This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Scheme of Monogenic Generators II:
Local Monogenicity and Twists

Sarah Arpin1, Sebastian Bozlee2, Leo Herr1, Hanson Smith3 [email protected] [email protected] [email protected] [email protected] 1Universiteit Leiden, 2Tufts University, 3California State University San Marcos
Abstract.

This is the second paper in a series of two studying monogenicity of number rings from a moduli-theoretic perspective. By the results of the first paper in this series, a choice of a generator θ\theta for an AA-algebra BB is a point of the scheme B/A\mathcal{M}_{B/A}. In this paper, we study and relate several notions of local monogenicity that emerge from this perspective. We first consider the conditions under which the extension B/AB/A admits monogenerators locally in the Zariski and finer topologies, recovering a theorem of Pleasants as a special case. We next consider the case in which B/AB/A is étale, where the local structure of étale maps allows us to construct a universal monogenicity space and relate it to an unordered configuration space. Finally, we consider when B/AB/A admits local monogenerators that differ only by the action of some group (usually 𝔾m\mathbb{G}_{m} or Aff1\mathrm{Aff}^{1}), giving rise to a notion of twisted monogenerators. In particular, we show a number ring AA has class number one if and only if each twisted monogenerator is in fact a global monogenerator θ\theta.

2020 Mathematics Subject Classification:
Primary 14D20, Secondary 11R04, 13E15

1. Introduction

We begin by recalling the essential points of the previous paper of this series[ABHS]. Given an extension of commutative rings with identity (henceforth, rings) B/AB/A, we say that that BB is monogenic over AA if there is an element θB\theta\in B so that B=A[θ]B=A[\theta]. Such an element is called a monogenerator. Similarly, BB is said to be kk-genic over AA if there exists a tuple (θ1,,θk)Bk(\theta_{1},\ldots,\theta_{k})\in B^{k} so that B=A[θ1,,θk]B=A[\theta_{1},\ldots,\theta_{k}]. Such a tuple is a generating kk-tuple. We are motivated by the case of an extension of number rings L/K\mathbb{Z}_{L}/\mathbb{Z}_{K}.

Such extensions of number rings are finite locally free over a Noetherian base. In fact all we need for our results are maps of schemes that are Zariski locally of this form. We gather these hypotheses into a common “Situation” for convenience.

Situation 1.1.

Let π:SS\pi:S^{\prime}\to S be a finite locally free morphism of schemes of constant degree n1n\geq 1 with SS locally noetherian, and let XSX\to S be a quasiprojective morphism (almost always 𝔸S1\mathbb{A}^{1}_{S} or 𝔸Sk\mathbb{A}^{k}_{S}).

In the preceding paper we prove the following representability result, which implies in particular that if BB is finite locally free over a Noetherian ring AA, then there is a scheme that represents the monogenerators for BB over AA.

Theorem 1.2 ([ABHS, Proposition 2.3, Corollary 3.8]).

Let π:SS\pi:S^{\prime}\to S be as in Situation 1.1. Then

  1. (1)

    There exists a smooth, quasiaffine SS-scheme X,S/S\mathcal{M}_{X,S^{\prime}/S} representing the contravariant functor on SS-schemes

    (TS){S×STX×STTs|s is a closed immersion.}.(T\to S)\mapsto\left\{\leavevmode\hbox to138.14pt{\vbox to49.77pt{\pgfpicture\makeatletter\hbox{\hskip 69.06996pt\lower-24.88719pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-69.06996pt}{-24.88719pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 17.81325pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.5077pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${S^{\prime}\times_{S}T}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 17.81325pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 43.33485pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.02934pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X\times_{S}T}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 19.33488pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 31.92183pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61632pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${T}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.92186pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{{ {\pgfsys@beginscope \pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-2.07988pt}{2.39986pt}\pgfsys@curveto{-1.69989pt}{0.95992pt}{-0.85313pt}{0.27998pt}{0.0pt}{0.0pt}\pgfsys@curveto{-0.85313pt}{-0.27998pt}{-1.69989pt}{-0.95992pt}{-2.07988pt}{-2.39986pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}{}{}{{}}\pgfsys@moveto{-33.24347pt}{11.67892pt}\pgfsys@lineto{29.80023pt}{11.67892pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{30.00021pt}{11.67892pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.16226pt}{14.0317pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{s}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-39.17992pt}{3.40588pt}\pgfsys@lineto{-9.97345pt}{-16.60106pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.825}{-0.56514}{0.56514}{0.825}{-9.80847pt}{-16.71408pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{37.29283pt}{3.40588pt}\pgfsys@lineto{6.93332pt}{-16.77042pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.83286}{-0.5535}{0.5535}{-0.83286}{6.76677pt}{-16.8811pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,\,\middle|\,\,s\text{ is a closed immersion.}\right\}.
  2. (2)

    If X=𝔸S1X=\mathbb{A}^{1}_{S}, then X,S/S\mathcal{M}_{X,S^{\prime}/S} is an affine SS-scheme.

We write k,S/S\mathcal{M}_{k,S^{\prime}/S} for the case in which X=𝔸SkX=\mathbb{A}^{k}_{S}. We call the scheme k,S/S\mathcal{M}_{k,S^{\prime}/S} the scheme of kk-generators. If k=1k=1, we write S/S\mathcal{M}_{S^{\prime}/S} instead of 1,S/S\mathcal{M}_{1,S^{\prime}/S} and call it the scheme of monogenerators or monogenicity space. If S=SpecBS^{\prime}=\mathrm{Spec}\,B and S=SpecAS=\mathrm{Spec}\,A are affine, we may write k,B/A\mathcal{M}_{k,B/A} or B/A\mathcal{M}_{B/A} instead.

In the case that S=SpecAS=\mathrm{Spec}\,A, S=SpecBS^{\prime}=\mathrm{Spec}\,B, and T=SpecCT=\mathrm{Spec}\,C, standard universal properties imply that the TT-points of k,S/S\mathcal{M}_{k,S^{\prime}/S} are in natural bijection with the generating kk-tuples of BACB\otimes_{A}C over CC. If we assume further that TST\simeq S, we find that the SS-points of k,B/A\mathcal{M}_{k,B/A} are in bijection with generating kk-tuples for BB over AA.

By analogy with the affine case, we therefore say that the SS-points of k,S/S\mathcal{M}_{k,S^{\prime}/S} are generating kk-tuples and the SS-points of S/S\mathcal{M}_{S^{\prime}/S} are monogenerators for SSS^{\prime}\to S. Such a morphism is monogenic if a monogenerator exists.

1.1. Equations in local coordinates

The scheme 1,S/S\mathcal{M}_{1,S^{\prime}/S} has a simple description in local coordinates on SS which we recall so that we may use it in computations. We start by noticing that 1,S/S\mathcal{M}_{1,S^{\prime}/S} is naturally a subscheme of another moduli scheme, the Weil Restriction.

Definition 1.3.

Let π:SS\pi:S^{\prime}\to S be as in Situation 1.1. The Weil Restriction of X×SSX\times_{S}S^{\prime} to SS, denoted 𝒳,𝒮/𝒮\cal R_{X,S^{\prime}/S}, is the scheme (unique up to isomorphism) which represents the contravariant functor

(TS){S×STX×STTs}(T\to S)\mapsto\left\{\leavevmode\hbox to138.14pt{\vbox to49.77pt{\pgfpicture\makeatletter\hbox{\hskip 69.06996pt\lower-24.88719pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-69.06996pt}{-24.88719pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 17.81325pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.5077pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${S^{\prime}\times_{S}T}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 17.81325pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 43.33485pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.02934pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X\times_{S}T}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 19.33488pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 31.92183pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61632pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${T}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.92186pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-33.24347pt}{11.67892pt}\pgfsys@lineto{29.80023pt}{11.67892pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{30.00021pt}{11.67892pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.16226pt}{14.0317pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{s}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-39.17992pt}{3.40588pt}\pgfsys@lineto{-9.97345pt}{-16.60106pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.825}{-0.56514}{0.56514}{0.825}{-9.80847pt}{-16.71408pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{37.29283pt}{3.40588pt}\pgfsys@lineto{6.93332pt}{-16.77042pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.83286}{-0.5535}{0.5535}{-0.83286}{6.76677pt}{-16.8811pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\right\}

on SS-schemes.

We abbreviate 𝒳,𝒮/𝒮\cal R_{X,S^{\prime}/S} in a parallel fashion to X,S/S\mathcal{M}_{X,S^{\prime}/S}. It is proven in [JLM+17, Theorem 1.3, Proposition 2.10] that the Weil Restriction exists and is a quasiprojective SS-scheme. We prove in [ABHS, Proposition 2.3] that the natural map X,S/S𝒳,𝒮/𝒮\mathcal{M}_{X,S^{\prime}/S}\to\cal R_{X,S^{\prime}/S} is a quasi-compact open immersion.

In the case that BB is a finite free Noetherian AA-algebra with AA-basis e1,,ene_{1},\ldots,e_{n}, things are simpler. It is easy to check that

𝔸Sn1,𝒮/𝒮\mathbb{A}^{n}_{S}\simeq\cal R_{1,S^{\prime}/S}

via the isomorphism sending (x1,,xn)(x_{1},\ldots,x_{n}) to the unique map S×ST𝔸T1=Spec𝒪T[t]S^{\prime}\times_{S}T\to\mathbb{A}^{1}_{T}=\mathrm{Spec}\,\mathscr{O}_{T}[t] over TT sending tt to x1e1++xnenx_{1}e_{1}+\cdots+x_{n}e_{n}.

Definition 1.4.

Suppose BB is a finite free Noetherian AA-algebra with AA-basis e1,,ene_{1},\ldots,e_{n}. Let aija_{ij} for 1i,jn1\leq i,j\leq n be the unique elements of A[x1,,xn]A[x_{1},\ldots,x_{n}] so that we have

(x1e1++xnen)i1=ai,1e1++ai,nen(x_{1}e_{1}+\cdots+x_{n}e_{n})^{i-1}=a_{i,1}e_{1}+\cdots+a_{i,n}e_{n}

in the ring B[x1,,xn]B[x_{1},\ldots,x_{n}]. We call the matrix M(e1,,en)=[aij]1i,jnM(e_{1},\ldots,e_{n})=[a_{ij}]_{1\leq i,j\leq n} the matrix of coefficients with respect to the basis e1,,ene_{1},\ldots,e_{n}. Its determinant 𝒾(e1,,en)A[x1,,xn]{\mathcal{i}}(e_{1},\ldots,e_{n})\in A[x_{1},\ldots,x_{n}] is the local index form with respect to the basis e1,,ene_{1},\ldots,e_{n}.

Theorem 1.5.

([ABHS, Theorem 3.1]) With notation as above, 1,B/A\mathcal{M}_{1,B/A} is the distinguished open subscheme of 1,𝒮/𝒮\cal R_{1,S^{\prime}/S} cut out by the non-vanishing of the local index form. In particular,

1,B/ASpecA[x1,,xn,𝒾(e1,,en)1].\mathcal{M}_{1,B/A}\simeq\mathrm{Spec}\,A[x_{1},\ldots,x_{n},{\mathcal{i}}(e_{1},\ldots,e_{n})^{-1}].

Additionally, we recall from [ABHS] that the local index forms give the complement of S/S\mathcal{M}_{S^{\prime}/S} in 𝒮/𝒮\cal R_{S^{\prime}/S} a closed subscheme structure:

Definition 1.6 (Non-monogenerators 𝒩S/S\mathcal{N}_{S^{\prime}/S}).

Let S/S{\mathcal{I}}_{S^{\prime}/S} be the ideal sheaf on 𝒮/𝒮\cal R_{S^{\prime}/S} generated locally by local index forms. We call this the index form ideal. Let 𝒩S/S\mathcal{N}_{S^{\prime}/S} be the closed subscheme of \cal R cut out by the vanishing of S/S{\mathcal{I}}_{S^{\prime}/S}. We call this the scheme of non-monogenerators, since its support is the complement of S/S\mathcal{M}_{S^{\prime}/S} inside of 𝒮/𝒮\cal R_{S^{\prime}/S}.


Since k,S/S\mathcal{M}_{k,S^{\prime}/S} is a scheme, it is a sheaf in the fpqc topology on (Sch/S)(Sch/S). This invites a local study of monogenicity111‘Monogeneity’ is also common in the literature. of SSS^{\prime}\to S, the subject of this paper.

1.2. Results

We identify and relate several “local” notions of monogenicity. To guide the reader, their relationships are indicated in Figure 1.1.

(Globally) Monogenic𝔾m-Twisted Monogenic{\mathbb{G}_{m}\text{-Twisted Monogenic}}Aff1-Twisted Monogenic{\text{Aff}^{1}\text{-Twisted Monogenic}} Monogenic at completions   Zariski-Locally Monogenic Monogenic at points Fpqc-Locally Monogenic Étale-Locally Monogenic Monogenic at geometric points §4.2Thm. 2.1Thm. 2.1Thm. 2.10Thm. 2.10Cor. 2.11
Figure 1.1. A guide to notions of monogenicity and their relationships. The vertical dashed implication holds under additional hypotheses, see Cor. 2.11.

A sheaf theoretic notion of local monogenicity immediately presents itself.222We remark that Zariski local monogenicity is equivalent to the condition of “local monogenicity” considered by Bhargava et. al. in [ABS20] but strictly weaker than their condition of “no local obstruction to monogenicity.”

Definition 1.7.

Let τ\tau be a subcanonical Grothendieck topology on schemes, for example the Zariski, Nisnevich, étale, fppf, or fpqc topologies. We say that S/SS^{\prime}/S is τ\tau-locally kk-genic if the sheaf k,S/S\mathcal{M}_{k,S^{\prime}/S} is locally non-empty in the topology τ\tau. I.e., there is a τ\tau-cover {UiS}iI\{U_{i}\to S\}_{i\in I} of SS such that k,S/S(Ui)\mathcal{M}_{k,S^{\prime}/S}(U_{i}) is non-empty for all iIi\in I.

The notions of τ\tau-local monogenicity are considered in Section 2, and we find that these reduce to just two notions of “local monogenicity.”

Theorem 1.8.

Let π:SS\pi:S^{\prime}\to S be as in Situation 1.1.

  1. (1)

    (Theorem 2.1) The following are equivalent:

    1. (a)

      π\pi is locally monogenic in the Zariski topology;

    2. (b)

      π\pi is “monogenic at completions,” i.e. for all points xx of SS, we have that S×SSpec𝒪^S,xS^{\prime}\times_{S}\mathrm{Spec}\,\widehat{\mathscr{O}}_{S,x} is monogenic;

    3. (c)

      π\pi is “monogenic at points,” i.e. for each point xx of SS with residue field k(x)k(x), we have that S×SSpeck(x)Speck(x)S^{\prime}\times_{S}\mathrm{Spec}\,k(x)\to\mathrm{Spec}\,k(x) is monogenic.

  2. (2)

    (Theorem 2.10) The following are equivalent:

    1. (a)

      π\pi is locally monogenic in the étale topology;

    2. (b)

      π\pi is locally monogenic in the fpqc topology;

    3. (c)

      π\pi is “monogenic at geometric points,” i.e. for all algebraically closed fields kk and maps SpeckS\mathrm{Spec}\,k\to S, we have that S×SSpeckSpeckS^{\prime}\times_{S}\mathrm{Spec}\,k\to\mathrm{Spec}\,k is monogenic.

We then use the structure of finite algebras over fields to classify monogenicity at points. In particular, we recover Pleasants’s characterization [Ple74, Theorems 1 and 2] of monogenicity at completions as a corollary.

Theorem 1.9.

Let SSS^{\prime}\to S be induced by kBk\to B where kk is a field and BB is a local Artinian kk-algebra with residue field \ell and maximal ideal 𝔪{\mathfrak{m}}. Then SSS^{\prime}\to S is monogenic if and only if

  1. (1)

    SpecSpeck\mathrm{Spec}\,\ell\to\mathrm{Spec}\,k is monogenic;

  2. (2)

    dim𝔪/𝔪21\dim_{\ell}{\mathfrak{m}}/{\mathfrak{m}}^{2}\leq 1; and

  3. (3)

    If dim𝔪/𝔪2=1\dim_{\ell}{\mathfrak{m}}/{\mathfrak{m}}^{2}=1 and /k\ell/k is inseparable, then

    0𝔪/𝔪2B/𝔪200\to{\mathfrak{m}}/{\mathfrak{m}}^{2}\to B/{\mathfrak{m}}^{2}\to\ell\to 0

    is a non-split extension.

Theorem 1.10.

Suppose SSS^{\prime}\to S is induced by kAk\to A where kk is a field and BB is an Artinian kk-algebra. Write B=iBiB=\prod_{i}B_{i} where the BiB_{i} are local artinian kk-algebras with respective residue fields i\ell_{i}. Then SSS^{\prime}\to S is monogenic if and only if

  1. (1)

    SpecBiS\mathrm{Spec}\,B_{i}\to S is monogenic for each ii;

  2. (2)

    for each finite extension \ell of kk, SS^{\prime} has fewer points with residue field isomorphic to \ell than 𝔸S1\mathbb{A}^{1}_{S}.


In Section 3, we consider monogenicity spaces of étale SSS^{\prime}\to S, a salient case since extensions of number rings are generically étale and such étale maps share a common local structure: Finite étale maps are étale-locally isomorphic to the trivial nn-sheeted cover SSSS\sqcup\cdots\sqcup S\to S. The latter has S/S\mathcal{M}_{S^{\prime}/S} equal to the configuration space of nn distinct points in 𝔸1\mathbb{A}^{1}. Therefore we may interpret monogenicity spaces as twisted generalizations of configuration spaces, at least when SSS^{\prime}\to S is étale.

Using the fact[Sta20, 04HN] that every finite étale map of degree nn is pulled back from the morphism of stacks BΣn1BΣnB\Sigma_{n-1}\to B\Sigma_{n}, we then construct a monogenicity space BΣn1/BΣn\mathcal{M}_{B\Sigma_{n-1}/B\Sigma_{n}}.

Theorem 1.11.

There are isomorphisms

Σ𝓃1/Σ𝓃\displaystyle\cal R_{B\Sigma_{n-1}/B\Sigma_{n}} [𝔸n/Σn],\displaystyle\simeq[\mathbb{A}^{n}/\Sigma_{n}],
𝒩BΣn1/BΣn\displaystyle\mathcal{N}_{B\Sigma_{n-1}/B\Sigma_{n}} [Δ^/Σn],\displaystyle\simeq[\widehat{\Delta}/\Sigma_{n}],
and BΣn1/BΣn\displaystyle\text{ and }\mathcal{M}_{B\Sigma_{n-1}/B\Sigma_{n}} [(𝔸nΔ^)/Σn]\displaystyle\simeq[(\mathbb{A}^{n}-\widehat{\Delta})/\Sigma_{n}]

in which the action by Σn\Sigma_{n} is in each case the appropriate restriction of the permutation action on coordinates of 𝔸n\mathbb{A}^{n}, and Δ^\widehat{\Delta} denotes the “fat diagonal” of 𝔸n\mathbb{A}^{n}, the locus where some pair of coordinates coincide.

In particular, the \mathbb{C}-points of BΣn1/BΣn\mathcal{M}_{B\Sigma_{n-1}/B\Sigma_{n}} coincide with the points of the unordered configuration space of nn points in \mathbb{C}. This monogenicity space is universal for étale maps in the sense that the monogenicity space S/S\mathcal{M}_{S^{\prime}/S} of each étale SSS^{\prime}\to S is pulled back from BΣn1/BΣn\mathcal{M}_{B\Sigma_{n-1}/B\Sigma_{n}}.

We then consider several examples enabled by the structure of S/S\mathcal{M}_{S^{\prime}/S} in the étale case, among them a connection to braid groups, a construction of the moduli space of genus zero pointed curves from monogenicity spaces, the monogenicity space of a GG-torsor, and the monogenicity space of an isogeny of elliptic curves.

We remark that the monogenicity space BΣn1/BΣn\mathcal{M}_{B\Sigma_{n-1}/B\Sigma_{n}} appears to be a scheme theoretic enhancement of the universal spaces of [Han80, Section 3] and [GL69, Section 1] in the category of topological spaces. Meanwhile, the universal monogenicity space /BG\mathcal{M}_{*/BG} for GG-torsors appears to be a scheme theoretic enhancement of the space B1GB_{1}G considered in [DH84, Theorem 1.3].


A local-to-global sequence is missing for τ\tau-local monogenicity. Yet there are natural group actions on S/S\mathcal{M}_{S^{\prime}/S}, in particular by 𝔾m\mathbb{G}_{m} and Aff1\text{Aff}^{1}. In Section 4 we study “twisted” versions of monogenicity in which SSS^{\prime}\to S has local monogenerators that differ from each other by the action of such groups. More precisely:

Definition 1.12 (Twisted Monogenerators).

A (𝔾m\mathbb{G}_{m})-twisted monogenerator for B/AB/A is:

  1. (1)

    a Zariski open cover SpecA=iD(fi)\mathrm{Spec}\,A=\bigcup_{i}D(f_{i}) for elements fiAf_{i}\in A,

  2. (2)

    a system of “local” monogenerators θiB[fi1]\theta_{i}\in B\left[f_{i}^{-1}\right] for B[fi1]B[f_{i}^{-1}] over A[fi1]A[f_{i}^{-1}], and

  3. (3)

    units aijA[fi1,fj1]a_{ij}\in A\left[f_{i}^{-1},f_{j}^{-1}\right]^{\ast}

such that

  • for all i,ji,j, we have aij.θj=θi,a_{ij}.\theta_{j}=\theta_{i},

  • for all i,j,ki,j,k, the “cocycle condition” holds:

    aij.ajk=aik.a_{ij}.a_{jk}=a_{ik}.

Two such systems {(aij),(θi)}\{(a_{ij}),(\theta_{i})\}, {(aij),(θi)}\{(a_{ij}^{\prime}),(\theta_{i}^{\prime})\} are equivalent if, after passing to a common refinement of their respective covers, there is a global unit uAu\in A^{\ast} such that uaij=aiju\cdot a_{ij}=a^{\prime}_{ij} and uθi=θiu\cdot\theta_{i}=\theta_{i}^{\prime}. Likewise B/AB/A is Aff1\text{Aff}^{1}-twisted monogenic if there is a cover with θi\theta_{i}’s as above, but with the units in item (3) replaced by pairs aij,bijA[fi1,fj1]a_{ij},b_{ij}\in A\left[f_{i}^{-1},f_{j}^{-1}\right] such that each aija_{ij} is a unit and aijθj+bij=θia_{ij}\theta_{j}+b_{ij}=\theta_{i}.

Under certain hypotheses, we show:

  • Proposition 4.14:

    B/AB/A is 𝔾m\mathbb{G}_{m}-twisted monogenic if and only if it is Aff1\text{Aff}^{1}-twisted monogenic.

  • Theorem 4.19:

    The class number of a number ring K\mathbb{Z}_{K} is one if and only if all twisted monogenic extensions of number rings L/K\mathbb{Z}_{L}/\mathbb{Z}_{K} are in fact monogenic.

  • Remark 4.12:

    There is a local-to-global sequence relating affine equivalence classes of monogenerators with global monogenerators as above.

  • Theorem 4.2:

    There are moduli spaces of 𝔾m\mathbb{G}_{m} and Aff1\text{Aff}^{1}-twisted monogenerators analogous to S/S\mathcal{M}_{S^{\prime}/S}.

  • Theorem 4.17:

    There are finitely many twisted monogenerators up to equivalence.

We remark that a 𝔾m\mathbb{G}_{m}-twisted monogenerator is equivalent to an embedding SS^{\prime} over SS into a line bundle LL on SS. Such embeddings into line bundles were considered for topological spaces in [Lø80].

Section 5 concludes with ample examples of the scheme of monogenerators and the various interactions between the forms of local monogenicity.

To avoid repetition, we invite the reader to consult the first paper in this series for a more detailed survey of the relevant literature.

1.3. Acknowledgements

The second author would like to thank David Smyth and Ari Shnidman for their support and for helpful conversations.

The third author would like to thank Gebhard Martin, the mathoverflow community for [Herb] and [Hera], Tommaso de Fernex, Robert Hines, and Sam Molcho. Tommaso de Fernex looked over a draft and made helpful suggestions about jet spaces. The third author thanks the NSF for providing partial support by the RTG grant #1840190.

The fourth author would like to thank Henri Johnston and Tommy Hofmann for help with computing a particularly devious relative integral basis in Magma.

All four authors would like to thank their graduate advisors Katherine E. Stange (first and fourth authors) and Jonathan Wise (second and third authors). This project grew out of the fourth author trying to explain his thesis to the second author in geometric terms. We are greatful to Richard Hain for making us aware of the literature on monogenicity for Stein spaces and topological spaces. For numerous computations throughout, we were very happy to be able to employ Magma [BCP97] and SageMath [The19]. For a number of examples the [LMF21] was invaluable. Finally, we are thankful for Lily.

2. Local monogenicity

2.1. Zariski-local monogenicity

This section shows Zariski-local monogenicity can be detected over points and completions as spelled out in Remark 2.3. We will make frequent use of the vocabulary and notation of [ABHS, Section 3].

Theorem 2.1.

The following are equivalent:

  1. (1)

    π:SS\pi:S^{\prime}\to S is Zariski-locally monogenic.

  2. (2)

    There exists a family of maps {fi:UiS}\{f_{i}:U_{i}\to S\} such that

    1. (a)

      the fif_{i} are jointly surjective;

    2. (b)

      for each point pSp\in S, there is an index ii and point qpfi1(p)q_{p}\in f_{i}^{-1}(p) so that fif_{i} induces an isomorphism k(p)k(qi)k(p)\to k(q_{i});

    3. (c)

      S×SUiUiS^{\prime}\times_{S}U_{i}\to U_{i} is monogenic for all ii.

  3. (3)

    π:SS\pi:S^{\prime}\to S is monogenic over points, i.e., S×SSpeck(p)Speck(p)S^{\prime}\times_{S}\mathrm{Spec}\,k(p)\to\mathrm{Spec}\,k(p) is monogenic for each point pSp\in S.

Proof.

(1)\implies(2): Choose the UiU_{i} to be a Zariski cover on which SSS^{\prime}\to S is monogenic.

(2)\implies(3): Suppose such a cover {fi:UiS}\{f_{i}:U_{i}\to S\} is given. For each ii, let σp:Speck(p)Ui\sigma_{p}:\mathrm{Spec}\,k(p)\to U_{i} be the section through qpq_{p}. monogenicity is preserved by pullback on the base, so pulling back S×SUiUiS^{\prime}\times_{S}U_{i}\to U_{i} along σp\sigma_{p} implies (3).

(3)\implies(1): Let pSp\in S be a point with residue field k(p)k(p) and let θ\theta be a monogenerator for S×SSpeck(p)Speck(p)S^{\prime}\times_{S}\mathrm{Spec}\,k(p)\to\mathrm{Spec}\,k(p). We claim that θ\theta extends to a monogenerator over an open subset USU\subseteq S containing pp, from which (1) follows. The claim is Zariski local, so assume S=SpecAS=\mathrm{Spec}\,A and π𝒪Si=1n𝒪Sei\pi_{*}\mathcal{O}_{S^{\prime}}\simeq\bigoplus_{i=1}^{n}\mathcal{O}_{S}e_{i} is globally free. The Weil Restriction 𝒮/𝒮:=Hom¯𝒮(𝒮,𝒳)\cal R_{S^{\prime}/S}:=\underline{\text{Hom}}_{S}(S^{\prime},X^{\prime}) is then isomorphic to affine space 𝔸Sn\mathbb{A}^{n}_{S}.

We first extend θ\theta to a section of 𝒮/𝒮\cal R_{S^{\prime}/S}. The monogenerator entails a point θ:Speck(p)S/S𝒮/𝒮𝔸𝒮𝓃\theta:\mathrm{Spec}\,k(p)\to\mathcal{M}_{S^{\prime}/S}\subseteq\cal R_{S^{\prime}/S}\simeq\mathbb{A}^{n}_{S}, i.e. nn elements x¯1,,x¯nk(p)\overline{x}_{1},\dots,\overline{x}_{n}\in k(p). Choose arbitrary lifts xiA(p)x_{i}\in A_{(p)} of x¯i\overline{x}_{i}. The nn elements xix_{i} must have a common denominator, so we have x1,,xnA[f1]x_{1},\dots,x_{n}\in A\left[f^{-1}\right] for some ff. Thus our point θ:Speck(p)𝔸Sn\theta:\mathrm{Spec}\,k(p)\to\mathbb{A}^{n}_{S} extends to θ~:D(f)𝒮/𝒮\widetilde{\theta}:D(f)\to\cal R_{S^{\prime}/S} for some distinguished open neighborhood D(f)SD(f)\subseteq S containing pp.

Finally, we restrict θ~\widetilde{\theta} to a section of S/S\mathcal{M}_{S^{\prime}/S}. The monogenicity space S/S\mathcal{M}_{S^{\prime}/S} is an open subscheme of the Weil Restriction 𝒮/𝒮\cal R_{S^{\prime}/S}, so θ~:D(f)𝒮/𝒮\widetilde{\theta}:D(f)\to\cal R_{S^{\prime}/S} restricts to a monogenerator θ~|U:US/S\widetilde{\theta}|_{U}:U\to\mathcal{M}_{S^{\prime}/S} where U=θ~1(S/S)D(f)U=\widetilde{\theta}^{-1}(\mathcal{M}_{S^{\prime}/S})\subset D(f). By hypothesis, pUp\in U, so θ~|U\widetilde{\theta}|_{U} is the desired extension of θ\theta. ∎

Remark 2.2.

The same proof shows that SSS^{\prime}\to S is Zariski-locally kk-genic if and only if its fibers S×SSpeck(p)Speck(p)S^{\prime}\times_{S}\mathrm{Spec}\,k(p)\to\mathrm{Spec}\,k(p) are kk-genic.

Remark 2.3.

Item (2) of Theorem 2.1 implies the following are also equivalent to Zariski-local monogenicity:

  1. (1)

    SSS^{\prime}\to S is “monogenic at local rings,” i.e, for each point pp of SS, S×SSpec𝒪S,pSpec𝒪S,pS^{\prime}\times_{S}\mathrm{Spec}\,\mathcal{O}_{S,p}\to\mathrm{Spec}\,\mathcal{O}_{S,p} is monogenic.

  2. (2)

    SSS^{\prime}\to S is “monogenic at completions,” i.e., for each point pp of SS, S×SSpec𝒪^S,pSpec𝒪^S,pS^{\prime}\times_{S}\mathrm{Spec}\,\widehat{\mathcal{O}}_{S,p}\to\mathrm{Spec}\,\widehat{\mathcal{O}}_{S,p} is monogenic, where 𝒪^S,p\widehat{\mathcal{O}}_{S,p} denotes the completion of 𝒪S,p{\mathcal{O}}_{S,p} with respect to its maximal ideal.

  3. (3)

    SSS^{\prime}\to S is locally monogenic in the Nisnevich topology as in Definition 1.7.

Corollary 2.4 ([Ser79, Proposition III.6.12]).

Let SSS^{\prime}\to S be an extension of local rings inducing a separable extension of residue fields. Then SS^{\prime} is monogenic over SS.

Proof.

Use the equivalence of item (1) in Remark 2.3 and (3) in Theorem 2.1. ∎

We now recall some ideas in order to compare with related results in the number ring case.

Definition 2.5.

Let L/K\mathbb{Z}_{L}/\mathbb{Z}_{K} be an extension of number rings. Given θL\theta\in\mathbb{Z}_{L} generating L/KL/K, we write IndexL/K(θ){\mathrm{Index}}_{\mathbb{Z}_{L}/\mathbb{Z}_{K}}(\theta) for the index [L:K[θ]][\mathbb{Z}_{L}:\mathbb{Z}_{K}[\theta]]. A non-zero prime of 𝔭K{\mathfrak{p}}\subset\mathbb{Z}_{K} is a common index divisor333Common index divisors are also called essential discriminant divisors and inessential or nonessential discriminant divisors. The shortcomings of the English nomenclature likely come from what Neukirch [Neu99, page 207] calls “the untranslatable German catch phrase […] ‘außerwesentliche Diskriminantenteile.’” Our nomenclature is closer to Fricke’s ‘ständiger Indexteiler.’ for the extension L/K\mathbb{Z}_{L}/\mathbb{Z}_{K} if IndexL/K(θ)𝔭{\mathrm{Index}}_{\mathbb{Z}_{L}/\mathbb{Z}_{K}}(\theta)\in{\mathfrak{p}} for every θL\theta\in\mathbb{Z}_{L} generating L/KL/K.

Common index divisors are exactly the primes 𝔭{\mathfrak{p}} whose splitting in L\mathbb{Z}_{L} cannot be mirrored by irreducible polynomials in k(𝔭)[x]k({\mathfrak{p}})[x]; see [Hen94] and [Ple74].

We recall[ABHS, Remark 3.11] that if UU is an open affine subscheme of SS on which SS^{\prime} is free with basis e1,,ene_{1},\ldots,e_{n} then IndexL/K(x1e1++xnen){\mathrm{Index}}_{\mathbb{Z}_{L}/\mathbb{Z}_{K}}(x_{1}e_{1}+\cdots+x_{n}e_{n}) is a local index form on UU.

Restating the property of being monogenic at points in terms of the index form, we obtain a generalization of the notion of having no common index divisors:

Proposition 2.6.

SSS^{\prime}\to S is monogenic over points if and only if for each point pp of SS and local index form 𝒾{\mathcal{i}} around pp, there is a tuple (x1,,xn)k(p)n(x_{1},\ldots,x_{n})\in k(p)^{n} such that 𝒾(x1,,xn){\mathcal{i}}(x_{1},\ldots,x_{n}) is nonzero in k(p)k(p).

Proof.

S×Speck(p)Speck(p)S^{\prime}\times\mathrm{Spec}\,k(p)\to\mathrm{Spec}\,k(p) is monogenic precisely when Speck(p)[x1,,xn,𝒾(x1,,xn)1]\mathrm{Spec}\,k(p)[x_{1},\ldots,x_{n},{\mathcal{i}}(x_{1},\ldots,x_{n})^{-1}] has a k(p)k(p) point. ∎

Immediately we recover an explicit corollary validating the generalization:

Corollary 2.7.

Suppose SSS^{\prime}\to S is induced by an extension of number rings L/K\mathbb{Z}_{L}/\mathbb{Z}_{K}. Then SSS^{\prime}\to S is Zariski-locally monogenic if and only if there are no common index divisors for L/K\mathbb{Z}_{L}/\mathbb{Z}_{K}.

Example 2.8.

There are extensions of number rings that are locally monogenic but not monogenic.

In [ABS20], Alpöge, Bhargava, and Shnidman say that an extension K/\mathbb{Z}_{K}/\mathbb{Z} has no local obstruction to monogenicity if a local index form represents 11 over p\mathbb{Z}_{p} for all primes pp or 1-1 over p\mathbb{Z}_{p} for all primes pp. This is a stronger condition than Zariski-local monogenicity, and they show in [ABS20] and [ABS21] that a positive proportion of quartic and cubic fields are not monogenic despite having no local obstruction to monogenicity.

Narkiewicz [Nar04, Page 65] gives the following concrete example of a locally monogenic but not monogenic extension. Let L=(m3)L=\mathbb{Q}(\sqrt[3]{m}) with m=ab2m=ab^{2}, abab square-free, 3m3\nmid m, and m±1mod9m\not\equiv\pm 1\bmod 9. The number ring L\mathbb{Z}_{L} is not monogenic over \mathbb{Z} despite having no common index divisors. We consider the case ab2=752ab^{2}=7\cdot 5^{2} in Example 5.3. This also gives an example of an extension which is Zariski locally monogenic but which has a local obstruction to monogenicity.

2.2. Monogenicity over geometric points

Definition 2.9.

Say that SS^{\prime} over SS is monogenic over geometric points if, for each morphism SpeckS\mathrm{Spec}\,k\to S where kk is an algebraically closed field, S×SSpeckSpeckS^{\prime}\times_{S}\mathrm{Spec}\,k\to\mathrm{Spec}\,k is monogenic.

While it is a weaker condition than monogenicity over points in general, it is equivalent to some conditions that might seem more natural.

Theorem 2.10.

The following are equivalent:

  1. (1)

    the local index forms for S/SS^{\prime}/S are nonzero on each fiber of 𝒮/𝒮𝒮\cal R_{S^{\prime}/S}\to S;

  2. (2)

    for each point pSp\in S with residue field k(p)k(p), there is a finite Galois extension L/k(p)L/k(p) such that S×SSpecLSpecLS^{\prime}\times_{S}\mathrm{Spec}\,L\to\mathrm{Spec}\,L is monogenic, and this extension may be chosen to be trivial if k(p)k(p) is an infinite field;

  3. (3)

    SSS^{\prime}\to S is monogenic over geometric points;

  4. (4)

    there is a jointly surjective collection of maps {UiS}\{U_{i}\to S\} so that S×SUiUiS^{\prime}\times_{S}U_{i}\to U_{i} is monogenic for each ii;

  5. (5)

    S/SS\mathcal{M}_{S^{\prime}/S}\to S is surjective;

  6. (6)

    SSS^{\prime}\to S is étale-, smooth-, fppf-, or fpqc-locally monogenic.

If, in addition, 𝒩S/S\mathcal{N}_{S^{\prime}/S} is a Cartier divisor in \cal R (i.e., the local index forms are non-zero divisors), the above are also equivalent to:

  1. (7)

    𝒩S/SS\mathcal{N}_{S^{\prime}/S}\to S (Definition 1.6) is flat.

To see some of the subtleties one can compare item (1) above with Lemma 2.6 and item (4) above with item (2) of Theorem 2.1.

Proof.

The assertions are Zariski-local, so we may choose local coordinates as usual (S=SpecAS=\mathrm{Spec}\,A, S=SpecBS^{\prime}=\mathrm{Spec}\,B, coordinates xIx_{I}).

(1) \implies (2): Suppose first that pSp\in S is a point with k(p)k(p) an infinite field. Let 𝔭\mathfrak{p} be the corresponding prime of AA and write 𝒾¯\overline{{\mathcal{i}}} for the restriction of the local index form modulo 𝔭\mathfrak{p}. Recall that since k(p)k(p) is infinite, polynomials in k(p)[x1,,xn]k(p)[x_{1},\ldots,x_{n}] are determined by their values on (xi)k(p)n(x_{i})\in k(p)^{n}. Since 𝒾¯\overline{{\mathcal{i}}} is nonzero, 𝒾¯(a1,,an)\overline{{\mathcal{i}}}(a_{1},\ldots,a_{n}) must be nonzero for some (a1,,an)k(p)n(a_{1},\ldots,a_{n})\in k(p)^{n}. This shows that S×SSpeck(p)Speck(p)S^{\prime}\times_{S}\mathrm{Spec}\,k(p)\to\mathrm{Spec}\,k(p) is monogenic, so we have (2).

Next suppose k(p)k(p) is a finite field. Then, since 𝒾¯\overline{{\mathcal{i}}} is nonzero, there is a finite field extension LL (necessarily Galois) of k(p)k(p) such that there exists (a1,,an)Ln(a_{1},\ldots,a_{n})\in L^{n} with 𝒾¯(a1,,an)0\overline{{\mathcal{i}}}(a_{1},\ldots,a_{n})\neq 0. This shows that S×SSpecLSpecLS^{\prime}\times_{S}\mathrm{Spec}\,L\to\mathrm{Spec}\,L is monogenic, so we have (2) again.

(2) \implies (3): Let kk be an algebraically closed field and SpeckS\mathrm{Spec}\,k\to S a map. Let pp be the image of Speck\mathrm{Spec}\,k, and let LL be the field extension given by (2). Then pullback along SpeckSpecL\mathrm{Spec}\,k\to\mathrm{Spec}\,L implies that S×SSpeckSpeckS^{\prime}\times_{S}\mathrm{Spec}\,k\to\mathrm{Spec}\,k is monogenic.

(3) \implies (4): Take {UiS}\{U_{i}\to S\} to be {Speck(p)¯S}pS\{\mathrm{Spec}\,\overline{k(p)}\to S\}_{p\in S}.

(4) \implies (1): For each point pSp\in S, choose an index ii and a point qpUiq_{p}\in U_{i} mapping to pp. Let 𝒾{\mathcal{i}} be an index form around pp. By pullback, S×SqpqpS^{\prime}\times_{S}q_{p}\to q_{p} is monogenic, so 𝒾{\mathcal{i}} pulls back to a nonzero function over k(qp)k(q_{p}). Therefore 𝒾{\mathcal{i}} is nonzero over k(p)k(p) as well.

(2) \implies (5): For each point pSp\in S, the SpecL\mathrm{Spec}\,L point of S/S\mathcal{M}_{S^{\prime}/S} witnessing monogenicity of S×SSpecLSpecLS^{\prime}\times_{S}\mathrm{Spec}\,L\to\mathrm{Spec}\,L is a preimage of pp.

(5) \implies (6): Note that S/SS\mathcal{M}_{S^{\prime}/S}\to S is smooth, since S/S𝒮/𝒮𝒮\mathcal{M}_{S^{\prime}/S}\to\cal R_{S^{\prime}/S}\to S is the composite of an open immersion and an affine bundle. Moreover, the identity function on S/S\mathcal{M}_{S^{\prime}/S} by definition yields a monogenerator for S×SS/SS/SS^{\prime}\times_{S}\mathcal{M}_{S^{\prime}/S}\to\mathcal{M}_{S^{\prime}/S}. Therefore, S/SS^{\prime}/S is smooth-locally monogenic. Since the smooth topology is equivalent to the étale topology, there is an étale cover USU\to S factoring through S/SS\mathcal{M}_{S^{\prime}/S}\to S. Since S×SS/SS/SS^{\prime}\times_{S}\mathcal{M}_{S^{\prime}/S}\to\mathcal{M}_{S^{\prime}/S} is already monogenic, S×SUUS^{\prime}\times_{S}U\to U is also monogenic. This étale cover is also a cover in the fppf and fpqc topologies.

(6) \implies (4): Trivial.

(1) \iff (7): The sequence

0S/S𝒪1,𝒮/𝒮𝒪𝒩S/S00\to{\mathcal{I}}_{S^{\prime}/S}\to\mathcal{O}_{\cal R_{1,S^{\prime}/S}}\to\mathcal{O}_{\mathcal{N}_{S^{\prime}/S}}\to 0

may be written as

0A[xI]𝒾A[xI]A[xI]/𝒾00\to A[x_{I}]\overset{{\mathcal{i}}}{\to}A[x_{I}]\to A[x_{I}]/{\mathcal{i}}\to 0

where 𝒾{\mathcal{i}} is a local index form for S/SS^{\prime}/S.

Recall that an A[xI]A[x_{I}]-module MM is flat if and only if for each prime 𝔭{\mathfrak{p}} of AA and ideal 𝔮{\mathfrak{q}} of A[xI]A[x_{I}] lying over 𝔭{\mathfrak{p}}, M𝔮M_{\mathfrak{q}} is flat over A𝔭A_{\mathfrak{p}}. Therefore, by the local criterion for flatness[Sta20, 00MK], 𝒩S/S\mathcal{N}_{S^{\prime}/S} is flat over SS if and only if

Tor1A𝔭(A𝔭/𝔭A𝔭,(A[xI]/𝒾)𝔮)=0\mathrm{Tor}_{1}^{A_{\mathfrak{p}}}(A_{\mathfrak{p}}/{\mathfrak{p}}A_{\mathfrak{p}},(A[x_{I}]/{\mathcal{i}})_{\mathfrak{q}})=0

for all such ideals 𝔭{\mathfrak{p}} and 𝔮{\mathfrak{q}}. Therefore, 𝒩S/S\mathcal{N}_{S^{\prime}/S} is flat if and only if

A[xI]𝔮/𝔭A[xI]𝔮𝒾(mod𝔭)A[xI]𝔮/𝔭A[xI]𝔮A[x_{I}]_{\mathfrak{q}}/{\mathfrak{p}}A[x_{I}]_{\mathfrak{q}}\overset{{\mathcal{i}}(\mathrm{mod}\,\mathfrak{p})}{\longrightarrow}A[x_{I}]_{\mathfrak{q}}/{\mathfrak{p}}A[x_{I}]_{\mathfrak{q}}

is injective for all 𝔭{\mathfrak{p}} and 𝔮{\mathfrak{q}} as above. All of these maps are injective if and only if the maps of A[xI]A[x_{I}]-modules

A𝔭[xI]/𝔭A𝔭[xI]𝒾(mod𝔭)A𝔭[xI]/𝔭A𝔭[xI]A_{\mathfrak{p}}[x_{I}]/\mathfrak{p}A_{\mathfrak{p}}[x_{I}]\overset{{\mathcal{i}}(\mathrm{mod}\,\mathfrak{p})}{\longrightarrow}A_{\mathfrak{p}}[x_{I}]/\mathfrak{p}A_{\mathfrak{p}}[x_{I}]

are all injective as 𝔭\mathfrak{p} varies over the prime ideals of AA. Since A𝔭[xI]/𝔭A𝔭[xI](A𝔭/𝔭A𝔭)[xI]A_{\mathfrak{p}}[x_{I}]/\mathfrak{p}A_{\mathfrak{p}}[x_{I}]\simeq(A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}})[x_{I}] is an integral domain for each 𝔭\mathfrak{p}, injectivity fails if and only if 𝒾{\mathcal{i}} reduces to 0 in the fiber over some 𝔭\mathfrak{p}. We conclude that (1) holds if and only if (7) holds. ∎

Corollary 2.11.

If all of the points of SS have infinite residue fields, then the following are equivalent:

  1. (1)

    SSS^{\prime}\to S is monogenic over geometric points;

  2. (2)

    S/SS^{\prime}/S is Zariski-locally monogenic.

Remark 2.12.

The conclusion of Corollary 2.11 fails dramatically if SS has finite residue fields. For SSS^{\prime}\to S coming from an extension of number rings condition (1) always holds (see Corollary 2.16 below), yet there are extensions that are not locally monogenic. In this sense, monogenicity is more subtle in the arithmetic context than the geometric one. For an example of an extension that is monogenic over geometric points but is not monogenic over points see Example 5.1.

2.3. Monogenicity over points

In light of Theorem 2.1 and Theorem 2.10, it is particularly interesting to characterize monogenicity of SSS^{\prime}\to S in the case that SS is the spectrum of a field kk. In this case SS^{\prime} is the spectrum of an nn-dimensional kk-algebra BB. Such algebras are Artinian rings, and a well-known structure theorem implies that BB is a direct product of local Artinian rings BiB_{i}. We will exploit this to give a complete characterization of Zariski-local monogenicity.

The result in the case that both SS^{\prime} and SS are spectra of fields is well-known.

Theorem 2.13 (Theorem of the primitive element).

Let /k\ell/k be a finite field extension. Then SpecSpeck\mathrm{Spec}\,\ell\to\mathrm{Spec}\,k is monogenic if and only if there are finitely many intermediate subfields //k\ell/\ell^{\prime}/k.

In particular, a finite separable extension of fields is monogenic.

We next consider the monogenicity of SSS^{\prime}\to S when SS^{\prime} is a nilpotent thickening of Spec\mathrm{Spec}\,\ell, leaving S=SpeckS=\mathrm{Spec}\,k fixed. A key ingredient is a study of the square zero extensions of Spec\mathrm{Spec}\,\ell.

We remark for comparison that the proof below does not consider a nilpotent thickening of the base SS~S\to\widetilde{S}. In fact, if SS~S\to\widetilde{S} is a nilpotent closed immersion with S=S×S~S~S^{\prime}=S\times_{\widetilde{S}}\widetilde{S}^{\prime}, any monogenerator θ:SS/S\theta:S\to\mathcal{M}_{S^{\prime}/S} extends to S~\widetilde{S} locally in the étale topology. This results from the smoothness of S~/S~S~\mathcal{M}_{\widetilde{S}^{\prime}/\widetilde{S}}\to\widetilde{S}.

Theorem 1.9. Let SSS^{\prime}\to S be induced by kBk\to B where kk is a field and BB is a local Artinian kk-algebra with residue field \ell and maximal ideal 𝔪{\mathfrak{m}}. Then SSS^{\prime}\to S is monogenic if and only if

  1. (1)

    SpecSpeck\mathrm{Spec}\,\ell\to\mathrm{Spec}\,k is monogenic;

  2. (2)

    dim𝔪/𝔪21\dim_{\ell}{\mathfrak{m}}/{\mathfrak{m}}^{2}\leq 1; and

  3. (3)

    If dim𝔪/𝔪2=1\dim_{\ell}{\mathfrak{m}}/{\mathfrak{m}}^{2}=1 and /k\ell/k is inseparable, then

    0𝔪/𝔪2B/𝔪200\to{\mathfrak{m}}/{\mathfrak{m}}^{2}\to B/{\mathfrak{m}}^{2}\to\ell\to 0

    is a non-split extension.

Proof.

If the tangent space (𝔪/𝔪2)({\mathfrak{m}}/{\mathfrak{m}}^{2})^{\vee} has dimension greater than 1, then no map S𝔸S1S^{\prime}\to\mathbb{A}^{1}_{S} can be injective on tangent vectors as is required for a closed immersion.

On the other hand, if the tangent space of SS^{\prime} has dimension 0, we have B=B=\ell, and the result is true by hypothesis.

Now suppose the tangent space of SS^{\prime} has dimension 11. A morphism S𝔸S1S^{\prime}\to\mathbb{A}^{1}_{S} is a closed immersion if and only if it is universally closed, universally injective, and unramified[Sta20, Tag 04XV].

Choose a closed immersion Spec𝔸k1\mathrm{Spec}\,\ell\to\mathbb{A}^{1}_{k}. Equivalently, write =k[t]/(f(t))\ell=k[t]/(f(t)) where f(t)f(t) is the monic minimal polynomial of some element θ\theta\in\ell. Since SpecS\mathrm{Spec}\,\ell\to S^{\prime} is a universal homeomorphism[Sta20, Tag 054M], any extension of Spec𝔸k1\mathrm{Spec}\,\ell\to\mathbb{A}^{1}_{k} to S𝔸k1S^{\prime}\to\mathbb{A}^{1}_{k} inherits the properties of being universally injective and universally closed from Spec𝔸k1\mathrm{Spec}\,\ell\to\mathbb{A}^{1}_{k}.

Whether such an extension S𝔸k1S^{\prime}\to\mathbb{A}^{1}_{k} is ramified can be checked on the level of tangent vectors[Sta20, Tag 0B2G]. It follows that a morphism S𝔸k1S^{\prime}\to\mathbb{A}^{1}_{k} is a closed immersion if and only if its restriction to the vanishing of 𝔪2{\mathfrak{m}}^{2} is. On the other hand, any map V(𝔪2)𝔸k1V({\mathfrak{m}}^{2})\to\mathbb{A}^{1}_{k} extends to S𝔸k1S^{\prime}\to\mathbb{A}^{1}_{k} (choose a lift of the image of tt arbitrarily). Therefore, it suffices to consider the case that SS^{\prime} is a square zero extension of Spec\mathrm{Spec}\,\ell.

By hypothesis, we have a presentation of \ell as k[t]/(f(t))k[t]/(f(t)). We conclude with some elementary deformation theory, see for example [Ser06, §1.1]. We have a square zero extension of \ell

0(f(t))/(f(t)2)k[t]/(f(t))20.0\to(f(t))/(f(t)^{2})\to k[t]/(f(t))^{2}\to\ell\to 0.

By assumption, BB is also a square zero extension of \ell:

0𝔪B0.0\to{\mathfrak{m}}\to B\to\ell\to 0.

By [Ser06, Proposition 1.1.7], there is a morphism of kk-algebras ϕ:k[t]/(f(t))2B\phi:k[t]/(f(t))^{2}\to B inducing the identity on \ell. Since (f(t))/(f(t)2)(f(t))/(f(t)^{2})\simeq\ell as a k[t]/(f(t)2)k[t]/(f(t)^{2}) module, ϕ\phi either restricts to an isomorphism f(t)/(f(t))2𝔪f(t)/(f(t))^{2}\to{\mathfrak{m}} or else the zero map. In the former case, the composite k[t]k[t]/(f(t))2Bk[t]\to k[t]/(f(t))^{2}\to B is a surjection, and we are done. In the latter case, BB is the pushout of the extension k[t]/(f(t))2k[t]/(f(t))^{2} along (f(t))/(f(t)2)0𝔪(f(t))/(f(t)^{2})\overset{0}{\to}{\mathfrak{m}}, so BB is the split extension [ε]/ε2\ell[\varepsilon]/\varepsilon^{2}.

If /k\ell/k is separable, then the extension k[t]/(f(t))2k[t]/(f(t))^{2} is itself split [Ser06, Proposition B.1, Theorem 1.1.10], i.e. there an isomorphism k[t]/(f(t))2[ε]/ε2k[t]/(f(t))^{2}\simeq\ell[\varepsilon]/\varepsilon^{2}. Composing with k[t]k[t]/(f(t)2)k[t]\to k[t]/(f(t)^{2}) gives the required monogenerator.

If /k\ell/k is inseparable and B[ε]/ε2B\simeq\ell[\varepsilon]/\varepsilon^{2}, we will show that SSS^{\prime}\to S is not monogenic. Any generator for [ε]/ε2\ell[\varepsilon]/\varepsilon^{2} over kk must also be a generator for [ε]/ε2\ell[\varepsilon]/\varepsilon^{2} over the maximal separable subextension kk^{\prime} of /k\ell/k, so we may assume that /k\ell/k is purely inseparable. Moreover, any generator θ\theta for [ε]/ε2\ell[\varepsilon]/\varepsilon^{2} over kk must reduce modulo ε\varepsilon to a generator θ¯\overline{\theta} of /k\ell/k. Since /k\ell/k is purely inseparable, the minimal polynomial f(t)f(t) of θ¯\overline{\theta} satisfies f(t)=0f^{\prime}(t)=0. Note θ=θ¯+cε\theta=\overline{\theta}+c\varepsilon for some cc\in\ell. Since θ\theta is assumed to be a monogenerator, there is a polynomial g(t)k[t]g(t)\in k[t] such that ε=g(θ)\varepsilon=g(\theta). Reducing, g(θ)¯=g(θ¯)=0\overline{g(\theta)}=g(\overline{\theta})=0, so g(t)=q(t)f(t)g(t)=q(t)f(t) for some q(t)k[t]q(t)\in k[t]. Then

g(θ)\displaystyle g(\theta) =g(θ¯)+g(θ)cε\displaystyle=g(\overline{\theta})+g^{\prime}(\theta)c\varepsilon
=0+q(θ¯)f(θ¯)cε+q(θ¯)f(θ¯)cε\displaystyle=0+q^{\prime}(\overline{\theta})f(\overline{\theta})c\varepsilon+q(\overline{\theta})f^{\prime}(\overline{\theta})c\varepsilon
=0,\displaystyle=0,

a contradiction. We conclude that in this case SSS^{\prime}\to S is not monogenic. ∎

Remark 2.14.

In the case that kk is perfect, the first and third conditions hold automatically. If SS^{\prime} is regular of dimension 1 the second condition is trivial.

Theorem 1.10. Suppose SSS^{\prime}\to S is induced by kAk\to A where kk is a field and BB is an Artinian kk-algebra. Write B=iBiB=\prod_{i}B_{i} where the BiB_{i} are local artinian kk-algebras with respective residue fields i\ell_{i}. Then SSS^{\prime}\to S is monogenic if and only if

  1. (1)

    SpecBiS\mathrm{Spec}\,B_{i}\to S is monogenic for each ii;

  2. (2)

    for each finite extension \ell of kk, SS^{\prime} has fewer points with residue field isomorphic to \ell than 𝔸S1\mathbb{A}^{1}_{S}.

Proof.

Note that a map iSpecBi𝔸S1\bigsqcup_{i}\mathrm{Spec}\,B_{i}\to\mathbb{A}^{1}_{S} is a closed immersion if and only if each map SpecBi𝔸S1\mathrm{Spec}\,B_{i}\to\mathbb{A}^{1}_{S} is a closed immersion and the closed immersions are disjoint: SpecBi×𝔸S1SpecBj=\mathrm{Spec}\,B_{i}\times_{\mathbb{A}^{1}_{S}}\mathrm{Spec}\,B_{j}=\varnothing for all iji\neq j. This is equivalent to the statement that A[t]iBiA[t]\to\prod_{i}B_{i} is surjective if and only if A[t]BiA[t]\to B_{i} is surjective for each ii and BiA[t]Bj=0B_{i}\otimes_{A[t]}B_{j}=0 whenever iji\neq j, which follows quickly in turn from the Chinese remainder theorem.

The proof of Theorem 1.9 shows that a closed immersion SpecBi𝔸1\mathrm{Spec}\,B_{i}\to\mathbb{A}^{1} can be chosen with image any of the points of 𝔸S1\mathbb{A}^{1}_{S} with residue field i\ell_{i}. Then the condition on numbers of points is exactly what we need for the images of the SpecBi\mathrm{Spec}\,B_{i}s not to overlap without running out of points. (Since topologically, the components are single points.) ∎

Remark 2.15.

Condition (2) is trivial in the case that the residue fields of SS are infinite, highlighting the relative simplicity of monogenicity in the geometric context.

If SSS^{\prime}\to S is instead induced by an extension of number rings, then Remark 2.14 implies condition (1) is trivial. In particular, an extension of \mathbb{Z} has common index divisors if and only if there is “too much prime splitting” in the sense of condition (2). This recovers the theorem of [Hen94] (also see [Ple74, Cor. to Thm. 3]) that 𝔭{\mathfrak{p}} is a common index divisor if and only if there are more primes in L\mathbb{Z}_{L} above 𝔭{\mathfrak{p}} of residue class degree ff than there are irreducible polynomials of degree ff in k(𝔭)[x]k({\mathfrak{p}})[x] for some positive integer f.f.

Corollary 2.16.

If SSS^{\prime}\to S is induced by an extension of number rings L/K\mathbb{Z}_{L}/\mathbb{Z}_{K}, then SSS^{\prime}\to S is monogenic over geometric points.

Proof.

Let pp be a point of SS. Let A=LKk(p)A=\mathbb{Z}_{L}\otimes_{\mathbb{Z}_{K}}k(p) be the ring for the fiber of SS^{\prime} over Speck(p)\mathrm{Spec}\,k(p). Note that k(p)k(p) is either of characteristic 0 or finite, so k(p)k(p) is perfect. Decompose AA into a direct product of local Artinian k(p)k(p) algebras AiA_{i}. Since k(p)k(p) is perfect, conditions (1) and (3) of Theorem 1.9 hold for SpecAiSpeck(p)\mathrm{Spec}\,A_{i}\to\mathrm{Spec}\,k(p). Condition (2) holds as well since SS^{\prime} is regular of dimension 1. Therefore SpecAiSpeck(p)\mathrm{Spec}\,A_{i}\to\mathrm{Spec}\,k(p) is monogenic for each ii.

Now consider the base change of SS^{\prime} to the algebraic closure k(p)¯\overline{k(p)} of k(p)k(p). Write BB for the ring of functions LKk(p)¯\mathbb{Z}_{L}\otimes_{\mathbb{Z}_{K}}\overline{k(p)} of this base change, and write BB as a product of local Artinian algebras BjB_{j}. For each ii we have that SpecAik(p)k(p)¯Speck(p)¯\mathrm{Spec}\,A_{i}\otimes_{k(p)}\overline{k(p)}\to\mathrm{Spec}\,\overline{k(p)} is monogenic. Each SpecBj\mathrm{Spec}\,B_{j} is a closed subscheme of exactly one of the SpecAik(p)k(p)¯\mathrm{Spec}\,A_{i}\otimes_{k(p)}\overline{k(p)}s, so by composition, SpecBjSpeck(p)¯\mathrm{Spec}\,B_{j}\to\mathrm{Spec}\,\overline{k(p)} is monogenic for each jj. This gives us condition (1) of Theorem 1.10 for S×SSpeck(p)¯Speck(p)¯S^{\prime}\times_{S}\mathrm{Spec}\,\overline{k(p)}\to\mathrm{Spec}\,\overline{k(p)}. Since k(p)¯\overline{k(p)} is infinite, condition (2) holds triviallly. We conclude that S×SSpeck(p)¯Speck(p)¯S^{\prime}\times_{S}\mathrm{Spec}\,\overline{k(p)}\to\mathrm{Spec}\,\overline{k(p)} is monogenic, as required. ∎

3. Étale maps, configuration spaces, and monogenicity

This section concerns maps π:SS\pi:S^{\prime}\to S that are étale, or unramified. Locally, the monogenicity space becomes a configuration space, classifying arrangements of nn distinct points on a given topological space. Philosophically, S/S\mathcal{M}_{S^{\prime}/S} therefore regards SSS^{\prime}\to S as a twisted family of points to be configured in 𝔸1\mathbb{A}^{1}. We are led to interpret S/S\mathcal{M}_{S^{\prime}/S} as an arithmetic refinement of the configuration space of 𝔸1\mathbb{A}^{1}. In Remark 3.5, we see that an action of the absolute Galois group Gal(¯/)\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) on the étale fundamental group of S/S\mathcal{M}_{S^{\prime}/S} has been observed in anabelian geometry. We end Subsection 3.2 with a handful of exotic applications in other areas.

All extensions SSS^{\prime}\to S sit somewhere between the étale case and jet spaces SpecA[ε]/εnSpecA\mathrm{Spec}\,A[\varepsilon]/\varepsilon^{n}\to\mathrm{Spec}\,A (see [ABHS, Example 2.7, 4.3, 4.16]), between being totally unramified and totally ramified. In Section 3.4, we recall a general construction of the discriminant which cuts out the locus of ramification. Specifically, [Poo06, §6] says that our description in the étale case holds precisely away from the vanishing of the discriminant. The discriminant plays a similar role in the classical case when investigating the monogenicity of an extension defined by a polynomial. We end with some remarks on using stacks to promote a ramified cover of curves to an étale cover of stacky curves as in [Cos06].

3.1. The trivial cover

We start with the simplest case of an étale cover: the trivial cover of SS by several copies of itself. We work rather concretely and revisit the general situation with more sophistication in the next subsection. Write n={1,2,,n}\langle n\rangle=\{1,2,\dots,n\} and nS=1inSS\langle n\rangle_{S}=\bigsqcup_{1\leq i\leq n}S\to S for the trivial degree nn finite étale cover.

Example 3.1 (Monogenicity of a trivial cover).

Let S=nSS^{\prime}=\langle n\rangle_{S} and let π:nSS\pi:\langle n\rangle_{S}\to S be the map induced by the identity on each copy of SS. Given a commutative diagram

𝔸S1{\mathbb{A}^{1}_{S}}nS{\langle n\rangle_{S}}S,{S,}ifi\scriptstyle{\sqcup_{i}f_{i}}π\scriptstyle{\pi}

one expects that the map ifi\sqcup_{i}f_{i} will be a closed immersion if and only if fi(s)fj(s)f_{i}(s)\neq f_{j}(s) for all 1i<jn1\leq i<j\leq n and sSs\in S. A computation in coordinates will confirm this.

We will use the notation of Definition 1.4 and Theorem 1.5 to compute S/S\mathcal{M}_{S^{\prime}/S} in local coordinates. Working Zariski locally on SS, we may assume that S=SpecAnS^{\prime}=\mathrm{Spec}\,A^{n}, S=SpecAS=\mathrm{Spec}\,A, and that e1,,ene_{1},\ldots,e_{n} are the standard basis vectors for AnA^{n}. Let x1,,xnx_{1},\ldots,x_{n} be the corresponding coordinates for 𝒮/𝒮\cal R_{S^{\prime}/S}, so that

𝒮/𝒮𝔸𝒮𝓃.\cal R_{S^{\prime}/S}\simeq\mathbb{A}^{n}_{S}.

This isomorphism identifies the TT-point (x1,,xn)(x_{1},\ldots,x_{n}) of 𝔸Sn\mathbb{A}^{n}_{S} with the map ixi:nT𝔸T1\sqcup_{i}x_{i}:\langle n\rangle_{T}\to\mathbb{A}^{1}_{T} whose restriction to the iith copy of TT in nT\langle n\rangle_{T} is xix_{i}.

Next, observe that in 𝒪𝒮/𝒮(S)\mathscr{O}_{\cal R_{S^{\prime}/S}}(S)

(x1e1++xnen)j=x1je1++xnjen(x_{1}e_{1}+\cdots+x_{n}e_{n})^{j}=x_{1}^{j}e_{1}+\cdots+x_{n}^{j}e_{n}

for all 0jn10\leq j\leq n-1. Therefore, the matrix of coefficients M(e1,,en)M(e_{1},\ldots,e_{n}) is the Vandermonde matrix with iith column given by [1xixi2xin1]T\begin{bmatrix}1&x_{i}&x_{i}^{2}&\cdots&x_{i}^{n-1}\end{bmatrix}^{T}. The index form is then the well-known Vandermonde determinant:

𝒾(e1,,en)(x1,,xn)=detM(e1,,en)=±i<j(xixj).{\mathcal{i}}(e_{1},\ldots,e_{n})(x_{1},\ldots,x_{n})=\det M(e_{1},\ldots,e_{n})=\pm\prod_{i<j}(x_{i}-x_{j}).

The index form vanishes therefore on the so-called fat diagonal Δ^𝔸n\widehat{\Delta}\subseteq\mathbb{A}^{n}, given by the union of all loci V(xixj)V(x_{i}-x_{j}) where two coordinates are equal.

It follows that

S/SSpec¯S𝒪S[x1,,xn,i<j(xixj)1],\mathcal{M}_{S^{\prime}/S}\simeq\underline{\mathrm{Spec}}_{S}\,\mathcal{O}_{S}\left[x_{1},\ldots,x_{n},\prod_{i<j}(x_{i}-x_{j})^{-1}\right],

the complement in 𝔸Sn\mathbb{A}^{n}_{S} of Δ^\widehat{\Delta}. This space is otherwise known as the space of ordered configurations of nn points, Confn(𝔸S1)S\text{Conf}_{n}(\mathbb{A}^{1}_{S})\to S.

Slightly more abstract reasoning yields a similar result if XX is any quasi-projective SS scheme.

Example 3.2 (X,S/S\mathcal{M}_{X,S^{\prime}/S} for a trivial cover).

Let XSX\to S be a quasiprojective map, S=nSS^{\prime}=\langle n\rangle_{S} and let π:nSS\pi:\langle n\rangle_{S}\to S be the map induced by the identity on each copy of SS. Observe that if TST\to S is an SS-scheme, we have natural identifications

𝒳,𝒮/𝒮(𝒯)\displaystyle\cal R_{X,S^{\prime}/S}(T) { maps of T-schemes f:nTX×ST}\displaystyle\simeq\left\{\text{ maps of $T$-schemes }f:\langle n\rangle_{T}\to X\times_{S}T\right\}
{ n-tuples of maps of T-schemes fi:TX×ST, where i=1,,n}\displaystyle\simeq\left\{\text{ $n$-tuples of maps of $T$-schemes }f_{i}:T\to X\times_{S}T\text{, where }i=1,\ldots,n\right\}
{ n-tuples of maps of S-schemes fi:TX, where i=1,,n}\displaystyle\simeq\left\{\text{ $n$-tuples of maps of $S$-schemes }f_{i}:T\to X\text{, where }i=1,\ldots,n\right\}
X×SX×S×SXn-times(T)=X×Sn(T),\displaystyle\simeq\underbrace{X\times_{S}X\times_{S}\cdots\times_{S}X}_{n\text{-times}}(T)=X^{\times_{S}^{n}}(T),

so we may identify 𝒳,𝒮/𝒮\cal R_{X,S^{\prime}/S} with the nn-fold fiber product of XX over SS.

For each 1i<jn1\leq i<j\leq n, we can construct a subscheme Δi,j\Delta_{i,j} of X×SnX^{\times_{S}^{n}} consisting of the points whose iith and jj coordinates are equal. We let the fat diagonal Δ^\widehat{\Delta} be the scheme theoretic union of the subschemes Δi,j\Delta_{i,j}. Since XSX\to S is separated, this fat diagonal is a closed subscheme of X×SnX^{\times_{S}^{n}}.

Observe that any morphism of TT-schemes f=i=1nfi:nTX×STf=\bigsqcup_{i=1}^{n}f_{i}:\langle n\rangle_{T}\to X\times_{S}T in 𝒳,𝒮/𝒮(𝒯)\cal R_{X,S^{\prime}/S}(T) will be proper and unramified as π:nTT\pi:\langle n\rangle_{T}\to T is proper and unramified and X×STTX\times_{S}T\to T is separated. In addition, for each point xnTx\in\langle n\rangle_{T}, the induced field extension κ(x)κ(f(x))\kappa(x)\supseteq\kappa(f(x)) is an isomorphism, since the same is true of the map π:nTT\pi:\langle n\rangle_{T}\to T.

Now, by [Sta20, Tag 01S4, (2)\iff(3) ] and [Sta20, Tag 04XV, (1)\iff(3)], ff is a closed immersion if and only if it is injective. This happens if and only if the corresponding function i=1nfi:TX×Sn\prod_{i=1}^{n}f_{i}:T\to X^{\times_{S}^{n}} factors through the complement of the fat diagonal. Therefore X,S/SX×SnΔ^.\mathcal{M}_{X,S^{\prime}/S}\simeq X^{\times_{S}^{n}}-\widehat{\Delta}.

3.2. The case of étale SSS^{\prime}\to S

Consider the category (Sch/)(Sch/\ast) of schemes over a final scheme \ast equipped with the étale topology. For example, take =Spec\ast=\mathrm{Spec}\,\mathbb{Z} or Spec\mathrm{Spec}\,\mathbb{C}. Write Σn\Sigma_{n} for the symmetric group on nn letters and BΣnB\Sigma_{n} for the stack on (Sch/)(Sch/\ast) of étale Σn\Sigma_{n}-torsors.

Regard Σn1\Sigma_{n-1} as the subgroup of Σn\Sigma_{n} of permutations fixing the nnth letter, and let BΣn1BΣnB\Sigma_{n-1}\to B\Sigma_{n} be the map induced by the inclusion. The isomorphism class of the resulting map of classifying spaces is unchanged if Σn1\Sigma_{n-1} is taken as the subgroup fixing some other letter, since resulting inclusion map only differs from this one by conjugation. The morphism BΣn1BΣnB\Sigma_{n-1}\to B\Sigma_{n} is the universal nn-sheeted cover in the following sense.

Lemma 3.3 ([Cos06, Lemma 2.2.1], [HW21, Lemma 3.2]).

Let nn be a positive integer. Let 𝒞\mathcal{C} be the fibered category over (Sch/)(Sch/\ast) with:

  1. (1)

    objects the finite étale morphisms π:SS\pi:S^{\prime}\to S of degree nn;

  2. (2)

    arrows the cartesion diagrams

    T{T^{\prime}}S{S^{\prime}}T{T}S;{S;}
  3. (3)

    projection to (Sch/)(Sch/\ast) given by SSSS^{\prime}\to S\mapsto S.

Then there is an equivalence of fibered categories BΣn𝒞B\Sigma_{n}\to\mathcal{C} given by taking a map f:SBΣnf:S\to B\Sigma_{n} to the pullback of BΣn1BΣnB\Sigma_{n-1}\to B\Sigma_{n} along ff.

Recall that pullback squares of schemes

T{T^{\prime}}S{S^{\prime}}T{T}S{S}{\ulcorner}

induce identifications

𝒯/𝒯𝒮/𝒮×𝒮𝒯 and 1,𝒯/𝒯1,𝒮/𝒮×𝒮𝒯.\cal R_{T^{\prime}/T}\simeq\cal R_{S^{\prime}/S}\times_{S}T\quad\ \ \ \text{ and }\ \ \ \quad\mathcal{M}_{1,T^{\prime}/T}\simeq\mathcal{M}_{1,S^{\prime}/S}\times_{S}T.

Reduce thereby to the universal nn-sheeted finite étale cover S=BΣn1S^{\prime}=B\Sigma_{n-1}, S=BΣnS=B\Sigma_{n}. Each has an affine line 𝔸BΣn1=[𝔸1/Σn]\mathbb{A}^{1}_{B\Sigma_{n}}=[\mathbb{A}^{1}/\Sigma_{n}] obtained via quotienting by the trivial action.

Theorem 1.11. There are isomorphisms

Σ𝓃1/Σ𝓃\displaystyle\cal R_{B\Sigma_{n-1}/B\Sigma_{n}} [𝔸n/Σn],\displaystyle\simeq[\mathbb{A}^{n}/\Sigma_{n}],
𝒩BΣn1/BΣn\displaystyle\mathcal{N}_{B\Sigma_{n-1}/B\Sigma_{n}} [Δ^/Σn],\displaystyle\simeq[\widehat{\Delta}/\Sigma_{n}],
and BΣn1/BΣn\displaystyle\text{ and }\mathcal{M}_{B\Sigma_{n-1}/B\Sigma_{n}} [(𝔸nΔ^)/Σn]\displaystyle\simeq[(\mathbb{A}^{n}-\widehat{\Delta})/\Sigma_{n}]

in which the action by Σn\Sigma_{n} is in each case the appropriate restriction of the permutation action on coordinates of 𝔸n\mathbb{A}^{n}.

Proof.

We observe that the nn-sheeted cover associated to the trivial torsor BΣn*\to B\Sigma_{n} is the trivial cover n\langle n\rangle\to*. Therefore, by our work in the case of a trivial cover

Σ𝓃1/Σ𝓃×Σ𝓃\displaystyle\cal R_{B\Sigma_{n-1}/B\Sigma_{n}}\times_{B\Sigma_{n}}* 𝓃/𝔸𝓃\displaystyle\simeq\cal R_{\langle n\rangle/*}\simeq\mathbb{A}^{n}
𝒩BΣn1/BΣn×BΣn\displaystyle\mathcal{N}_{B\Sigma_{n-1}/B\Sigma_{n}}\times_{B\Sigma_{n}}* 𝒩n/Δ^\displaystyle\simeq\mathcal{N}_{\langle n\rangle/*}\simeq\widehat{\Delta}
BΣn1/BΣn×BΣn\displaystyle\mathcal{M}_{B\Sigma_{n-1}/B\Sigma_{n}}\times_{B\Sigma_{n}}* n/𝔸nΔ^Confn(𝔸1).\displaystyle\simeq\mathcal{M}_{\langle n\rangle/*}\simeq\mathbb{A}^{n}-\widehat{\Delta}\simeq\text{Conf}_{n}(\mathbb{A}^{1}).

There is a Σn\Sigma_{n} action on 𝓃/\cal R_{\langle n\rangle/*} so that Σ𝓃1/Σ𝓃\cal R_{B\Sigma_{n-1}/B\Sigma_{n}} is the stack quotient of 𝓃/\cal R_{\langle n\rangle/*} by Σn\Sigma_{n}. Pulling back 𝓃/\cal R_{\langle n\rangle/*}\to* to ×BΣn*\times_{B\Sigma_{n}}* in both ways shows that the action is given by permuting the sheets of n\langle n\rangle. Under the isomorphism of 𝓃/\cal R_{\langle n\rangle/*} with 𝔸n\mathbb{A}^{n} of Example 3.1, the action is given by permuting the coordinates.

We conclude

Σ𝓃1/Σ𝓃\displaystyle\cal R_{B\Sigma_{n-1}/B\Sigma_{n}} [𝔸n/Σn]\displaystyle\simeq[\mathbb{A}^{n}/\Sigma_{n}]
𝒩BΣn1/BΣn\displaystyle\mathcal{N}_{B\Sigma_{n-1}/B\Sigma_{n}} [Δ^/Σn]\displaystyle\simeq[\widehat{\Delta}/\Sigma_{n}]
BΣn1/BΣn\displaystyle\mathcal{M}_{B\Sigma_{n-1}/B\Sigma_{n}} [(𝔸nΔ^)/Σn]\displaystyle\simeq[(\mathbb{A}^{n}-\widehat{\Delta})/\Sigma_{n}]

in which the action by Σn\Sigma_{n} is in each case the appropriate restriction of the permutation action on coordinates of 𝔸n\mathbb{A}^{n}. ∎

The space BΣn1/BΣn\mathcal{M}_{B\Sigma_{n-1}/B\Sigma_{n}} is also interpretable as the space of unordered configurations of points:

BΣn1/BΣnUConfn(𝔸1)={(x1,,xn)xixj}/Σn.\mathcal{M}_{B\Sigma_{n-1}/B\Sigma_{n}}\simeq\text{UConf}_{n}(\mathbb{A}^{1})=\{(x_{1},\ldots,x_{n})\mid x_{i}\neq x_{j}\}/\Sigma_{n}.

Observe that the fat diagonal Δ^\widehat{\Delta} is exactly the locus of 𝔸n\mathbb{A}^{n} where Σn\Sigma_{n} has stabilizers. The coarse moduli space of [𝔸n/Σn]{\left[\mathbb{A}^{n}/\Sigma_{n}\right]} is 𝔸n\mathbb{A}^{n} by the fundamental theorem of symmetric functions, with the composite

𝔸n[𝔸n/Σn]𝔸n;x¯=(x1,,xn)(s1(x¯),s2(x¯),,sn(x¯))\mathbb{A}^{n}\to{\left[\mathbb{A}^{n}/\Sigma_{n}\right]}\to\mathbb{A}^{n};\quad\quad\quad\overline{x}=(x_{1},\dots,x_{n})\mapsto(s_{1}(\overline{x}),s_{2}(\overline{x}),\dots,s_{n}(\overline{x}))

given by the elementary symmetric polynomials si(x1,,xn)s_{i}(x_{1},\dots,x_{n}) [Art11, §16.1-2]. The composite sends a list of nn roots to the coefficients of the monic polynomial of degree nn vanishing at those roots, up to sign:

(tx1)(txn)=tns1(x¯)tn1+s2(x¯)tn2±sn(x¯).(t-x_{1})\cdots(t-x_{n})=t^{n}-s_{1}(\overline{x})t^{n-1}+s_{2}(\overline{x})t^{n-2}-\cdots\pm s_{n}(\overline{x}).

The assignment is plainly invariant under relabeling the xix_{i} by Σn\Sigma_{n}.

The map to the coarse moduli space [𝔸n/Σn]𝔸n{\left[\mathbb{A}^{n}/\Sigma_{n}\right]}\to\mathbb{A}^{n} is an isomorphism precisely over 1,BΣn1/BΣn\mathcal{M}_{1,B\Sigma_{n-1}/B\Sigma_{n}}. The image of 𝒩BΣn1/BΣn\mathcal{N}_{B\Sigma_{n-1}/B\Sigma_{n}} in 𝔸n\mathbb{A}^{n} is the closed subscheme cut out by the discriminant of the above polynomial

Disc(i=1n(txi))\displaystyle\operatorname{Disc}\left(\prod_{i=1}^{n}\left(t-x_{i}\right)\right) =D(s1(x¯),s2(x¯),,sn(x¯))\displaystyle=D(s_{1}(\overline{x}),s_{2}(\overline{x}),\dots,s_{n}(\overline{x}))
=i<j(xixj)2,\displaystyle=\prod_{i<j}(x_{i}-x_{j})^{2},

the square of the Vandermonde determinant. The resulting divisor is the pushforward of 𝒩BΣn1/BΣn\mathcal{N}_{B\Sigma_{n-1}/B\Sigma_{n}} to the coarse moduli space 𝔸n\mathbb{A}^{n}.

We summarize the above discussion for general targets XX in the place of 𝔸1\mathbb{A}^{1}:

Theorem 3.4.

Let XX be a quasiprojective scheme, and let XBΣn[X/Σn]=X×BΣnX_{B\Sigma_{n}}\coloneqq[X/\Sigma_{n}]=X\times B\Sigma_{n} be the stack quotient by the trivial Σn\Sigma_{n} action.

  • The Weil Restriction is the stacky symmetric product:

    [𝒳/Σ𝓃],Σ𝓃1/Σ𝓃[Sym𝓃𝒳]=[𝒳𝓃/Σ𝓃].\cal R_{[X/\Sigma_{n}],B\Sigma_{n-1}/B\Sigma_{n}}\coloneqq{\left[\text{Sym}^{n}X\right]}={\left[X^{n}/\Sigma_{n}\right]}.
  • The space of monogenerators for S=BΣn1S^{\prime}=B\Sigma_{n-1}, S=BΣnS=B\Sigma_{n} is the nnth unordered configuration space:

    [X/Σn],BΣn1/BΣn=UConfnX{(x1,,xn)|xixj for ij}/Σn.\mathcal{M}_{[X/\Sigma_{n}],B\Sigma_{n-1}/B\Sigma_{n}}=\text{UConf}_{n}X\coloneqq\{(x_{1},\dots,x_{n})\,|\,x_{i}\neq x_{j}\text{ for }i\neq j\}/\Sigma_{n}.
  • The complementary space of non-monogenerators is the stack quotient by Σn\Sigma_{n} of the “fat diagonal” of nn points in XX which are not pairwise distinct:

    𝒩[X/Σn],BΣn1/BΣn=[Δ^X/Σn]={(x1,,xn)|some xi=xj,ij}/Σn.\mathcal{N}_{[X/\Sigma_{n}],B\Sigma_{n-1}/B\Sigma_{n}}={\left[\widehat{\Delta}_{X}/\Sigma_{n}\right]}=\{(x_{1},\dots,x_{n})\,|\,\text{some }x_{i}=x_{j},i\neq j\}/\Sigma_{n}.

3.3. Implications

The rest of the section gives sample applications, exotic examples, and directions based on the correspondence with configuration spaces.

Remark 3.5.

Classical work on the analogues of monogenicity in complex geometry, such as [Han79], has recognized that embeddings into 𝔸1\mathbb{A}^{1}-bundles are closely related to the braid group, essentially because the fundamental group of the configuration space of nn points in \mathbb{C} is the braid group on nn strands. In the scheme theoretic setting, our best analogue of the fundamental group is the étale fundamental group.

The computations above imply that

1,BΣn1/BΣn×UConf(𝔸1).\mathcal{M}_{1,B\Sigma_{n-1}/B\Sigma_{n}}\times_{\mathbb{Z}}\mathbb{Q}\simeq\text{UConf}(\mathbb{A}^{1}_{\mathbb{Q}}).

In [Fur12], it is computed that this space has étale fundamental group a semi-direct product

Bn^G,\widehat{B_{n}}\rtimes G_{\mathbb{Q}},

where Bn^\widehat{B_{n}} is the profinite completion of the braid group on nn strands and GG_{\mathbb{Q}} is the absolute Galois group of \mathbb{Q}. As discussed in [Fur12], the conjugation action of GG_{\mathbb{Q}} on Bn^\widehat{B_{n}} extends to an action by the Grothendieck-Teichmüller group GT^\widehat{GT}. Conjecturally, G=GT^G_{\mathbb{Q}}=\widehat{GT}. Though all varieties over \mathbb{Q} yield actions of the Galois group GG_{\mathbb{Q}}, we were surprised to rediscover one of its central representations used in number theory.

The following result is well-known, as the square of the Steinitz class is the discriminant, and the discriminant is a unit when SSS^{\prime}\to S is étale. However, we have a pleasant alternative proof in terms of our universal étale cover.

Theorem 3.6.

If SSS^{\prime}\to S is étale, the Steinitz class is 2-torsion in Pic(S)\text{Pic}(S). If SS has characteristic 22, the Steinitz class vanishes.

Proof.

It is enough to show that the Steinitz class detπ𝒪S\det\pi_{*}\mathscr{O}_{S^{\prime}} is 2-torsion for the universal case π:BΣn1BΣn\pi:B\Sigma_{n-1}\to B\Sigma_{n}. Consider the pullback square

n{\langle n\rangle}BΣn1{B\Sigma_{n-1}}{*}BΣn.{B\Sigma_{n}.}j\scriptstyle{j}τ\scriptstyle{\tau}π\scriptstyle{\pi}i\scriptstyle{i}

The pushforward π𝒪BΣn1\pi_{*}\mathscr{O}_{B\Sigma_{n-1}} is trivialized on the étale cover i:BΣni:*\to B\Sigma_{n}, as

i(π𝒪BΣn1)τ𝒪n=𝒪n.i^{*}(\pi_{*}\mathscr{O}_{B\Sigma_{n-1}})\simeq\tau_{*}\mathscr{O}_{\langle n\rangle}=\mathscr{O}_{*}^{n}.

We find that the descent datum for π𝒪BΣn1\pi_{*}\mathscr{O}_{B\Sigma_{n-1}} with respect to this cover has gluing 𝒪×Σnn𝒪×Σnn\mathscr{O}_{*\times\Sigma_{n}}^{n}\to\mathscr{O}_{*\times\Sigma_{n}}^{n} on ×BΣn×Σn*\times_{B\Sigma_{n}}*\simeq*\times\Sigma_{n} given by permuting the coordinates by σ\sigma over ×σ*\times\sigma for each σΣn\sigma\in\Sigma_{n}. This is represented by a permutation matrix, which has determinant ±1\pm 1. Therefore the gluing data for detπ𝒪BΣn1\det\pi_{*}\mathscr{O}_{B\Sigma_{n-1}} is given locally by multiplying by ±1\pm 1. Since ±1\pm 1 is 2-torsion in 𝒪\mathscr{O}^{*} and trivial if SS has characteristic 2, the result follows. ∎

Example 3.7 (Torsors for finite groups).

Let GG be a finite group. A GG-torsor SSS^{\prime}\to S is, in particular, a finite étale map of degree n=#Gn=\#G admitting the above description. Notice that the action of GG on SS^{\prime} induces an action of GG on S/S\mathcal{M}_{S^{\prime}/S}.

The map SSS^{\prime}\to S is classified by a map SBGS\to BG, the stack of GG-torsors, and we may regard S/S\mathcal{M}_{S^{\prime}/S} as pulled back from either the monogenicity space of the universal GG-torsor, /BG\mathcal{M}_{*/BG}, or the monogenicity space of the universal nn-fold cover BΣn1/BΣn\mathcal{M}_{B\Sigma_{n-1}/B\Sigma_{n}}. To compare the two, observe that the left regular representation GGG\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>G gives an inclusion GΣnG\subseteq\Sigma_{n} upon ordering the set GG. The induced representable map BGBΣnBG\to B\Sigma_{n} is essentially independent of the ordering since different orderings induce conjugate maps. The classifying map SBΣnS\to B\Sigma_{n} is the composite SBGBΣnS\to BG\to B\Sigma_{n} with the left regular representation. The monogenicity space /BG\mathcal{M}_{*/BG} is [𝔸|G|Δ^/G][\mathbb{A}^{|G|}-\widehat{\Delta}/G] where GG acts on 𝔸|G|\mathbb{A}^{|G|} by permuting the basis vectors by the left regular representation.

A similar description locally holds for other finite étale group schemes. For merely finite flat group schemes GG such as αp,μp\alpha_{p},\mu_{p} in characteristic pp, the group action on the monogenicity space of GG-torsors SSS^{\prime}\to S still holds but the local decomposition S=nSS^{\prime}=\bigsqcup_{n}S and Σn\Sigma_{n} action do not.

Corollary 3.8.

If SSS^{\prime}\to S is a GG-torsor for GG a finite group, and either

  1. (1)

    |G||G| is odd

  2. (2)

    |G||G| is even and GG has non-cyclic Sylow 2-subgroup

then the Steinitz class of SSS^{\prime}\to S is trivial in Pic(S)\text{Pic}(S)

Proof.

Repeating the construction of Theorem 3.6, we see that if the left regular representation of GG factors through AnA_{n}, the Steinitz class is trivial. The conditions given identify precisely when this happens. ∎

The stacks 1,Σ𝓃1/Σ𝓃\cal R_{1,B\Sigma_{n-1}/B\Sigma_{n}} we study arise naturally in log geometry as “Artin fans” [ACMW14].

Example 3.9 (Moduli spaces of curves in genus 0).

Let M0,nM_{0,n} be the moduli stack of smooth curves of genus 0 (i.e. 1\mathbb{P}^{1}) with nn marked points. The evident [Wes11] isomorphism with a quotient of configuration space gives:

[1,n//PGL2][Confn(1)/PGL2]M0,n.{\left[\mathcal{M}_{\mathbb{P}^{1},\mathbb{C}^{n}/\mathbb{C}}/\text{PGL}_{2}\right]}\simeq{\left[\text{Conf}_{n}(\mathbb{P}^{1})/\text{PGL}_{2}\right]}\simeq M_{0,n}.

One can always put the first point at \infty and get equivalent descriptions:

M0,n[𝔸1,n//Aff1][Confn()/Aff1],M_{0,n}\simeq{\left[\mathcal{M}_{\mathbb{A}^{1},\mathbb{C}^{n}/\mathbb{C}}/\text{Aff}^{1}\right]}\simeq{\left[\text{Conf}_{n}(\mathbb{C})/\text{Aff}^{1}\right]},

where Aff1\text{Aff}^{1} is the group of affine transformations 𝔾m𝔸1\mathbb{G}_{m}\ltimes\mathbb{A}^{1}. The stack quotient classifies local affine equivalence classes of monogenerators, as detailed in Section 4.

One can likewise obtain the other moduli spaces of curves by an ad hoc construction. Consider 𝔘𝔐\mathfrak{U}\to\mathfrak{M} the universal connected, proper, genus-gg nodal curve, its relative smooth locus 𝔘sm𝔘\mathfrak{U}^{sm}\subseteq\mathfrak{U}, and the monogenicity space

𝔘sm,n𝔐/𝔐\mathcal{M}_{\mathfrak{U}^{sm},\langle n\rangle_{\mathfrak{M}}/\mathfrak{M}}

of the trivial cover n\langle n\rangle over the moduli space 𝔐\mathfrak{M}. The monogenicity stack is naturally isomorphic to the space of nodal, nn-marked curves 𝔐g,n\mathfrak{M}_{g,n}. One can also obtain the open substack of stable curves as the universal Deligne-Mumford locus ¯g,n𝔐g,n\overline{\mathscr{M}}_{g,n}\subseteq\mathfrak{M}_{g,n}.

3.4. When is a map étale?

We recall from [Poo06, §6] that a map SSS^{\prime}\to S is étale precisely when the discriminant of the algebra does not vanish. We recall from [Poo06] that there is an algebraic moduli stack 𝔄n\mathfrak{A}_{n} of finite locally free algebras and the affine scheme of finite type 𝔅n\mathfrak{B}_{n} parametrizing such algebras together with a choice of global basis 𝒬𝒪𝒮𝒾\cal Q\simeq\bigoplus\mathcal{O}_{S}\cdot e_{i}.

Suppose π:SS\pi:S^{\prime}\to S comes from a finite flat algebra 𝒬\cal Q with a global basis φ:𝒬𝒾=1𝓃𝒪𝒮𝒾\varphi:\cal Q\simeq\bigoplus_{i=1}^{n}\mathcal{O}_{S}\cdot e_{i}, corresponding to a map S𝔅nS\to\mathfrak{B}_{n}. There is a trace pairing Tr:𝒬𝒪𝒮\text{Tr}:\cal Q\to\mathcal{O}_{S} [Sta20, 0BSY] which we can use to define the discriminant:

Disc(𝒬,φ)det[Tr(𝒾𝒿)]Γ(𝒪𝒮)\operatorname{Disc}(\cal Q,\varphi)\coloneqq\det{\left[\text{Tr}(e_{i}e_{j})\right]}\in\Gamma(\mathcal{O}_{S})

Changing φ\varphi changes the function Disc\operatorname{Disc} by a unit. The function Disc\operatorname{Disc} does not descend to 𝔄n\mathfrak{A}_{n}, but the vanishing locus V(Disc)𝔅nV(\operatorname{Disc})\subseteq\mathfrak{B}_{n} does. Writing 𝔅net\mathfrak{B}_{n}^{et}, 𝔄net\mathfrak{A}_{n}^{et} for the open complements of the vanishing locus V(Disc)V(\operatorname{Disc}), a map π:SS\pi:S^{\prime}\to S is étale if and only if S𝔄nS\to\mathfrak{A}_{n} factors through the open substack 𝔄net𝔄n\mathfrak{A}_{n}^{et}\subseteq\mathfrak{A}_{n} [Poo06, Proposition 6.1].

Remark 3.10.

Most finite flat algebras are not étale, nor are they degenerations of étale algebras. B. Poonen shows the moduli of étale algebras inside of all finite flat algebras 𝔄net𝔄n\mathfrak{A}_{n}^{et}\subseteq\mathfrak{A}_{n} cannot be dense by computing dimensions [Poo06, Remark 6.11]. The closure 𝔄¯net\overline{\mathfrak{A}}_{n}^{et} is nevertheless an irreducible component.

What if SSS^{\prime}\to S is not étale? Readers familiar with [Cos06] know one can sometimes endow a ramified map SSS^{\prime}\to S with stack structure S~\widetilde{S} and S~\widetilde{S}^{\prime} at the ramification to make S~S~\widetilde{S}^{\prime}\to\widetilde{S} étale. Then all S~S~\widetilde{S}^{\prime}\to\widetilde{S} are Σn\Sigma_{n}-torsors, and not just ramified covers SSS^{\prime}\to S. The ideas in Section 3.2, in particular an analogue of Theorem 3.4, apply in this level of generality. We sketch these ideas over \mathbb{C}.

Consider

y2=x(x1)(xλ),y^{2}=x(x-1)(x-\lambda),

for some λ\lambda\in\mathbb{C}. If C1C\coloneqq\mathbb{P}^{1}_{\mathbb{C}} and CC^{\prime} is the projective closure of the above affine equation, the projection (x,y)x(x,y)\mapsto x extends to a finite locally free map π:CC\pi:C^{\prime}\to C. This is in Situation 1.1 so our definitions make sense for it. However π\pi is ramified at four points, preventing us from interpreting its monogenicity space using the perspective of this section. Nevertheless, we may observe that the function yy gives a section of 1,C/C\mathcal{M}_{1,C^{\prime}/C} over CC\setminus\infty. The section naturally extends to a section of 1,𝒞/𝒞\cal R_{\mathbb{P}^{1},C^{\prime}/C} over all of CC.

Let XC1X\coloneqq\mathbb{P}^{1}_{C}. If we work over \mathbb{C} and endow CC^{\prime} and CC with stack structure to obtain a finite étale cover of stacky curves C~C~\widetilde{C}^{\prime}\to\widetilde{C} as in [Cos06], the stacky finite étale cover together with the map C~X\widetilde{C}^{\prime}\to X is parameterized by a representable map C~[SymnX]\widetilde{C}\to[\text{Sym}^{n}{X}] to the stack quotient

[SymnX][Xn/Σn].[\text{Sym}^{n}{X}]\coloneqq{\left[X^{n}/\Sigma_{n}\right]}.

We can similarly allow CC^{\prime} and CC to be nodal families of curves over some base SS. Maps from nodal curves C~\widetilde{C} over SS entail an SS-point of the moduli stack 𝔐([SymnX])\mathfrak{M}([\text{Sym}^{n}{X}]) of prestable maps to the symmetric product. As in [ABHS, Proposition 2.3], there is an open substack for which the map from the coarse space CC^{\prime} to XX is a closed immersion. The stack 𝔐([SymnX])\mathfrak{M}([\text{Sym}^{n}{X}]) splits into components indexed by the ramification profiles of the cover of coarse spaces CCC^{\prime}\to C.

There are some subtleties in characteristic pp—one cannot treat all ramification as a μn\mu_{n} torsor because some ramification is a /p\mathbb{Z}/p\mathbb{Z}-torsor in characteristic pp. The formalism of tuning stacks [ESZ21] is a substitute in arbitrary characteristic.

4. Twisted monogenicity

The Hasse local-to-global principle is the idea that “local” solutions to a polynomial equation over all the pp-adic fields p\mathbb{Q}_{p} and the real field \mathbb{R} can piece together to a single “global” solution over \mathbb{Q}. We ask the same for monogenicity: given local monogenerators, say over completions or local in the Zariski or étale topologies, do they piece together to a single global monogenerator?

The Hasse principle fails for elliptic curves. Let EE be an elliptic curve over a number field KK and consider all its places ν\nu. The Shafarevich-Tate group (E/K)\Sha(E/K) of an elliptic curve sits in an exact sequence

0(E/K)Het1(K,E)νHet1(Kν,E).0\to\Sha(E/K)\to H^{1}_{et}(K,E)\to\prod_{\nu}H^{1}_{et}(K_{\nu},E).

Elements of are genus-one curves with rational points over each completion KνK_{\nu} that do not have a point over KK. Similarly, we want sequences of cohomology groups to control when local monogenerators do or do not come from a global monogenerator.

For such a sequence, one needs to know how a pair of local monogenerators can differ. One would like a group GG or sheaf of groups transitively acting on the set of local monogenerators so that cohomology groups can record the struggle to patch local monogenerators together into a global monogenerator.

Suppose B/AB/A is an algebra extension inducing SSS^{\prime}\to S and θ1,θ2B\theta_{1},\theta_{2}\in B are both monogenerators. Then

θ1B=A[θ2],θ2B=A[θ1],\theta_{1}\in B=A[\theta_{2}],\quad\quad\quad\theta_{2}\in B=A[\theta_{1}],

so each monogenerator is a polynomial in the other:

θ1=p1(θ2) and θ2=p2(θ1), with p1(x),p2(x)A[x].\theta_{1}=p_{1}(\theta_{2})\quad\text{ and }\quad\theta_{2}=p_{2}(\theta_{1}),\quad\text{ with }\quad p_{1}(x),p_{2}(x)\in A[x].

We can think of the pi(x)p_{i}(x) as transition functions or endomorphisms of the affine line 𝔸1\mathbb{A}^{1}. Even though p1(p2(θ1))=θ1p_{1}(p_{2}(\theta_{1}))=\theta_{1}, it is doubtful that p1p2=id𝔸1p_{1}\circ p_{2}=\mathrm{id}_{\mathbb{A}^{1}} or even that pi(x)p_{i}(x) are automorphisms of 𝔸1\mathbb{A}^{1}.

One might attempt to find a group GG containing all possible polynomials p1(x),p2(x)p_{1}(x),p_{2}(x). We would then have a homomorphism (of non-commutative monoids) EGE\to G where EE is some sub-monoid of End(𝔸1)\text{End}(\mathbb{A}^{1}), the monoid of endomorphisms of 𝔸1\mathbb{A}^{1} (equivalently, the monoid of one-variable polynomials under composition). Even if we only insist that EE contains xx, x-x, and x2x^{2}, we find that the images of xx and x-x coincide in GG since both compose with x2x^{2} to the same polynomial. This is not acceptable as xx and x-x act in distinct ways on monogenerators.

Instead of working with the group of all possible polynomial transition functions as above, we require our transition functions pi(x)p_{i}(x) to lie in a group G𝔸1G\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\mathbb{A}^{1} acting on 𝔸1\mathbb{A}^{1}. Two particularly natural options for GG present themeselves, namely the group sheaves:

𝔾m(A)=A,uuuu\mathbb{G}_{m}(A)=A^{\ast},\quad\quad\quad u\cdot u^{\prime}\coloneqq uu^{\prime}
Aff1(A)=AA,(u,v)(u,v)(uu,uv+v).\text{Aff}^{1}(A)=A^{\ast}\ltimes A,\quad\quad\quad(u,v)\cdot(u^{\prime},v^{\prime})\coloneqq(uu^{\prime},uv^{\prime}+v).

Affine transformations Aff1\text{Aff}^{1} are essentially polynomials ux+vux+v of degree one under composition. These act on monogenerators:

𝔾m𝔸1\displaystyle\mathbb{G}_{m}\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\mathbb{A}^{1} :\displaystyle:\quad\quad\quad\quad aA,θ(A),\displaystyle a\in A^{\ast},\theta\in\mathcal{M}(A),\quad\quad\quad\quad a.θaθ,\displaystyle a.\theta\coloneqq a\cdot\theta,
Aff1𝔸1\displaystyle\text{Aff}^{1}\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\mathbb{A}^{1} :\displaystyle:\quad\quad\quad\quad aA,bA,θ(A),\displaystyle a\in A^{\ast},b\in A,\theta\in\mathcal{M}(A),\quad\quad\quad\quad (a,b).θaθ+b.\displaystyle(a,b).\theta\coloneqq a\theta+b.
Definition 4.1 (Twisted Monogenerators).

A (𝔾m\mathbb{G}_{m})-twisted monogenerator for B/AB/A is:

  1. (1)

    a Zariski open cover SpecA=iD(fi)\mathrm{Spec}\,A=\bigcup_{i}D(f_{i}) for elements fiAf_{i}\in A,

  2. (2)

    a system of “local” monogenerators θiB[fi1]\theta_{i}\in B\left[f_{i}^{-1}\right] for B[fi1]B[f_{i}^{-1}] over A[fi1]A[f_{i}^{-1}], and

  3. (3)

    units aijA[fi1,fj1]a_{ij}\in A\left[f_{i}^{-1},f_{j}^{-1}\right]^{\ast}

such that

  • for all i,ji,j, we have aij.θj=θi,a_{ij}.\theta_{j}=\theta_{i},

  • for all i,j,ki,j,k, the “cocycle condition” holds:

    aij.ajk=aik.a_{ij}.a_{jk}=a_{ik}.

Two such systems {(aij),(θi)}\{(a_{ij}),(\theta_{i})\}, {(aij),(θi)}\{(a_{ij}^{\prime}),(\theta_{i}^{\prime})\} are equivalent if they differ by further refining the cover SpecA=D(fi)\mathrm{Spec}\,A=\bigcup D(f_{i}) or global units uAu\in A^{\ast}: uaij=aiju\cdot a_{ij}=a^{\prime}_{ij}, uθi=θiu\cdot\theta_{i}=\theta_{i}^{\prime}.

Likewise B/AB/A is Aff1\text{Aff}^{1}-twisted monogenic if there is a cover with θi\theta_{i}’s as above, but with units (3) replaced by pairs aij,bijA[1fi,1fj]a_{ij},b_{ij}\in A\left[\frac{1}{f_{i}},\frac{1}{f_{j}}\right] such that each aija_{ij} is a unit and aijθj+bij=θia_{ij}\theta_{j}+b_{ij}=\theta_{i}.

The elements θi\theta_{i} may or may not come from a single global monogenerator θA\theta\in A. Nevertheless, the transition functions (aij)(a_{ij}) or (aij,bij)(a_{ij},b_{ij}) define an affine bundle LL on SpecA\mathrm{Spec}\,A with global section θ\theta induced by the θi\theta_{i}’s. We say S/SS^{\prime}/S is “twisted monogenic” to mean there exists a 𝔾m\mathbb{G}_{m}-twisted monogenerator and similarly say “Aff1\text{Aff}^{1}-twisted” monogenic. Both are clearly Zariski-locally monogenic.

Compare with Cartier divisors:

twisted monogenerator Cartier divisor
global monogenerator rational function
𝔾m\mathbb{G}_{m} / Aff1\text{Aff}^{1} action differing by units.

We recall the notions of “multiply monogenic orders” and “affine equivalence” in the literature. Two monogenerators θ1,θ2Γ(SpecA,B/A)\theta_{1},\theta_{2}\in\Gamma(\mathrm{Spec}\,A,\mathcal{M}_{B/A}) are said to be “affine equivalent” if there are uAu\in A^{\ast}, vAv\in A such that uθ1+v=θ2u\theta_{1}+v=\theta_{2}. In other words, affine equivalence classes are elements of the quotient Γ(SpecA,B/A)/Aff1(A)\Gamma(\mathrm{Spec}\,A,\mathcal{M}_{B/A})/\text{Aff}^{1}(A). Under certain hypotheses in Remark 4.12, Aff1\text{Aff}^{1}-twisted monogenicity is parameterized by the sheaf quotient B/A/Aff1\mathcal{M}_{B/A}/\text{Aff}^{1}. There is almost an “exact sequence”

Aff1(A)Γ(B/A)Γ(B/A/Aff1)H1(Aff1)\text{Aff}^{1}(A)\to\Gamma(\mathcal{M}_{B/A})\to\Gamma(\mathcal{M}_{B/A}/\text{Aff}^{1})\to H^{1}(\text{Aff}^{1})

that dictates whether a twisted monogenerator comes from an affine equivalence class of global monogenerators.

We warm up with a classical approach to 𝔾m\mathbb{G}_{m}-quotients, namely taking Proj\mathrm{Proj}\,. Then we study Aff1\text{Aff}^{1}-twisted monogenerators before finally introducing GG-twisted monogenerators for arbitrary groups GG.

There is a moduli space for each notion of twisted monogenicity. We use these moduli spaces now and defer the proof until Theorem 4.26:

Theorem 4.2 (=Theorem 4.26).

Let 𝔾m,Aff1\mathbb{G}_{m},\text{Aff}^{1} act on 𝔸1\mathbb{A}^{1} on the left in the natural way, inducing a left action on S/S\mathcal{M}_{S^{\prime}/S}. The stack quotients [/𝔾m]{\left[\mathcal{M}/\mathbb{G}_{m}\right]} and [/Aff1]{\left[\mathcal{M}/\text{Aff}^{1}\right]} represent 𝔾m\mathbb{G}_{m}- and Aff1\text{Aff}^{1}-twisted monogenerators up to equivalence, respectively.

4.1. 𝔾m\mathbb{G}_{m}-Twisted monogenerators and Proj of the Weil Restriction

Writing S=SpecBS^{\prime}=\mathrm{Spec}\,B and S=SpecAS=\mathrm{Spec}\,A, a twisted monogenerator amounts to a Zariski cover S=SpecA=UiS=\mathrm{Spec}\,A=\bigcup U_{i}, a system of closed embeddings θi:SUi𝔸Ui1\theta_{i}:S^{\prime}_{U_{i}}\subseteq\mathbb{A}^{1}_{U_{i}} over UiU_{i}, and elements aij𝔾m(Ui)a_{ij}\in\mathbb{G}_{m}(U_{i}) such that

aij.θj=θi:SUij𝔸Uij1.a_{ij}.\theta_{j}=\theta_{i}:S^{\prime}_{U_{ij}}\to\mathbb{A}^{1}_{U_{ij}}.

Equivalently, a twisted monogenerator is a line bundle LL on SS defined by the above cocycle aija_{ij} and a global embedding θ:SL\theta:S^{\prime}\subseteq L over SS. Twisted monogenerators (θi)iI,(θj)jJ(\theta_{i})_{i\in I},(\theta_{j}^{\prime})_{j\in J} with respect to covers covers {Ui}iI,UjjJ\{U_{i}\}_{i\in I},{U_{j}^{\prime}}_{j\in J} are identified if they differ by global units u𝔾m(S)u\in\mathbb{G}_{m}(S) on a common refinement of the covers {Ui}iI,UjjJ\{U_{i}\}_{i\in I},{U_{j}^{\prime}}_{j\in J}, i.e., if the corresponding line bundles L,LL,L^{\prime} are isomorphic in a way that identifies the closed embeddings θ,θ\theta,\theta^{\prime}.

For number fields L/KL/K with θL\theta\in\mathbb{Z}_{L} and aKa\in\mathbb{Z}_{K}, one has aθLa\theta\in\mathbb{Z}_{L}. If aKa\in\mathbb{Z}_{K}^{\ast}, then θ\theta is a monogenerator if and only if aθa\theta is. The multiplication action 𝔾m(K)(𝒦)\mathbb{G}_{m}(\mathbb{Z}_{K})\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\cal R(\mathbb{Z}_{K}) corresponds to the global 𝔾m\mathbb{G}_{m} action on the vector bundle \cal R over SS.

An action of 𝔾m\mathbb{G}_{m} corresponds to a \mathbb{Z}-grading on the sheaf of algebras [Sta20, 0EKJ]. Locally in SS, π𝒪Si=1n𝒪Sei\pi_{\ast}\mathcal{O}_{S^{\prime}}\simeq\bigoplus_{i=1}^{n}\mathcal{O}_{S}\cdot e_{i} and 𝔸𝒮𝓃\cal R\simeq\mathbb{A}^{n}_{S}. The 𝔾m\mathbb{G}_{m} action is the diagonal action and corresponds to the total degree of polynomials in 𝒪𝔸Sn=𝒪S[x1,,xn]\mathcal{O}_{\mathbb{A}^{n}_{S}}=\mathcal{O}_{S}[x_{1},\dots,x_{n}].

The associated projective bundle to the vector bundle \cal R is given by the relative Proj [Sta20, 01NS]

𝒮/𝒮Proj¯𝒮𝒪,\mathbb{P}\cal R_{S^{\prime}/S}\coloneqq\underline{\mathrm{Proj}}_{S}\,\mathcal{O}_{\cal R},

with the total-degree grading. The ideal S/S{\mathcal{I}}_{S^{\prime}/S} cutting out the complement 𝒩S/S\mathcal{N}_{S^{\prime}/S} of 1,S/S\mathcal{M}_{1,S^{\prime}/S}\subseteq\cal R is graded by [ABHS, Remark 3.10], defining a closed subscheme 𝒩S/S\mathbb{P}\mathcal{N}_{S^{\prime}/S}\subseteq\mathbb{P}\cal R.

Definition 4.3.

Define the scheme of projective monogenerators

S/S𝒮/𝒮Proj¯𝒮𝒪𝒮/𝒮\mathbb{P}\mathcal{M}_{S^{\prime}/S}\subseteq\mathbb{P}\cal R_{S^{\prime}/S}\coloneqq\underline{\mathrm{Proj}}_{S}\,\mathcal{O}_{\cal R_{S^{\prime}/S}}

to be the open complement of the closed subscheme 𝒩S/S\mathbb{P}\mathcal{N}_{S^{\prime}/S} cut out by the graded homogeneous ideal S/S{\mathcal{I}}_{S^{\prime}/S}.

The reader may define projective polygenerators in the same fashion.

Lemma 4.4.

The vanishing of the irrelevant ideal V(𝒪,+)V(\mathcal{O}_{\cal R,+}) of 𝒮/𝒮\cal R_{S^{\prime}/S} is contained inside of the non-monogenicity locus 𝒩S/S\mathcal{N}_{S^{\prime}/S} for SSS^{\prime}\neq S.

Proof.

Locally, the lemma states that θ=0\theta=0 is not a monogenerator. ∎

Remark 4.5.

We relate the Proj construction to stack quotients by 𝔾m\mathbb{G}_{m} according to [Ols16, Example 10.2.8]. The ring 𝒪𝒮/𝒮\mathcal{O}_{\cal R_{S^{\prime}/S}} is generated by elements of degree one. Locally, 𝒮/𝒮𝔸𝒮𝓃\cal R_{S^{\prime}/S}\simeq\mathbb{A}^{n}_{S} and 𝒪𝒮/𝒮𝒪S[x1,,xn]\mathcal{O}_{\cal R_{S^{\prime}/S}}\simeq\mathcal{O}_{S}[x_{1},\dots,x_{n}] is generated by the degree one elements xix_{i}. Write Spec¯S𝒪R\underline{\mathrm{Spec}}_{S}\,\mathcal{O}R for the relative spectrum [Sta20, 01LQ]. The map

Spec¯S𝒪RV(𝒪,+){\underline{\mathrm{Spec}}_{S}\,\mathcal{O}R\setminus V(\mathcal{O}_{\cal R,+})}Proj¯S𝒪R{\underline{\mathrm{Proj}}_{S}\,\mathcal{O}R}/𝔾m\scriptstyle{-/\mathbb{G}_{m}}

is therefore a stack quotient or 𝔾m\mathbb{G}_{m}-torsor.

We have a pullback square

S/S{\mathcal{M}_{S^{\prime}/S}}Spec¯S𝒪RV(𝒪,+){\underline{\mathrm{Spec}}_{S}\,\mathcal{O}R\setminus V(\mathcal{O}_{\cal R,+})}S/S{\mathbb{P}\mathcal{M}_{S^{\prime}/S}}Proj¯S𝒪R{\underline{\mathrm{Proj}}_{S}\,\mathcal{O}R}{\ulcorner}

of 𝔾m\mathbb{G}_{m}-torsors and a stack quotient S/S=[S/S/𝔾m]\mathbb{P}\mathcal{M}_{S^{\prime}/S}={\left[\mathcal{M}_{S^{\prime}/S}/\mathbb{G}_{m}\right]}.

Theorem 4.2 states that [/𝔾m]{\left[\mathcal{M}/\mathbb{G}_{m}\right]} represents twisted monogenerators, and now we know the quotient stack is wondrously a scheme:

Corollary 4.6.

The scheme S/S=[/𝔾m]\mathbb{P}\mathcal{M}_{S^{\prime}/S}={\left[\mathcal{M}/\mathbb{G}_{m}\right]} represents the 𝔾m\mathbb{G}_{m}-twisted monogenerators of Definition 4.1. That is, S/S\mathbb{P}\mathcal{M}_{S^{\prime}/S} is a moduli space for twisted monogenerators. The action 𝔾mS/S\mathbb{G}_{m}\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\mathcal{M}_{S^{\prime}/S} is free.

Warning 4.7.

Given a monogenerator θL\theta\in\mathbb{Z}_{L} and a pair aKa\in\mathbb{Z}_{K}^{\ast}, βL\beta\in\mathbb{Z}_{L}, write

β=b0+b1θ++bn1θn1.\beta=b_{0}+b_{1}\theta+\cdots+b_{n-1}\theta^{n-1}.

One may try to define a second action

a.β?b0+b1aθ+b2a2θ2++bn1an1θn1a.\beta\overset{?}{\coloneqq}b_{0}+b_{1}a\theta+b_{2}a^{2}\theta^{2}+\cdots+b_{n-1}a^{n-1}\theta^{n-1}

encoding the degree with respect to θ\theta, but this action does not define a grading as it is almost never multiplicative. For example, take L=[2]\mathbb{Z}_{L}=\mathbb{Z}[\sqrt{2}] with monogenerator 2\sqrt{2} over K=\mathbb{Z}_{K}=\mathbb{Z}. Then

a.2=2a.2a.2.a.2=2\neq a.\sqrt{2}\cdot a.\sqrt{2}.

In the case that S=SpecA[ε]/εm+1S^{\prime}=\mathrm{Spec}\,A[\varepsilon]/\varepsilon^{m+1} and S=SpecAS=\mathrm{Spec}\,A, we recall that 𝒮/𝒮=𝒥𝔸𝒜1,𝓂\cal R_{S^{\prime}/S}=J_{\mathbb{A}^{1}_{A},m} is the jet space of 𝔸A1\mathbb{A}^{1}_{A}. Here, the action a.xa.x is multiplicative and induces a second action 𝔾m𝒮/𝒮=𝒥𝔸1,𝓂\mathbb{G}_{m}\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\cal R_{S^{\prime}/S}=J_{\mathbb{A}^{1},m}. The two actions of λ𝔾m\lambda\in\mathbb{G}_{m} on a jet

f(ε)=a0+a1ε++amεmf(\varepsilon)=a_{0}+a_{1}\varepsilon+\cdots+a_{m}\varepsilon^{m}

on 𝔸1\mathbb{A}^{1} are λ.f(ε)=λf(ε)\lambda.f(\varepsilon)=\lambda\cdot f(\varepsilon) and λ.f(ε)=f(λε)\lambda.f(\varepsilon)=f(\lambda\varepsilon). The Proj of JX,mJ_{X,m} with respect to this second 𝔾m\mathbb{G}_{m} action is known as a “Demailly-Semple jet” or a “Green-Griffiths jet” in the literature [Voj04, Definition 6.1]. For certain SSS^{\prime}\to S, there may be a distinguished one-parameter subgroup, i.e., the image of 𝔾mAutS(S)\mathbb{G}_{m}\to\mathrm{Aut}_{S}(S^{\prime}), that results in a second action 𝔾m𝒮/𝒮\mathbb{G}_{m}\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\cal R_{S^{\prime}/S} and allows an analogous construction.

4.2. Aff1\text{Aff}^{1}-Twisted monogenerators and affine equivalence

We enlarge our study to representing spaces of Aff1\text{Aff}^{1}-twisted monogenerators and the related study of affine equivalence classes of ordinary monogenerators. We delay twisting by general sheaves of groups other than 𝔾m\mathbb{G}_{m} and Aff1\text{Aff}^{1} until the next section. For an SS-scheme XX, the automorphism sheaf Aut(X)\mathrm{Aut}(X) is the subsheaf of automorphisms in Hom¯S(X,X)\underline{\text{Hom}}_{S}(X,X).

Remark 4.8.

The automorphism sheaf AutS(𝔸1)\mathrm{Aut}_{S}(\mathbb{A}^{1}) has a subgroup of affine transformations Aff1\text{Aff}^{1} under composition. These are identified in turn with 𝔸1𝔾m\mathbb{A}^{1}\rtimes\mathbb{G}_{m} via

(a,b)(xbx+a).(a,b)\mapsto(x\mapsto bx+a).

The automorphism sheaf can be much larger for other 𝔸Sk\mathbb{A}^{k}_{S}. For example,

(x,y)(x+y3,y)(x,y)\mapsto(x+y^{3},y)

is an automorphism of 𝔸2\mathbb{A}^{2}.

The automorphism sheaf Aut(𝔸1)\mathrm{Aut}(\mathbb{A}^{1}) is not the same as Aff1\text{Aff}^{1}, though they have the same points over reduced rings. See [Dup13] for some discussion over nonreduced rings.

Recall that two monogenerators θ1,θ2\theta_{1},\theta_{2} of an AA-algebra BB are said to be equivalent if

θ1=uθ2+v,\theta_{1}=u\theta_{2}+v,

where uAu\in A^{*} and vAv\in A. Likewise, say that two embeddings θ1,θ2:S\theta_{1},\theta_{2}:S^{\prime}\to\mathcal{L} of SS^{\prime} into an Aff1\text{Aff}^{1} bundle \mathcal{L} over SS are equivalent if there is in fAff1(S)f\in\text{Aff}^{1}(S) such that θ1=f.θ2\theta_{1}=f.\theta_{2}. The set of monogenerators up to equivalence is then

Γ(S,)/Γ(S,Aff1).\Gamma(S,\mathcal{M})/\Gamma(S,\text{Aff}^{1}).

If SSS^{\prime}\overset{\sim}{\to}S is an isomorphism and n=1n=1, the action of Aff1\text{Aff}^{1} is trivial. Otherwise, the Aff1\text{Aff}^{1}-action is often free:

Lemma 4.9.

The action Aut(S)X\mathrm{Aut}(S^{\prime})\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\mathcal{M}_{X} has trivial stabilizers, for any quasiprojective XX. If SS is normal and SSS^{\prime}\to S is not an isomorphism, the action Aff1S/S\text{Aff}^{1}\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\mathcal{M}_{S^{\prime}/S} has trivial stabilizers as well.

Proof.

A stabilizer of the action AutS(S)X\mathrm{Aut}_{S}(S^{\prime})\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\mathcal{M}_{X} entails a diagram

X{X}X{X}S{S^{\prime}}S.{S^{\prime}.}\scriptstyle{\sim}

The fact that SXS^{\prime}\subseteq X is a monomorphism forces SSS^{\prime}\simeq S^{\prime} to be the identity.

Normality of SS means SS is a finite disjoint union of integral schemes [Sta20, 033N]; we assume SS is integral without loss of generality.

Computing stabilizers of Aff1S/S\text{Aff}^{1}\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\mathcal{M}_{S^{\prime}/S} is local, so we may assume SSS^{\prime}\to S is induced by a non-identity finite map ABA\to B of rings where AA is an integrally closed domain with field of fractions KK. A stabilizer

a+bθ=θ;aA,bAa+b\theta=\theta;\quad\quad\quad a\in A,b\in A^{\ast}

implies (1b)θ=a(1-b)\theta=a. If b=1b=1, then a=0a=0 and the stabilizing affine transformation is trivial. Otherwise, 1bK1-b\in K^{*} and θ=a1bK\theta=\dfrac{a}{1-b}\in K. Elements θB\theta\in B are all integral over AA. Since AA is integrally closed, θA\theta\in A. Hence B=A[θ]=AB=A[\theta]=A, a contradiction. ∎

Remark 4.10.

Suppose given transition functions (aij,bij)(a_{ij},b_{ij}) and local monogenerators (θi)(\theta_{i}) as in an Aff1\text{Aff}^{1}-twisted monogenerator that may not satisfy the cocycle condition a priori. For normal SS with n>1n>1 as in the lemma, the cocycle condition holds automatically, since Aff1\text{Aff}^{1} acts without stabilizers.

Corollary 4.11.

If SS is normal, the stack quotient [1,S/S/Aff1]{\left[\mathcal{M}_{1,S^{\prime}/S}/\text{Aff}^{1}\right]} is represented by the ordinary sheaf quotient /Aff1\mathcal{M}/\text{Aff}^{1}.

Proof.

If GXG\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>X is a free action, the stack quotient [X/G]{\left[X/G\right]} coincides with the sheaf quotient X/GX/G. ∎

Remark 4.12.

If SS is normal, Corollary 4.11 tells us that an Aff1\text{Aff}^{1}-twisted monogenerator is the same as a global section Γ(S,/Aff1)\Gamma(S,\mathcal{M}/\text{Aff}^{1}). Equivalence classes of monogenerators are given by the presheaf quotient Γ(S,)/Γ(S,Aff1)\Gamma(S,\mathcal{M})/\Gamma(S,\text{Aff}^{1}).

Affine equivalence classes of monogenerators thereby relate to twisted monogenerators in an exact sequence of pointed sets:

Γ(S,)/Γ(S,Aff1)Γ(S,/Aff1)H1(S,Aff1).\Gamma(S,\mathcal{M})/\Gamma(S,\text{Aff}^{1})\to\Gamma(S,\mathcal{M}/\text{Aff}^{1})\to H^{1}(S,\text{Aff}^{1}).

As in sheaf cohomology, the second map takes θ¯\overline{\theta} to its torsor of lifts δ(θ¯)\delta(\overline{\theta}) in S/S\mathcal{M}_{S^{\prime}/S}:

δ(θ¯)(U)={f(U):f+Aff1(U)=θ¯|U}.\delta(\overline{\theta})(U)=\{f\in\mathcal{M}(U):f+\text{Aff}^{1}(U)=\overline{\theta}|_{U}\}.

A section of the sheaf quotient

θ¯Γ(S,/Aff1)\overline{\theta}\in\Gamma(S,\mathcal{M}/\text{Aff}^{1})

lifts to an affine equivalence class in the presheaf quotient θΓ(S,)/Γ(S,Aff1)\theta\in\Gamma(S,\mathcal{M})/\Gamma(S,\text{Aff}^{1}) if and only if the induced Aff1\text{Aff}^{1}-torsor is trivial.

The exact sequence is analogous to Cartier divisors. If XX is an integral scheme with rational function field K(X)K(X), the long exact sequence associated to

1𝒪XK(X)K(X)/𝒪X11\to\mathcal{O}_{X}^{\ast}\to K(X)^{\ast}\to K(X)^{\ast}/\mathcal{O}_{X}^{\ast}\to 1

is analogous to the above.

Remark 4.13.

One can do the same with 𝔾m\mathbb{G}_{m}, or any other group that acts freely. Compare twisted monogenerators =[/𝔾m]\mathbb{P}\mathcal{M}={\left[\mathcal{M}/\mathbb{G}_{m}\right]} with ordinary monogenerators S/S\mathcal{M}_{S^{\prime}/S} up to 𝔾m\mathbb{G}_{m}-equivalence to obtain a sequence

Γ(S,)/Γ(S,𝔾m)Γ(S,/𝔾m)H1(S,𝔾m).\Gamma(S,\mathcal{M})/\Gamma(S,\mathbb{G}_{m})\to\Gamma(S,\mathcal{M}/\mathbb{G}_{m})\to H^{1}(S,\mathbb{G}_{m}).

Freeness of the action is necessary to identify the stack quotient with the ordinary sheaf quotient.

Sometimes, being 𝔾m\mathbb{G}_{m}-twisted monogenic is the same as being Aff1\text{Aff}^{1}-twisted monogenic:

Proposition 4.14.

If S=SpecAS=\mathrm{Spec}\,A is affine, all Aff1\text{Aff}^{1}-torsors on SS are induced by 𝔾m\mathbb{G}_{m}-torsors:

H1(SpecA,𝔾m)H1(SpecA,Aff1).H^{1}(\mathrm{Spec}\,A,\mathbb{G}_{m})\simeq H^{1}(\mathrm{Spec}\,A,\text{Aff}^{1}).

The corresponding twisted forms of 𝔸1\mathbb{A}^{1} are the same, so we can furthermore identify 𝔾m\mathbb{G}_{m}-twisted monogenerators with Aff1\text{Aff}^{1}-twisted monogenerators.

Proof.

The maps

𝔸1Aff1\mathbb{A}^{1}\to\text{Aff}^{1} a(xx+a)a\mapsto(x\mapsto x+a)     and     Aff1𝔾m\text{Aff}^{1}\to\mathbb{G}_{m} (xbx+a)b(x\mapsto bx+a)\mapsto b

fit into a short exact sequence

0𝔸1Aff1𝔾m1.0\to\mathbb{A}^{1}\to\text{Aff}^{1}\to\mathbb{G}_{m}\to 1.

The sheaf Aff1\text{Aff}^{1} is not commutative. Cohomology sets Hi(S,Aff1)H^{i}(S,\text{Aff}^{1}) are nevertheless defined for i=0,1,2i=0,1,2. By Serre Vanishing [Sta20, 01XB] we have Hi(SpecA,𝔸1)=0H^{i}(\mathrm{Spec}\,A,\mathbb{A}^{1})=0 for i0i\neq 0, and therefore Γ(Aff1)Γ(𝔾m)\Gamma(\text{Aff}^{1})\to\Gamma(\mathbb{G}_{m}) is surjective, yielding an identification in all nonzero degrees:

Hi(SpecA,Aff1)Hi(SpecA,𝔾m),i=1,2.H^{i}(\mathrm{Spec}\,A,\text{Aff}^{1})\simeq H^{i}(\mathrm{Spec}\,A,\mathbb{G}_{m}),\quad\quad i=1,2.

The action 𝔾m𝔸1\mathbb{G}_{m}\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\mathbb{A}^{1} is the restriction of that of Aff1\text{Aff}^{1}, factoring

𝔾mAff1Aut(𝔸1).\mathbb{G}_{m}\subseteq\text{Aff}^{1}\to\mathrm{Aut}(\mathbb{A}^{1}).

The corresponding twisted forms of 𝔸1\mathbb{A}^{1} are the same. ∎

4.3. Consequences of Aff1\text{Aff}^{1}-twisted monogenicity

We conclude with several consequences of twisted monogenicity and our Theorem 4.19 that shows twisted monogenerators detect class number-one number rings.

The following theorem constrains the line bundles that may be used for twisted monogenicity. This result constrains the possible Steinitz classes of a twisted monogenic extension. This is an effective constraint in geometric situations: see Lemma 5.4. The structure of the set of ideals corresponding to Steinitz classes of number rings is the subject of a variety of open questions. This has traditionally been the domain of class field theory; two notable papers are [McC66] and [Cob10]. For n>0n>0, write d(n)=gcd({12: prime, n})d(n)=\gcd\big{(}\{\frac{\ell-1}{2}:\ell\text{ prime, }\ell\mid n\}\big{)}. Theorems 1 and 2 of [McC66] imply that if KK contains a primitive nnth root of unity, then the Steinitz classes of Galois extensions L/KL/K of degree nn are precisely the d(n)thd(n)^{\text{th}} powers in the class group of KK. Compare this to the following:

Theorem 4.15.

Suppose SSS^{\prime}\to S is 𝔾m\mathbb{G}_{m}-twisted monogenic, with an embedding into a line bundle EE. Let \mathcal{E} be the sheaf of sections of EE. Then

det(π𝒪S)topπ𝒪Sn(n1)2\det(\pi_{\ast}\mathcal{O}_{S^{\prime}})\coloneqq\wedge^{top}\pi_{\ast}\mathcal{O}_{S^{\prime}}\simeq\mathcal{E}^{-\frac{n(n-1)}{2}}

in Pic(S)\text{Pic}(S).

In particular, if an extension of number rings L/K\mathbb{Z}_{L}/\mathbb{Z}_{K} is twisted monogenic, then its Steinitz class is an n(n1)2\frac{n(n-1)}{2}th power in the class group.

Proof.

Write SymdSymd\text{Sym}^{\ast}\mathcal{E}\coloneqq\bigoplus_{d}\text{Sym}^{d}\mathcal{E} for the symmetric algebra. Recall that E𝕍()Spec¯𝒮Sym()E\simeq\mathbb{V}(\cal E^{\vee})\coloneqq\underline{\mathrm{Spec}}_{S}\,\text{Sym}^{\ast}(\mathcal{E}^{\vee}). We have a surjection of 𝒪S\mathcal{O}_{S}-modules

Symπ𝒪S,\text{Sym}^{\ast}\mathcal{E}^{\vee}\twoheadrightarrow\pi_{\ast}\mathcal{O}_{S^{\prime}},

which we claim factors through the projection of 𝒪S\mathcal{O}_{S}-modules Symi=0n1Symi\text{Sym}^{\ast}\mathcal{E}^{\vee}\to\bigoplus^{n-1}_{i=0}\text{Sym}^{i}\mathcal{E}^{\vee}. Such a factorization is a local question and local factorizations automatically glue because there is at most one. Locally, we may assume SSS^{\prime}\to S is induced by a ring homorphism ABA\to B and \mathcal{E}^{\vee} is trivialized. We have a factorization of AA-modules

SymA[t]{\text{Sym}^{\ast}\mathcal{E}^{\vee}\simeq A[t]}B{B}i=0n1Symii=0n1Ati{\bigoplus^{n-1}_{i=0}\text{Sym}^{i}\mathcal{E}^{\vee}\simeq\bigoplus^{n-1}_{i=0}A\cdot t^{i}}

due to the existence of a monic polynomial mθ(t)m_{\theta}(t) of degree nn for the image θ\theta of tt in 𝒪S\mathcal{O}_{S^{\prime}} [ABHS, Lemma 2.11]. The AA-modules i=0n1Ati\bigoplus^{n-1}_{i=0}A\cdot t^{i} and BB are abstractly isomorphic, and any surjective endomorphism of a finitely generated module is an isomorphism [MRB89, Theorem 2.4].

We conclude that globally

π𝒪Si=0n1Symi.\pi_{\ast}\mathcal{O}_{S^{\prime}}\simeq\bigoplus_{i=0}^{n-1}\text{Sym}^{i}\mathcal{E}^{\vee}.

Since \mathcal{E} is invertible, Symi=()i\text{Sym}^{i}\mathcal{E}^{\vee}=(\mathcal{E}^{\vee})^{i}. Taking the determinant,

det(π𝒪S)=det(i=0n1()i)=i=0n1i=n(n1)2.\det(\pi_{\ast}\mathcal{O}_{S^{\prime}})=\det\left(\bigoplus_{i=0}^{n-1}(\mathcal{E}^{\vee})^{i}\right)=\mathcal{E}^{-\sum_{i=0}^{n-1}i}=\mathcal{E}^{-\frac{n(n-1)}{2}}.

The literature abounds with finiteness results on equivalence classes of monogenerators, for example:

Theorem 4.16 ([EG17, Theorem 5.4.4]).

Let AA be an integrally closed integral domain of characteristic zero and finitely generated over \mathbb{Z}. Let KK be the quotient field of AA, Ω\Omega a finite étale KK-algebra with ΩK\Omega\neq K, and BB the integral closure of AA in Ω\Omega. Then there are finitely many equivalence classes of monogenic generators of BB over AA.

We have an analogous finiteness result for equivalence classes of Aff1\text{Aff}^{1}-twisted monogenerators:

Corollary 4.17.

Let AA, KK, Ω\Omega, BB be as in Theorem 4.16, with SSS^{\prime}\to S induced from ABA\to B. Assume Pic(A)\text{Pic}(A) is finitely generated. Then there are finitely many equivalence classes of Aff1\text{Aff}^{1}-twisted monogenerators for SSS^{\prime}\to S.

Proof.

We essentially use the sequence

Γ(S,)/Γ(S,Aff1)Γ(S,/Aff1)H1(S,Aff1)\Gamma(S,\mathcal{M})/\Gamma(S,\text{Aff}^{1})\to\Gamma(S,\mathcal{M}/\text{Aff}^{1})\to H^{1}(S,\text{Aff}^{1})

of Remark 4.12. If this were a short exact sequence of groups, the outer terms being finite would force the middle term to be; our proof is similar in spirit.

Since SS is quasicompact and there are finitely many elements of the Picard group which are n(n1)2\frac{n(n-1)}{2}th-roots of the Steinitz class

Pic(S)H1(S,𝔾m)=H1(S,Aff1),\text{Pic}(S)\coloneqq H^{1}(S,\mathbb{G}_{m})=H^{1}(S,\text{Aff}^{1}),

we can find an affine open cover S=iUiS=\bigcup_{i}U_{i} by finitely many open sets of SS that simultaneously trivializes all n(n1)2\frac{n(n-1)}{2}th-roots of the Steinitz class on SS.

The above sequence of presheaves restricts to the UiU_{i}’s in a commutative diagram

Γ(S,)/Γ(S,Aff1){\Gamma(S,\mathcal{M})/\Gamma(S,\text{Aff}^{1})}Γ(S,/Aff1){\Gamma(S,\mathcal{M}/\text{Aff}^{1})}H1(S,Aff1){H^{1}(S,\text{Aff}^{1})}Γ(Ui,)/Γ(Ui,Aff1){\prod\Gamma(U_{i},\mathcal{M})/\Gamma(U_{i},\text{Aff}^{1})}Γ(Ui,/Aff1){\prod\Gamma(U_{i},\mathcal{M}/\text{Aff}^{1})}H1(Ui,Aff1).{\prod H^{1}(U_{i},\text{Aff}^{1}).}ρ\scriptstyle{\rho}

The restriction H1(S,Aff1)H1(Ui,Aff1)H^{1}(S,\text{Aff}^{1})\to\prod H^{1}(U_{i},\text{Aff}^{1}) is zero on the n(n1)2\frac{n(n-1)}{2}th-roots of the Steinitz class by construction of the UiU_{i}’s. The restriction ρ:Γ(S,/Aff1)Γ(Ui,/Aff1)\rho:\Gamma(S,\mathcal{M}/\text{Aff}^{1})\hookrightarrow\prod\Gamma(U_{i},\mathcal{M}/\text{Aff}^{1}) is injective by the sheaf condition. A diagram chase reveals that the restriction ρ(θ¯)\rho(\overline{\theta}) of any section θ¯Γ(S,/Aff1)\overline{\theta}\in\Gamma(S,\mathcal{M}/\text{Aff}^{1}) is in the image of Γ(Ui,)/Γ(Ui,Aff1)\prod\Gamma(U_{i},\mathcal{M})/\Gamma(U_{i},\text{Aff}^{1}). Theorem 4.16 asserts that each set Γ(Ui,)/Γ(Ui,Aff1)\Gamma(U_{i},\mathcal{M})/\Gamma(U_{i},\text{Aff}^{1}) is finite. ∎

Lemma 4.18.

Degree-two extensions are all Aff1\text{Aff}^{1}-twisted monogenic. If SS is affine, they are also 𝔾m\mathbb{G}_{m}-twisted monogenic.

Proof.

Localize and choose a basis containing 1 to write π𝒪S𝒪S𝒪Sθ1\pi_{\ast}\mathcal{O}_{S^{\prime}}\simeq\mathcal{O}_{S}\oplus\mathcal{O}_{S}\theta_{1} for some θ1Γ(𝒪S)\theta_{1}\in\Gamma(\mathcal{O}_{S^{\prime}}). Given an element θ2\theta_{2} so that {1,θ2}\{1,\theta_{2}\} is also a basis, we may write

θ1=a+bθ2,θ2=c+dθ1,a,b,c,d𝒪S.\theta_{1}=a+b\theta_{2},\quad\quad\quad\theta_{2}=c+d\theta_{1},\quad\quad\quad a,b,c,d\in\mathcal{O}_{S}.

Hence bd=1bd=1 are units, and the transition functions come from Aff1=𝔸1𝔾m\text{Aff}^{1}=\mathbb{A}^{1}\rtimes\mathbb{G}_{m}. By choosing such generators on a cover of SS, one obtains a twisted monogenerator. Proposition 4.14 further refines our affine bundle to a line bundle. ∎

Theorem 4.19.

A number ring K\mathbb{Z}_{K} has class number one if and only if all twisted monogenic extensions of K\mathbb{Z}_{K} are in fact monogenic.

Proof.

If the class number of KK is one, then all line bundles on SpecK\mathrm{Spec}\,\mathbb{Z}_{K} are trivial and the equivalence is clear. Mann [Man58] has shown that KK has quadratic extensions without an integral basis if and only if the class number of KK is not one: adjoin the square root of α\alpha, where (α)=𝔟2𝔠(\alpha)={\mathfrak{b}}^{2}{\mathfrak{c}} with 𝔟{\mathfrak{b}} non-principal and 𝔠{\mathfrak{c}} square-free. By Lemma 4.18, such an extension is necessarily 𝔾m\mathbb{G}_{m}-twisted monogenic. As the monogenicity of quadratic extensions is equivalent to the existence of an integral basis, the result follows. ∎

Remark 4.20.

Theorem 4.19 implies that the ring of integers of a number field is twisted monogenic over \mathbb{Z} if and only if it is monogenic over \mathbb{Z}. Example 5.3 thus provides an example of a number field which is not twisted monogenic.

Given that twisted monogenic extensions and monogenic extensions coincide over \mathbb{Z}, we should ask for an example where we have twisted monogenicity but not monogenicity. All degree 2 extensions of number rings are twisted monogenic as Lemma 4.18 shows. Thus every quadratic extension without an integral basis is twisted monogenic but not monogenic, and [Man58] provides a construction of such extensions. The aim of the following is the very explicit construction of a higher degree example of such an extension. Though we are ultimately unable to prove non-monogenicity in the following example, we hope it gives the reader a concrete sense of the concepts and methods employed in this section.

Example 4.21 (Properly Twisted Monogenic, Not Quadratic).

Let K=(5233)K=\mathbb{Q}(\sqrt[3]{5\cdot 23}) and let 𝔭3{\mathfrak{p}}_{3}, 𝔭5{\mathfrak{p}}_{5}, and 𝔭23{\mathfrak{p}}_{23} be the unique primes of KK above 3, 5, and 23, respectively. One can compute 𝔭3=(ρ31970(5233)2+9580(5233)+46587)\mathfrak{p}_{3}=(\rho_{3}\coloneqq 1970(\sqrt[3]{5\cdot 23})^{2}+9580(\sqrt[3]{5\cdot 23})+46587). Consider L/K\mathbb{Z}_{L}/\mathbb{Z}_{K}, where L=K(23ρ33)L=K(\sqrt[3]{23\rho_{3}}). On D(𝔭23)D({\mathfrak{p}}_{23}), the local index form with respect to the local basis {1,23ρ33,(23ρ33)2}\{1,\sqrt[3]{23\rho_{3}},(\sqrt[3]{23\rho_{3}})^{2}\} is b323ρ3c3b^{3}-23\rho_{3}c^{3}. On D(𝔭5)D({\mathfrak{p}}_{5}), we have the local index form B352ρ3C3B^{3}-5^{2}\rho_{3}C^{3} with respect to the local basis {1,52ρ33,(52ρ33)2}\{1,\sqrt[3]{5^{2}\rho_{3}},(\sqrt[3]{5^{2}\rho_{3}})^{2}\}. We transition via 232523/23\sqrt[3]{23^{2}\cdot 5^{2}}/23, which is not a global unit, so the extension L/K\mathbb{Z}_{L}/\mathbb{Z}_{K} is twisted monogenic.

To see what is going on more explicitly, we investigate how the transitions affect the local index forms. We have

b323ρ3c3=5223B35423223ρ3C3=5223B35423ρ3C3= a unit in 𝒪D(𝔭23).b^{3}-23\rho_{3}c^{3}=\frac{5^{2}}{23}B^{3}-\frac{5^{4}}{23^{2}}\cdot 23\rho_{3}C^{3}=\frac{5^{2}}{23}B^{3}-\frac{5^{4}}{23}\rho_{3}C^{3}=\text{ a unit in }{\mathcal{O}}_{D({\mathfrak{p}}_{23})}.

If BB and CC could be chosen to be K\mathbb{Z}_{K}-integral so that local index form represented a unit of K\mathbb{Z}_{K}, then 52ρ33\sqrt[3]{5^{2}\rho_{3}} would be a global monogenerator. However, 𝔭5{\mathfrak{p}}_{5}-adic valuations tell us 52ρ33\sqrt[3]{5^{2}\rho_{3}} is not a monogenerator. One can also apply Dedekind’s index criterion to x352ρ3x^{3}-5^{2}\rho_{3}. Similarly, we have

B352ρ3C3=2352b32325452ρ3c3=2352b323252ρ3c3= a unit in 𝒪D(𝔭5).B^{3}-5^{2}\rho_{3}C^{3}=\frac{23}{5^{2}}b^{3}-\frac{23^{2}}{5^{4}}\cdot 5^{2}\rho_{3}c^{3}=\frac{23}{5^{2}}b^{3}-\frac{23^{2}}{5^{2}}\rho_{3}c^{3}=\text{ a unit in }{\mathcal{O}}_{D({\mathfrak{p}}_{5})}.

If bb and cc could be chosen to be K\mathbb{Z}_{K}-integral so that local index form represented a unit of K\mathbb{Z}_{K}, then 23ρ33\sqrt[3]{23\rho_{3}} would be a global monogenerator. As above, the 𝔭23{\mathfrak{p}}_{23}-adic valuations tell us this cannot be the case. Again, we could also use polynomial-specific methods.

We have shown that L/K\mathbb{Z}_{L}/\mathbb{Z}_{K} is twisted monogenic, but it remains to show that the twisting is non-trivial. We need to show the ideal 𝔭5=(5,5233){\mathfrak{p}}_{5}=(5,\sqrt[3]{5\cdot 23}) is not principal. On D(𝔭23)D({\mathfrak{p}}_{23}) it can be generated by 5233\sqrt[3]{5\cdot 23} and on D(𝔭5)D({\mathfrak{p}}_{5}) it can be generated by 55. We transition between these two generators via 522323/23\sqrt[3]{5^{2}\cdot 23^{2}}/23, exactly as above. Thus our twisted monogenerators correspond to a non-trivial ideal class.

A computer algebra system can compute a KK-integral basis for L\mathbb{Z}_{L}:

{1,(22353+525(2353)2)23ρ33+(3+3232353)(23ρ33)2,\displaystyle\bigg{\{}1,\left(-2\sqrt[3]{23\cdot 5}+\frac{5}{25}\left(\sqrt[3]{23\cdot 5}\right)^{2}\right)\sqrt[3]{23\rho_{3}}+\left(-3+\frac{3}{23}\sqrt[3]{23\cdot 5}\right)\left(\sqrt[3]{23\rho_{3}}\right)^{2},
(120589+52432353+524323(2353)2)23ρ33\displaystyle\left(120589+5243\sqrt[3]{23\cdot 5}+\frac{5243}{23}\left(\sqrt[3]{23\cdot 5}\right)^{2}\right)\sqrt[3]{23\rho_{3}}
+(22850+57125232353+1828(2353)2)(23ρ33)2},\displaystyle\quad\quad\quad\quad\quad+\left(22850+\frac{57125}{23}\sqrt[3]{23\cdot 5}+1828\left(\sqrt[3]{23\cdot 5}\right)^{2}\right)\left(\sqrt[3]{23\rho_{3}}\right)^{2}\bigg{\}},

with index form:

𝒾L/K=\displaystyle{\mathcal{i}}_{\mathbb{Z}_{L}/\mathbb{Z}_{K}}= 13796817(5233)2b31367479703949(5233)2b2c\displaystyle 13796817(\sqrt[3]{5\cdot 23})^{2}b^{3}-1367479703949(\sqrt[3]{5\cdot 23})^{2}b^{2}c
+45179341009193328(5233)2bc2+671037095233b3\displaystyle+45179341009193328(\sqrt[3]{5\cdot 23})^{2}bc^{2}+67103709\sqrt[3]{5\cdot 23}b^{3}
497537273719431009077(5233)2c366501253427405233b2c\displaystyle-497537273719431009077(\sqrt[3]{5\cdot 23})^{2}c^{3}-6650125342740\sqrt[3]{5\cdot 23}b^{2}c
+2197024781964132275233bc224194928301760441677635233c3\displaystyle+219702478196413227\sqrt[3]{5\cdot 23}bc^{2}-2419492830176044167763\sqrt[3]{5\cdot 23}c^{3}
+326269891b332339923090800b2c+1068411032584717260bc2\displaystyle+326269891b^{3}-32339923090800b^{2}c+1068411032584717260bc^{2}
11765841517121285321908c3.\displaystyle-11765841517121285321908c^{3}.

Because L/K\mathbb{Z}_{L}/\mathbb{Z}_{K} is twisted monogenic, there are no common index divisors. Thus we will always find solutions to 𝒾L/K{\mathcal{i}}_{\mathbb{Z}_{L}/\mathbb{Z}_{K}} when we reduce modulo a prime of K\mathbb{Z}_{K}. We do not expect L\mathbb{Z}_{L} to be monogenic over K\mathbb{Z}_{K}; however, showing that there are no values of b,cKb,c\in\mathbb{Z}_{K} such that 𝒾L/K(b,c)K{\mathcal{i}}_{\mathbb{Z}_{L}/\mathbb{Z}_{K}}(b,c)\in\mathbb{Z}_{K}^{\ast} appears to be rather difficult.

A clever way to get around this issue would be to show that the different of L/KL/K was non-principal. This would preclude monogenicity by prohibiting an integral basis all together. Unfortunately, one can compute that the different is principal, so the extension does have a relative integral basis.

Remark 4.22.

One can perform the same construction of Example 4.21 with radical cubic number rings other than (5233)\mathbb{Q}(\sqrt[3]{5\cdot 23}). Specifically, take any radical cubic where (3)=𝔭33=(α)3(3)={\mathfrak{p}}_{3}^{3}=(\alpha)^{3}, \ell, and qq are distinct primes with ()=𝔩3(\ell)={\mathfrak{l}}^{3}, (q)=𝔮3(q)={\mathfrak{q}}^{3}, and neither 𝔩{\mathfrak{l}} nor 𝔮{\mathfrak{q}} principal. The ideas behind this construction can be taken further by making appropriate modifications.

4.4. Twisting in general

Throughout this section, fix notation as in Situation 1.1 and work in the category (Sch/S)(Sch/S) of schemes over SS equipped with the étale topology. In particular, we allow XX to be any quasiprojective SS-scheme.

Definition 4.1 readily generalizes. Replace 𝔾m\mathbb{G}_{m} by any étale sheaf of groups GG with a left action GXG\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>X. A GG-twisted monogenerator for SSS^{\prime}\to S (into XX) is an étale cover UiSU_{i}\to S, closed embeddings θi:SUiXUi\theta_{i}:S^{\prime}_{U_{i}}\subseteq X_{U_{i}}, and elements gijG(Uij)g_{ij}\in G(U_{ij}) such that

gij.θj=θi:SUijXUij.g_{ij}.\theta_{j}=\theta_{i}:S^{\prime}_{U_{ij}}\to X_{U_{ij}}.

Say two GG-twisted monogenerators (θi),(ηi)(\theta_{i}),(\eta_{i}) are equivalent if, after passing to a common refinement of the associated covers, there is a global section gG(S)g\in G(S) so that θi=g|Uiηi\theta_{i}=g|_{U_{i}}\cdot\eta_{i} for all ii. Equivalently, the θi\theta_{i}’s glue to a global closed embedding SX^S^{\prime}\subseteq\widehat{X} into a twisted form X^\widehat{X} of XX the same way the 𝔾m\mathbb{G}_{m}-twisted monogenerators give embeddings into a line bundle.

The twisted form X^\widehat{X} arises from transition functions in GG, meaning there is a GG-torsor PP such that X^\widehat{X} is the contracted product:

X^=XGPX×P/(G,Δ)\widehat{X}=X\wedge^{G}P\coloneqq X\times P/(G,\Delta)

We have already seen the variant G=Aff1G=\text{Aff}^{1}, X=𝔸1X=\mathbb{A}^{1}. Other interesting cases include G=PGL21G=\text{PGL}_{2}\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\mathbb{P}^{1}, GLn𝔸n\text{GL}_{n}\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\mathbb{A}^{n}, an ellliptic curve EE acting on itself EEE\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>E, etc.

Remark 4.23.

Usually, contracted products are defined for a left action GPG\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>P and a right action GXG\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>X by quotienting by the antidiagonal action

XGPX×P/(Δ,G)X\wedge^{G}P\coloneqq X\times P/(-\Delta,G)

defined by

GX×P;g.(x,p)(x.g1,g.p).G\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>X\times P;\quad\quad\quad g.(x,p)\coloneqq(x.g^{-1},g.p).

We instead take two left actions and quotient by the diagonal action of GG. The literature often turns left actions 𝔾m𝔸1\mathbb{G}_{m}\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>\mathbb{A}^{1} into right actions anyway, as in [Bre06, Remark 1.7].

Group sheaves GG beget stacks BG=BGSBG=BG_{S} classifying GG-torsors on SS-schemes with universal GG-torsor SBGS\to BG.

Twisted forms X^\widehat{X} of XX are equivalent to torsors for Aut(X)\mathrm{Aut}(X) ([Poo17, Theorem 4.5.2]), as follows: Given a twisted form X^S\widehat{X}\to S, we obtain the torsor Isom¯(X^,X)\underline{\text{Isom}}(\widehat{X},X) of local isomorphisms. Given a Aut(X)\mathrm{Aut}(X)-torsor PP, we define a twisted form via contracted product:

X^PXAut(X)P\widehat{X}_{P}\coloneqq X\wedge^{\mathrm{Aut}(X)}P

The stack BAut(X)B\mathrm{Aut}(X) is thereby a moduli space for twisted forms of XX with universal family XBAut(X)Aut(X)S=[X/Aut(X)]X\wedge_{B\mathrm{Aut}(X)}^{\mathrm{Aut}(X)}S={\left[X/\mathrm{Aut}(X)\right]}. An action GAut(X)G\to\mathrm{Aut}(X) lets one turn a GG-torsor PP into a twisted form

X^PXGP\widehat{X}_{P}\coloneqq X\wedge^{G}P

classified by the map BGBAut(X)BG\to B\mathrm{Aut}(X).

The automorphism sheaf Aut(X)\mathrm{Aut}(X) acts on the scheme X\mathcal{M}_{X} via postcomposition with the embeddings SXS^{\prime}\to X, yielding a map of sheaves

γ:Aut(X)Aut(X).\gamma:\mathrm{Aut}(X)\to\mathrm{Aut}(\mathcal{M}_{X}).

Similarly, the automorphism sheaf Aut(S)\mathrm{Aut}(S^{\prime}) acts on X\mathcal{M}_{X} on the right via precomposition:

ξ:Aut(S)opAut(X).\xi:\mathrm{Aut}(S^{\prime})^{op}\to\mathrm{Aut}(\mathcal{M}_{X}).

The induced map H1(S,Aut(X))H1(S,Aut(X))H^{1}(S,\mathrm{Aut}(X))\to H^{1}(S,\mathrm{Aut}(\mathcal{M}_{X})) sends a twisted form X^\widehat{X} of XX to the twisted form X^\mathcal{M}_{\widehat{X}} of X\mathcal{M}_{X} given by looking at closed embeddings into X^\widehat{X}. We package these twisted forms X^\mathcal{M}_{\widehat{X}} into a universal version: Twist\text{Twist}\mathcal{M}.

Definition 4.24 (Twist\text{Twist}\mathcal{M}).

Let TwistBAut(X)\text{Twist}\mathcal{M}\to B\mathrm{Aut}(X) be the BAut(X)B\mathrm{Aut}(X)-stack whose TT-points are given by

{TwistTBAut(X)X^}{S×STX^Ts|s is a closed immersion}.\left\{\leavevmode\hbox to90.33pt{\vbox to58.7pt{\pgfpicture\makeatletter\hbox{\hskip 45.16664pt\lower-33.96387pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-45.16664pt}{-24.7361pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 45.41664pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.11113pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\text{Twist}\mathcal{M}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 21.41667pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 7.92186pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61632pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${T}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.92186pt\hfil&\hfil\hskip 49.24477pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.93925pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${B\mathrm{Aut}(X)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 25.2448pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{19.92184pt}{4.22366pt}\pgfsys@lineto{19.92184pt}{-12.97643pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{19.92184pt}{-13.1764pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-29.12292pt}{-22.2361pt}\pgfsys@lineto{-5.92291pt}{-22.2361pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.72293pt}{-22.2361pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.10072pt}{-31.8111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\widehat{X}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@setdash{2.79985pt,1.59991pt}{0.0pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-29.12292pt}{-17.57648pt}\pgfsys@lineto{8.50218pt}{4.02454pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.86723}{0.4979}{-0.4979}{0.86723}{8.6756pt}{4.12408pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\right\}\coloneqq\left\{\leavevmode\hbox to113.64pt{\vbox to49.77pt{\pgfpicture\makeatletter\hbox{\hskip 56.8184pt\lower-24.88719pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-56.8184pt}{-24.88719pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 17.81325pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.5077pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${S^{\prime}\times_{S}T}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 17.81325pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 31.0833pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.77779pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\widehat{X}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.08333pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 31.92183pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61632pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${T}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.92186pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-26.92836pt}{3.40588pt}\pgfsys@lineto{2.2781pt}{-16.60106pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.825}{-0.56514}{0.56514}{0.825}{2.44308pt}{-16.71408pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@setdash{2.79985pt,1.59991pt}{0.0pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{-19.552pt}{11.67892pt}\pgfsys@lineto{42.05179pt}{11.67892pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{1.0}{-19.552pt}{11.67892pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.25177pt}{11.67892pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.0893pt}{14.0317pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{s}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{42.45552pt}{5.31921pt}\pgfsys@lineto{19.15302pt}{-15.0315pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.7532}{-0.65779}{0.65779}{-0.7532}{19.00241pt}{-15.16304pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\middle|\,\,s\text{ is a closed immersion}\right\}.

The map TwistBAut(X)\text{Twist}\mathcal{M}\to B\mathrm{Aut}(X) is representable by schemes, since pullbacks are twisted forms X^\mathcal{M}_{\widehat{X}} of X\mathcal{M}_{X} itself:

X^{\mathcal{M}_{\widehat{X}}}S{S}Twist{\text{Twist}\mathcal{M}}BAut(X).{B\mathrm{Aut}(X).}{\ulcorner}X^\scriptstyle{\widehat{X}}

The universal torsor over BAut(X)B\mathrm{Aut}(X) is SS, but the universal twisted form is obtained by the contracted product with XX over BAut(X)B\mathrm{Aut}(X):

XBAut(X)Aut(X)S[X/Aut(X)].X\wedge^{\mathrm{Aut}(X)}_{B\mathrm{Aut}(X)}S\simeq{\left[X/\mathrm{Aut}(X)\right]}.

One can exhibit Twist\text{Twist}\mathcal{M} as an open substack of the Weil Restriction of [X/Aut(X)]BAut(X){\left[X/\mathrm{Aut}(X)\right]}\to B\mathrm{Aut}(X) as in [ABHS, Proposition 2.3]. There is a universal closed embedding over Twist\text{Twist}\mathcal{M} into the universal twisted form of XX as in the definition of S/S\mathcal{M}_{S^{\prime}/S}:

Twist×SS{\text{Twist}\mathcal{M}\times_{S}S^{\prime}}[X/Aut(X)].{{\left[X/\mathrm{Aut}(X)\right]}.}Twist{\text{Twist}\mathcal{M}}u\scriptstyle{u}

The universal case is concise to describe but unwieldy because Aut(X)\mathrm{Aut}(X) need not be finite, smooth, or well-behaved in any sense. We simplify by specifying our twisted form X^T\widehat{X}\to T to get a scheme TwistX^=T×X^,BAut(X)Twist\text{Twist}\mathcal{M}_{\widehat{X}}=T\times_{\widehat{X},B\mathrm{Aut}(X)}\text{Twist}\mathcal{M} or by specifying the structure group GG.

Fixing the structure group GG requires X^=XGP\widehat{X}=X\wedge^{G}P for the specified sheaf of groups GG and some GG-torsor PP. These GG-twisted forms are parameterized by the pullback

TwistG{\text{Twist}\mathcal{M}^{G}}Twist{\text{Twist}\mathcal{M}}BG{BG}BAut(X).{B\mathrm{Aut}(X).}{\ulcorner}

The fibers of TwistGBG\text{Twist}\mathcal{M}^{G}\to BG over maps TBGT\to BG are again twisted forms of X\mathcal{M}_{X}. If X=𝔸kX=\mathbb{A}^{k} and X^\widehat{X} is a GG-twisted form, we may refer to the existence of sections of TwistX^\text{Twist}\mathcal{M}_{\widehat{X}} by saying S/SS^{\prime}/S is GG-twisted kk-genic, etc.

Remark 4.25.

Trivializing X^\widehat{X} is not the same as trivializing the torsor PP that induces X^\widehat{X} unless the group GG is Aut(X)\mathrm{Aut}(X) itself. For example, take the trivial action GXG\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>X.

Theorem 4.26.

The stack of twisted monogenerators Twist\text{Twist}\mathcal{M} is isomorphic to [X/Aut(X)]{\left[\mathcal{M}_{X}/\mathrm{Aut}(X)\right]} over BAut(X)B\mathrm{Aut}(X). More generally, for any sheaf of groups GXG\>\rotatebox[origin={c}]{-90.0}{$\circlearrowright$}\>X, we have an isomorphism TwistG[X/G]\text{Twist}\mathcal{M}^{G}\simeq{\left[\mathcal{M}_{X}/G\right]} over BGBG.

Proof.

Address the second, more general assertion and let TT be an SS-scheme. Write XTX×STX_{T}\coloneqq X\times_{S}T, TT×SST^{\prime}\coloneqq T\times_{S}S^{\prime}, etc. A TT-point of TwistG\text{Twist}\mathcal{M}^{G} is a GG-torsor PTP\to T and a solid diagram

P{P^{\prime}}XT×TP{X_{T}\times_{T}P}T{T^{\prime}}  XTTGP,{X_{T}\wedge^{G}_{T}P,}T{T}{\ulcorner}/Δ,G\scriptstyle{/\Delta,G}

with TXTTGPT^{\prime}\to X_{T}\wedge_{T}^{G}P a closed immersion. Form PP^{\prime} by pullback: PP^{\prime} is a left GG-torsor with an equivariant map to XT×TPX_{T}\times_{T}P with the diagonal action. The map PXT×TPP^{\prime}\to X_{T}\times_{T}P entails a pair of equivariant maps PPP^{\prime}\to P and PXTP^{\prime}\to X_{T}. The map PPP^{\prime}\to P over TT forces PP×TTP^{\prime}\simeq P\times_{T}T^{\prime}. These data form an equivariant map PXP\to\mathcal{M}_{X} over TT, or T[X/G]T\to{\left[\mathcal{M}_{X}/G\right]}. Reverse the process to finish the proof. ∎

To see this theorem in practice, we have the following example.

Definition 4.27.

The group sheaf AffkAut(𝔸k)\text{Aff}^{k}\subseteq\mathrm{Aut}(\mathbb{A}^{k}) of affine transformations is the set of functions

xMx+b\vec{x}\mapsto M\vec{x}+\vec{b}

where MGLkM\in\text{GL}_{k} and b𝔸k\vec{b}\in\mathbb{A}^{k}, under composition. Note Affk𝔸kGLk\text{Aff}^{k}\simeq\mathbb{A}^{k}\rtimes\text{GL}_{k}.

Example 4.28.

Let SS^{\prime} be the spectrum of a quadratic order such as [i]\mathbb{Z}[i], and take S=SpecS=\mathrm{Spec}\,\mathbb{Z}. The space of kk-generators is k,S/S=𝔸k×(𝔸k0)\mathcal{M}_{k,S^{\prime}/S}=\mathbb{A}^{k}\times(\mathbb{A}^{k}\setminus 0) according to [ABHS, Proposition 4.5]. Take the quotient by the groups of affine transformations:

[k,S/S/𝔸k𝔾m]=k1,[k,S/S/Affk]=[𝔸k/GLk]=[k1/PGLk].[\mathcal{M}_{k,S^{\prime}/S}/\mathbb{A}^{k}\rtimes\mathbb{G}_{m}]=\mathbb{P}^{k-1},\quad\quad\quad[\mathcal{M}_{k,S^{\prime}/S}/\text{Aff}^{k}]=[\mathbb{A}^{k}/\text{GL}_{k}]=[\mathbb{P}^{k-1}/\text{PGL}_{k}].

These quotients represent twisted monogenerators according to Theorem 4.26. The corresponding PGLk\text{PGL}_{k}-torsors were classically identified with Azumaya algebras and Severi-Brauer varieties (see the exposition in [Kol16]) or twisted forms of k1\mathbb{P}^{k-1}. These yield classes in the Brauer group H2(𝔾m)H^{2}(\mathbb{G}_{m}) via the connecting homomorphism from

1𝔾mGLkPGLk1.1\to\mathbb{G}_{m}\to\text{GL}_{k}\to\text{PGL}_{k}\to 1.

The same holds locally for any degree-two extension SSS^{\prime}\to S with SS integral using [ABHS, Proposition 4.5].

If GG is an abelian variety over a number field S=SpecKS=\mathrm{Spec}\,K, let PSP\to S be a GG-torsor inducing a twisted form X^\widehat{X} of XX. Given a twisted monogenerator θ:SX^\theta:S^{\prime}\subseteq\widehat{X}, one can try to promote θ\theta to a global monogenerator by trivializing PP and thus XX.

Suppose one is given trivializations of PP over the completions KνK_{\nu} at each place. Whether these glue to a global trivialization of PP over KK and thus a monogenerator SXS^{\prime}\subseteq X is governed by the Shafarevich-Tate group (G/K)\Sha(G/K).

Given a GG-twisted monogenerator with local trivializations, the Shafarevich-Tate group obstructs lifts of θ\theta to a global monogenerator the same way classes of line bundles in Pic obstruct 𝔾m\mathbb{G}_{m}-twisted monogenerators from being global monogenerators. Theorem 4.19 showed a converse—nontrivial elements of Pic imply twisted monogenerators that are not global monogenerators.

Question 4.29.

Is the same true for ? Does every element of the Shafarevich-Tate group arise this way?

The Shafarevich-Tate group approach is useless for G=𝔾mG=\mathbb{G}_{m} or GLn\text{GL}_{n} because of Hilbert’s Theorem 90 [Sta20, 03P8]:

Het1(SpecK,G)=HZar1(SpecK,G)=0.H^{1}_{et}(\mathrm{Spec}\,K,G)=H^{1}_{Zar}(\mathrm{Spec}\,K,G)=0.

The same goes for any “special” group with étale and Zariski cohomology identified. The strategy may work better for PGLn\text{PGL}_{n} or elliptic curves EE.

Remark 4.30.

This section defined GG-twisted monogenerators using covers in the étale topology, whereas Definition 4.1 used the Zariski topology. For G=𝔾mG=\mathbb{G}_{m} or Aff1\text{Aff}^{1}, either topology gives the same notion of twisted monogenerators. Observe that 𝔾m\mathbb{G}_{m} has the same Zariski and étale cohomology by Hilbert’s Theorem 90. The same is true for 𝔸1\mathbb{A}^{1} by [Sta20, 03P2] and so also Aff1=𝔾m𝔸1\text{Aff}^{1}=\mathbb{G}_{m}\ltimes\mathbb{A}^{1}.

5. Examples of the scheme of monogenerators

We conclude with several examples to further illustrate the interaction of the various forms of monogenicity considered in this paper. We will make frequent reference to computation of the index form using the techniques of the previous paper in this series. Some of these examples were already considered in the previous paper, but are revisited in order to add some commentary on their relationship to notions of local monogenicity.

5.1. Orders in number rings

Example 5.1 (Dedekind’s Non-Monogenic Cubic Field).

Let η\eta denote a root of the polynomial X3X22X8X^{3}-X^{2}-2X-8 and consider the field extension L(η)L\coloneqq\mathbb{Q}(\eta) over KK\coloneqq\mathbb{Q}. When Dedekind constructed this example [Ded78] it was the first example of a non-monogenic extension of number rings. Indeed two generators are necessary to generate L/K\mathbb{Z}_{L}/\mathbb{Z}_{K}: take η2\eta^{2} and η+η22\frac{\eta+\eta^{2}}{2}, for example. In fact, {1,η+η22,η2}\{1,\frac{\eta+\eta^{2}}{2},\eta^{2}\} is a \mathbb{Z}-basis for K\mathbb{Z}_{K}. The matrix of coefficients with respect to the basis {1,η+η22,η2}\{1,\frac{\eta+\eta^{2}}{2},\eta^{2}\} is

[1aa2+6b2+16bc+8c20b2ab+7b2+24bc+20c20c2b2+2ac8bc7c2].\begin{bmatrix}1&a&a^{2}+6b^{2}+16bc+8c^{2}\\ 0&b&2ab+7b^{2}+24bc+20c^{2}\\ 0&c&-2b^{2}+2ac-8bc-7c^{2}\end{bmatrix}.

Taking its determinant, the index form associated to this basis is

2b315b2c31bc220c3.-2b^{3}-15b^{2}c-31bc^{2}-20c^{3}.

Were the extension monogenic, we would be able to find a,b,ca,b,c\in\mathbb{Z} so that the index form above is equal to ±1\pm 1.

In fact, (η)/\mathbb{Z}_{\mathbb{Q}(\eta)}/\mathbb{Z} is not even locally monogenic. By Lemma 2.6, we may check by reducing at primes. Over the prime 22 the index form reduces to

b2c+bc2,b^{2}c+bc^{2},

and iterating through the four possible values of (b,c)(/2)2(b,c)\in(\mathbb{Z}/2\mathbb{Z})^{2} shows that the index form always to reduces to 0. That is, 22 is a common index divisor.

Dedekind showed that (η)/\mathbb{Z}_{\mathbb{Q}(\eta)}/\mathbb{Z} is non-monogenic, not by using an index form, but by deriving a contradiction from the L\mathbb{Z}_{L}-factorization of the ideal 2, which splits into three primes. In our terms, Spec(η)Spec\mathrm{Spec}\,\mathbb{Z}_{\mathbb{Q}(\eta)}\to\mathrm{Spec}\,\mathbb{Z} has three points over Spec𝔽2\mathrm{Spec}\,\mathbb{F}_{2}, all with residue field 𝔽2\mathbb{F}_{2}. Therefore, condition (2) of Theorem 1.10 for monogenicity at the prime (2)(2) fails, so SSS^{\prime}\to S is not monogenic.

With base extension, one can eventually resolve the obstructions presented by common index divisors. The following example illustrates a non-maximal order where we have a slightly different obstruction to monogenicity.

Example 5.2 (An order that fails to be monogenic over geometric points).

Consider the extension [2,3]\mathbb{Z}[\sqrt{2},\sqrt{3}] of \mathbb{Z}. (This is not the maximal order of (2,3)\mathbb{Q}(\sqrt{2},\sqrt{3}).) We recall from [ABHS, Example 4.13] that the index form with respect to the basis {1,2,3,6}\{1,\sqrt{2},\sqrt{3},\sqrt{6}\} is

=4(2b23c2)(b23d2)(c22d2).=-4(2b^{2}-3c^{2})(b^{2}-3d^{2})(c^{2}-2d^{2}).

By Proposition 2.10, SSS^{\prime}\to S fails to be monogenic, even over geometric points, since the index form reduces to 0 in the fiber over 2. In terms of Theorem 1.9, SSS^{\prime}\to S fails to be monogenic since the fiber over 22 consists of a single point with a two dimensional tangent space.

We can contrast the above examples with the following example where the obstruction to monogenicity is global as opposed to local.

Example 5.3 (A Zariski-locally monogenic, but not twisted-monogenic extension).

Here we take a closer look at one member of the family in Example 2.8. Let K=K=\mathbb{Q}, L=K(5273)L=K(\sqrt[3]{5^{2}\cdot 7}). The ring of integers L=[5273,5723]\mathbb{Z}_{L}=\mathbb{Z}[\sqrt[3]{5^{2}\cdot 7},\sqrt[3]{5\cdot 7^{2}}] is not monogenic over \mathbb{Z}. Let α=5273\alpha=\sqrt[3]{5^{2}\cdot 7}, β=5723\beta=\sqrt[3]{5\cdot 7^{2}}. We recall from [ABHS, Example 4.14] that {1,α,β}\{1,\alpha,\beta\} is a \mathbb{Z}-basis for L\mathbb{Z}_{L} and the associated index form is 5b37c35b^{3}-7c^{3}. Thus, for a given choice of a,b,ca,b,c\in\mathbb{Z}, the primes which divide the value 5b37c35b^{3}-7c^{3} are precisely the primes at which a+bα+cβa+b\alpha+c\beta will fail to generate the extension.

The values obtained by this index form are {0,±5}\{0,\pm 5\} modulo 77. Since 5 is a unit in /7\mathbb{Z}/7\mathbb{Z}, we do have local monogenerators over D(7)D(7). Similarly, we have local monogenerators over D(5)D(5). Together, D(5)D(5) and D(7)D(7) form an open cover, and we see that this extension is Zariski-locally monogenic. However, as we can see by reducing modulo 7, the index form cannot be equal to ±1\pm 1. Therefore there are no global monogenerators and L/\mathbb{Z}_{L}/\mathbb{Z} is not monogenic: in the language of [ABS20], L/\mathbb{Z}_{L}/\mathbb{Z} has a local obstruction to monogenicity, despite being locally monogenic.

This is not a 𝔾m\mathbb{G}_{m}-twisted monogenic extension by Theorem 4.19, because h()=1h(\mathbb{Z})=1 and this extension is not globally monogenic. See Example 4.21 for a properly 𝔾m\mathbb{G}_{m}-twisted monogenic extension and a comparison to the example presented here.

5.2. Maps of curves

One benefit of our more geometric notion of monogenicity is it allows us readily ask questions about monogenicity in classical geometric situations with the same language that we use in the arithmetic context. Our next examples concern the case that SSS^{\prime}\to S is a finite map of algebraic curves, which is essentially never monogenic. On the other hand, we find explicit examples of 𝔾m\mathbb{G}_{m}-twisted monogenic SSS^{\prime}\to S. Theorem 4.15 constrains the possible line bundles that we may use to show 𝔾m\mathbb{G}_{m}-twisted monogenicity. We make this precise in the lemma below.

Lemma 5.4.

Let π:CD\pi:C\to D be a finite map of smooth projective curves of degree nn and let gg denote the genus.

  1. (1)

    π\pi is only monogenic if it is the identity map;

  2. (2)

    If π\pi is 𝔾m\mathbb{G}_{m}-twisted monogenic, then 1g(C)n(1g(D))1-g(C)-n(1-g(D)) is divisible by 12n(n1)\frac{1}{2}n(n-1) in \mathbb{Z}. Moreover, if π\pi factors through a closed embedding into a line bundle EE with sheaf of sections \mathcal{E}, then

    deg()=1g(C)n(1g(D))12n(n1).\deg(\mathcal{E})=-\frac{1-g(C)-n(1-g(D))}{\frac{1}{2}n(n-1)}.
Proof.

To see (1), note that a map f:C𝔸D1f:C\to\mathbb{A}^{1}_{D} is determined by a global section of 𝒪C\mathcal{O}_{C}. Since CC is a proper variety, the global sections of 𝒪C\mathcal{O}_{C} are constant functions. It follows that a map f:C𝔸D1f:C\to\mathbb{A}^{1}_{D} is constant on fibers of π\pi. Therefore ff cannot be an immersion unless π\pi has degree 1, i.e., is the identity.

Suppose π:CD\pi:C\to D is 𝔾m\mathbb{G}_{m}-twisted monogenic with an embedding into a line bundle EE. By [Sta20, 0AYQ] and Riemann-Roch,

deg(det(π𝒪C))=1g(C)n(1g(D)).\deg(\det(\pi_{*}\mathcal{O}_{C}))=1-g(C)-n(1-g(D)).

By Theorem 4.15,

det(π𝒪S)n(n1)2\det(\pi_{*}\mathcal{O}_{S^{\prime}})\simeq\mathcal{E}^{-\frac{n(n-1)}{2}}

where \mathcal{E} is the sheaf of sections of EE. Taking degrees of both sides,

1g(C)n(1g(D))=deg()n(n1)2.1-g(C)-n(1-g(D))=-\deg(\mathcal{E})\cdot\frac{n(n-1)}{2}.

This shows (2). ∎

First, we will investigate one of the most basic families of maps of curves.

Example 5.5 (Maps 11\mathbb{P}^{1}\to\mathbb{P}^{1}).

Let kk be an algebraically closed field and let π:k1k1\pi:\mathbb{P}^{1}_{k}\to\mathbb{P}^{1}_{k} be a finite map of degree nn. If n=1n=1, then π\pi is trivially monogenic. When n=2n=2, Lemma 5.4 tells us that π\pi cannot be monogenic, while Lemma 4.18 tells us that π\pi is Aff1\text{Aff}^{1}-twisted monogenic. Lemma 5.4 tells us that for degrees n>2n>2 the map π\pi is neither monogenic nor 𝔾m\mathbb{G}_{m}-twisted monogenic, although Theorems 2.1 and 1.10 tell us that π\pi is Zariski-locally monogenic.

Working with \mathbb{Z} instead of an algebraically closed field, consider the map π:S=1S=1\pi:S^{\prime}=\mathbb{P}^{1}_{\mathbb{Z}}\to S=\mathbb{P}^{1}_{\mathbb{Z}} given by [a:b][a2:b2][a:b]\mapsto[a^{2}:b^{2}]. We will show by direct computation that this map is 𝔾m\mathbb{G}_{m}-twisted monogenic. Write U=Spec[x]U=\mathrm{Spec}\,\mathbb{Z}[x] and V=Spec[y]V=\mathrm{Spec}\,\mathbb{Z}[y] for the standard affine charts of the target 1\mathbb{P}^{1}. The map π\pi is then given on charts by

[x]\displaystyle\mathbb{Z}[x]\to [a]\displaystyle\mathbb{Z}[a]
x\displaystyle x\mapsto a2\displaystyle\,a^{2}

and

[y]\displaystyle\mathbb{Z}[y]\to [b]\displaystyle\mathbb{Z}[b]
y\displaystyle y\mapsto b2.\displaystyle\,b^{2}.

Let us compute 1,S/S\mathcal{M}_{1,S^{\prime}/S}. Over UU, π𝒪1\pi_{*}\mathcal{O}_{\mathbb{P}^{1}} has [x]\mathbb{Z}[x]-basis {1,a}\{1,a\}. Let c1,c2c_{1},c_{2} be the coordinates of |𝒰=𝔸2\cal R|_{U}=\mathbb{A}^{2}, with universal map

[c1,c2,t][c1,c2,a],tc1+c2a.\mathbb{Z}[c_{1},c_{2},t]\to\mathbb{Z}[c_{1},c_{2},a],\quad\quad\quad t\mapsto c_{1}+c_{2}a.

The index form associated to this basis is

𝒾(c1,c2)=c2.{\mathcal{i}}(c_{1},c_{2})=c_{2}.

Similarly, π𝒪1\pi_{*}\mathcal{O}_{\mathbb{P}^{1}} has [y]\mathbb{Z}[y]-basis {1,b}\{1,b\}, |𝒱\cal R|_{V} analogous coordinates d1,d2d_{1},d_{2}, and the index form associated to this basis is

𝒾(d1,d2)=d2.{\mathcal{i}}(d_{1},d_{2})=d_{2}.

An element of [x]\mathbb{Z}[x] (resp. [y]\mathbb{Z}[y]) is a unit if and only if it is ±1\pm 1, so

S/S(U)\displaystyle\mathcal{M}_{S^{\prime}/S}(U) ={c1±ac1[x]}\displaystyle=\{c_{1}\pm a\mid c_{1}\in\mathbb{Z}[x]\}
S/S(V)\displaystyle\mathcal{M}_{S^{\prime}/S}(V) ={d1±bd1[y]}.\displaystyle=\{d_{1}\pm b\mid d_{1}\in\mathbb{Z}[y]\}.

We can see directly that π\pi is not monogenic: the condition that a monogenerator c1±ac_{1}\pm a on UU glue with a monogenerator d1±bd_{1}\pm b on VV is that

(c1±a)|UV=(d1±b)|UV.(c_{1}\pm a)|_{U\cap V}=(d_{1}\pm b)|_{U\cap V}.

But this is impossible to satisfy since a|UV=b|UV1a|_{U\cap V}=b|_{U\cap V}^{-1}.

Lemma 5.4 tells us that if SSS^{\prime}\to S is twisted monogenic, the line bundle into which SS^{\prime} embeds must have degree 1. Let us therefore attempt to embed SS^{\prime} into the line bundle with sheaf of sections 𝒪1(1)\mathcal{O}_{\mathbb{P}^{1}}(1). The sheaf 𝒪1(1)\mathcal{O}_{\mathbb{P}^{1}}(1) restricts to the trivial line bundle on both UU and VV, and a section f𝒪Uf\in\mathcal{O}_{U} glues to a section g𝒪Vg\in\mathcal{O}_{V} if

yf|UV=g|UV.y\cdot f|_{U\cap V}=g|_{U\cap V}.

Embedding SS^{\prime} into this line bundle is therefore equivalent to finding a monogenerator c1±ac_{1}\pm a on UU, and a monogenerator d1±bd_{1}\pm b on VV such that

y((c1±a)|UV)=(d1±b)|UV.y\big{(}(c_{1}\pm a)|_{U\cap V}\big{)}=(d_{1}\pm b)|_{U\cap V}.

Bearing in mind that y=b2=a2y=b^{2}=a^{-2} on UVU\cap V, we find a solution by taking positive signs, c1=0c_{1}=0, and d1=0d_{1}=0. Therefore π:11\pi:\mathbb{P}^{1}_{\mathbb{Z}}\to\mathbb{P}^{1}_{\mathbb{Z}} is twisted monogenic.

Lemma 5.4 tells us that we must pass to higher genus to find a 𝔾m\mathbb{G}_{m}-twisted monogenic cover of 1\mathbb{P}^{1} of degree greater than 22. Here is an example where the source is an elliptic curve.

Example 5.6 (Twisted monogenic cover of degree 3).

Let EE be the Fermat elliptic curve V(x3+y3z3)2V(x^{3}+y^{3}-z^{3})\subset\mathbb{P}^{2}_{\mathbb{Z}}. Consider the projection from [0:0:1][0:0:1], i.e., the map π:E1\pi:E\to\mathbb{P}^{1} defined by [x:y:z][x:y][x:y:z]\mapsto[x:y]. Write U=Spec[x]U=\mathrm{Spec}\,\mathbb{Z}[x] and V=Spec[y]V=\mathrm{Spec}\,\mathbb{Z}[y] for the standard affine charts of 1\mathbb{P}^{1}. The map is given on charts by [x][x,z]/(x3+1z3)\mathbb{Z}[x]\to\mathbb{Z}[x,z]/(x^{3}+1-z^{3}) and [y][y,yz]/(1+y3(yz)3)\mathbb{Z}[y]\to\mathbb{Z}[y,yz]/(1+y^{3}-(yz)^{3}). The gluing on overlaps is given by xy1x\mapsto y^{-1} on 1\mathbb{P}^{1} and by xy1,zzx\mapsto y^{-1},z\mapsto z on EE.

We now compute E/1\mathcal{M}_{E/\mathbb{P}^{1}}. Note that over UU, 𝒪E\mathcal{O}_{E} has the [x]\mathbb{Z}[x]-basis 1,z,z21,z,z^{2}. The index form associated to 1,z,z21,z,z^{2} is

𝒾(c1,c2,c3)=c23c33(x3+1).{\mathcal{i}}(c_{1},c_{2},c_{3})=c_{2}^{3}-c_{3}^{3}(x^{3}+1).

Over VV, 𝒪E\mathcal{O}_{E} has the [x]\mathbb{Z}[x]-basis 1,yz,y2z21,yz,y^{2}z^{2}. The index form associated to this basis is

𝒾(d1,d2,d3)=d23d33(y3+1).{\mathcal{i}}(d_{1},d_{2},d_{3})=d_{2}^{3}-d_{3}^{3}(y^{3}+1).

An element of [x]\mathbb{Z}[x] or [y]\mathbb{Z}[y] is a unit if and only if it is ±1\pm 1. This implies that

S/S(U)\displaystyle\mathcal{M}_{S^{\prime}/S}(U) ={c1±zc1[x]}\displaystyle=\{c_{1}\pm z\mid c_{1}\in\mathbb{Z}[x]\}
S/S(V)\displaystyle\mathcal{M}_{S^{\prime}/S}(V) ={d1±yzd1[y]}.\displaystyle=\{d_{1}\pm yz\mid d_{1}\in\mathbb{Z}[y]\}.

We see that there are no global sections of S/S\mathcal{M}_{S^{\prime}/S}, since coefficients of zz cannot match on overlaps.

However, if we twist so that we are considering embeddings of EE into 𝒪1(1)\mathcal{O}_{\mathbb{P}^{1}}(1), then the condition for a monogenerator c1±zc_{1}\pm z on UU to glue with a monogenerator d1±yzd_{1}\pm yz on VV is that

y((c1±z)|UV)=(d1±yz)|UV.y\big{(}(c_{1}\pm z)|_{U\cap V}\big{)}=(d_{1}\pm yz)|_{U\cap V}.

This is satisfied, for example by taking the positive sign for both generators and c1=d1=0c_{1}=d_{1}=0. Therefore E1E\to\mathbb{P}^{1} is twisted monogenic with class 1Pic(1)1\in\text{Pic}(\mathbb{P}^{1}_{\mathbb{Z}}).

References

  • [ABHS] Sarah Arpin, Sebastian Bozlee, Leo Herr, and Hanson Smith, The scheme of monogenic generators i: Representability.
  • [ABS20] Levent Alpöge, Manjul Bhargava, and Ari Shnidman, A positive proportion of cubic fields are not monogenic yet have no local obstruction to being so, 2020.
  • [ABS21] by same author, A positive proportion of quartic fields are not monogenic yet have no local obstruction to being so, 2021.
  • [ACMW14] Dan Abramovich, Qile Chen, Steffen Marcus, and Jonathan Wise, Boundedness of the space of stable logarithmic maps, Journal of the European Mathematical Society 19 (2014).
  • [Art11] M. Artin, Algebra, Pearson Prentice Hall, 2011.
  • [BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, Computational algebra and number theory (London, 1993). MR MR1484478
  • [Bre06] Lawrence Breen, Notes on 1- and 2-gerbes, arXiv Mathematics e-prints (2006), math/0611317.
  • [Cob10] Alessandro Cobbe, Steinitz classes of tamely ramified Galois extensions of algebraic number fields, J. Number Theory 130 (2010), no. 5, 1129–1154. MR 2607305
  • [Cos06] Kevin Costello, Higher genus Gromov-Witten invariants as genus zero invariants of symmetric products., Ann. Math. (2) 164 (2006), no. 2, 561–601 (English).
  • [Ded78] Richard Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Gött. Abhandlungen (1878), 1–23.
  • [DH84] Tom Duchamp and Richard Hain, Primitive elements in rings of holomorphic functions, Journal für die reine und angewandte Mathematik 346 (1984), 199–220.
  • [Dup13] Taylor Dupuy, Automorphisms of the Affine Line over Nonreduced Rings, arXiv e-prints (2013), arXiv:1311.0973.
  • [EG17] Jan-Hendrik Evertse and Kálmán Győry, Discriminant equations in Diophantine number theory, New Mathematical Monographs, vol. 32, Cambridge University Press, Cambridge, 2017. MR 3586280
  • [ESZ21] Jordan S. Ellenberg, Matthew Satriano, and David Zureick-Brown, Heights on stacks and a generalized Batyrev-Manin-Malle conjecture, arXiv e-prints (2021), arXiv:2106.11340.
  • [Fur12] Hidekazu Furusho, Galois action on knots i: Action of the absolute galois group, Quantum Topology 8 (2012).
  • [GL69] E. A. Gorin and V. Ja. Lin, Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids, Math. USSR-Sbornik 7 (1969), 569–596.
  • [Han79] V. L. Hansen, Polynomial covering spaces and homomorphisms into the braid groups, Pacific J. Math. 81 (1979), 399–410.
  • [Han80] by same author, Coverings defined by weierstrass polynomials, J. reine angew. Math. 314 (1980), 29–39.
  • [Hen94] K. Hensel, Arithmetische Untersuchungen über die gemeinsamen ausserwesentlichen Discriminantentheiler einer Gattung, J. Reine Angew. Math. 113 (1894), 128–160. MR 1580350
  • [Hera] Leo Herr, If the normalization is affine, is it affine? (if quasiaffine), MathOverflow, version: 2020-11-30.
  • [Herb] by same author, When is a twisted form coming from a torsor trivial?, MathOverflow, version: 2020-09-06.
  • [HW21] Leo Herr and Jonathan Wise, Costello’s pushforward formula: errata and generalization, arXiv e-prints (2021), arXiv:2103.10348.
  • [JLM+17] Lena Ji, Shizhang Li, Patrick McFaddin, Drew D. Moore, and Matthew Stevenson, Weil restriction for schemes and beyond, 2017.
  • [Kol16] János Kollár, Severi-Brauer varieties; a geometric treatment, arXiv e-prints (2016), arXiv:1606.04368.
  • [LMF21] The LMFDB Collaboration, The L-functions and modular forms database, http://www.lmfdb.org, 2021, [Online; accessed 15 July 2021].
  • [Lø80] K. Lønsted, On the embedding of coverings into 1-dimensional bundles, J. reine angew. Math. 317 (1980), 88–101.
  • [Man58] Henry B. Mann, On integral bases, Proc. Amer. Math. Soc. 9 (1958), 167–172. MR 93502
  • [McC66] Leon R. McCulloh, Cyclic extensions without relative integral bases, Proc. Amer. Math. Soc. 17 (1966), 1191–1194. MR 225760
  • [MRB89] H. Matsumura, M. Reid, and B. Bollobas, Commutative ring theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
  • [Nar04] Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, third ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. MR 2078267
  • [Neu99] Jürgen Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999, Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder. MR 1697859
  • [Ols16] Martin Olsson, Algebraic spaces and stacks, American Mathematical Society Colloquium Publications, vol. 62, American Mathematical Society, Providence, RI, 2016. MR 3495343
  • [Ple74] P. A. B. Pleasants, The number of generators of the integers of a number field, Mathematika 21 (1974), 160–167. MR 382237
  • [Poo06] Bjorn Poonen, The moduli space of commutative algebras of finite rank, Journal of the European Mathematical Society 10 (2006).
  • [Poo17] Bjorn Poonen, Rational points on varieties, American Mathematical Society, 2017.
  • [Ser79] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979, Translated from the French by Marvin Jay Greenberg. MR 554237
  • [Ser06] E. Sernesi, Deformations of algebraic schemes, Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelburg, 2006.
  • [Sta20] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2020.
  • [The19] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 8.7), 2019, https://www.sagemath.org.
  • [Voj04] Paul Vojta, Jets via Hasse-Schmidt Derivations, arXiv Mathematics e-prints (2004), math/0407113.
  • [Wes11] Craig Westerland, Configuration spaces in topology and geometry, Austral. Math. Soc. Gaz. 38 (2011), no. 5, 279–283. MR 2896208