2γ][j0𝚂\{j}(zj+1zj0)2],\displaystyle=z_{j+1}^{\alpha_{-}}(1-z_{j+1})^{\beta_{-}}\Big{[}\prod_{j_{0}\in([N]\backslash\mathtt{S})\backslash\{j+1\}}(z_{j+1}-z_{j_{0}})^{2\gamma_{-}}\Big{]}\Big{[}\prod_{j_{0}\in\mathtt{S}\backslash\{j\}}(z_{j+1}-z_{j_{0}})^{-2}\Big{]}, (4.40)
G(z1,,zN)\displaystyle G(z_{1},\ldots,z_{N}) =zjα+(1zj)β+[j0([N]\𝚂)\{j+1}(zjzj0)2][j0𝚂\{j}(zjzj0)2γ+]F.\displaystyle=z_{j}^{\alpha_{+}}(1-z_{j})^{\beta_{+}}\Big{[}\prod_{j_{0}\in([N]\backslash\mathtt{S})\backslash\{j+1\}}(z_{j}-z_{j_{0}})^{-2}\Big{]}\Big{[}\prod_{j_{0}\in\mathtt{S}\backslash\{j\}}(z_{j}-z_{j_{0}})^{2\gamma_{+}}\Big{]}F. (4.41)

We are choosing branch cuts such that we do not encounter any as zj,zj+1z_{j},z_{j+1} are integrated along Γ[0,1],+,j\Gamma_{[0,1],+,j-\ell} (except at the endpoints). Other than that, it is not important what the precise choice of branch cuts are.

The integrand in eq. 4.39 is computed to be

G0Gzj|zj=zj+1=[α+zj+1β+1zj+1+2γ+j0𝚂\{j}1zj+1zj02j0([N]\𝚂)\{j+1}1zj+1zj0+zjFF|zj=zj+1]H,G_{0}\frac{\partial G}{\partial z_{j}}\Big{|}_{z_{j}=z_{j+1}}=\Big{[}\frac{\alpha_{+}}{z_{j+1}}-\frac{\beta_{+}}{1-z_{j+1}}+2\gamma_{+}\sum_{j_{0}\in\mathtt{S}\backslash\{j\}}\frac{1}{z_{j+1}-z_{j_{0}}}-2\sum_{j_{0}\in([N]\backslash\mathtt{S})\backslash\{j+1\}}\frac{1}{z_{j+1}-z_{j_{0}}}\\ +\frac{\partial_{z_{j}}F}{F}\Big{|}_{z_{j}=z_{j+1}}\Big{]}H, (4.42)

where H=G0G|zj=zj+1H=G_{0}G|_{z_{j}=z_{j+1}}. On the other hand,

Hzj+1=[α+α+zj+1β+β+1zj+1+(2γ+2)j0𝚂\{j}1zj+1zj0+(2γ2)j0([N]\𝚂)\{j+1}1zj+1zj0+zj+1(F|zj=zj+1)F|zj=zj+1]H.\frac{\partial H}{\partial z_{j+1}}=\Big{[}\frac{\alpha_{-}+\alpha_{+}}{z_{j+1}}-\frac{\beta_{-}+\beta_{+}}{1-z_{j+1}}+(2\gamma_{+}-2)\sum_{j_{0}\in\mathtt{S}\backslash\{j\}}\frac{1}{z_{j+1}-z_{j_{0}}}+(2\gamma_{-}-2)\sum_{j_{0}\in([N]\backslash\mathtt{S})\backslash\{j+1\}}\frac{1}{z_{j+1}-z_{j_{0}}}\\ +\frac{\partial_{z_{j+1}}(F|_{z_{j}=z_{j+1}})}{F|_{z_{j}=z_{j+1}}}\Big{]}H. (4.43)

Since 1γ=α+1(α+α+)=β+1(β+β+)=γ+1(γ+1)=λ1-\gamma_{-}=\alpha_{+}^{-1}(\alpha_{-}+\alpha_{+})=\beta_{+}^{-1}(\beta_{-}+\beta_{+})=\gamma_{+}^{-1}(\gamma_{+}-1)=\lambda, and since FDFSym(N,𝚂,λ)F\in\operatorname{DFSym}(N,\mathtt{S},\lambda),

G0Gzj|zj=zj+1=1λHzj+1.G_{0}\frac{\partial G}{\partial z_{j}}\Big{|}_{z_{j}=z_{j+1}}=\frac{1}{\lambda}\frac{\partial H}{\partial z_{j+1}}. (4.44)

Consequently,

Γ[0,1],+,jG0Gzj|zj=zj+1dzj+1=1λΓ[0,1],+,jHzj+1dzj+1.\int_{\Gamma_{[0,1],+,j-\ell}}G_{0}\frac{\partial G}{\partial z_{j}}\Big{|}_{z_{j}=z_{j+1}}\,\mathrm{d}z_{j+1}=\frac{1}{\lambda}\int_{\Gamma_{[0,1],+,j-\ell}}\frac{\partial H}{\partial z_{j+1}}\,\mathrm{d}z_{j+1}. (4.45)

The right-hand side is proportional to

pHzj+1dzj+1\int_{p}\frac{\partial H}{\partial z_{j+1}}\,\mathrm{d}z_{j+1} (4.46)

if α+,β+\alpha_{+},\beta_{+}\notin\mathbb{Z}, where pp is a Pochhammer contour in 2\{0,1}\mathbb{C}^{2}\backslash\{0,1\} staying sufficiently close to Γ[0,1],+,j\Gamma_{[0,1],+,j-\ell}. Lifting to a cover of a neighborhood of Γ[0,1],+,j\Gamma_{[0,1],+,j-\ell} on which HH lifts to a single-valued analytic function, we can conclude (using analyticity) that the integral in eq. 4.46 is zero. By analyticity, we can remove the nonintegrality constraint on α+,β+\alpha_{+},\beta_{+} to conclude that

Γ[0,1],+,jHzj+1dzj+1=0\int_{\Gamma_{[0,1],+,j-\ell}}\frac{\partial H}{\partial z_{j+1}}\,\mathrm{d}z_{j+1}=0 (4.47)

for all (α+,1,,β+,3)O(\alpha_{+,1},\ldots,\beta_{+,3})\in O.

Proposition 4.5 (Cf. [DF85]).

Given the setup above, for arbitrary 𝚂\mathtt{S}:

  • For all (α+,β+)W˙N,0,0DF,𝚂[F;γ+]W˙0,N,0DF,𝚂[F;γ+](\alpha_{+},\beta_{+})\in\dot{W}_{N,0,0}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}]\cap\dot{W}_{0,N,0}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}] such that β±+m±γ±\beta_{\pm}+m_{\pm}\gamma_{\pm}\notin\mathbb{Z} for any m±{0,,N±1}m_{\pm}\in\{0,\ldots,N_{\pm}-1\}

    I˙0,N,0DF,𝚂[F](α+,β+,γ+)=(1)NI˙N,0,0DF,𝚂[F](α+,β+,γ+)×[m+=0N+1sin(π(α++β++(N++m+1)γ+))sin(π(β++m+γ+))][m=0N1sin(π(α+β+(N+m1)γ))sin(π(β+mγ))].\dot{I}_{0,N,0}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})=(-1)^{N}\dot{I}_{N,0,0}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})\\ \times\Big{[}\prod_{m_{+}=0}^{N_{+}-1}\frac{\sin(\pi(\alpha_{+}+\beta_{+}+(N_{+}+m_{+}-1)\gamma_{+}))}{\sin(\pi(\beta_{+}+m_{+}\gamma_{+}))}\Big{]}\Big{[}\prod_{m_{-}=0}^{N_{-}-1}\frac{\sin(\pi(\alpha_{-}+\beta_{-}+(N_{-}+m_{-}-1)\gamma_{-}))}{\sin(\pi(\beta_{-}+m_{-}\gamma_{-}))}\Big{]}. (4.48)
  • For all (α+,β+)W˙0,N,0DF,𝚂[F;γ+]W˙0,0,NDF,𝚂[F;γ+](\alpha_{+},\beta_{+})\in\dot{W}_{0,N,0}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}]\cap\dot{W}_{0,0,N}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}] such that α±+m±γ±\alpha_{\pm}+m_{\pm}\gamma_{\pm}\notin\mathbb{Z} for any m±{0,,N±1}m_{\pm}\in\{0,\ldots,N_{\pm}-1\},

    I˙0,N,0DF,𝚂[F](α+,β+,γ+)=(1)NI˙0,0,NDF,𝚂[F](α+,β+,γ+)×[m+=0N+1sin(π(α++β++(N++m+1)γ+))sin(π(α++m+γ+))][m=0N1sin(π(α+β+(N+m1)γ))sin(π(α+mγ))].\dot{I}_{0,N,0}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})=(-1)^{N}\dot{I}_{0,0,N}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})\\ \times\Big{[}\prod_{m_{+}=0}^{N_{+}-1}\frac{\sin(\pi(\alpha_{+}+\beta_{+}+(N_{+}+m_{+}-1)\gamma_{+}))}{\sin(\pi(\alpha_{+}+m_{+}\gamma_{+}))}\Big{]}\Big{[}\prod_{m_{-}=0}^{N_{-}-1}\frac{\sin(\pi(\alpha_{-}+\beta_{-}+(N_{-}+m_{-}-1)\gamma_{-}))}{\sin(\pi(\alpha_{-}+m_{-}\gamma_{-}))}\Big{]}. (4.49)

For 𝚂={1,,N+}\mathtt{S}=\{1,\ldots,N_{+}\}, we also have:

  • For all (α+,β+)W˙N+,N,0DF,𝚂[F;γ+]W˙0,N,0DF,𝚂[F;γ+](\alpha_{+},\beta_{+})\in\dot{W}_{N_{+},N_{-},0}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}]\cap\dot{W}_{0,N,0}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}] such that β++m+γ+\beta_{+}+m_{+}\gamma_{+}\notin\mathbb{Z} for any m+{0,,N+1}m_{+}\in\{0,\ldots,N_{+}-1\}

    I˙0,N,0DF,𝚂[F](α+,β+,γ+)=(1)N+I˙N+,N,0DF,𝚂[F](α+,β+,γ+)×[m+=0N+1sin(π(α++β++(N++m+1)γ+))sin(π(β++m+γ+))].\dot{I}_{0,N,0}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})=(-1)^{N_{+}}\dot{I}_{N_{+},N_{-},0}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})\\ \times\Big{[}\prod_{m_{+}=0}^{N_{+}-1}\frac{\sin(\pi(\alpha_{+}+\beta_{+}+(N_{+}+m_{+}-1)\gamma_{+}))}{\sin(\pi(\beta_{+}+m_{+}\gamma_{+}))}\Big{]}. (4.50)
  • For all (α+,β+)W˙0,N,0DF,𝚂[F;γ+]W˙0,N+,NDF,𝚂[F;γ+](\alpha_{+},\beta_{+})\in\dot{W}_{0,N,0}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}]\cap\dot{W}_{0,N_{+},N_{-}}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}] such that α+mγ\alpha_{-}+m_{-}\gamma_{-}\notin\mathbb{Z} for any m{0,,N1}m_{-}\in\{0,\ldots,N_{-}-1\},

    I˙0,N,0DF,𝚂[F](α+,β+,γ+)=(1)NI˙0,N+,NDF,𝚂[F](α+,β+,γ+)×[m=0N1sin(π(α+β+(N+m1)γ))sin(π(α+mγ))].\dot{I}_{0,N,0}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})=(-1)^{N_{-}}\dot{I}_{0,N_{+},N_{-}}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})\\ \times\Big{[}\prod_{m_{-}=0}^{N_{-}-1}\frac{\sin(\pi(\alpha_{-}+\beta_{-}+(N_{-}+m_{-}-1)\gamma_{-}))}{\sin(\pi(\alpha_{-}+m_{-}\gamma_{-}))}\Big{]}. (4.51)

Similarly, for 𝚂={NN++1,,N}\mathtt{S}=\{N-N_{+}+1,\ldots,N\}, we have:

  • For all (α+,β+)W˙N,N+,0DF,𝚂[F;γ+]W˙0,N,0DF,𝚂[F;γ+](\alpha_{+},\beta_{+})\in\dot{W}_{N_{-},N_{+},0}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}]\cap\dot{W}_{0,N,0}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}] such that β+mγ\beta_{-}+m_{-}\gamma_{-}\notin\mathbb{Z} for any m{0,,N1}m_{-}\in\{0,\ldots,N_{-}-1\}

    I˙0,N,0DF,𝚂[F](α+,β+,γ+)=(1)NI˙N,N+,0DF,𝚂[F](α+,β+,γ+)×[m=0N1sin(π(α+β+(N+m1)γ))sin(π(β+mγ))].\dot{I}_{0,N,0}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})=(-1)^{N_{-}}\dot{I}_{N_{-},N_{+},0}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})\\ \times\Big{[}\prod_{m_{-}=0}^{N_{-}-1}\frac{\sin(\pi(\alpha_{-}+\beta_{-}+(N_{-}+m_{-}-1)\gamma_{-}))}{\sin(\pi(\beta_{-}+m_{-}\gamma_{-}))}\Big{]}. (4.52)
  • For all (α+,β+)W˙0,N,0DF,𝚂[F;γ+]W˙0,N,N+DF,𝚂[F;γ+](\alpha_{+},\beta_{+})\in\dot{W}_{0,N,0}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}]\cap\dot{W}_{0,N_{-},N_{+}}^{\mathrm{DF},\mathtt{S}}[F;\gamma_{+}] such that α++m+γ+\alpha_{+}+m_{+}\gamma_{+}\notin\mathbb{Z} for any m+{0,,N+1}m_{+}\in\{0,\ldots,N_{+}-1\},

    I˙0,N,0DF,𝚂[F](α+,β+,γ+)=(1)N+I˙0,N,N+DF,𝚂[F](α+,β+,γ+)×[m+=0N+1sin(π(α++β++(N++m+1)γ+))sin(π(α++m+γ+))].\dot{I}_{0,N,0}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})=(-1)^{N_{+}}\dot{I}_{0,N_{-},N_{+}}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})\\ \times\Big{[}\prod_{m_{+}=0}^{N_{+}-1}\frac{\sin(\pi(\alpha_{+}+\beta_{+}+(N_{+}+m_{+}-1)\gamma_{+}))}{\sin(\pi(\alpha_{+}+m_{+}\gamma_{+}))}\Big{]}. (4.53)

Proof.

Follows from a repeated application of 3.10, as in the proof of 4.2. The only difference with the proof of 4.2 is that we appeal to 4.4 to show (instead of it being an automatic consequence of symmetry) that

I˙,m,n[F](𝜶DF,𝚂,𝜷DF,𝚂,𝜸DF,𝚂)\displaystyle\dot{I}_{\ell,m,n}[F](\bm{\alpha}^{\mathrm{DF},\mathtt{S}},\bm{\beta}^{\mathrm{DF},\mathtt{S}},\bm{\gamma}^{\mathrm{DF},\mathtt{S}}) =I˙,m,n[F](𝜶DF,𝚂,𝜷DF,𝚂,𝜸DF,𝚂)σ\displaystyle=\dot{I}_{\ell,m,n}[F](\bm{\alpha}^{\mathrm{DF},\mathtt{S}},\bm{\beta}^{\mathrm{DF},\mathtt{S}},\bm{\gamma}^{\mathrm{DF},\mathtt{S}})^{\sigma_{\ell}} (4.54)
I˙1,m+1,n[F](𝜶DF,𝚂,𝜷DF,𝚂,𝜸DF,𝚂)σ\displaystyle\dot{I}_{\ell-1,m+1,n}[F](\bm{\alpha}^{\mathrm{DF},\mathtt{S}},\bm{\beta}^{\mathrm{DF},\mathtt{S}},\bm{\gamma}^{\mathrm{DF},\mathtt{S}})^{\sigma_{\ell}} =I˙1,m+1,n[F](𝜶DF,𝚂,𝜷DF,𝚂,𝜸DF,𝚂)σ+m\displaystyle=\dot{I}_{\ell-1,m+1,n}[F](\bm{\alpha}^{\mathrm{DF},\mathtt{S}},\bm{\beta}^{\mathrm{DF},\mathtt{S}},\bm{\gamma}^{\mathrm{DF},\mathtt{S}})^{\sigma_{\ell+m}} (4.55)
I˙1,m,n+1[F](𝜶DF,𝚂,𝜷DF,𝚂,𝜸DF,𝚂)σ+m\displaystyle\dot{I}_{\ell-1,m,n+1}[F](\bm{\alpha}^{\mathrm{DF},\mathtt{S}},\bm{\beta}^{\mathrm{DF},\mathtt{S}},\bm{\gamma}^{\mathrm{DF},\mathtt{S}})^{\sigma_{\ell+m}} =I˙1,m,n+1[F](𝜶DF,𝚂,𝜷DF,𝚂,𝜸DF,𝚂)σN.\displaystyle=\dot{I}_{\ell-1,m,n+1}[F](\bm{\alpha}^{\mathrm{DF},\mathtt{S}},\bm{\beta}^{\mathrm{DF},\mathtt{S}},\bm{\gamma}^{\mathrm{DF},\mathtt{S}})^{\sigma_{N}}. (4.56)

Proposition 4.6.

For γ+\{0,1}\gamma_{+}\in\mathbb{C}\backslash\{0,1\}, the functions IN;RegDF,𝚂[F](α+,β+,γ+)I_{N;\mathrm{Reg}}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+}) defined by

I˙NDF,𝚂[F](α+,β+,γ+)=[±j=1N±sin(π(α±+β±+(N±+j2)γ±))sin(π(α±+(j1)γ±))sin(π(β±+(j1)γ±))]×IN;RegDF,𝚂[F](α+,β+,γ+)\dot{I}_{N}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+})=\Big{[}\prod_{\pm}\prod_{j=1}^{N_{\pm}}\frac{\sin(\pi(\alpha_{\pm}+\beta_{\pm}+(N_{\pm}+j-2)\gamma_{\pm}))}{\sin(\pi(\alpha_{\pm}+(j-1)\gamma_{\pm}))\sin(\pi(\beta_{\pm}+(j-1)\gamma_{\pm}))}\Big{]}\\ \times I_{N;\mathrm{Reg}}^{\mathrm{DF},\mathtt{S}}[F](\alpha_{+},\beta_{+},\gamma_{+}) (4.57)

extend to entire functions IN;RegDF,𝚂[F]:2α+,β+I_{N;\mathrm{Reg}}^{\mathrm{DF},\mathtt{S}}[F]:\mathbb{C}^{2}_{\alpha_{+},\beta_{+}}\to\mathbb{C}. ∎

Proof.

The proof is very similar to that used to prove 4.3. Using the previous proposition with 4.4, it suffices to note that the union of all nine of the sets

W˙N,0,0DF,𝚂[F;γ+],W˙0,N,0DF,𝚂[F;γ+],W˙0,0,NDF,𝚂[F;γ+],W˙N,N+,0DF,𝚂[F;γ+],W˙N,0,N+DF,𝚂[F;γ+],W˙0,N,N+DF,𝚂[F;γ+],W˙N+,N,0DF,𝚂+[F;γ+],W˙N+,0,NDF,𝚂+[F;γ+],W˙0,N+,NDF,𝚂+[F;γ+]2α+,β+,\dot{W}_{N,0,0}^{\mathrm{DF},\mathtt{S}_{-}}[F;\gamma_{+}],\dot{W}_{0,N,0}^{\mathrm{DF},\mathtt{S}_{-}}[F;\gamma_{+}],\dot{W}_{0,0,N}^{\mathrm{DF},\mathtt{S}_{-}}[F;\gamma_{+}],\dot{W}_{N_{-},N_{+},0}^{\mathrm{DF},\mathtt{S}_{-}}[F;\gamma_{+}],\dot{W}_{N_{-},0,N_{+}}^{\mathrm{DF},\mathtt{S}_{-}}[F;\gamma_{+}],\\ \dot{W}_{0,N_{-},N_{+}}^{\mathrm{DF},\mathtt{S}_{-}}[F;\gamma_{+}],\dot{W}_{N_{+},N_{-},0}^{\mathrm{DF},\mathtt{S}_{+}}[F;\gamma_{+}],\dot{W}_{N_{+},0,N_{-}}^{\mathrm{DF},\mathtt{S}_{+}}[F;\gamma_{+}],\dot{W}_{0,N_{+},N_{-}}^{\mathrm{DF},\mathtt{S}_{+}}[F;\gamma_{+}]\subset\mathbb{C}^{2}_{\alpha_{+},\beta_{+}}, (4.58)

where 𝚂+={1,,N+}\mathtt{S}_{+}=\{1,\ldots,N_{+}\} and 𝚂=𝚂\mathtt{S}_{-}=\mathtt{S}^{\complement}, is the complement of locally finite set of points, and then the result follows via Hartog’s theorem.

Appendix A The N=2N=2 case

We now consider the N=2N=2 case in some detail, beginning with the formula

S2(𝜶,𝜷,𝜸)=Γ(1+α1)Γ(1+β2)Γ(2+2γ1,2+α1+α2)Γ(1+2γ1,2)Γ(2+α1+2γ1,2)Γ(3+α1+α2+β2+2γ1,2)3F2(a,b;1),S_{2}(\bm{\alpha},\bm{\beta},\bm{\gamma})=\frac{\Gamma(1+\alpha_{1})\Gamma(1+\beta_{2})\Gamma(2+2\gamma_{1,2}+\alpha_{1}+\alpha_{2})\Gamma(1+2\gamma_{1,2})}{\Gamma(2+\alpha_{1}+2\gamma_{1,2})\Gamma(3+\alpha_{1}+\alpha_{2}+\beta_{2}+2\gamma_{1,2})}\cdot{}_{3}F_{2}(a,b;1), (A.1)

a=(a1,a2,a3)=(1+α1,β1,2+2γ1,2+α1+α2)a=(a_{1},a_{2},a_{3})=(1+\alpha_{1},-\beta_{1},2+2\gamma_{1,2}+\alpha_{1}+\alpha_{2}) and b=(b1,b2)=(2+α1+2γ1,2,3+α1+α2+β2+2γ1,2)b=(b_{1},b_{2})=(2+\alpha_{1}+2\gamma_{1,2},3+\alpha_{1}+\alpha_{2}+\beta_{2}+2\gamma_{1,2}). This is asymmetric in the role of the α\alpha’s and β\beta’s, but there is an analogous formula with the α\alpha’s and β\beta’s on the right-hand side switched. Some of the singularities of S2S_{2} are manifest in this formula, but others are hidden in the 3F2{}_{3}F_{2} factor.

Consider now the Dotsenko–Fateev-like integral

I2DF0(α1,α2,β1,β2,γ)=0101x1α1x2α2(1x1)β1(1x2)β2(x2x1+i0)2γdx1dx2.I_{2}^{\mathrm{DF}0}(\alpha_{1},\alpha_{2},\beta_{1},\beta_{2},\gamma)=\int_{0}^{1}\int_{0}^{1}x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}}(1-x_{1})^{\beta_{1}}(1-x_{2})^{\beta_{2}}(x_{2}-x_{1}+i0)^{2\gamma}\,\mathrm{d}x_{1}\,\mathrm{d}x_{2}. (A.2)

By the previous proposition:

Corollary A.0.1.
I˙2DF0(α1,α2,β1,β2,γ)=Γ(2+2γ+α1+α2)Γ(1+2γ)[Γ(1+α1)Γ(1+β2)3F2(a,b;1)Γ(2+α1+2γ)Γ(3+α1+α2+β2+2γ)+e2πiγΓ(1+α2)Γ(1+β1)3F2(a,b;1)Γ(2+α2+2γ)Γ(3+α1+α2+β1+2γ)],\dot{I}_{2}^{\mathrm{DF}0}(\alpha_{1},\alpha_{2},\beta_{1},\beta_{2},\gamma)=\Gamma(2+2\gamma+\alpha_{1}+\alpha_{2})\Gamma(1+2\gamma)\Big{[}\frac{\Gamma(1+\alpha_{1})\Gamma(1+\beta_{2}){}_{3}F_{2}(a,b;1)}{\Gamma(2+\alpha_{1}+2\gamma)\Gamma(3+\alpha_{1}+\alpha_{2}+\beta_{2}+2\gamma)}\\ +e^{2\pi i\gamma}\frac{\Gamma(1+\alpha_{2})\Gamma(1+\beta_{1}){}_{3}F_{2}(a^{\prime},b^{\prime};1)}{\Gamma(2+\alpha_{2}+2\gamma)\Gamma(3+\alpha_{1}+\alpha_{2}+\beta_{1}+2\gamma)}\Big{]}, (A.3)

where a=(a1,a2,a3)=(1+α2,β2,2+2γ+α1+α2)a^{\prime}=(a_{1}^{\prime},a_{2}^{\prime},a_{3}^{\prime})=(1+\alpha_{2},-\beta_{2},2+2\gamma+\alpha_{1}+\alpha_{2}) and b=(b1,b2)=(2+α2+2γ,3+α1+α2+β1+2γ)b^{\prime}=(b_{1}^{\prime},b_{2}^{\prime})=(2+\alpha_{2}+2\gamma,3+\alpha_{1}+\alpha_{2}+\beta_{1}+2\gamma). ∎

The formula eq. A.3 is not suitable for analytic continuation to γ=1\gamma=-1, for which we instead use the method described in §3.4. That yields

I˙2(α1,α2,β1,β2,γ)=Γ(1+α1)Γ(1+β1)Γ(2+α1+β1)Γ[zα2+2γ(1z)β2×2F1(2γ,1+α1,2+α1+β1;1z)]dz,\dot{I}_{2}(\alpha_{1},\alpha_{2},\beta_{1},\beta_{2},\gamma)=\frac{\Gamma(1+\alpha_{1})\Gamma(1+\beta_{1})}{\Gamma(2+\alpha_{1}+\beta_{1})}\int_{\Gamma}\Big{[}z^{\alpha_{2}+2\gamma}(1-z)^{\beta_{2}}\\ \times{}_{2}F_{1}\Big{(}-2\gamma,1+\alpha_{1},2+\alpha_{1}+\beta_{1};\frac{1}{z}\Big{)}\Big{]}\,\mathrm{d}z, (A.4)

where the Γ\Gamma is a trapezoidal contour in the upper-half of the complex plane. This formula can be used to numerically compute I˙2DF0(α1,α2,β1,β2,γ)\dot{I}_{2}^{\mathrm{DF}0}(\alpha_{1},\alpha_{2},\beta_{1},\beta_{2},\gamma) for γ\gamma with large negative real part, as long as α1,α2,β1,β2\alpha_{1},\alpha_{2},\beta_{1},\beta_{2} have sufficiently large positive real part relative to γ\gamma.

We illustrate the method of proof of 1.1 with the computation of the residues associated with α+α++2γ2d\alpha_{-}+\alpha_{+}+2\gamma\in\mathbb{Z}^{-2-d}. Introducing coordinates ϱ=x2\varrho=x_{2} and λ=x1/x2\lambda=x_{1}/x_{2},

S2(α1,α2,β1,β2,γ)=010x2x1α1x2α2(1x1)β1(1x2)β2(x2x1)2γdx1dx2=0101ϱ1+α1+α2+2γλα1(1λϱ)β1(1ϱ)β2(1λ)2γdλdϱ.\displaystyle\begin{split}S_{2}(\alpha_{1},\alpha_{2},\beta_{1},\beta_{2},\gamma)&=\int_{0}^{1}\int_{0}^{x_{2}}x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}}(1-x_{1})^{\beta_{1}}(1-x_{2})^{\beta_{2}}(x_{2}-x_{1})^{2\gamma}\,\mathrm{d}x_{1}\,\mathrm{d}x_{2}\\ &=\int_{0}^{1}\int_{0}^{1}\varrho^{1+\alpha_{1}+\alpha_{2}+2\gamma}\lambda^{\alpha_{1}}(1-\lambda\varrho)^{\beta_{1}}(1-\varrho)^{\beta_{2}}(1-\lambda)^{2\gamma}\,\mathrm{d}\lambda\,\mathrm{d}\varrho.\end{split} (A.5)

Expanding (1λϱ)β1(1ϱ)β2(1-\lambda\varrho)^{\beta_{1}}(1-\varrho)^{\beta_{2}} in Taylor series around ϱ=0\varrho=0, we have

(1λϱ)β1(1ϱ)β2=k=0κ=0k(β1κ)(β2kκ)λκ(ϱ)k.(1-\lambda\varrho)^{\beta_{1}}(1-\varrho)^{\beta_{2}}=\sum_{k=0}^{\infty}\sum_{\kappa=0}^{k}\binom{\beta_{1}}{\kappa}\binom{\beta_{2}}{k-\kappa}\lambda^{\kappa}(-\varrho)^{k}. (A.6)

Then, computing the outer integral term by term and using the formula for the β\beta-function for the inner integral,

S2(α1,α2,β1,β2,γ)k=0(1)k2+α1+α2+2γ+kκ=0k(β1κ)(β2kκ)Γ(1+α1+κ)Γ(1+2γ)Γ(2+α1+2γ+κ)S_{2}(\alpha_{1},\alpha_{2},\beta_{1},\beta_{2},\gamma)\sim\sum_{k=0}^{\infty}\frac{(-1)^{k}}{2+\alpha_{1}+\alpha_{2}+2\gamma+k}\sum_{\kappa=0}^{k}\binom{\beta_{1}}{\kappa}\binom{\beta_{2}}{k-\kappa}\frac{\Gamma(1+\alpha_{1}+\kappa)\Gamma(1+2\gamma)}{\Gamma(2+\alpha_{1}+2\gamma+\kappa)} (A.7)

where the ‘\sim’ means modulo an error which is not singular at (all but a positive codimension subset of) the hyperplane under investigation. The right-hand side of this has an apparent pole whenever α1+α2+2γ2\alpha_{1}+\alpha_{2}+2\gamma\in\mathbb{Z}^{\leq-2}.

We now examine some special cases. Fix dd\in\mathbb{N}. First consider

S2[xd](α,β,γ)=S2(α,α+d,β,β,γ)=010x2x1αx2d+α(1x1)β(1x2)β(x2x1)2γdx1dx2.S_{2}[x^{d}](\alpha,\beta,\gamma)=S_{2}(\alpha,\alpha+d,\beta,\beta,\gamma)=\int_{0}^{1}\int_{0}^{x_{2}}x_{1}^{\alpha}x_{2}^{d+\alpha}(1-x_{1})^{\beta}(1-x_{2})^{\beta}(x_{2}-x_{1})^{2\gamma}\,\mathrm{d}x_{1}\,\mathrm{d}x_{2}. (A.8)

By eq. A.1,

S2[xd](α,β,γ)=Γ(1+α)Γ(1+β)Γ(1+2γ)Γ(2+2α+2γ+d)Γ(2+α+2γ)Γ(3+2α+β+2γ+d)3F2(a,b;1),S_{2}[x^{d}](\alpha,\beta,\gamma)=\frac{\Gamma(1+\alpha)\Gamma(1+\beta)\Gamma(1+2\gamma)\Gamma(2+2\alpha+2\gamma+d)}{\Gamma(2+\alpha+2\gamma)\Gamma(3+2\alpha+\beta+2\gamma+d)}\cdot{}_{3}F_{2}(a,b;1), (A.9)

where now a=(a1,a2,a3)=(1+α,β,2+2α+2γ+d)a=(a_{1},a_{2},a_{3})=(1+\alpha,-\beta,2+2\alpha+2\gamma+d) and b=(b1,b2)=(2+α+2γ,3+2α+β+2γ+d)b=(b_{1},b_{2})=(2+\alpha+2\gamma,3+2\alpha+\beta+2\gamma+d). A numerically generated plot of the absolute value of the right-hand side is given in the case d=2d=2 in Figure 13. Applying 1.1, in which α1,=α\alpha_{1,*}=\alpha, α2,=d+2α+2γ\alpha_{2,*}=d+2\alpha+2\gamma, β1,=β\beta_{1,*}=\beta, β2,=2β+2γ\beta_{2,*}=2\beta+2\gamma, and γ1,2,=2γ\gamma_{1,2,*}=2\gamma, we deduce that S2[xd](α,β,γ)\smash{S_{2}[x^{d}](\alpha,\beta,\gamma)} extends to an analytic function on

3α,β,γ\[{α1}{α+γ212d}{β1}{β+γ212}{γ211}].\mathbb{C}^{3}_{\alpha,\beta,\gamma}\Big{\backslash}\Big{[}\{\alpha\in\mathbb{Z}^{\leq-1}\}\cup\{\alpha+\gamma\in 2^{-1}\mathbb{Z}^{\leq-2-d}\}\cup\{\beta\in\mathbb{Z}^{\leq-1}\}\cup\{\beta+\gamma\in 2^{-1}\mathbb{Z}^{\leq-2}\}\cup\{\gamma\in 2^{-1}\mathbb{Z}^{\leq-1}\}\Big{]}. (A.10)

In the d=2d=2 case, this can be seen in Figure 13.

Refer to caption
Refer to caption
Figure 13. The absolute values of the right-hand sides of eq. A.9 (left) and eq. A.12 (right) plotted against α\alpha, for β=1/2\beta=1/2 and γ=1/3\gamma=1/3 fixed. The singularities predicted in eq. A.10, eq. A.13 have been drawn as dotted vertical lines, those associated with {α}\color[rgb]{0.0,0.0,0.66}\definecolor[named]{pgfstrokecolor}{rgb}{0.0,0.0,0.66}\{\alpha\in\mathbb{Z}\} in blue and those associated with {α+γ21}\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\{\alpha+\gamma\in 2^{-1}\mathbb{Z}\} in red. It appears that all of the poles that could be present are present. The apparent zeroes of S2[F](α,1/2,1/3)S_{2}[F](\alpha,1/2,1/3) in the depicted range of α\alpha have been marked with dotted black lines and numerically computed to be 2.48503\approx-2.48503 for F=x2F=x^{2} and 3.06833\approx-3.06833, 3.57013-3.57013, and 4.08562-4.08562 for F=y2F=y^{2}.

On the other hand, consider

S2[yd](α,β,γ)=S2(α+d,α,β,β,γ)=010x2x1d+αx2α(1x1)β(1x2)β(x2x1)2γdx1dx2.S_{2}[y^{d}](\alpha,\beta,\gamma)=S_{2}(\alpha+d,\alpha,\beta,\beta,\gamma)=\int_{0}^{1}\int_{0}^{x_{2}}x_{1}^{d+\alpha}x_{2}^{\alpha}(1-x_{1})^{\beta}(1-x_{2})^{\beta}(x_{2}-x_{1})^{2\gamma}\,\mathrm{d}x_{1}\,\mathrm{d}x_{2}. (A.11)

By Equation 1.20,

S2[yd](α,β,γ)=Γ(1+α+d)Γ(1+β)Γ(1+2γ)Γ(2+2α+2γ+d)Γ(2+α+2γ+d)Γ(3+2α+β+2γ+d)3F2(a,b;1),S_{2}[y^{d}](\alpha,\beta,\gamma)=\frac{\Gamma(1+\alpha+d)\Gamma(1+\beta)\Gamma(1+2\gamma)\Gamma(2+2\alpha+2\gamma+d)}{\Gamma(2+\alpha+2\gamma+d)\Gamma(3+2\alpha+\beta+2\gamma+d)}\cdot{}_{3}F_{2}(a^{\prime},b^{\prime};1), (A.12)

where a=(a1,a2,a3)=(1+d+α,β,2+d+2α+2γ)a^{\prime}=(a_{1}^{\prime},a_{2},a_{3})=(1+d+\alpha,-\beta,2+d+2\alpha+2\gamma) and b=(b1,b2)=(2+d+α+2γ,3+d+2α+β+2γ)b^{\prime}=(b^{\prime}_{1},b_{2})=(2+d+\alpha+2\gamma,3+d+2\alpha+\beta+2\gamma). We again apply 1.1, but now α1,=d+α\alpha_{1,*}=d+\alpha, α2,=d+2α+2γ\alpha_{2,*}=d+2\alpha+2\gamma, in order to deduce that S2[yd](α,β,γ)S_{2}[y^{d}](\alpha,\beta,\gamma) extends analytically to

3α,β,γ\[{α1d}{α+γ212d}{β1}{β+γ212}{γ211}].\mathbb{C}^{3}_{\alpha,\beta,\gamma}\Big{\backslash}\Big{[}\{\alpha\in\mathbb{Z}^{\leq-1-d}\}\cup\{\alpha+\gamma\in 2^{-1}\mathbb{Z}^{\leq-2-d}\}\cup\{\beta\in\mathbb{Z}^{\leq-1}\}\cup\{\beta+\gamma\in 2^{-1}\mathbb{Z}^{\leq-2}\}\cup\{\gamma\in 2^{-1}\mathbb{Z}^{\leq-1}\}\Big{]}. (A.13)

See Figure 13 for a numerically generated plot.

If we instead pick F(x,y)=xd+ydF(x,y)=x^{d}+y^{d}, which is in some sense the symmetrization of the previous two examples, the situation looks very different. Combining the formulas above yields

S2[xd+yd](α,β,γ)=(S2[xd]+S2[yd])(α,β,γ)=Γ(1+α)Γ(1+β)Γ(1+2γ)Γ(2+2α+2γ+d)Γ(2+α+2γ)Γ(3+2α+β+2γ+d)×[3F2(a,b;1)+Γ(1+α+d)Γ(2+α+2γ)Γ(1+α)Γ(2+α+2γ+d)3F2(a,b;1)].S_{2}[x^{d}+y^{d}](\alpha,\beta,\gamma)=(S_{2}[x^{d}]+S_{2}[y^{d}])(\alpha,\beta,\gamma)=\frac{\Gamma(1+\alpha)\Gamma(1+\beta)\Gamma(1+2\gamma)\Gamma(2+2\alpha+2\gamma+d)}{\Gamma(2+\alpha+2\gamma)\Gamma(3+2\alpha+\beta+2\gamma+d)}\\ \times\Big{[}{}_{3}F_{2}(a,b;1)+\frac{\Gamma(1+\alpha+d)\Gamma(2+\alpha+2\gamma)}{\Gamma(1+\alpha)\Gamma(2+\alpha+2\gamma+d)}\cdot{}_{3}F_{2}(a^{\prime},b^{\prime};1)\Big{]}. (A.14)

On the other hand, by 1.2, we know that S2[xd+yd]S_{2}[x^{d}+y^{d}] extends analytically to

3α,β,γ\[{α1δ¯1}{α+γ2δ¯2}{β1δ¯1}{β+γ1δ¯2}{γ211,γ}],\mathbb{C}^{3}_{\alpha,\beta,\gamma}\Big{\backslash}\Big{[}\{\alpha\in\mathbb{Z}^{\leq-1-\bar{\delta}_{1}}\}\cup\{\alpha+\gamma\in\mathbb{Z}^{\leq-2-\bar{\delta}_{2}}\}\cup\{\beta\in\mathbb{Z}^{\leq-1-\bar{\text{\reflectbox{$\delta$}}}_{1}}\}\cup\{\beta+\gamma\in\mathbb{Z}^{\leq-1-\bar{\text{\reflectbox{$\delta$}}}_{2}}\}\\ \cup\{\gamma\in 2^{-1}\mathbb{Z}^{\leq-1},\gamma\notin\mathbb{Z}\}\Big{]}, (A.15)

where δ¯1,δ¯1,δ¯2,δ¯2\bar{\delta}_{1},\bar{\text{\reflectbox{$\delta$}}}_{1},\bar{\delta}_{2},\bar{\text{\reflectbox{$\delta$}}}_{2} are as in the theorem. In this example, δ¯1,δ¯1,δ¯2=0\bar{\delta}_{1},\bar{\text{\reflectbox{$\delta$}}}_{1},\bar{\text{\reflectbox{$\delta$}}}_{2}=0, δ¯2=d/2\bar{\delta}_{2}=\lceil d/2\rceil, d¯2=d\bar{d}_{2}=d, and d¯1=d/2\bar{d}_{1}=\lfloor d/2\rfloor. See Figure 14, in which d=2d=2.

Refer to caption
Refer to caption
Figure 14. The absolute value of the right side of eq. A.14, plotted against α(6,0)\alpha\in(-6,0) (left) and α(6.1,4.75)\alpha\in(-6.1,-4.75) (right), for β=1/2\beta=1/2 and γ=1/3\gamma=1/3 fixed. Singularities associated with {α}\color[rgb]{0.0,0.0,0.66}\definecolor[named]{pgfstrokecolor}{rgb}{0.0,0.0,0.66}\{\alpha\in\mathbb{Z}\} are marked with blue lines and those with {α+γ}\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\{\alpha+\gamma\in\mathbb{Z}\} with red. The zeroes associated with {α+β+γ}\color[rgb]{0.0,0.66,0}\definecolor[named]{pgfstrokecolor}{rgb}{0.0,0.66,0}\{\alpha+\beta+\gamma\in\mathbb{Z}\} are marked in green and those with {α+β+2γ}\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}\{\alpha+\beta+2\gamma\in\mathbb{Z}\} in orange. The location of the second plot is marked as an inset on the left plot (not to scale).

In the sum eq. A.14, the poles of the individual summands at such 2α+2γ2d(2+1)2\alpha+2\gamma\in\mathbb{Z}^{\leq-2-d}\cap(2\mathbb{Z}+1) (which we can see from Figure 13 exist) must cancel. By eq. A.7, the residue of S2[xd+yd](α,β,γ)S_{2}[x^{d}+y^{d}](\alpha,\beta,\gamma) at such a point is proportional to

κ=0k(βκ)(βkκ)[Γ(1+α+κ)Γ(2+α+2γ+κ)+Γ(1+α+κ+d)Γ(2+α+2γ+κ+d)].\sum_{\kappa=0}^{k}\binom{\beta}{\kappa}\binom{\beta}{k-\kappa}\Big{[}\frac{\Gamma(1+\alpha+\kappa)}{\Gamma(2+\alpha+2\gamma+\kappa)}+\frac{\Gamma(1+\alpha+\kappa+d)}{\Gamma(2+\alpha+2\gamma+\kappa+d)}\Big{]}. (A.16)

This therefore has to vanish whenever 2dk-2-d-k is odd and (α,γ){2α+2γ=2dk}2α,γ(\alpha,\gamma)\in\{2\alpha+2\gamma=-2-d-k\}\subset\mathbb{C}^{2}_{\alpha,\gamma} is such that the functions in eq. A.16 are well-defined. A direct algebraic proof of this fact is not entirely trivial, but it is straightforward to check case-by-case.

The function S2;Reg[xd+yd](α,β,γ)S_{2;\mathrm{Reg}}[x^{d}+y^{d}](\alpha,\beta,\gamma) is plotted as a function of α\alpha\in\mathbb{C} in Figure 15, still in the case d=2d=2 – for fixed β,γ\beta,\gamma. As expected, it appears to have no singularities, in accordance with 1.2. Unlike in the case F=1F=1, where Selberg’s formula shows that S2;Reg[1](α,β,γ)S_{2;\mathrm{Reg}}[1](\alpha,\beta,\gamma) is constant, S2;Reg[xd+yd]S_{2;\mathrm{Reg}}[x^{d}+y^{d}] is nonconstant.

Refer to caption
Figure 15. The function S2;Reg[x2+y2](α,1/2,1/3)S_{2;\mathrm{Reg}}[x^{2}+y^{2}](\alpha,1/2,1/3) defined by eq. 1.29, plotted as a function of α\alpha\in\mathbb{C}.

Consider now I˙2DF(α+,β+)=I˙2DF0(α+,α+,β+,β+,1)\dot{I}_{2}^{\mathrm{DF}}(\alpha_{+},\beta_{+})=\dot{I}_{2}^{\mathrm{DF}0}(\alpha_{+},-\alpha_{+},\beta_{+},-\beta_{+},1), which is a DF-symmetric integral with γ±=1\gamma_{\pm}=-1. This is given concretely by

I˙2DF(α+,β+)=Γ(1+α+)Γ(1+β+)Γ(2+α++β+)Γ[zα++2γ(1z)β+×2F1(2γ,1+α+,2+α++β+;1z)]dz\dot{I}_{2}^{\mathrm{DF}}(\alpha_{+},\beta_{+})=\frac{\Gamma(1+\alpha_{+})\Gamma(1+\beta_{+})}{\Gamma(2+\alpha_{+}+\beta_{+})}\int_{\Gamma}\Big{[}z^{\alpha_{+}+2\gamma}(1-z)^{\beta_{+}}\\ \times{}_{2}F_{1}\Big{(}-2\gamma,1+\alpha_{+},2+\alpha_{+}+\beta_{+};\frac{1}{z}\Big{)}\Big{]}\,\mathrm{d}z (A.17)

when the real parts of α+,β+\alpha_{+},\beta_{+} are sufficiently large. The Dotsenko–Fateev claim, eq. 1.49, is, up to a sign, that

I˙2DF(α+,β+)=Γ(1+α+)Γ(1+β+)Γ(α+)Γ(β+)2Γ(1+α++β+)Γ(α++β+).\dot{I}_{2}^{\mathrm{DF}}(\alpha_{+},\beta_{+})=-\frac{\Gamma(1+\alpha_{+})\Gamma(1+\beta_{+})\Gamma(\alpha_{+})\Gamma(\beta_{+})}{2\Gamma(1+\alpha_{+}+\beta_{+})\Gamma(\alpha_{+}+\beta_{+})}. (A.18)

Appendix B Explicit coordinates on [0,1)Ntb[0,1)^{N}_{\mathrm{tb}}

In this appendix, we discuss the total boundary (tb) blowup [0,1)Ntb[0,1)^{N}_{\mathrm{tb}}, the mwc constructed by blowing up all of the facets of [0,1)N[0,1)^{N}, starting with those of the lowest dimension.

For each nonempty subset S{1,,N}S\subseteq\{1,\ldots,N\}, let FS\mathrm{F}_{S} denote the face of [0,1)Ntb\smash{[0,1)^{N}_{\mathrm{tb}}} corresponding to the facet {jSxj=0}\{j\in S\Rightarrow x_{j}=0\} of [0,1)Nx[0,1)^{N}_{x}. Tracing through the construction of the total boundary blowup, we have the following explicit choice of boundary-defining-functions (bdfs) of the various faces. If N3N\geq 3, these are different from the recursively defined boundary-defining-functions discussed in the introduction to §2.

It is possible to prove:

Proposition B.1.

The function

xFS=xFS,N=S0S[jS0xj](1)|S||S0|x_{\mathrm{F}_{S}}=x_{\mathrm{F}_{S},N}=\prod_{S_{0}\supseteq S}\Big{[}\sum_{j\in S_{0}}x_{j}\Big{]}^{(-1)^{|S|-|S_{0}|}} (B.1)

serves as a bdf of FS\mathrm{F}_{S}.

Suppose that 𝙸\mathtt{I} is a (possibly empty) set of nested nonempty subsets of {1,,N}\{1,\ldots,N\}. Then,

f𝙸={xFS=0 for all S𝙸}\mathrm{f}_{\mathtt{I}}=\{x_{\mathrm{F}_{S}}=0\text{ for all }S\in\mathtt{I}\} (B.2)

is a codimension |𝙸||\mathtt{I}| facet of [0,1)tbN[0,1)_{\mathrm{tb}}^{N}. This defines a bijective correspondence between the set of nested nonempty subsets of {1,,N}\{1,\ldots,N\} and the set of facets of [0,1)tbN[0,1)_{\mathrm{tb}}^{N}.

If pp lies in the interior of f𝙸\mathrm{f}_{\mathtt{I}}, then, letting σ𝔖N\sigma\in\mathfrak{S}_{N} denote any permutation consistent with 𝙸\mathtt{I},

ϱ=xσ(1),x^σ(2)=xσ(2)/xσ(1),,x^σ(N)=xσ(N)/xσ(N1)\varrho=x_{\sigma(1)},\hat{x}_{\sigma(2)}=x_{\sigma(2)}/x_{\sigma(1)},\cdots,\hat{x}_{\sigma(N)}=x_{\sigma(N)}/x_{\sigma(N-1)} (B.3)

give a local set of coordinates near pp. ∎

Here, we say that σ𝔖N\sigma\in\mathfrak{S}_{N} is consistent with 𝙸\mathtt{I} if, whenever j<kj<k, σ(j)S𝙸σ(k)S\sigma(j)\in S\in\mathtt{I}\Rightarrow\sigma(k)\in S.

We can cover [0,1)tbN[0,1)_{\mathrm{tb}}^{N} with the N!N! coordinate charts whose restrictions to the interior are of the form

{0<xσ(N)<2xσ(N1)<<2Nxσ(1)<2N}(0,1)N[0,1)xσ(1)×[0,2)xσ(2)/xσ(1)××[0,2)xσ(N)/xσ(N1),\{0<x_{\sigma(N)}<2x_{\sigma(N-1)}<\cdots<2^{N}x_{\sigma(1)}<2^{N}\}\cap(0,1)^{N}\\ \to[0,1)_{x_{\sigma(1)}}\times[0,2)_{x_{\sigma(2)}/x_{\sigma(1)}}\times\cdots\times[0,2)_{x_{\sigma(N)}/x_{\sigma(N-1)}}, (B.4)

for σ𝔖N\sigma\in\mathfrak{S}_{N}.

The preceding proposition is used to prove:

Proposition B.2.

For any M{1,,N1}M\in\{1,\ldots,N-1\} and nonempty Q{1,,M}Q\subseteq\{1,\ldots,M\},

xFQ,M=Q0{M+1,,N}xFQQ0,Nx_{\mathrm{F}_{Q},M}=\prod_{Q_{0}\subseteq\{M+1,\ldots,N\}}x_{\mathrm{F}_{Q\cup Q_{0}},N} (B.5)

in (0,1)Nx(0,1)^{N}_{x}. ∎

Proof.

A factor of jQQ0xj\sum_{j\in Q\cup Q_{0}}x_{j} appears on the right-hand side of eq. B.5 to the power

Q1Q0(1)|Q0|,\sum_{Q_{1}\subseteq Q_{0}}(-1)^{|Q_{0}|}, (B.6)

which is, by the binomial theorem, +1+1 if Q0=Q_{0}=\varnothing and 0 otherwise. Thus, Q0{M+1,,N}xFQQ0,N=jQxj\prod_{Q_{0}\subseteq\{M+1,\ldots,N\}}x_{\mathrm{F}_{Q\cup Q_{0}},N}=\sum_{j\in Q}x_{j}. ∎

The full proof of B.1 is somewhat incidental to the rest of the paper, so we merely illustrate the argument in the case N=3N=3. This generalizes to the N3N\geq 3 case, and applies in an even simpler form to the N=2N=2 case.

The total boundary blowup [0,1)tbN[0,1)_{\mathrm{tb}}^{N} is defined as

[[0,1)3;{x,y,z=0};{y,z=0};{x,z=0},{x,y=0}],[[0,1)^{3};\{x,y,z=0\};\{y,z=0\};\{x,z=0\},\{x,y=0\}], (B.7)

where the first blowup is that of {x,y,z=0}\{x,y,z=0\} and must be performed first. The other three blowups can be performed in any order, and each order yields a canonically diffeomorphic mwc. The input and output of the first blowup, yielding [[0,1)3;{x,y,z=0}][[0,1)^{3};\{x,y,z=0\}], are

yyzzxxy/(x+y+z)y/(x+y+z)z/(x+y+z)z/(x+y+z)x/(x+y+z)x/(x+y+z)x+y+zx+y+z

respectively, where we are marking the faces with boundary-defining-functions (using the Cartesian coordinates x,y,zx,y,z in place of x1,x2,x3x_{1},x_{2},x_{3}). The choice of bdfs on the blowup is in accordance with the prescription in the introduction of §2.

The next blowup, yielding

[[0,1)3;{x,y,z=0};{y,z=0}],[[0,1)^{3};\{x,y,z=0\};\{y,z=0\}], (B.8)

has input and output

y/(x+y+z)y/(x+y+z)z/(x+y+z)z/(x+y+z)x/(x+y+z)x/(x+y+z)x+y+zx+y+zy/(y+z)y/(y+z)z/(y+z)z/(y+z)x/(x+y+z)x/(x+y+z)x+y+zx+y+z(y+z)/(x+y+z)(y+z)/(x+y+z)

Again, the choices of bdfs are in accordance with §2.

Next, we blow up the facet of [[0,1)3;{x,y,z=0};{y,z=0}][[0,1)^{3};\{x,y,z=0\};\{y,z=0\}] corresponding to the yy-axis. Because the previous blowup was located away from the facet being blown up now, we can use the sum

xx+y+z+zx+y+z=x+zx+y+z\frac{x}{x+y+z}+\frac{z}{x+y+z}=\frac{x+z}{x+y+z} (B.9)

of the bdfs of the adjacent faces in [[0,1)3;{x,y,z=0}][[0,1)^{3};\{x,y,z=0\}] as a bdf of the front face of the current blowup rather than

xx+y+z+zy+z=xy+2xz+yz+z2(y+z)(x+y+z),\frac{x}{x+y+z}+\frac{z}{y+z}=\frac{xy+2xz+yz+z^{2}}{(y+z)(x+y+z)}, (B.10)

which would be the prescription in §2. The choices in eq. B.9, eq. B.10 are equivalent, in the sense that their quotient is a smooth, nonvanishing function on [[0,1)3;{x,y,z=0};{y,z=0};{x,z=0}][[0,1)^{3};\{x,y,z=0\};\{y,z=0\};\{x,z=0\}]. Given that eq. B.9 serves as a bdf of the front face of the latest blowup, the quotient

x/(x+y+z)(x+z)/(x+y+z)=xx+z\frac{x/(x+y+z)}{(x+z)/(x+y+z)}=\frac{x}{x+z} (B.11)

serves as a bdf in [[0,1)3;{x,y,z=0};{y,z=0};{x,z=0}][[0,1)^{3};\{x,y,z=0\};\{y,z=0\};\{x,z=0\}] for the lift of the yzyz-plane, and

z/(y+z)(x+z)/(x+y+z)=z(x+y+z)(x+z)(y+z)\frac{z/(y+z)}{(x+z)/(x+y+z)}=\frac{z(x+y+z)}{(x+z)(y+z)} (B.12)

serves as a bdf for the lift of the xyxy-plane. In summary, the third blowup has input and output

y/(y+z)y/(y+z)z/(y+z)z/(y+z)x/(x+y+z)x/(x+y+z)x+y+zx+y+z(y+z)/(x+y+z)(y+z)/(x+y+z)y/(y+z)y/(y+z)z(x+y+z)(x+z)1(y+z)1z(x+y+z)(x+z)^{-1}(y+z)^{-1}x/(x+z)x/(x+z)x+y+zx+y+z(y+z)/(x+y+z)(y+z)/(x+y+z)(x+z)/(x+y+z)(x+z)/(x+y+z)

The final blowup, yielding [0,1)3tb=[[0,1)3;{x,y,z=0};{y,z=0};{x,z=0},{x,y=0}][0,1)^{3}_{\mathrm{tb}}=[[0,1)^{3};\{x,y,z=0\};\{y,z=0\};\{x,z=0\},\{x,y=0\}], is similar. We use (x+y)/(x+y+z)(x+y)/(x+y+z) as a bdf of the blowup of the face corresponding to the zz-axis, and we can then use

x/(x+z)(x+y)/(x+y+z)=x(x+y+z)(x+y)(x+z)y/(y+z)(x+y)/(x+y+z)=y(x+y+z)(x+y)(y+z)\displaystyle\begin{split}\frac{x/(x+z)}{(x+y)/(x+y+z)}&=\frac{x(x+y+z)}{(x+y)(x+z)}\\ \frac{y/(y+z)}{(x+y)/(x+y+z)}&=\frac{y(x+y+z)}{(x+y)(y+z)}\end{split} (B.13)

as bdfs of the faces corresponding to the yzyz- and xzxz-planes, respectively. Thus, we end up with

y(x+y+z)(x+y)1(y+z)1y(x+y+z)(x+y)^{-1}(y+z)^{-1}z(x+y+z)(x+z)1(y+z)1z(x+y+z)(x+z)^{-1}(y+z)^{-1}x(x+y+z)(x+y)1(x+z)1x(x+y+z)(x+y)^{-1}(x+z)^{-1}x+y+zx+y+z(y+z)/(x+y+z)(y+z)/(x+y+z)(x+z)/(x+y+z)(x+z)/(x+y+z)(x+y)/(x+y+z)(x+y)/(x+y+z)

as our final result.

This establishes the first part of B.1, at least in the N=3N=3 case.

The rest can be deduced. For example, consider the upper-left corner of the hexagonal face f{{1,2,3}}\mathrm{f}_{\{\{1,2,3\}\}} in [0,1)3tb[0,1)^{3}_{\mathrm{tb}}. This is f{{1},{1,2},{1,2,3}}\mathrm{f}_{\{\{1\},\{1,2\},\{1,2,3\}\}}. Nearby, zyxz\gg y\gg x, so, in some neighborhood UU of that corner, and

x+y+zzC(U;+),x+zzC(U;+),x+yyC(U;+).x+y+z\in zC^{\infty}(U;\mathbb{R}^{+}),\qquad x+z\in zC^{\infty}(U;\mathbb{R}^{+}),\quad x+y\in yC^{\infty}(U;\mathbb{R}^{+}). (B.14)

Thus, the chosen bdfs depicted above are x+y+zzC(U;+)x+y+z\in zC^{\infty}(U;\mathbb{R}^{+}), (x+y)/(x+y+z)(y/z)C(U;+)(x+y)/(x+y+z)\in(y/z)C^{\infty}(U;\mathbb{R}^{+}), and

x(x+y+z)(x+y)1(x+z)1(x/y)C(U;+).x(x+y+z)(x+y)^{-1}(x+z)^{-1}\in(x/y)C^{\infty}(U;\mathbb{R}^{+}). (B.15)

This shows that z,y/z,x/yz,y/z,x/y serve as a valid coordinate system within UU. The only permutation σ𝔖3\sigma\in\mathfrak{S}_{3} consistent with 𝙸={{1},{1,2},{1,2,3}}\mathtt{I}=\{\{1\},\{1,2\},\{1,2,3\}\} is σ=(1,3)\sigma=(1,3), which reverses the order of 1,2,31,2,3. That is, σ(1)=3\sigma(1)=3, σ(2)=2\sigma(2)=2, and σ(3)=1\sigma(3)=1. The coordinates ϱ,x^j\varrho,\hat{x}_{j} defined in eq. B.3 are

ϱ=x3=z,x^2=x2/x3=y/z,\varrho=x_{3}=z,\quad\hat{x}_{2}=x_{2}/x_{3}=y/z, (B.16)

and x^1=x1/x2=x/y\hat{x}_{1}=x_{1}/x_{2}=x/y. It can be seen that UU can be taken to be any open set not containing any of the other corners of f{{1,2,3}}\mathrm{f}_{\{\{1,2,3\}\}}. Each corner is analogous, so the final clause of B.1 follows, at least in the considered N=3N=3 case, from the computations above.

References

  • [AK11] Kazuhiko Aomoto and Michitake Kita “Theory of hypergeometric functions” With an appendix by Toshitake Kohno, Translated from the Japanese by Kenji Iohara, Springer Monographs in Mathematics Springer-Verlag, Tokyo, 2011 DOI: 10.1007/978-4-431-53938-4
  • [Alb+11] Vasyl A. Alba, Vladimir A. Fateev, Alexey V. Litvinov and Grigory M. Tarnopolskiy “On combinatorial expansion of the conformal blocks arising from AGT conjecture” In Lett. Math. Phys. 98.1, 2011, pp. 33–64 DOI: 10.1007/s11005-011-0503-z
  • [Aom87] Kazuhiko Aomoto “On the complex Selberg integral” In Quart. J. Math. Oxford Ser. (2) 38.152, 1987, pp. 385–399 DOI: 10.1093/qmath/38.4.385
  • [BPZ84] A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov “Infinite conformal symmetry in two-dimensional quantum field theory” In Nuclear Phys. B 241.2, 1984, pp. 333–380 DOI: 10.1016/0550-3213(84)90052-X
  • [CKW18] Leonardo Cruz, Alexander Kniss and Stefan Weinzierl “Properties of scattering forms and their relation to associahedra” In J. High Energy Phys., 2018 DOI: 10.1007/jhep03(2018)064
  • [CMT19] Eduardo Casali, Sebastian Mizera and Piotr Tourkine “Monodromy relations from twisted homology” In J. High Energy Phys., 2019, pp. 087, 34 DOI: 10.1007/jhep12(2019)087
  • [DF84] Vladimir S. Dotsenko and Vladimir A. Fateev “Conformal algebra and multipoint correlation functions in 2D statistical models” In Nuclear Physics B 240.3, 1984, pp. 312–348 DOI: 10.1016/0550-3213(84)90269-4
  • [DF85] Vladimir S. Dotsenko and Vladimir A. Fateev “Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge c1c\leq 1 In Nuclear Physics B 251, 1985, pp. 691–734 DOI: 10.1016/S0550-3213(85)80004-3
  • [DF85a] Vladimir S. Dotsenko and Vladimir A. Fateev “Operator algebra of two-dimensional conformal theories with central charge c1c\leq 1 In Physics Letters B 154.4, 1985, pp. 291–295 DOI: 10.1016/0370-2693(85)90366-1
  • [Fel89] Giovanni Felder “BRST approach to minimal models” In Nuclear Phys. B 317.1, 1989, pp. 215–236 DOI: 10.1016/0550-3213(89)90568-3
  • [FK15] Steven M. Flores and Peter Kleban “A solution space for a system of null-state partial differential equations: Part 1” In Comm. Math. Phys. 333.1, 2015, pp. 389–434 DOI: 10.1007/s00220-014-2189-4
  • [FK15a] Steven M. Flores and Peter Kleban “A solution space for a system of null-state partial differential equations: Part 2” In Comm. Math. Phys. 333.1, 2015, pp. 435–481 DOI: 10.1007/s00220-014-2185-8
  • [FK15b] Steven M. Flores and Peter Kleban “A solution space for a system of null-state partial differential equations: Part 3” In Comm. Math. Phys. 333.2, 2015, pp. 597–667 DOI: 10.1007/s00220-014-2190-y
  • [FK15c] Steven M. Flores and Peter Kleban “A solution space for a system of null-state partial differential equations: Part 4” In Comm. Math. Phys. 333.2, 2015, pp. 669–715 DOI: 10.1007/s00220-014-2180-0
  • [FS89] Giovanni Felder and Roberto Silvotti “Free field representation of minimal models on a Riemann surface” In Phys. Lett. B 231.4, 1989, pp. 411–416 DOI: 10.1016/0370-2693(89)90685-0
  • [FS92] Giovanni Felder and Roberto Silvotti “Conformal blocks of minimal models on a Riemann surface” In Comm. Math. Phys. 144.1, 1992, pp. 17–40
  • [FW08] Peter J. Forrester and S. Ole Warnaar “The importance of the Selberg integral” In Bull. Amer. Math. Soc. (N.S.) 45.4, 2008, pp. 489–534 DOI: 10.1090/S0273-0979-08-01221-4
  • [Gey94] Winfried Geyer “On Tamari lattices” In Discrete Math. 133.1-3, 1994, pp. 99–122 DOI: 10.1016/0012-365X(94)90019-1
  • [GS64] Israel M. Gel’fand and G. E. Shilov “Generalized functions. Vol. I: Properties and operations” Academic Press, 1964
  • [HMM97] Andrew Hassell, Rafe Mazzeo and Richard B. Melrose “A signature formula for manifolds with corners of codimension two” In Topology 36.5, 1997, pp. 1055–1075 DOI: 10.1016/S0040-9383(96)00043-2
  • [Kad93] Kevin W. J. Kadell “An integral for the product of two Selberg-Jack symmetric polynomials” In Compositio Math. 87.1, 1993, pp. 5–43 URL: http://www.numdam.org/item?id=CM_1993__87_1_5_0
  • [Kad97] Kevin W. J. Kadell “The Selberg-Jack symmetric functions” In Adv. Math. 130.1, 1997, pp. 33–102 DOI: 10.1006/aima.1997.1642
  • [KT86] Yukihiro Kanie and Akihiro Tsuchiya “Fock space representations of the Virasoro algebra. Intertwining operators” In Publ. Res. Inst. Math. Sci. 22.2, 1986, pp. 259–327 DOI: 10.2977/prims/1195178069
  • [KT86a] Yukihiro Kanie and Akihiro Tsuchiya “Fock space representations of Virasoro algebra and intertwining operators” In Proc. Japan Acad. Ser. A Math. Sci. 62.1, 1986, pp. 12–15 URL: http://projecteuclid.org/euclid.pja/1195514490
  • [LV19] Jonatan Lenells and Fredrik Viklund “Asymptotic analysis of Dotsenko-Fateev integrals” In Ann. Henri Poincaré 20.11, 2019, pp. 3799–3848 DOI: 10.1007/s00023-019-00849-5
  • [Mel] Richard Melrose “Differential analysis on manifold with corners”
  • [Miz17] Sebastian Mizera “Combinatorics and topology of Kawai-Lewellen-Tye relations” In J. High Energy Phys., 2017, pp. 097–150 DOI: 10.1007/jhep08(2017)097
  • [Miz20] Sebastian Mizera “Aspects of scattering amplitudes and moduli space localization”, Springer Theses Springer, 2020 DOI: 10.1007/978-3-030-53010-5
  • [MS08] Richard Melrose and Michael Singer “Scattering configuration spaces”, 2008 arXiv:0808.2022 [DG]
  • [MSS02] Martin Markl, Steve Shnider and Jim Stasheff “Operads in algebra, topology and physics”, Mathematical Surveys and Monographs 96 American Mathematical Society, 2002 DOI: 10.1090/surv/096
  • [MY03] Katsuhisa Mimachi and Masaaki Yoshida “Intersection numbers of twisted cycles and the correlation functions of the conformal field theory” In Comm. Math. Phys. 234.2, 2003, pp. 339–358 DOI: 10.1007/s00220-002-0766-4
  • [MY04] Katsuhisa Mimachi and Masaaki Yoshida “Intersection numbers of twisted cycles associated with the Selberg integral and an application to the conformal field theory” In Comm. Math. Phys. 250.1, 2004, pp. 23–45 DOI: 10.1007/s00220-004-1138-z
  • [PFM97] Pierre Philippe Francesco and David Sénéchal Mathieu “Conformal Field Theory”, Graduate Texts in Contemporary Physics Springer, 1997 DOI: 10.1007/978-1-4612-2256-9
  • [Pos09] Alexander Postnikov “Permutohedra, associahedra, and beyond” In Int. Math. Res. Not. IMRN, 2009, pp. 1026–1106 DOI: 10.1093/imrn/rnn153
  • [Sel44] Atle Selberg “Remarks on a multiple integral” In Norsk Mat. Tidsskr. 26, 1944, pp. 71–78
  • [Sta63] James Dillon Stasheff “Homotopy associativity of HH-spaces. I, II” In Trans. Amer. Math. Soc. 108 (1963), 275-292; ibid. 108, 1963, pp. 293–312 DOI: 10.1090/s0002-9947-1963-0158400-5
  • [Tam62] Dov Tamari “The algebra of bracketings and their enumeration” In Nieuw Arch. Wisk. (3) 10, 1962, pp. 131–146
  • [TV03] V. Tarasov and A. Varchenko “Selberg-type integrals associated with 𝔰𝔩3\mathfrak{sl}_{3} In Lett. Math. Phys. 65.3, 2003, pp. 173–185 DOI: 10.1023/B:MATH.0000010712.67685.9d
  • [Var95] Alexander Varchenko “Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups”, Advanced Series in Mathematical Physics 21 World Scientific Publishing Co., 1995 DOI: 10.1142/2467
  • [War09] S. Ole Warnaar “A Selberg integral for the Lie algebra AnA_{n} In Acta Math. 203.2, 2009, pp. 269–304 DOI: 10.1007/s11511-009-0043-x
  • [Yos03] Masaaki Yoshida “A geometric interpretation of the Selberg integral” In Internat. J. Modern Phys. A 18.24, 2003, pp. 4343–4359 DOI: 10.1142/S0217751X03015192