This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The relational complexity of linear groups
acting on subspaces

Saul D. Freedman SAUL D. FREEDMAN, School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, UK Current address: Centre for the Mathematics of Symmetry and Computation, The University of Western Australia, Crawley, WA 6009, Australia [email protected] Veronica Kelsey VERONICA KELSEY, Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK [email protected]  and  Colva M. Roney-Dougal COLVA M. RONEY-DOUGAL, School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, UK [email protected]
Abstract.

The relational complexity of a subgroup GG of Sym(Ω)\mathrm{Sym}({\Omega}) is a measure of the way in which the orbits of GG on Ωk\Omega^{k} for various kk determine the original action of GG. Very few precise values of relational complexity are known. This paper determines the exact relational complexity of all groups lying between PSLn(𝔽)\mathrm{PSL}_{n}(\mathbb{F}) and PGLn(𝔽)\mathrm{PGL}_{n}(\mathbb{F}), for an arbitrary field 𝔽\mathbb{F}, acting on the set of 11-dimensional subspaces of 𝔽n\mathbb{F}^{n}. We also bound the relational complexity of all groups lying between PSLn(q)\mathrm{PSL}_{n}(q) and PΓLn(q)\mathrm{P}\Gamma\mathrm{L}_{n}(q), and generalise these results to the action on mm-spaces for m1m\geq 1.

Key words and phrases:
Relational complexity, linear groups, subspace actions
2020 Mathematics Subject Classification:
20B15, 20G40, 03C13

1. Introduction

The study of relational complexity began with work of Lachlan in model theory as a way of studying homogeneous relational structures: those in which every isomorphism between induced substructures extends to an automorphism of the whole structure. For the original definition see, for example, [11]; an equivalent definition in terms of permutation groups was given by Cherlin [1], and, apart from a slight generalisation to group actions, is the one we now present.

Let Ω\Omega be an arbitrary set and let HH be a group acting on Ω\Omega. Fix kk\in\mathbb{Z}, and let X:=(x1,,xk),Y:=(y1,,yk)ΩkX:=(x_{1},\ldots,x_{k}),Y:=(y_{1},\ldots,y_{k})\in\Omega^{k}. For rkr\leq k, we say that XX and YY are rr-equivalent under HH, denoted XH,rYX{\underset{H,r}{\sim}}Y, if for every rr-subset of indices {i1,,ir}{1,,k}\{i_{1},\ldots,i_{r}\}\subseteq\{1,\ldots,k\}, there exists an hHh\in H such that (xi1h,,xirh)=(yi1,,yir)(x_{i_{1}}^{h},\ldots,x_{i_{r}}^{h})=(y_{i_{1}},\ldots,y_{i_{r}}). If XH,kYX{\underset{H,k}{\sim}}Y, i.e. if YXHY\in X^{H}, then XX and YY are equivalent under HH. The relational complexity of HH, denoted RC(H,Ω)\mathrm{RC}(H,\Omega), or RC(H)\mathrm{RC}(H) when Ω\Omega is clear, is the smallest r1r\geq 1 such that XH,rYX{\underset{H,r}{\sim}}Y implies YXHY\in X^{H}, for all X,YΩkX,Y\in\Omega^{k} and all krk\geq r. Equivalently, RC(H)\mathrm{RC}(H) is the smallest rr such that rr-equivalence of tuples implies equivalence of tuples. Note that RC(H)2\mathrm{RC}(H)\geq 2 if H1H\neq 1 and |Ω|>1|\Omega|>1, as XX or YY may contain repeated entries.

Calculating the precise relational complexity of a group is often very difficult. A major obstacle is that if K<HSym(Ω)K<H\leq\mathrm{Sym}({\Omega}), then there is no uniform relationship between RC(K,Ω)\mathrm{RC}(K,\Omega) and RC(H,Ω)\mathrm{RC}(H,\Omega). For example, if n4n\geq 4, then the relational complexities of the regular action of CnC_{n} and natural actions of An\mathrm{A}_{n} and Sn\mathrm{S}_{n} are 22, n1n-1 and 22, respectively. In [1], Cherlin gave three families of finite primitive binary groups (groups with relational complexity two) and conjectured that this list was complete. In a dramatic recent breakthrough, this conjecture was proved by Gill, Liebeck and Spiga in [6]; this monograph also contains an extensive literature review.

In [1, 2], Cherlin determined the exact relational complexity of Sn\mathrm{S}_{n} and An\mathrm{A}_{n} in their actions on kk-subsets of {1,,n}\{1,\ldots,n\}. The relational complexity of the remaining large-base primitive groups is considered in [4]. Looking at finite primitive groups more generally, Gill, Lodà and Spiga proved in [7] that if HSym(Ω)H\leq\mathrm{Sym}({\Omega}) is primitive and not large-base, then RC(H,Ω)<9log|Ω|+1\mathrm{RC}(H,\Omega)<9\log|\Omega|+1 (our logarithms are to the base 22). This bound was tightened by the second and third author in [10] to 5log|Ω|+15\log|\Omega|+1. Both [7] and [10] bounded the relational complexity via base size, and the groups with the largest upper bounds are classical groups acting on subspaces of the natural module, and related product action groups. This motivated us to obtain further information about the relational complexity of these groups; this paper confirms that these bounds are tight, up to constants.

We now fix some notation for use throughout this paper. Let nn be a positive integer, 𝔽\mathbb{F} be a (not necessarily finite) field, V=𝔽nV=\mathbb{F}^{n}, and Ωm=𝒫𝒢m(V)\Omega_{m}=\mathcal{PG}_{m}(V) be the set of mm-dimensional subspaces of VV. We shall study the relational complexity of the almost simple groups H¯\overline{H} with PSLn(𝔽)H¯PΓLn(𝔽){\mathrm{PSL}_{n}(\mathbb{F})\trianglelefteq\overline{H}\leq\mathrm{P}\Gamma\mathrm{L}_{n}(\mathbb{F})}, acting on Ωm\Omega_{m}. We will generally work with the corresponding groups HH with SLn(𝔽)HΓLn(𝔽){\mathrm{SL}_{n}(\mathbb{F})\trianglelefteq H\leq\Gamma\mathrm{L}_{n}(\mathbb{F})}, as these naturally have the same relational complexity when acting on Ωm\Omega_{m}.

Several of our results focus on the case 𝔽=𝔽q\mathbb{F}=\mathbb{F}_{q}. We begin with the following theorem of Cherlin.

Theorem 1.1 ([1, Example 3]).

The relational complexity of GLn(q)\mathrm{GL}_{n}(q) acting on the nonzero vectors of 𝔽qn\mathbb{F}_{q}^{n} is equal to nn when q=2q=2, and n+1n+1 when q3q\geq 3. Hence also in the action on 11-spaces we find that RC(PGLn(2),Ω1)=n\mathrm{RC}(\mathrm{PGL}_{n}(2),\Omega_{1})=n.

More generally, for PSLn(q)H¯PGLn(q)\mathrm{PSL}_{n}(q)\trianglelefteq\overline{H}\leq\mathrm{PGL}_{n}(q), Lodà [12, Corollary 5.2.7] shows that RC(H¯,Ω1)<2log|Ω1|+1\mathrm{RC}(\overline{H},\Omega_{1})<2\log|\Omega_{1}|+1. Other results imply an alternative upper bound on RC(H¯,Ω1)\mathrm{RC}(\overline{H},\Omega_{1}). We first note that the height of a permutation group KK on a set Ω\Omega, denoted H(K)\mathrm{H}(K) or H(K,Ω)\mathrm{H}(K,\Omega), is the maximum size of a subset Δ\Delta of Ω\Omega with the property that K(Γ)<K(Δ)K_{(\Gamma)}<K_{(\Delta)} for each ΓΔ\Gamma\subsetneq\Delta. It is easy to show (see [7, Lemma 2.1]) that RC(K)H(K)+1\mathrm{RC}(K)\leq\mathrm{H}(K)+1. By combining this with immediate generalisations of results of Hudson [9, §5.3-5.4] and Lodà [12, Prop 5.2.1], we obtain the following (for |𝔽|=2|\mathbb{F}|=2, see Theorem 1.1; we also omit a few small exceptional cases for brevity).

Proposition 1.2.

Let PSLn(𝔽)H¯PGLn(𝔽)\mathrm{PSL}_{n}(\mathbb{F})\trianglelefteq\overline{H}\leq\mathrm{PGL}_{n}(\mathbb{F}) and |𝔽|3|\mathbb{F}|\geq 3.

  1. (i)

    Suppose that n=2n=2, with |𝔽|=q7|\mathbb{F}|=q\geq 7 if H¯PGL2(𝔽)\overline{H}\neq\mathrm{PGL}_{2}(\mathbb{F}). If |𝔽|4|\mathbb{F}|\geq 4, then H(H¯,Ω1)=3\mathrm{H}(\overline{H},\Omega_{1})=3 and RC(H¯,Ω1)=n+2=4\mathrm{RC}(\overline{H},\Omega_{1})=n+2=4, whilst RC(PGL2(3),Ω1)=n=2\mathrm{RC}(\mathrm{PGL}_{2}(3),\Omega_{1})=n=2.

  2. (ii)

    If n3n\geq 3, then H(H¯,Ω1)=2n2\mathrm{H}(\overline{H},\Omega_{1})=2n-2 and RC(H¯,Ω1)2n1\mathrm{RC}(\overline{H},\Omega_{1})\leq 2n-1.

Our first theorem gives the exact relational complexity of groups between PSLn(𝔽)\mathrm{PSL}_{n}(\mathbb{F}) and PGLn(𝔽)\mathrm{PGL}_{n}(\mathbb{F}) for n3n\geq 3, acting naturally on 1-spaces.

Theorem A.

Let n3n\geq 3, and let 𝔽\mathbb{F} be any field. Then the following hold.

  1. (i)
    RC(PGLn(𝔽),Ω1)={n if |𝔽|3,n+2 if |𝔽|4.\mathrm{RC}(\mathrm{PGL}_{n}(\mathbb{F}),\Omega_{1})=\begin{cases}n&\text{ if }|\mathbb{F}|\leq 3,\\ n+2&\text{ if }|\mathbb{F}|\geq 4.\end{cases}
  2. (ii)

    If PSLn(𝔽)H¯<PGLn(𝔽)\mathrm{PSL}_{n}(\mathbb{F})\trianglelefteq\overline{H}<\mathrm{PGL}_{n}(\mathbb{F}), then

    RC(H¯,Ω1)={2n1 if n=3,2n2 if n4.\mathrm{RC}(\overline{H},\Omega_{1})=\begin{cases}2n-1&\text{ if }n=3,\\ 2n-2&\text{ if }n\geq 4.\end{cases}

For most groups, we see that the relational complexity is very close to the bound in Proposition 1.2(ii). However, the difference between the height and the relational complexity of PGLn(𝔽)\mathrm{PGL}_{n}(\mathbb{F}) increases with nn when |𝔽|3|\mathbb{F}|\geq 3. This addresses a recent question of Cherlin and Wiscons (see [6, p. 23]): there exists a family of finite primitive groups that are not large-base, where the difference between height and relational complexity can be arbitrarily large. Theorem A also provides infinitely many examples of almost simple groups H¯\overline{H} with RC(Soc(H¯))>RC(H¯)\mathrm{RC}(\mathrm{Soc}(\overline{H}))>\mathrm{RC}(\overline{H}).

One way to interpret the gap between the relational complexity of PGLn(𝔽)\mathrm{PGL}_{n}(\mathbb{F}) and its proper almost simple subgroups with socle PSLn(𝔽)\mathrm{PSL}_{n}(\mathbb{F}) is to observe that preserving linear dependence and indepedence is a comparatively “local” phenomenon, requiring information about the images of nn-tuples of subspaces but not (very much) more, whereas restricting determinants requires far richer information. This mimics the difference between the relational complexity of Sn\mathrm{S}_{n} and An\mathrm{A}_{n} in their natural actions, where requiring a map to be a permutation is “local”, but requiring a permutation to be even is a “global” property.

We next bound the relational complexity of the remaining groups with socle PSLn(q)\mathrm{PSL}_{n}(q) that act on Ω1\Omega_{1}. For k>0k\in\mathbb{Z}_{>0}, the number of distinct prime divisors of kk is denoted by ω(k)\omega(k), with ω(1)=0\omega(1)=0.

Theorem B.

Let H¯\overline{H} satisfy PSLn(q)H¯PΓLn(q)\mathrm{PSL}_{n}(q)\leq\overline{H}\leq\mathrm{P}\Gamma\mathrm{L}_{n}(q), and let e:=|H¯:H¯PGLn(q)|e:=|\overline{H}:\overline{H}\cap\mathrm{PGL}_{n}(q)|. Suppose that e>1e>1, so that q4q\geq 4 and H¯PGLn(q)\overline{H}\not\leq\mathrm{PGL}_{n}(q).

  1. (i)

    If n=2n=2 and q8q\geq 8, then 4+ω(e)RC(H¯,Ω1)44+\omega(e)\geq\mathrm{RC}(\overline{H},\Omega_{1})\geq 4, except that RC(PΣL2(9),Ω1)=3\mathrm{RC}(\mathrm{P}\Sigma\mathrm{L}_{2}(9),\Omega_{1})=3.

  2. (ii)

    If n3n\geq 3, then

    2n1+ω(e)RC(H¯,Ω1){n+2 always,n+3 if PGLn(q)<H¯,2n2 if H¯PΣLn(q)PΓLn(q).2n-1+\omega(e)\geq\mathrm{RC}(\overline{H},\Omega_{1})\geq\begin{cases}n+2&\text{ always},\\ n+3&\text{ if }\mathrm{PGL}_{n}(q)<\overline{H},\\ 2n-2&\text{ if }\overline{H}\leq\mathrm{P}\Sigma\mathrm{L}_{n}(q)\neq\mathrm{P}\Gamma\mathrm{L}_{n}(q).\end{cases}

In fact, the lower bound of 2n22n-2 holds for a larger family of groups; see Proposition 3.7.

Theorem C.

Let H¯\overline{H} satisfy PSLn(q)H¯PΓLn(q)\mathrm{PSL}_{n}(q)\leq\overline{H}\leq\mathrm{P}\Gamma\mathrm{L}_{n}(q) and let e:=|H¯:H¯PGLn(q)|e:=|\overline{H}:\overline{H}\cap\mathrm{PGL}_{n}(q)|. Fix m{2,,n2}m\in\{2,\ldots,{\lfloor\frac{n}{2}\rfloor}\}. Then

(m+1)n2m+2+ω(e)RC(H¯,Ωm)mnm2+1.(m+1)n-2m+2+\omega(e)\geq\mathrm{RC}(\overline{H},\Omega_{m})\geq mn-m^{2}+1.

GAP [5] calculations using [3] yield RC(PΓL2(35),Ω1)=5=4+ω(5)\mathrm{RC}(\mathrm{P}\Gamma\mathrm{L}_{2}(3^{5}),\Omega_{1})=5=4+\omega(5) and RC(PΓL4(9),Ω1)=8=7+ω(2)\mathrm{RC}(\mathrm{P}\Gamma\mathrm{L}_{4}(9),\Omega_{1})=8=7+\omega(2), so the upper bounds of Theorem B cannot be improved in general. On the other hand, RC(PΓL3(26),Ω1)\mathrm{RC}(\mathrm{P}\Gamma\mathrm{L}_{3}(2^{6}),\Omega_{1}) achieves the lower bound of 6=3+3<7=5+ω(6)6=3+3<7=5+\omega(6). Additionally, RC(PSL4(2),Ω2)\mathrm{RC}(\mathrm{PSL}_{4}(2),\Omega_{2}) achieves the lower bound of 55 from Theorem C, while RC(PSL4(3),Ω2)=6\mathrm{RC}(\mathrm{PSL}_{4}(3),\Omega_{2})=6 and RC(PGL4(3),Ω2)=RC(PSL4(4),Ω2)=RC(PΓL4(4),Ω2)=8\mathrm{RC}(\mathrm{PGL}_{4}(3),\Omega_{2})=\mathrm{RC}(\mathrm{PSL}_{4}(4),\Omega_{2})=\mathrm{RC}(\mathrm{P}\Gamma\mathrm{L}_{4}(4),\Omega_{2})=8.

It is straightforward to use our results to bound the relational complexity in terms of the degree. For example, RC(PGLn(q),Ω1)<log(|Ω1|)+3\mathrm{RC}(\mathrm{PGL}_{n}(q),\Omega_{1})<\log(|\Omega_{1}|)+3. Many of our arguments also apply to the case where 𝔽\mathbb{F} is an arbitrary field; see Theorem 3.1, Lemmas 3.5 and 3.6, and Propositions 3.7 and 4.1.

This paper is structured as follows. In Section 2, we fix some more notation and prove some elementary lemmas, then prove upper bounds on the relational complexity of the relevant actions on 11-spaces. In Section 3, we shall prove corresponding lower bounds, and then prove Theorems A and B. Finally, in Section 4, we prove Theorem C.

2. Action on 1-spaces: upper bounds

In this section we present several preliminary lemmas, and then determine upper bounds for the relational complexity of groups HH, with SLn(𝔽)HGLn(𝔽)\mathrm{SL}_{n}(\mathbb{F})\trianglelefteq H\leq\mathrm{GL}_{n}(\mathbb{F}), acting on Ω1\Omega_{1}.

We begin with some notation that we will use throughout the remainder of the paper. Let {e1,,en}\{e_{1},\ldots,e_{n}\} be a basis for VV. For a set Γ\Gamma, a tuple X=(xi)i=1kΓkX=(x_{i})_{i=1}^{k}\in\Gamma^{k} and a permutation σSk\sigma\in\mathrm{S}_{k}, we write XσX^{\sigma} to denote the kk-tuple (x1σ1,,xkσ1)(x_{1^{\sigma^{-1}}},\ldots,x_{k^{\sigma^{-1}}}). For a tuple XΩmkX\in\Omega_{m}^{k}, we write X\langle X\rangle to denote the subspace of VV spanned by all entries in XX. For i{1,,k}i\in\{1,\ldots,k\}, we shall write (Xxi)(X\setminus x_{i}) to denote the subtuple of XX obtained by deleting xix_{i}.

In the remainder of this section, let Ω:=Ω1=𝒫𝒢1(V)\Omega:=\Omega_{1}=\mathcal{PG}_{1}(V) and let HH be a group such that SLn(𝔽)HGLn(𝔽)\mathrm{SL}_{n}(\mathbb{F})\trianglelefteq H\leq\mathrm{GL}_{n}(\mathbb{F}). Recall from Theorem 1.1 that RC(GLn(𝔽),Ω)=n\mathrm{RC}(\mathrm{GL}_{n}(\mathbb{F}),\Omega)=n when |𝔽|=2|\mathbb{F}|=2. Thus we shall assume throughout this section that |𝔽|3|\mathbb{F}|\geq 3 and n2n\geq 2.

We write DD to denote the subgroup of diagonal matrices of GLn(𝔽)\mathrm{GL}_{n}(\mathbb{F}) (with respect to the basis {e1,,en}\{e_{1},\ldots,e_{n}\}), and Δ:={eii{1,,n}}\Delta:=\big{\{}\langle e_{i}\rangle\mid i\in\{1,\ldots,n\}\big{\}}. Observe that DD is nontrivial since |𝔽|>2|\mathbb{F}|>2, and that DHD\cap H is the pointwise stabiliser H(Δ)H_{(\Delta)}. For a vector v=i=1nαieiVv=\sum_{i=1}^{n}\alpha_{i}e_{i}\in V, the support supp(v)\mathrm{supp}({v}) of vv is the set {i{1,,n}αi0}\{i\in\{1,\ldots,n\}\mid\alpha_{i}\neq 0\}. Additionally, the support supp(W)\mathrm{supp}({W}) of a subset WW of VV is the set wWsupp(w)\bigcup_{w\in W}\mathrm{supp}({w}), and similarly for tuples. In particular, Δ\Delta is the set of subspaces of VV with support of size 11, and supp(W)=supp(W)\mathrm{supp}({W})=\mathrm{supp}({\langle W\rangle}) for all subsets WW of VV.

2.1. Preliminaries

We begin our study of the action of HH on Ω\Omega with a pair of lemmas that will enable us to consider only tuples of a very restricted form.

Lemma 2.1.

Let knk\geq n, and let X,YΩkX,Y\in\Omega^{k} be such that XH,nYX{\underset{H,n}{\sim}}Y. Additionally, let a:=dim(X)a:=\mathrm{dim}(\langle X\rangle). Then there exist X=(x1,,xk),Y=(y1,,yk)ΩkX^{\prime}=(x^{\prime}_{1},\ldots,x^{\prime}_{k}),Y^{\prime}=(y^{\prime}_{1},\ldots,y^{\prime}_{k})\in\Omega^{k} such that

  1. (i)

    xi=yi=eix^{\prime}_{i}=y^{\prime}_{i}=\langle e_{i}\rangle for i{1,,a}i\in\{1,\ldots,a\}, and

  2. (ii)

    XH,rYX{\underset{H,r}{\sim}}Y if and only if XH,rYX^{\prime}{\underset{H,r}{\sim}}Y^{\prime}, for each r{1,,k}r\in\{1,\ldots,k\}.

Proof.

Observe that there exists σSk\sigma\in\mathrm{S}_{k} such that Xσ=x1σ1,,xaσ1\langle X^{\sigma}\rangle=\langle x_{1^{\sigma^{-1}}},\ldots,x_{a^{\sigma^{-1}}}\rangle. Since XH,nYX{\underset{H,n}{\sim}}Y and ana\leq n, the definition of aa-equivalence yields XσH,aYσX^{\sigma}{\underset{H,a}{\sim}}Y^{\sigma}. Hence there exists an fHf\in H such that xiσ1f=yiσ1x_{i^{\sigma^{-1}}}^{f}=y_{i^{\sigma^{-1}}} for all i{1,,a}i\in\{1,\ldots,a\}, and so Yσ=y1σ1,,yaσ1\langle Y^{\sigma}\rangle=\langle y_{1^{\sigma^{-1}}},\ldots,y_{a^{\sigma^{-1}}}\rangle. Since SLn(𝔽)\mathrm{SL}_{n}(\mathbb{F}) is transitive on nn-tuples of linearly independent 11-spaces, there exists hSLn(𝔽)Hh\in\mathrm{SL}_{n}(\mathbb{F})\leq H such that xiσ1fh=yiσ1h=eix_{i^{\sigma^{-1}}}^{fh}=y_{i^{\sigma^{-1}}}^{h}=\langle e_{i}\rangle for i{1,,a}i\in\{1,\ldots,a\}. Define X,YΩkX^{\prime},Y^{\prime}\in\Omega^{k} by xi=xiσ1fhx_{i}^{\prime}=x_{i^{\sigma^{-1}}}^{fh} and yi=yiσ1hy_{i}^{\prime}=y_{i^{\sigma^{-1}}}^{h}, so that X=XσfhX^{\prime}=X^{\sigma fh} and Y=YσhY^{\prime}=Y^{\sigma h}. Then XH,rYX^{\prime}{\underset{H,r}{\sim}}Y^{\prime} if and only if XσH,rYσX^{\sigma}{\underset{H,r}{\sim}}Y^{\sigma}, which holds if and only if XH,rYX{\underset{H,r}{\sim}}Y. ∎

Lemma 2.2.

Let krnk\geq r\geq n, and let X,YΩkX,Y\in\Omega^{k} be such that XH,rYX{\underset{H,r}{\sim}}Y. Additionally, let a:=dim(X){a:=\mathrm{dim}(\langle X\rangle)} and assume that a<na<n. If a=1a=1, or if RC(GLa(𝔽),𝒫𝒢1(𝔽a))r\mathrm{RC}(\mathrm{GL}_{a}(\mathbb{F}),\mathcal{PG}_{1}(\mathbb{F}^{a}))\leq r, then YXHY\in X^{H}.

Proof.

If a=1a=1, then all entries of XX are equal, so since rn2r\geq n\geq 2, we see that XH,rYX{\underset{H,r}{\sim}}Y directly implies YXHY\in X^{H}. We will therefore suppose that a2a\geq 2 and RC(GLa(𝔽),𝒫𝒢1(𝔽a))r\mathrm{RC}(\mathrm{GL}_{a}(\mathbb{F}),\mathcal{PG}_{1}(\mathbb{F}^{a}))\leq r. By Lemma 2.1, we may assume without loss of generality that X=Y=e1,,ea\langle X\rangle=\langle Y\rangle=\langle e_{1},\ldots,e_{a}\rangle. As XH,rYX{\underset{H,r}{\sim}}Y and RC(GLa(𝔽),𝒫𝒢1(𝔽a))r\mathrm{RC}(\mathrm{GL}_{a}(\mathbb{F}),\mathcal{PG}_{1}(\mathbb{F}^{a}))\leq r, there exists an element gGLa(𝔽)g\in\mathrm{GL}_{a}(\mathbb{F}) mapping XX to YY, considered as tuples of subspaces of e1,,ea\langle e_{1},\ldots,e_{a}\rangle. We now let hh be the diagonal matrix diag(det(g1),1,1)GLna(𝔽)\mathrm{diag}(\det({g}^{-1}),1,\ldots 1)\in\mathrm{GL}_{n-a}(\mathbb{F}), and observe that ghSLn(𝔽)g\oplus h\in\mathrm{SL}_{n}(\mathbb{F}) maps XX to YY and lies in HH, since SLn(𝔽)\mathrm{SL}_{n}(\mathbb{F}) lies in HH. Thus YXHY\in X^{H}. ∎

We now begin our study of some particularly nice kk-tuples.

Lemma 2.3.

Let kn+1k\geq n+1, and let X,YΩkX,Y\in\Omega^{k} be such that xi=yi=eix_{i}=y_{i}=\langle e_{i}\rangle for i{1,,n}i\in\{1,\ldots,n\} and XH,n+1YX{\underset{H,n+1}{\sim}}Y. Then supp(xi)=supp(yi)\mathrm{supp}({x_{i}})=\mathrm{supp}({y_{i}}) for all i{1,,k}i\in\{1,\ldots,k\}.

Proof.

It is clear that supp(xi)={i}=supp(yi)\mathrm{supp}({x_{i}})=\{i\}=\mathrm{supp}({y_{i}}) when i{1,,n}i\in\{1,\ldots,n\}. Assume therefore that i>ni>n. Since XH,n+1YX{\underset{H,n+1}{\sim}}Y, there exists gHg\in H such that (e1,,en,xi)g=(e1,,en,yi)(\langle e_{1}\rangle,\ldots,\langle e_{n}\rangle,x_{i})^{g}=(\langle e_{1}\rangle,\ldots,\langle e_{n}\rangle,y_{i}). Observe that gH(Δ)=DHg\in H_{(\Delta)}=D\cap H, and so supp(xi)=supp(yi)\mathrm{supp}({x_{i}})=\mathrm{supp}({y_{i}}). ∎

Our final introductory lemma collects several elementary observations regarding tuples of subspaces in Δ¯:=ΩΔ\overline{\Delta}:=\Omega\setminus\Delta, the set of 11-dimensional subspaces of support size greater than 11. For r1r\geq 1 and A,BΔ¯rA,B\in\overline{\Delta}^{r}, we let 𝕄A,B\mathbb{M}_{A,B} consist of all matrices in 𝕄n,n(𝔽)\mathbb{M}_{n,n}(\mathbb{F}) that fix ei\langle e_{i}\rangle for 1in1\leq i\leq n and map aja_{j} into bjb_{j} for 1jr1\leq j\leq r. Notice that all matrices in 𝕄A,B\mathbb{M}_{A,B} are diagonal, and that if g,h𝕄A,Bg,h\in\mathbb{M}_{A,B}, then ajg+h=ajg+ajhbja_{j}^{g+h}=a_{j}^{g}+a_{j}^{h}\leq b_{j}, so 𝕄A,B\mathbb{M}_{A,B} is a subspace of 𝕄n,n\mathbb{M}_{n,n}. For an n×nn\times n matrix g=(gij)g=(g_{ij}) and a subset II of {1,,n}\{1,\ldots,n\}, we write g|Ig|_{I} to denote the submatrix of gg consisting of the rows and columns with indices in II.

Lemma 2.4.

Let r1r\geq 1, and let A=(a1,,ar),B=(b1,,br)Δ¯rA=(a_{1},\ldots,a_{r}),B=(b_{1},\ldots,b_{r})\in\overline{\Delta}^{\,r}.

  1. (i)

    Let aia_{i} and aja_{j} be (possibly equal) elements of AA such that supp(ai)supp(aj)\mathrm{supp}({a_{i}})\cap\mathrm{supp}({a_{j}})\neq\varnothing, and let g𝕄A,Ag\in\mathbb{M}_{A,A}. Then g|supp(ai,aj)g|_{\mathrm{supp}({a_{i},a_{j}})} is a scalar.

  2. (ii)

    Suppose that AD,1BA{\underset{D,1}{\sim}}B. Then for 1ir1\leq i\leq r, the space (𝕄(ai),(bi))|supp(ai)(\mathbb{M}_{(a_{i}),(b_{i})})|_{\mathrm{supp}({a_{i}})} is one-dimensional, so the dimension of 𝕄(ai),(bi)\mathbb{M}_{(a_{i}),(b_{i})} is equal to n+1|supp(ai)|n+1-|\mathrm{supp}({a_{i}})|.

  3. (iii)

    For a subtuple AA^{\prime} of AA, let S:={1,,n}supp(A)S:=\{1,\ldots,n\}\setminus\mathrm{supp}({A^{\prime}}). Then dim((𝕄A,A)|S)=|S|\mathrm{dim}((\mathbb{M}_{A^{\prime},A^{\prime}})|_{S})=|S|.

Proof.

Part (i) is clear. For Part (ii), by assumption, there is an invertible diagonal matrix mapping aia_{i} to bib_{i}, so supp(ai)=supp(bi)\mathrm{supp}({a_{i}})=\mathrm{supp}({b_{i}}). Let kk and \ell be distinct elements of supp(ai)\mathrm{supp}({a_{i}}), which exist as aiΔ¯a_{i}\in\overline{\Delta}. If aigbia_{i}^{g}\leq b_{i}, then ekg=λeke_{k}^{g}=\lambda e_{k} for some λ𝔽\lambda\in\mathbb{F}, and the value of λ\lambda completely determines the image μe\mu e_{\ell} of ee_{\ell} under gg. The result follows. Part (iii) follows from the fact that for all g𝕄A,Ag\in\mathbb{M}_{A^{\prime},A^{\prime}}, sSs\in S, λ𝔽\lambda\in\mathbb{F} and aAa\in A^{\prime}, the matrix obtained from gg by adding λ\lambda to its ss-th diagonal entry fixes aa. ∎

2.2. Upper bounds for SLn(𝔽)HGLn(𝔽)\mathrm{SL}_{n}(\mathbb{F})\trianglelefteq H\leq\mathrm{GL}_{n}(\mathbb{F}) on 1-spaces

In this subsection, we will suppose that n4n\geq 4 and |𝔽|3|\mathbb{F}|\geq 3, and let HH be any group such that SLn(𝔽)HGLn(𝔽){\mathrm{SL}_{n}(\mathbb{F})\trianglelefteq H\leq\mathrm{GL}_{n}(\mathbb{F})}. Our main result is Theorem 2.7, which gives upper bounds on RC(H,Ω)\mathrm{RC}(H,\Omega).

Lemma 2.5.

If XH,2n2YX{\underset{H,2n-2}{\sim}}Y implies that XH,2n1YX{\underset{H,2n-1}{\sim}}Y, for all X,YΩ2n1X,Y\in\Omega^{2n-1} with xi=yi=eix_{i}=y_{i}=\langle e_{i}\rangle for i{1,,n}i\in\{1,\ldots,n\}, then RC(H,Ω)2n2\mathrm{RC}(H,\Omega)\leq 2n-2.

Proof.

Let kk be at least 2n12n-1, and let A,BΩkA,B\in\Omega^{k} satisfy AH,2n2BA{\underset{H,2n-2}{\sim}}B. Let AA^{\prime} be a subtuple of AA of length 2n12n-1, and BB^{\prime} the corresponding (2n1)(2n-1)-subtuple of BB. We shall show that BAHB^{\prime}\in{A^{\prime}}^{H} for all such AA^{\prime} and BB^{\prime}, so that AH,2n1BA{\underset{H,2n-1}{\sim}}B. It will then follow from Proposition 1.2(ii) that ABHA\in B^{H}, as required.

Let a:=dim(A)a:=\mathrm{dim}(\langle A^{\prime}\rangle), and suppose first that a<na<n. We observe from Proposition 1.2 that if a2a\geq 2, then RC(GLa(𝔽),𝒫𝒢1(𝔽a))<2n2\mathrm{RC}(\mathrm{GL}_{a}(\mathbb{F}),\mathcal{PG}_{1}(\mathbb{F}^{a}))<2n-2. As AH,2n2BA^{\prime}{\underset{H,2n-2}{\sim}}B^{\prime}, Lemma 2.2 yields BAHB^{\prime}\in{A^{\prime}}^{H}. If instead a=na=n, then by Lemma 2.1 there exist XX and YY in Ω2n1\Omega^{2n-1}, such that xi=yi=eix_{i}=y_{i}=\langle e_{i}\rangle for each i{1,,n}i\in\{1,\ldots,n\}, and such that for all r1r\geq 1, the relations AH,rBA^{\prime}{\underset{H,r}{\sim}}B^{\prime} and XH,rYX{\underset{H,r}{\sim}}Y are equivalent. Now, AH,2n2BA^{\prime}{\underset{H,2n-2}{\sim}}B^{\prime}, so XH,2n2YX{\underset{H,2n-2}{\sim}}Y. If XH,2n2YX{\underset{H,2n-2}{\sim}}Y implies that XH,2n1YX{\underset{H,2n-1}{\sim}}Y, then BAHB^{\prime}\in{A^{\prime}}^{H}, as required. ∎

We shall therefore let XX and YY be elements of Ω2n1\Omega^{2n-1} with xi=yi=eix_{i}=y_{i}=\langle e_{i}\rangle for i{1,,n}i\in\{1,\ldots,n\}, such that XH,2n2YX{\underset{H,2n-2}{\sim}}Y. Additionally, for i{1,,2n1}i\in\{1,\ldots,2n-1\} and j{1,,n}j\in\{1,\ldots,n\}, define

(1) αij,βij𝔽 so that xi=j=1nαijej and yi=j=1nβijej.\alpha_{ij},\beta_{ij}\in\mathbb{F}\mbox{ so that }x_{i}=\langle\sum_{j=1}^{n}\alpha_{ij}e_{j}\rangle\mbox{ and }y_{i}=\langle\sum_{j=1}^{n}\beta_{ij}e_{j}\rangle.
Lemma 2.6.

With the notation above, if at least one of the following holds, then YXHY\in X^{H}.

  1. (i)

    There exist i,j{n+1,,2n1}i,j\in\{n+1,\ldots,2n-1\} with iji\neq j and supp(xi)supp(xj)\mathrm{supp}({x_{i}})\subseteq\mathrm{supp}({x_{j}}).

  2. (ii)

    There exists a nonempty R{n+1,,2n1}R\subseteq\{n+1,\ldots,2n-1\} with |iRsupp(xi)|=1|\bigcap_{i\in R}\mathrm{supp}({x_{i}})|=1.

  3. (iii)

    There exists i{n+1,,2n1}i\in\{n+1,\ldots,2n-1\} such that supp(xi)4\mathrm{supp}({x_{i}})\geq 4.

Proof.

We begin by noting that Lemma 2.3 yields supp(yi)=supp(xi)\mathrm{supp}({y_{i}})=\mathrm{supp}({x_{i}}) for all i{1,,2n1}i\in\{1,\ldots,2n-1\}.

  1. (i)

    Since XH,2n2YX{\underset{H,2n-2}{\sim}}Y, there exists an hHh\in H mapping (Xxi)(X\setminus x_{i}) to (Yyi)(Y\setminus y_{i}), and such an hh is necessarily diagonal, with fixed entries in supp(xj)\mathrm{supp}({x_{j}}) (up to scalar multiplication).

    Now, let {n+1,,2n1}{i,j}\ell\in\{n+1,\ldots,2n-1\}\setminus\{i,j\} (this is possible as n4n\geq 4). There exists an hHh^{\prime}\in H mapping (Xx)(X\setminus x_{\ell}) to (Yy)(Y\setminus y_{\ell}), and as before each such hh^{\prime} is diagonal. Hence every matrix in HDH\cap D mapping xjx_{j} to yjy_{j} maps xix_{i} to yiy_{i}, and in particular xih=yix_{i}^{h}=y_{i} and so Xh=YX^{h}=Y.

  2. (ii)

    Let {}:=iRsupp(xi)\{\ell\}:=\bigcap_{i\in R}\mathrm{supp}({x_{i}}). Then αi0\alpha_{i\ell}\neq 0 for all iRi\in R. Since XH,2n2YX{\underset{H,2n-2}{\sim}}Y, there exists hHh\in H such that (Xx)h=(Yy)(X\setminus x_{\ell})^{h}=(Y\setminus y_{\ell}). It follows that for all k{1,,n}\{}k\in\{1,\ldots,n\}\backslash\{\ell\}, there exists γk𝔽\gamma_{k}\in\mathbb{F}^{*} such that ekh=γkeke_{k}^{h}=\gamma_{k}e_{k}. Thus for each iRi\in R,

    yi=xih=ksupp(xi)αikekh=αieh+ksupp(xi){}αikγkek.y_{i}=x_{i}^{h}=\Big{\langle}\sum_{k\in\mathrm{supp}({x_{i}})}\alpha_{ik}e_{k}^{h}\Big{\rangle}=\Big{\langle}\alpha_{i\ell}e_{\ell}^{h}+\sum_{k\in\mathrm{supp}({x_{i}})\setminus\{\ell\}}\alpha_{ik}\gamma_{k}e_{k}\Big{\rangle}.

    Since αi0\alpha_{i\ell}\neq 0, we deduce that supp(eh)supp(yi)=supp(xi)\mathrm{supp}({e_{\ell}^{h}})\subseteq\mathrm{supp}({y_{i}})=\mathrm{supp}({x_{i}}). As this holds for all iRi\in R, we obtain supp(eh)={}\mathrm{supp}({e_{\ell}^{h}})=\{\ell\}. Thus xh=eh=e=yx_{\ell}^{h}=\langle e_{\ell}\rangle^{h}=\langle e_{\ell}\rangle=y_{\ell}, so Xh=YX^{h}=Y.

  3. (iii)

    Permute the last n1n-1 coordinates of XX and YY so that supp(xn+1)4\mathrm{supp}({x_{n+1}})\geq 4. By (ii), we may assume that xiΔx_{i}\not\in\Delta for all in+1i\geq n+1. For each k{n+1,,2n1}k\in{\{n+1,\ldots,2n-1\}}, we define Xn+1k:=(xn+1,,xk)X_{n+1}^{k}:=(x_{n+1},\ldots,x_{k}) and Yn+1k:=(yn+1,,yk)Y_{n+1}^{k}:=(y_{n+1},\ldots,y_{k}). As supp(xi)=supp(yi)\mathrm{supp}({x_{i}})=\mathrm{supp}({y_{i}}) for all ii, we see that Xn+1kD,1Yn+1kX_{n+1}^{k}{\underset{D,1}{\sim}}Y_{n+1}^{k}, so Xn+1kX_{n+1}^{k} and Yn+1kY_{n+1}^{k} satisfy the conditions of Lemma 2.4(ii).

    Suppose first that there exists j{n+2,,2n1}j\in{\{n+2,\ldots,2n-1\}} such that 𝕄Xn+1j,Yn+1j=𝕄Xn+1j1,Yn+1j1\mathbb{M}_{X_{n+1}^{j},Y_{n+1}^{j}}=\mathbb{M}_{X_{n+1}^{j-1},Y_{n+1}^{j-1}}. As XH,2n2YX{\underset{H,2n-2}{\sim}}Y, there exists hHDh\in H\cap D such that (Xxj)h=(Yyj)(X\setminus x_{j})^{h}=(Y\setminus y_{j}). Hence h𝕄Xn+1j1,Yn+1j1h\in\mathbb{M}_{X_{n+1}^{j-1},Y_{n+1}^{j-1}}, and so h𝕄Xn+1j,Yn+1jh\in\mathbb{M}_{X_{n+1}^{j},Y_{n+1}^{j}}. Therefore, xjh=yjx_{j}^{h}=y_{j} and Xh=YX^{h}=Y.

    Hence we may assume instead that 𝕄Xn+1j,Yn+1j<𝕄Xn+1j1,Yn+1j1\mathbb{M}_{X_{n+1}^{j},Y_{n+1}^{j}}<\mathbb{M}_{X_{n+1}^{j-1},Y_{n+1}^{j-1}} for all j{n+2,,2n1}j\in{\{n+2,\ldots,2n-1\}}. Then dim(𝕄Xn+1j,Yn+1j)dim(𝕄Xn+1j1,Yn+1j1)1\mathrm{dim}(\mathbb{M}_{X_{n+1}^{j},Y_{n+1}^{j}})\leq\mathrm{dim}(\mathbb{M}_{X_{n+1}^{j-1},Y_{n+1}^{j-1}})-1. Lemma 2.4(ii) yields dim(𝕄Xn+1n+1,Yn+1n+1)n3\mathrm{dim}(\mathbb{M}_{X_{n+1}^{n+1},Y_{n+1}^{n+1}})\leq{n-3}, and hence 𝕄Xn+12n2,Yn+12n2={0}=𝕄Xn+12n1,Yn+12n2\mathbb{M}_{X_{n+1}^{2n-2},Y_{n+1}^{2n-2}}=\{0\}=\mathbb{M}_{X_{n+1}^{2n-1},Y_{n+1}^{2n-2}}, contradicting our assumption. ∎

We now prove the main result of this subsection.

Theorem 2.7.

Suppose that n4n\geq 4 and |𝔽|3|\mathbb{F}|\geq 3, and let HH be any group with SLn(𝔽)HGLn(𝔽){\mathrm{SL}_{n}(\mathbb{F})\trianglelefteq H\leq\mathrm{GL}_{n}(\mathbb{F})}. Then RC(H,Ω)2n2\mathrm{RC}(H,\Omega)\leq 2n-2.

Proof.

Let X,YΩ2n1X,Y\in\Omega^{2n-1} be as defined before Lemma 2.6. By Lemma 2.5 it suffices to show that YXHY\in X^{H}, so assume otherwise. We may also assume that all subspaces in XX are distinct, so that |supp(xi)|{2,3}|\mathrm{supp}({x_{i}})|\in\{2,3\} for each i{n+1,,2n1}i\in\{n+1,\ldots,2n-1\} by Lemma 2.6(iii).

For k{2,3}k\in\{2,3\}, let RkR_{k} be the set of all i{n+1,,2n1}i\in\{n+1,\ldots,2n-1\} such that |supp(xi)|=k|\mathrm{supp}({x_{i}})|=k. Then

(2) |R2|+|R3|=n1.|R_{2}|+|R_{3}|=n-1.

Observe from Lemma 2.6(i)(ii) that if iR2i\in R_{2}, then supp(xi)supp(xj)=\mathrm{supp}({x_{i}})\cap\mathrm{supp}({x_{j}})=\varnothing for each j{n+1,,2n1}{i}j\in{\{n+1,\ldots,2n-1\}\setminus\{i\}}. Hence 2|R2|n2|R_{2}|\leq n and

(3) |U|:=|jR3supp(xj)||{1,,n}(iR2˙supp(xi))|=n2|R2|.|U|:=\bigg{|}\bigcup_{j\in R_{3}}\mathrm{supp}({x_{j}})\bigg{|}\leq\bigg{|}\{1,\ldots,n\}\setminus\Big{(}\dot{\bigcup_{i\in R_{2}}}\mathrm{supp}({x_{i}})\Big{)}\bigg{|}=n-2|R_{2}|.

Observe next that |R3|1|R_{3}|\geq 1, else |R2|=n1|R_{2}|=n-1 by (2), contradicting 2|R2|n2|R_{2}|\leq n. We shall determine an expression for |U||U| involving |R3||R_{3}|, by considering the maximal subsets PP of R3R_{3} that correspond to pairwise overlapping supports. To do so, define a relation \sim on R3R_{3} by iji\sim j if supp(xi)supp(xj)\mathrm{supp}({x_{i}})\cap\mathrm{supp}({x_{j}})\neq\varnothing, let 𝒫\mathcal{P} be the set of equivalence classes of the transitive closure of \sim, and let P𝒫P\in\mathcal{P}. We claim that |cPsupp(xc)|=2+|P||\bigcup_{c\in P}\mathrm{supp}({x_{c}})|=2+|P|. By Lemma 2.6(i)(ii), |supp(xi)supp(xj)|{0,2}|\mathrm{supp}({x_{i}})\cap\mathrm{supp}({x_{j}})|\in\{0,2\} for all distinct i,jR3i,j\in R_{3}. Thus our claim is clear if |P|{1,2}|P|\in\{1,2\}.

If instead |P|3|P|\geq 3, then there exist distinct c1,c2,c3Pc_{1},c_{2},c_{3}\in P with c1c2c_{1}\sim c_{2} and c2c3c_{2}\sim c_{3}. Let I:=i=13supp(xci)I:=\bigcap_{i=1}^{3}\mathrm{supp}({x_{c_{i}}}). We observe that |I|0|I|\neq 0, and so Lemma 2.6(ii) shows that II has size two and is equal to supp(xc1)supp(xc3)\mathrm{supp}({x_{c_{1}}})\cap\mathrm{supp}({x_{c_{3}}}). Hence c1c3c_{1}\sim c_{3} and i=13supp(xci)=I˙(˙i=13(supp(xci)I))\bigcup_{i=1}^{3}\mathrm{supp}({x_{c_{i}}})=I\dot{\cup}\big{(}\dot{\bigcup}_{i=1}^{3}(\mathrm{supp}({x_{c_{i}}})\setminus I)\big{)}. If |P|>3|P|>3, then there exists c4P{c1,c2,c3}c_{4}\in P\setminus\{c_{1},c_{2},c_{3}\} such that, without loss of generality, c4c1c_{4}\sim c_{1}. As c1cjc_{1}\sim c_{j} for each j{2,3}j\in\{2,3\}, the above argument shows that i{1,j,4}supp(xci)=I\bigcap_{i\in\{1,j,4\}}\mathrm{supp}({x_{c_{i}}})=I and i=14supp(xci)=I˙(˙i=14(supp(xci)I))\bigcup_{i=1}^{4}\mathrm{supp}({x_{c_{i}}})=I\dot{\cup}\big{(}\dot{\bigcup}_{i=1}^{4}(\mathrm{supp}({x_{c_{i}}})\setminus I)\big{)}. Repeating this argument inductively on |P||P| shows that cPsupp(xc)=I˙(˙cP(supp(xc)I)){\bigcup}_{c\in P}\mathrm{supp}({x_{c}})=I\dot{\cup}\big{(}\dot{\bigcup}_{c\in P}(\mathrm{supp}({x_{c}})\setminus I)\big{)}, which has size 2+|P|2+|P|, as claimed.

Finally, let r1r\geq 1 be the number of parts of 𝒫\mathcal{P}. As |R3|=P𝒫|P||R_{3}|=\sum_{P\in\mathcal{P}}|P|, it follows from our claim that |U|=2r+|R3|2+|R3||U|=2r+|R_{3}|\geq 2+|R_{3}|. Thus (3) yields 2+|R3|n2|R2|2+|R_{3}|\leq n-2|R_{2}|. Hence 2|R2|+|R3|n2<n12|R_{2}|+|R_{3}|\leq n-2<n-1, which is equal to |R2|+|R3||R_{2}|+|R_{3}| by (2), a contradiction. ∎

2.3. Upper bounds for GLn(𝔽)\mathrm{GL}_{n}(\mathbb{F}) on 1-spaces

In this subsection, we determine a much smaller upper bound on RC(GLn(𝔽),Ω)\mathrm{RC}(\mathrm{GL}_{n}(\mathbb{F}),\Omega) via our main result, Theorem 2.12. We shall assume throughout that nn and |𝔽||\mathbb{F}| are at least 33, and write G:=GLn(𝔽)G:=\mathrm{GL}_{n}(\mathbb{F}). Since DD is the pointwise stabiliser of Δ\Delta in GG, we will prove Theorem 2.12 by combining Lemmas 2.1 and 2.2 with information about the action of DD on rr-tuples AA and BB of subspaces in Δ¯=ΩΔ\overline{\Delta}=\Omega\setminus\Delta. If these tuples are (r1)(r-1)-equivalent under DD, then by acting on one with a suitable element of Δ¯\overline{\Delta} we may assume that their first r1r-1 entries are equal. We shall denote the nonzero entries of elements gg of DD by just g1,,gng_{1},\ldots,g_{n} rather than g11,,gnng_{11},\ldots,g_{nn}, since gg is necessarily diagonal.

Lemma 2.8.

Let r3r\geq 3, and let A,BΔ¯rA,B\in\overline{\Delta}^{\,r} be such that (a1,,ar1)=(b1,,br1)(a_{1},\ldots,a_{r-1})=(b_{1},\ldots,b_{r-1}), AD,r1BA{\underset{D,r-1}{\sim}}B, and BADB\notin A^{D}. Let C={a1,,ar1}C=\{a_{1},\ldots,a_{r-1}\} and assume also that supp(C)={1,,n}\mathrm{supp}({C})=\{1,\ldots,n\}. Then (after reordering the basis for VV and (a1,,ar1)(a_{1},\ldots,a_{r-1}) if necessary) the following statements hold.

  1. (i)

    There exist integers 2i1<i2<<ir1=n2\leq i_{1}<i_{2}<\ldots<i_{r-1}=n such that, for each t{1,,r1}t\in\{1,\ldots,r-1\}, supp(a1,,at)\mathrm{supp}({a_{1},\ldots,a_{t}}) is equal to {1,,it}\{1,\ldots,i_{t}\}.

  2. (ii)

    Let t{1,,r3}t\in\{1,\ldots,r-3\}. Then supp(at)supp(au)=\mathrm{supp}({a_{t}})\cap\mathrm{supp}({a_{u}})=\varnothing for all u{t+2,,r1}u\in\{t+2,\ldots,r-1\}.

  3. (iii)

    The support of a2a_{2} does not contain 11.

  4. (iv)

    Let t{1,,r1}t\in\{1,\ldots,r-1\}. Then itsupp(at)supp(at+1)i_{t}\in\mathrm{supp}({a_{t}})\cap\mathrm{supp}({a_{t+1}}).

  5. (v)

    Each integer in supp(ar)\mathrm{supp}({a_{r}}) lies in the support of a unique subspace in CC.

Proof.

We begin by fixing notation related to ar==1nαea_{r}=\langle\sum_{\ell=1}^{n}\alpha_{\ell}e_{\ell}\rangle and br==1nβeb_{r}=\langle\sum_{\ell=1}^{n}\beta_{\ell}e_{\ell}\rangle. Since AD,r1BA{\underset{D,r-1}{\sim}}B, there exists an element in DD mapping ara_{r} to brb_{r}, and so supp(br)=supp(ar)\mathrm{supp}({b_{r}})=\mathrm{supp}({a_{r}}). On the other hand, BADB\notin A^{D}, and so arbra_{r}\neq b_{r}. Therefore, by scaling the basis vectors for ara_{r} and brb_{r}, there exist j,k{1,,n}j,k\in\{1,\ldots,n\} such that j<kj<k, αj=βj=1\alpha_{j}=\beta_{j}=1, and αk\alpha_{k} and βk\beta_{k} are distinct and nonzero. Reordering {e1,,en}\{e_{1},\ldots,e_{n}\} if necessary, we may assume that j=1j=1. Then each element of DD that maps ara_{r} to brb_{r} also maps e1+αkek\langle e_{1}+\alpha_{k}e_{k}\rangle to e1+βkek\langle e_{1}+\beta_{k}e_{k}\rangle; we will use this fact throughout the proof.

  1. (i)

    We show first that there is no partition of CC into proper subsets CC^{\prime} and C′′C^{\prime\prime} such that supp(C)supp(C′′)=\mathrm{supp}({C^{\prime}})\cap\mathrm{supp}({C^{\prime\prime}})=\varnothing, so suppose otherwise, for a contradiction. Then, as |C|<r1|C^{\prime}|<r-1 and AD,r1BA{\underset{D,r-1}{\sim}}B, there exists an fD(C)f\in D_{(C^{\prime})} such that arf=bra_{r}^{f}=b_{r}. Multiplying ff by a scalar if necessary, we may assume that f1=1f_{1}=1. Then fi=βi/αif_{i}=\beta_{i}/\alpha_{i} for each isupp(ar)i\in\mathrm{supp}({a_{r}}). Similarly, there exists gD(C′′)g\in D_{(C^{\prime\prime})} with the same properties. As supp(C)supp(C′′)=\mathrm{supp}({C^{\prime}})\cap\mathrm{supp}({C^{\prime\prime}})=\varnothing, there exists an hDh\in D such that h|supp(C)=f|supp(C)h|_{\mathrm{supp}({C^{\prime}})}=f|_{\mathrm{supp}({C^{\prime}})} and h|supp(C′′)=g|supp(C′′)h|_{\mathrm{supp}({C^{\prime\prime}})}=g|_{\mathrm{supp}({{C^{\prime\prime}}})}. Since supp(C)={1,,n}\mathrm{supp}({C})=\{1,\ldots,n\}, we observe that h|supp(ar)=f|supp(ar)=g|supp(ar)h|_{\mathrm{supp}({a_{r}})}=f|_{\mathrm{supp}({a_{r}})}=g|_{\mathrm{supp}({a_{r}})}. Hence arh=bra_{r}^{h}=b_{r}. Furthermore, by construction, hD(C)D(C′′)=DCh\in D_{(C^{\prime})}\cap D_{(C^{\prime\prime})}=D_{C}. Thus BADB\in A^{D}, a contradiction.

    Next, by reordering a1,,ar1a_{1},\ldots,a_{r-1} if necessary, we may assume that 1supp(a1)1\in\mathrm{supp}({a_{1}}). Then by reordering {e2,,en}\{e_{2},\ldots,e_{n}\} if necessary, we may assume that supp(a1)\mathrm{supp}({a_{1}}) is equal to {1,2,,i1}\{1,2,\ldots,i_{1}\} for some i12i_{1}\geq 2, since a1Δ¯a_{1}\in\overline{\Delta}. Thus the result holds for t=1t=1. We will use induction to prove the result in general, and to show that, for all s{2,,r1}s\in\{2,\ldots,r-1\},

    (4)  there exists w{1,,s1} such that supp(as)supp(aw).\text{ there exists }w\in\{1,\ldots,s-1\}\text{ such that }\mathrm{supp}({a_{s}})\cap\mathrm{supp}({a_{w}})\neq\varnothing.

    Let t{2,,r1}t\in\{2,\ldots,r-1\}, let Ut1:={a1,,at1}U_{t-1}:=\{a_{1},\ldots,a_{t-1}\} and assume inductively that supp(Ut1)={1,2,,it1}\mathrm{supp}({U_{t-1}})=\{1,2,\ldots,i_{t-1}\}. If t3t\geq 3 assume also that (4) holds for all s{2,,t1}s\in\{2,\ldots,t-1\}. Since CC cannot be partitioned into two parts whose support has trivial intersection, supp(a1,,at1)supp(at,,ar1)\mathrm{supp}({a_{1},\ldots,a_{t-1}})\cap\mathrm{supp}({a_{t},\ldots,a_{r-1}})\neq\varnothing, so we may reorder {at,,ar1}\{a_{t},\ldots,a_{r-1}\} so that (4) holds when s=ts=t.

    Suppose for a contradiction that supp(at)supp(Ut1)\mathrm{supp}({a_{t}})\subseteq\mathrm{supp}({U_{t-1}}). Then (4) (applied to each s{2,,t1}s\in\{2,\ldots,t-1\}) and Lemma 2.4 imply that D(C)D_{(C)} is equal to D(Cat)D_{(C\setminus a_{t})}. Since AD,r1BA{\underset{D,r-1}{\sim}}B, the latter stabiliser contains an element mapping ara_{r} to brb_{r}. Hence the same is true for D(C)D_{(C)}, contradicting the fact that BADB\notin A^{D}. Therefore, we can reorder {eit1+1,,en}\{e_{i_{t-1}+1},\ldots,e_{n}\} so that supp(at)\mathrm{supp}({a_{t}}) contains {it1+1,,it}\{i_{t-1}+1,\ldots,i_{t}\} for some it>it1i_{t}>i_{t-1}, and the result and (4) follow by induction. Note in particular that ir1=ni_{r-1}=n, since supp(C)={1,,n}\mathrm{supp}({C})=\{1,\ldots,n\}.

  2. (ii)

    Let m{1,,r1}m\in\{1,\ldots,r-1\} be such that supp(am)\mathrm{supp}({a_{m}}) contains the integer kk from the first paragraph of this proof, and let :={1,,m}\mathcal{I}:=\{1,\ldots,m\}. Then, using (4) (for each s{1}s\in\mathcal{I}\setminus\{1\}) and Lemma 2.4(i), we observe that every gD(a1,,am)g\in D_{(a_{1},\ldots,a_{m})} satisfies g1=gkg_{1}=g_{k}. Therefore, argbra_{r}^{g}\neq b_{r} for all gD(a1,,am)g\in D_{(a_{1},\ldots,a_{m})}. As AD,r1BA{\underset{D,r-1}{\sim}}B, we deduce that m=r1m=r-1. In particular, ar1a_{r-1} is the unique subspace in CC whose support contains kk. Swapping eke_{k} and ene_{n} if necessary, we may assume that k=nk=n.

    Now, for a contradiction, suppose that supp(at)supp(au)\mathrm{supp}({a_{t}})\cap\mathrm{supp}({a_{u}})\neq\varnothing for some t{1,,r3}t\in\{1,\ldots,r-3\} and u{t+2,,r1}u\in\{t+2,\ldots,r-1\}, and assume that uu is the largest integer with this property. Then (4) and the maximality of uu imply that supp(as)supp(as1)\mathrm{supp}({a_{s}})\cap\mathrm{supp}({a_{s-1}})\neq\varnothing for all s{u+1,,r1}s\in\{u+1,\ldots,r-1\}. It now follows from Lemma 2.4(i), together with a further application of (4) to each s{2,,t}s\in\{2,\ldots,t\}, that every gE:=D(a1,,at,au,,ar1)g\in E:=D_{(a_{1},\ldots,a_{t},a_{u},\ldots,a_{r-1})} satisfies g1=gng_{1}=g_{n}. Therefore, argbra_{r}^{g}\neq b_{r} for all gEg\in E. However, |(a1,,at,au,,ar1)|<r1|(a_{1},\ldots,a_{t},a_{u},\ldots,a_{r-1})|<r-1, contradicting the fact that AD,r1BA{\underset{D,r-1}{\sim}}B.

  3. (iii)(iv)

    As in the proof of (ii), we may assume that k=nk=n. We observe from (ii) and (4) that supp(at)supp(at+1)\mathrm{supp}({a_{t}})\cap\mathrm{supp}({a_{t+1}})\neq\varnothing for all tr2t\leq r-2. Hence if 1supp(a2)1\in\mathrm{supp}({a_{2}}) then Lemma 2.4(i) shows that every gD(a2,,ar1)g\in D_{(a_{2},\ldots,a_{r-1})} satisfies g1=gng_{1}=g_{n} (since k=nk=n). This contradicts the fact that AD,r1BA{\underset{D,r-1}{\sim}}B, and so (iii) holds. Finally, since supp(at)supp(at+1)\mathrm{supp}({a_{t}})\cap\mathrm{supp}({a_{t+1}})\neq\varnothing for each tr2t\leq r-2, we obtain (iv) by defining i0:=1i_{0}:=1 and reordering the vectors in {eit1+1,,eit}\{e_{i_{t-1}+1},\ldots,e_{i_{t}}\} if necessary. In particular, for t=r1t=r-1, the assumption that ir1=n=ksupp(ar)i_{r-1}=n=k\in\mathrm{supp}({a_{r}}) gives the result.

  4. (v)

    Suppose for a contradiction that some supp(ar)\ell\in\mathrm{supp}({a_{r}}) lies in the support of more than one subspace in CC. If r=3r=3, then supp(a1)supp(a2)\ell\in{\mathrm{supp}({a_{1}})\cap\mathrm{supp}({a_{2}})} and we define t:=2t:=2. If instead r>3r>3, then (ii) implies that supp(at)\ell\in\mathrm{supp}({a_{t}}) for at least one t{2,,r2}t\in\{2,\ldots,r-2\}. In either case, 1\ell\neq 1, since 1supp(a2)1\not\in\mathrm{supp}({a_{2}}) by (iii), and 1supp(au)1\not\in\mathrm{supp}({a_{u}}) for u{3,,r2}u\in\{3,\ldots,r-2\} by (i)(ii). Furthermore, (i) shows that ir1=n\ell\neq i_{r-1}=n.

    Suppose first that α=β(0)\alpha_{\ell}=\beta_{\ell}\;(\neq 0). Since the supports of at,at+1,,ar1a_{t},a_{t+1},\ldots,a_{r-1} consecutively overlap, Lemma 2.4(i) shows that g=gng_{\ell}=g_{n} for each gD(at,,ar1)g\in D_{(a_{t},\ldots,a_{r-1})}. Since αnβn\alpha_{n}\neq\beta_{n}, no such gg maps ara_{r} to brb_{r}, contradicting the fact that AD,r1BA{\underset{D,r-1}{\sim}}B. Hence αβ\alpha_{\ell}\neq\beta_{\ell}. However, each gDa1g\in D_{a_{1}} satisfies g1=gg_{1}=g_{\ell} if r=3r=3, as does each gD(a1,,at)g\in D_{(a_{1},\ldots,a_{t})} if r>3r>3. Again, no such matrix gg maps ara_{r} to brb_{r}, a contradiction. ∎

Recall that GG denotes GLn(𝔽)\mathrm{GL}_{n}(\mathbb{F}), with n,|𝔽|3n,|\mathbb{F}|\geq 3. Our next result is a key ingredient in the proof that RC(G,Ω)\mathrm{RC}(G,\Omega) is at most n+2n+2.

Lemma 2.9.

Let r2r\geq 2, and let A,BΔ¯rA,B\in\overline{\Delta}^{\,r} be such that AD,r1BA{\underset{D,r-1}{\sim}}B and BADB\notin A^{D}. Then there exists a subset Γ\Gamma of Δ\Delta of size n+2rn+2-r such that BAG(Γ)B\notin A^{G_{(\Gamma)}}.

Proof.

If r=2r=2, then set Γ=Δ\Gamma=\Delta. Since G(Γ)=DG_{(\Gamma)}=D and BADB\notin A^{D}, we are done. Assume therefore that r3r\geq 3. We will suppose for a contradiction that nn is the smallest dimension for which the present lemma does not hold, for this value of rr. Since AD,r1BA{\underset{D,r-1}{\sim}}B, we may also assume that (a1,,ar1)=(b1,,br1)(a_{1},\ldots,a_{r-1})=(b_{1},\ldots,b_{r-1}). Let C={a1,,ar1}C=\{a_{1},\ldots,a_{r-1}\}. As BADB\notin A^{D}, no element of D(C)D_{(C)} maps ara_{r} to brb_{r}. Therefore, BAG(Γ)B\notin A^{G_{(\Gamma)}} for a given subset Γ\Gamma of Δ\Delta if and only if no element of G(ΓC)G_{(\Gamma\cup C)} maps ara_{r} to brb_{r}. We split the remainder of the proof into two cases, depending on whether or not |supp(C)|=n|\mathrm{supp}({C})|=n.

Case |𝐬𝐮𝐩𝐩(𝐂)|<𝐧\mathbf{|\mathrm{supp}({C})|<n}: Let ΔC:={ejjsupp(C)}\Delta_{C}:=\{\langle e_{j}\rangle\mid j\in\mathrm{supp}({C})\}, let LL be the subspace ΔC\langle\Delta_{C}\rangle of VV, and let aa_{\ell} and bb_{\ell} be the projections onto LL of ara_{r} and brb_{r}, respectively. Lemma 2.4(iii) shows that the diagonal entries corresponding to {1,,n}supp(C)\{1,\ldots,n\}\setminus\mathrm{supp}({C}) of elements of D(C)D_{(C)} can take any multiset of nonzero values. Since no element of D(C)D_{(C)} maps ara_{r} to brb_{r}, it follows that there is no matrix in D(C)D_{(C)} whose restriction to LL maps aa_{\ell} to bb_{\ell}. By the minimality of nn, there exists a subset ΓC\Gamma_{C} of ΔC\Delta_{C} of size |ΔC|+2r|\Delta_{C}|+2-r such that no element of GL(L)(ΓCC)\mathrm{GL}(L)_{(\Gamma_{C}\cup C)} maps aa_{\ell} to bb_{\ell}. Setting Γ\Gamma to be ΓC(ΔΔC)\Gamma_{C}\cup(\Delta\setminus\Delta_{C}), so that |Γ|=n+2r|\Gamma|=n+2-r, we observe that no element of G(ΓC)G_{(\Gamma\cup C)} maps ara_{r} to brb_{r}. This is a contradiction, and so the lemma follows in this case.

Case |𝐬𝐮𝐩𝐩(𝐂)|=𝐧\mathbf{|\mathrm{supp}({C})|=n}: In this case, Lemma 2.8 applies, so with the notation of that lemma, let

Γ:=Δ{ei1,,eir2}.\Gamma:=\Delta\setminus\{\langle e_{i_{1}}\rangle,\ldots,\langle e_{i_{r-2}}\rangle\}.

Then |Γ|=n+2r|\Gamma|=n+2-r and e1,enΓ\langle e_{1}\rangle,\langle e_{n}\rangle\in\Gamma, since i12i_{1}\geq 2 and ir1=ni_{r-1}=n.

Let gG(ΓC)g\in G_{(\Gamma\cup C)}. To complete the proof, we will show that arg=arbra_{r}^{g}=a_{r}\neq b_{r}, by showing that g|supp(ar)g|_{\mathrm{supp}({a_{r}})} is scalar. We will first show that gg is lower triangular. It is clear that gg stabilises e1Γ\langle e_{1}\rangle\in\Gamma. Suppose inductively that gg stabilises e1,e2,,es\langle e_{1},e_{2},\ldots,e_{s}\rangle for some s{1,,n1}s\in\{1,\ldots,n-1\}. If es+1Γ\langle e_{s+1}\rangle\in\Gamma, then gg stabilises Es+1:=e1,e2,,es+es+1=e1,e2,,es+1E_{s+1}:=\langle e_{1},e_{2},\ldots,e_{s}\rangle+\langle e_{s+1}\rangle=\langle e_{1},e_{2},\ldots,e_{s+1}\rangle. Otherwise, s+1=its+1=i_{t} for some t{1,,r2}t\in\{1,\ldots,r-2\}, and then Lemma 2.8(i) shows that {s+1}supp(at){1,,s+1}\{s+1\}\subsetneq\mathrm{supp}({a_{t}})\subseteq\{1,\ldots,s+1\}. In this case, gg again stabilises e1,e2,,es+at=Es+1\langle e_{1},e_{2},\ldots,e_{s}\rangle+a_{t}=E_{s+1}. Hence by induction, gg is lower triangular.

Now, let :={i1,,ir1}\mathcal{I}:=\{i_{1},\ldots,i_{r-1}\}, let 𝒰\mathcal{U} be the set of integers that each lie in the support of a unique subspace in CC, and let 𝒥:=𝒰\mathcal{J}:=\mathcal{I}\cup\mathcal{U}. We will show next that g|𝒥g|_{\mathcal{J}} is diagonal, by fixing j𝒥j\in\mathcal{J} and proving that gkj=0g_{kj}=0 whenever k>jk>j. First, if ekΓ\langle e_{k}\rangle\in\Gamma, then gkj=0g_{kj}=0, so gnj=0g_{nj}=0. Hence we may also assume that k{ir1}k\in\mathcal{I}\setminus\{i_{r-1}\}.

Suppose inductively that giu,j=0g_{i_{u},j}=0 for some u2u\geq 2 (the base case here is u=r1u=r-1, so that iu=ni_{u}=n). We will show that if iu1>ji_{u-1}>j, then giu1,j=0g_{i_{u-1},j}=0. By Lemma 2.8(iv), iu1,iusupp(au)i_{u-1},i_{u}\in\mathrm{supp}({a_{u}}) and furthermore Lemma 2.8(i)(ii) shows that supp(au)={iu1,iu}\mathrm{supp}({a_{u}})\cap\mathcal{I}=\{i_{u-1},i_{u}\}. Thus by the previous paragraph and our inductive assumption, gkj=0g_{kj}=0 for all ksupp(au){j,iu1}k\in\mathrm{supp}({a_{u}})\setminus\{j,i_{u-1}\}. In fact, Lemma 2.8(i)(ii) shows that each integer in supp(au)\mathrm{supp}({a_{u}}) less than iu1i_{u-1} lies in supp(au1)\mathrm{supp}({a_{u-1}}). As iu1>j𝒥i_{u-1}>j\in\mathcal{J}, we deduce from the definition of 𝒥\mathcal{J} that jsupp(au)j\notin\mathrm{supp}({a_{u}}). Thus gkj=0g_{kj}=0 for all ksupp(au){iu1}k\in\mathrm{supp}({a_{u}})\setminus\{i_{u-1}\}. As gg stabilises aua_{u}, we deduce that giu1,j=0g_{i_{u-1},j}=0. Therefore, by induction, gkj=0g_{kj}=0 for all kjk\neq j and so g|𝒥g|_{\mathcal{J}} is diagonal.

Finally, we will show that g|𝒥g|_{\mathcal{J}} is scalar. Let j,k𝒥supp(at)j,k\in\mathcal{J}\cap\mathrm{supp}({a_{t}}) for some t{1,,r1}t\in\{1,\ldots,r-1\}. As gg stabilises ata_{t}, and as g|𝒥g|_{\mathcal{J}} is diagonal, we deduce that

(5) gjj=gkk.g_{jj}=g_{kk}.

Now, by Lemma 2.8(iv), itsupp(at)supp(at+1)i_{t}\in\mathrm{supp}({a_{t}})\cap\mathrm{supp}({a_{t+1}}) for each t{1,,r2}t\in\{1,\ldots,r-2\}, so it𝒥supp(at)supp(at+1)i_{t}\in\mathcal{J}\cap\mathrm{supp}({a_{t}})\cap\mathrm{supp}({a_{t+1}}). Thus starting from t=1t=1 and proceeding by induction on tt, it follows from (5) that gjj=gkkg_{jj}=g_{kk} for all j,k𝒥j,k\in\mathcal{J}, i.e. g|𝒥g|_{\mathcal{J}} is a scalar. Since supp(ar)𝒥\mathrm{supp}({a_{r}})\subseteq\mathcal{J} by Lemma 2.8(v), we deduce that arg=arbra_{r}^{g}=a_{r}\neq b_{r}, as required. ∎

The following lemma is strengthening of Lemma 2.9 in the case |𝔽|=3|\mathbb{F}|=3 and r=2r=2, in which the subset Γ\Gamma now has size n+1r=n1n+1-r=n-1.

Lemma 2.10.

Suppose that |𝔽|=3|\mathbb{F}|=3, and let A,BΔ¯ 2A,B\in\overline{\Delta}^{\,2}. Suppose also that AD,1BA{\underset{D,1}{\sim}}B and BADB\notin A^{D}. Then there exists a subset Γ\Gamma of Δ\Delta of size n1n-1 such that BAG(Γ)B\notin A^{G_{(\Gamma)}}.

Proof.

Since AD,1BA{\underset{D,1}{\sim}}B, without loss of generality a1=b1a_{1}=b_{1}, and there exists an element of DD mapping a2a_{2} to b2b_{2}. Hence a2a_{2} and b2b_{2} have equal supports. Reordering the basis for VV if necessary, we may also assume that supp(a1)={1,2,,m}\mathrm{supp}({a_{1}})=\{1,2,\ldots,m\} for some m2m\geq 2. Then by Lemma 2.4, the upper-left m×mm\times m submatrix of each matrix in Da1D_{a_{1}} is a scalar, while the remaining diagonal entries can be chosen independently. As BADB\notin A^{D}, no matrix in Da1D_{a_{1}} maps a2a_{2} to b2b_{2}. We may therefore assume (by reordering the basis vectors in {e1,,em}\{e_{1},\ldots,e_{m}\} and/or swapping AA and BB if necessary) that the projections of a2a_{2} and b2b_{2} onto e1,e2\langle e_{1},e_{2}\rangle are e1+e2\langle e_{1}+e_{2}\rangle and e1e2\langle e_{1}-e_{2}\rangle, respectively.

Now, let Γ:=Δ{e2}\Gamma:=\Delta\setminus\{\langle e_{2}\rangle\}, let gG(Γ{a1})g\in G_{(\Gamma\cup\{a_{1}\})}, and notice that gg is diagonal outside of the second row. Write a1a_{1} as i=1mαiei\langle\sum_{i=1}^{m}\alpha_{i}e_{i}\rangle, with α1=1\alpha_{1}=1 and αi0\alpha_{i}\neq 0 for all i{2,,m}i\in\{2,\ldots,m\}. Since a1g=a1a_{1}^{g}=a_{1} we deduce that without loss of generality the top left 2×22\times 2 submatrix of gg is

(10g211+α2g21).\left(\begin{array}[]{cc}1&0\\ g_{21}&1+\alpha_{2}g_{21}\end{array}\right).

Let vv be the projection of (e1+e2)g(e_{1}+e_{2})^{g} onto e1,e2\langle e_{1},e_{2}\rangle. Recall that α20\alpha_{2}\neq 0, and note that g220g_{22}\neq 0, since gg is invertible. Hence if g21=1g_{21}=1, then α2=1\alpha_{2}=1 and v=e1e2v=-e_{1}-e_{2}; if g21=1g_{21}=-1, then α2=1\alpha_{2}=-1 and v=e2v=-e_{2}; and if g21=0g_{21}=0, then v=e1+e2v=e_{1}+e_{2}. Hence, in each case, vv does not span e1e2=b2|e1,e2\langle e_{1}-e_{2}\rangle=b_{2}|_{\langle e_{1},e_{2}\rangle}. Therefore a2gb2a_{2}^{g}\neq b_{2}, and hence BAG(Γ)B\not\in A^{G_{(\Gamma)}}. ∎

Although the next result holds for all 𝔽\mathbb{F}, it will only be useful in the case |𝔽|=3|\mathbb{F}|=3.

Proposition 2.11.

Let X,YΩn+1X,Y\in\Omega^{n+1} such that XG,nYX{\underset{G,n}{\sim}}Y, and suppose that X=V\langle X\rangle=V. Then YXGY\in X^{G}.

Proof.

As dim(X)=n\mathrm{dim}(\langle X\rangle)=n, we may assume by Lemma 2.1 that xi=yi=eix_{i}=y_{i}=\langle e_{i}\rangle for i{1,,n}i\in\{1,\ldots,n\}. Let S:=supp(xn+1)S:=\mathrm{supp}({x_{n+1}}) and T:=supp(yn+1)T:=\mathrm{supp}({y_{n+1}}). We will show that S=TS=T; it will then follow that there exists an element of D=G(Δ)D=G_{(\Delta)} mapping xn+1x_{n+1} to yn+1y_{n+1}, and so YXGY\in X^{G}.

If S={1,,n}=TS=\{1,\ldots,n\}=T, then we are done. Otherwise, exchanging XX and YY if necessary (note that Y=V\langle Y\rangle=V), we may assume that there exists an element t{1,,n}St\in\{1,\ldots,n\}\setminus S. Let Γ:=Δ{et}\Gamma:=\Delta\setminus\{\langle e_{t}\rangle\}. Then since XG,nYX{\underset{G,n}{\sim}}Y, there exists an element of G(Γ)G_{(\Gamma)} mapping xn+1x_{n+1} to yn+1y_{n+1}. As G(Γ)G_{(\Gamma)} stabilises each subspace ei\langle e_{i}\rangle with iSi\in S, it follows that S=TS=T, as required. ∎

We are now able to prove this section’s main theorem.

Theorem 2.12.

Suppose that nn and |𝔽||\mathbb{F}| are at least 33. Then RC(GLn(𝔽),Ω)\mathrm{RC}(\mathrm{GL}_{n}(\mathbb{F}),\Omega) is at most n+2n+2. Moreover, RC(GLn(3),Ω)n\mathrm{RC}(\mathrm{GL}_{n}(3),\Omega)\leq n.

Proof.

Let k{n,n+1,n+2}k\in\{n,n+1,n+2\}, with k=n+2k=n+2 if |𝔽|>3|\mathbb{F}|>3. Additionally, let X,YΩuX,Y\in\Omega^{u} with u>ku>k and XG,kYX{\underset{G,k}{\sim}}Y, where G=GLn(𝔽)G=\mathrm{GL}_{n}(\mathbb{F}). It suffices to prove that YXGY\in X^{G}. Suppose, for a contradiction, that nn is the minimal dimension for which the theorem does not hold (for a fixed 𝔽\mathbb{F}), and that YXGY\notin X^{G}. Then for each m{2,,n1}m\in\{2,\ldots,n-1\}, using Proposition 1.2(i) in the case m=2m=2, we obtain RC(GLm(𝔽),𝒫𝒢1(𝔽m))<k\mathrm{RC}(\mathrm{GL}_{m}(\mathbb{F}),\mathcal{PG}_{1}(\mathbb{F}^{m}))<k. Since YXGY\notin X^{G}, Lemma 2.2 yields X=V\langle X\rangle=V. Hence by Lemma 2.1, we may assume without loss of generality111If the basis vectors for VV are reordered, as required by several of this section’s earlier proofs, then we can reorder the subspaces in (x1,,xn)(x_{1},\ldots,x_{n}) and (y1,,yn)(y_{1},\ldots,y_{n}) in the same way to preserve this equality. that xi=yi=eix_{i}=y_{i}=\langle e_{i}\rangle for i{1,,n}i\in\{1,\ldots,n\}, and furthermore that all subspaces in XX are distinct, so that xi,yiΔ¯x_{i},y_{i}\in\overline{\Delta} for each in+1i\geq n+1.

We will first consider the case kn+1k\geq n+1. Since XG,n+1YX{\underset{G,n+1}{\sim}}Y, Lemma 2.3 yields supp(xi)=supp(yi)\mathrm{supp}({x_{i}})=\mathrm{supp}({y_{i}}) for all ii. However, YXGY\notin X^{G}. Hence there exists an integer r2r\geq 2 and subtuples AA of XX and BB of YY, with A,BΔ¯rA,B\in\overline{\Delta}^{\,r}, such that (x1,,xn,a1,,ar)(x_{1},\ldots,x_{n},a_{1},\ldots,a_{r}) and (x1,,xn,b1,,br)(x_{1},\ldots,x_{n},b_{1},\ldots,b_{r}) are (n+r1)(n+r-1)-equivalent, but not equivalent, under GG. Equivalently, AD,r1BA{\underset{D,r-1}{\sim}}B and BADB\notin A^{D}.

If k=n+2k=n+2, then by Lemma 2.9, there exists a set Γ:={ei1,,eikr}\Gamma:=\{\langle e_{i_{1}}\rangle,\ldots,\langle e_{i_{k-r}}\rangle\} such that BAG(Γ)B\notin A^{G_{(\Gamma)}}. However, this means that the subtuples (xi1,,xikr,a1,,ar)(x_{i_{1}},\ldots,x_{i_{k-r}},a_{1},\ldots,a_{r}) and (xi1,,xikr,b1,,br)(x_{i_{1}},\ldots,x_{i_{k-r}},b_{1},\ldots,b_{r}) are not equivalent under GG. This contradicts the assumption that XG,kYX{\underset{G,k}{\sim}}Y. Hence in this case, YXGY\in X^{G}, as required, so RC(G)n+2\mathrm{RC}(G)\leq n+2. If |𝔽|>3|\mathbb{F}|>3, then we are done.

Therefore, assume for the rest of the proof that |𝔽|=3|\mathbb{F}|=3 and suppose first that k=n+1k=n+1. By the previous paragraph, RC(G)n+2\mathrm{RC}(G)\leq n+2. Therefore, to prove that RC(G)k\mathrm{RC}(G)\leq k, it suffices to show that XG,n+2YX{\underset{G,n+2}{\sim}}Y whenever XG,kYX{\underset{G,k}{\sim}}Y. Thus by replacing XX and YY by suitable subtuples, if necessary, we may assume that u=n+2u=n+2. In this case, r=2r=2, and by Lemma 2.10, there exists a subset Γ\Gamma of Δ\Delta of size krk-r such that BAG(Γ)B\notin A^{G_{(\Gamma)}}. Arguing as in the previous paragraph, this contradicts the assumption that XG,kYX{\underset{G,k}{\sim}}Y. Thus RC(G)n+1\mathrm{RC}(G)\leq n+1.

Finally, suppose that k=nk=n. Since RC(G)n+1\mathrm{RC}(G)\leq n+1, we may assume that u=n+1u=n+1. However, since XG,nYX{\underset{G,n}{\sim}}Y and X=V\langle X\rangle=V, Proposition 2.11 shows that YXGY\in X^{G}. Therefore, RC(G)n\mathrm{RC}(G)\leq n. ∎

3. Action on 1-spaces: lower bounds

In this section, we again assume that |𝔽|3|\mathbb{F}|\geq 3, and write Ω:=Ω1=𝒫𝒢1(V)\Omega:=\Omega_{1}=\mathcal{PG}_{1}(V). We drop the assumption that n3n\geq 3 and permit n=2n=2. We shall now prove lower bounds for the relational complexity of each group HH satisfying SLn(𝔽)HΓLn(𝔽){\mathrm{SL}_{n}(\mathbb{F})\trianglelefteq H\leq\Gamma\mathrm{L}_{n}(\mathbb{F})}, acting on Ω\Omega.

For some results in this section, we will assume that 𝔽=𝔽q\mathbb{F}=\mathbb{F}_{q} is finite, and when doing so we fix a primitive element ω\omega, and assume that q=pfq=p^{f} for pp prime. Additionally, we will write PΓLn(q)/PSLn(q)=δ,ϕ\mathrm{P}\Gamma\mathrm{L}_{n}(q)/\mathrm{PSL}_{n}(q)=\langle\delta,\phi\rangle, with PGLn(q)/PSLn(q)=δ\mathrm{PGL}_{n}(q)/\mathrm{PSL}_{n}(q)=\langle\delta\rangle. Here, the automorphism ϕ\phi can be chosen to be induced by the automorphism of GLn(q)\mathrm{GL}_{n}(q) which raises each matrix entry to its ppth power, and with a slight abuse of notation, we will also write ϕ\phi to denote this automorphism of GLn(q)\mathrm{GL}_{n}(q), and to denote a generator for Aut(𝔽q)\mathrm{Aut}(\mathbb{F}_{q}). If 𝔽\mathbb{F} is an arbitrary field, then the group ΓLn(𝔽)\Gamma\mathrm{L}_{n}(\mathbb{F}) is still a semi-direct product of GLn(𝔽)\mathrm{GL}_{n}(\mathbb{F}) by Aut(𝔽)\mathrm{Aut}(\mathbb{F}) (see, for example, [13, Theorem 9.36]), but of course GLn(𝔽)/SLn(𝔽)\mathrm{GL}_{n}(\mathbb{F})/\mathrm{SL}_{n}(\mathbb{F}) and Aut(𝔽)\mathrm{Aut}(\mathbb{F}) need not be cyclic.

We let Z:=Z(GLn(𝔽))Z:=Z(\mathrm{GL}_{n}(\mathbb{F})), and will write InI_{n} for the n×nn\times n identity matrix, and EijE_{ij} for the n×nn\times n matrix with 11 in the (i,j)-th(i,j)\text{-th} position and 0 elsewhere. We write ABA\oplus B for the block diagonal matrix with blocks AA and BB.

Our first result is completely general and easy to prove, although we shall later prove much tighter bounds for various special cases.

Theorem 3.1.

Let 𝔽\mathbb{F} be arbitrary, and let HH satisfy SLn(𝔽)HΓLn(𝔽)\mathrm{SL}_{n}(\mathbb{F})\trianglelefteq H\leq\Gamma\mathrm{L}_{n}(\mathbb{F}). Then RC(H,Ω)n\mathrm{RC}(H,\Omega)\geq n.

Proof.

Define X,YΩnX,Y\in\Omega^{n} by xi=yi=eix_{i}=y_{i}=\langle e_{i}\rangle for i{1,,n1}i\in\{1,\ldots,n-1\}, with xn=i=1neix_{n}=\langle\sum_{i=1}^{n}e_{i}\rangle and yn=i=1n1eiy_{n}=\langle\sum_{i=1}^{n-1}e_{i}\rangle. Then dim(X)=n\mathrm{dim}(\langle X\rangle)=n and dim(Y)=n1\mathrm{dim}(\langle Y\rangle)=n-1, so no element of ΓLn(𝔽)\Gamma\mathrm{L}_{n}(\mathbb{F}) maps XX to YY. Hence YXHY\not\in X^{H}.

Now, let h:=InEnh_{\ell}:=I_{n}-E_{\ell n} for each {1,,n1}\ell\in\{1,\ldots,n-1\}, and hn:=Inh_{n}:=I_{n}. Then hSLn(𝔽)Hh_{\ell}\in\mathrm{SL}_{n}(\mathbb{F})\leq H and (Xx)h=(Yy)(X\setminus x_{\ell})^{h_{\ell}}=(Y\setminus y_{\ell}), for each {1,,n}\ell\in\{1,\ldots,n\}. Therefore XH,n1YX{\underset{H,n-1}{\sim}}Y, and so the result follows. ∎

Our next two results focus on the special cases n=2n=2 and n=3n=3.

Lemma 3.2.

Assume that q8q\geq 8, and let HH satisfy SL2(q)HΓL2(q)\mathrm{SL}_{2}(q)\trianglelefteq H\leq\Gamma\mathrm{L}_{2}(q). Then RC(H)4\mathrm{RC}(H)\geq 4, except that RC(ΣL2(9))=3\mathrm{RC}(\Sigma\mathrm{L}_{2}(9))=3.

Proof.

The claim about ΣL2(9)\Sigma\mathrm{L}_{2}(9) is an easy computation in GAP using [3], so exclude this group from now on. We divide the proof into two cases. For each, we define X,YΩ4X,Y\in\Omega^{4} such that XH,3YX{\underset{H,3}{\sim}}Y but YXHY\not\in X^{H}. In both cases, we set (Xx4)=(Yy4)=(e1,e2,e1+e2)(X\setminus x_{4})=(Y\setminus y_{4})=(\langle e_{1}\rangle,\langle e_{2}\rangle,\langle e_{1}+e_{2}\rangle).

Case (a): Either qq is even, or HZ,ΣL2(q)H\not\leq\langle Z,\Sigma\mathrm{L}_{2}(q)\rangle, where Z=Z(GLn(𝔽))Z=Z(\mathrm{GL}_{n}(\mathbb{F})). If qq is odd, then let α𝔽p{1}\alpha\in\mathbb{F}_{p}^{\ast}\setminus\{1\}, and otherwise let α=ω3\alpha=\omega^{3}, so that α\alpha is not in the orbit ωϕ\omega^{\langle\phi\rangle}. Then let x4=e1+ωe2x_{4}=\langle e_{1}+\omega e_{2}\rangle and y4=e1+αe2y_{4}=\langle e_{1}+\alpha e_{2}\rangle.

The stabiliser in HH of (Xx4)=(Yy4)(X\setminus x_{4})=(Y\setminus y_{4}) is contained in Z,ϕ\langle Z,\phi\rangle. As αωϕ\alpha\not\in\omega^{\langle\phi\rangle}, no element of this stabiliser maps x4x_{4} to y4y_{4}, and so YXHY\not\in X^{H}. On the other hand, for each j{1,2,3,4}j\in\{1,2,3,4\}, the matrix gjGL2(q)g_{j}\in\mathrm{GL}_{2}(q) given below maps (Xxj)(X\setminus x_{j}) to (Yyj)(Y\setminus y_{j}).

g1=(1(αω)(1ω)101(αω)(1ω)1),g2=(1(ωα11)(ω1)10(ωα11)(ω1)11),g3=(100αω1),g4=I2.\begin{array}[]{c}g_{1}=\begin{pmatrix}1&(\alpha-\omega)(1-\omega)^{-1}\\ 0&1-(\alpha-\omega)(1-\omega)^{-1}\end{pmatrix},\quad g_{2}=\begin{pmatrix}1-(\omega\alpha^{-1}-1)(\omega-1)^{-1}&0\\ (\omega\alpha^{-1}-1)(\omega-1)^{-1}&1\end{pmatrix},\\ g_{3}=\begin{pmatrix}1&0\\ 0&\alpha\omega^{-1}\end{pmatrix},\quad g_{4}=I_{2}.\end{array}

If qq is even, then some scalar multiple of gjg_{j} lies in HH for all jj, so XH,3YX{\underset{H,3}{\sim}}Y and we are done. If instead qq is odd, then our assumption that HZ,ΣL2(q)H\not\leq\langle Z,\Sigma\mathrm{L}_{2}(q)\rangle implies that HH contains a scalar multiple of an element diag(ω,1)ϕi\mathrm{diag}(\omega,1)\phi^{i} for some i0i\geq 0, as diag(ω,1)\mathrm{diag}(\omega,1) induces the automorphism δ\delta of PSL2(q)\mathrm{PSL}_{2}(q). Hence for each jj, there exists ϕijAut(𝔽q)\phi^{i_{j}}\in\mathrm{Aut}(\mathbb{F}_{q}) such that a scalar multiple of gjϕijg_{j}\phi^{i_{j}} lies in HH. Since α𝔽p\alpha\in\mathbb{F}_{p}^{\ast}, each ϕij\phi^{i_{j}} fixes YY, and thus XH,3YX{\underset{H,3}{\sim}}Y.

Case (b): qq is odd and HZ,ΣL2(q)H\leq\langle Z,\Sigma\mathrm{L}_{2}(q)\rangle. Since HΣL2(9)H\neq\Sigma\mathrm{L}_{2}(9), and since Proposition 1.2(i) yields the result when H=SL2(9)H=\mathrm{SL}_{2}(9), we may assume that q>9q>9. We generalise Hudson’s [9, §5.4] proof that RC(SL2(q),Ω)4\mathrm{RC}(\mathrm{SL}_{2}(q),\Omega)\geq 4. First, let 𝒮:=𝔽q{0,1,1}\mathcal{S}:=\mathbb{F}_{q}\setminus\{0,1,-1\} and 𝒯:=𝔽q{0,1}\mathcal{T}:=\mathbb{F}_{q}\setminus\{0,1\}, and for each λ𝒮\lambda\in\mathcal{S} define a map θλ:𝒯𝔽q\theta_{\lambda}:\mathcal{T}\to\mathbb{F}_{q} by μ(1λ2μ)(1μ)1\mu\mapsto(1-\lambda^{2}\mu)(1-\mu)^{-1}. We will show that there exist elements λ𝒮\lambda\in\mathcal{S} and τ𝒯\tau\in\mathcal{T} satisfying the following conditions:

(i) (τ)θλ(\tau)\theta_{\lambda} is a square in 𝔽q\mathbb{F}_{q}^{*}, and     (ii) no automorphism of 𝔽q\mathbb{F}_{q} maps τ\tau to λ2τ\lambda^{2}\tau.

It is easy to see that for each λ𝒮\lambda\in\mathcal{S}, the image im(θλ)=𝔽q{1,λ2}\mathrm{im}(\theta_{\lambda})=\mathbb{F}_{q}\setminus\{1,\lambda^{2}\}, so the map θλ\theta_{\lambda} is injective, and the preimage of any nonzero square in im(θλ)\mathrm{im}(\theta_{\lambda}) lies in 𝒯\mathcal{T} and satisfies Condition (i). Hence for each λ𝒮\lambda\in\mathcal{S}, there are precisely (q1)/22(q-1)/2-2 choices for τ𝒯\tau\in\mathcal{T} satisfying Condition (i).

Given λ𝒮\lambda\in\mathcal{S}, since λ21\lambda^{2}\neq 1, Condition (ii) is equivalent to requiring that λ2ττpk\lambda^{2}\tau\neq\tau^{p^{k}} for all k{1,,f1}k\in\{1,\ldots,f-1\}, i.e. λ2τpk1\lambda^{2}\neq\tau^{p^{k}-1} for all kk. There are exactly (q3)/2=(q1)/21(q-3)/2=(q-1)/2-1 distinct squares of elements of 𝒮\mathcal{S}, and precisely (q1)/(p1)(q-1)/(p-1) elements in 𝔽q\mathbb{F}_{q}^{*} that are (p1)(p-1)-th powers. Hence if p>3p>3, then there exists λ𝒮\lambda\in\mathcal{S} such that λ2\lambda^{2} is not a (p1)(p-1)-th power in 𝔽q\mathbb{F}_{q}. Observe that then λ2\lambda^{2} is not a (pk1)(p^{k}-1)-th power for any kk, and so this λ\lambda and any corresponding τ\tau from the previous paragraph satisfy both conditions.

Suppose instead that p=3p=3, and fix λ𝒮\lambda\in\mathcal{S}. The number of elements τ𝔽3f\tau\in\mathbb{F}_{3^{f}}^{*} not satisfying (ii), i.e. with λ2=τ3k1\lambda^{2}=\tau^{3^{k}-1} for some k{1,,f1}k\in\{1,\ldots,f-1\}, is at most

(31)+(321)++(3f11)=(3+32++3f1)(f1).(3-1)+(3^{2}-1)+\cdots+(3^{f-1}-1)=(3+3^{2}+\cdots+3^{f-1})-(f-1).

On the other hand, we established that the number of elements τ𝒯\tau\in\mathcal{T} satisfying (i) is equal to

(3f1)/22=(31)(1+3+32++3f1)/22=(3+32++3f1)1.(3^{f}-1)/2-2=(3-1)(1+3+3^{2}+\cdots+3^{f-1})/2-2=(3+3^{2}+\cdots+3^{f-1})-1.

Since q>9q>9, and hence f>2f>2, there again exists τ𝒯\tau\in\mathcal{T} satisfying both conditions.

Finally, fix such a λ𝒮\lambda\in\mathcal{S} and τ𝒯\tau\in\mathcal{T}, and complete the definition of X,YΩ4X,Y\in\Omega^{4} by setting x4=e1+τe2x_{4}=\langle e_{1}+\tau e_{2}\rangle and y4=e1+λ2τe2y_{4}=\langle e_{1}+\lambda^{2}\tau e_{2}\rangle. The stabiliser in HH of (Xx4)=(Yy4)(X\setminus x_{4})=(Y\setminus y_{4}) is contained in Z,ϕ\langle Z,\phi\rangle. By Condition (ii), no such element maps x4x_{4} to y4y_{4}, so YXHY\notin X^{H}. However, the proof of [9, Theorem 5.4.6] uses Condition (i) to exhibit explicit elements of SL2(q)\mathrm{SL}_{2}(q) mapping each 33-tuple of XX to the corresponding 33-tuple of YY. Therefore, XH,3YX{\underset{H,3}{\sim}}Y, and the result follows. ∎

Lemma 3.3.

Assume that PSL3(𝔽)PGL3(𝔽)\mathrm{PSL}_{3}(\mathbb{F})\neq\mathrm{PGL}_{3}(\mathbb{F}), and let HH satisfy SL3(𝔽)HΓL3(𝔽)\mathrm{SL}_{3}(\mathbb{F})\trianglelefteq H\leq\Gamma\mathrm{L}_{3}(\mathbb{F}). If 𝔽\mathbb{F} is finite, or if HGL3(𝔽)H\leq\mathrm{GL}_{3}(\mathbb{F}), then RC(H)5\mathrm{RC}(H)\geq 5.

Proof.

If |𝔽|=4|\mathbb{F}|=4, then we verify the result in GAP using [3], so assume that |𝔽|7|\mathbb{F}|\geq 7. If 𝔽\mathbb{F} is finite, then let λ:=ω\lambda:=\omega, whilst if 𝔽\mathbb{F} is infinite, then let λ\lambda be any element of 𝔽\mathbb{F}^{\ast} of multiplicative order at least 33. Define X,YΩ5X,Y\in\Omega^{5} by xi=yi=eix_{i}=y_{i}=\langle e_{i}\rangle for i{1,2,3}i\in\{1,2,3\}, x4=y4=e1+e2+e3x_{4}=y_{4}=\langle e_{1}+e_{2}+e_{3}\rangle, x5=e1+λe2+λ2e3x_{5}=\langle e_{1}+\lambda e_{2}+\lambda^{2}e_{3}\rangle, and y5=e1+λ1e2+λ2e3y_{5}=\langle e_{1}+\lambda^{-1}e_{2}+\lambda^{-2}e_{3}\rangle, so that x5y5x_{5}\neq y_{5}.

We first show that YXHY\not\in X^{H}. The stabiliser in HH of (Xx5)=(Yy5)(X\setminus x_{5})=(Y\setminus y_{5}) lies in HZ,Aut(𝔽)H\cap\langle Z,\mathrm{Aut}(\mathbb{F})\rangle, so if 𝔽\mathbb{F} is infinite then we are done. Assume therefore that 𝔽=𝔽q\mathbb{F}=\mathbb{F}_{q}. If x5ϕi=y5x_{5}^{\phi^{i}}=y_{5}, then λpi=λ1=λpf1\lambda^{p^{i}}=\lambda^{-1}=\lambda^{p^{f}-1}. Since i{0,,f1}i\in\{0,\ldots,f-1\} and λ=ω\lambda=\omega, we deduce that (p,f,i){(2,2,1),(3,1,0)}(p,f,i)\in\{(2,2,1),(3,1,0)\}, contradicting q7q\geq 7. Thus YXHY\not\in X^{H}.

Next, for all 𝔽\mathbb{F}, we show that XH,4YX{\underset{H,4}{\sim}}Y. Let

g1:=(λλ+1λ+λ101000λ1),g2:=(λ00λ+111+λ100λ1),g3:=(λ00010λ+λ11+λ1λ1),g4:=(λ20001000λ2), and g5:=I3.\begin{array}[]{c}g_{1}:=\begin{pmatrix}\lambda&\lambda+1&\lambda+\lambda^{-1}\\ 0&-1&0\\ 0&0&-\lambda^{-1}\end{pmatrix},\quad g_{2}:=\begin{pmatrix}-\lambda&0&0\\ \lambda+1&1&1+\lambda^{-1}\\ 0&0&-\lambda^{-1}\end{pmatrix},\\ \\ g_{3}:=\begin{pmatrix}-\lambda&0&0\\ 0&-1&0\\ \lambda+\lambda^{-1}&1+\lambda^{-1}&\lambda^{-1}\end{pmatrix},\quad g_{4}:=\begin{pmatrix}\lambda^{2}&0&0\\ 0&1&0\\ 0&0&\lambda^{-2}\end{pmatrix},\ \mbox{ and }\ \ g_{5}:=I_{3}.\end{array}

Observe that det(g)=1\det(g_{\ell})=1 for each {1,,5}\ell\in\{1,\ldots,5\}, and so gSL3(𝔽)Hg_{\ell}\in\mathrm{SL}_{3}(\mathbb{F})\leq H. It is also easy to check that (Xx)g=(Yy)(X\setminus x_{\ell})^{g_{\ell}}=(Y\setminus y_{\ell}) for each \ell. Thus XH,4YX{\underset{H,4}{\sim}}Y, and so RC(H)5\mathrm{RC}(H)\geq 5. ∎

Our remaining results hold for all sufficiently large nn. The first is specific to GLn(𝔽)\mathrm{GL}_{n}(\mathbb{F}).

Proposition 3.4.

If n3n\geq 3 and |𝔽|4|\mathbb{F}|\geq 4, then RC(GLn(𝔽),Ω)n+2\mathrm{RC}(\mathrm{GL}_{n}(\mathbb{F}),\Omega)\geq n+2.

Proof.

Since |𝔽|4|\mathbb{F}|\geq 4, there exists an element λ𝔽\lambda\in\mathbb{F}^{\ast} such that λλ1\lambda\neq\lambda^{-1} (so λ1\lambda\neq-1). Define X,YΩn+2X,Y\in\Omega^{n+2} by xi=yi=eix_{i}=y_{i}=\langle e_{i}\rangle for i{1,,n}i\in\{1,\ldots,n\}, xn+1=yn+1=i=1neix_{n+1}=y_{n+1}=\langle\sum_{i=1}^{n}e_{i}\rangle, xn+2=e1+λe2x_{n+2}=\langle e_{1}+\lambda e_{2}\rangle and yn+2=e1+λ1e2y_{n+2}=\langle e_{1}+\lambda^{-1}e_{2}\rangle.

The stabiliser in GLn(𝔽)\mathrm{GL}_{n}(\mathbb{F}) of (Xxn+2)=(Yyn+2)(X\setminus x_{n+2})=(Y\setminus y_{n+2}) is the group of scalar matrices, so YXGLn(𝔽)Y\not\in X^{\mathrm{GL}_{n}(\mathbb{F})}. Additionally, it is easily verified that, for each j{1,,n+2}j\in\{1,\ldots,n+2\}, the matrix gjGLn(q)g_{j}\in\mathrm{GL}_{n}(q) given below maps (Xxj)(X\setminus x_{j}) to (Yyj)(Y\setminus y_{j}).

g1=(λ1+λ01)λIn2,g2=(101+λ1λ1)λ1In2,gn+1=diag(λ,λ1,λ,,λ),gj=gn+1+(λλ1)Ej2 for j{3,,n},gn+2=In.\begin{array}[]{c}g_{1}=\begin{pmatrix}\lambda&1+\lambda\\ 0&-1\end{pmatrix}\oplus\lambda I_{n-2},\quad g_{2}=\begin{pmatrix}-1&0\\ 1+\lambda^{-1}&\lambda^{-1}\end{pmatrix}\oplus\lambda^{-1}I_{n-2},\quad g_{n+1}=\mathrm{diag}(\lambda,\lambda^{-1},\lambda,\ldots,\lambda),\\ g_{j}=g_{n+1}+(\lambda-\lambda^{-1})E_{j2}\ \mbox{ for $j\in\{3,\ldots,n\}$},\quad g_{n+2}=I_{n}.\end{array}

Hence XGLn(𝔽),n+1YX{\underset{\mathrm{GL}_{n}(\mathbb{F}),n+1}{\sim}}Y, and so the result follows. ∎

In the light of Proposition 3.4, the next result in particular bounds the relational complexity of all remaining groups when PSLn(𝔽)=PGLn(𝔽)\mathrm{PSL}_{n}(\mathbb{F})=\mathrm{PGL}_{n}(\mathbb{F}).

Lemma 3.5.

Let 𝔽\mathbb{F} be arbitrary, assume that n3n\geq 3, and let HH satisfy GLn(𝔽)HΓLn(𝔽)\mathrm{GL}_{n}(\mathbb{F})\trianglelefteq H\leq\Gamma\mathrm{L}_{n}(\mathbb{F}) and HGLn(𝔽)H\neq\mathrm{GL}_{n}(\mathbb{F}). Then RC(H)n+3\mathrm{RC}(H)\geq n+3.

Proof.

Since GLn(𝔽)\mathrm{GL}_{n}(\mathbb{F}) is a proper subgroup of HH, there exists a nontrivial ψHAut(𝔽)\psi\in H\cap\mathrm{Aut}(\mathbb{F}) and an element λ𝔽\lambda\in\mathbb{F}^{*} with λψλ\lambda^{\psi}\neq\lambda. We define X,YΩn+3X,Y\in\Omega^{n+3} by xi=yi=eix_{i}=y_{i}=\langle e_{i}\rangle for i{1,,n}i\in\{1,\ldots,n\},

xn+1=yn+1=i=1nei,xn+2=yn+2=e1+e2+λe3,xn+3=e1+λe2,yn+3=e1+λψe2.x_{n+1}=y_{n+1}=\Big{\langle}\sum_{i=1}^{n}e_{i}\Big{\rangle},\ x_{n+2}=y_{n+2}=\langle e_{1}+e_{2}+\lambda e_{3}\rangle,\ x_{n+3}=\langle e_{1}+\lambda e_{2}\rangle,\ y_{n+3}=\langle e_{1}+\lambda^{\psi}e_{2}\rangle.

We claim that XH,n+2YX{\underset{H,n+2}{\sim}}Y, but YXHY\not\in X^{H}, from which the result will follow.

The stabiliser in HH of (x1,,xn+1)=(y1,,yn+1)(x_{1},\ldots,x_{n+1})=(y_{1},\ldots,y_{n+1}) is contained in Z,Aut(𝔽)\langle Z,\mathrm{Aut}(\mathbb{F})\rangle. However, no element of Z,Aut(𝔽)\langle Z,\mathrm{Aut}(\mathbb{F})\rangle maps (xn+2,xn+3)(x_{n+2},x_{n+3}) to (yn+2,yn+3)(y_{n+2},y_{n+3}), so YXHY\not\in X^{H}. The reader may verify that, for each j{1,,n+3}j\in\{1,\ldots,n+3\}, the element hjGLn(𝔽),ψHh_{j}\in\langle\mathrm{GL}_{n}(\mathbb{F}),\psi\rangle\leq H given below maps (Xxj)(X\setminus x_{j}) to (Yyj)(Y\setminus y_{j}), where we define τ:=(λ1)1\tau:=(\lambda-1)^{-1} (notice that λ1\lambda\neq 1).

h1=(1τ(λψλ)01+τ(λψλ))In2,h2=(1τ(λ(λ1)ψ1)0τ(λ(λ1)ψ1)1)In2,h3=((1τ(λ(λ1)ψ11)0001τ(λ(λ1)ψ11)0τ(λ(λ1)ψ11)τ(λ(λ1)ψ11)1)In3)ψ,hj=(diag(1,1,λ1λψ1,1,,1)+(1λ1λψ1)Ej3)ψ for j{4,,n},hn+1=diag(1,1,λ1λψ1,1,,1)ψ,hn+2=ψ,hn+3=In.\begin{array}[]{c}h_{1}=\begin{pmatrix}1&-\tau(\lambda^{\psi}-\lambda)\\ 0&1+\tau(\lambda^{\psi}-\lambda)\end{pmatrix}\oplus I_{n-2},\quad h_{2}=\begin{pmatrix}1-\tau(\lambda(\lambda^{-1})^{\psi}-1)&0\\ \tau(\lambda(\lambda^{-1})^{\psi}-1)&1\end{pmatrix}\oplus I_{n-2},\\ h_{3}=\left(\begin{pmatrix}1-\tau(\lambda(\lambda^{-1})^{\psi^{-1}}-1)&0&0\\ 0&1-\tau(\lambda(\lambda^{-1})^{\psi^{-1}}-1)&0\\ \tau(\lambda(\lambda^{-1})^{\psi^{-1}}-1)&\tau(\lambda(\lambda^{-1})^{\psi^{-1}}-1)&1\end{pmatrix}\oplus I_{n-3}\right)\psi,\\ h_{j}=\left(\mathrm{diag}(1,1,\lambda^{-1}\lambda^{\psi^{-1}},1,\ldots,1)+(1-\lambda^{-1}\lambda^{\psi^{-1}})E_{j3}\right)\psi\ \mbox{ for $j\in\{4,\ldots,n\}$},\\ h_{n+1}=\mathrm{diag}(1,1,\lambda^{-1}\lambda^{\psi^{-1}},1,\ldots,1)\psi,\quad h_{n+2}=\psi,\quad h_{n+3}=I_{n}.\end{array}

Hence XH,n+2YX{\underset{H,n+2}{\sim}}Y, and the result follows. ∎

Lemma 3.6.

Let 𝔽\mathbb{F} be arbitrary, assume that n4n\geq 4, and let HH satisfy SLn(𝔽)HΓLn(𝔽)\mathrm{SL}_{n}(\mathbb{F})\trianglelefteq H\leq\Gamma\mathrm{L}_{n}(\mathbb{F}) and HGLn(𝔽)H\not\leq\mathrm{GL}_{n}(\mathbb{F}). Then RC(H)n+2\mathrm{RC}(H)\geq n+2.

Proof.

Since HGLn(𝔽)H\not\leq\mathrm{GL}_{n}(\mathbb{F}), there exist elements hψHh\psi\in H and λ𝔽\lambda\in\mathbb{F}^{*} such that hGLn(q)h\in\mathrm{GL}_{n}(q), ψAut(𝔽q)\psi\in\mathrm{Aut}(\mathbb{F}_{q}), and λψλ\lambda^{\psi}\neq\lambda. Let X,YΩn+2X,Y\in\Omega^{n+2} be as in the proof of Lemma 3.5, but supported only on the first n1n-1 basis vectors, so that en\langle e_{n}\rangle lies in neither XX nor YY, and xn=yn=i=1n1eix_{n}=y_{n}=\langle\sum_{i=1}^{n-1}e_{i}\rangle. Just as in that proof, one may check that YXHY\not\in X^{H}, but XH,n+1YX{\underset{H,n+1}{\sim}}Y. ∎

The next result applies, in particular, to all groups HH such that SLn(𝔽)H\mathrm{SL}_{n}(\mathbb{F})\trianglelefteq H and either H<GLn(𝔽)H<\mathrm{GL}_{n}(\mathbb{F}) or HΣLn(𝔽)ΓLn(𝔽)H\leq\Sigma\mathrm{L}_{n}(\mathbb{F})\neq\Gamma\mathrm{L}_{n}(\mathbb{F}). We write 𝔽×n\mathbb{F}^{\times n} for the subgroup of 𝔽\mathbb{F}^{\ast} consisting of nn-th powers, which is the set of possible determinants of scalar matrices in GLn(𝔽)\mathrm{GL}_{n}(\mathbb{F}).

Proposition 3.7.

Assume that n4n\geq 4 and |𝔽|3|\mathbb{F}|\geq 3, and let HH satisfy SLn(𝔽)HΓLn(𝔽)\mathrm{SL}_{n}(\mathbb{F})\trianglelefteq H\leq\Gamma\mathrm{L}_{n}(\mathbb{F}). Assume also that the set {det(g)ψ𝔽×ngψH\{\det(g)^{\psi}\mathbb{F}^{\times n}\mid g\psi\in H with gGLn(𝔽),ψAut(𝔽)}g\in\mathrm{GL}_{n}(\mathbb{F}),\psi\in\mathrm{Aut}(\mathbb{F})\} is a proper subset of 𝔽/𝔽×n\mathbb{F}^{\ast}/\mathbb{F}^{\times n}. Then RC(H)2n2.\mathrm{RC}(H)\geq 2n-2.

Proof.

By assumption, there exists an α𝔽\alpha\in\mathbb{F}^{\ast} such that αdet(gz)ψ\alpha\neq\det(gz)^{\psi} for all gψHg\psi\in H and zZz\in Z. Define X,YΩ2n2X,Y\in\Omega^{2n-2} as follows:

X\displaystyle X :=(e2,,en,e1+e2,,e1+en); and\displaystyle:=\big{(}\langle e_{2}\rangle,\ldots,\langle e_{n}\rangle,\langle e_{1}+e_{2}\rangle,\ldots,\langle e_{1}+e_{n}\rangle\big{)};\text{ and}
Y\displaystyle Y :=(e2,,en,αe1+e2,,αe1+en).\displaystyle:=\big{(}\langle e_{2}\rangle,\ldots,\langle e_{n}\rangle,\langle\alpha e_{1}+e_{2}\rangle,\ldots,\langle\alpha e_{1}+e_{n}\rangle\big{)}.

We show first that YXHY\not\in X^{H}, so suppose for a contradiction that there exists gψHg\psi\in H, with gGLn(𝔽)g\in\mathrm{GL}_{n}(\mathbb{F}) and ψAut(𝔽)\psi\in\mathrm{Aut}(\mathbb{F}), such that Xgψ=YX^{g\psi}=Y. As gψg\psi fixes e2\langle e_{2}\rangle and e3\langle e_{3}\rangle, and maps e1+e2\langle e_{1}+e_{2}\rangle and e1+e3\langle e_{1}+e_{3}\rangle to αe1+e2\langle\alpha e_{1}+e_{2}\rangle and αe1+e3\langle\alpha e_{1}+e_{3}\rangle, respectively, we deduce that e1gψe1,e2e1,e3=e1e_{1}^{g\psi}\in\langle e_{1},e_{2}\rangle\cap\langle e_{1},e_{3}\rangle=\langle e_{1}\rangle. Therefore eigψ=ei\langle e_{i}\rangle^{g\psi}=\langle e_{i}\rangle for each i{1,,n}i\in\{1,\ldots,n\}, and so gg is diagonal. Let μ:=αψ1\mu:=\alpha^{\psi^{-1}}. As e1+eigψ=αe1+ei\langle e_{1}+e_{i}\rangle^{g\psi}=\langle\alpha e_{1}+e_{i}\rangle for each i{2,,n}i\in\{2,\ldots,n\}, we deduce that g=diag(μ,1,,1)zg=\mathrm{diag}(\mu,1,\ldots,1)z for some zZz\in Z. Hence (det(gz1))ψ=μψ=α(\det(gz^{-1}))^{\psi}=\mu^{\psi}=\alpha, a contradiction. Hence YXHY\not\in X^{H}.

Now, for each i{2,,n}i\in\{2,\ldots,n\}, let hi:=diag(α,1,,1,α1,1,,1)h_{i}:=\mathrm{diag}(\alpha,1,\ldots,1,\alpha^{-1},1,\ldots,1), where the α1\alpha^{-1} appears in entry ii. First, for j{1,,n1}j\in\{1,\ldots,n-1\}, let k:=j+1k:=j+1 so that xj=yj=ekx_{j}=y_{j}=\langle e_{k}\rangle. It is easy to verify that hk+(1α)Ek1h_{k}+(1-\alpha)E_{k1} has determinant 11 and maps (Xxj)(X\setminus x_{j}) to (Yyj)(Y\setminus y_{j}). Finally, for j{n,,2n2}j\in\{n,\ldots,2n-2\}, let k:=j+2nk:=j+2-n, so that xj=e1+ekx_{j}=\langle e_{1}+e_{k}\rangle and yj=αe1+eky_{j}=\langle\alpha e_{1}+e_{k}\rangle. Then hkh_{k} has determinant 11 and maps (Xxj)(X\setminus x_{j}) to (Yyj)(Y\setminus y_{j}). Therefore, XH,2n3YX{\underset{H,2n-3}{\sim}}Y, and so RC(H)2n2\mathrm{RC}(H)\geq 2n-2. ∎

Proof of Theorem A.

When |𝔽|=2|\mathbb{F}|=2, this result is clear from Theorem 1.1. For the remaining fields 𝔽\mathbb{F}, the fact that Part (i) gives an upper bound on RC(PGLn(𝔽))\mathrm{RC}(\mathrm{PGL}_{n}(\mathbb{F})) is proved in Theorem 2.12, whilst we prove that it gives a lower bound in Theorem 3.1 for |𝔽|=3|\mathbb{F}|=3 and Proposition 3.4 for |𝔽|4|\mathbb{F}|\geq 4. That Part (ii) gives upper bounds on RC(H¯)\mathrm{RC}(\overline{H}) is immediate from Theorem 1.2(ii) for n=3n=3, and from Theorem 2.7 for n4n\geq 4. Lemma 3.3 and Proposition 3.7 show that these are also lower bounds. ∎

Recall that ω(k)\omega(k) denotes the number of distinct prime divisors of the positive integer kk.

Lemma 3.8 ([8, Lemma 3.1]).

Let KSym(Γ)K\leq\mathrm{Sym}({\Gamma}) be a finite group with normal subgroup NN such that K/NK/N is cyclic. Then H(K,Γ)H(N,Γ)+ω(|K/N|)\mathrm{H}(K,\Gamma)\leq\mathrm{H}(N,\Gamma)+\omega(|K/N|).

Proof of Theorem B.

For the upper bound in Part (i), we combine Proposition 1.2(i) with Lemma 3.8 to deduce that H(H¯,Ω1)=3+ω(e)\mathrm{H}(\overline{H},\Omega_{1})=3+\omega(e), so RC(H¯,Ω1)4+ω(e)\mathrm{RC}(\overline{H},\Omega_{1})\leq 4+\omega(e). The lower bound (and the case H¯=PΣL2(9)\overline{H}=\mathrm{P}\Sigma\mathrm{L}_{2}(9)) is Lemma 3.2.

For the upper bound in Part (ii), we similarly combine Proposition 1.2(ii) with Lemma 3.8. As for the lower bound, first let n=3n=3, and notice that in this case 2n2=4<n+2=52n-2=4<n+2=5. If H¯\overline{H} properly contains PGL3(q)\mathrm{PGL}_{3}(q), then the lower bound of 66 is proved in Lemma 3.5. Otherwise, PSL3(q)PGL3(q)\mathrm{PSL}_{3}(q)\neq\mathrm{PGL}_{3}(q), and so the lower bound of 55 follows from Lemma 3.3. Now assume that n4n\geq 4. The general lower bound is Lemma 3.6, the bound of n+3n+3 for groups properly containing PGLn(q)\mathrm{PGL}_{n}(q) is Lemma 3.5, and the bound of 2n22n-2 is Proposition 3.7. ∎

4. Action on mm-spaces for m2m\geq 2

In this section, we consider the action of HH on Ωm=𝒫𝒢m(V)\Omega_{m}=\mathcal{PG}_{m}(V), where SLn(𝔽)HΓLn(𝔽)\mathrm{SL}_{n}(\mathbb{F})\trianglelefteq H\leq\Gamma\mathrm{L}_{n}(\mathbb{F}), as before, but now 2mn22\leq m\leq\frac{n}{2}. The main work is to prove a lower bound on RC(H,Ωm)\mathrm{RC}(H,\Omega_{m}), as the upper bound follows from existing literature.

Proposition 4.1.

Let 𝔽\mathbb{F} be arbitrary, let n2m4n\geq 2m\geq 4, and let HH satisfy SLn(𝔽)HΓLn(𝔽)\mathrm{SL}_{n}(\mathbb{F})\trianglelefteq H\leq\Gamma\mathrm{L}_{n}(\mathbb{F}). Then RC(H,Ωm)mnm2+1\mathrm{RC}(H,\Omega_{m})\geq mn-m^{2}+1.

Proof.

For each i{1,,m}i\in\{1,\ldots,m\} and j{m+1,,n1}j\in\{m+1,\ldots,n-1\}, let Bi:={e1,e2,,em}{ei}B_{i}:=\{e_{1},e_{2},\ldots,e_{m}\}\setminus\{e_{i}\}, Uij:=Bi,ej=e1,,ei1,ei+1,,em,ejU_{ij}:=\langle B_{i},e_{j}\rangle=\langle e_{1},\ldots,e_{i-1},e_{i+1},\ldots,e_{m},e_{j}\rangle, Vi:=Bi,ei+enV_{i}:=\langle B_{i},e_{i}+e_{n}\rangle, and Wi:=Bi,enW_{i}:=\langle B_{i},e_{n}\rangle, so that Uij,Vi,WiΩmU_{ij},V_{i},W_{i}\in\Omega_{m}. Define X,YΩmmnm2+1X,Y\in\Omega_{m}^{mn-m^{2}+1} as follows:

xmnm2+1:=e1+e2,,e1+em,i=1nei;\displaystyle x_{mn-m^{2}+1}:=\langle e_{1}+e_{2},\ldots,e_{1}+e_{m},\sum_{i=1}^{n}e_{i}\rangle;
ymnm2+1:=e1+e2,,e1+em,e1+i=m+1nei;\displaystyle y_{mn-m^{2}+1}:=\langle e_{1}+e_{2},\ldots,e_{1}+e_{m},-e_{1}+\sum_{i=m+1}^{n}e_{i}\rangle;
X:=(U1(m+1),U1(m+2),,Um(n1),V1,V2,,Vm,xmnm2+1); and\displaystyle X:=\Big{(}U_{1(m+1)},U_{1(m+2)},\ldots,U_{m(n-1)},V_{1},V_{2},\ldots,V_{m},x_{mn-m^{2}+1}\Big{)};\text{ and}
Y:=(U1(m+1),U1(m+2),,Um(n1),W1,W2,,Wm,ymnm2+1).\displaystyle Y:=\Big{(}U_{1(m+1)},U_{1(m+2)},\ldots,U_{m(n-1)},W_{1},W_{2},\ldots,W_{m},y_{mn-m^{2}+1}\Big{)}.

We shall first show that YXΓLn(𝔽)Y\not\in X^{\Gamma\mathrm{L}_{n}(\mathbb{F})}, so in particular YXHY\not\in X^{H}, and then that XH,mnm2YX{\underset{H,mn-m^{2}}{\sim}}Y.

Assume for a contradiction that YXΓLn(𝔽)Y\in X^{\Gamma\mathrm{L}_{n}(\mathbb{F})}. Since each subspace in YY is spanned by vectors of the form i=1nλiei\sum_{i=1}^{n}\lambda_{i}e_{i} with λi{1,0,1}\lambda_{i}\in\{-1,0,1\}, it follows that there exists gGLn(𝔽)g\in\mathrm{GL}_{n}(\mathbb{F}) with Xg=YX^{g}=Y. For each i{1,,m}i\in\{1,\ldots,m\}, choose k{1,,m}{i}k\in\{1,\ldots,m\}\setminus\{i\}. Then

ei={1,,m}{i}U(m+1)Vk={1,,m}{i}U(m+1)Wk,\langle e_{i}\rangle=\bigcap\limits_{\ell\in\{1,\ldots,m\}\setminus\{i\}}U_{\ell(m+1)}\cap V_{k}=\bigcap\limits_{\ell\in\{1,\ldots,m\}\setminus\{i\}}U_{\ell(m+1)}\cap W_{k},

so gg fixes ei\langle e_{i}\rangle. Similarly, gg fixes ej=i=1mUij\langle e_{j}\rangle=\bigcap\limits_{i=1}^{m}U_{ij} for each j{m+1,,n1}j\in\{m+1,\ldots,n-1\}.

Therefore, there exist λ1,,λn𝔽\lambda_{1},\ldots,\lambda_{n}\in\mathbb{F}^{*} and μ1,,μn1𝔽\mu_{1},\ldots,\mu_{n-1}\in\mathbb{F} such that gg maps eie_{i} to λiei\lambda_{i}e_{i} for all i{1,,n1}i\in\{1,\ldots,n-1\}, and maps ene_{n} to λnen+i=1n1μiei\lambda_{n}e_{n}+\sum_{i=1}^{n-1}\mu_{i}e_{i}. It now follows that for each i{2,,m}i\in\{2,\ldots,m\}, the element gg maps e1+eixmnm2+1e_{1}+e_{i}\in x_{mn-m^{2}+1} to λ1e1+λiei\lambda_{1}e_{1}+\lambda_{i}e_{i}, which must lie in ymnm2+1y_{mn-m^{2}+1}, and hence λi=λ1\lambda_{i}=\lambda_{1}. Similarly, Vig=WiV_{i}^{g}=W_{i} for each i{1,,m}i\in\{1,\ldots,m\}, and so Wi=Bi,enW_{i}=\langle B_{i},e_{n}\rangle contains

(ei+en)g=λ1ei+λnen+k=1n1μkek.(e_{i}+e_{n})^{g}=\lambda_{1}e_{i}+\lambda_{n}e_{n}+\sum_{k=1}^{n-1}\mu_{k}e_{k}.

Hence μi=λ1\mu_{i}=-\lambda_{1}, and μj=0\mu_{j}=0 for all j{m+1,,n1}j\in\{m+1,\ldots,n-1\}. It now follows that gg maps i=1neixmnm2+1\sum_{i=1}^{n}e_{i}\in x_{mn-m^{2}+1} to i=m+1nλiei\sum_{i=m+1}^{n}\lambda_{i}e_{i}, which is clearly not in ymnm2+1y_{mn-m^{2}+1}, a contradiction. Thus YXHY\not\in X^{H}.

We now show that XH,mnm2YX{\underset{H,mn-m^{2}}{\sim}}Y, by identifying an element gSLn(𝔽)Hg_{\ell}\in\mathrm{SL}_{n}(\mathbb{F})\leq H that maps (Xx)(X\setminus x_{\ell}) to (Yy)(Y\setminus y_{\ell}), for each {1,,mnm2+1}\ell\in\{1,\ldots,mn-m^{2}+1\}. We divide the proof into three cases, which together account for all values of \ell. To simplify our expressions, let z:=e1+e2++emz:=e_{1}+e_{2}+\ldots+e_{m}, α1:=1\alpha_{1}:=-1, and αr:=1\alpha_{r}:=1 for all r{2,,m}r\in\{2,\ldots,m\}. In each case the element gg_{\ell} will be lower unitriangular, and so will have determinant 11.

Case (a): {1,,m(nm1)}\ell\in\{1,\ldots,m(n-m-1)\}. Let r{1,,m}r\in\{1,\ldots,m\} and s{m+1,,n1}s\in\{m+1,\ldots,n-1\} be such that =(nm1)(r1)+(sm)\ell=(n-m-1)(r-1)+(s-m), so that x=y=Ursx_{\ell}=y_{\ell}=U_{rs}. Additionally, let gg_{\ell} fix eie_{i} for all i{s,n}i\notin\{s,n\}, map ese_{s} to es+αrere_{s}+\alpha_{r}e_{r}, and map ene_{n} to enze_{n}-z. Then gg_{\ell} fixes UijU_{ij} provided (i,j)(r,s)(i,j)\neq(r,s), and maps ei+enVie_{i}+e_{n}\in V_{i} to ei+enzWie_{i}+e_{n}-z\in W_{i}, and hence ViV_{i} to WiW_{i}, for all i{1,m}i\in\{1,\ldots m\}. Finally,

(i=1nei)g=αrer+i=m+1neiymnm2+1,\Big{(}\sum_{i=1}^{n}e_{i}\Big{)}^{g_{\ell}}=\alpha_{r}e_{r}+\sum_{i=m+1}^{n}e_{i}\in y_{mn-m^{2}+1},

where we have used the fact that er+i=m+1nei=(e1+er)+(e1+i=m+1nei)e_{r}+\sum_{i=m+1}^{n}e_{i}=(e_{1}+e_{r})+(-e_{1}+\sum_{i=m+1}^{n}e_{i}) when r>1r>1. Hence gg_{\ell} maps xmnm2+1x_{mn-m^{2}+1} to ymnm2+1y_{mn-m^{2}+1}, as required.

Case (b): =m(nm1)+r\ell={m(n-m-1)+r}, where r{1,,m}r\in\{1,\ldots,m\}. Here, x=Vrx_{\ell}=V_{r} and y=Wry_{\ell}=W_{r}. Let gg_{\ell} fix eie_{i} for each i{1,,n1}i\in\{1,\ldots,n-1\} and map ene_{n} to αrer+enz\alpha_{r}e_{r}+e_{n}-z. Then gg_{\ell} fixes UijU_{ij} for all ii and jj, and maps ei+enVie_{i}+e_{n}\in V_{i} to ei+αrer+enzWie_{i}+\alpha_{r}e_{r}+e_{n}-z\in W_{i}, and hence ViV_{i} to WiW_{i}, for all i{1,,m}{r}i\in\{1,\ldots,m\}\setminus\{r\}. Finally,

(i=1nei)g=αrer+i=m+1neiymnm2+1,\Big{(}\sum_{i=1}^{n}e_{i}\Big{)}^{g_{\ell}}=\alpha_{r}e_{r}+\sum_{i=m+1}^{n}e_{i}\in y_{mn-m^{2}+1},

as in Case (a).

Case (c): =mnm2+1\ell={mn-m^{2}+1}. Let gg_{\ell} fix eie_{i} for each i{1,,n1}i\in\{1,\ldots,n-1\}, and map ene_{n} to enze_{n}-z. Then gg fixes UijU_{ij} for all ii and jj, and maps ei+enVie_{i}+e_{n}\in V_{i} to ei+enzWie_{i}+e_{n}-z\in W_{i} for all ii, as required. ∎

The irredundant base size I(K,Γ)\mathrm{I}(K,\Gamma) of a group KK acting faithfully on a set Γ\Gamma is the largest size of a tuple (α1,,αk)(\alpha_{1},\ldots,\alpha_{k}) of elements of Γ\Gamma such that K>Kα1>K(α1,α2)>>K(α1,,αk)=1K>K_{\alpha_{1}}>K_{(\alpha_{1},\alpha_{2})}>\cdots>K_{(\alpha_{1},\ldots,\alpha_{k})}=1, with all inclusions strict. It is clear that I(K,Γ)\mathrm{I}(K,\Gamma) is bounded below by the height H(K,Γ)\mathrm{H}(K,\Gamma), which we recall (from §1) is bounded below by RC(K,Γ)1\mathrm{RC}(K,\Gamma)-1.

Proof of Theorem C.

In [10, Thm 3.1], it is proved that I(PGLn(𝔽),Ωm)(m+1)n2m+1\mathrm{I}(\mathrm{PGL}_{n}(\mathbb{F}),\Omega_{m})\leq(m+1)n-2m+1. Since the irredundant base size of a subgroup is at most the irredundant base size of an overgroup, and the height is at most the irredundant base size, we deduce that H(H¯,Ωm)(m+1)n2m+1\mathrm{H}(\overline{H},\Omega_{m})\leq(m+1)n-2m+1 for all H¯PGLn(𝔽)\overline{H}\leq\mathrm{PGL}_{n}(\mathbb{F}). From Lemma 3.8, we then see that for all H¯\overline{H} as in the statement, H(H¯,Ωm)(m+1)n2m+1+ω(e)\mathrm{H}(\overline{H},\Omega_{m})\leq(m+1)n-2m+1+\omega(e), and hence the upper bound follows. The lower bound is immediate from Proposition 4.1, so the proof is complete. ∎

Acknowledgments We thank the anonymous referee for their careful reading and helpful comments. The authors would like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the programme “Groups, representations and applications: new perspectives”, when work on this paper was undertaken. This work was supported by EPSRC grant no. EP/R014604/1, and also partially supported by a grant from the Simons Foundation. The first author was supported by the University of St Andrews (St Leonard’s International Doctoral Fees Scholarship & School of Mathematics and Statistics PhD Funding Scholarship), and by EPSRC grant no. EP/W522422/1. The second author is funded by the Heilbronn Institute.
In order to meet institutional and research funder open access requirements, any accepted manuscript arising shall be open access under a Creative Commons Attribution (CC BY) reuse licence with zero embargo.

Competing interests The authors declare none.

References

  • [1] G. Cherlin. Sporadic homogeneous structures. In The Gelfand Mathematical Seminars, 1996–1999, pages 15–48. Birkhäuser, Boston, MA, 2000.
  • [2] G. Cherlin. On the relational complexity of a finite permutation group. J. Algebraic Combin., 43(2):339–374, 2016.
  • [3] G. Cherlin and J. Wiscons. RComp (GAP code), June 9, 2016.
    https://webpages.csus.edu/wiscons/research/code/RComp.html.
  • [4] G.L. Cherlin, G.A. Martin, and D.H. Saracino. Arities of permutation groups: wreath products and kk-sets. J. Combin. Theory Ser. A, 74(2):249–286, 1996.
  • [5] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.12.2, 2022.
  • [6] N. Gill, M.W. Liebeck, and P. Spiga. Cherlin’s conjecture for finite primitive binary permutation groups, volume 2302 of Lecture Notes in Mathematics. Springer, Cham, 2022.
  • [7] N. Gill, B. Lodà, and P. Spiga. On the height and relational complexity of a finite permutation group. Nagoya Math. J., 246:372–411, 2022.
  • [8] S. Harper. The maximal size of a minimal generating set. Forum Math. Sigma, 11:Paper No. e70, 2023.
  • [9] S. Hudson. Calculating the Height and Relational Complexity of the Primitive Actions of PSL2(q)PSL_{2}(q) and PGL2(q)PGL_{2}(q). PhD thesis, University of South Wales, November 2022.
  • [10] V. Kelsey and C.M. Roney-Dougal. On relational complexity and base size of finite primitive groups. Pacific J. Math., 318:89–108, 2022.
  • [11] A.H. Lachlan. On countable stable structures which are homogeneous for a finite relational language. Israel J. Math., 49(1-3):69–153, 1984.
  • [12] B. Lodà. The height and relational complexity of finite primitive permutation groups. PhD thesis, University of South Wales, January 2020.
  • [13] J.J. Rotman. An introduction to the theory of groups, volume 148 of Graduate Texts in Mathematics. Springer-Verlag, New York, fourth edition, 1995.