This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Riemann problem for a generalised Burgers equation with spatially decaying sound speed. II General qualitative theory

J. C. Meyer and D. J. Needham
Abstract

We establish that the initial value problem for a generalised Burgers equation considered in part I of this paper, [3], is well-posed. We also establish several qualitative properties of solutions to the initial value problem utilised in [3].

MSC2020: 35K58, 35K15, 35A01, 35A02.

Keywords: Burgers equation, Cauchy problem, well-posed, classical solution.

1 Introduction

In this paper, we establish that the initial value problem for the generalised Burgers equation considered in [3], is well-posed (specifically, see Theorem 2.1). To establish the existence result, we adopt the approach used in [5], and note, that related standard existence results for classical solutions in [1], and similar sources, cannot be applied due to insufficient regularity of solutions to the initial value problem as t0+t\to 0^{+}. The approach is centered on establishing sufficient regularity on solutions to an implicit integral equation, to establish that they are equivalent to classical solutions to the initial value problem. We subsequently establish uniqueness and continuous dependence results for solutions to the initial value problem, via maximum principles in [2], and, the Grönwall inequality in [4], respectively.

1.1 The Initial Value Problem

Let T>0T>0, DT={(x,t)×(0,T]}D_{T}=\{(x,t)\in\mathbb{R}\times(0,T]\} and D=D¯TDT\partial D=\bar{D}_{T}\setminus D_{T}. We consider the Cauchy problem for u:DTu:D_{T}\to\mathbb{R} given by:

uL(DT)C2,1(DT);\displaystyle u\in L^{\infty}(D_{T})\cap C^{2,1}(D_{T}); (1.1)
utuxx+hα(x)uux=0 on DT;\displaystyle u_{t}-u_{xx}+h_{\alpha}(x)uu_{x}=0\quad\text{ on }D_{T}; (1.2)
hα(x)=1(1+x2)αx;\displaystyle h_{\alpha}(x)=\frac{1}{(1+x^{2})^{\alpha}}\quad\forall\ x\in\mathbb{R}; (1.3)
u(x,t)=u0(s)4πte(xs)24t𝑑s+O(t) uniformly for x as t0+.\displaystyle u(x,t)=\int_{-\infty}^{\infty}\frac{u_{0}(s)}{\sqrt{4\pi t}}e^{-\frac{(x-s)^{2}}{4t}}ds+O(t)\text{ uniformly for }x\in\mathbb{R}\text{ as }t\to 0^{+}. (1.4)

Here α+\alpha\in\mathbb{R}^{+} and u0:u_{0}:\mathbb{R}\to\mathbb{R} is the prescribed initial data, which is Lebesgue measurable, with u0L()u_{0}\in L^{\infty}(\mathbb{R}). We denote the Cauchy problem given by (1.1)-(1.4) as [IVP]. It should be noted that, via (1.4), at each point xx\in\mathbb{R} at which u0u_{0} is continuous, then u(x,t)u0(x)u(x,t)\to u_{0}(x) as t0+t\to 0^{+}. Moreover, when u0u_{0} is continuous for x[x1,x2]x\in[x_{1},x_{2}], then u(x,t)u0(x)u(x,t)\to u_{0}(x) uniformly for x[x1,x2]x\in[x_{1},x_{2}]. We later consider the specific case of [IVP] with u0:u_{0}:\mathbb{R}\to\mathbb{R} given by,

u0(x)={u+,x>0,u,x0;u_{0}(x)=\begin{cases}u^{+},&x>0,\\ u^{-},&x\leq 0;\end{cases} (1.5)

for u+,uu^{+},u^{-}\in\mathbb{R}. For initial data given by (1.5), observe that we can replace (1.4) with u:D¯Tu:\bar{D}_{T}\to\mathbb{R}, u=u0u=u_{0} on D\partial D, and uC(D¯T{(0,0)})u\in C(\bar{D}_{T}\setminus\{(0,0)\}).

2 Qualitative Properties of [IVP]

We introduce the fundamental solution to the heat equation on DTD_{T}, as G:𝒳TG:\mathcal{X}_{T}\to\mathbb{R}, given by

G(x,t;s,τ)=14π(tτ)e(xs)24(tτ)(x,t;s,τ)𝒳TG(x,t;s,\tau)=\frac{1}{\sqrt{4\pi(t-\tau)}}e^{-\frac{(x-s)^{2}}{4(t-\tau)}}\quad\forall\ (x,t;s,\tau)\in\mathcal{X}_{T} (2.1)

with 𝒳T={(x,t;s,τ):(x,t)DT,(s,τ)D¯T,τ<t}\mathcal{X}_{T}=\{(x,t;s,\tau):(x,t)\in D_{T},\ (s,\tau)\in\bar{D}_{T},\ \tau<t\}. Properties of GG which are used to establish the existence of solutions to [IVP] are given in Appendix A.

To establish global existence and uniqueness of solutions to [IVP], and local well-posedness in time, we consider an alternative to [IVP]. By applying a Duhamel principle, it follows that if u:DTu:D_{T}\to\mathbb{R} is a solution to [IVP] then

u(x,t)=u0(s)G(x,t;s,0)𝑑s\displaystyle u(x,t)=\int_{-\infty}^{\infty}u_{0}(s)G(x,t;s,0)ds
+0tu2(s,τ)2(G(x,t;s,τ)hα(s)\displaystyle\quad\quad\quad\quad+\int_{0}^{t}\int_{-\infty}^{\infty}\frac{u^{2}(s,\tau)}{2}\left(G(x,t;s,\tau)h_{\alpha}^{\prime}(s)\right.
+Gs(x,t;s,τ)hα(s))dsdτ(x,t)DT,\displaystyle\left.\quad\quad\quad\quad\quad\quad\quad\quad\quad+G_{s}(x,t;s,\tau)h_{\alpha}(s)\right)dsd\tau\quad\forall(x,t)\in D_{T}, (2.2)
uC(DT)L(DT).\displaystyle u\in C(D_{T})\cap L^{\infty}(D_{T}). (2.3)

We will now demonstrate that there exists a local solution to (2.2) and (2.3). The existence and regularity results for solutions to (2.2) and (2.3), follow a similar approach to that developed in [5]. To begin, we have

Proposition 2.1.

The problem given by (2.2) and (2.3) has a solution u:DTu:D_{T^{*}}\to\mathbb{R} with

T=T(u0,α)=\displaystyle T^{*}=T(||u_{0}||_{\infty},\alpha)= min{1,((||u0||+1)2(hα2+1π))2,\displaystyle\min\left\{1,\ \left((||u_{0}||_{\infty}+1)^{2}\left(\frac{||h_{\alpha}^{\prime}||_{\infty}}{2}+\frac{1}{\sqrt{\pi}}\right)\right)^{-2},\ \right.
(4(||u0||+1)(hα2+1π))2}.\displaystyle\quad\quad\quad\quad\left.\left(4(||u_{0}||_{\infty}+1)\left(\frac{||h_{\alpha}^{\prime}||_{\infty}}{2}+\frac{1}{\sqrt{\pi}}\right)\right)^{-2}\right\}. (2.4)

In addition, uu satisfies uu0+1||u||_{\infty}\leq||u_{0}||_{\infty}+1.

Proof.

Consider the set 𝒮\mathcal{S} of functions v:DTv:D_{T^{*}}\to\mathbb{R} which satisfy (2.3) on DTD_{T^{*}} and are such that

vu0+1.||v||_{\infty}\leq||u_{0}||_{\infty}+1. (2.5)

Next, consider the mapping M:𝒮(DT)M:\mathcal{S}\to\mathbb{R}(D_{T^{*}}) given by M[v]M[v] for v𝒮v\in\mathcal{S} where

M[v](x,t)\displaystyle M[v](x,t) =u0(s)G(x,t;s,0)𝑑s\displaystyle=\int_{-\infty}^{\infty}u_{0}(s)G(x,t;s,0)ds
+0tv2(s,τ)2(G(x,t;s,τ)hα(s)+Gs(x,t;s,τ)hα(s))𝑑s𝑑τ\displaystyle\quad+\int_{0}^{t}\int_{-\infty}^{\infty}\frac{v^{2}(s,\tau)}{2}\left(G(x,t;s,\tau)h_{\alpha}^{\prime}(s)+G_{s}(x,t;s,\tau)h_{\alpha}(s)\right)dsd\tau (2.6)

for all (x,t)DT(x,t)\in D_{T^{*}}. Observe that the first term in the right hand side of (2.6) is the solution to the heat equation with measurable initial data u0L()u_{0}\in L^{\infty}(\mathbb{R}), and in particular, is contained in C2,1(DT)L(DT)C^{2,1}(D_{T^{*}})\cap L^{\infty}(D_{T^{*}}), with bound u0||u_{0}||_{\infty} on DTD_{T^{*}}. Also, using (A.1) and (A.2), it follows that the integrand of the second term on the right hand side of (2.6) is absolutely integrable, and hence the integral is well-defined, and bounded on DTD_{T^{*}}, for each v𝒮v\in\mathcal{S}. Moreover, via (A.5), (A.6), (A.8) and (A.9), it follows that the second term in the right hand side of (2.6) is continuous on DTD_{T^{*}} for each v𝒮v\in\mathcal{S}. Furthermore, for each v𝒮v\in\mathcal{S}, and all (x,t)DT(x,t)\in D_{T^{*}}, observe, via (A.1) and (A.2), that

|0tv2(s,τ)2(G(x,t;s,τ)hα(s)+Gs(x,t;s,τ)hα(s))𝑑s𝑑τ|\displaystyle\left|\int_{0}^{t}\int_{-\infty}^{\infty}\frac{v^{2}(s,\tau)}{2}\left(G(x,t;s,\tau)h_{\alpha}^{\prime}(s)+G_{s}(x,t;s,\tau)h_{\alpha}(s)\right)dsd\tau\right|
v220t(hαG(x,t;s,τ)+hα|Gs(x,t;s,τ)|)𝑑s𝑑τ\displaystyle\quad\leq\frac{||v||_{\infty}^{2}}{2}\int_{0}^{t}\int_{-\infty}^{\infty}\left(||h_{\alpha}^{\prime}||_{\infty}G(x,t;s,\tau)+||h_{\alpha}||_{\infty}|G_{s}(x,t;s,\tau)|\right)dsd\tau
v2(hα2t+1π)t\displaystyle\quad\leq||v||_{\infty}^{2}\left(\frac{||h_{\alpha}^{\prime}||_{\infty}}{2}\sqrt{t}+\frac{1}{\sqrt{\pi}}\right)\sqrt{t}
1.\displaystyle\quad\leq 1. (2.7)

Consequently it follows from (2.5)-(2.7) that M:𝒮𝒮M:\mathcal{S}\to\mathcal{S}. Now for v1,v2𝒮v_{1},v_{2}\in\mathcal{S} we have

|M[v1](x,t)M[v2](x,t)|\displaystyle|M[v_{1}](x,t)-M[v_{2}](x,t)|
0t|v12(s,τ)v22(s,τ)|2|G(x,t;s,τ)hα(s)+Gs(x,t;s,τ)hα(s)|𝑑s𝑑τ\displaystyle\quad\leq\int_{0}^{t}\int_{-\infty}^{\infty}\frac{|v_{1}^{2}(s,\tau)-v_{2}^{2}(s,\tau)|}{2}\left|G(x,t;s,\tau)h_{\alpha}^{\prime}(s)+G_{s}(x,t;s,\tau)h_{\alpha}(s)\right|dsd\tau
(v1+v2)(hα2t+1π)tv1v2\displaystyle\quad\leq(||v_{1}||_{\infty}+||v_{2}||_{\infty})\left(\frac{||h_{\alpha}^{\prime}||_{\infty}}{2}\sqrt{t}+\frac{1}{\sqrt{\pi}}\right)\sqrt{t}||v_{1}-v_{2}||_{\infty} (2.8)

for all (x,t)DT(x,t)\in D_{T^{*}}, again using (A.1) and (A.2). It follows from (2.8) and (2.4) that

M[v1]M[v2]12v1v2||M[v_{1}]-M[v_{2}]||_{\infty}\leq\frac{1}{2}||v_{1}-v_{2}||_{\infty} (2.9)

for all v1,v2𝒮v_{1},v_{2}\in\mathcal{S}, and hence, MM is a contraction mapping. Since the metric space (𝒮,||||)(\mathcal{S},||\cdot||_{\infty}) is complete, it follows that there exists u𝒮u^{*}\in\mathcal{S} such that u=M(u)u^{*}=M(u^{*}), i.e. u:DTu^{*}:D_{T^{*}}\to\mathbb{R} is a solution to (2.2) and (2.3), as required. ∎

We now establish that the solution u:DTu:D_{T^{*}}\to\mathbb{R} to (2.2) and (2.3) given in Proposition 2.1 is twice (once) continuously differentiable with repsect to xx (tt), and hence, is a local solution to [IVP]. To begin, for a solution u:DTu:D_{T^{*}}\to\mathbb{R} to (2.2) and (2.3), we define the sequence of functions un:DTu_{n}:D_{T^{*}}\to\mathbb{R} to be

un(x,t)\displaystyle u_{n}(x,t) =u0(s)G(x,t;s,0)𝑑s\displaystyle=\int_{-\infty}^{\infty}u_{0}(s)G(x,t;s,0)ds
+0tnu2(s,τ)2(G(x,t;s,τ)hα(s)+Gs(x,t;s,τ)hα(s))𝑑s𝑑τ,\displaystyle\quad+\int_{0}^{t_{n}}\int_{-\infty}^{\infty}\frac{u^{2}(s,\tau)}{2}\left(G(x,t;s,\tau)h_{\alpha}^{\prime}(s)+G_{s}(x,t;s,\tau)h_{\alpha}(s)\right)dsd\tau, (2.10)

for all (x,t)DT(x,t)\in D_{T^{*}} and nn\in\mathbb{N} with tn=tt/2nt_{n}=t-t/{2n}. Observe that for each nn\in\mathbb{N}, we have unC(DT)L(DT)u_{n}\in C(D_{T^{*}})\cap L^{\infty}(D_{T^{*}}), via (A.5), (A.6), (A.8) and (A.9). Moreover, as nn\to\infty, unu_{n} converges to uu uniformly on compact subsets of DTD_{T^{*}}. Next we have

Proposition 2.2.

For each β(0,1)\beta\in(0,1), there exists a constant111Throughout the paper, we denote constants by c(,,)c(\cdot,\ldots,\cdot), which can change line-by-line, but nonetheless depend only on the quantities listed in brackets. cc such that the solution u:DTu:D_{T^{*}}\to\mathbb{R} to (2.2) and (2.3) given in Proposition (2.1) satisfies

|u(x1,t)u(x2,t)|c(u0,α,β)(|x1x2|t)β|u(x_{1},t)-u(x_{2},t)|\leq c(||u_{0}||_{\infty},\alpha,\beta)\left(\frac{|x_{1}-x_{2}|}{\sqrt{t}}\right)^{\beta} (2.11)

for all (x1,t),(x2,t)DT(x_{1},t),(x_{2},t)\in D_{T^{*}}.

Proof.

Let u:DTu:D_{T^{*}}\to\mathbb{R} be the solution to (2.2) and (2.3) given by Proposition 2.1. Then via (A.5), for each β(0,1)\beta\in(0,1), it follows that

|u0(s)(G(x1,t;s,0)G(x2,t;s,0))𝑑s|u0c(β)(|x1x2|t)β\left|\int_{-\infty}^{\infty}u_{0}(s)(G(x_{1},t;s,0)-G(x_{2},t;s,0))ds\right|\leq||u_{0}||_{\infty}c(\beta)\left(\frac{|x_{1}-x_{2}|}{\sqrt{t}}\right)^{\beta} (2.12)

for all (x1,t),(x2,t)DT(x_{1},t),(x_{2},t)\in D_{T^{*}}. Moreover, it follows from (A.5), (A.6) and (2.4) that

|0tu2(s,τ)2[(G(x1,t;s,τ)G(x2,t;s,τ))hα(s)\displaystyle\bigg{|}\int_{0}^{t}\int_{-\infty}^{\infty}\frac{u^{2}(s,\tau)}{2}[(G(x_{1},t;s,\tau)-G(x_{2},t;s,\tau))h_{\alpha}^{\prime}(s)
+(Gs(x1,t;s,τ)Gs(x2,t;s,τ))hα(s)]dsdτ|\displaystyle\quad\quad\quad\quad+(G_{s}(x_{1},t;s,\tau)-G_{s}(x_{2},t;s,\tau))h_{\alpha}(s)]dsd\tau\bigg{|}
(u0+1)220t(hαc(β)(|x1x2|tτ)β+c(β)(|x1x2|tτ)β1tτ)𝑑τ\displaystyle\quad\leq\frac{(||u_{0}||_{\infty}+1)^{2}}{2}\int_{0}^{t}\left(||h_{\alpha}^{\prime}||_{\infty}c(\beta)\left(\frac{|x_{1}-x_{2}|}{\sqrt{t-\tau}}\right)^{\beta}+c(\beta)\left(\frac{|x_{1}-x_{2}|}{\sqrt{t-\tau}}\right)^{\beta}\frac{1}{\sqrt{t-\tau}}\right)d\tau
c(u0,α,β)|x1x2|βT(1β)/2\displaystyle\quad\leq c(||u_{0}||_{\infty},\alpha,\beta)|x_{1}-x_{2}|^{\beta}{T^{*}}^{(1-\beta)/2} (2.13)
c(u0,α,β)(|x1x2|t)β\displaystyle\quad\leq c(||u_{0}||_{\infty},\alpha,\beta)\left(\frac{|x_{1}-x_{2}|}{\sqrt{t}}\right)^{\beta} (2.14)

for all (x1,t),(x2,t)DT(x_{1},t),(x_{2},t)\in D_{T^{*}}. Inequality (2.11) follows from (2.12) and (2.14), as required.

Consequently we have

Proposition 2.3.

For the solution u:DTu:D_{T^{*}}\to\mathbb{R} of (2.2) and (2.3) given in Proposition (2.1), ux:DTu_{x}:D_{T^{*}}\to\mathbb{R} exists and ux(,t)||u_{x}(\cdot,t)||_{\infty} exists, with uxC(DT)u_{x}\in C(D_{T^{*}}). In addition, for each β(0,1)\beta\in(0,1),

ux(,t)c(u0,α,β)tt(0,T];\displaystyle||u_{x}(\cdot,t)||_{\infty}\leq\frac{c(||u_{0}||_{\infty},\alpha,\beta)}{\sqrt{t}}\quad\forall\ t\in(0,T^{*}]; (2.15)
|ux(x1,t)ux(x2,t)|c(u0,α,β)t(1+β)/2|x1x2|βt(0,T].\displaystyle|u_{x}(x_{1},t)-u_{x}(x_{2},t)|\leq\frac{c(||u_{0}||_{\infty},\alpha,\beta)}{t^{(1+\beta)/2}}|x_{1}-x_{2}|^{\beta}\quad\forall\ t\in(0,T^{*}]. (2.16)
Proof.

For un:DTu_{n}:D_{T^{*}}\to\mathbb{R} given by (2.10), since u0u_{0} is measurable and u0L()u_{0}\in L^{\infty}(\mathbb{R}), unx:DTu_{nx}:D_{T^{*}}\to\mathbb{R} exists, is continuous, and is given by

unx(x,t)\displaystyle u_{nx}(x,t) =u0(s)Gx(x,t;s,0)𝑑s\displaystyle=\int_{-\infty}^{\infty}u_{0}(s)G_{x}(x,t;s,0)ds
+0tnu2(s,τ)2(Gx(x,t;s,τ)hα(s)+Gsx(x,t;s,τ)hα(s))𝑑s𝑑τ,\displaystyle\quad+\int_{0}^{t_{n}}\int_{-\infty}^{\infty}\frac{u^{2}(s,\tau)}{2}\left(G_{x}(x,t;s,\tau)h_{\alpha}^{\prime}(s)+G_{sx}(x,t;s,\tau)h_{\alpha}(s)\right)dsd\tau, (2.17)

for all (x,t)DT(x,t)\in D_{T^{*}}. After a change of variables s=x+2tτλs=x+2\sqrt{t-\tau}\lambda, the second integral in (2.17) can be expressed as

0tnu2(s,τ)2Gx(x,t;s,τ)hα(s)𝑑s𝑑τ\displaystyle\int_{0}^{t_{n}}\int_{-\infty}^{\infty}\frac{u^{2}(s,\tau)}{2}G_{x}(x,t;s,\tau)h_{\alpha}^{\prime}(s)dsd\tau
0tnu2(x+2tτλ,τ)(λ21/2)π(tτ)eλ2hα(x+2tτλ)𝑑λ𝑑τ,\displaystyle\quad-\int_{0}^{t_{n}}\int_{-\infty}^{\infty}u^{2}(x+2\sqrt{t-\tau}\lambda,\tau)\frac{\left(\lambda^{2}-1/2\right)}{\sqrt{\pi}(t-\tau)}e^{-\lambda^{2}}h_{\alpha}(x+2\sqrt{t-\tau}\lambda)d\lambda d\tau, (2.18)

for all (x,t)DT(x,t)\in D_{T^{*}}. Now, the second integral in (2.18) can be expressed as

0tn(u2(x+2tτλ,τ)hα(x+2tτλ)u2(x,τ)hα(x))\displaystyle\int_{0}^{t_{n}}\int_{-\infty}^{\infty}\left(u^{2}(x+2\sqrt{t-\tau}\lambda,\tau)h_{\alpha}(x+2\sqrt{t-\tau}\lambda)-u^{2}(x,\tau)h_{\alpha}(x)\right)
×(λ21/2)π(tτ)eλ2dλdτ\displaystyle\quad\quad\quad\quad\quad\times\frac{\left(\lambda^{2}-1/2\right)}{\sqrt{\pi}(t-\tau)}e^{-\lambda^{2}}d\lambda d\tau (2.19)

for all (x,t)DT(x,t)\in D_{T^{*}}. Using Proposition 2.2, hαC()L()h_{\alpha}^{\prime}\in C(\mathbb{R})\cap L^{\infty}(\mathbb{R}), and the mean value theorem, it follows that for each β(0,1)\beta\in(0,1), there exists a constant cc such that

|u2(x+2tτλ,τ)hα(x+2tτλ)u2(x,τ)hα(x)|\displaystyle|u^{2}(x+2\sqrt{t-\tau}\lambda,\tau)h_{\alpha}(x+2\sqrt{t-\tau}\lambda)-u^{2}(x,\tau)h_{\alpha}(x)|
2u(,τ)hα|u(x+2tτλ,τ)u(x,τ)|\displaystyle\quad\leq 2||u(\cdot,\tau)||_{\infty}||h_{\alpha}||_{\infty}|u(x+2\sqrt{t-\tau}\lambda,\tau)-u(x,\tau)|
+u(,τ)2|h(x+2tτλ)h(x)|\displaystyle\quad\quad+||u(\cdot,\tau)||_{\infty}^{2}|h(x+2\sqrt{t-\tau}\lambda)-h(x)|
c(u0,α,β)(tτ|λ|τ)β\displaystyle\quad\leq c(||u_{0}||_{\infty},\alpha,\beta)\left(\frac{\sqrt{t-\tau}|\lambda|}{\sqrt{\tau}}\right)^{\beta} (2.20)

for all (x,t;λ,τ)𝒳T(x,t;\lambda,\tau)\in\mathcal{X}_{T^{*}}. Therefore, the absolute value of the integral in (2.19) is bounded above by

0tnc(u0,α,β)(tτ|λ|τ)β|λ2+1/2|1(tτ)eλ2𝑑s𝑑τ\displaystyle\int_{0}^{t_{n}}\int_{-\infty}^{\infty}c(||u_{0}||_{\infty},\alpha,\beta)\left(\frac{\sqrt{t-\tau}|\lambda|}{\sqrt{\tau}}\right)^{\beta}\left|\lambda^{2}+1/2\right|\frac{1}{(t-\tau)}e^{-\lambda^{2}}dsd\tau
c(u0,α,β)0tn1τβ/2(tτ)1β/2𝑑τ\displaystyle\quad\leq c(||u_{0}||_{\infty},\alpha,\beta)\int_{0}^{t_{n}}\frac{1}{\tau^{\beta/2}(t-\tau)^{1-\beta/2}}d\tau
c(u0,α,β)\displaystyle\quad\leq c(||u_{0}||_{\infty},\alpha,\beta) (2.21)

for all (x,t)DT(x,t)\in D_{T^{*}}. Therefore, via (2.17), (2.18), (2.19) and (2.21), it follows from (A.2) that

unx(,t)c(u0,α,β)t||u_{nx}(\cdot,t)||_{\infty}\leq\frac{c(||u_{0}||_{\infty},\alpha,\beta)}{\sqrt{t}} (2.22)

for all t(0,T]t\in(0,T^{*}]. We now demonstrate that unxu_{nx} converges uniformly on compact subsets of DTD_{T^{*}}, to a the continuous limit uxu_{x}, as nn\to\infty. It follows from (A.2) and (2.20) that

|tntu2(s,τ)2(Gx(x,t;s,τ)hα(s)+Gsx(x,t;s,τ)hα(s))𝑑s𝑑τ|\displaystyle\left|\int_{t_{n}}^{t}\int_{-\infty}^{\infty}\frac{u^{2}(s,\tau)}{2}\left(G_{x}(x,t;s,\tau)h_{\alpha}^{\prime}(s)+G_{sx}(x,t;s,\tau)h_{\alpha}(s)\right)dsd\tau\right|
(u0+1)22hαtnt1π(tτ)𝑑τ\displaystyle\quad\leq\frac{(||u_{0}||_{\infty}+1)^{2}}{2}||h_{\alpha}^{\prime}||_{\infty}\int_{t_{n}}^{t}\frac{1}{\sqrt{\pi(t-\tau)}}d\tau
+|tnt(u2(x+2tτλ,τ)hα(x+2tτλ)u2(x,τ)hα(x))\displaystyle\quad\quad+\bigg{|}\int_{t_{n}}^{t}\int_{-\infty}^{\infty}\left(u^{2}(x+2\sqrt{t-\tau}\lambda,\tau)h_{\alpha}(x+2\sqrt{t-\tau}\lambda)-u^{2}(x,\tau)h_{\alpha}(x)\right)
×(λ21/2)π(tτ)eλ2dsdτ|\displaystyle\quad\quad\quad\quad\quad\quad\quad\times\frac{\left(\lambda^{2}-1/2\right)}{\sqrt{\pi}(t-\tau)}e^{-\lambda^{2}}dsd\tau\bigg{|}
c(u0,α)(2n)1/2\displaystyle\quad\leq c(||u_{0}||_{\infty},\alpha)(2n)^{-1/2}
+tntc(u0,α,β)(tτ|λ|τ)β|λ21/2|1(tτ)eλ2𝑑λ𝑑τ\displaystyle\quad\quad+\int_{t_{n}}^{t}\int_{-\infty}^{\infty}c(||u_{0}||_{\infty},\alpha,\beta)\left(\frac{\sqrt{t-\tau}|\lambda|}{\sqrt{\tau}}\right)^{\beta}|\lambda^{2}-1/2|\frac{1}{(t-\tau)}e^{-\lambda^{2}}d\lambda d\tau
c(u0,α,β)((2n)1/2+11/(2n)11qβ/2(1q)1β/2𝑑q)\displaystyle\quad\leq c(||u_{0}||_{\infty},\alpha,\beta)\left((2n)^{-1/2}+\int_{1-1/(2n)}^{1}\frac{1}{q^{\beta/2}(1-q)^{1-\beta/2}}dq\right)

for all (x,t)DT(x,t)\in D_{T^{*}}. Therefore, via (2.17), it follows that unxu_{nx} is uniformly convergent on (compact subsets of) DTD_{T^{*}}. It thus follows that there exists a continuous limit of unxu_{nx} on DTD_{T^{*}}, which coincides with the derivative uxu_{x}. The bound in (2.15) follows immediately from (2.22). As a consequence ux:DTu_{x}:D_{T^{*}}\to\mathbb{R} can be represented, alternatively, as

ux(x,t)\displaystyle u_{x}(x,t) =u0(s)Gx(x,t;s,0)𝑑s\displaystyle=\int_{-\infty}^{\infty}u_{0}(s)G_{x}(x,t;s,0)ds
+0tu2(s,τ)2(Gx(x,t;s,τ)hα(s)+Gsx(x,t;s,τ)hα(s))𝑑s𝑑τ\displaystyle\quad+\int_{0}^{t}\int_{-\infty}^{\infty}\frac{u^{2}(s,\tau)}{2}\left(G_{x}(x,t;s,\tau)h_{\alpha}^{\prime}(s)+G_{sx}(x,t;s,\tau)h_{\alpha}(s)\right)dsd\tau
=u0(s)Gx(x,t;s,0)𝑑s0t(uus)(s,τ)Gx(x,t;s,τ)hα(s)𝑑s𝑑τ\displaystyle=\int_{-\infty}^{\infty}u_{0}(s)G_{x}(x,t;s,0)ds-\int_{0}^{t}\int_{-\infty}^{\infty}(uu_{s})(s,\tau)G_{x}(x,t;s,\tau)h_{\alpha}(s)dsd\tau (2.23)

for all (x,t)DT(x,t)\in D_{T^{*}}. Finally, from (2.23), (2.15) and (A.6) it follows that

|ux(x1,t)ux(x2,t)|\displaystyle|u_{x}(x_{1},t)-u_{x}(x_{2},t)|
c(u0,β)t(|x1x2|t)β+0tc(u0,α,β)τ(tτ)(|x1x2|tτ)β𝑑τ\displaystyle\quad\leq\frac{c(||u_{0}||_{\infty},\beta)}{\sqrt{t}}\left(\frac{|x_{1}-x_{2}|}{\sqrt{t}}\right)^{\beta}+\int_{0}^{t}\frac{c(||u_{0}||_{\infty},\alpha,\beta)}{\sqrt{\tau(t-\tau)}}\left(\frac{|x_{1}-x_{2}|}{\sqrt{t-\tau}}\right)^{\beta}d\tau
c(u0,β)t(|x1x2|t)β+c(u0,α,β)tβ/2011q(1q)(1+β)/2𝑑q|x1x2|β\displaystyle\quad\leq\frac{c(||u_{0}||_{\infty},\beta)}{\sqrt{t}}\left(\frac{|x_{1}-x_{2}|}{\sqrt{t}}\right)^{\beta}+\frac{c(||u_{0}||_{\infty},\alpha,\beta)}{t^{\beta/2}}\int_{0}^{1}\frac{1}{\sqrt{q}(1-q)^{(1+\beta)/2}}dq|x_{1}-x_{2}|^{\beta}
c(u0,α,β)t(1+β)/2|x1x2|β\displaystyle\quad\leq\frac{c(||u_{0}||_{\infty},\alpha,\beta)}{t^{(1+\beta)/2}}|x_{1}-x_{2}|^{\beta} (2.24)

for all (x,t)DT(x,t)\in D_{T^{*}}, from which we arrive at (2.16), as required. ∎

We can now further extend the regularity in the next result.

Proposition 2.4.

For the solution u:DTu:D_{T^{*}}\to\mathbb{R} of (2.2) and (2.3) given in Proposition 2.1, uxx:DTu_{xx}:D_{T^{*}}\to\mathbb{R} and ut:DTu_{t}:D_{T^{*}}\to\mathbb{R} both exist and are continuous on DTD_{T^{*}}. In addition, for each β(0,1)\beta\in(0,1),

uxx(,t),ut(,t)c(u0,α,β)tt(0,T].||u_{xx}(\cdot,t)||_{\infty},||u_{t}(\cdot,t)||_{\infty}\leq\frac{c(||u_{0}||_{\infty},\alpha,\beta)}{t}\quad\forall\ t\in(0,T^{*}]. (2.25)
Proof.

For un:DTu_{n}:D_{T^{*}}\to\mathbb{R} given by (2.10), since u0u_{0} is measurable and u0L()u_{0}\in L^{\infty}(\mathbb{R}), unxx:DTu_{nxx}:D_{T^{*}}\to\mathbb{R} exists, is continuous, and is given by

unxx(x,t)=u0(s)Gxx(x,t;s,0)𝑑s0tn(uus)(s,τ)Gxx(x,t;s,τ)hα(s)𝑑s𝑑τ,u_{nxx}(x,t)=\int_{-\infty}^{\infty}u_{0}(s)G_{xx}(x,t;s,0)ds-\int_{0}^{t_{n}}\int_{-\infty}^{\infty}(uu_{s})(s,\tau)G_{xx}(x,t;s,\tau)h_{\alpha}(s)dsd\tau, (2.26)

for all (x,t)DT(x,t)\in D_{T^{*}}. After a change of variables s=x+2tτλs=x+2\sqrt{t-\tau}\lambda, the second integral in (2.26) can be expressed as

0tn(uus)(x+2tτλ,τ)(λ21/2)π(tτ)eλ2hα(x+2tτλ)𝑑λ𝑑τ,\int_{0}^{t_{n}}\int_{-\infty}^{\infty}(uu_{s})(x+2\sqrt{t-\tau}\lambda,\tau)\frac{\left(\lambda^{2}-1/2\right)}{\sqrt{\pi}(t-\tau)}e^{-\lambda^{2}}h_{\alpha}(x+2\sqrt{t-\tau}\lambda)d\lambda d\tau, (2.27)

for all (x,t)DT(x,t)\in D_{T^{*}}. From (A.4) it follows that the second integral in (2.18) can be expressed as

0tn((uus)(x+2tτλ,τ)hα(x+2tτλ)(uus)(x,τ)hα(x))\displaystyle\int_{0}^{t_{n}}\int_{-\infty}^{\infty}\left((uu_{s})(x+2\sqrt{t-\tau}\lambda,\tau)h_{\alpha}(x+2\sqrt{t-\tau}\lambda)-(uu_{s})(x,\tau)h_{\alpha}(x)\right)
×(λ21/2)π(tτ)eλ2dλdτ\displaystyle\quad\quad\quad\quad\quad\times\frac{\left(\lambda^{2}-1/2\right)}{\sqrt{\pi}(t-\tau)}e^{-\lambda^{2}}d\lambda d\tau (2.28)

for all (x,t)DT(x,t)\in D_{T^{*}}. Using Propositions 2.2 and 2.3, hαC()L()h_{\alpha}^{\prime}\in C(\mathbb{R})\cap L^{\infty}(\mathbb{R}), and the mean value theorem, it follows that for each β(0,1)\beta\in(0,1), there exists a constant cc such that

|(uus)(x+2tτλ,τ)hα(x+2tτλ)(uus)(x,τ)hα(x)|\displaystyle|(uu_{s})(x+2\sqrt{t-\tau}\lambda,\tau)h_{\alpha}(x+2\sqrt{t-\tau}\lambda)-(uu_{s})(x,\tau)h_{\alpha}(x)|
us(,τ)hα|u(x+2tτλ,τ,τ)u(x,τ)|\displaystyle\quad\leq||u_{s}(\cdot,\tau)||_{\infty}||h_{\alpha}||_{\infty}|u(x+2\sqrt{t-\tau}\lambda,\tau,\tau)-u(x,\tau)|
+u(,τ)hα|us(x+2tτλ)us(x)|\displaystyle\quad\quad+||u(\cdot,\tau)||_{\infty}||h_{\alpha}||_{\infty}|u_{s}(x+2\sqrt{t-\tau}\lambda)-u_{s}(x)|
+u(,τ)us(,τ)|h(x+2tτλ)h(x)|\displaystyle\quad\quad+||u(\cdot,\tau)||_{\infty}||u_{s}(\cdot,\tau)||_{\infty}|h(x+2\sqrt{t-\tau}\lambda)-h(x)|
c(u0,α,β)(1τ(tτ|λ|τ)β)\displaystyle\quad\leq c(||u_{0}||_{\infty},\alpha,\beta)\left(\frac{1}{\sqrt{\tau}}\left(\frac{\sqrt{t-\tau}|\lambda|}{\sqrt{\tau}}\right)^{\beta}\right) (2.29)

for all (x,t;λ,τ)𝒳T(x,t;\lambda,\tau)\in\mathcal{X}_{T^{*}}. Therefore, the absolute value of the integral in (2.28) is bounded above by

0tnc(u0,α,β)1τ(tτ|λ|τ)β|λ2+1/2|1(tτ)eλ2𝑑s𝑑τ\displaystyle\int_{0}^{t_{n}}\int_{-\infty}^{\infty}c(||u_{0}||_{\infty},\alpha,\beta)\frac{1}{\sqrt{\tau}}\left(\frac{\sqrt{t-\tau}|\lambda|}{\sqrt{\tau}}\right)^{\beta}\left|\lambda^{2}+1/2\right|\frac{1}{(t-\tau)}e^{-\lambda^{2}}dsd\tau
c(u0,α,β)0tn1τ(β+1)/2(tτ)1β/2𝑑τ\displaystyle\quad\leq c(||u_{0}||_{\infty},\alpha,\beta)\int_{0}^{t_{n}}\frac{1}{\tau^{(\beta+1)/2}(t-\tau)^{1-\beta/2}}d\tau
c(u0,α,β)t\displaystyle\quad\leq\frac{c(||u_{0}||_{\infty},\alpha,\beta)}{\sqrt{t}} (2.30)

for all (x,t)DT(x,t)\in D_{T^{*}}. Therefore, via (2.26), (2.27), (2.28) and (2.30), it follows from (A.3) that

unxx(,t)c(u0,α,β)t||u_{nxx}(\cdot,t)||_{\infty}\leq\frac{c(||u_{0}||_{\infty},\alpha,\beta)}{t} (2.31)

for all t(0,T]t\in(0,T^{*}]. It follows, as in the proof of Proposition 2.3 that unxxu_{nxx} converges uniformly on compact subsets of DTD_{T^{*}}, to the continuous limit uxxu_{xx}, as nn\to\infty with the bound on uxxu_{xx} in (2.25) following immediately from (2.31). Consequently uxx:DTu_{xx}:D_{T^{*}}\to\mathbb{R} can be represented, as

uxx(x,t)=u0(s)Gxx(x,t;s,0)𝑑s0t(uus)(s,τ)Gxx(x,t;s,τ)hα(s)𝑑s𝑑τu_{xx}(x,t)=\int_{-\infty}^{\infty}u_{0}(s)G_{xx}(x,t;s,0)ds-\int_{0}^{t}\int_{-\infty}^{\infty}(uu_{s})(s,\tau)G_{xx}(x,t;s,\tau)h_{\alpha}(s)dsd\tau (2.32)

for all (x,t)DT(x,t)\in D_{T^{*}}. Furthermore, un:DTu_{n}:D_{T^{*}}\to\mathbb{R} given by (2.10), since u0u_{0} is measurable and u0L()u_{0}\in L^{\infty}(\mathbb{R}), unt:DTu_{nt}:D_{T^{*}}\to\mathbb{R} exists, is continuous, and is given by

unt(x,t)=unxx(x,t)(uus)(s,tn)G(x,t;s,tn)hα(s)𝑑s,u_{nt}(x,t)=u_{nxx}(x,t)-\int_{-\infty}^{\infty}(uu_{s})(s,t_{n})G(x,t;s,t_{n})h_{\alpha}(s)ds, (2.33)

for all (x,t)DT(x,t)\in D_{T^{*}}. From (A.1), it follows that G(x,t;s,tn)G(x,t;s,t_{n}) forms a δ\delta-sequence as nn\to\infty, and since uu and uxu_{x} are continuous on DTD_{T^{*}} it follows that

(uus)(s,tn)G(x,t;s,tn)hα(s)𝑑su(x,t)ux(x,t)hα(x)\int_{-\infty}^{\infty}(uu_{s})(s,t_{n})G(x,t;s,t_{n})h_{\alpha}(s)ds\to u(x,t)u_{x}(x,t)h_{\alpha}(x) (2.34)

for all (x,t)DT(x,t)\in D_{T^{*}}. Moreover, on any compact subset of DTD_{T^{*}} the convergence in (2.34) is uniform. Finally, it follows, as in the proof of Proposition 2.3 that untu_{nt} converges uniformly on compact subsets of DTD_{T^{*}}, to the continuous limit utu_{t}, as nn\to\infty. As a consequence ut:DTu_{t}:D_{T^{*}}\to\mathbb{R} is continuous and can be represented, as

ut(x,t)=uxx(x,t)u(x,t)ux(x,t)hα(x)u_{t}(x,t)=u_{xx}(x,t)-u(x,t)u_{x}(x,t)h_{\alpha}(x) (2.35)

for all (x,t)DT(x,t)\in D_{T^{*}}. The bound on utu_{t} in (2.25) now follows from Propositions 2.1 and 2.3, and (2.35), as required. ∎

Corollary 2.1.

Let u:DTu:D_{T^{*}}\to\mathbb{R} be the solution to (2.2) and (2.3) given in Proposition (2.1). Then u:DTu:D_{T^{*}}\to\mathbb{R} is a solution to [IVP] with T=TT=T^{*}.

Proof.

From Propositions 2.1, 2.3 and 2.4, it follows that u:DTu:D_{T^{*}}\to\mathbb{R} satisfies (1.1). Moreover, via (2.35) u:DTu:D_{T^{*}}\to\mathbb{R} satisfies (1.2). Finally, via (2.2), u:DTu:D_{T^{*}}\to\mathbb{R} satisfies (1.4), as required. ∎

Remark 2.1.

Suppose for the solution u:DTu:D_{T^{*}}\to\mathbb{R} to [IVP] constructed in Proposition 2.1, that u0C2()W2,()u_{0}\in C^{2}(\mathbb{R})\cap W^{2,\infty}(\mathbb{R}). Then following the arguments in Propositions 2.2, 2.3 and 2.4, it follows that uu can be naturally extended onto D¯T\bar{D}_{T^{*}}, with u(x,0)=u0(x)u(x,0)=u_{0}(x) for all xx\in\mathbb{R}, and we conclude that uC2,1(D¯T)u\in C^{2,1}(\bar{D}_{T^{*}}). Moreover, uxu_{x}, uxxu_{xx} and utu_{t} are bounded on D¯T\bar{D}_{T^{*}} by a constant c(u0W2,,α)c(||u_{0}||_{W^{2,\infty}},\ \alpha), which is independent of tt, recalling (2.4).

Before we can establish the existence of global solutions to [IVP] we require a priori bounds on solutions to [IVP].

Proposition 2.5.

When u:DTu:D_{T}\to\mathbb{R} is a solution to [IVP] then

infxu0usupxu0 on DT.\inf_{x\in\mathbb{R}}u_{0}\leq u\leq\sup_{x\in\mathbb{R}}u_{0}\quad\text{ on }D_{T}.
Proof.

Let 0<ϵ<T0<\epsilon<T and DT,ϵ={(x,t)DT:t(ϵ,T]}D_{T,\epsilon}=\{(x,t)\in D_{T}:\ t\in(\epsilon,T]\}. Via (1.2) it follows that u:D¯T,ϵu:\bar{D}_{T,\epsilon}\to\mathbb{R} satisfies

utuxx+(uhα)ux=0 on DT,ϵ.u_{t}-u_{xx}+(uh_{\alpha})u_{x}=0\quad\text{ on }D_{T,\epsilon}. (2.36)

Additionally note that there exist positive constants c(ϵ)=O(ϵ)c(\epsilon)=O(\epsilon) as ϵ0+\epsilon\to 0^{+}, such that

infxu0c(ϵ)u(x,ϵ)supxu0+c(ϵ)x,\inf_{x\in\mathbb{R}}u_{0}-c(\epsilon)\leq u(x,\epsilon)\leq\sup_{x\in\mathbb{R}}u_{0}+c(\epsilon)\quad\forall x\in\mathbb{R}, (2.37)

via condition (1.4). From (2.36), (1.1) and (2.37), it follows from the comparison theorem for second order linear parabolic partial differential inequalies (see, for example [2, Theorem 4.4]) by considering:

u¯=supxu0+c(ϵ) and u¯=u on D¯T,ϵ;\displaystyle\overline{u}=\sup_{x\in\mathbb{R}}u_{0}+c(\epsilon)\text{ and }\underline{u}=u\text{ on }\bar{D}_{T,\epsilon};
u¯=u and u¯=infxu0c(ϵ) on D¯T,ϵ;\displaystyle\overline{u}=u\text{ and }\underline{u}=\inf_{x\in\mathbb{R}}u_{0}-c(\epsilon)\text{ on }\bar{D}_{T,\epsilon};

as regular supersolutions and regular subsolutions respectively, that

infxu0c(ϵ)usupxu0+c(ϵ) on D¯T,ϵ.\inf_{x\in\mathbb{R}}u_{0}-c(\epsilon)\leq u\leq\sup_{x\in\mathbb{R}}u_{0}+c(\epsilon)\quad\text{ on }\bar{D}_{T,\epsilon}. (2.38)

The result follows from (2.38) by letting ϵ0+\epsilon\to 0^{+}. ∎

We can now establish

Proposition 2.6.

There exists a global solution u:Du:D_{\infty}\to\mathbb{R} to [IVP].

Proof.

For any T>0T>0, via Proposition 2.5, any solution to [IVP] is a priori uniformly bounded on DTD_{T}. Thus, for each T>0T>0, it follows from a finite number of applications of Proposition 2.1 (with Remark 2.1) that there exists a solution to [IVP] on DTD_{T}, and hence, a global solution to [IVP] exists on DD_{\infty}, as required. ∎

We next establish local in time continuous dependence on the initial data, of global solution to [IVP].

Proposition 2.7.

Let T>0T>0 and for i=1,2i=1,2, suppose that ui:DTu_{i}:D_{T}\to\mathbb{R} are solutions to [IVP] with constant α\alpha, and initial data u0iu_{0i}, respectively. Then,

(u1u2)(,t)u01u02c(u01,u02,α,T)t(0,T].||(u_{1}-u_{2})(\cdot,t)||_{\infty}\leq||u_{01}-u_{02}||_{\infty}c(||u_{01}||_{\infty},||u_{02}||_{\infty},\alpha,T)\quad\forall t\in(0,T]. (2.39)
Proof.

Let 0<ϵ<T0<\epsilon<T and set v:D¯T,ϵv:\bar{D}_{T,\epsilon}\to\mathbb{R} to be

v=u1u2 on D¯T,ϵ.v=u_{1}-u_{2}\quad\text{ on }\bar{D}_{T,\epsilon}. (2.40)

Via (2.2)-(2.3), for given u10u_{10} and u20u_{20} there exist constants c(ϵ)=O(ϵ)c(\epsilon)=O(\epsilon) as ϵ0+\epsilon\to 0^{+}, such that

|v(x,t)|\displaystyle|v(x,t)| |u1(s,ϵ)u2(s,ϵ)|G(x,t;s,0)𝑑s\displaystyle\leq\int_{-\infty}^{\infty}|u_{1}(s,\epsilon)-u_{2}(s,\epsilon)|G(x,t;s,0)ds
+120t|u12u22|(s,τ+ϵ)\displaystyle\quad+\frac{1}{2}\int_{0}^{t}\int_{-\infty}^{\infty}|u_{1}^{2}-u_{2}^{2}|(s,\tau+\epsilon)
×(G(x,t;s,τ)|hα(s)|+|Gs(x,t;s,τ)|hα(s))dsdτ,\displaystyle\quad\quad\quad\quad\quad\quad\quad\times\left(G(x,t;s,\tau)|h_{\alpha}^{\prime}(s)|+|G_{s}(x,t;s,\tau)|h_{\alpha}(s)\right)dsd\tau,
u01u02+c(ϵ)+\displaystyle\leq||u_{01}-u_{02}||_{\infty}+c(\epsilon)+
+120t(u1+u2)v(,τ)(hα+1π(tτ))𝑑τ,\displaystyle\quad\quad+\frac{1}{2}\int_{0}^{t}(||u_{1}||_{\infty}+||u_{2}||_{\infty})||v(\cdot,\tau)||_{\infty}\left(||h_{\alpha}^{\prime}||_{\infty}+\frac{1}{\sqrt{\pi(t-\tau)}}\right)d\tau,
u01u02+c(ϵ)+0tc(u1,u2,α)tτv(,τ)𝑑τ\displaystyle\leq||u_{01}-u_{02}||_{\infty}+c(\epsilon)+\int_{0}^{t}\frac{c(||u_{1}||_{\infty},||u_{2}||_{\infty},\alpha)}{\sqrt{t-\tau}}||v(\cdot,\tau)||_{\infty}d\tau (2.41)

for all (x,t)DT,ϵ(x,t)\in D_{T,\epsilon}. We note, via the continuity and bounds on u1tu_{1t} and u2tu_{2t} given in Proposition 2.4, it follows that v(,t)||v(\cdot,t)||_{\infty} is a continuous and bounded function of tt on [ϵ,T][\epsilon,T], and hence the integral in (2.41) is well-defined. It follows immediately that

v(,t)u01u02+c(ϵ)+0tc(u1,u2,α)tτv(,τ)𝑑τ||v(\cdot,t)||_{\infty}\leq||u_{01}-u_{02}||_{\infty}+c(\epsilon)+\int_{0}^{t}\frac{c(||u_{1}||_{\infty},||u_{2}||_{\infty},\alpha)}{\sqrt{t-\tau}}||v(\cdot,\tau)||_{\infty}d\tau (2.42)

for all t[ϵ,T]t\in[\epsilon,T]. Therefore, via a generalisation of Gronwall’s inequality (see [4, Corollary 2]), and the a priori bounds in Proposition 2.5, we conclude that

v(,t)\displaystyle||v(\cdot,t)||_{\infty} (u01u02+c(ϵ))(c(u1,u2,α)n=1tn/2πn/2nΓ(n/2))\displaystyle\leq(||u_{01}-u_{02}||_{\infty}+c(\epsilon))\left(c(||u_{1}||_{\infty},||u_{2}||_{\infty},\alpha)\sum_{n=1}^{\infty}\frac{t^{n/2}}{\pi^{n/2}n\Gamma(n/2)}\right)
(u01u02+c(ϵ))c(u01,u02,α,T)\displaystyle\leq(||u_{01}-u_{02}||_{\infty}+c(\epsilon))c(||u_{01}||_{\infty},||u_{02}||_{\infty},\alpha,T) (2.43)

for all t[ϵ,T]t\in[\epsilon,T]. On recalling (2.40), (2.39) follows by letting ϵ0+\epsilon\to 0^{+} in (2.43), as required. ∎

In summary, we have

Theorem 2.1.

There exists a unique global solution u:Du:D_{\infty}\to\mathbb{R} to [IVP]. Moreover, for each T,ϵ>0T,\epsilon>0 and Lebesgue measurable u01L()u_{01}\in L^{\infty}(\mathbb{R}), there exists δ(T,ϵ,u01)>0\delta(T,\epsilon,||u_{01}||_{\infty})>0 such that for all Lebesgue measurable u02L()u_{02}\in L^{\infty}(\mathbb{R}) such that u01u02<δ||u_{01}-u_{02}||_{\infty}<\delta then the corresponding global solutions to [IVP] given by u1,u2:DTu_{1},u_{2}:D_{T}\to\mathbb{R} satisfy

(u1u2)(,t)<ϵt(0,T].||(u_{1}-u_{2})(\cdot,t)||_{\infty}<\epsilon\quad\forall t\in(0,T].
Proof.

The global existence and uniqueness of solutions to [IVP] follows from Propositions 2.6 and 2.7. Local in time continuous dependence also follows from Proposition 2.7. ∎

We conclude this section by establishing some qualitative properties of solutions to [IVP] for initial data of the form (1.5). First we have

Remark 2.2.

Suppose the initial data in Proposition 2.6 satisfies u0Ck()Wk,()u_{0}\in C^{k}(\mathbb{R})\cap W^{k,\infty}(\mathbb{R}) for some kk\in\mathbb{N} with k2k\geq 2. Then it follows from Remark 2.1 that the global solution to [IVP] can be extended continuously onto D¯\bar{D}_{\infty}. Moreover, the global solution u:D¯u:\bar{D}_{\infty}\to\mathbb{R} has kk partial derivatives with respect to xx which are continuous on D¯\bar{D}_{\infty} and bounded on D¯T\bar{D}_{T} for any T>0T>0. This follows from an induction argument based on the derivative estimates in Propositions 2.3 and 2.4 with the identity

ixi(u0(s)G(x,t;s,0)𝑑s)=u0(i)(s)G(x,t;s,0)𝑑s\frac{\partial^{i}}{\partial x^{i}}\left(\int_{\mathbb{R}}u_{0}(s)G(x,t;s,0)ds\right)=\int_{\mathbb{R}}u_{0}^{(i)}(s)G(x,t;s,0)ds

for all (x,t)D(x,t)\in D_{\infty} and i=1,,ki=1,\ldots,k, used to bound the first integrals in (2.17) and (2.26). As a consequence, it follows that utu_{t} has k2k-2 partial derivatives with respect to xx on D¯\bar{D}_{\infty} which are bounded on D¯T\bar{D}_{T} for any T>0T>0.

We now have

Proposition 2.8.

Suppose that the initial data for [IVP] is given by (1.5) and the corresponding solution is u:Du:D_{\infty}\to\mathbb{R}. When u<u+u^{-}<u^{+} (u>u+u^{-}>u^{+}) then ux(,t)>0u_{x}(\cdot,t)>0 (<0<0) for all t(0,)t\in(0,\infty).

Proof.

Consider the sequence of functions u0(n):u_{0}^{(n)}:\mathbb{R}\to\mathbb{R} for nn\in\mathbb{N} such that

u0(n)=u0 on [1/n,1/n],\displaystyle u_{0}^{(n)}=u_{0}\text{ on }\mathbb{R}\setminus[-1/n,1/n], (2.44)
u0(n)C3()L(),\displaystyle u_{0}^{(n)}\in C^{3}(\mathbb{R})\cap L^{\infty}(\mathbb{R}), (2.45)
u0(n) are non-decreasing (non-increasing) when u<u+(u>u+),\displaystyle u_{0}^{(n)}\text{ are non-decreasing (non-increasing) when }u^{-}<u^{+}(u^{-}>u^{+}), (2.46)

and u0u_{0} is given by (1.5). It follows from Proposition 2.6 that there exists a unique solution u(n):D¯u^{(n)}:\bar{D}_{\infty}\to\mathbb{R} to [IVP] with initial data u0(n)u_{0}^{(n)}. Moreover, it follows from (2.44)-(2.46), Proposition 2.5 and Remark 2.2 that w:D¯w:\bar{D}_{\infty}\to\mathbb{R} given by w=ux(n)w=u_{x}^{(n)} on D¯\bar{D}_{\infty} satisfies:

wC2,1(D¯T)L(D¯T) for each T>0,\displaystyle w\in C^{2,1}(\bar{D}_{T})\cap L^{\infty}(\bar{D}_{T})\quad\text{ for each }T>0, (2.47)
wx,wt,wxxL(D¯T) for each T>0,\displaystyle w_{x},w_{t},w_{xx}\in L^{\infty}(\bar{D}_{T})\quad\text{ for each }T>0, (2.48)
w(,0)0(0) on D when u<u+(u>u+),\displaystyle w(\cdot,0)\geq 0\ (\leq 0)\text{ on }\partial D\text{ when }u^{-}<u^{+}\ (u^{-}>u^{+}), (2.49)
wtwxx+u(n)hαwx+(hαw+u(n)hα)w=0 on D.\displaystyle w_{t}-w_{xx}+u^{(n)}h_{\alpha}w_{x}+(h_{\alpha}w+u^{(n)}h_{\alpha}^{\prime})w=0\text{ on }D_{\infty}. (2.50)

Properties (2.47)-(2.50) ensure that we can apply the minimum (maximum) principle (see [2, Theorem 3.3] to ww to establish that w0(0)w\geq 0\ (\leq 0) when u<u+(u>u+)u^{-}<u^{+}\ (u^{-}>u^{+}).

Recalling (2.44)-(2.46), it follows from Proposition 2.5 that u(n)u^{(n)} are uniformly a priori bounded on D¯\bar{D}_{\infty} for nn\in\mathbb{N}. Moreover, via Propositions 2.3 and 2.4, ut(n)u_{t}^{(n)} and ux(n)u_{x}^{(n)} are bounded on compact subsets of DD_{\infty} uniformly for nn\in\mathbb{N}. Therefore u(n)u^{(n)} forms a uniformly bounded equicontinuous sequence of functions on compact subsets of DD_{\infty}. Hence, there exists a subsequence u(nj)u^{(n_{j})} which converges uniformly as njn_{j}\to\infty to a continuous bounded function on each compact subset of DD_{\infty}. Since the global solution u:Du:D_{\infty}\to\mathbb{R} to [IVP] with initial data u0u_{0} given by (1.5) is unique, it follows that on compact subsets of DD_{\infty}, u(nj)u^{(n_{j})} converges uniformly to uu. Therefore, ux(,t)0(0)u_{x}(\cdot,t)\geq 0\ (\leq 0) if u<u+(u>u+)u^{-}<u^{+}\ (u^{-}>u^{+}).

Observe from (1.5) and (2.23) that uxu_{x} is non-constant as t0+t\to 0^{+}. Thus from the strong minimum (maximum) principle (see, [1, Chapter 2]) applied to uxu_{x} on [X,X]×[T,T][-X,X]\times[T^{\prime},T] with sufficiently small T>0T^{\prime}>0 and arbitratry X,T>0X,T>0, it follows that ux>0u_{x}>0 (<0<0) on DD_{\infty}, as required. ∎

We next have the far field result

Proposition 2.9.

Suppose the initial data for [IVP] is given by (1.5). Then the solution u:Du:D_{\infty}\to\mathbb{R} satisfies

u(x,t)u± as x± uniformly for t(0,T].u(x,t)\to u^{\pm}\text{ as }x\to\pm\infty\text{ uniformly for }t\in(0,T].
Proof.

Let uu be the unique global solution to [IVP] with initial condition (1.5) and let ΩT:=(,1]×[0,T]\Omega_{T}:=(-\infty,-1]\times[0,T]. Since u0u_{0} is continuous on \mathbb{R}^{-}, it follows for that uu can be extended onto Ω¯T\bar{\Omega}_{T} so that uC2,1(ΩT)C(Ω¯T)u\in C^{2,1}(\Omega_{T})\cap C(\bar{\Omega}_{T}). Consider the following pairs of functions (u¯,u¯)(\underline{u},\overline{u}) with domain Ω¯T\bar{\Omega}_{T} and co-domain \mathbb{R}.

  • For u<u+u^{-}<u^{+} and each (x,t)Ω¯T(x,t)\in\bar{\Omega}_{T} we define:

    u¯(x,t)=u and u¯(x,t)=u(x,t);\displaystyle\underline{u}(x,t)=u^{-}\text{ and }\overline{u}(x,t)=u(x,t); (2.51)
    u¯(x,t)=u(x,t) and u¯(x,t)=u+|u+u|e(u0+1)t+x.\displaystyle\underline{u}(x,t)=u(x,t)\text{ and }\overline{u}(x,t)=u^{-}+|u^{+}-u^{-}|e^{(||u_{0}||_{\infty}+1)t+x}. (2.52)
  • For u>u+u^{-}>u^{+} and each (x,t)Ω¯T(x,t)\in\bar{\Omega}_{T} we define:

    u¯(x,t)=u|u+u|e(u0+1)t+x and u¯(x,t)=u(x,t);\displaystyle\underline{u}(x,t)=u^{-}-|u^{+}-u^{-}|e^{(||u_{0}||_{\infty}+1)t+x}\text{ and }\overline{u}(x,t)=u(x,t); (2.53)
    u¯(x,t)=u(x,t) and u¯(x,t)=u.\displaystyle\underline{u}(x,t)=u(x,t)\text{ and }\overline{u}(x,t)=u^{-}. (2.54)

It follows that the pairs in (2.51)-(2.54) are all regular subsolution and regular supersolutions on Ω¯T\bar{\Omega}_{T} for the second order linear parabolic partial differential operator L:C2,1(ΩT)(ΩT)L:C^{2,1}(\Omega_{T})\to\mathbb{R}(\Omega_{T}) given by

L[w]=wtwxx(uhα)wx on ΩTwC2,1(ΩT).L[w]=w_{t}-w_{xx}-(uh_{\alpha})w_{x}\text{ on }\Omega_{T}\quad\forall w\in C^{2,1}(\Omega_{T}). (2.55)

It follows from (2.51)-(2.55), Proposition 2.5, and the comparison theorem [2, Theorem 4.4] that u(x,t)uu(x,t)\to u^{-} as xx\to-\infty uniformly for t(0,T]t\in(0,T] for each T>0T>0. The corresponding result for the limit as xx\to\infty follows from a symmetrical argument. ∎

3 Conclusion

In this note we have established a well-posedness result for [IVP] to complement the large-tt asymptotic analysis for solutions to [IVP] contained in [3]. Further work to establish convergence and qualitative properties of the finite difference approximation utilised in [3] is of interest to the authors. Moreover, the development of methods to rigorously establish more results the theory in [3] illustrates, is also of interest to the authors.

Appendix A Properties of GG

We note several properties of the fundamental solution to the heat equation on DTD_{T}, given by (2.1), here:

G(x,t;s,τ)𝑑s=1(x,t)DT, 0τ<t;\displaystyle\int_{-\infty}^{\infty}G(x,t;s,\tau)ds=1\quad\forall\ (x,t)\in D_{T},\ 0\leq\tau<t; (A.1)
|Gs(x,t;s,τ)|𝑑s=1π(tτ)(x,t)DT, 0τ<t;\displaystyle\int_{-\infty}^{\infty}|G_{s}(x,t;s,\tau)|ds=\frac{1}{\sqrt{\pi(t-\tau)}}\quad\forall\ (x,t)\in D_{T},\ 0\leq\tau<t; (A.2)
|Gss(x,t;s,τ)|𝑑sc(tτ)(x,t)DT, 0τ<t;\displaystyle\int_{-\infty}^{\infty}|G_{ss}(x,t;s,\tau)|ds\leq\frac{c}{(t-\tau)}\quad\forall\ (x,t)\in D_{T},\ 0\leq\tau<t; (A.3)
Gss(x,t;s,τ)𝑑s=0(x,t)DT, 0τ<t.\displaystyle\int_{-\infty}^{\infty}G_{ss}(x,t;s,\tau)ds=0\quad\forall\ (x,t)\in D_{T},\ 0\leq\tau<t. (A.4)

Moreover, for any β(0,1)\beta\in(0,1) there exist constants c(β)c(\beta) such that:

|G(x1,t;s,τ)G(x2,t;s,τ)|𝑑sc(β)(|x1x2|tτ)β,\displaystyle\int_{-\infty}^{\infty}|G(x_{1},t;s,\tau)-G(x_{2},t;s,\tau)|ds\leq\text{c}(\beta)\left(\frac{|x_{1}-x_{2}|}{\sqrt{t-\tau}}\right)^{\beta}, (A.5)
|Gs(x1,t;s,τ)Gs(x2,t;s,τ)|𝑑sc(β)tτ(|x1x2|tτ)β,\displaystyle\int_{-\infty}^{\infty}|G_{s}(x_{1},t;s,\tau)-G_{s}(x_{2},t;s,\tau)|ds\leq\frac{\text{c}(\beta)}{\sqrt{t-\tau}}\left(\frac{|x_{1}-x_{2}|}{\sqrt{t-\tau}}\right)^{\beta}, (A.6)
|Gss(x1,t;s,τ)Gss(x2,t;s,τ)|𝑑sc(β)(tτ)(|x1x2|tτ)β,\displaystyle\int_{-\infty}^{\infty}|G_{ss}(x_{1},t;s,\tau)-G_{ss}(x_{2},t;s,\tau)|ds\leq\frac{\text{c}(\beta)}{(t-\tau)}\left(\frac{|x_{1}-x_{2}|}{\sqrt{t-\tau}}\right)^{\beta}, (A.7)

for all x1,x2x_{1},x_{2}\in\mathbb{R} and 0τ<tT0\leq\tau<t\leq T; and

|G(x,t1;s,τ)G(x,t2;s,τ)|𝑑sc(β)(|t1t2|t2τ)β/2,\displaystyle\int_{-\infty}^{\infty}|G(x,t_{1};s,\tau)-G(x,t_{2};s,\tau)|ds\leq\text{c}(\beta)\left(\frac{|t_{1}-t_{2}|}{t_{2}-\tau}\right)^{\beta/2}, (A.8)
|Gs(x,t1;s,τ)Gs(x,t2;s,τ)|𝑑sc(β)t2τ(|t1t2|t2τ)β/2,\displaystyle\int_{-\infty}^{\infty}|G_{s}(x,t_{1};s,\tau)-G_{s}(x,t_{2};s,\tau)|ds\leq\frac{\text{c}(\beta)}{\sqrt{t_{2}-\tau}}\left(\frac{|t_{1}-t_{2}|}{t_{2}-\tau}\right)^{\beta/2}, (A.9)
|Gss(x,t1;s,τ)Gss(x,t2;s,τ)|𝑑sc(β)(t2τ)(|t1t2|t2τ)β/2,\displaystyle\int_{-\infty}^{\infty}|G_{ss}(x,t_{1};s,\tau)-G_{ss}(x,t_{2};s,\tau)|ds\leq\frac{\text{c}(\beta)}{(t_{2}-\tau)}\left(\frac{|t_{1}-t_{2}|}{t_{2}-\tau}\right)^{\beta/2}, (A.10)

for all xx\in\mathbb{R} and 0τ<t2<t1T0\leq\tau<t_{2}<t_{1}\leq T. These properties can be derived via the approach described in [1, Ch. 1, Lemma 3].

References

  • [1] Avner Friedman. Partial differential equations of parabolic type. Courier Dover Publications, 2008.
  • [2] John Christopher Meyer and David John Needham. Extended weak maximum principles for parabolic partial differential inequalities on unbounded domains. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2167):20140079, 2014.
  • [3] David John Needham, John Billingham, John Christopher Meyer, and Catherine Drysdale. The Riemann problem for a generalised Burgers equation with spatially decaying sound speed. I Large-time asymptotics. Submitted to Studies in Applied Mathematics, 2022.
  • [4] Haiping Ye, Jianming Gao, and Yongsheng Ding. A generalized gronwall inequality and its application to a fractional differential equation. Journal of Mathematical Analysis and Applications, 328(2):1075–1081, 2007.
  • [5] Hui Zhang. Global existence and asymptotic behaviour of the solution of a generalized Burger’s equation with viscosity. Computers & Mathematics with Applications, 41(5-6):589–596, 2001.