This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The simplest

Abstract

We consider a set of elementary compactifications of D+1D+1 to DD spacetime dimensions on a circle: first for pure general relativity, then in the presence of a scalar field, first free then with a non minimal coupling to the Ricci scalar, and finally in the presence of gauge bosons. We compute the tree-level amplitudes in order to compare some gravitational and non-gravitational amplitudes. This allows us to recover the known constraints of the U(1)U(1), dilatonic and scalar Weak Gravity Conjectures in some cases, and to show the interplay of the different interactions. We study the KK modes pair-production in different dimensions. We also discuss the contribution to some of these amplitudes of the non-minimal coupling in higher dimensions for scalar fields to the Ricci scalar.

Newton versus Coulomb for Kaluza-Klein modes

Karim Benaklia a[email protected], Carlo Branchinab b[email protected] and Gaëtan Lafforgue-Marmetc c[email protected]

Sorbonne Université, CNRS, Laboratoire de Physique Théorique et Hautes Energies, LPTHE, F-75005 Paris, France.

1 Introduction

Among the Swampland conjectures [1], one of the most popular and best tested is probably the Weak Gravity Conjecture (WGC). Its simplest formulation [2] considers the case of a DD-dimensional U(1)U(1) gauge theory, with a coupling constant gg, and requires the existence of at least one state of mass mm and charge qq which satisfies:

gqD3D2κDm,gq\geq\sqrt{\frac{D-3}{D-2}}\kappa_{D}m, (1.1)

where κD\kappa_{D} is defined as κD2=8πGD=1MP,DD2\kappa^{2}_{D}=8\pi G_{D}=\frac{1}{M_{P,D}^{D-2}} with MP,DM_{P,D} the reduced Planck mass in DD dimensions. This inequality implies, among others, that in the non-relativistic limit, the Newton force is not stronger than the Coulomb force. The particular states for which the equality in (1.1) is satisfied are said to saturate the WGC. In this work we will be interested in a particular case of them.

The present work is dedicated to the study of two different generalizations of the WGC: one that arises when the gauge interaction is complemented by a dilaton interaction[3, 4], and another [5, 6, 7] that broadly requires the dominance of scalar interactions with respect to gravity in some scattering processes depending on the specific theory. We are interested in the modes that propagate in an extra dimension forming a tower of KK excitations [8, 9, 10, 11]. We will explicitly show that these modes undergo gravitational and non-gravitational interactions of equal intensity, which allows us to use them as probes for the conjectured inequalities generalizing the one mentioned above. They will also be useful to investigate the behavior of the scalar WGC under compactification.

Obviously, the KK excitations considered here saturate the inequalities conjectured only at the classical level, to which our study will be limited, since both terms of these inequalities are in general corrected by quantum effects. However, one has in mind that extending the theory with enough supersymmetries, the KK modes can be BPS states which saturate them even at the quantum level.

The fact that KK modes saturate the inequalities of the various conjectures is a known property, but we will give a derivation of it here in a simple form that we have not found in the existing literature. Our derivation of the various inequalities will be based on amplitude calculations, not for example on the conditions for decay of extremal black holes, and some of the explicit expressions for the amplitudes needed to make the comparisons seem to be either missing or scattered and hard to find, so we hope that presenting them altogether here might be useful.

This work is organized as follows. Section 2 reviews the well-known reduction of KK from D+1D+1 to DD dimensions of the Hilbert-Einstein action and a massless scalar. It allows us to introduce our notations, presents the Lagrangian expansion needed to extract the Feymann rules for calculating amplitudes, and compute the numerical factor in the total derivative term, often misquoted in the literature, which will be useful in Section 5. The dilatonic WGC inequality is derived in Section 3, where we also calculate various KK pair production amplitudes. In Section 4, we consider adding a mass term for the scalar in D+1D+1 dimensions and we find our form of the scalar WGC. A non-minimal coupling to gravity is considered in section 5. The interactions due to the presence of higher dimensional gauge fields are discussed in section 6. Our conclusions are presented in section 7. Finally, some technical details about our calculations are gathered in appendices.

2 Expansion to Second Order in the Gravitational Field

We work with the signature (+,,,)(+,-,...,-). The D+1D+1 dimensional quantities will be denoted with a hat. We use Latin and Greek letters for the D+1 and D-dimensional coordinates, respectively. We denote by xx the DD non-compact and by zz+2πLz\equiv z+2\pi L the compact coordinates. We recall the steps of the simple dimensional reduction of a free real massless scalar field Φ^\hat{\Phi} coupled to General Relativity:

𝒮(D+1)=𝒮EH(D+1)+𝒮Φ,0(D+1),\mathcal{S}^{(D+1)}=\mathcal{S}_{EH}^{(D+1)}+\mathcal{S}_{\Phi,0}^{(D+1)}, (2.1)

where

𝒮EH(D+1)=12κ^2dD+1x(1)Dg^R^,\mathcal{S}_{EH}^{(D+1)}=\frac{1}{2\hat{\kappa}^{2}}\int\mathrm{d}^{D+1}x\sqrt{(-1)^{D}\hat{g}}\,\hat{R}, (2.2)

and

𝒮Φ,0(D+1)=dD+1x(1)Dg^12g^MNMΦ^NΦ^\mathcal{S}_{\Phi,0}^{(D+1)}=\int\mathrm{d}^{D+1}x\,\,\sqrt{(-1)^{D}\hat{g}}\,\,\frac{1}{2}\hat{g}^{MN}\partial_{M}\hat{\Phi}\partial_{N}\hat{\Phi} (2.3)

The Ricci scalar R^\hat{R} is computed from the metric g^MN\hat{g}_{MN}. In the simplest compactification from D+1D+1 to DD dimensions it takes the form

g^MN=(e2αϕgμνe2βϕAμAνe2βϕAμe2βϕAνe2βϕ)\hat{g}_{MN}=\begin{pmatrix}e^{2\alpha\phi}g_{\mu\nu}-e^{2\beta\phi}A_{\mu}A_{\nu}&e^{2\beta\phi}A_{\mu}\\ e^{2\beta\phi}A_{\nu}&-e^{2\beta\phi}\end{pmatrix} (2.4)

with ϕ\phi, AμA_{\mu} and gμνg_{\mu\nu} D-dimensional fields independent of the zz coordinate:

𝒮EH(D+1)=12κ^2dD+1x(1)D1ge((D2)α+β)ϕ\displaystyle\mathcal{S}_{EH}^{(D+1)}=\frac{1}{2\hat{\kappa}^{2}}\int\mathrm{d}^{D+1}x\,\sqrt{(-1)^{D-1}g}\,\,e^{((D-2)\alpha+\beta)\phi} {R[2(1D)α2β]ϕ\displaystyle\bigg{\{}R-\big{[}2(1-D)\alpha-2\beta\big{]}\Box\phi
[(D2)(1D)α2+2β((2D)αβ)](ϕ)2\displaystyle\,-\left[(D-2)(1-D)\alpha^{2}+2\beta\big{(}(2-D)\alpha-\beta\big{)}\right](\partial\phi)^{2}
14e2(βα)ϕF2}.\displaystyle\,-\frac{1}{4}e^{2(\beta-\alpha)\phi}F^{2}\bigg{\}}. (2.5)

where gg is the determinant of the DD-dimensional metric. A canonical DD-dimensional Einstein-Hilbert action is obtained for

(D2)α+β=0.(D-2)\alpha+\beta=0. (2.6)

and the canonical dilaton kinetic term fixes the constant α\alpha to be:

α2=12(D1)(D2).\alpha^{2}=\frac{1}{2(D-1)(D-2)}. (2.7)

Since all fields are independent of zz, we can perform the integration over this coordinate to obtain, keeping only the zero modes,111The factor in front of the D’Alambertian operator, 2α2\alpha, corrects the expression sometimes found in the literature, (D3)α(D-3)\alpha. As long as only minimal coupling to gravity is considered, the difference is harmless.

𝒮0,0(D)=2πL2κ^2dDx(1)D1g[R+2αϕ+12(ϕ)214e2(1D)αϕF2].\mathcal{S}_{0,0}^{(D)}=\frac{2\pi L}{2\hat{\kappa}^{2}}\int\mathrm{d}^{D}x\sqrt{(-1)^{D-1}g}\left[R+2\alpha\Box\phi+\frac{1}{2}(\partial\phi)^{2}-\frac{1}{4}e^{2(1-D)\alpha\phi}F^{2}\right]. (2.8)

We define the DD-dimensional constant κ\kappa in terms of the (D+1)(D+1)-dimensional κ^\hat{\kappa} as

1κ2=2πLκ^2MPD2=2πLM^PD1\frac{1}{\kappa^{2}}=\frac{2\pi L}{\hat{\kappa}^{2}}\Longrightarrow M_{P}^{D-2}=2\pi L\,\hat{M}_{P}^{D-1} (2.9)

In (2.4), the ϕ\phi and AμA_{\mu} fields are dimensionless. Dimensional fields, that we denote ϕ~\tilde{\phi} and Aμ~\tilde{A_{\mu}}, can be written as

ϕ~=ϕ2κ;Aμ~=Aμ2κ\tilde{\phi}=\frac{\phi}{\sqrt{2}\kappa};\,\,\,\,\,\,\,\,\tilde{A_{\mu}}=\frac{A_{\mu}}{\sqrt{2}\kappa} (2.10)

The action of the DD-dimensional gauge and scalar fields, denoted as the graviphoton and the dilaton, respectively, reads:

𝒮0,0(D)=dDx(1)D1g[R2κ2+2ακϕ~+12(ϕ~)214e22(1D)ακϕ~F~2].\mathcal{S}_{0,0}^{(D)}=\int\mathrm{d}^{D}x\sqrt{(-1)^{D-1}g}\left[\frac{R}{2\kappa^{2}}+\frac{\sqrt{2}\alpha}{\kappa}\Box\tilde{\phi}+\frac{1}{2}(\partial\tilde{\phi})^{2}-\frac{1}{4}e^{2\sqrt{2}(1-D)\alpha\kappa\tilde{\phi}}\tilde{F}^{2}\right]. (2.11)

In the following, with the exception of section 5, the second term in (2.11), being a total derivative, will be discarded and, for notational simplicity, we remove the tilde in our notation.

For simplicity, we restrict to the simplest case where the field Φ^\hat{\Phi} is periodic and single-valued on the compact dimension

Φ^(x,z+2πL)=Φ^(x,z),Φ^(x,z)=12πLn=+φn(x)einzL,\hat{\Phi}(x,z+2\pi L)=\hat{\Phi}(x,z),\qquad\hat{\Phi}(x,z)=\frac{1}{\sqrt{2\pi L}}\sum_{n=-\infty}^{+\infty}\varphi_{n}(x)e^{\frac{inz}{L}}, (2.12)

which leads to

𝒮=dDx(1)D1g{\displaystyle\mathcal{S}=\int\mathrm{d}^{D}x\sqrt{(-1)^{D-1}g}\Bigg{\{} R2κ2+12(ϕ)214e2D1D2κϕF2+12μφ0μφ0\displaystyle\frac{R}{2\kappa^{2}}+\frac{1}{2}(\partial\phi)^{2}-\frac{1}{4}e^{-2\sqrt{\frac{D-1}{D-2}}\kappa{\phi}}F^{2}+\frac{1}{2}\partial_{\mu}\varphi_{0}\partial^{\mu}\varphi_{0}
+n=1(μφnμφnn2L2e2D1D2κϕφnφn)\displaystyle+\sum_{n=1}^{\infty}\left(\partial_{\mu}\varphi_{n}\partial^{\mu}\varphi_{n}^{*}-\frac{n^{2}}{L^{2}}e^{2\sqrt{\frac{D-1}{D-2}}\kappa{\phi}}\varphi_{n}\varphi_{n}^{*}\right)
+n=1(i2κnLAμ(μφnφnφnμφn)+2κ2n2L2AμAμφnφn)},\displaystyle+\sum_{n=1}^{\infty}\left(i\sqrt{2}\kappa\frac{n}{L}A^{\mu}\left(\partial_{\mu}\varphi_{n}\varphi_{n}^{*}-\varphi_{n}\partial_{\mu}\varphi_{n}^{*}\right)+{2}\kappa^{2}\frac{n^{2}}{L^{2}}A_{\mu}A^{\mu}\varphi_{n}\varphi_{n}^{*}\right)\Bigg{\}}, (2.13)

where we have chosen in (2.7) the positive root for α\alpha. The complex scalars φn\varphi_{n} form the Kaluza-Klein (KK) tower and appear minimally coupled to the graviphoton. Around a generic background value ϕ0\phi_{0} for the dilaton, the gauge coupling gg is given by

g2=e2D1D2κϕ0.g^{2}=e^{2\sqrt{\frac{D-1}{D-2}}\kappa{\phi_{0}}}. (2.14)

For each KK mode, the mass and charge read

gqn=2κnLeD1D2κϕ0mn=nLeD1D2κϕ0.gq_{n}=\sqrt{2}\kappa\frac{n}{L}e^{\sqrt{\frac{D-1}{D-2}}\kappa{\phi_{0}}}\;\qquad m_{n}=\frac{n}{L}e^{\sqrt{\frac{D-1}{D-2}}\kappa{\phi_{0}}}. (2.15)

This shows that they are related through

(gqn)2=2κ2mn2,(gq_{n})^{2}=2\kappa^{2}m_{n}^{2}, (2.16)

saturating the dilatonic WGC condition. This is expected as all the interactions unify to descend from the unique gravitational interaction of a free scalar field in higher dimensions. Useful for the rest of the manuscript is to derive this result proceeding instead with the expansion of the metric (2.4) to second order:

g^MN=ζ^MN+2κ^h^MN+4κ^2f^MN+o(κ^3)\hat{g}_{MN}=\hat{\zeta}_{MN}+2\hat{\kappa}\hat{h}_{MN}+4\hat{\kappa}^{2}\hat{f}_{MN}+o(\hat{\kappa}^{3}) (2.17)

where:

ζ^MN=(e22ακ^ϕ0ημν00e22βκ^ϕ0).\hat{\zeta}_{MN}=\begin{pmatrix}e^{2\sqrt{2}\alpha\hat{\kappa}{\phi_{0}}}\eta_{\mu\nu}&0\\ 0&-e^{2\sqrt{2}\beta\hat{\kappa}{\phi_{0}}}\end{pmatrix}. (2.18)

is the background metric and κ^2f^MNκ^h^MN1\hat{\kappa}^{2}\hat{f}_{MN}\ll\hat{\kappa}\hat{h}_{MN}\ll 1, for all M,NM,N. We write the perturbation as

{g^MN=ζ^MN+2κh^MN+4κ2f^MN+𝒪(κ3)g^MN=ζ^MN+2κt^MN+4κ2l^MN+𝒪(κ3).\displaystyle\begin{cases}&\hat{g}_{MN}=\hat{\zeta}_{MN}+2\kappa\hat{h}_{MN}+4\kappa^{2}\hat{f}_{MN}+\mathcal{O}(\kappa^{3})\\ &\hat{g}^{MN}=\hat{\zeta}^{MN}+2\kappa\hat{t}^{MN}+4\kappa^{2}\hat{l}^{MN}+\mathcal{O}(\kappa^{3}).\end{cases} (2.19)

The relation g^MPg^PNδMN\hat{g}_{MP}\hat{g}^{PN}\equiv\delta_{M}^{N} reads

{t^MN=h^MNl^MN+f^MN=h^PMh^PN,\begin{cases}\hat{t}^{MN}=-\hat{h}^{MN}\\ \hat{l}^{MN}+\hat{f}^{MN}=\hat{h}^{M}_{P}\hat{h}^{PN},\end{cases} (2.20)

where it is understood that the indices are raised and lowered with the background metric ζ^\hat{\zeta}, then

(1)Dg^Φ=\displaystyle\sqrt{(-1)^{D}\hat{g}}\mathcal{L}_{\Phi}= (1)Dζ^[12MΦ^MΦ^κ^2h^MN(MΦ^NΦ^12ζ^MNPΦ^PΦ^)\displaystyle\sqrt{(-1)^{D}\hat{\zeta}}\left[\frac{1}{2}\partial_{M}\hat{\Phi}\partial^{M}\hat{\Phi}-\frac{\hat{\kappa}^{\prime}}{2}\hat{h}^{MN}\left(\partial_{M}\hat{\Phi}\partial_{N}\hat{\Phi}-\frac{1}{2}\hat{\zeta}_{MN}\partial_{P}\hat{\Phi}\partial^{P}\hat{\Phi}\right)\right.
+κ^22(l^MN12h^MNh^PP)MΦ^NΦ^\displaystyle\left.+\frac{\hat{\kappa}^{\prime 2}}{2}\left(\hat{l}^{MN}-\frac{1}{2}\hat{h}^{MN}\hat{h}^{P}_{\,P}\right)\partial_{M}\hat{\Phi}\partial_{N}\hat{\Phi}\right.
+κ^24(f^PP12h^MPh^PM+14(h^PP)2)MΦ^MΦ^].\displaystyle\left.+\frac{\hat{\kappa}^{\prime 2}}{4}\left(\hat{f}^{P}_{\,P}-\frac{1}{2}\hat{h}_{MP}\hat{h}^{PM}+\frac{1}{4}(\hat{h}^{P}_{\,P})^{2}\right)\partial_{M}\hat{\Phi}\partial^{M}\hat{\Phi}\right]. (2.21)

where κ^2κ^\hat{\kappa}^{\prime}\equiv 2\hat{\kappa}. With:

h^MN=12πL(e22ακ^ϕ0(2αϕημν+hμν)e22ακ^ϕ0Aμ2e22ακ^ϕ0Aν2e22βκ^ϕ02βϕ),\hat{h}^{MN}=\frac{1}{\sqrt{2\pi L}}\begin{pmatrix}e^{-2\sqrt{2}\alpha\hat{\kappa}{\phi_{0}}}\left(\sqrt{2}\alpha\phi\,\eta^{\mu\nu}+h^{\mu\nu}\right)&-e^{-2\sqrt{2}\alpha\hat{\kappa}{\phi_{0}}}\frac{A^{\mu}}{\sqrt{2}}\\ -e^{-2\sqrt{2}\alpha\hat{\kappa}{\phi_{0}}}\frac{A^{\nu}}{\sqrt{2}}&-e^{-2\sqrt{2}\beta\hat{\kappa}{\phi_{0}}}\sqrt{2}\beta\phi\end{pmatrix}, (2.22)

and using (1)Dζ^=e2(Dα+β)κ^ϕ0\sqrt{(-1)^{D}\hat{\zeta}}=e^{\sqrt{2}(D\alpha+\beta)\hat{\kappa}{\phi_{0}}}, this leads to the coupling between the leading order fluctuations h^MN{\hat{h}^{MN}} of the metric and the stress-energy-momentum of the scalar field T^MNΦ^\hat{T}^{\hat{\Phi}}_{MN}:

int(1)=κ^h^MNT^MNΦ^=\displaystyle{\mathcal{L}}_{int}^{(1)}=-\hat{\kappa}\hat{h}^{MN}\hat{T}^{\hat{\Phi}}_{MN}= κ^hμνTμν(φ0,φn)\displaystyle-\hat{\kappa}h^{\mu\nu}T^{(\varphi_{0},\varphi_{n})}_{\mu\nu} (2.23)
i2κ^Aμn=1nL(μφnφnφnμφn)2D1D2κ^e2D1D2κ^ϕ0ϕn=1n2L2φnφn.\displaystyle-i\sqrt{2}\hat{\kappa}A^{\mu}\sum_{n=1}^{\infty}\frac{n}{L}\left(\partial_{\mu}\varphi_{n}\,\varphi_{n}^{*}-\varphi_{n}\,\partial_{\mu}\varphi_{n}^{*}\right)-2\sqrt{\frac{D-1}{D-2}}\hat{\kappa}e^{2\sqrt{\frac{D-1}{D-2}}\hat{\kappa}\phi_{0}}\phi\sum_{n=1}^{\infty}\frac{n^{2}}{L^{2}}\varphi_{n}\varphi_{n}^{*}.

Next, we identify f^MN\hat{f}_{MN} from the metric decomposition at second order:

f^MN=12πL(e22ακ^ϕ0(α2ϕ2ημν+2αϕhμν+fμν)12e22βκ^ϕ0AμAνe22βκ^ϕ0βϕAμe22βκ^ϕ0βϕAνe22βκ^ϕ0β2ϕ2).\hat{f}_{MN}=\frac{1}{2\pi L}\begin{pmatrix}e^{2\sqrt{2}\alpha\hat{\kappa}{\phi_{0}}}\bigg{(}\alpha^{2}\phi^{2}\eta_{\mu\nu}+\sqrt{2}\alpha\phi\,h_{\mu\nu}+f_{\mu\nu}\bigg{)}-\frac{1}{2}e^{2\sqrt{2}\beta\hat{\kappa}{\phi_{0}}}A_{\mu}A_{\nu}&e^{2\sqrt{2}\beta\hat{\kappa}{\phi_{0}}}\beta\phi A_{\mu}\\ e^{2\sqrt{2}\beta\hat{\kappa}{\phi_{0}}}\beta\phi A_{\nu}&-e^{2\sqrt{2}\beta\hat{\kappa}{\phi_{0}}}\beta^{2}\phi^{2}\end{pmatrix}. (2.24)

With this result, l^MN\hat{l}^{MN} in (2) is given by

l^MN=h^MPh^PNf^MN\hat{l}^{MN}=\hat{h}^{MP}\hat{h}_{\,P}^{N}-\hat{f}^{MN} (2.25)

Using (2.24) and (2.22) one obtains

l^MN=12πL(e22ακ^ϕ0(α2ϕ2ημν+2αϕhμν+lμν)e22ακ^ϕ0(αϕAμ+12hμρAρ)e22ακ^ϕ0(αϕAν+12hρνAρ)e22βκ^ϕ0β2ϕ2+e22ακ^ϕ012AρAρ).\hat{l}^{MN}=\frac{1}{2\pi L}\begin{pmatrix}e^{-2\sqrt{2}\alpha\hat{\kappa}{\phi_{0}}}\bigg{(}\alpha^{2}\phi^{2}\eta^{\mu\nu}+\sqrt{2}\alpha\phi\,h^{\mu\nu}+l^{\mu\nu}\bigg{)}&-e^{-2\sqrt{2}\alpha\hat{\kappa}{\phi_{0}}}\left(\alpha\phi A^{\mu}+\frac{1}{\sqrt{2}}h^{\mu\rho}A_{\rho}\right)\\ -e^{-2\sqrt{2}\alpha\hat{\kappa}{\phi_{0}}}\left(\alpha\phi A^{\nu}+\frac{1}{\sqrt{2}}h_{\rho}^{\nu}A^{\rho}\right)&-e^{-2\sqrt{2}\beta\hat{\kappa}{\phi_{0}}}\beta^{2}\phi^{2}+e^{-2\sqrt{2}\alpha\hat{\kappa}{\phi_{0}}}\frac{1}{2}A_{\rho}A^{\rho}\end{pmatrix}. (2.26)

We define Jμ,n=(φnμφnφnμφn)J_{\mu,n}=(\varphi_{n}\partial_{\mu}\varphi_{n}^{*}-\varphi_{n}^{*}\partial_{\mu}\varphi_{n}), then the second order interaction in the Lagrangian is given by

int(2)=12μφ0νφ0\displaystyle{\mathcal{L}}_{int}^{(2)}=\frac{1}{2}\partial_{\mu}\varphi_{0}\partial_{\nu}\varphi_{0} [(fρρ2hρσhρσ4+(hρρ)28+12(D2α2+2Dβα+β24Dα24βα+4α2)ϕ2\displaystyle\left[\left(\frac{f^{\rho}_{\;\rho}}{2}-\frac{h^{\rho\sigma}h_{\rho\sigma}}{4}+\frac{(h^{\rho}_{\;\rho})^{2}}{8}+\frac{1}{2}\left(D^{2}\alpha^{2}+2D\beta\alpha+\beta^{2}-4D\alpha^{2}-4\beta\alpha+4\alpha^{2}\right)\phi^{2}\right.\right. (2.27)
+12((D2)α+β)ϕhρρ)ημν+lμν12hρρhμν]\displaystyle\left.\left.+\frac{1}{2}((D-2)\alpha+\beta)\phi h^{\rho}_{\;\rho}\right)\eta^{\mu\nu}+l^{\mu\nu}-\frac{1}{2}h^{\rho}_{\;\rho}h^{\mu\nu}\right]
+n=1μφnνφn\displaystyle+\sum_{n=1}^{\infty}\partial_{\mu}\varphi_{n}\partial_{\nu}\varphi_{n}^{*} [(fρρ2hρσhρσ4+(hρρ)28+12(D2α2+2Dβα+β24Dα24βα+4α2)ϕ2\displaystyle\left[\left(\frac{f^{\rho}_{\;\rho}}{2}-\frac{h^{\rho\sigma}h_{\rho\sigma}}{4}+\frac{(h^{\rho}_{\;\rho})^{2}}{8}+\frac{1}{2}\left(D^{2}\alpha^{2}+2D\beta\alpha+\beta^{2}-4D\alpha^{2}-4\beta\alpha+4\alpha^{2}\right)\phi^{2}\right.\right.
+12((D2)α+β)ϕhρρ)ημν+lμν12hρρhμν]\displaystyle\left.\left.+\frac{1}{2}((D-2)\alpha+\beta)\phi h^{\rho}_{\;\rho}\right)\eta^{\mu\nu}+l^{\mu\nu}-\frac{1}{2}h^{\rho}_{\;\rho}h^{\mu\nu}\right]
n=1n2L2|φn|2\displaystyle-\sum_{n=1}^{\infty}\frac{n^{2}}{L^{2}}|\varphi_{n}|^{2} [A2e2(Dαβ)κϕ0(fρρ2hρσhρσ4+(hρρ)28+(12(Dα+β)β)ϕhρρ\displaystyle\left[-A^{2}e^{\sqrt{2}(D\alpha-\beta)\kappa{\phi_{0}}}\left(\frac{f^{\rho}_{\;\rho}}{2}-\frac{h^{\rho\sigma}h_{\rho\sigma}}{4}+\frac{(h^{\rho}_{\;\rho})^{2}}{8}+\left(\frac{1}{2}(D\alpha+\beta)-\beta\right)\phi h^{\rho}_{\;\rho}\right.\right.
+12(D2α2+2Dαβ+β24Dαβ4β2+4β2)ϕ2)]\displaystyle\left.\left.+\frac{1}{2}(D^{2}\alpha^{2}+2D\alpha\beta+\beta^{2}-4D\alpha\beta-4\beta^{2}+4\beta^{2})\phi^{2}\right)\right]
n=1inLhρσAρ\displaystyle-\sum_{n=1}^{\infty}i\frac{n}{L}h^{\rho\sigma}A_{\rho} Jσ,n+inLAρJρ,n(hσσ2((D2)α+β)ϕ)\displaystyle J_{\sigma,n}+i\frac{n}{L}A^{\rho}J_{\rho,n}\left(-\frac{h^{\sigma}_{\;\sigma}}{2}-((D-2)\alpha+\beta)\phi\right)

This expression simplifies using the relation between β\beta and α\alpha (2.6). In particular, the coefficients of ϕ2\phi^{2} and ϕhρρ\phi\,h_{\rho}^{\rho} vanish. One obtains

int(2)=\displaystyle{\mathcal{L}}_{int}^{(2)}=\,\, 12μφ0νφ0[(fρρ2hρσhρσ4+(hρρ)28)ημν+lμν12hρρhμν]\displaystyle\frac{1}{2}\partial_{\mu}\varphi_{0}\partial_{\nu}\varphi_{0}\left[\left(\frac{f^{\rho}_{\;\rho}}{2}-\frac{h^{\rho\sigma}h_{\rho\sigma}}{4}+\frac{(h^{\rho}_{\;\rho})^{2}}{8}\right)\eta^{\mu\nu}+l^{\mu\nu}-\frac{1}{2}h^{\rho}_{\;\rho}h^{\mu\nu}\right]
+\displaystyle+ n=1μφnνφn[(fρρ2hρσhρσ4+(hρρ)28)ημν+lμν12hρρhμν]\displaystyle\sum_{n=1}^{\infty}\partial_{\mu}\varphi_{n}\partial_{\nu}\varphi_{n}^{*}\left[\left(\frac{f^{\rho}_{\;\rho}}{2}-\frac{h^{\rho\sigma}h_{\rho\sigma}}{4}+\frac{(h^{\rho}_{\;\rho})^{2}}{8}\right)\eta^{\mu\nu}+l^{\mu\nu}-\frac{1}{2}h^{\rho}_{\;\rho}h^{\mu\nu}\right]
\displaystyle- n=1n2L2|φn|2e22(D1)ακϕ0(fρρ2hρσhρσ4+(hρρ)28)\displaystyle\sum_{n=1}^{\infty}\frac{n^{2}}{L^{2}}|\varphi_{n}|^{2}e^{{2\sqrt{2}(D-1)\alpha\kappa\phi_{0}}}\left(\frac{f^{\rho}_{\;\rho}}{2}-\frac{h^{\rho\sigma}h_{\rho\sigma}}{4}+\frac{(h^{\rho}_{\;\rho})^{2}}{8}\right)
\displaystyle- n=1n2L2|φn|2[A2+e22(D1)ακϕ0(2(D1)2α2ϕ2+(D1)αϕhρρ)]\displaystyle\sum_{n=1}^{\infty}\frac{n^{2}}{L^{2}}|\varphi_{n}|^{2}\left[-A^{2}+e^{{2\sqrt{2}(D-1)\alpha\kappa\phi_{0}}}\left(2(D-1)^{2}\alpha^{2}\phi^{2}+(D-1)\alpha\phi h^{\rho}_{\;\rho}\right)\right]
+inLAρhσσ2Jρ,ninLhρσAρJσ,n\displaystyle+i\frac{n}{L}A^{\rho}\frac{h^{\sigma}_{\;\sigma}}{2}J_{\rho,n}-i\frac{n}{L}h^{\rho\sigma}A_{\rho}J_{\sigma,n} (2.28)

which shows how the gauge invariance of the graviphoton is recovered in this expansion at second order in κ^\hat{\kappa} and exhibits the minimal coupling of the graviphoton to the tower of scalars in κ^\hat{\kappa}.

3 Scattering Amplitudes and Weak Gravity Conjectures

In this section, we will compute diverse 222\rightarrow 2 amplitudes in the simple model defined above and compare two sets to be identified, one denoted as gravitational and the other as non-gravitational mediated interactions.

We expand the dilaton around its background value ϕ0\phi_{0} as ϕ0+ϕ\phi_{0}+\phi in the action (2) to obtain:

𝒮f=dDx(1)D1g{\displaystyle\mathcal{S}_{f}=\int\mathrm{d}^{D}x\sqrt{(-1)^{D-1}g}\Bigg{\{} R2κ2+12(ϕ)214e2D1D2κϕ0m=0(2D1D2κ)mϕmm!F2\displaystyle\frac{R}{2\kappa^{2}}+\frac{1}{2}(\partial\phi)^{2}-\frac{1}{4}e^{-2\sqrt{\frac{D-1}{D-2}}\kappa\phi_{0}}\sum_{m=0}^{\infty}\left(-2\sqrt{\frac{D-1}{D-2}}\kappa\right)^{m}\frac{\phi^{m}}{m!}F^{2}
+12μφ0μφ0+n=1μφnμφn\displaystyle+\frac{1}{2}\partial_{\mu}\varphi_{0}\partial^{\mu}\varphi_{0}+\sum_{n=1}^{\infty}\partial_{\mu}\varphi_{n}\partial^{\mu}\varphi_{n}^{*}
n=1(n2L2e2D1D2κϕ0m=0(2D1D2κ)mϕmm!φnφn)\displaystyle-\sum_{n=1}^{\infty}\left(\frac{n^{2}}{L^{2}}e^{2\sqrt{\frac{D-1}{D-2}}\kappa{\phi_{0}}}\sum_{m=0}^{\infty}\left(2\sqrt{\frac{D-1}{D-2}}\kappa\right)^{m}\frac{\phi^{m}}{m!}\varphi_{n}\varphi_{n}^{*}\right)
+n=1(i2κnLAμ(μφnφnφnμφn)+2κ2n2L2AμAμφnφn)}\displaystyle+\sum_{n=1}^{\infty}\left(i{\sqrt{2}}\kappa\frac{n}{L}A^{\mu}\left(\partial_{\mu}\varphi_{n}\varphi_{n}^{*}-\varphi_{n}\partial_{\mu}\varphi_{n}^{*}\right)+{2}\kappa^{2}\frac{n^{2}}{L^{2}}A_{\mu}A^{\mu}\varphi_{n}\varphi_{n}^{*}\right)\Bigg{\}} (3.1)

where diverse interactions can be identified. For instance:

  • 3 and 4-point vertices for minimally-coupled scalars to graviphotons appear in the last line. We can identify the KK electric charges

    gqn=2κnLeD1D2κϕ0.gq_{n}={\sqrt{2}}\kappa\frac{n}{L}e^{\sqrt{\frac{D-1}{D-2}}\kappa\,{\phi_{0}}}. (3.2)

  • In the third line, the mm-th term (m0m\neq 0) in the sum gives a (2+m)(2+m)-point interaction with mm dilatons and two KK scalars with coupling

    i(2D1D2κ)mn2L2e2D1D2κϕ0.-i\left(2\sqrt{\frac{D-1}{D-2}}\kappa\right)^{m}\,\frac{n^{2}}{L^{2}}\,e^{2\sqrt{\frac{D-1}{D-2}}\kappa{\phi_{0}}}. (3.3)

  • The mm-th term in the sum in front of F2F^{2} in the first line gives a coupling of mm dilatons with two gauge fields

    i(2D1D2κ)m(p1p2ημνp1νp2μ).-i\left(-2\sqrt{\frac{D-1}{D-2}}\kappa\right)^{m}\left(p_{1}\cdot p_{2}\,\eta_{\mu\nu}-p_{1\,\nu}p_{2\,\mu}\right). (3.4)

Expansion of the metric around flat space-time gμν=ημν+2κhμνg_{\mu\nu}=\eta_{\mu\nu}+2\kappa h_{\mu\nu} gives the usual minimal couplings to gravity for both the matter fields (φ0\varphi_{0}, φn\varphi_{n}) and the massless mediators (ϕ\phi, AμA_{\mu}).

3.1 The Dilatonic WGC

Consider the tree-level 222\to 2 scattering222We adopt here this simple notation where φn(p)\varphi_{n}(p), or |φn(p)\ket{\varphi_{n}(p)} should not be viewed as the field operator acting on the vacuum but to represent a one-particle state of momentum pp.,333Here and throughout, s,ts,t and uu will denote the Mandelstam variables. φn(p1)φn(p2)φn(p3)φn(p4)\varphi_{n}(p_{1})\varphi_{n}(p_{2})\rightarrow\varphi_{n}(p_{3})\varphi_{n}(p_{4}):

i=\displaystyle i\mathcal{M}= ig2qn2((p1+p3)(p2+p4)t+(p1+p4)(p2+p3)u)4iD1D2κ2mn4(1t+1u)\displaystyle ig^{2}q_{n}^{2}\left(\frac{(p_{1}+p_{3})\cdot(p_{2}+p_{4})}{t}+\frac{(p_{1}+p_{4})\cdot(p_{2}+p_{3})}{u}\right)-4i\frac{D-1}{D-2}\kappa^{2}m^{4}_{n}\left(\frac{1}{t}+\frac{1}{u}\right)
κ24[(p1μp3ν+p3μp1νημν(p1p3mn2))i𝒫μναβt(p2αp4β+p4αp2βηαβ(p2p4mn2))\displaystyle-\frac{\kappa^{2}}{4}\Bigg{[}\Big{(}p_{1\mu}p_{3\nu}+p_{3\mu}p_{1\nu}-\eta_{\mu\nu}\left(p_{1}\cdot p_{3}-m_{n}^{2}\right)\Big{)}\frac{i\mathcal{P}^{\mu\nu\alpha\beta}}{t}\Big{(}p_{2\alpha}p_{4\beta}+p_{4\alpha}p_{2\beta}-\eta_{\alpha\beta}\left(p_{2}\cdot p_{4}-m_{n}^{2}\right)\Big{)}
+(t,p3,p4)(u,p4,p3)]\displaystyle\qquad\quad+(t,p_{3},p_{4})\leftrightarrow(u,p_{4},p_{3})\Bigg{]} (3.5)

where 𝒫\mathcal{P} is the usual massless spin-2 projector

𝒫αβρσ=ηαρηβσ+ηασηβρ2ηαβηρσD2\mathcal{P}^{\alpha\beta\rho\sigma}=\frac{\eta^{\alpha\rho}\eta^{\beta\sigma}+\eta^{\alpha\sigma}\eta^{\beta\rho}}{2}-\frac{\eta^{\alpha\beta}\eta^{\rho\sigma}}{D-2} (3.6)

and we have separated the contributions from the exchanges of the gauge boson, the dilaton and the graviton, respectively.
Taking the non-relativistic (NR) limit

s4mn2mn20,tmn20,andumn20\frac{s-4m_{n}^{2}}{m_{n}^{2}}\to 0,\qquad\frac{t}{m_{n}^{2}}\to 0,\qquad{\rm and}\quad\frac{u}{m_{n}^{2}}\to 0 (3.7)

and expressing the charge in terms of the mass we obtain

iiNR=4imn2[g2qn2κ2mn2(D1D2+D3D2)](1t+1u)=0.i\mathcal{M}\to i\mathcal{M}_{NR}=4im_{n}^{2}\left[g^{2}q_{n}^{2}-\kappa^{2}m_{n}^{2}\left(\frac{D-1}{D-2}+\frac{D-3}{D-2}\right)\right]\left(\frac{1}{t}+\frac{1}{u}\right)=0. (3.8)

The relation between the charge and the mass (2.16) ensures the cancellation between the three forces.
It is straightforward to generalize this to see that dominance of the gauge interaction requires that a state with charge qq and mass mm satisfying the relation

g2q2(α22+D3D2)κ2m2,g^{2}q^{2}\geq\left(\frac{\alpha^{2}}{2}+\frac{D-3}{D-2}\right)\kappa^{2}m^{2}, (3.9)

where α\alpha is the dilatonic coupling of the form e22ακϕF2e^{2\sqrt{2}\alpha\kappa\phi}F^{2}, exists. We have therefore recovered in this explicit amplitude computation the Dilatonic Weak Gravity Conjecture that was derived in [3] (see also [4] for its generalization) from the study of the extremal Einstein-Maxwell-dilaton black hole solutions. In the absence of the massless dilaton field α=0\alpha=0, one trivially retrieves the original WGC condition

g2q2D3D2κ2m2.g^{2}q^{2}\geq\frac{D-3}{D-2}\kappa^{2}m^{2}. (3.10)

3.2 Amplitudes for Pair Production

Consider the production of a pair of matter states, here scalar KK states, of momenta p3,p4p_{3},\,p_{4} from massless particles of momenta p1,p2p_{1},\,p_{2}. We can split the production processes into two sets:

  • Non-gravitational production: a pair of KK scalar modes |φn,φn\ket{\varphi_{n},\varphi_{n}^{*}} can arise from a pair of photons γ,γ|\bra{\gamma,\gamma}, a pair of dilatons ϕ,ϕ|\bra{\phi,\phi}, or a dilaton and a photon ϕ,γ|\bra{\phi,\gamma}.

  • Gravitational production: this includes the presence of a graviton GG in initial states as G,G|\bra{G,G}, G,γ|\bra{G,\gamma} or G,ϕ|\bra{G,\phi}, but also gravitons as intermediate states in the production from γ,γ|\bra{\gamma,\gamma} or ϕ,ϕ|\bra{\phi,\phi}. For later convenience, we further divide the gravitational production processes into purely gravitational (the G,G|\bra{G,G} production) and mixed (all the others).

3.2.1 Non gravitational amplitudes

Refer to caption
Refer to caption
Refer to caption
Figure 1: Feynman diagrams for the non-gravitational production of a pair of matter states φn,φn\varphi_{n},\varphi_{n}^{*} from two photons (first line), two dilatons (second line) and a dilaton and a photon (third line).

The production from photons γγφnφn\gamma\gamma\rightarrow\varphi_{n}\varphi_{n}^{*} occurs through the coupling to the U(1)U(1) gauge boson plus an s-channel term mediated by the dilaton, as depicted in the first line of figure 1. These give:

iγγ=\displaystyle i\mathcal{M}_{\gamma\gamma}= ig2qn2ϵμ(p1)ϵν(p2)((2p3μp1μ)(2p4νp2ν)tmn2+(2p4μp1μ)(2p3νp2ν)umn2+2ημν)\displaystyle ig^{2}q_{n}^{2}\,\,\epsilon_{\mu}(p_{1})\epsilon_{\nu}(p_{2})\left(\frac{(2p_{3}^{\mu}-p_{1}^{\mu})(2p_{4}^{\nu}-p_{2}^{\nu})}{t-m_{n}^{2}}+\frac{(2p_{4}^{\mu}-p_{1}^{\mu})(2p_{3}^{\nu}-p_{2}^{\nu})}{u-m_{n}^{2}}+2\eta^{\mu\nu}\right) (3.11)
2ig2qn2D1D2ϵμ(p1)ϵν(p2)p1p2ημνp1νp2μs.\displaystyle-2ig^{2}q_{n}^{2}\frac{D-1}{D-2}\,\,\,\epsilon_{\mu}(p_{1})\epsilon_{\nu}(p_{2})\frac{p_{1}\cdot p_{2}\eta^{\mu\nu}-p_{1}^{\nu}p_{2}^{\mu}}{s}.

We are interested in the threshold limit

s4mn2mn20,t+mn2mn20,u+mn2mn20,\frac{s-4m_{n}^{2}}{m_{n}^{2}}\to 0,\qquad\frac{t+m_{n}^{2}}{m_{n}^{2}}\to 0,\qquad\frac{u+m_{n}^{2}}{m_{n}^{2}}\to 0, (3.12)

leading to

|γγ|2Threshold\displaystyle\left|\mathcal{M}_{\gamma\gamma}\right|^{2}\xrightarrow[\mathrm{Threshold}]{} 4(D2)2[(D2)34(D1)2(D2)+D1D2]g4qn4=(D3D2)2g4qn4D2\displaystyle\frac{4}{(D-2)^{2}}\left[(D-2)-\frac{3}{4}\frac{(D-1)^{2}}{(D-2)}+\frac{D-1}{D-2}\right]g^{4}q_{n}^{4}=\left(\frac{D-3}{D-2}\right)^{2}\frac{g^{4}q_{n}^{4}}{D-2} (3.13)

We note that, in a U(1)U(1) gauge theory with no dilaton, the amplitude would be given by the first line of (3.11) only, that means in the threshold limit 4g4q4/(D2)4g^{4}q^{4}/(D-2) for a state of charge qq.

The production from a dilation pair ϕϕφnφn\phi\phi\rightarrow\varphi_{n}\varphi_{n}^{*} (second line of figure 1) is immediately recognized to give a null result in the limit of interest:

iϕϕ=\displaystyle i\mathcal{M}_{\phi\phi}= 4iκ2D1D2mn4(1tmn2+1umn2)4iκ2D1D2mn2Threshold0.\displaystyle-4i\kappa^{2}\frac{D-1}{D-2}m_{n}^{4}\left(\frac{1}{t-m_{n}^{2}}+\frac{1}{u-m_{n}^{2}}\right)-4i\kappa^{2}\frac{D-1}{D-2}m_{n}^{2}\qquad\xrightarrow[\mathrm{Threshold}]{}0. (3.14)

Finally, the production from the pair photon-dilaton ϕγφnφn\phi\gamma\rightarrow\varphi_{n}\varphi_{n}^{*} receives contributions from the three s,tandus,t\,\mathrm{and}\,u-channels (see the third line of figure 1)

iγ(p1)ϕ(p2)\displaystyle i\mathcal{M}_{\gamma(p_{1})\phi(p_{2})} =ϵμ(p1){2D1D2κgqn(p1(p1+p2)gμρp1ρ(p1+p2)μ)(p3p4)ρis\displaystyle=\epsilon_{\mu}(p_{1})\Bigg{\{}-2\sqrt{\frac{D-1}{D-2}}\kappa gq_{n}\left(p_{1}\cdot(p_{1}+p_{2})g^{\mu\rho}-p_{1}^{\rho}(p_{1}+p_{2})^{\mu}\right)(p_{3}-p_{4})_{\rho}\frac{i}{s}
+2iD1D2κgqnmn2((2p3p1)μtmn2(2p4p1)μumn2)},\displaystyle\hskip 56.9055pt+2i\sqrt{\frac{D-1}{D-2}}\kappa gq_{n}m_{n}^{2}\left(\frac{(2p_{3}-p_{1})^{\mu}}{t-m_{n}^{2}}-\frac{(2p_{4}-p_{1})^{\mu}}{u-m_{n}^{2}}\right)\Bigg{\}}, (3.15)

and this is easily verified to give a null contribution in the threshold limit.

3.2.2 Mixed amplitudes

We consider now the “mixed gravitational” processes: we start by computing the graviton s-channel mediation for γγ\gamma\gamma and ϕϕ\phi\phi initial states, then the amplitudes with initial states γG\gamma\,G and ϕG\phi\,G. We present hereafter the results for the particular case D=4D=4. When it will be of interest, we will show the results for a generic number of dimensions DD.

Refer to caption
Figure 2: Feynman diagrams for pair production, gravitationally mediated, from photons and dilatons.

The additional contribution to the γγ\gamma\gamma and ϕϕ\phi\phi productions described in figure 2 respectively read

iγγG=κ2{\displaystyle i\mathcal{M}_{\gamma\gamma}^{\mathrm{G}}=-\kappa^{2}\Big{\{} (p1p2)(ϵ1αϵ2β+ϵ1βϵ2α)+(p1αp2β+p1βp2α)(ϵ1ϵ2)(ϵ1αp2β+p2αϵ1β)(p1ϵ2)\displaystyle(p_{1}\cdot p_{2})(\epsilon_{1\,\alpha}\epsilon_{2\,\beta}+\epsilon_{1\,\beta}\epsilon_{2\,\alpha})+(p_{1\,\alpha}p_{2\,\beta}+p_{1\,\beta}p_{2\,\alpha})(\epsilon_{1}\cdot\epsilon_{2})-(\epsilon_{1\,\alpha}p_{2\,\beta}+p_{2\,\alpha}\epsilon_{1\,\beta})(p_{1}\cdot\epsilon_{2})
(ϵ2αp1β+p1αϵ2β)(p2ϵ1)ηαβ(p1p2ϵ1ϵ2ϵ1p2ϵ2p1)}i𝒫αβρσs\displaystyle-(\epsilon_{2\,\alpha}p_{1\,\beta}+p_{1\,\alpha}\epsilon_{2\,\beta})(p_{2}\cdot\epsilon_{1})-\eta_{\alpha\beta}(p_{1}\cdot p_{2}\,\epsilon_{1}\cdot\epsilon_{2}-\epsilon_{1}\cdot p_{2}\,\epsilon_{2}\cdot p_{1})\Big{\}}\frac{i\mathcal{P}^{\alpha\beta\rho\sigma}}{s}
{p3ρp4σ+p3σp4ρηρσ(p3p4+m2)},\displaystyle\Big{\{}p_{3\,\rho}p_{4\,\sigma}+p_{3\,\sigma}p_{4\,\rho}-\eta_{\rho\sigma}(p_{3}\cdot p_{4}+m^{2})\Big{\}}, (3.16)

and

iϕϕG=κ2{p1αp2β+p1βp2αηαβp1p2}i𝒫αβρσs{p3ρp4σ+p3σp4ρηρσ(p3p4+m2)},\displaystyle i\mathcal{M}_{\phi\phi}^{\mathrm{G}}=-\kappa^{2}\Big{\{}p_{1\,\alpha}p_{2\,\beta}+p_{1\,\beta}p_{2\,\alpha}-\eta_{\alpha\beta}p_{1}\cdot p_{2}\Big{\}}\frac{i\mathcal{P}^{\alpha\beta\rho\sigma}}{s}\Big{\{}p_{3\,\rho}p_{4\,\sigma}+p_{3\,\sigma}p_{4\,\rho}-\eta_{\rho\sigma}(p_{3}\cdot p_{4}+m^{2})\Big{\}}, (3.17)

where ϵi=ϵ(pi)\epsilon_{i}=\epsilon(p_{i}). For the γγφnφn\gamma\gamma\to\varphi_{n}\varphi_{n}^{*} amplitude, a (simpler) way to compute this is through projecting onto a specific basis for the polarizations ϵ\epsilon (see Appendix B).

Working in the center of mass frame for the massive particles, we obtain the different components of the graviton mediated γγφnφn\gamma\gamma\to\varphi_{n}\varphi_{n}^{*} as follows

i+,+G=i,G=iκ2s[tumn4+(mn2u)2+su]=0\displaystyle i\mathcal{M}^{\mathrm{G}}_{+,+}=i\mathcal{M}^{\mathrm{G}}_{-,-}=-i\frac{\kappa^{2}}{s}\left[tu-m_{n}^{4}+(m_{n}^{2}-u)^{2}+su\right]=0
i+,G=i,+G=iκ2s[tumn4],\displaystyle i\mathcal{M}^{\mathrm{G}}_{+,-}=i\mathcal{M}^{\mathrm{G}}_{-,+}=i\frac{\kappa^{2}}{s}\left[tu-m_{n}^{4}\right], (3.18)

where the ±\pm sign refers to the helicities of the incoming gauge bosons. In the threshold limit the graviton mediated contribution vanishes for both components.

In DD dimensions, the whole γγ\mathcal{M}_{\gamma\gamma} amplitude reads

|γγ|2Threshold(2(D2)(gq)2+(D4)κ2m2)2(D2)3\left|\mathcal{M}_{\gamma\gamma}\right|^{2}\xrightarrow[\mathrm{Threshold}]{}\frac{\left(2(D-2)(gq)^{2}+(D-4)\kappa^{2}m^{2}\right)^{2}}{(D-2)^{3}} (3.19)

for a generic U(1)U(1) gauge theory (i.e. when the dilaton is put to zero) and

|γγ|2Threshold((D3)(gqn)2+(D4)κ2mn2)2(D2)3\left|\mathcal{M}_{\gamma\gamma}\right|^{2}\xrightarrow[\mathrm{Threshold}]{}\frac{\left((D-3)(gq_{n})^{2}+(D-4)\kappa^{2}m_{n}^{2}\right)^{2}}{(D-2)^{3}} (3.20)

in the dilatonic theory we are studying here. Both the results for the U(1)U(1) and dilatonic theory ((3.13) and discussion below) are recovered in the limit κ0\kappa\to 0. It is instructive to note, from these equations, that the vanishing of the graviton mediated contribution to the production from a photon pair is specific to the case of D=4D=4 dimensions, and in D4D\neq 4 dimensions mixed terms of the form g2q2×κ2m2g^{2}q^{2}\times\kappa^{2}m^{2} are generated.

For the ϕϕφnφn\phi\phi\to\varphi_{n}\varphi_{n}^{*} the amplitude reads

iϕϕG=iκ2s[mn4utmn2s].i\mathcal{M}_{\phi\phi}^{\mathrm{G}}=-i\frac{\kappa^{2}}{s}\left[m_{n}^{4}-ut-m_{n}^{2}s\right]. (3.21)

This results in a non vanishing contribution in the limit of interest such that

iϕϕG=iκ2mn2.i\mathcal{M}_{\phi\phi}^{\mathrm{G}}=i\kappa^{2}m_{n}^{2}. (3.22)
Refer to caption
Figure 3: Feynman diagrams for the mixed pair production from a graviton and a photon.

Concerning the mixed initial states, we have both γGφnφn\gamma\,G\to\varphi_{n}\varphi_{n}^{*} (see figure 3) and ϕGφnφn\phi\,G\to\varphi_{n}\varphi_{n}^{*} (see figure 4). Each of these two processes receive contributions from four diagrams.
Starting with the graviton-photon production, the amplitude G(p1)γ(p2)φnφnG(p_{1})\gamma(p_{2})\to\varphi_{n}\varphi_{n}^{*} takes the form

iGγmix.=iκgqn(\displaystyle i\mathcal{M}^{\mathrm{mix.}}_{G\gamma}=i\kappa gq_{n}\Bigg{(} 4(ϵ1p3)2ϵ2p4tmn24(ϵ1p4)2ϵ2p3umn2+2ϵ1ϵ2ϵ1(p3p4)\displaystyle\frac{4(\epsilon_{1}\cdot p_{3})^{2}\epsilon_{2}\cdot p_{4}}{t-m_{n}^{2}}-\frac{4(\epsilon_{1}\cdot p_{4})^{2}\epsilon_{2}\cdot p_{3}}{u-m_{n}^{2}}+2\epsilon_{1}\cdot\epsilon_{2}\epsilon_{1}\cdot(p_{3}-p_{4})
(p1+p2)p2(2ϵ1ϵ2ϵ1(p3p4)s)\displaystyle-\frac{(p_{1}+p_{2})\cdot p_{2}(2\epsilon_{1}\cdot\epsilon_{2}\epsilon_{1}\cdot(p_{3}-p_{4})}{s}\Bigg{)} (3.23)

and so for the different choices of graviton and photon helicities:

{i++,+mix.=i,mix.=iκgqn2tumn4s(mn4tu(tmn2)(umn2)+3)i++,mix.=i,+mix.=iκgqn2tumn4s(mn4tu(tmn2)(umn2)).\begin{cases}i\mathcal{M}^{\mathrm{mix.}}_{++,+}=-i\mathcal{M}^{\mathrm{mix.}}_{--,-}=-i\kappa gq_{n}\sqrt{2\frac{tu-m_{n}^{4}}{s}}\left(\frac{m_{n}^{4}-tu}{(t-m_{n}^{2})(u-m_{n}^{2})}+3\right)\\ i\mathcal{M}^{\mathrm{mix.}}_{++,-}=-i\mathcal{M}^{\mathrm{mix.}}_{--,+}=i\kappa gq_{n}\sqrt{2\frac{tu-m_{n}^{4}}{s}}\left(\frac{m_{n}^{4}-tu}{(t-m_{n}^{2})(u-m_{n}^{2})}\right).\end{cases} (3.24)

It is immediately verified that all these contributions vanish in the threshold limit where tmn2t\to-m_{n}^{2} and umn2u\to-m_{n}^{2}.

Refer to caption
Figure 4: Feynman diagrams for the mixed pair production from a graviton and a dilaton.

The same vanishing limit at threshold holds for the mixed graviton-dilaton production, where the amplitude is

iGϕmix.=2iκμn((ϵ1p3)2tmn2+(ϵ1p4)2umn2)i\mathcal{M}^{\mathrm{mix.}}_{G\phi}=-2i\kappa\mu_{n}\left(\frac{(\epsilon_{1}\cdot p_{3})^{2}}{t-m_{n}^{2}}+\frac{(\epsilon_{1}\cdot p_{4})^{2}}{u-m_{n}^{2}}\right) (3.25)

with μn=6κmn2\mu_{n}=\sqrt{6}\kappa m_{n}^{2} the three-point ϕφnφn\phi\varphi_{n}\varphi_{n}^{*} D=4D=4 coupling, and finally

i++mix.=imix.=iκμntumn4(tmn2)(umn2).i\mathcal{M}^{\mathrm{mix.}}_{++}=i\mathcal{M}^{\mathrm{mix.}}_{--}=i\kappa\mu_{n}\frac{tu-m_{n}^{4}}{(t-m_{n}^{2})(u-m_{n}^{2})}. (3.26)

From the explicit results presented in Appendix B, it is also immediate to realize that the mixed contributions vanish at threshold for all DD.

3.2.3 Gravitational production amplitudes

Finally, we discuss the purely gravitational production. The starting point for the expression of the amplitude is rather long. It receives in fact contribution from the four diagrams of figure 5, each one with vertices determined from a two-derivative interacting term (some details about two-derivative interactions are discussed in Appendix A). We prefer to give here a more compact expression that is obtained after some algebra:

iGG=\displaystyle i\mathcal{M}_{GG}= κ22(8(p3ϵ1)2(p4ϵ2)2tmn28(p3ϵ2)2(p4ϵ1)2umn2\displaystyle\frac{\kappa^{2}}{2}\left(-\frac{8(p_{3}\cdot\epsilon_{1})^{2}(p_{4}\cdot\epsilon_{2})^{2}}{t-m_{n}^{2}}-\frac{8(p_{3}\cdot\epsilon_{2})^{2}(p_{4}\cdot\epsilon_{1})^{2}}{u-m_{n}^{2}}\right.
2(ϵ1ϵ2)2(mn4tusmn2)s4ϵ1ϵ2(p3ϵ2p4ϵ1+p3ϵ1p4ϵ2))\displaystyle\left.\qquad-2\frac{(\epsilon_{1}\cdot\epsilon_{2})^{2}\left(m_{n}^{4}-tu-sm_{n}^{2}\right)}{s}-4\epsilon_{1}\cdot\epsilon_{2}\left(p_{3}\cdot\epsilon_{2}\,p_{4}\cdot\epsilon_{1}+p_{3}\cdot\epsilon_{1}\,p_{4}\cdot\epsilon_{2}\right)\right) (3.27)

The complete results for each one of the four diagrams contributing to the amplitude are presented in Appendix B, together with the description of the helicity method. Using now the specific basis for D=4D=4 dimensions, we find

i++,++=i,\displaystyle i\mathcal{M}_{++,++}=i\mathcal{M}_{--,--} =iκ2((mn4tu)m2(tmn2)(umn2)+mn2)\displaystyle=i\kappa^{2}\left(\frac{\left(m_{n}^{4}-tu\right)m^{2}}{(t-m_{n}^{2})(u-m_{n}^{2})}+m_{n}^{2}\right)
i++,=i,++\displaystyle i\mathcal{M}_{++,--}=i\mathcal{M}_{--,++} =iκ2(mn4tu)2s(tmn2)(umn2),\displaystyle=i\kappa^{2}\frac{\left(m_{n}^{4}-tu\right)^{2}}{s\left(t-m_{n}^{2}\right)\left(u-m_{n}^{2}\right)}, (3.28)

Comparing this result with the one obtained from the γγ\gamma\gamma production in the case with no dilaton, we verify the factorization

++,++(GG)=\displaystyle\mathcal{M}^{(GG)}_{++,++}= κ24(gq)4(tmn2)(umn2)s+,+(γγ)\displaystyle\frac{\kappa^{2}}{4(gq)^{4}}\frac{\left(t-m_{n}^{2}\right)\left(u-m_{n}^{2}\right)}{s}\mathcal{M}^{(\gamma\gamma)}_{+,+}
++,(GG)=\displaystyle\mathcal{M}^{(GG)}_{++,--}= κ24(gq)4(tmn2)(umn2)s+,(γγ).\displaystyle\frac{\kappa^{2}}{4(gq)^{4}}\frac{\left(t-m_{n}^{2}\right)\left(u-m_{n}^{2}\right)}{s}\mathcal{M}^{(\gamma\gamma)}_{+,-}. (3.29)

The corresponding factorization for the comparison between the gravitational Compton scattering GφGφG\varphi\to G\varphi (with φ\varphi a generic scalar field) and the usual Compton scattering was found in [12, 13] (see also [14]).

Refer to caption
Figure 5: Feynman diagrams for the production of a pair of matter states from two gravitons.

From the above results, in the threshold limit we have

|GG|2=14(|++,++|2+|++,|2+|,++|2+|,|2)κ4mn42.\left|\mathcal{M}_{GG}\right|^{2}=\frac{1}{4}\left(\left|\mathcal{M}_{++,++}\right|^{2}+\left|\mathcal{M}_{++,--}\right|^{2}+\left|\mathcal{M}_{--,++}\right|^{2}+\left|\mathcal{M}_{--,--}\right|^{2}\right)\to\frac{\kappa^{4}m_{n}^{4}}{2}. (3.30)

Note that the result |GG|2κ4m4/2\left|\mathcal{M}_{GG}\right|^{2}\to\kappa^{4}m^{4}/2, and more generally the ”purely gravitational” pair production, is independent from the presence of the dilaton. This is easily generalized to the case of generic DD (see again Appendix B for details) and leads in the threshold limit to

|GG|21D2κ4mn4.\left|\mathcal{M}_{GG}\right|^{2}\to\frac{1}{D-2}\kappa^{4}m_{n}^{4}. (3.31)

3.2.4 Gravitational vs gauge amplitudes

When the dilaton is put to zero, the requirement

|γγ|2Threshold|GG|2\left|\mathcal{M}_{\gamma\gamma}\right|^{2}\underset{\mathrm{Threshold}}{\geq}\left|\mathcal{M}_{GG}\right|^{2} (3.32)

gives the original U(1),D=4U(1),\,D=4 WGC bound 2gqκm\sqrt{2}gq\geq\kappa m.

Using cross-symmetry on the results of [12, 13, 14], the authors of [7] observed that (3.32) leads to the WGC relation and proposed (3.32) as a possible alternative formulation of the WGC. In [7], the graviton-mediated diagram was not taken into account in the γ\gamma amplitude. Our calculation shows that in the threshold limit, the contribution of this additional diagram disappears. Therefore, in the four-dimensional U(1)U(1) gauge theory, we can safely compare, as in the (3.32), the γγ\gamma\gamma and GGGG productions without having to neglect any contribution.

Our calculation also shows that in D=4D=4 dimensions, the KK states saturate (3.32). In fact, we emphasize again that the gravitational amplitude GG\mathcal{M}_{GG}, here, does not care about the presence of the dilaton: whether the theory is a simple U(1)U(1) or a dilatonic U(1)U(1), the result for GG\mathcal{M}_{GG} is unchanged. On the other hand, the amplitude γγ\mathcal{M}_{\gamma\gamma} receives an additional contribution which changes the numerical coefficient in front of g4q4g^{4}q^{4} from 22 to 1/81/8. Since the γϕ\mathcal{M}_{\gamma\phi} and ϕϕ\mathcal{M}_{\phi\phi} amplitudes both vanish in the threshold limit, the comparison of the pair production processes in this KK theory leads to

g4qn48κ4mn42gq2κm\frac{g^{4}q_{n}^{4}}{8}\geq\frac{\kappa^{4}m_{n}^{4}}{2}\Longrightarrow gq\geq\sqrt{2}\kappa m (3.33)

and (2.16) shows that KK states saturate it.

However, if, in the presence of the dilaton, we consider gravitationally mediated diagrams for γγ\gamma\gamma and ϕϕ\phi\phi amplitudes, there is a non-vanishing contribution that comes from ϕϕG\mathcal{M}_{\phi\phi}^{\mathrm{G}} in (3.22), and this would clearly spoil the saturation observed for the KK states. The inclusion of the mixed production channels GγG\gamma (3.2.2) and GϕG\phi (3.25) cannot restore the saturation property, since both do not contribute in the limit of interest. The dilatonic WGC will be recovered only if the contributions from graviton exchanges in γγ\gamma\gamma and ϕϕ\phi\phi amplitudes are not included.

Note also that the pairwise production comparison does not reproduce the constraints of WGCs in more than 4 dimensions. The γγ\mathcal{M}_{\gamma\gamma} and GG\mathcal{M}_{GG} amplitudes lead, for any DD, to compare 2gq\sqrt{2}gq and κm\kappa m. For the case of a simple theory U(1)U(1), setting as quoted above the dilaton to zero in our calculations, the result for the production from a photon pair in DD dimensions in the threshold limit is

|γγ|2=4D2(gq)4.\left|\mathcal{M}_{\gamma\gamma}\right|^{2}=\frac{4}{D-2}(gq)^{4}. (3.34)

In Appendix B we learn that the purely gravitational production of pairs gives, in the same limit of interest,

|GG|2=1D2(κm)4.\left|\mathcal{M}_{GG}\right|^{2}=\frac{1}{D-2}(\kappa m)^{4}. (3.35)

By comparing (3.34) and (3.35), it is immediate to observe that requiring |γ|2|GG|2\left|\mathcal{M}_{\gamma}\right|^{2}\geq\left|\mathcal{M}_{GG}\right|^{2}, one does not reproduce the WGC bound

gqD3D2κm.gq\geq\sqrt{\frac{D-3}{D-2}}\kappa m. (3.36)

Similarly, the comparison of purely gravitational pair production and purely non-gravitational pair production in the KK theory we consider here amounts to a comparison of the results

|γγ|2(D3)2(D2)3g4qn4,|ϕϕ|20,|GG|21D2κ4mn4.\left|\mathcal{M}_{\gamma\gamma}\right|^{2}\to\frac{(D-3)^{2}}{(D-2)^{3}}g^{4}q_{n}^{4},\qquad\left|\mathcal{M}_{\phi\phi}\right|^{2}\to 0,\qquad\left|\mathcal{M}_{GG}\right|^{2}\to\frac{1}{D-2}\kappa^{4}m_{n}^{4}. (3.37)

Using (2.16), it is immediate to realize that the KK states saturate the (3.32) (or an equivalent generalization of it to include the ϕϕ\mathcal{M}_{\phi\phi} contribution which disappears here) only for D=4D=4. The results of section 3.2.2 show that the addition of mixed contributions does not change this.

4 Massive and Self-interacting Scalars

We next consider the presence of mass and self-interacting terms in the higher dimensional scalar theory. The KK scalar modes are no more extremal states of the WGC, but this set-up will allow us to retrieve Scalar Weak Gravity Conjectures which are postulated to constrain the relative strength of the additional terms.

We will consider the simple extension of (2.1)

𝒮int=dD+1x(1)Dg^[12m^2Φ^2+μ^3!Φ^3λ^4!Φ^4].\mathcal{S}_{int}=\int\mathrm{d}^{D+1}x\sqrt{(-1)^{D}\hat{g}}\,\left[-\frac{1}{2}\hat{m}^{2}\hat{\Phi}^{2}+\frac{\hat{\mu}}{3!}\hat{\Phi}^{3}-\frac{\hat{\lambda}}{4!}\hat{\Phi}^{4}\right]. (4.1)

Here, m^\hat{m} has mass dimension one, μ^\hat{\mu} has dimension 3D+123-\frac{D+1}{2} and λ\lambda has dimension 4(D+1)4-(D+1). Using the ansatz (2.12), it is straightforward to see that the action takes the form

𝒮\displaystyle\mathcal{S} =𝒮f+𝒮int\displaystyle=\mathcal{S}_{f}+\mathcal{S}_{int}
=dDx(1)D1g{R2κ2+12(ϕ)214e2D1D2κϕF2+12μφ0μφ012e2(D1)(D2)κϕm^2φ02\displaystyle=\int\mathrm{d}^{D}x\sqrt{(-1)^{D-1}g}\left\{\frac{R}{2\kappa^{2}}+\frac{1}{2}(\partial\phi)^{2}-\frac{1}{4}e^{-2\sqrt{\frac{D-1}{D-2}}\kappa{\phi}}F^{2}+\frac{1}{2}\partial_{\mu}\varphi_{0}\partial^{\mu}\varphi_{0}-\frac{1}{2}e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa{\phi}}\hat{m}^{2}\varphi_{0}^{2}\right.
+n=1μφnμφnn=1(e2D1D2κϕn2L2+e2(D1)(D2)κϕm^2)φnφn\displaystyle\hskip 108.12054pt\left.+\sum_{n=1}^{\infty}\partial_{\mu}\varphi_{n}\partial^{\mu}\varphi_{n}^{*}-\sum_{n=1}^{\infty}\left(e^{2\sqrt{\frac{D-1}{D-2}}\kappa{\phi}}\frac{n^{2}}{L^{2}}+e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa{\phi}}\hat{m}^{2}\right)\varphi_{n}\varphi_{n}^{*}\right.
+n=1[i2κnLAμ(μφnφnφnμφn)+2κ2n2L2AμAμφnφn]\displaystyle\hskip 108.12054pt+\sum_{n=1}^{\infty}\left[i{\sqrt{2}}\kappa\frac{n}{L}A^{\mu}\left(\partial_{\mu}\varphi_{n}\varphi_{n}^{*}-\varphi_{n}\partial_{\mu}\varphi_{n}^{*}\right)+{2}\kappa^{2}\frac{n^{2}}{L^{2}}A_{\mu}A^{\mu}\varphi_{n}\varphi_{n}^{*}\right]
+e2(D1)(D2)κϕ[μ3!φ03λ4!φ04+μφ0n=1φnφnλ2φ02n=1φnφn\displaystyle\hskip 108.12054pt+e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa{\phi}}\Bigg{[}\frac{\mu}{3!}\varphi_{0}^{3}-\frac{\lambda}{4!}\varphi_{0}^{4}+\mu\varphi_{0}\sum_{n=1}^{\infty}\varphi_{n}\varphi_{n}^{*}-\frac{\lambda}{2}\varphi_{0}^{2}\sum_{n=1}^{\infty}\varphi_{n}\varphi_{n}^{*}
λ2φ0m,n=1(φmφmφn+m+φmφnφn+m)+μ2n,m=1(φnφmφn+m+φnφmφn+m)\displaystyle\hskip 85.35826pt-\frac{\lambda}{2}\varphi_{0}\sum_{m,n=1}^{\infty}\left(\varphi_{m}\varphi_{m}\varphi^{*}_{n+m}+\varphi_{m}^{*}\varphi_{n}^{*}\varphi_{n+m}\right)+\frac{\mu}{2}\sum_{n,m=1}^{\infty}\left(\varphi_{n}\varphi_{m}\varphi_{n+m}^{*}+\varphi_{n}^{*}\varphi_{m}^{*}\varphi_{n+m}\right)
λ3!m,n,p=1(φmφnφpφm+n+p+φmφnφpφm+n+p)\displaystyle\hskip 85.35826pt-\frac{\lambda}{3!}\sum_{m,n,p=1}^{\infty}\left(\varphi_{m}\varphi_{n}\varphi_{p}\varphi^{*}_{m+n+p}+\varphi^{*}_{m}\varphi^{*}_{n}\varphi^{*}_{p}\varphi_{m+n+p}\right)
λ2n=1φnφnm=1φmφmλ4m,n,p=1mp,np;m+n>pφmφnφpφn+mp]},\displaystyle\hskip 113.81102pt-\frac{\lambda}{2}\sum_{n=1}^{\infty}\varphi_{n}\varphi_{n}^{*}\sum_{m=1}^{\infty}\varphi_{m}\varphi_{m}^{*}-\frac{\lambda}{4}\sum_{\underset{m\neq p,n\neq p;m+n>p}{m,n,p=1}}^{\infty}\varphi_{m}\varphi_{n}\varphi_{p}^{*}\varphi_{n+m-p}^{*}\Bigg{]}\Bigg{\}}, (4.2)

where we have kept the notation compact, but, in our perturbative analysis, the dilaton will again be expanded around a background value ϕ0\phi_{0} as above. The couplings constants μ\mu and λ\lambda are defined, from their higher dimensional counterpart, as

μ=μ^2πL,λ=λ^2πL.\mu=\frac{\hat{\mu}}{\sqrt{2\pi L}},\qquad\lambda=\frac{\hat{\lambda}}{2\pi L}. (4.3)

The tree-level masses for the zero mode φ0\varphi_{0} and the KK excitations are given by:

m02=e2(D1)(D2)κϕ0m^2,mn2=e2D1D2κϕ0n2L2+e2(D1)(D2)κϕ0m^2.m^{2}_{0}=e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa{\phi_{0}}}\hat{m}^{2},\qquad m_{n}^{2}=e^{2\sqrt{\frac{D-1}{D-2}}\kappa{\phi_{0}}}\frac{n^{2}}{L^{2}}+e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa{\phi_{0}}}\hat{m}^{2}. (4.4)

4.1 The Scalar Weak Gravity Conjecture

Refer to caption
Figure 6: Feynman diagrams for the φ0φ0φ0φ0\varphi_{0}\varphi_{0}\to\varphi_{0}\varphi_{0} scattering when a potential for the higher dimensional scalar, “parent” of φ0\varphi_{0}, has been turned o.n

We start by computing the φ0φ0φ0φ0\varphi_{0}\varphi_{0}\to\varphi_{0}\varphi_{0} amplitude. The diagrams intervening in the scattering are presented in the figure 6. The non-relativistic limit of the tree-level amplitude reads

i\displaystyle i\mathcal{M} =ie2(D1)(D2)κϕ0[e2(D1)(D2)κϕ053μ2m02λ]\displaystyle=ie^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa{\phi_{0}}}\left[e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa{\phi_{0}}}\frac{5}{3}\frac{\mu^{2}}{m_{0}^{2}}-\lambda\right]
i(D1)(D2)κ2m024i(D1)(D2)κ2m04(1t+1u)\displaystyle-\frac{i}{(D-1)(D-2)}\kappa^{2}m_{0}^{2}-4\frac{i}{(D-1)(D-2)}\kappa^{2}m_{0}^{4}\left(\frac{1}{t}+\frac{1}{u}\right)
+iD1D2κ2m024iD3D2κ2m04(1t+1u),\displaystyle+i\frac{D-1}{D-2}\kappa^{2}m_{0}^{2}-4i\frac{D-3}{D-2}\kappa^{2}m_{0}^{4}\left(\frac{1}{t}+\frac{1}{u}\right), (4.5)

where the different lines correspond to the contributions from the self-interaction, dilaton and graviton exchanges, respectively.

Following [6], we compare the contributions to the amplitude at the energy scale given by the (massive) external states at rest. In the non-relativistic limit, we can further split (4.1) into contributions from short and long range interactions. We can identify an effective contact interaction:

iCT(D)\displaystyle i\mathcal{M}_{CT}^{(D)} =ie2(D1)(D2)κϕ0(53μ2m^2λ1(D1)(D2)κ2m^2+D1D2κ2m^2)\displaystyle=ie^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}\left(\frac{5}{3}\frac{\mu^{2}}{\hat{m}^{2}}-\lambda-\frac{1}{(D-1)(D-2)}\kappa^{2}\hat{m}^{2}+\frac{D-1}{D-2}\kappa^{2}\hat{m}^{2}\right)
=ie2(D1)(D2)κϕ02πL(53μ^2m^2λ^+2πLDD1κ2m^2).\displaystyle=i\frac{e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}}{2\pi L}\left(\frac{5}{3}\frac{\hat{\mu}^{2}}{\hat{m}^{2}}-\hat{\lambda}+2\pi L\frac{D}{D-1}\kappa^{2}\hat{m}^{2}\right). (4.6)

where in the first line we can identify the contributions from the scalar interaction for the first two terms, then from the dilaton and graviton, respectively. Using (2.9) and the (D+1)(D+1)-gravitational coupling κ^=2πLκ\hat{\kappa}=\sqrt{2\pi L}\,\kappa, the last term is recognized to be the gravitational s-channel contribution to the Φ^Φ^Φ^Φ^\hat{\Phi}\hat{\Phi}\to\hat{\Phi}\hat{\Phi} scattering in D+1D+1 dimensions:

iCT(D+1)=ie2(D1)(D2)κϕ02πL(53μ^2m^2λ^+(D+1)1(D+1)2κ^2m^2).i\mathcal{M}_{CT}^{(D+1)}=i\frac{e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}}{2\pi L}\left(\frac{5}{3}\frac{\hat{\mu}^{2}}{\hat{m}^{2}}-\hat{\lambda}+\frac{(D+1)-1}{(D+1)-2}\hat{\kappa}^{2}\hat{m}^{2}\right). (4.7)

The above equation illustrates the fact that constraining the scalar interactions of the field Φ^\hat{\Phi} to be dominant with respect to gravity in D+1D+1 dimensions is enough to ensure that the scalar interactions of the zero mode φ0\varphi_{0} are dominant with respect to the combination of gravitational and dilatonic contributions in DD dimensions. In other words, the effective (tree-level) non-relativistic four-point function of the zero mode φ0\varphi_{0} that emerges in the reduced-dimensional theory is the same as the effective non-relativistic four-point coupling for the ”parent” field Φ^\hat{\Phi} in the higher-dimensional theory. Requiring that in such a contact term, the contributions of the Φ^\hat{\Phi} self-interactions are the dominant ones in the D+1D+1 dimensions automatically ensures that the same property holds for the φ0\varphi_{0} self-interactions with respect to the set of interactions that appear in the DD dimensional theory.

It is interesting to observe that the higher dimensional result is recovered here thanks to a cancellation, rather than an addition, between the graviton and dilaton mediated diagrams. This is dictated by the form of the DD-dependent coefficient γs(D)(D1)/(D2)\gamma_{s}(D)\equiv(D-1)/(D-2) appearing in front of the graviton-mediated amplitude in the ss-channel which decreases with DD: γs(D+1)<γs(D)\gamma_{s}(D+1)<\gamma_{s}(D). The dimension-dependent factor appearing in the tt and uu-channels, γt,u(D)(D3)/(D2)\gamma_{t,u}(D)\equiv(D-3)/(D-2) vary in the opposite direction. In other words, the peculiar feature is that, for the contact terms, the spin-2 and spin-0 bosonic mediators give opposite contributions. This feature will also appear in the amplitudes computed with the non minimal coupling to gravity. As a consequence of particular interest in the case of a massive dilaton the higher dimensional sub-dominance of gravity does not imply that gravity by itself (i.e. without the dilaton) is subdominant in the lower dimensional theory too. This violation happens in the parametric region

DD1κ^2m^2|53μ^2m^2λ^|D1D2κ^2m^2,\frac{D}{D-1}\hat{\kappa}^{2}\hat{m}^{2}\leq\left|\frac{5}{3}\frac{\hat{\mu}^{2}}{\hat{m}^{2}}-\hat{\lambda}\right|\leq\frac{D-1}{D-2}\hat{\kappa}^{2}\hat{m}^{2}, (4.8)

which is an interval of lenght κ^2m^2/(D1)(D2)\hat{\kappa}^{2}\hat{m}^{2}/(D-1)(D-2) inversely proportional to the dimension DD.

Refer to caption
Figure 7: Feynman diagrams for the φnφnφnφn\varphi_{n}\varphi_{n}\to\varphi_{n}\varphi_{n} scattering in the tt-channel.

The amplitude φnφnφnφn\varphi_{n}\varphi_{n}\to\varphi_{n}\varphi_{n} provides a generalization in the presence of self-interacting terms of the computation done in section 3.1. The scattering amplitude receives contributions from gauge bosons, dilatons, gravitons in the t and u-channels, φ0\varphi_{0} exchange, from the s-channel exchange of a φ2n\varphi_{2n} particle and from a 4-point contact term. These are the diagrams that are presented in figure 7 and lead to

i\displaystyle i\mathcal{M} =ie4(D1)(D2)κϕ0μ2(1sm2n2+1tm02+1um02)iλe2(D1)(D2)κϕ0\displaystyle=-ie^{\frac{4}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}\mu^{2}\left(\frac{1}{s-m_{2n}^{2}}+\frac{1}{t-m_{0}^{2}}+\frac{1}{u-m_{0}^{2}}\right)-i\lambda e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}
+i(1t+1u)(4g2qn2mn24D3D2mn4MPD2(ϕmn2)2)\displaystyle+i\left(\frac{1}{t}+\frac{1}{u}\right)\left(4g^{2}q_{n}^{2}m_{n}^{2}-4\frac{D-3}{D-2}\frac{m_{n}^{4}}{M_{P}^{D-2}}-(\partial_{\phi}m_{n}^{2})^{2}\right) (4.9)

with

ϕmn2=1MP(D2)/2(2(D1)(D2)e2(D1)(D2)κϕ0m^2+2D1D2e2D1D2κϕ0n2L2).\partial_{\phi}m_{n}^{2}=\frac{1}{M_{P}^{(D-2)/2}}\left(\frac{2}{\sqrt{(D-1)(D-2)}}e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa{\phi_{0}}}\hat{m}^{2}+2\sqrt{\frac{D-1}{D-2}}e^{2\sqrt{\frac{D-1}{D-2}}\kappa{\phi_{0}}}\frac{n^{2}}{L^{2}}\right). (4.10)

4.2 Massive dilatons

Let us consider for our illustrative discussion a simple potential for the dilaton in a polynomial expansion of the form

V(ϕ)=12mϕ2ϕ2μϕ3!ϕ3+λϕ4!ϕ4.V(\phi)=\frac{1}{2}m^{2}_{\phi}\phi^{2}-\frac{\mu_{\phi}}{3!}\phi^{3}+\frac{\lambda_{\phi}}{4!}\phi^{4}. (4.11)

In the φ0φ0φ0φ0\varphi_{0}\varphi_{0}\to\varphi_{0}\varphi_{0} scattering amplitude (4.1), the addition of a dilaton mass gives in the non-relativistic limit

i(φ0φ0φ0φ0)\displaystyle i\mathcal{M}(\varphi_{0}\varphi_{0}\to\varphi_{0}\varphi_{0}) =ie2(D1)(D2)κϕ0[e2(D1)(D2)κϕ053μ2m02λ]\displaystyle=ie^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa{\phi_{0}}}\left[e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa{\phi_{0}}}\frac{5}{3}\frac{\mu^{2}}{m_{0}^{2}}-\lambda\right]
4i(D1)(D2)κ2m041smϕ24i(D1)(D2)κ2m04(1tmϕ2+1umϕ2)\displaystyle-4\frac{i}{(D-1)(D-2)}\kappa^{2}m_{0}^{4}\frac{1}{s-m^{2}_{\phi}}-4\frac{i}{(D-1)(D-2)}\kappa^{2}m_{0}^{4}\left(\frac{1}{t-m^{2}_{\phi}}+\frac{1}{u-m^{2}_{\phi}}\right)
+iD1D2κ2m024iD3D2κ2m04(1t+1u),\displaystyle+i\frac{D-1}{D-2}\kappa^{2}m_{0}^{2}-4i\frac{D-3}{D-2}\kappa^{2}m_{0}^{4}\left(\frac{1}{t}+\frac{1}{u}\right), (4.12)

where the limit still needs to be implemented in the dilaton propagators according to its mass. We can thus follow the evolution of \mathcal{M} with respect to mϕm_{\phi} to better expand it.

For the φnφnφnφn\varphi_{n}\varphi_{n}\to\varphi_{n}\varphi_{n} case, the scattering amplitude with the massive dilaton reads

i(φnφnφnφn)\displaystyle i\mathcal{M}(\varphi_{n}\varphi_{n}\to\varphi_{n}\varphi_{n}) =ie4(D1)(D2)κϕ0μ2(1sm2n2+1tm02+1um02)iλe2(D1)(D2)κϕ0\displaystyle=-ie^{\frac{4}{\sqrt{(D-1)(D-2)}}\kappa{\phi_{0}}}\mu^{2}\left(\frac{1}{s-m_{2n}^{2}}+\frac{1}{t-m_{0}^{2}}+\frac{1}{u-m_{0}^{2}}\right)-i\lambda e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa{\phi_{0}}}
i(ϕmn2)2(1tmϕ2+1umϕ2)+i(1t+1u)(4g2qn2mn24D3D2κ2mn4).\displaystyle-i(\partial_{\phi}m_{n}^{2})^{2}\left(\frac{1}{t-m^{2}_{\phi}}+\frac{1}{u-m^{2}_{\phi}}\right)+i\left(\frac{1}{t}+\frac{1}{u}\right)\left(4g^{2}q_{n}^{2}m_{n}^{2}-4\frac{D-3}{D-2}\kappa^{2}m_{n}^{4}\right). (4.13)

Putting all the analysis for both the φ0φ0φ0φ0\varphi_{0}\varphi_{0}\to\varphi_{0}\varphi_{0} and φnφnφnφn\varphi_{n}\varphi_{n}\to\varphi_{n}\varphi_{n} scattering amplitudes together, we give a brief overview of the results here.

When the mass mϕm_{\phi} of the dilaton is less than that of the zero mode, m0m_{0}, its mass can be neglected to first order in an expansion, in powers of mϕm_{\phi} over the exchanged momentum, and requiring that the self-interactions of a scalar field dominate in D+1D+1 dimensions is sufficient to ensure that the same property is verified by its zero mode in DD dimensions; a result that follows from the studies of the previous sections. As soon as the mass of the dilaton is comparable to that of the 0-mode, the massless dilaton approximation is no longer adequate and an appropriate discussion must be made for different denominators involving mϕm_{\phi}, m0m_{0}, mnm_{n} and m2nm_{2n}. The analysis can be done easily but it is cumbersome and not really illuminating. In short, there is no easy way to relate combinations appearing in DD dimensions in this case with quantities already constrained, by assumption, in D+1D+1 dimensions.

5 Φ^2R\hat{\Phi}^{2}R interaction

Let us consider now the effect on the different D-dimensional amplitudes of the presence of a non-minimal coupling to gravity of the form

S(ξ)=dD+1x(1)Dg^ξ2Φ^2R^,S_{(\xi)}=\int d^{D+1}x\sqrt{(-1)^{D}\hat{g}}\,\frac{\xi}{2}\hat{\Phi}^{2}\hat{R}, (5.1)

with R^\hat{R} the Ricci scalar (see for example [15]). We assume here that Φ^=0\braket{\hat{\Phi}}=0 as a non-vanishing vev would correspond to a redefinition of the Planck mass and a shift of the canonical fields. After compactification, one gets:

S(ξ)=dDx(1)D1g\displaystyle S_{(\xi)}=\int d^{D}x\sqrt{(-1)^{D-1}g}\, [ξ(Rκ2(ϕ)22κ(D1)(D2)μμϕ12e2D1D2κϕκ2F2)\displaystyle\left[\xi\left(R-\kappa^{2}(\partial\phi)^{2}-\frac{2\kappa}{\sqrt{(D-1)(D-2)}}\nabla_{\mu}\partial^{\mu}\phi-\frac{1}{2}e^{-2\sqrt{\frac{D-1}{D-2}}\kappa\phi}\kappa^{2}F^{2}\right)\right.
×(φ022+n=1φnφn)].\displaystyle\left.\times\left(\frac{\varphi_{0}^{2}}{2}+\sum_{n=1}^{\infty}\varphi_{n}\varphi_{n}^{*}\right)\right]. (5.2)

This leads to new three-point couplings. First, using the linear expansion of the metric gμν=ημν+2κhμνg_{\mu\nu}=\eta_{\mu\nu}+2\kappa h_{\mu\nu}, the RR term gives the new coupling κ(μλhμλhλλ)(φ02+2n=1φnφn)\kappa(\partial_{\mu}\partial_{\lambda}h^{\mu\lambda}-\Box h^{\lambda}_{\,\lambda})\left(\varphi_{0}^{2}+2\sum_{n=1}^{\infty}\varphi_{n}\varphi_{n}^{*}\right) of the graviton to the scalar matter fields. Then, the μμϕ\nabla_{\mu}\partial^{\mu}\phi term, that we discard in previous sections as it takes the form of a total derivative, gives an additional three-point vertex between the dilaton and the matter fields and can enter, for example, in the computation of the dilatonic force in the non-relativistic limit. At first order in κ\kappa, we can write κμμϕ=κμμϕ+𝒪(κ2)\kappa{\nabla_{\mu}\partial^{\mu}\phi}=\kappa{\partial_{\mu}\partial^{\mu}\phi}+\mathcal{\cal O}(\kappa^{2}), the Christoffel symbols starting themselves at order κ\kappa.

The φ0φ0φ0φ0\varphi_{0}\varphi_{0}\to\varphi_{0}\varphi_{0} amplitude resulting from the action (5), receives a contribution from the dilaton exchange (see Appendix A for some details on the Feynman rules for two-derivative vertices)

iϕ=i4(D1)(D2)ξ2κ2(s+t+u)=i16(D1)(D2)ξ2κ2m02.i\mathcal{M}_{\phi}=-i\frac{4}{(D-1)(D-2)}\xi^{2}\kappa^{2}(s+t+u)=-i\frac{16}{(D-1)(D-2)}\xi^{2}\kappa^{2}m_{0}^{2}. (5.3)

and one from the graviton

iG=4iD1D2ξ2κ2(s+t+u)=16iD1D2ξ2κ2m02.i\mathcal{M}_{G}=4i\frac{D-1}{D-2}\xi^{2}\kappa^{2}(s+t+u)=16i\frac{D-1}{D-2}\xi^{2}\kappa^{2}m_{0}^{2}. (5.4)

Their sum gives

i(nonminimal)=iϕ+iG=4iDD1ξ2κ2(s+t+u)=16iDD1ξ2κ2m02.i\mathcal{M}_{(non-minimal)}=i\mathcal{M}_{\phi}+i\mathcal{M}_{G}=4i\frac{D}{D-1}\xi^{2}\kappa^{2}(s+t+u)=16i\frac{D}{D-1}\xi^{2}\kappa^{2}m_{0}^{2}. (5.5)

This matches the result one would obtain for the Φ^Φ^Φ^Φ^\hat{\Phi}\hat{\Phi}\to\hat{\Phi}\hat{\Phi} scattering in D+1D+1 dimensions.

At this point, we have computed tree-level four point amplitudes where both vertices arise either from minimal or non-minimal couplings to gravity in D+1 dimensions. In order to compute the total φ0φ0φ0φ0\varphi_{0}\varphi_{0}\to\varphi_{0}\varphi_{0} amplitude we need to compute the contribution from “mixed” diagrams involving one minimal and one non-minimal vertices. This mixed gravitational diagrams give in the ss-channel

ischannelGmix.=2iξκ2s(\displaystyle i\mathcal{M}^{\mathrm{G-mix.}}_{\mathrm{s-channel}}=-2i\xi\frac{\kappa^{2}}{s}\Bigg{(} 2p1(p1+p2)p2(p1+p2)(p1+p2)2(p1p2+m02)+2D2(p1+p2)2(p1p2)\displaystyle 2\,p_{1}\cdot(p_{1}+p_{2})\,p_{2}\cdot(p_{1}+p_{2})-(p_{1}+p_{2})^{2}(p_{1}\cdot p_{2}+m_{0}^{2})+\frac{2}{D-2}(p_{1}+p_{2})^{2}(p_{1}\cdot p_{2})
DD2(p1+p2)2(p1p2+m02))\displaystyle-\frac{D}{D-2}(p_{1}+p_{2})^{2}(p_{1}\cdot p_{2}+m_{0}^{2})\Bigg{)} (5.6)

and in the tt-channel

itchannelGmix.=2iξκ2t(\displaystyle i\mathcal{M}^{\mathrm{G-mix.}}_{\mathrm{t-channel}}=2i\xi\frac{\kappa^{2}}{t}\Bigg{(} 2p1(p1p3)p3(p1p3)(p1p3)2(p1p3m02)+2D2(p1p3)2(p1p3)\displaystyle 2\,p_{1}\cdot(p_{1}-p_{3})\,p_{3}\cdot(p_{1}-p_{3})-(p_{1}-p_{3})^{2}(p_{1}\cdot p_{3}-m_{0}^{2})+\frac{2}{D-2}(p_{1}-p_{3})^{2}(p_{1}\cdot p_{3})
DD2(p1p3)2(p1p3m02)),\displaystyle-\frac{D}{D-2}(p_{1}-p_{3})^{2}(p_{1}\cdot p_{3}-m_{0}^{2})\Bigg{)}, (5.7)

while the uu channel can be obtained through the replacements tut\leftrightarrow u and p3p4p_{3}\leftrightarrow p_{4}. After some simple algebra, their sum reads

ischannelGmix.=iξκ2\displaystyle i\mathcal{M}^{\mathrm{G-mix.}}_{\mathrm{s-channel}}=i\xi\kappa^{2} (s+4m02D2);itchannelGmix.=iξκ2(t+4m02D2);iuchannelGmix.=iξκ2(u+4m02D2)\displaystyle\left(s+\frac{4m_{0}^{2}}{D-2}\right);\,i\mathcal{M}^{\mathrm{G-mix.}}_{\mathrm{t-channel}}=i\xi\kappa^{2}\left(t+\frac{4m_{0}^{2}}{D-2}\right);\,i\mathcal{M}^{\mathrm{G-mix.}}_{\mathrm{u-channel}}=i\xi\kappa^{2}\left(u+\frac{4m_{0}^{2}}{D-2}\right)
iGmix.=iξκ2(s+t+u+12D2m02)=4iξκ2D+1D2m02.\displaystyle\Longrightarrow i\mathcal{M}^{\mathrm{G-mix.}}=i\xi\kappa^{2}\left(s+t+u+\frac{12}{D-2}m_{0}^{2}\right)=4i\xi\kappa^{2}\frac{D+1}{D-2}m_{0}^{2}. (5.8)

The computation of the similar mixed diagrams with dilaton exchange gives

iϕmix.=12iξκ2m02(D1)(D2),i\mathcal{M}^{\mathrm{\phi-mix.}}=-12i\xi\kappa^{2}\frac{m_{0}^{2}}{(D-1)(D-2)}, (5.9)

where each channel contributes the same amount.

Summing up all the contributions, the final result for the amplitude is

imix.=4iξκ2D+2D1m02,i\mathcal{M}^{\mathrm{mix.}}=4i\xi\kappa^{2}\frac{D+2}{D-1}m_{0}^{2}, (5.10)

as it is expected from the higher dimensional Lagrangian. Again, the higher dimensional gravitational contribution is obtained after a cancellation between the effective spin-2 and spin-0 mediators. From the two results obtained above, we see that the direct non-minimal coupling to gravity (5.1) contributes with a constant term in the φ0φ0φ0φ0\varphi_{0}\varphi_{0}\to\varphi_{0}\varphi_{0} amplitude. If one takes the non-minimal coupling into account from the start and modifies the SWGC in DD generic dimensions requiring

|53μ^2m^2λ|(D1D2+4ξD+1D2+16ξ2D1D2)κ^2m^2,\left|\frac{5}{3}\frac{\hat{\mu}^{2}}{\hat{m}^{2}}-\lambda\right|\geq\left(\frac{D-1}{D-2}+4\xi\frac{D+1}{D-2}+16\xi^{2}\frac{D-1}{D-2}\right)\hat{\kappa}^{2}\hat{m}^{2}, (5.11)

the same property will be respected by the zero mode φ0\varphi_{0} in D1D-1 dimensions with the replacement of hatted by unhatted quantities μ^2,μ2,{\hat{\mu}^{2}},\cdots\rightarrow\mu^{2},\cdots.

In the φ0φ0φ0φ0\varphi_{0}\varphi_{0}\to\varphi_{0}\varphi_{0} scattering, the four point amplitudes appear as a sum of the three channels s,t,us,t,u whose coefficients add-up to a factor s+t+u=4m02s+t+u=4m_{0}^{2}. Therefore, the total amplitude does not increase with the exchanged momentum. This is not always the case as for example in the two examples of the φnφnφnφn\varphi_{n}\varphi_{n}\to\varphi_{n}\varphi_{n} or φnφnφnφn\varphi_{n}\varphi_{n}^{*}\to\varphi_{n}\varphi_{n}^{*} scattering amplitudes. The computation of the available channels, tt and uu in the first case, ss and tt in the second, proceeds as in the φ0\varphi_{0} case described above, but these contributions with two or one non minimal vertex do not close the sum s+t+us+t+u, as was the case in (5.4) and (5).

6 Higher dimensional gauge theory

So far, we have considered gravitational and scalar interactions in the higher dimensional theory. We will discuss now the case with gauge interactions. We consider a charged scalar Φ^\hat{\Phi} of charge qq and mass M^\hat{M} minimally coupled to a U(1)U(1) gauge field B^M\hat{B}_{M} with gauge coupling g^\hat{g} in D+1D+1 dimensions

𝒮EH,Φ,H(D+1)=dD+1x(1)Dg^{R^2κ^2+D^MΦ^D^MΦ^M^2Φ^Φ^14H^MNH^MN},\mathcal{S}_{EH,\Phi,H}^{(D+1)}=\int\mathrm{d}^{D+1}x\,\,\sqrt{(-1)^{D}\hat{g}}\,\,\left\{\frac{\hat{R}}{2\hat{\kappa}^{2}}+\hat{D}_{M}\hat{\Phi}\hat{D}^{M}\hat{\Phi}^{*}-\hat{M}^{2}\hat{\Phi}\hat{\Phi}^{*}-\frac{1}{4}\hat{H}_{M\,N}\hat{H}^{M\,N}\right\}, (6.1)

where H^\hat{H} is the field strenght for the gauge field B^\hat{B} and D^M\hat{D}_{M} the D+1D+1 dimensional covariant derivative D^MMig^qB^M\hat{D}_{M}\equiv\partial_{M}-i\hat{g}^{\prime}q\hat{B}_{M}, with g^\hat{g}^{\prime} the gauge coupling. For simplicity, we choose the following periodicities for the fields

B^M(x,z+2πL)\displaystyle\hat{B}_{M}(x,z+2\pi L) =B^M(x,z),B^M(x,z)=12πLn=+B(n)M(x)einzL\displaystyle=\hat{B}_{M}(x,z),\qquad\qquad\hat{B}_{M}(x,z)=\frac{1}{\sqrt{2\pi L}}\sum_{n=-\infty}^{+\infty}B_{(n)M}(x)e^{\frac{inz}{L}}
Φ^(x,z+2πL)\displaystyle\hat{\Phi}(x,z+2\pi L) =ei2πqΦΦ^(x,z),Φ^(x,z)=12πLn=+φn(x)ei(n+qΦ)zL,\displaystyle=e^{i2\pi q_{\Phi}}\hat{\Phi}(x,z),\qquad\hat{\Phi}(x,z)=\frac{1}{\sqrt{2\pi L}}\sum_{n=-\infty}^{+\infty}\varphi_{n}(x)e^{i(n+q_{\Phi})\frac{z}{L}}, (6.2)

where qΦq_{\Phi} is a putative charge of Φ^\hat{\Phi} under an internal symmetry. The compactification of the (kinetic term of the) gauge field gives the lagrangian

H(D)=\displaystyle\mathcal{L}^{(D)}_{H}= e2αϕ(H0 24+n=1|H(n)| 22)+e2βϕ((h0)22+n=1|hninLB(n)|2)\displaystyle-e^{-2\alpha\phi}\left(\frac{H_{0}^{\,2}}{4}+\sum_{n=1}^{\infty}\frac{|H_{(n)}|^{\,2}}{2}\right)+e^{-2\beta\phi}\left(\frac{(\partial h_{0})^{2}}{2}+\sum_{n=1}^{\infty}\left|\partial h_{n}-i\frac{n}{L}B_{(n)}\right|^{2}\right)
+e2αϕAμ(H(0)μννh0+n=1H(n)μν(νhninLB(n)ν)+H(n)μν(νhninLB(n)ν))\displaystyle+e^{-2\alpha\phi}A^{\mu}\left(-H_{(0)\mu\nu}\,\partial^{\nu}h_{0}+\sum_{n=1}^{\infty}H_{(n)\mu\nu}\left(\partial^{\nu}h_{n}^{*}-i\frac{n}{L}B_{(n)}^{*\,\nu}\right)+H^{*}_{(n)\mu\nu}\left(\partial^{\nu}h_{n}-i\frac{n}{L}B_{(n)}^{\,\nu}\right)\right)
+e2αϕ[A2((h0)22+n=1|hninLB(n)|2)\displaystyle+e^{-2\alpha\phi}\Bigg{[}A^{2}\left(\frac{\left(\partial h_{0}\right)^{2}}{2}+\sum_{n=1}^{\infty}\left|\partial h_{n}-i\frac{n}{L}B_{(n)}\right|^{2}\right) (6.3)
+AμAν(μh0νh0+2n=1(μhninLB(n)μ)(νhninLB(n)ν))],\displaystyle\qquad\qquad+A^{\mu}A^{\nu}\left(\partial_{\mu}h_{0}\partial_{\nu}h_{0}+2\sum_{n=1}^{\infty}\left(\partial_{\mu}h_{n}-i\frac{n}{L}B_{(n)\mu}\right)\left(\partial_{\nu}h_{n}-i\frac{n}{L}B_{(n)\nu}\right)^{*}\right)\Bigg{]},

where h0B(0)zh_{0}\equiv B_{(0)z} is a real scalar corresponding to the zero mode of the gauge field B^M\hat{B}_{M} component along the compact dimension zz and hnB(n)zh_{n}\equiv B_{(n)z} are the complex scalars forming the KK tower of the same field. From the above action, each field hnh_{n} is seen to generate a mass for the KK excitations B(n)μB_{(n)\mu} of the non-compact components of the gauge field, that are then complex massive vectors, and to behave as the Goldstones in the Higgs mechanism (or in a Stuckelberg mechanism). Note that the relations B(n)μ=B(n)μB_{(-n)\mu}=B_{(n)\mu}^{*} and hn=hnh_{-n}=h_{n}^{*} are valid, although the same cannot be said for the Fourier modes of the complex field Φ^\hat{\Phi}.
The DD-dimensional lagrangian obtained from the kinetic and mass term of the scalar field Φ^\hat{\Phi} reads

Φ(D)=\displaystyle\mathcal{L}^{(D)}_{\Phi}= n=+|Dφn|2(e2αϕM^2+e2(βα)ϕ[n+qΦLgqh0]2)|φn|2\displaystyle\sum_{n=-\infty}^{+\infty}\left|D\varphi_{n}\right|^{2}-\left(e^{2\alpha\phi}\hat{M}^{2}+e^{-2(\beta-\alpha)\phi}\left[\frac{n+q_{\Phi}}{L}-g^{\prime}qh_{0}\right]^{2}\right)\left|\varphi_{n}\right|^{2}
+gqn,p=n0+[iB(n)μ(φpμφn+pμφpφn+p)2gqB(0)μB(n)μφpφn+p\displaystyle+g^{\prime}q\sum_{\underset{n\neq 0}{n,p=-\infty}}^{+\infty}\left[iB^{\mu}_{(n)}\left(\varphi_{p}\partial_{\mu}\varphi_{n+p}^{*}-\partial_{\mu}\varphi_{p}\varphi^{*}_{n+p}\right)-2g^{\prime}qB_{(0)\mu}B_{(n)}^{\mu}\varphi_{p}\varphi_{n+p}^{*}\right.
gqm=m0+B(n)μB(m)μφpφn+m+p]\displaystyle\left.-g^{\prime}q\sum_{\underset{m\neq 0}{m=-\infty}}^{+\infty}B_{(n)\mu}B_{(m)}^{\mu}\varphi_{p}\varphi^{*}_{n+m+p}\right]
+gqAμ(n,p=n0+ihn(μφpφn+pφpμφn+p)2n,p=+n+p+qφLB(n)μφpφn+p\displaystyle+g^{\prime}qA^{\mu}\left(\sum_{\underset{n\neq 0}{n,p=-\infty}}^{+\infty}ih_{n}\left(\partial_{\mu}\varphi_{p}\,\varphi^{*}_{n+p}-\varphi_{p}\partial_{\mu}\varphi^{*}_{n+p}\right)-2\sum_{n,p=-\infty}^{+\infty}\frac{n+p+q_{\varphi}}{L}\,B_{(n)\mu}\varphi_{p}\varphi^{*}_{n+p}\right.
+2gqh0n,p=+B(n)μφpφn+p+2gqn,m,p=m0+hmB(n)μφpφn+p)\displaystyle\left.\qquad\qquad+2g^{\prime}qh_{0}\sum_{n,p=-\infty}^{+\infty}B_{(n)\mu}\varphi_{p}\varphi^{*}_{n+p}+2g^{\prime}q\sum_{\underset{m\neq 0}{n,m,p=-\infty}}^{+\infty}h_{m}B_{(n)\mu}\varphi_{p}\varphi^{*}_{n+p}\right)
+(A2+e2(βα)ϕ)(2gqn,p=n0+[n+p+qφLgqh0]hnφpφn+p\displaystyle+\left(A^{2}+e^{-2(\beta-\alpha)\phi}\right)\left(2g^{\prime}q\sum_{\underset{n\neq 0}{n,p=-\infty}}^{+\infty}\left[\frac{n+p+q_{\varphi}}{L}-g^{\prime}qh_{0}\right]h_{n}\varphi_{p}\varphi^{*}_{n+p}\right.
g2q2n,m,p=m0+hnhmφpφn+m+p),\displaystyle\left.\qquad\qquad\qquad\qquad\qquad-g^{\prime 2}q^{2}\sum_{\underset{m\neq 0}{n,m,p=-\infty}}^{+\infty}h_{n}h_{m}\varphi_{p}\varphi^{*}_{n+m+p}\right), (6.4)

where gqg^q/2πLg^{\prime}q\equiv\hat{g}^{\prime}q/\sqrt{2\pi L} and when acting on φn\varphi_{n}

DμμigqB(0)μig[(n+qΦLgqh0)]Aμ,D_{\mu}\equiv\partial_{\mu}-ig^{\prime}qB_{(0)\mu}-ig\left[\left(\frac{n+q_{\Phi}}{L}-g^{\prime}qh_{0}\right)\right]A_{\mu}, (6.5)

from which one can read the charge under the graviphoton. The h0h_{0} term in this expression is a manifestation of the Aharonov-Bohm effect for the Wilson line of BzB_{z}, zBz\oint_{z}B_{z}.

Here we are interested in comparing the different gravitational and non-gravitational long range classical interactions, which can be obtained from the tt-channel amplitudes. The tt-channel contribution to the φn(p1)φn(p2)φn(p3)φn(p4)\varphi_{n}(p_{1})\varphi_{n}(p_{2})\to\varphi_{n}(p_{3})\varphi_{n}(p_{4}) scattering amplitude is

in=\displaystyle i\mathcal{M}_{n}= it(g2q2e2(D1)(D2)κϕ0+2κ2(n+qΦLgqeD2D1κϕ0h¯0)2e2D1D2κϕ0)(p1+p3)(p2+p4)\displaystyle\frac{i}{t}\left(g^{\prime 2}q^{2}e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}+2\kappa^{2}\left(\frac{n+q_{\Phi}}{L}-g^{\prime}qe^{-\sqrt{\frac{D-2}{D-1}}\kappa\phi_{0}}\bar{h}_{0}\right)^{2}e^{2\sqrt{\frac{D-1}{D-2}}\kappa\phi_{0}}\right)\left(p_{1}+p_{3}\right)\cdot\left(p_{2}+p_{4}\right)
it[4g2q2(gqh¯0e2(D1)(D2)κϕ0n+qΦLeD(D1)(D2)κϕ0)2\displaystyle-\frac{i}{t}\left[4g^{\prime 2}q^{2}\left(g^{\prime}q\bar{h}_{0}e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}-\frac{n+q_{\Phi}}{L}e^{\frac{D}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}\right)^{2}\right.
+(2D1D2κ(n+qΦLgqh¯0eD2D1κϕ0)2e2D1D2κϕ0\displaystyle\qquad\left.+\left(2\sqrt{\frac{D-1}{D-2}}\kappa\left(\frac{n+q_{\Phi}}{L}-g^{\prime}q\bar{h}_{0}e^{-\sqrt{\frac{D-2}{D-1}}\kappa\phi_{0}}\right)^{2}e^{2\sqrt{\frac{D-1}{D-2}}\kappa\phi_{0}}\right.\right.
+2(D1)(D2)κM^2e2(D1)(D2)κϕ0)2],\displaystyle\qquad\left.\left.+\frac{2}{\sqrt{(D-1)(D-2)}}\kappa\hat{M}^{2}e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}\right)^{2}\right], (6.6)

where we have omitted writing the gravitational contribution, to avoid lengthy expressions, only to reinsert it in the next step when we perform the non-relativistic limit. The mass of the nnth KK state can be read from the first line of the action in (6)

mn2=(n+qΦLgqeD2D1κϕ0h¯0)2e2D1D2κϕ0+M^2e2(D1)(D2)κϕ0\displaystyle m_{n}^{2}=\left(\frac{n+q_{\Phi}}{L}-g^{\prime}qe^{-\sqrt{\frac{D-2}{D-1}}\kappa\phi_{0}}\bar{h}_{0}\right)^{2}e^{2\sqrt{\frac{D-1}{D-2}}\kappa\phi_{0}}+{\hat{M}}^{2}e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}\ (6.7)

Let us first consider the simplest case where qΦ=h¯0=M^=0q_{\Phi}=\bar{h}_{0}=\hat{M}=0. In the non-relativistic limit, for n0n\neq 0, the coefficient of 1t\frac{1}{t} in the t-channel amplitude takes the form

ntpole\displaystyle\mathcal{M}_{n}^{\mathrm{t-pole}} =(g2q2e2(D1)(D2)κϕ0+2κ2mn2)4mn24g2q2mn2e2(D1)(D2)κϕ0\displaystyle=\left(g^{\prime 2}q^{2}e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}+2\kappa^{2}m_{n}^{2}\right)4m_{n}^{2}-4g^{\prime 2}q^{2}m_{n}^{2}e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}
4D1D2κ2mn44D3D2κ2mn4\displaystyle\quad-4\frac{D-1}{D-2}\kappa^{2}m_{n}^{4}-4\frac{D-3}{D-2}\kappa^{2}m_{n}^{4}
=0,\displaystyle=0, (6.8)

where mn2m_{n}^{2} in this case is simply mn2=e2D1D2κϕ0n2/L2m_{n}^{2}=e^{2\sqrt{\frac{D-1}{D-2}}\kappa\phi_{0}}n^{2}/L^{2} and the gravitational scattering has been reinserted. The vanishing amplitude results from the (expected) two by two cancellation of interactions for the massive KK modes: namely gravitational vs dilatonic and D-dimensional gauge vs scalar from the (D+1)-direction gauge field component. The n=0n=0 amplitude is different as the zero mode is massless with our specific choice. The non gravitational amplitude reads

i0relativistic=itg2q2e2(D1)(D2)κϕ0(p1+p3)(p2+p4).i\mathcal{M}_{0}^{relativistic}=\frac{i}{t}g^{\prime 2}q^{2}e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}(p_{1}+p_{3})\cdot(p_{2}+p_{4}). (6.9)

Let us now consider the case qΦ0q_{\Phi}\neq 0. The zero mode is massive

m02=eD1D2κϕ0qΦ2L2,m_{0}^{2}=e^{\sqrt{\frac{D-1}{D-2}}\kappa\phi_{0}}\frac{q_{\Phi}^{2}}{L^{2}}, (6.10)

and the corresponding four-point amplitude is given by (again, we do not include here the gravitational contribution whose expression for generic exchanger momenta is long and not very illuminating)

i0=\displaystyle i\mathcal{M}_{0}= it(g2q2e2(D1)(D2)κϕ0+2κ2qΦ2L2e2D1D2κϕ0)(p1+p3)(p2+p4)\displaystyle\frac{i}{t}\left(g^{\prime 2}q^{2}e^{\frac{2}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}+2\kappa^{2}\frac{q^{2}_{\Phi}}{L^{2}}e^{2\sqrt{\frac{D-1}{D-2}}\kappa\phi_{0}}\right)\left(p_{1}+p_{3}\right)\cdot\left(p_{2}+p_{4}\right)
it[4g2q2qΦ2L2e2D(D1)(D2)κϕ0+4D1D2κ2qΦ2L2e2D1D2κϕ0].\displaystyle-\frac{i}{t}\left[4g^{\prime 2}q^{2}\frac{q_{\Phi}^{2}}{L^{2}}e^{2\frac{D}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}+4\frac{D-1}{D-2}\kappa^{2}\frac{q_{\Phi}^{2}}{L^{2}}e^{2\sqrt{\frac{D-1}{D-2}}\kappa\phi_{0}}\right]. (6.11)

In the non-relativistic limit, the total amplitude obtained by adding the gravitational contribution to (6), cancels. The non-periodicity, which makes the zero mode massive, also generates couplings at h0h_{0} and ϕ\phi, whose exchanges cancel, respectively, the gauge and gravitational amplitudes of the zero mode. This is to be expected since integer values of qΦq_{\Phi} reshuffle the KK states; what was the zero mode becomes one of the massive modes for which we have seen that the total amplitude disappears. It is immediate to verify that the same is true for generic n0n\neq 0, n\mathcal{M}_{n} remains null, and the same thing happens if one turns on h¯0\bar{h}_{0}, as can be easily verified.

We can now study the general case. It is immediately verified that, after some algebra, in the non-relativistic limit the scattering amplitude (6) simplifies to

iNR(D)=\displaystyle i\mathcal{M}_{NR}^{(D)}= 4ie4(D1)(D2)κϕ0M^2(g2q2D2D1κ2M^2)\displaystyle 4ie^{\frac{4}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}\hat{M}^{2}\left(g^{\prime 2}q^{2}-\frac{D-2}{D-1}\kappa^{2}\hat{M}^{2}\right)
=\displaystyle= 4ie4(D1)(D2)κϕ02πLM^2(g^2q2(D+1)3(D+1)2κ^2M^2)iNR(D+1)\displaystyle 4i\frac{e^{\frac{4}{\sqrt{(D-1)(D-2)}}\kappa\phi_{0}}}{2\pi L}{\hat{M}^{2}}\left(\hat{g}^{\prime 2}q^{2}-\frac{(D+1)-3}{(D+1)-2}\hat{\kappa}^{2}\hat{M}^{2}\right)\propto i\mathcal{M}_{NR}^{(D+1)} (6.12)

where one recognizes in the combination inside the parenthesis the D+1D+1 dimensional corresponding dependence. The qΦq_{\Phi} and h¯0\bar{h}_{0} dependences cancel out to leave this simple expression only in terms of the higher dimensional mass and charge. We conclude that the requirement that the state in D+1D+1 dimensions feels a repulsive long range force ensures that the KK modes in DD dimensions also feel a repulsive long range force.

The mapping of the D+1D+1 dimensional U(1)U(1) WGC into the DD dimensional form of the conjecture with gauge and scalar fields was discussed in [3] from the requirement of extremal black holes and black p-branes decays, leading to the establishment of the dilatonic WGC, and in [16] for the special case of a five to four dimensional circle compactification retaining only the zero modes. The analysis presented here generalizes, from the standpoint of scattering amplitudes, the connection between these different forms of the conjecture to the case with several gauge and scalar fields with reasonings involving the whole Kaluza-Klein tower.

6.1 Effective potential for h0h_{0}

Finally, we comment on the confrontation of the effective one-loop potential for the Wilson line with the scalar WGC of [6]. The potential is generated by the integration of the KK excitations444We use here the results of the effective potentials investigated in details for example in [17] and at the one-loop level in a type I non-supersymmetric string model in [18].. In the case of a circle compactification from five to four dimensions, the potential takes the simple form

Veff(h0)=364π6L4n=1cos(2πngqh0L)|n|5=3(Li5(e2πigqh0L)+Li5(e2πigqh0L))128π6L4,V_{\mathrm{eff}}(h_{0})=-\frac{3}{64\pi^{6}L^{4}}\sum_{n=1}^{\infty}\frac{\cos\left(2\pi ng^{\prime}qh_{0}L\right)}{|n|^{5}}=-\frac{3\left(\text{Li}_{5}\left(e^{-2\pi ig^{\prime}qh_{0}L}\right)+\text{Li}_{5}\left(e^{2\pi ig^{\prime}qh_{0}L}\right)\right)}{128\pi^{6}L^{4}}, (6.13)

where the symbols Lin\text{Li}_{n} denote the usual Polylogarithm functions defined as

Lin(x)=k=1xkkn.\text{Li}_{n}(x)=\sum_{k=1}^{\infty}\frac{x^{k}}{k^{n}}. (6.14)

For the Wilson line to satisfy the Scalar WGC inequality of [6] around a generic background value h¯0\bar{h}_{0} (we indicate with η\eta the excitations around it, h0=h¯0+ηh_{0}=\bar{h}_{0}+\eta), one then needs

L23κ22π2g2q2[Li3(eix)+Li3(eix)|209(Li2(eix)Li2(eix))2Li3(eix)+Li3(eix)log(22cosx)|].L^{2}\geq\frac{3\kappa^{2}}{2\pi^{2}g^{\prime 2}q^{2}}\left[\frac{\text{Li}_{3}\left(e^{ix}\right)+\text{Li}_{3}\left(e^{-ix}\right)}{\left|\frac{20}{9}\frac{\left(\text{Li}_{2}\left(e^{ix}\right)-\text{Li}_{2}\left(e^{-ix}\right)\right)^{2}}{\text{Li}_{3}\left(e^{ix}\right)+\text{Li}_{3}\left(e^{-ix}\right)}-\log\left(2-2\cos x\right)\right|}\right]. (6.15)

where xx is defined to be x2πgqh¯0Lx\equiv 2\pi g^{\prime}q\bar{h}_{0}L, to be respected for mη2>0m^{2}_{\eta}>0, while the inequality is trivially verified for mη2<0m^{2}_{\eta}<0, but this case is of no interest. In the inequality (6.15), the factor inside the square parenthesis on the right hand side is periodic and reaches a maximal value around 0.60.70.6-0.7 in the regions of parameters where mη2>0m^{2}_{\eta}>0. Taken to be approximately an order one, the gravitational sub-dominance is then realized around any background value h¯0\bar{h}_{0} if 555Note that κ2g2=κ^2g^2\frac{\kappa^{2}}{g^{\prime 2}}=\frac{\hat{\kappa}^{2}}{\hat{g}^{\prime 2}}, so we can express the bound either in terms of five- or four-dimensional quantities in the same form.

L23κ^22π2g^2q2=32π2g2q21MP2,L^{2}\geq\frac{3\hat{\kappa}^{2}}{2\pi^{2}\hat{g}^{\prime 2}q^{2}}=\frac{3}{2\pi^{2}g^{\prime 2}q^{2}}\frac{1}{M_{P}^{2}}, (6.16)

which means that the compactification length cannot be parametrically smaller than the Planck’s one as expected.

From (6) and (6), it is immediate to observe that the self-couplings induced by radiative corrections are not the only ones that can appear in the 44-point function ηηηη\eta\eta\to\eta\eta. A first contribution may come from the kinetic term of h0h_{0}, coupled to the dilaton as in (6). This gives a two derivative vertex that would then induce contributions to the four point function proportional to the scalar product of external momenta (p1p2×p3p4p_{1}\cdot p_{2}\times p_{3}\cdot p_{4} in the s-channel, and so on). For the effective four point non relativistic coupling, this only accounts for a shift of the gravitational contribution, the second term in (6.16). In particular, the numerical coefficient 3/23/2 should be changed with 55 in (6.16) and all the subsequent inequalities.

7 Conclusions

An extra dimension for our space-time was originally introduced to unify gravity with electromagnetism: [8, 9, 10, 11]. From the point of view of a lower dimensional observer, this unification makes the KK modes undergo attractive gravitational plus scalar interactions and repulsive electric interactions with the same intensity. This motivated the use of the KK states interactions in this work to extract the form of the inequalities that appear when one is interested in comparing gravitational interactions to other types of interactions.

Taking into account the scalar interaction due to the presence of a dilaton, the calculation of four-point amplitudes allowed us to find the inequalities of the Dilatonic WGC. Our observations go further, with the extension of the construction to include interactions in the higher dimension, and we have shown how the Scalar WGC is found as well as the behavior of these conjectures under dimensional reduction. Meanwhile, we have also computed a number of scattering amplitudes for the pair production of KK states and have been able to compare the contributions of the different channels for spacetime dimensions D4D\geq 4.

Appendix A Lagrangians with derivative interactions

One subtlety that we wish to address here is related to the nature and the use of derivative interactions in perturbation theory. The perturbative expansion is an expansion of the exponential eidDxIe^{-i\int d^{D}x\mathcal{H}_{I}} in powers of I\mathcal{H}_{I}, the interaction hamiltonian in the interaction picture. When the lagrangian presents derivative interactions, one should be careful to correctly construct I\mathcal{H}_{I} before announcing the Feynman rules. Interactions containing more than one derivative of fields can generate new genuine additional Feynman rules [19]. The analog of this result was found, in the path integral formalism, in [20]. We illustrate this in two simple examples closely related to the cases studied.

A.1 Interactions with derivatives of a gauge field

We first present the case of the theory defined by

=12μϕμϕ14e2D1D2κϕ(μAννAμ)(μAννAμ).\mathcal{L}=\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi-\frac{1}{4}e^{-2\sqrt{\frac{D-1}{D-2}}\kappa{\phi}}\left(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}\right)\left(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}\right). (A.1)

We have singled out here only the part of interest to us to highlight the interaction between the dilaton ϕ\phi and derivatives of the graviphoton AμA_{\mu}. We will work in the usual radiation gauge A0=0,A=0A_{0}=0,\vec{\nabla}\cdot\vec{A}=0. Computation of the canonical conjugate momenta give us

{ΠA0=0ΠAi=(1+m=1(2D1D2κ)mϕmm!)F0iΠϕ=0ϕ.\begin{cases}\Pi_{A_{0}}=0\\ \Pi_{A_{i}}=-\left(1+\sum_{m=1}^{\infty}\left(-2\sqrt{\frac{D-1}{D-2}}\kappa\right)^{m}\frac{\phi^{m}}{m!}\right)F^{0i}\\ \Pi_{\phi}=\partial_{0}\phi.\end{cases} (A.2)

The fact that ΠA0=0\Pi_{A_{0}}=0 is, of course, what we should expect in a canonical formalism. The Heisenberg picture hamiltonian is obtained as

\displaystyle\mathcal{H} =ΠAμ0Aμ+Πϕ0ϕ\displaystyle=\Pi_{A_{\mu}}\partial_{0}A_{\mu}+\Pi_{\phi}\partial_{0}\phi-\mathcal{L}
=12F0iF0i+14FijFij+120ϕ0ϕ+12iϕiϕm=1(2D1D2κ)mϕmm!(F0iF0iFμνFμν4)\displaystyle=-\frac{1}{2}F_{0i}F^{0i}+\frac{1}{4}F_{ij}F^{ij}+\frac{1}{2}\partial_{0}\phi\partial_{0}\phi+\frac{1}{2}\partial_{i}\phi\partial_{i}\phi-\sum_{m=1}^{\infty}\left(-2\sqrt{\frac{D-1}{D-2}}\kappa\right)^{m}\frac{\phi^{m}}{m!}\left(F^{0i}F_{0i}-\frac{F_{\mu\nu}F^{\mu\nu}}{4}\right)
=12ΠAiΠAi+14FijFij+12ΠϕΠϕ+12iϕiϕ+14m=1(2D1D2κ)mϕmm!FμνFμν\displaystyle=\frac{1}{2}\Pi_{A_{i}}\Pi_{A_{i}}+\frac{1}{4}F_{ij}F^{ij}+\frac{1}{2}\Pi_{\phi}\Pi_{\phi}+\frac{1}{2}\partial_{i}\phi\partial_{i}\phi+\frac{1}{4}\sum_{m=1}^{\infty}\left(-2\sqrt{\frac{D-1}{D-2}}\kappa\right)^{m}\frac{\phi^{m}}{m!}F^{\mu\nu}F_{\mu\nu}
+12m=1[(2D1D2κ)mϕmm!]2F0iF0i.\displaystyle\hskip 14.22636pt+\frac{1}{2}\sum_{m=1}^{\infty}\left[\left(-2\sqrt{\frac{D-1}{D-2}}\kappa\right)^{m}\frac{\phi^{m}}{m!}\right]^{2}F^{0i}F_{0i}. (A.3)

The transition to the interaction picture is done making the following replacements:

{ΠAiF0i(=ΠAi,I)FijFijF0iF0i(1+m=1(2D1D2κ)mϕmm!)1Πϕ0ϕϕϕ0ϕ0ϕ\begin{cases}\Pi_{A_{i}}\to-F^{0i}\,(=\Pi_{A_{i},\,I})\\ F_{ij}\to F_{ij}\\ F^{0i}\to F^{0i}\left(1+\sum_{m=1}^{\infty}\left(-2\sqrt{\frac{D-1}{D-2}}\kappa\right)^{m}\frac{\phi^{m}}{m!}\right)^{-1}\\ \Pi_{\phi}\to\partial_{0}\phi\\ \phi\to\phi\\ \partial_{0}\phi\to\partial_{0}\phi\end{cases} (A.4)

Some simple algebra finally get us to the interaction picture hamiltonian in the form

\displaystyle\mathcal{H} =12F0iF0i+14FijFij+120ϕ0ϕ+12iϕiϕ+14m=1(2D1D2κ)mϕmm!FμνFμν\displaystyle=-\frac{1}{2}F_{0i}F^{0i}+\frac{1}{4}F_{ij}F^{ij}+\frac{1}{2}\partial_{0}\phi\partial_{0}\phi+\frac{1}{2}\partial_{i}\phi\partial_{i}\phi+\frac{1}{4}\sum_{m=1}^{\infty}\left(-2\sqrt{\frac{D-1}{D-2}}\kappa\right)^{m}\frac{\phi^{m}}{m!}F^{\mu\nu}F_{\mu\nu}
12m=1[(2D1D2κ)mϕmm!]21+m=1(2D1D2κ)mϕmm!F0iF0i.\displaystyle\hskip 14.22636pt-\frac{1}{2}\frac{\sum_{m=1}^{\infty}\left[\left(-2\sqrt{\frac{D-1}{D-2}}\kappa\right)^{m}\frac{\phi^{m}}{m!}\right]^{2}}{1+\sum_{m=1}^{\infty}\left(-2\sqrt{\frac{D-1}{D-2}}\kappa\right)^{m}\frac{\phi^{m}}{m!}}F^{0i}F_{0i}. (A.5)

Careful construction of the interaction hamiltonian reveals the presence of an additional term to the naive expectation, to the extent that

I=I12m=1[(2D1D2κ)mϕmm!]21+m=1(2D1D2κ)mϕmm!F0iF0i,\mathcal{H}_{I}=-\mathcal{L}_{I}-\frac{1}{2}\frac{\sum_{m=1}^{\infty}\left[\left(-2\sqrt{\frac{D-1}{D-2}}\kappa\right)^{m}\frac{\phi^{m}}{m!}\right]^{2}}{1+\sum_{m=1}^{\infty}\left(-2\sqrt{\frac{D-1}{D-2}}\kappa\right)^{m}\frac{\phi^{m}}{m!}}F^{0i}F_{0i}, (A.6)

with the new term sharing the same structure with the one found in the model of [19].
Combining this result with the two derivative propagator666Given here in the covariant gauge, to keep a simple notation.

μAρνAσ(q)=iηρσqμqνq2(+iϵ)iηρσημ 0ην 0\braket{\partial_{\mu}A_{\rho}\partial_{\nu}A_{\sigma}}(q)=i\eta_{\rho\sigma}\frac{q_{\mu}q_{\nu}}{q^{2}(+i\epsilon)}-i\eta_{\rho\sigma}\eta_{\mu\,0}\eta_{\nu\,0} (A.7)

we finally have the explicit form of the non standard Feynman rules we should consider in the minimally coupled (i.e. with ξ=0\xi=0) dimensionally reduced theory. The additional term consists in an infinite series in powers of κϕ\kappa\phi starting at order 22 and defining a vertex with two gauge bosons. As such, it will not enter any of the computations we have performed, but certainly need to be considered, alongside with the propagator corrections, even at tree level, when looking at different physical processes, like ϕϕγγ\phi\phi\to\gamma\gamma and ϕγϕγ\phi\gamma\to\phi\gamma ones.

A.2 Toy model for the two-derivative interaction of the non-minimal coupling

The second model we present here aims to capture the main properties of the new vertices brought in by the non-minimal coupling to gravity. We explicitly show, with the simplest toy model, that the different additional pieces due to such derivatives cancel each other, allowing the use of naive perturbation theory.

Let us take, for definiteness, the following lagrangian:

=12(ϕ)2+12(φ)2+a2κ(2ϕ)φ2+b2κ2(ϕ)2φ2=12(ϕ)2+12(φ)2aκ(ϕφ)φ+b2κ2(ϕ)2φ2,\mathcal{L}=\frac{1}{2}(\partial\phi)^{2}+\frac{1}{2}(\partial\varphi)^{2}+\frac{a}{2}\kappa(\partial^{2}\phi)\varphi^{2}+\frac{b}{2}\kappa^{2}(\partial\phi)^{2}\varphi^{2}=\frac{1}{2}(\partial\phi)^{2}+\frac{1}{2}(\partial\varphi)^{2}-a\kappa(\partial\phi\cdot\partial\varphi)\varphi+\frac{b}{2}\kappa^{2}(\partial\phi)^{2}\varphi^{2}, (A.8)

where aa and bb are dimensionless constants. In keeping the parallel with the cases discussed in the text, one should think of ϕ\phi as a massless mediator and φ\varphi the matter field. The addition of a mass term for φ\varphi does not change the computations.
The conjugate momenta are

{Πϕ=0ϕaκϕ0φ+bκ20ϕφ2Πφ=0φaκφ0ϕ,\begin{cases}\Pi_{\phi}=\partial_{0}\phi-a\kappa\phi\partial_{0}\varphi+b\kappa^{2}\partial_{0}\phi\,\varphi^{2}\\ \Pi_{\varphi}=\partial_{0}\varphi-a\kappa\varphi\partial_{0}\phi,\end{cases} (A.9)

and, inverting the relations, we obtain

{0ϕ=Πϕ+aκφΠφ1+(ba2)κ2φ20φ=Πφ+aκφΠϕ+aκφΠφ1+(ba2)κ2φ2.\begin{cases}\partial_{0}\phi=\frac{\Pi_{\phi}+a\kappa\varphi\Pi_{\varphi}}{1+(b-a^{2})\kappa^{2}\varphi^{2}}\\ \partial_{0}\varphi=\Pi_{\varphi}+a\kappa\varphi\frac{\Pi_{\phi}+a\kappa\varphi\Pi_{\varphi}}{1+(b-a^{2})\kappa^{2}\varphi^{2}}.\end{cases} (A.10)

Following the steps described above, the interaction picture hamiltonian is obtained:

\displaystyle\mathcal{H} =0ϕ(0ϕ+aκφ0φ)1+(ba2)κ2φ2+0φ(0φ+aκφ0ϕ+aκφ0φ1+(ba2)κ2φ2)12(0ϕ+aκφ0φ1+(ba2)κ2φ2)2\displaystyle=\frac{\partial_{0}\phi(\partial_{0}\phi+a\kappa\varphi\partial_{0}\varphi)}{1+(b-a^{2})\kappa^{2}\varphi^{2}}+\partial_{0}\varphi\left(\partial_{0}\varphi+a\kappa\varphi\frac{\partial_{0}\phi+a\kappa\varphi\partial_{0}\varphi}{1+(b-a^{2})\kappa^{2}\varphi^{2}}\right)-\frac{1}{2}\left(\frac{\partial_{0}\phi+a\kappa\varphi\partial_{0}\varphi}{1+(b-a^{2})\kappa^{2}\varphi^{2}}\right)^{2}
12(0φ+aκφ0ϕ+aκφ0φ1+(ba2)κ2φ2)2+12iϕiϕ+12iφiφ+aκφ0φ0ϕ+aκφ0φ1+(ba2)κ2φ2\displaystyle-\frac{1}{2}\left(\partial_{0}\varphi+a\kappa\varphi\frac{\partial_{0}\phi+a\kappa\varphi\partial_{0}\varphi}{1+(b-a^{2})\kappa^{2}\varphi^{2}}\right)^{2}+\frac{1}{2}\partial_{i}\phi\partial_{i}\phi+\frac{1}{2}\partial_{i}\varphi\partial_{i}\varphi+a\kappa\varphi\partial_{0}\varphi\frac{\partial_{0}\phi+a\kappa\varphi\partial_{0}\varphi}{1+(b-a^{2})\kappa^{2}\varphi^{2}}
+a2κ2φ2(0ϕ+aκφ0φ1+(ba2)κ2φ2)2b2κ2φ2(0ϕ+aκφ0φ1+(ba2)κ2φ2)2aκφiϕiφ+b2κ2φ2iϕiϕ\displaystyle+a^{2}\kappa^{2}\varphi^{2}\left(\frac{\partial_{0}\phi+a\kappa\varphi\partial_{0}\varphi}{1+(b-a^{2})\kappa^{2}\varphi^{2}}\right)^{2}-\frac{b}{2}\kappa^{2}\varphi^{2}\left(\frac{\partial_{0}\phi+a\kappa\varphi\partial_{0}\varphi}{1+(b-a^{2})\kappa^{2}\varphi^{2}}\right)^{2}-a\kappa\varphi\partial_{i}\phi\partial_{i}\varphi+\frac{b}{2}\kappa^{2}\varphi^{2}\partial_{i}\phi\partial_{i}\phi (A.11)

Expanding to second order in κ\kappa, to match the usual contributions to the φφφφ\varphi\varphi\to\varphi\varphi or ϕϕφφ\phi\phi\to\varphi\varphi amplitudes from (A.8), we get

\displaystyle\mathcal{H} =12(0ϕ0ϕ+iϕiϕ)+12(0φ0φ+iφiφ)+aκφ(0φ0ϕiφiϕ)b2κ2φ2(0ϕ0ϕiϕiϕ)\displaystyle=\frac{1}{2}(\partial_{0}\phi\partial_{0}\phi+\partial_{i}\phi\partial_{i}\phi)+\frac{1}{2}(\partial_{0}\varphi\partial_{0}\varphi+\partial_{i}\varphi\partial_{i}\varphi)+a\kappa\varphi(\partial_{0}\varphi\partial_{0}\phi-\partial_{i}\varphi\partial_{i}\phi)-\frac{b}{2}\kappa^{2}\varphi^{2}(\partial_{0}\phi\partial_{0}\phi-\partial_{i}\phi\partial_{i}\phi)
+a22κ2φ2(0ϕ0ϕ+0φ0φ)+O(κ3).\displaystyle+\frac{a^{2}}{2}\kappa^{2}\varphi^{2}\left(\partial_{0}\phi\partial_{0}\phi+\partial_{0}\varphi\partial_{0}\varphi\right)+O\left(\kappa^{3}\right). (A.12)

We recognize, in the first line, the sum freeI\mathcal{H}_{\mathrm{free}}-\mathcal{L}_{I} that is usually found in perturbation theory with no derivative interactions. The operator in the second line, as well as all the higher orders ones that can be derived from (A.2), are due to the derivative interactions in (A.8). Equation (A.2) shows that, at the level of the interaction picture hamiltonian, we get additional 4-point vertices with respect to the usual ones.

We now check the impact of such additional interactive terms through the explicit computation of the φ(p1)φ(p2)φ(q1)φ(q2)\varphi(p_{1})\varphi(p_{2})\to\varphi(q_{1})\varphi(q_{2}) scattering amplitude. Taking into account the corrections to the scalar propagator (analogous to (A.7)), the usual (I-\mathcal{L}_{I}) interactions give, in each one of the s,ts,t and uu channels

i(I)=ia2κ2PμPν(PμPνP2η0μη0ν),i\mathcal{M}_{\mathrm{(-\mathcal{L}_{I})}}=-ia^{2}\kappa^{2}P_{\mu}P_{\nu}\left(\frac{P^{\mu}P^{\nu}}{P^{2}}-\eta^{\mu}_{0}\eta^{\nu}_{0}\right), (A.13)

where PP is the appropriate momentum factor in each channel (P=p1+p2P=p_{1}+p_{2}, P=p1p3P=p_{1}-p_{3} and P=p1p4P=p_{1}-p_{4}, respectively, in s,ts,t and uu). After some algebra, the four φ\varphi contact term in (A.2) accounts for a contribution

icontact=2ia2κ2(p1,02+p2,02+q1,02q1,0p1,0),i\mathcal{M}_{\mathrm{contact}}=-2ia^{2}\kappa^{2}(p_{1,0}^{2}+p_{2,0}^{2}+q_{1,0}^{2}-q_{1,0}p_{1,0}), (A.14)

where the notation pi,0p_{i,0} means the zero component of the momentum pip_{i}.

Putting it all together one gets

i=ia2κ2{s+t+u((p1,0+p2,0)2+(p1,0q1,0)2+(p1,0q2,0)2)+2(p1,02+p2,02+q1,02q1,0p1,0)}.i\mathcal{M}=-ia^{2}\kappa^{2}\Big{\{}s+t+u-\left((p_{1,0}+p_{2,0})^{2}+(p_{1,0}-q_{1,0})^{2}+(p_{1,0}-q_{2,0})^{2}\right)+2(p_{1,0}^{2}+p_{2,0}^{2}+q_{1,0}^{2}-q_{1,0}p_{1,0})\Big{\}}. (A.15)

Using momentum conservation one can show that, again after some algebra, the non covariant pieces cancel leaving the same result one would have guessed using the naive Feynman rules from the lagrangian (A.8) associating the appropriate momentum factor to each derivative:

i=ia2κ2(s+t+u).i\mathcal{M}=-ia^{2}\kappa^{2}\left(s+t+u\right). (A.16)

The type of vertices being the same, this same cancellation happens in the “pair production”-like amplitude ϕϕφφ\phi\phi\to\varphi\varphi.

This toy model explicitly shows the cancellation between different non covariant pieces arising in the computation of amplitudes with two derivative vertices and justifies, a posteriori, the use of naive perturbation theory we made in section 5.

Appendix B Helicity basis and Mandelstam variables

In the computation of the pair production diagrams, we need to deal with external states polarizations for massless helicity-1 and helicity-2 particles. This is of no concern when we compute the squared amplitude, as it is usually treated by means of the replacements polϵμ(p)ϵν(p)gμν\sum_{\mathrm{pol}}\epsilon_{\mu}(p)\epsilon^{*}_{\nu}(p)\rightarrow-g_{\mu\nu} for photon amplitudes and polϵμν(p)ϵρσ(p)=polϵμ(p)ϵν(p)ϵρ(p)ϵσ(p)𝒫μνρσ\sum_{\mathrm{pol}}\epsilon_{\mu\nu}(p)\epsilon^{*}_{\rho\sigma}(p)=\sum_{\mathrm{pol}}\epsilon_{\mu}(p)\epsilon_{\nu}(p)\epsilon^{*}_{\rho}(p)\epsilon^{*}_{\sigma}(p)\rightarrow\mathcal{P}_{\mu\nu\rho\sigma} for graviton ones. If, on the other hand, we want to consider the amplitude more directly and not its square, we need to choose a basis for the polarizations and the momentum, and perform the calculations within this basis.

For the case of the pair production, the in-going states relevant here are either photons or gravitons, while the outgoing ones are massive particles. We perform here the computations in the center of momentum frame.

Starting from the D=4D=4 case, we write the momenta

p1=Ep(1,0,0,1),p2=Ep(1,0,0,1),p3=(Ep,psinθ,0,pcosθ),p4=(Ep,psinθ,0,pcosθ)\displaystyle p_{1}=E_{p}(1,0,0,1),\quad p_{2}=E_{p}(1,0,0,-1),\quad p_{3}=(E_{p},p\sin\theta,0,p\cos\theta),\quad p_{4}=(E_{p},-p\sin\theta,0,-p\cos\theta) (B.1)

and the polarizations

ϵ1±ϵ(p1)±=12(0,1,i,0),ϵ2±ϵ(p2)±=12(0,±1,i,0).\displaystyle\epsilon_{1}^{\pm}\equiv\epsilon(p_{1})^{\pm}=\frac{1}{\sqrt{2}}(0,\mp 1,-i,0),\qquad\epsilon_{2}^{\pm}\equiv\epsilon(p_{2})^{\pm}=\frac{1}{\sqrt{2}}(0,\pm 1,-i,0). (B.2)

The scalar products appearing in the amplitudes can now be explicitly performed in this particular basis and the results can then be rewritten in terms of the Mandelstam variables using the following relations:

p2=s4m24,sin2θ=(tu)2s(s4m2),cos2θ=4tu4m2s(s4m2)\displaystyle p^{2}=\frac{s-4m^{2}}{4},\quad\sin^{2}\theta=\frac{(t-u)^{2}}{s(s-4m^{2})},\quad\cos^{2}\theta=\frac{4tu-4m^{2}}{s(s-4m^{2})} (B.3)

At this point, we need to separate the contributions coming from different helicities. For definiteness, we refer now to the amplitude in (3.11), that we report here for the reader’s convenience

iγγ=\displaystyle i\mathcal{M}_{\gamma\gamma}= ig2qn2ϵμ(p1)ϵν(p2)((2p3μp1μ)(2p4νp2ν)tmn2+(2p4μp1μ)(2p3νp2ν)umn2+2ημν)\displaystyle ig^{2}q_{n}^{2}\,\,\epsilon_{\mu}(p_{1})\epsilon_{\nu}(p_{2})\left(\frac{(2p_{3}^{\mu}-p_{1}^{\mu})(2p_{4}^{\nu}-p_{2}^{\nu})}{t-m_{n}^{2}}+\frac{(2p_{4}^{\mu}-p_{1}^{\mu})(2p_{3}^{\nu}-p_{2}^{\nu})}{u-m_{n}^{2}}+2\eta^{\mu\nu}\right)
2ig2qn2D1D2ϵμ(p1)ϵν(p2)p1p2ημνp1νp2μs.\displaystyle-2ig^{2}q_{n}^{2}\frac{D-1}{D-2}\,\,\,\epsilon_{\mu}(p_{1})\epsilon_{\nu}(p_{2})\frac{p_{1}\cdot p_{2}\eta^{\mu\nu}-p_{1}^{\nu}p_{2}^{\mu}}{s}.

A great simplification comes when we deal more directly with the amplitudes components. We can in fact use the property777When using the usual shortcut polϵμ(p)ϵν(p)=gμν\sum_{\rm pol}\epsilon_{\mu}(p)\epsilon_{\nu}(p)=-g_{\mu\nu} this simplification cannot be used. ϵ(p)p=0\epsilon(p)\cdot p=0. With our choice of basis, we also have ϵ(p1)p2=ϵ(p2)p1=0\epsilon(p_{1})\cdot p_{2}=\epsilon(p_{2})\cdot p_{1}=0, so that, for the purposes of the calculation with the helicity method, we can use the following expression for the amplitude

γγ=\displaystyle\mathcal{M}_{\gamma\gamma}= 4g2qn2{ϵ(p1)p3ϵ(p2)p4tmn2+ϵ(p1)p4ϵ(p2)p3umn2+ϵ(p1)ϵ(p2)2(1D1D2p1p2s)}.\displaystyle 4g^{2}q_{n}^{2}\,\,\left\{\frac{\epsilon(p_{1})\cdot p_{3}\,\epsilon(p_{2})\cdot p_{4}}{t-m_{n}^{2}}+\frac{\epsilon(p_{1})\cdot p_{4}\,\epsilon(p_{2})\cdot p_{3}}{u-m_{n}^{2}}+\frac{\epsilon(p_{1})\cdot\epsilon(p_{2})}{2}\left(1-\frac{D-1}{D-2}\frac{p_{1}\cdot p_{2}}{s}\right)\right\}. (B.4)

We denote with ±±\mathcal{M}_{\pm\pm} the different contributions, with the ±\pm referring to the helicities of the polarization. We have then

i++=2i(gqn)2(mn2s(tmn2)(umn2)γd34),i+=2i(gqn)2(mn4ut)(tmn2)(umn2),\displaystyle i\mathcal{M}_{++}=2i(gq_{n})^{2}\left(\frac{m_{n}^{2}s}{(t-m_{n}^{2})(u-m_{n}^{2})}-\gamma_{d}\frac{3}{4}\right),\qquad i\mathcal{M}_{+-}=-2i(gq_{n})^{2}\frac{(m_{n}^{4}-ut)}{(t-m_{n}^{2})(u-m_{n}^{2})}, (B.5)

where we have introduced a factor γd\gamma_{d} in front of the term arising from the dilaton such that we retrieve the result for our KK theory when γd=1\gamma_{d}=1 and the usual result for a U(1)U(1) gauge theory when γd=0\gamma_{d}=0. To compute the total amplitude, we average over the in-going polarizations and obtain in the threshold limit

|γγ|2\displaystyle|\mathcal{M}_{\gamma\gamma}|^{2} =14(2|++|2+2|+|2)2(1γd34)2(gqn)4.\displaystyle=\frac{1}{4}\left(2|\mathcal{M}_{++}|^{2}+2|\mathcal{M}_{+-}|^{2}\right)\to 2\left(1-\gamma_{d}\frac{3}{4}\right)^{2}(gq_{n})^{4}. (B.6)

When γd=0\gamma_{d}=0, the overall numerical factor is 22, while for γd=1\gamma_{d}=1, it is 1/81/8, matching the results obtained in Section 3.2 for D=4D=4. It is immediate to realize that, in the threshold limit, only the ϵ(p1)ϵ(p2)\epsilon(p_{1})\cdot\epsilon(p_{2}) term contributes.

The same method outlined above can be used for any other number of dimensions DD, where the gauge bosons have D2D-2 independent helicity states. For instance, in the D=5D=5 case, the helicity basis can be taken as

ϵ11\displaystyle\epsilon_{1}^{1} =12(0,1,i,0,0)ϵ21=12(0,1,i,0,0)\displaystyle=\frac{1}{\sqrt{2}}(0,-1,-i,0,0)\qquad\,\epsilon_{2}^{1}=\frac{1}{\sqrt{2}}(0,1,-i,0,0)
ϵ12\displaystyle\epsilon_{1}^{2} =12(0,1,i,0,0)ϵ22=12(0,1,i,0,0)\displaystyle=\frac{1}{\sqrt{2}}(0,1,-i,0,0)\qquad\quad\epsilon_{2}^{2}=\frac{1}{\sqrt{2}}(0,-1,-i,0,0)
ϵ13\displaystyle\epsilon_{1}^{3} =(0,0,0,1,0)ϵ23=(0,0,0,1,0).\displaystyle=(0,0,0,1,0)\qquad\qquad\,\quad\epsilon_{2}^{3}=(0,0,0,-1,0). (B.7)

For any D>4D>4, the polarization basis can be chosen such that, for both p1p_{1} and p2p_{2}, the first two polarizations are the same as in D=4D=4, while the other polarizations are ϵ1i=(0,,1i+1,,0)\epsilon^{i}_{1}=(0,\dots,\underbrace{1}_{\text{i+1}},\dots,0) and ϵ2i=(0,,1i+1,,0)\epsilon^{i}_{2}=(0,\dots,\underbrace{-1}_{\text{i+1}},\dots,0). For an even number of dimensions, one may chose the basis in an equivalent way as an ensemble of two by two circular polarizations. In D=6D=6 dimensions, for instance, this would give

ϵ11\displaystyle\epsilon_{1}^{1} =12(0,1,i,0,0,0)ϵ21=12(0,1,i,0,0,0)\displaystyle=\frac{1}{\sqrt{2}}(0,-1,-i,0,0,0)\qquad\,\epsilon_{2}^{1}=\frac{1}{\sqrt{2}}(0,1,-i,0,0,0)
ϵ12\displaystyle\epsilon_{1}^{2} =12(0,1,i,0,0,0)ϵ22=12(0,1,i,0,0,0)\displaystyle=\frac{1}{\sqrt{2}}(0,1,-i,0,0,0)\qquad\quad\epsilon_{2}^{2}=\frac{1}{\sqrt{2}}(0,-1,-i,0,0,0)
ϵ13\displaystyle\epsilon_{1}^{3} =12(0,0,0,1,i,0)ϵ23=12(0,0,0,1,i,0)\displaystyle=\frac{1}{\sqrt{2}}(0,0,0,-1,-i,0)\qquad\,\epsilon_{2}^{3}=\frac{1}{\sqrt{2}}(0,0,0,1,-i,0)
ϵ14\displaystyle\epsilon_{1}^{4} =12(0,0,0,1,i,0)ϵ24=12(0,0,0,1,i,0).\displaystyle=\frac{1}{\sqrt{2}}(0,0,0,1,-i,0)\qquad\quad\epsilon_{2}^{4}=\frac{1}{\sqrt{2}}(0,0,0,-1,-i,0). (B.8)

Of course, the results are independent of the particular choice.

Whatever specific basis one choses, from (B.4) it follows that in the threshold limit, as already observed for the specific case D=4D=4, only the diagonal terms ii\mathcal{M}_{ii} are non zero, and they all give the same contribution

ii2(gq)4(112D1D2).\mathcal{M}_{ii}\to 2(gq)^{4}\left(1-\frac{1}{2}\frac{D-1}{D-2}\right). (B.9)

It is then straightforward to extract the value of the amplitude in the threshold limit for DD generic dimensions as

||21(D2)2(D2)|ii|2=4D2(gq)4(112D1D2)2=(D3D2)2(gqn)4D2.\left|\mathcal{M}\right|^{2}\to\frac{1}{(D-2)^{2}}(D-2)\left|\mathcal{M}_{ii}\right|^{2}=\frac{4}{D-2}(gq)^{4}\left(1-\frac{1}{2}\frac{D-1}{D-2}\right)^{2}=\left(\frac{D-3}{D-2}\right)^{2}\frac{(gq_{n})^{4}}{D-2}. (B.10)

This result of course matches that shown in (3.13), that was obtained by means of the usual trick polϵμ(p)ϵν(p)=gμν\sum_{\rm pol}\epsilon_{\mu}(p)\epsilon_{\nu}(p)=-g_{\mu\nu}. Note also that when the dilaton is put to zero (i.e. when the second contribution in the parenthesis (B.10) is put to wero) we re-obtain the result

|γγ|24D2(gq)4.\left|\mathcal{M}_{\gamma\gamma}\right|^{2}\to\frac{4}{D-2}(gq)^{4}. (B.11)

The same procedure can now be used to extract the different components of the purely gravitational amplitude of section 3.2.3. The four diagrams contribute in the amount

tpole\displaystyle\mathcal{M}_{\rm t-pole} =4κ2(ϵ1p3)2(ϵ2p4)2tmn2\displaystyle=-\frac{4\kappa^{2}(\epsilon_{1}\cdot p_{3})^{2}(\epsilon_{2}\cdot p_{4})^{2}}{t-m_{n}^{2}}
upole\displaystyle\mathcal{M}_{\rm u-pole} =4κ2(ϵ2p3)2(ϵ1p4)2umn2\displaystyle=-\frac{4\kappa^{2}(\epsilon_{2}\cdot p_{3})^{2}(\epsilon_{1}\cdot p_{4})^{2}}{u-m_{n}^{2}} (B.12)
seagull\displaystyle\mathcal{M}_{\rm seagull} =2κ2ϵ1ϵ2(ϵ1ϵ2(p3p4+mn2)2ϵ2p3ϵ1p42ϵ1p3ϵ2p4)\displaystyle=2\kappa^{2}\epsilon_{1}\cdot\epsilon_{2}\left(\epsilon_{1}\cdot\epsilon_{2}\left(p_{3}\cdot p_{4}+m_{n}^{2}\right)-2\epsilon_{2}\cdot p_{3}\,\epsilon_{1}\cdot p_{4}-2\epsilon_{1}\cdot p_{3}\,\epsilon_{2}\cdot p_{4}\right)

and

gpole=2ϵ1ϵ2D2{\displaystyle\mathcal{M}_{\rm g-pole}=\frac{2\,\epsilon_{1}\cdot\epsilon_{2}}{D-2}\Bigg{\{} 2p1p2[(D2)(ϵ2,λϵ1,τ+ϵ1,λϵ2,τ)ϵ1ϵ2ηλτ]\displaystyle 2\,p_{1}\cdot p_{2}\Big{[}(D-2)(\epsilon_{2,\lambda}\epsilon_{1,\tau}+\epsilon_{1,\lambda}\epsilon_{2,\tau})-\epsilon_{1}\cdot\epsilon_{2}\,\eta_{\lambda\tau}\Big{]}
+p1p2[4ϵ1ϵ2ηλτ2(D2)(ϵ2,λϵ1,τ+ϵ1,λϵ2,τ)]\displaystyle+p_{1}\cdot p_{2}\Big{[}4\,\epsilon_{1}\cdot\epsilon_{2}\,\eta_{\lambda\tau}-2(D-2)(\epsilon_{2,\lambda}\epsilon_{1,\tau}+\epsilon_{1,\lambda}\epsilon_{2,\tau})\Big{]}
+Dϵ1ϵ2(p1,λp1,τ+p2,λp2,τ+p1,λ(p1+p2)τ+p2,λ(p1+p2)τ)\displaystyle+D\,\epsilon_{1}\cdot\epsilon_{2}\,(p_{1,\lambda}p_{1,\tau}+p_{2,\lambda}p_{2,\tau}+p_{1,\lambda}(p_{1}+p_{2})_{\tau}+p_{2,\lambda}(p_{1}+p_{2})_{\tau})
+2Dp1p2ϵ2,λϵ1,τ+2(D2)p1p2ϵ1,λϵ2,τ2p1p2ϵ1ϵ2ηλτ\displaystyle+2D\,p_{1}\cdot p_{2}\,\epsilon_{2,\lambda}\epsilon_{1,\tau}+2(D-2)\,p_{1}\cdot p_{2}\,\epsilon_{1,\lambda}\epsilon_{2,\tau}-2\,p_{1}\cdot p_{2}\,\epsilon_{1}\cdot\epsilon_{2}\eta_{\lambda\tau}
+2ϵ1ϵ2p2,λp1,τ+2ϵ1ϵ2p1,λp2,τ2ϵ1ϵ2(p1+p2)λp1,τ\displaystyle+2\,\epsilon_{1}\cdot\epsilon_{2}\,p_{2,\lambda}p_{1,\tau}+2\epsilon_{1}\cdot\epsilon_{2}\,p_{1,\lambda}p_{2,\tau}-2\epsilon_{1}\cdot\epsilon_{2}\,(p_{1}+p_{2})_{\lambda}p_{1,\tau}
2ϵ1ϵ2(p1+p2)λp2,τ2ϵ1ϵ2p1,λ(p1+p2)τ2ϵ1ϵ2p2,λ(p1+p2)τ\displaystyle-2\epsilon_{1}\cdot\epsilon_{2}\,(p_{1}+p_{2})_{\lambda}p_{2,\tau}-2\epsilon_{1}\cdot\epsilon_{2}\,p_{1,\lambda}(p_{1}+p_{2})_{\tau}-2\epsilon_{1}\cdot\epsilon_{2}\,p_{2,\lambda}(p_{1}+p_{2})_{\tau}
4p2(p1+p2)ϵ2,λϵ1,τ}(p3,λp4,τ+p4,λp3,τgλτ(p3p4+mn2))\displaystyle-4\,p_{2}\cdot(p_{1}+p_{2})\,\epsilon_{2,\lambda}\epsilon_{1,\tau}\Bigg{\}}\Bigg{(}p^{3,\lambda}p^{4,\tau}+p^{4,\lambda}p^{3,\tau}-g^{\lambda\tau}\left(p_{3}\cdot p_{4}+m_{n}^{2}\right)\Bigg{)} (B.13)

to give (3.2.3), reported here for simplicity

iGG=\displaystyle i\mathcal{M}_{GG}= κ22(8(p3ϵ1)2(p4ϵ2)2tmn28(p3ϵ2)2(p4ϵ1)2umn2\displaystyle\frac{\kappa^{2}}{2}\left(-\frac{8(p_{3}\cdot\epsilon_{1})^{2}(p_{4}\cdot\epsilon_{2})^{2}}{t-m_{n}^{2}}-\frac{8(p_{3}\cdot\epsilon_{2})^{2}(p_{4}\cdot\epsilon_{1})^{2}}{u-m_{n}^{2}}\right.
2(ϵ1ϵ2)2(mn4tusmn2)s4ϵ1ϵ2(p3ϵ2p4ϵ1+p3ϵ1p4ϵ2))\displaystyle\left.\qquad-2\frac{(\epsilon_{1}\cdot\epsilon_{2})^{2}\left(m_{n}^{4}-tu-sm_{n}^{2}\right)}{s}-4\epsilon_{1}\cdot\epsilon_{2}\left(p_{3}\cdot\epsilon_{2}\,p_{4}\cdot\epsilon_{1}+p_{3}\cdot\epsilon_{1}\,p_{4}\cdot\epsilon_{2}\right)\right)

As in the previous case, it is again easily verified that in the threshold limit only the diagonal ii\mathcal{M}_{ii} terms are non-vanishing and that they all give the same result. In terms of the above amplitude, such non-vanishing contribution is given by the (ϵ1ϵ2)2(\epsilon_{1}\cdot\epsilon_{2})^{2} term that results in

iiκ2mn2.\mathcal{M}_{ii}\to\kappa^{2}m_{n}^{2}. (B.14)

It is now straightforward to obtain, from these considerations, the result for the squared amplitude in DD generic dimensions:

||21(D2)2(D2)|ii|2=κ4mn4D2,\left|\mathcal{M}\right|^{2}\to\frac{1}{(D-2)^{2}}(D-2)\left|\mathcal{M}_{ii}\right|^{2}=\frac{\kappa^{4}m_{n}^{4}}{D-2}, (B.15)

which is the result quoted in the text (3.35).

References

  • [1] C. Vafa, The String landscape and the swampland, [hep-th/0509212].
  • [2] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP 06 (2007), 060 [arXiv:hep-th/0601001 [hep-th]].
  • [3] B. Heidenreich, M. Reece and T. Rudelius, Sharpening the Weak Gravity Conjecture with Dimensional Reduction, JHEP 02 (2016), 140 [arXiv:1509.06374 [hep-th]].
  • [4] K. Benakli, C. Branchina and G. Lafforgue-Marmet, Dilatonic (Anti-)de Sitter black holes and Weak Gravity Conjecture, JHEP 11 (2021), 058 [arXiv:2105.09800 [hep-th]].
  • [5] E. Gonzalo and L. E. Ibanez, A Strong Scalar Weak Gravity Conjecture and Some Implications, JHEP 1908 (2019) 118 [arXiv:1903.08878 [hep-th]].
  • [6] K. Benakli, C. Branchina and G. Lafforgue-Marmet, Revisiting the Scalar Weak Gravity Conjecture, Eur. Phys. J. C 80 (2020) no.8, 742 [arXiv:2004.12476 [hep-th]].
  • [7] E. Gonzalo and L. E. Ibáñez, Pair Production and Gravity as the Weakest Force, JHEP 12 (2020), 039 [arXiv:2005.07720 [hep-th]].
  • [8] T. Kaluza, Zum Unitätsproblem der Physik,” Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921 (1921), 966-972 [arXiv:1803.08616 [physics.hist-ph]].
  • [9] O. Klein, Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English)” Z. Phys. 37 (1926), 895-906.
  • [10] O. Klein, The Atomicity of Electricity as a Quantum Theory Law, Nature 118 (1926), 516.
  • [11] A. Einstein and P. Bergmann, On a Generalization of Kaluza’s Theory of Electricity, Annals Math. 39 (1938), 683-701.
  • [12] S. Y. Choi, J. S. Shim and H. S. Song, Factorization of gravitational Compton scattering amplitude in the linearized version of general relativity, Phys. Rev. D 48 (1993), 2953-2956 [arXiv:hep-ph/9306250 [hep-ph]].
  • [13] S. Y. Choi, J. S. Shim and H. S. Song, Factorization in graviton interactions, Phys. Rev. D 48 (1993), R5465-R5466 [arXiv:hep-ph/9310259 [hep-ph]].
  • [14] B. R. Holstein, Graviton Physics, Am. J. Phys. 74 (2006), 1002-1011 [arXiv:gr-qc/0607045 [gr-qc]].
  • [15] C. G. Callan, Jr., S. R. Coleman and R. Jackiw, A New improved energy - momentum tensor, Annals Phys. 59 (1970), 42-73.
  • [16] D. Lust and E. Palti, Scalar Fields, Hierarchical UV/IR Mixing and The Weak Gravity Conjecture, JHEP 02 (2018), 040 [arXiv:1709.01790 [hep-th]].
  • [17] I. Antoniadis, K. Benakli and M. Quiros, Finite Higgs mass without supersymmetry, New J. Phys. 3 (2001), 20 [arXiv:hep-th/0108005 [hep-th]].
  • [18] I. Antoniadis, K. Benakli and M. Quiros, Radiative symmetry breaking in brane models, Nucl. Phys. B 583 (2000), 35-48. [arXiv:hep-ph/0004091 [hep-ph]].
  • [19] I. S. Gerstein, R. Jackiw, S. Weinberg and B. W. Lee, Chiral loops, Phys. Rev. D 3 (1971), 2486-2492.
  • [20] J. Honerkamp and K. Meetz, Chiral-invariant perturbation theory, Phys. Rev. D 3 (1971), 1996-1998.