This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: Corresponding author: [email protected]thanks: Corresponding author: [email protected]thanks: Corresponding author: [email protected]

The quantum uncertainty relations of quantum channels

Shi-Yun Kong1    Ming-Jing Zhao2    Zhi-Xi Wang1    Shao-Ming Fei1,3 1School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
2School of Science, Beijing Information Science and Technology University, Beijing 102206, China
3Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
Abstract

The uncertainty relation reveals the intrinsic difference between the classical world and the quantum world. We investigate the quantum uncertainty relation of quantum channel in qubit systems. Under two general measurement bases, we first derive the quantum uncertainty relation for quantum channels with respect to the relative entropy of coherence. Then we obtain the quantum uncertainty relation for unitary channels with respect to the l1l_{1} norm of coherence. Some examples are given in detail.

Keywords: Quantum uncertainty relation, Quantum coherence, Quantum channel

I Introduction

The Heisenberg’s uncertainty principle heisenberg is one of the most fundamental features in quantum world, which is the essential difference from classical world. Given two incompatible measurement, the uncertainty relation shows that the outcomes cannot be accurately predicted simultaneously. The Heisenberg-Robertson uncertainty relation robertson provides the bounds of two observables based on variance. Deutsch deutsch establishes the celebrated entropic uncertainty relation. Afterward, Maassen and Uffink maassen further propose the state-independent uncertainty relation based on the Shannon entropy of measurement outcomes. The uncertainty relation for general quantum channels is also investigated fu ; zhou . As for applications, the uncertainty relations have played significant roles in the realm of quantum information processing, including the quantum key distribution vallone ; coles , entanglement witnesses berta , quantum steering walborn , quantum teleportation hu1 , and quantum metrology Giovannetti .

In general, the nominal uncertainty of a measurement comprises classical (predictable) and quantum (unpredictable) components arising from classical noise and quantum effects yuan1 . Luo etal.et\ al. shows that the quantum uncertainty is equivalent to quantum coherence luo , which is viewed as an essential resource marvian ; wu ; streltsov . The development of the quantum coherence framework for quantum states baumgratz has attracted a growing interest in quantifying the coherence, such as the l1l_{1} norm of coherence baumgratz , the relative entropy of coherence baumgratz , the intrinsic randomness of coherence yuan1 , coherence concurrence qi , the robustness of coherencecarmine and the fidelity-based coherence liu1 and so on.

Since the quantum coherence depends on the measurement basis, it is interesting to study the constraints of the quantum coherence on different measurement bases luo , which is the quantum uncertainty relation. For the qubit states, Yuan etal.et\ al. yuan derived the quantum uncertainty relation for qubit states on two measurement bases for the relative entropy of coherence, the l1l_{1} norm of coherence, and the coherence of formation respectively. In high dimensional systems, the quantum uncertainty relations of Tsallis relative entropy of coherence and Rényi relative entropy of coherence are derived Rastegin2023 ; FuGang Zhang , which are then generalized to the sandwiched Rényi relative entropy of coherence and unified (α\alpha,β\beta)-relative entropy of coherence Haijin Mu . The quantum uncertainty relations for coherence measure based on the Wigner-Yanase skew information are also established Shun-Long Luo . In hu , the quantum uncertainty relations of the geometric coherence on two and three general measurement bases are derived.

Analogous to quantum states, Xu established a framework for quantifying the coherence of quantum channels xu . Subsequently, the study of the coherence of quantum channels has attracted more and more attention, such as the coherence based on skew information for quantum channels xuan , the coherence based on trace distance for quantum channels fan , and maximum relative entropy of coherence jin . Moreover, the coherence of quantum channels is also related to the measurement basis.

In this work, we investigate the quantum uncertainty relation of quantum channels in qubit systems. In section II, we introduce the coherence framework and some basic concepts needed in this paper. In section III, for any given two measurement bases, we first derive the quantum uncertainty relation of quantum channels in terms of the relative entropy of coherence, and then we obtain the quantum uncertainty relation for unitary channels in terms of the l1l_{1} norm of coherence. Detailed examples are presented to illustrate these results. We conclude in section IV.

II Preliminaries

Let HAH_{A} be a Hilbert space with dimension |A||A|, and 𝕁={|j}\mathbb{J}=\{|j\rangle\} be a orthonormal basis of HAH_{A}. Denote 𝒟A\mathcal{D}_{A} the set of all density operators on HAH_{A}. The incoherent states are quantum states that are diagonal under the reference basis 𝕁\mathbb{J}, that is ρ=jpj|jj|\rho=\sum_{j}p_{j}|j\rangle\langle j|, where pj0,pj=1p_{j}\geqslant 0,\sum p_{j}=1. Otherwise, it is called coherent. The set of all the incoherent states is denoted as 𝕁\mathcal{I}_{\mathbb{J}}.

Under the reference basis 𝕁={|j}\mathbb{J}=\{|j\rangle\}, for any given mixed state ρ=i,jρij|ij|\rho=\sum_{i,j}\rho_{ij}|i\rangle\langle j|, the relative entropy of coherence is defined as

Crel𝕁(ρ)=minσ𝕁S(ρσ)=S(diag𝕁(ρ))S(ρ),C_{\rm{rel}}^{\mathbb{J}}(\rho)=\underset{\sigma\in\mathcal{I}_{\mathbb{J}}}{\min}S(\rho\|\sigma)=S({\rm{diag}}^{\mathbb{J}}(\rho))-S(\rho), (1)

where S(ρσ)=Tr(ρlogρρlogσ)S(\rho\|\sigma)=\rm{Tr}(\rho\rm{log}\rho-\rho\rm{log}\sigma) is the quantum relative entropy, S(ρ)=Tr(ρlogρ)S(\rho)=-\rm{Tr}(\rho\rm{log}\rho) is the von Neumann entropy and diag𝕁(ρ)=jρjj|jj|{\rm{diag}}^{\mathbb{J}}(\rho)=\sum_{j}\rho_{jj}|j\rangle\langle j| is the state of ρ\rho after a completely dephasing channel in the basis 𝕁\mathbb{J}. The l1l_{1} norm of coherence of ρ\rho is defined as

Cl1𝕁(ρ)=ij|ρij|.C_{l_{1}}^{\mathbb{J}}(\rho)=\underset{i\neq j}{\sum}|\rho_{ij}|. (2)

These two coherence measures are widely adopted and applied in quantum tasks such as quantum assistance zhao and quantum coherence distribution machado .

A quantum channel Φ\Phi is a linear completely positive and trace preserving (CPTP) map, which can be represented by the Kraus operators Φ={Mm}\Phi=\{M_{m}\}, with mMmMm=I\sum_{m}M_{m}^{\dagger}M_{m}=I. Moreover, a quantum channel can also be represented by the Choi matrix

JΦ=j,k|jk|Φ(|jk|)=m,j,k|jk|Mm|jk|Mm.J_{\Phi}=\sum_{j,k}|j\rangle\langle k|\otimes\Phi(|j\rangle\langle k|)=\sum_{m,j,k}|j\rangle\langle k|\otimes M_{m}|j\rangle\langle k|M_{m}^{\dagger}. (3)

Let 𝒞AB\mathcal{C}_{AB} be the set of all quantum channels from 𝒟A\mathcal{D}_{A} to 𝒟B\mathcal{D}_{B}. In the framework of coherence theory of quantum channels, Φ𝒞AB\Phi\in\mathcal{C}_{AB} is called an incoherent quantum channel if Υ(Φ)=Φ\Upsilon(\Phi)=\Phi, where Υ(Φ)=ΔBΦΔA\Upsilon(\Phi)=\Delta_{B}\Phi\Delta_{A}, ΔA\Delta_{A} and ΔB\Delta_{B} are resource destroying maps liu . Or else the quantum channel is called coherent. In order to quantify the coherence of quantum channels, a coherence measure CC is proposed which should satisfy the following conditions: (i) Positivity: For any quantum channel Φ\Phi, it has C(Φ)0C(\Phi)\geqslant 0; C(ϕ)=0C(\phi)=0 if and only if Φ\Phi is an incoherent channel; (ii) Monotonicity: C(Φ)C(\Phi) cannot increase under incoherent maps; (iii) Convexity: C(Φ)C(\Phi) is convex. In xu , the author introduced a resource theory for quantifying the coherence of quantum channels by using the coherence measure for quantum states. Suppose CC is any coherence measure for quantum states, then the coherence of quantum channel Φ\Phi can be characterized by the Choi matrix JΦJ_{\Phi} as xu

C(Φ)=C(JΦ|A|).C(\Phi)=C(\frac{J_{\Phi}}{|A|}). (4)

Here JΦ|A|\frac{J_{\Phi}}{|A|} is factually a density matrix. So the coherence of quantum channel is quantified by that of the corresponding quantum state.

We aim to get the quantum uncertainty relations for quantum channels in qubit systems. Since the quantum uncertainty relations depends on the measurement basis, so we expect to describe it by the functions follows:

C𝕏(Φ)+C(Φ)f(𝕏,,Φ),C^{\mathbb{X}}(\Phi)+C^{\mathbb{Z}}(\Phi)\geqslant f(\mathbb{X},\mathbb{Z},\Phi), (5)

where 𝕏\mathbb{X} and \mathbb{Z} are two general measurement bases, CC is a coherence measure for quantum channels, and ff is a function of the measurement bases and the quantum channel Φ\Phi.

III The quantum uncertainty relation of quantum channels with respect to the relative entropy of coherence

In this section, we aim to derive the quantum uncertainty relation of quantum channels in qubit systems with respect to the relative entropy of coherence. For any two orthonormal bases 𝕏\mathbb{X} and \mathbb{Z}, we denote cmin=min|x𝕏,|z|x|z|2c_{\min}={\min}_{|x\rangle\in\mathbb{X},\ |z\rangle\in\mathbb{Z}}|\langle x|z\rangle|^{2} as their incompatibility. In the meantime, we denote

cmax=max|x𝕏,|z|x|z|2\displaystyle c_{\max}={\max}_{|x\rangle\in\mathbb{X},\ |z\rangle\in\mathbb{Z}}|\langle x|z\rangle|^{2} (6)

as the maximum overlap of the two measurements. In qubit systems, it has cmax=1cminc_{\max}=1-c_{\min}. For convenience, we use cmaxc_{\max} throughout this paper to characterize the quantum uncertainty relation of quantum channels. Before the study of the quantum uncertainty relation, we need the following lemma first.

Lemma 1. In dd-dimensional systems, for any two normalized vectors |x,|z|x\rangle,|z\rangle and a density matrix AA in form of A=|r1r1|++|rnrn|A=|r_{1}\rangle\langle r_{1}|+\dots+|r_{n}\rangle\langle r_{n}|, with r1|r1++rn|rn=1\langle r_{1}|r_{1}\rangle+\dots+\langle r_{n}|r_{n}\rangle=1. Denote x|A|x=a,z|A|z=b\langle x|A|x\rangle=a,\ \langle z|A|z\rangle=b and |x|z|2=c|\langle x|z\rangle|^{2}=c, then we have a+b1+ca+b\leqslant 1+\sqrt{c} and |ab|1c|a-b|\leqslant\sqrt{1-c}. When d=2d=2, we also have 1ca+b.1-\sqrt{c}\leqslant a+b.

Proof. First, if the density matrix AA is rank one, then these inequalities are obviously true as proved in yuan . Now we prove the inequality a+b1+ca+b\leqslant 1+\sqrt{c} for general density matrix AA in form of A=i|riri|A=\sum_{i}|r_{i}\rangle\langle r_{i}|. For each vector |ri,i=1,,n|r_{i}\rangle,\ i=1,\cdots,n, it has

x|riri|xri|ri+z|riri|zri|ri1+c,\displaystyle\frac{\langle x|r_{i}\rangle\langle r_{i}|x\rangle}{\langle r_{i}|r_{i}\rangle}+\frac{\langle z|r_{i}\rangle\langle r_{i}|z\rangle}{\langle r_{i}|r_{i}\rangle}\leqslant 1+\sqrt{c},

where we have used the inequality a+b1+ca+b\leqslant 1+\sqrt{c} for rank one A=|riri|ri|riA=\frac{|r_{i}\rangle\langle r_{i}|}{\langle r_{i}|r_{i}\rangle}. Therefore we can get

x|A|x+z|A|z=ix|riri|x+iz|riri|ziri|ri(1+c)=1+c,\displaystyle\langle x|A|x\rangle+\langle z|A|z\rangle=\sum_{i}\langle x|r_{i}\rangle\langle r_{i}|x\rangle+\sum_{i}\langle z|r_{i}\rangle\langle r_{i}|z\rangle\leqslant\sum_{i}\langle r_{i}|r_{i}\rangle(1+\sqrt{c})=1+\sqrt{c},

which implies a+b1+ca+b\leqslant 1+\sqrt{c}. The inequalities |ab|1c|a-b|\leqslant\sqrt{1-c} and 1ca+b1-\sqrt{c}\leqslant a+b can be derived similarly.∎

Now we are ready to prove the quantum uncertainty relation for quantum channels with respect to the relative entropy of coherence.

Theorem 1. For any quantum channel Φ\Phi and any two measurement bases 𝕏={|x,|x}\mathbb{X}=\{|x\rangle,\ |x_{\perp}\rangle\} and ={|z,|z}\mathbb{Z}=\{|z\rangle,\ |z_{\perp}\rangle\}, the quantum uncertainty relation of quantum channels with respect to the relative entropy of coherence is

Crel𝕏(Φ)+Crel(Φ)H(cmax)2S(JΦ2)+2log2C_{\rm rel}^{\mathbb{X}}(\Phi)+C_{\rm rel}^{\mathbb{Z}}(\Phi)\geqslant H(\sqrt{c_{\max}})-2S(\frac{J_{\Phi}}{2})+2{\rm log}2 (7)

with cmaxc_{\max} in Eq. (6) and JΦ{J_{\Phi}} is the Choi matrix of the quantum channel Φ\Phi.

Proof. Note that in qubit systems, the Choi matrix of a quantum channel Φ\Phi is factually a 4×44\times 4 matrix as

JΦ=j,k=01|jk|Φ(|jk|)=(Φ(|00|)Φ(|01|)Φ(|10|)Φ(|11|)).\displaystyle\begin{split}J_{\Phi}=\sum_{j,k=0}^{1}|j\rangle\langle k|\otimes\Phi(|j\rangle\langle k|)=\begin{pmatrix}\Phi(|0\rangle\langle 0|)&\Phi(|0\rangle\langle 1|)\\ \Phi(|1\rangle\langle 0|)&\Phi(|1\rangle\langle 1|)\end{pmatrix}.\end{split} (8)

First under the orthonormal basis 𝕏\mathbb{X}, the relative entropy of coherence of the quantum channel is

Crel𝕏(Φ)=S(diag𝕏(JΦ2))S(JΦ2).C_{\rm rel}^{\mathbb{X}}(\Phi)=S({\rm{diag}}^{\mathbb{X}}(\frac{J_{\Phi}}{2}))-S(\frac{J_{\Phi}}{2}). (9)

Suppose x|mMm|00|Mm|x=a1,x|mMm|11|Mm|x=a2\langle x|\sum_{m}M_{m}|0\rangle\langle 0|M_{m}^{\dagger}|x\rangle=a_{1},\langle x|\sum_{m}M_{m}|1\rangle\langle 1|M^{\dagger}_{m}|x\rangle=a_{2}. Then x|mMm|00|Mm|x=1a1,x|mMm|11|Mm|x=1a2.\langle x_{\perp}|\sum_{m}M_{m}|0\rangle\\ \langle 0|M_{m}^{\dagger}|x_{\perp}\rangle=1-a_{1},\langle x_{\perp}|\sum_{m}M_{m}|1\rangle\langle 1|M_{m}^{\dagger}|x_{\perp}\rangle=1-a_{2}. In this way, the diagonal matrix of JΦ2\frac{J_{\Phi}}{2} is

diag𝕏(JΦ2)=(a121a12a221a22).\displaystyle\begin{split}{\rm diag}^{\mathbb{X}}(\frac{J_{\Phi}}{2})=\begin{pmatrix}\frac{a_{1}}{2}&\ &\ &\ \\ \ &\frac{1-a_{1}}{2}&\ &\ \\ \ &\ &\frac{a_{2}}{2}&\ \\ \ &\ &\ &\frac{1-a_{2}}{2}\end{pmatrix}.\end{split} (10)

This implies that

S(diag𝕏(JΦ2))\displaystyle S({\rm{diag}}^{\mathbb{X}}(\frac{J_{\Phi}}{2})) =\displaystyle= a12loga121a12log1a12a22loga221a22log1a22\displaystyle-\frac{a_{1}}{2}{\rm log}\frac{a_{1}}{2}-\frac{1-a_{1}}{2}{\rm log}\frac{1-a_{1}}{2}-\frac{a_{2}}{2}{\rm log}\frac{a_{2}}{2}-\frac{1-a_{2}}{2}{\rm log}\frac{1-a_{2}}{2}
=\displaystyle= 12(H(a1)+H(a2))+log2,\displaystyle\frac{1}{2}(H(a_{1})+H(a_{2}))+{\rm log}2,

with H(x)=xlogx(1x)log(1x)H(x)=-x{\rm log}x-(1-x){\rm log}(1-x) the binary entropy.

Under the orthonormal basis \mathbb{Z}, we assume z|mMm|00|Mm|z=b1\langle z|\sum_{m}M_{m}|0\rangle\langle 0|M_{m}^{\dagger}|z\rangle=b_{1} and z|mMm|11|Mm|z=b2\langle z|\sum_{m}M_{m}|1\rangle\langle 1|M_{m}^{\dagger}|z\rangle=b_{2}, then we have similarly S(diag(JΦ2))=12(H(b1)+H(b2))+log2S({\rm diag}^{\mathbb{Z}}(\frac{J_{\Phi}}{2}))=\frac{1}{2}(H(b_{1})+H(b_{2}))+{\rm log}2. Therefore the sum is

S(diag𝕏(JΦ2))+S(diag(JΦ2))\displaystyle S({\rm{diag}}^{\mathbb{X}}(\frac{J_{\Phi}}{2}))+S({\rm{diag}}^{\mathbb{Z}}(\frac{J_{\Phi}}{2})) =\displaystyle= 12(H(a1)+H(b1))+12(H(a2)+H(b2))+2log2.\displaystyle\frac{1}{2}(H(a_{1})+H(b_{1}))+\frac{1}{2}(H(a_{2})+H(b_{2}))+2{\rm log}2. (11)

Let g=S(diag𝕏(JΦ2))+S(diag(JΦ2))g=S({\rm{diag}}^{\mathbb{X}}(\frac{J_{\Phi}}{2}))+S({\rm{diag}}^{\mathbb{Z}}(\frac{J_{\Phi}}{2})) and the binary function f(x,y)=12(H(x)+H(y))f(x,y)=\frac{1}{2}(H(x)+H(y)), then Eq. (11) above can be reduced to

g(a1,a2,b1,b2)=f(a1,b1)+f(a2,b2)+2log2.\displaystyle g(a_{1},a_{2},b_{1},b_{2})=f(a_{1},b_{1})+f(a_{2},b_{2})+2{\rm log}2. (12)

Next we aim to find the minimal value of g(a1,a2,b1,b2)g(a_{1},a_{2},b_{1},b_{2}). Firstly, f(x,y)f(x,y) has second-order continuous partial derivatives and f(x,y)x|(12,12)=f(x,y)y|(12,12)=0\frac{\partial{f(x,y)}}{\partial{{x}}}|_{(\frac{1}{2},\frac{1}{2})}=\frac{\partial{f(x,y)}}{\partial{{y}}}|_{(\frac{1}{2},\frac{1}{2})}=0, then P0=(12,12)P_{0}=(\frac{1}{2},\frac{1}{2}) is the unique stationary point of f(x,y)f(x,y). Since binary entropy H(x)H(x) is concave, i.e. H′′(x)0H^{\prime\prime}(x)\leqslant 0, the Hesse matrix of f(x,y)f(x,y) at P0P_{0} is a negative definite matrix. According to the sufficient condition of extreme value, ff has the maximal value of 1 at P0P_{0}. Let Ai=ai+bi,Bi=biai,i=1,2A_{i}=a_{i}+b_{i},B_{i}=b_{i}-a_{i},i=1,2. According to Lemma 1, Ai[1cmax,1+cmax]A_{i}\in[1-\sqrt{c_{\max}},1+\sqrt{c_{\max}}] and Bi[0,1cmax]B_{i}\in[0,\sqrt{1-c_{\max}}]. Here, without loss of generality, we assume aibia_{i}\leqslant b_{i}. Then the function gg can be expressed as g=12f(A1B12,A1+B12)+12f(A2B22,A2+B22)+2log2g=\frac{1}{2}f(\frac{A_{1}-B_{1}}{2},\frac{A_{1}+B_{1}}{2})+\frac{1}{2}f(\frac{A_{2}-B_{2}}{2},\frac{A_{2}+B_{2}}{2})+2{\log}2. Taking derivative gg on AiA_{i} and BiB_{i} yields that

gAi=12fAi=(H(AiBi2)+H(Ai+Bi2))=14(H(ai)+H(bi)),\frac{\partial g}{\partial A_{i}}=\frac{1}{2}\frac{\partial f}{\partial A_{i}}=(H^{\prime}(\frac{A_{i}-B_{i}}{2})+H^{\prime}(\frac{A_{i}+B_{i}}{2}))=\frac{1}{4}(H^{\prime}(a_{i})+H^{\prime}(b_{i})), (13)

and

gBi=12fBi=14(H(AiBi2)+H(Ai+Bi2))=14(H(bi)H(ai)),\frac{\partial g}{\partial B_{i}}=\frac{1}{2}\frac{\partial f}{\partial B_{i}}=\frac{1}{4}(-H^{\prime}(\frac{A_{i}-B_{i}}{2})+H^{\prime}(\frac{A_{i}+B_{i}}{2}))=\frac{1}{4}(H^{\prime}(b_{i})-H^{\prime}(a_{i})), (14)

respectively. Furthermore, the second-order derivatives of gg with respect to AiA_{i} and BiB_{i} are

2gAi2=2gBi2=18(H′′(AiBi2)+H′′(Ai+Bi2))=18(H′′(ai)+H′′(bi)).\frac{\partial^{2}g}{\partial{A_{i}}^{2}}=\frac{\partial^{2}g}{\partial{B_{i}}^{2}}=\frac{1}{8}(H^{\prime\prime}(\frac{A_{i}-B_{i}}{2})+H^{\prime\prime}(\frac{A_{i}+B_{i}}{2}))=\frac{1}{8}(H^{\prime\prime}(a_{i})+H^{\prime\prime}(b_{i})). (15)

It is obvious that 2gAi2=2gBi20\frac{\partial^{2}g}{\partial{A_{i}}^{2}}=\frac{\partial^{2}g}{\partial{B_{i}}^{2}}\leqslant 0 and gBi0\frac{\partial g}{\partial B_{i}}\leqslant 0. According to f(AiBi2,Ai+Bi2)=f(1AiBi2,1Ai+Bi2)f(\frac{A_{i}-B_{i}}{2},\frac{A_{i}+B_{i}}{2})=f(1-\frac{A_{i}-B_{i}}{2},1-\frac{A_{i}+B_{i}}{2}), so gg is symmetric about Ai=1A_{i}=1. In the following, we only need to consider the case Ai1A_{i}\leqslant 1. gBi0\frac{\partial g}{\partial B_{i}}\leqslant 0 shows that gg decreases monotonously with respect to BiB_{i}. To find the minimum value of gg, we should make AiA_{i} as small as possible and BiB_{i} as large as possible. The values of AiA_{i} and BiB_{i} have the following two situations:
(i) Ai=Bi=1cmaxA_{i}=B_{i}=1-\sqrt{c_{\rm max}}, and g=H(cmax)+2log2;g=H(\sqrt{c_{\rm max}})+2{\rm log}2;
(ii) Ai=Bi=1cmaxA_{i}=B_{i}=\sqrt{1-c_{\rm max}}, and g=H(1cmax)+2log2g=H(\sqrt{1-c_{\rm max}})+2{\rm log}2.
In light of |cmax12||1cmax12||\sqrt{c_{\rm max}}-\frac{1}{2}|\geqslant|\sqrt{1-c_{\rm max}}-\frac{1}{2}| by cmax[12,1]c_{\rm max}\in[\frac{1}{2},1], and H(x)H(x) is symmetric about x=12x=\frac{1}{2}, we derive that H(cmax)H(1cmax)H({\sqrt{c_{\rm max}}})\leqslant H({\sqrt{1-c_{\rm max}}}). As a result, we can get the minimum value of gg is H(cmax)+2log2H(\sqrt{c_{\rm max}})+2{\rm log}2, which is equivalent to

S(diag𝕏(JΦ2))+S(diag(JΦ2))H(cmax)+2log2.\displaystyle S({\rm{diag}}^{\mathbb{X}}(\frac{J_{\Phi}}{2}))+S({\rm{diag}}^{\mathbb{Z}}(\frac{J_{\Phi}}{2}))\geqslant H(\sqrt{c_{\rm max}})+2{\rm log}2.

Thus, we get the quantum uncertainty relation of quantum channels with respect to the relative entropy of coherence in Eq. (7). \square

The quantum uncertainty relation in Theorem 1 demonstrates the constraint of the coherence of quantum channels under two orthonormal bases by the incompatibility of the two orthonormal bases and the entropy of the Choi matrices of the quantum channels. In general, for two measurement bases 𝕏\mathbb{X} and 𝕐\mathbb{Y}, if a quantum channel Φ\Phi with Kraus operators {Mm}\{M_{m}\} satisfies the following condition:

m|x|Mm|i|2+m|y|Mm|i|2=m|x|Mm|i|2m|y|Mm|i|2=1cmax,\sum_{m}|\langle x|M_{m}|i\rangle|^{2}+\sum_{m}|\langle y|M_{m}|i\rangle|^{2}=\sum_{m}|\langle x|M_{m}|i\rangle|^{2}-\sum_{m}|\langle y|M_{m}|i\rangle|^{2}=1-\sqrt{c_{\rm max}}, (16)

for some |x𝕏,|y𝕐,i=0,1|x\rangle\in\mathbb{X},\ |y\rangle\in\mathbb{Y},\ i=0,1, then the quantum uncertainty relation of a quantum channel reaches the lower bound H(cmax)2S(JΦ2)+2log2H(\sqrt{c_{\rm max}})-2S(\frac{J_{\Phi}}{2})+2{\rm log}2, i.e., the equality in (7) holds. Now we illustrate the quantum uncertainty relation of quantum channels by three specific examples.

Example 1. Firstly we consider the bit flip channel as an example. The bit flip channel Φ\Phi has Kraus operators

M1=pI=p(1001),M2=1pX=1p(0110).M_{1}=\sqrt{p}I=\sqrt{p}\begin{pmatrix}1&0\\ 0&1\end{pmatrix},\ M_{2}=\sqrt{1-p}X=\sqrt{1-p}\begin{pmatrix}0&1\\ 1&0\end{pmatrix}. (17)

Given two measurement bases 𝕏={|0,|1}\mathbb{X}=\{|0\rangle,\ |1\rangle\} and ={|+,|}\mathbb{Z}=\{|+\rangle,\ |-\rangle\} with {|+=12(|0+|1)\{|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), |=12(|0|1)}|-\rangle=\ \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\}, cmax=12c_{\rm max}=\frac{1}{2}. In this case we get that the Choi matrices of the bit flip channel under these two orthonormal bases are

JΦ𝕏=(pp1p1p1p1ppp),andJΦ=(1212(2p1)1212(12p)12(2p1)1212(2p1)121212(2p1)1212(12p)12(12p)1212(12p)12),\displaystyle J_{\Phi}^{\mathbb{X}}=\begin{pmatrix}p&\ &\ &p\\ \ &1-p&1-p&\ \\ \ &1-p&1-p&\ \\ p&\ &\ &p\end{pmatrix},\ {\rm and}\ J_{\Phi}^{\mathbb{Z}}=\begin{pmatrix}\frac{1}{2}&\frac{1}{2}(2p-1)&\frac{1}{2}&\frac{1}{2}(1-2p)\\ \frac{1}{2}(2p-1)&\frac{1}{2}&\frac{1}{2}(2p-1)&-\frac{1}{2}\\ \frac{1}{2}&\frac{1}{2}(2p-1)&\frac{1}{2}&\frac{1}{2}(1-2p)\\ \frac{1}{2}(1-2p)&-\frac{1}{2}&\frac{1}{2}(1-2p)&\frac{1}{2}\end{pmatrix}, (18)

respectively. By calculation we can derive that S(diag𝕏(JΦ2))=H(p)+log2,S(diag(JΦ2))=2log2S({\rm diag}^{\mathbb{X}}(\frac{J_{\Phi}}{2}))=H(p)+{\rm log}2,\ S({\rm diag}^{\mathbb{Z}}(\frac{J_{\Phi}}{2}))=2{\rm log}2, and S(JΦ2)=H(p)S(\frac{J_{\Phi}}{2})=H(p) respectively. So the sum of the relative entropy coherences of the bit flip channel under these two orthonormal bases is Crel𝕏(Φ)+Crel(Φ)=3log2H(p)C_{\rm rel}^{\mathbb{X}}(\Phi)+C_{\rm rel}^{\mathbb{Z}}(\Phi)=3{\rm log}2-H(p). By Theorem 1, the lower bound of the quantum uncertainty relation is Crel𝕏(Φ)+Crel(Φ)H(12)2H(p)+2log2.C_{\rm rel}^{\mathbb{X}}(\Phi)+C_{\rm rel}^{\mathbb{Z}}(\Phi)\geqslant H(\frac{1}{\sqrt{2}})-2H(p)+2{\rm log}2. The comparison between the sum of the relative entropy coherences and the lower bound is shown in Fig.1.

Refer to caption
Figure 1: The quantum uncertainty relations of bit flip channel with respect to the relative entropy coherence. k(p)k(p) is the sum of the relative entropy coherence of the quantum channel with measurement bases 𝕏\mathbb{X} and \mathbb{Z}. k2(p)k2(p) is the lower bound of the quantum uncertainty relation at the right hand side of (7).

Example 2. Secondly we consider a unitary channel σx=|01|+|10|\sigma_{x}=|0\rangle\langle 1|+|1\rangle\langle 0|. Given two measurement bases, 𝕏={|0,|1}\mathbb{X}=\{|0\rangle,|1\rangle\} and 𝕐={|y1,|y2}\mathbb{Y}=\{|y_{1}\rangle,|y_{2}\rangle\} with |y1=(1352)12|0+(352)12|1|y_{1}\rangle=(1-\frac{3-\sqrt{5}}{2})^{\frac{1}{2}}|0\rangle+(\frac{3-\sqrt{5}}{2})^{\frac{1}{2}}|1\rangle, |y2=(352)12|0+(1352)12|1|y_{2}\rangle=-(\frac{3-\sqrt{5}}{2})^{\frac{1}{2}}|0\rangle+(1-\frac{3-\sqrt{5}}{2})^{\frac{1}{2}}|1\rangle with cmax=352c_{\max}=\frac{3-\sqrt{5}}{2}. We derive that S(diag𝕏(Jσx2))=log2S({\rm diag}^{\mathbb{X}}(\frac{J_{\sigma_{x}}}{2}))=\log 2, S(diag𝕐(Jσx2))=H(352)+log2S({\rm diag}^{\mathbb{Y}}(\frac{J_{\sigma_{x}}}{2}))=H(\frac{3-\sqrt{5}}{2})+\log 2 and S(Jσx2)=1log1=0S(\frac{J_{\sigma_{x}}}{2})=1\log 1=0, respectively. Then we can get the sum of the relative entropy coherence of σx\sigma_{x} under two orthonormal bases 𝕏\mathbb{X} and 𝕐\mathbb{Y} is Crel𝕏(σx)+Crel𝕐(σx)=H(352)+2log2C^{\mathbb{X}}_{\rm rel}(\sigma_{x})+C^{\mathbb{Y}}_{\rm rel}(\sigma_{x})=H(\frac{3-\sqrt{5}}{2})+2\log 2, which is equal to the right hand side of (7), H(cmax)2S(Jσx2)+2log2H(\sqrt{c_{\max}})-2S(\frac{J_{\sigma_{x}}}{2})+2\log 2.

Example 3. Thirdly we consider a phase damping channel Φ\Phi with Kraus operators

E0=(1001λ)andE1=(000λ).E_{0}=\begin{pmatrix}1&0\\ 0&\sqrt{1-\lambda}\end{pmatrix}\ {\rm and}\ E_{1}=\begin{pmatrix}0&0\\ 0&\sqrt{\lambda}\end{pmatrix}. (19)

If we choose two measurement bases as 𝕏={|0,|1}\mathbb{X}=\{|0\rangle,|1\rangle\} and ={|+,|}\mathbb{Z}=\{|+\rangle,|-\rangle\} with cmax=1/2.c_{\rm max}=1/2. Then the Choi matrix of the phase damping channel under bases 𝕏\mathbb{X} and \mathbb{Z} are

JΦ𝕏=(1001λ000000001λ001)andJΦ=12(111λ1λ111λ1λ1λ1λ111λ1λ11),J_{\Phi}^{\mathbb{X}}=\begin{pmatrix}1&0&0&\sqrt{1-\lambda}\\ 0&0&0&0\\ 0&0&0&0\\ \sqrt{1-\lambda}&0&0&1\end{pmatrix}\ {\rm and}\ J_{\Phi}^{\mathbb{Z}}=\frac{1}{2}\begin{pmatrix}1&1&\sqrt{1-\lambda}&-\sqrt{1-\lambda}\\ 1&1&\sqrt{1-\lambda}&-\sqrt{1-\lambda}\\ \sqrt{1-\lambda}&\sqrt{1-\lambda}&1&1\\ -\sqrt{1-\lambda}&-\sqrt{1-\lambda}&1&1\end{pmatrix}, (20)

respectively. By calculation we can derive that S(diag𝕏(JΦ2))=log2,S(diag(JΦ2))=2log2S({\rm diag}^{\mathbb{X}}(\frac{J_{\Phi}}{2}))={\rm log}2,\ S({\rm diag}^{\mathbb{Z}}(\frac{J_{\Phi}}{2}))=2{\rm log}2, and S(JΦ2)=H(1+1λ2)S(\frac{J_{\Phi}}{2})=H(\frac{1+\sqrt{1-\lambda}}{2}) respectively. So the sum of the relative entropy of coherences of the phase damping channel under two orthonormal bases is Crel𝕏(Φ)+Crel(Φ)=3log22H(1+1λ2)C_{\rm rel}^{\mathbb{X}}(\Phi)+C_{\rm rel}^{\mathbb{Z}}(\Phi)=3{\rm log}2-2H(\frac{1+\sqrt{1-\lambda}}{2}). By Theorem 1, the lower bound of the quantum uncertainty relation is Crel𝕏(Φ)+Crel(Φ)H(12)2H(1+1λ2)+2log2C_{\rm rel}^{\mathbb{X}}(\Phi)+C_{\rm rel}^{\mathbb{Z}}(\Phi)\geqslant H(\frac{1}{\sqrt{2}})-2H(\frac{1+\sqrt{1-\lambda}}{2})+2{\rm log}2.

If we choose two measurement bases as 𝕏={|0,|1}\mathbb{X}=\{|0\rangle,|1\rangle\} and 𝕐={|y1,|y2}\mathbb{Y^{\prime}}=\{|y^{\prime}_{1}\rangle,|y^{\prime}_{2}\rangle\} with |y1=3+6i4|0+2+5i4|1,|y2=25i4|0+3+6i4|1|y^{\prime}_{1}\rangle=\frac{\sqrt{3}+\sqrt{6}{\rm i}}{4}|0\rangle+\frac{\sqrt{2}+\sqrt{5}{\rm i}}{4}|1\rangle,\ |y^{\prime}_{2}\rangle=\frac{\sqrt{2}-\sqrt{5}{\rm i}}{4}|0\rangle+\frac{-\sqrt{3}+\sqrt{6}{\rm i}}{4}|1\rangle with cmax=9/16c_{\rm max}=9/16. We derive that S(diag𝕏(JΦ2))=log2S({\rm diag}^{\mathbb{X}}(\frac{J_{\Phi}}{2}))={\rm log}2, S(diag𝕐(JΦ2))=H(916)+log2S({\rm diag}^{\mathbb{Y^{\prime}}}(\frac{J_{\Phi}}{2}))=H(\frac{9}{16})+{\rm log}2 and S(JΦ2)=H(1+1λ2)S(\frac{J_{\Phi}}{2})=H(\frac{1+\sqrt{1-\lambda}}{2}), respectively. Then we can get the sum of the relative entropy coherence of Φ\Phi under two orthonormal bases 𝕏\mathbb{X} and 𝕐\mathbb{Y^{\prime}} is Crel𝕏(Φ)+Crel𝕐(Φ)=H(916)H(1+1λ2)+log2C_{\rm rel}^{\mathbb{X}}(\Phi)+C_{\rm rel}^{\mathbb{Y^{\prime}}}(\Phi)=H(\frac{9}{16})-H(\frac{1+\sqrt{1-\lambda}}{2})+{\rm log}2, which is equal to the right hand side of (7), H(cmax)2S(JΦ2)+2log2H(\sqrt{c_{\rm max}})-2S(\frac{J_{\Phi}}{2})+2{\rm log}2. In this case, the phase damping channel satisfies the condition |x|Φ|i|2+|y|Φ|i|2=1cmax,i=0,1|\langle x|\Phi|i\rangle|^{2}+|\langle y^{\prime}|\Phi|i\rangle|^{2}=1-\sqrt{c_{\rm max}},\ i=0,1, the sum of the relative entropy coherence of the phase damping channel Φ\Phi with respect to the two bases 𝕏\mathbb{X} and 𝕐\mathbb{Y^{\prime}} reaches the lower bound of (7).

IV The quantum uncertainty relation of unitary channels with respect to the l1l_{1} norm of coherence

In this section, we consider the quantum uncertainty relation of unitary channels with respect to the l1l_{1} norm of coherence. First we need the following lemma in Ref. yuan .

Lemma 2. yuan Suppose a\vec{a}, b\vec{b} and c3\vec{c}\in\mathbb{R}^{3} are three-dimensional nonzero vectors. We denote α\alpha, β\beta, and γ\gamma to be the angles between a\vec{a}, b\vec{b}; b\vec{b}, c\vec{c}; c\vec{c}, a\vec{a} respectively, that is, |a|b|2=cos2α2|\langle\vec{a}|\vec{b}\rangle|^{2}=\cos^{2}\frac{\alpha}{2}, |b|c|2=cos2β2|\langle\vec{b}|\vec{c}\rangle|^{2}=\cos^{2}\frac{\beta}{2}, |a|c|2=cos2γ2|\langle\vec{a}|\vec{c}\rangle|^{2}=\cos^{2}\frac{\gamma}{2} with α\alpha, β\beta, γ[0,π]\gamma\in[0,\pi]. Then we have

sinα+sinβsinγ.\displaystyle\sin\alpha+\sin\beta\geqslant\sin\gamma. (21)

Now we are ready to get the quantum uncertainty relation of unitary channels with respect to the l1l_{1} norm of coherence.

Theorem 2. For any given unitary channel Φ\Phi and any two measurement bases 𝕏={|x,|x}\mathbb{X}=\{|x\rangle,\ |x_{\perp}\rangle\} and ={|z,|z}\mathbb{Z}=\{|z\rangle,\ |z_{\perp}\rangle\}, the quantum uncertainty relation of unitary channel with respect to the l1l_{1} norm of coherence is

Cl1𝕏(Φ)+Cl1(Φ)4cmax(1cmax)+2.C_{l_{1}}^{\mathbb{X}}(\Phi)+C_{l_{1}}^{\mathbb{Z}}(\Phi)\geqslant 4\sqrt{c_{\rm max}(1-c_{\rm max})}+2. (22)

Proof. Without loss of generality, we suppose the maximum overlap between these two bases 𝕏\mathbb{X} and \mathbb{Z} is cmax=|x|z|2=cos2γ2c_{\rm max}=|\langle x|z\rangle|^{2}=\cos^{2}\frac{\gamma}{2}. For any given unitary channel Φ\Phi, suppose Φ()=M()M\Phi(\cdot)=M(\cdot)M^{\dagger} with MM any unitary operator. Under the orthonormal basis 𝕏={|x,|x}\mathbb{X}=\{|x\rangle,\ |x_{\perp}\rangle\}, the Choi matrix JΦJ_{\Phi} is

JΦ=(M|00|MM|01|MM|10|MM|11|M)=(x|M|00|M|xx|M|00|M|xx|M|01|M|xx|M|01|M|xx|M|00|M|xx|M|00|M|xx|M|01|M|xx|M|01|M|xx|M|10|M|xx|M|10|M|xx|M|11|M|xx|M|11|M|xx|M|10|M|xx|M|10|M|xx|M|11|M|xx|M|11|M|x).\displaystyle\begin{split}J_{\Phi}&=\begin{pmatrix}M|0\rangle\langle 0|M^{\dagger}&M|0\rangle\langle 1|M^{\dagger}\\ M|1\rangle\langle 0|M^{\dagger}&M|1\rangle\langle 1|M^{\dagger}\end{pmatrix}\\ &=\begin{pmatrix}\langle x|M|0\rangle\langle 0|M^{\dagger}|x\rangle&\langle x|M|0\rangle\langle 0|M^{\dagger}|x_{\perp}\rangle&\langle x|M|0\rangle\langle 1|M^{\dagger}|x\rangle&\langle x|M|0\rangle\langle 1|M^{\dagger}|x_{\perp}\rangle\\ \langle x_{\perp}|M|0\rangle\langle 0|M^{\dagger}|x\rangle&\langle x_{\perp}|M|0\rangle\langle 0|M^{\dagger}|x_{\perp}\rangle&\langle x_{\perp}|M|0\rangle\langle 1|M^{\dagger}|x\rangle&\langle x_{\perp}|M|0\rangle\langle 1|M^{\dagger}|x_{\perp}\rangle\\ \langle x|M|1\rangle\langle 0|M^{\dagger}|x\rangle&\langle x|M|1\rangle\langle 0|M^{\dagger}|x_{\perp}\rangle&\langle x|M|1\rangle\langle 1|M^{\dagger}|x\rangle&\langle x|M|1\rangle\langle 1|M^{\dagger}|x_{\perp}\rangle\\ \langle x_{\perp}|M|1\rangle\langle 0|M^{\dagger}|x\rangle&\langle x_{\perp}|M|1\rangle\langle 0|M^{\dagger}|x_{\perp}\rangle&\langle x_{\perp}|M|1\rangle\langle 1|M^{\dagger}|x\rangle&\langle x_{\perp}|M|1\rangle\langle 1|M^{\dagger}|x_{\perp}\rangle\end{pmatrix}.\end{split} (23)

So the l1l_{1} norm coherence of the unitary channel Φ\Phi is

Cl1𝕏(Φ)=|x|M|00|M|x|+|x|M|11|M|x|+|x|M|01|M|x|+|x|M|01|M|x|+|x|M|00|M|x|+|x|M|01|M|x|.\displaystyle\begin{split}C_{l_{1}}^{\mathbb{X}}(\Phi)=&|\langle x|M|0\rangle\langle 0|M^{\dagger}|x_{\perp}\rangle|+|\langle x|M|1\rangle\langle 1|M^{\dagger}|x_{\perp}\rangle|\\ &+|\langle x|M|0\rangle\langle 1|M^{\dagger}|x\rangle|+|\langle x|M|0\rangle\langle 1|M^{\dagger}|x_{\perp}\rangle|\\ &+|\langle x_{\perp}|M|0\rangle\langle 0|M^{\dagger}|x\rangle|+|\langle x_{\perp}|M|0\rangle\langle 1|M^{\dagger}|x\rangle|.\end{split} (24)

Combining the condition MM=IM^{\dagger}M=I, we have x|M|01|M|x=x|M|01|M|x\langle x|M|0\rangle\langle 1|M^{\dagger}|x\rangle=-\langle x_{\perp}|M|0\rangle\langle 1|M^{\dagger}|x_{\perp}\rangle and x|M|10|M|x=x|M|10|M|x\langle x|M|1\rangle\langle 0|M^{\dagger}|x_{\perp}\rangle=-\langle x_{\perp}|M|1\rangle\langle 0|M^{\dagger}|x_{\perp}\rangle. Multiplying the two equations, we can get |x|M|0|2|x|M|1|2=|x|M|0|2|x|M|1|2|\langle x|M|0\rangle|^{2}|\langle x|M|1\rangle|^{2}=|\langle x_{\perp}|M|0\rangle|^{2}|\langle x_{\perp}|M|1\rangle|^{2}, i.e. |x|M|0|2+|x|M|1|2=1|\langle x|M|0\rangle|^{2}+|\langle x|M|1\rangle|^{2}=1. Suppose |x|M|0||2=cos2α2|\langle x|M|0|\rangle|^{2}=\cos^{2}\frac{\alpha}{2}, then the l1l_{1} norm of coherence of unitary channel under the orthonormal basis 𝕏\mathbb{X} is

Cl1𝕏(Φ)=4cosα2sinα2+1=2sinα+1.\displaystyle\begin{split}C_{l_{1}}^{\mathbb{X}}(\Phi)=4\rm{cos}\frac{\alpha}{2}\rm{sin}\frac{\alpha}{2}+1=2\rm{sin}\alpha+1.\end{split} (25)

Similarly, under the orthonormal basis \mathbb{Z}, we suppose |z|M|0||2=cos2β2|\langle z|M|0|\rangle|^{2}=\cos^{2}\frac{\beta}{2}, then the l1l_{1} norm of coherence of unitary channel under the orthonormal basis \mathbb{Z} is Cl1(Φ)=2sinβ+1C_{l_{1}}^{\mathbb{Z}}(\Phi)=2\rm{sin}\beta+1. Therefore, the quantum uncertainty relation of the l1l_{1} norm coherence of the unitary channel is

Cl1𝕏(Φ)+Cl1(Φ)=2(sinα+sinβ)+22sinγ+2=4cmax(1cmax)+2,\displaystyle\begin{split}C_{l_{1}}^{\mathbb{X}}(\Phi)+C_{l_{1}}^{\mathbb{Z}}(\Phi)&=2(\rm{sin}\alpha+\rm{sin}\beta)+2\\ &\geqslant 2\rm{sin}\gamma+2\\ &=4\sqrt{c_{\rm max}(1-c_{\rm max})}+2,\end{split} (26)

by Lemma 2. \square

The quantum uncertainty relation in Theorem 2 gives rise to the constraints of quantum coherence of unitary operations in terms of l1l_{1} norm of coherence under two orthonormal bases. This quantum uncertainty relation just relies on the incompatibility of two orthonormal bases and thus independent of the quantum channel. Now we illustrate the quantum uncertainty relation by two specific examples.

Example 4. Now let us consider the unitary channel Φ\Phi with Kraus operator E=cosα|00|sinα|01|+sinα|10|+cosα|11|E=\cos\alpha|0\rangle\langle 0|-\sin\alpha|0\rangle\langle 1|+\sin\alpha|1\rangle\langle 0|+\cos\alpha|1\rangle\langle 1|. Given two measurement bases 𝕏={|0,|1}\mathbb{X}=\{|0\rangle,\ |1\rangle\} and ={|+,|}\mathbb{Z}=\{|+\rangle,\ |-\rangle\} with cmax=1/2c_{\rm max}=1/2. Then the Choi matrix of this unitary channel under the two orthonormal bases 𝕏\mathbb{X} and \mathbb{Z} are

JΦ𝕏=(cos2αsinαcosαsinαcosαcos2αsinαcosαsin2αsin2αsinαcosαsinαcosαsin2αsin2αsinαcosαcos2αsinαcosαsinαcosαcos2α),J_{\Phi}^{\mathbb{X}}=\begin{pmatrix}\cos^{2}\alpha&\sin\alpha\cos\alpha&-\sin\alpha\cos\alpha&\cos^{2}\alpha\\ \sin\alpha\cos\alpha&\sin^{2}\alpha&-\sin^{2}\alpha&\sin\alpha\cos\alpha\\ -\sin\alpha\cos\alpha&-\sin^{2}\alpha&\sin^{2}\alpha&-\sin\alpha\cos\alpha\\ \cos^{2}\alpha&\sin\alpha\cos\alpha&-\sin\alpha\cos\alpha&\cos^{2}\alpha\end{pmatrix}, (27)

and

JΦ=(12(1+2sinαcosα)12(cos2αsin2α)12(cos2αsin2α)12(12cosαsinα)12(cos2αsin2α)12(12sinαcosα)12(12sinαcosα)12(sin2αcos2α)12(cos2αsin2α)12(12sinαcosα)12(12sinαcosα)12(sin2αcos2α)12(12sinαcosα)12(sin2αcos2α)12(sin2αcos2α)12(1+2sinαcosα)),J_{\Phi}^{\mathbb{Z}}=\begin{pmatrix}\frac{1}{2}(1+2\sin\alpha\cos\alpha)&\frac{1}{2}(\cos^{2}\alpha-\sin^{2}\alpha)&\frac{1}{2}(\cos^{2}\alpha-\sin^{2}\alpha)&\frac{1}{2}(-1-2\cos\alpha\sin\alpha)\\ \frac{1}{2}(\cos^{2}\alpha-\sin^{2}\alpha)&\frac{1}{2}(1-2\sin\alpha\cos\alpha)&\frac{1}{2}(1-2\sin\alpha\cos\alpha)&\frac{1}{2}(\sin^{2}\alpha-\cos^{2}\alpha)\\ \frac{1}{2}(\cos^{2}\alpha-\sin^{2}\alpha)&\frac{1}{2}(1-2\sin\alpha\cos\alpha)&\frac{1}{2}(1-2\sin\alpha\cos\alpha)&\frac{1}{2}(\sin^{2}\alpha-\cos^{2}\alpha)\\ \frac{1}{2}(-1-2\sin\alpha\cos\alpha)&\frac{1}{2}(\sin^{2}\alpha-\cos^{2}\alpha)&\frac{1}{2}(\sin^{2}\alpha-\cos^{2}\alpha)&\frac{1}{2}(1+2\sin\alpha\cos\alpha)\end{pmatrix}, (28)

respectively. Therefore the l1l_{1} norm of coherence with respect to these two measurement bases are

Cl1𝕏(Φ)=2|sin2α|+1,andCl1(Φ)=2|cos2α|+1,C_{l_{1}}^{\mathbb{X}}(\Phi)=2|\sin 2\alpha|+1,\ {\text{and}}\ \ C_{l_{1}}^{\mathbb{Z}}(\Phi)=2|\cos 2\alpha|+1, (29)

respectively. Thus by Theorem 2, we get the lower bound of the quantum uncertainty relation of the unitary channel with respect to the l1l_{1} norm of coherence is a constant 4. While the sum of the quantum coherence is exactly Cl1𝕏(Φ)+Cl1(Φ)=2(|sin2α|+|cos2α|)+2C_{l_{1}}^{\mathbb{X}}(\Phi)+C_{l_{1}}^{\mathbb{Z}}(\Phi)=2(|\sin 2\alpha|+|\cos 2\alpha|)+2. Let m(α)=2(|sin2α|+|cos2α|)+2m(\alpha)=2(|\sin 2\alpha|+|\cos 2\alpha|)+2 to represent the sum of the coherence of Φ\Phi under two bases. The comparison between the sum of the l1l_{1} norm of coherence and the lower bound m2(α)=4m2(\alpha)=4 is shown in Fig. 2. The lower bound of the quantum uncertainty relation is saturated for this unitary channel if and only if α=kπ4\alpha=\frac{k\pi}{4} for arbitrary integer kk.

Refer to caption
Figure 2: The quantum uncertainty relations of unitary channel with respect to the l1l_{1} norm of coherence in Example 4. m(α)=2(|sin2α|+|cosα|)+2m(\alpha)=2(|\sin 2\alpha|+|\cos\alpha|)+2 shows the sum of the coherence of the channel under the measurement bases 𝕏\mathbb{X} and \mathbb{Z}. m2(α)=4m2(\alpha)=4 is the lower bound of the quantum uncertainty relation by the right hand side of inequality (22).

Example 5. Now we consider the unitary channel Φ\Phi with Kraus operator σx=|10|+|01|\sigma_{x}=|1\rangle\langle 0|+|0\rangle\langle 1|, Φ()=σx()σx\Phi(\cdot)=\sigma_{x}(\cdot)\sigma_{x}. Given two measurement bases 𝕏={|0,|1}\mathbb{X}=\{|0\rangle,\ |1\rangle\} and ={|+,|}\mathbb{Z}=\{|+\rangle,\ |-\rangle\} with cmax=1/2c_{\rm max}=1/2. Then the Choi matrices of the quantum channel Φ\Phi under these two orthonormal bases are

JΦ𝕏=(0000011001100000)andJΦ=(12121212121212121212121212121212),J_{\Phi}^{\mathbb{X}}=\begin{pmatrix}0&0&0&0\\ 0&1&1&0\\ 0&1&1&0\\ 0&0&0&0\end{pmatrix}\ {\rm and}\ J_{\Phi}^{\mathbb{Z}}=\begin{pmatrix}\frac{1}{2}&-\frac{1}{2}&\frac{1}{2}&\frac{1}{2}\\ -\frac{1}{2}&\frac{1}{2}&-\frac{1}{2}&-\frac{1}{2}\\ \frac{1}{2}&-\frac{1}{2}&\frac{1}{2}&\frac{1}{2}\\ \frac{1}{2}&-\frac{1}{2}&\frac{1}{2}&\frac{1}{2}\end{pmatrix}, (30)

respectively. By calculation we get the sum of the l1l_{1} norm of coherence is Cl1𝕏(Φ)+Cl1(Φ)=4C_{l_{1}}^{\mathbb{X}}(\Phi)+C_{l_{1}}^{\mathbb{Z}}(\Phi)=4, which reaches exactly the lower bound of the quantum uncertainty relation in Theorem 2.

V Conclusion

In this paper, we investigated the quantum uncertainty relation of quantum channel in qubit systems. For any two measurement bases, we derived the quantum uncertainty re- lations for quantum channels with respect to the relative entropy of coherence, and the quantum uncertainty relation for unitary channels with respect to the l1l_{1} norm of coherence. These quantum uncertainty relations show the constraints of quantum coherence under dif- ferent measurement bases. Some examples are given in detail. Since quantum channels transform initial quantum states to certain final quantum states, they transmit quantum in- formation used in quantum tasks. Our quantum uncertainty relations for quantum channels give the constraints of the quantum coherence of quantum channels in different measurement bases. As the roles played by the uncertainty relations for quantum states in quantum key distribution, the uncertainty relations for quantum channels have also potential applications in related quantum information processing.


Acknowledgments We thank the anonymous referees for useful suggestions and comments. This work is supported by the National Natural Science Foundation of China under grant No. 12171044 and No. 12075159, and the specific research fund of the Innovation Platform for Academicians of Hainan Province.

References

  • (1)
  • (2)

References

  • (3) Heisenberg W 1927 Z. Phys. 43 172
  • (4) Robertson H P 1929 Phys. Rev. 34 163
  • (5) Deutsch D 1983 Phys. Rev. Lett. 50 631
  • (6) Maassen H, and Uffink J B M 1988 Phys. Rev. Lett. 60 1103
  • (7) Fu S, Sun Y, S L Luo 2019 Quantum Inf. Process. 18 258
  • (8) Zhou N, Zhao M J, Wang Z, and Li T 2023 Quantum Inf. Process. 22 6
  • (9) Vallone G, Marangon D G, Tomasin M, and Villoresi P 2014 Phys. Rev. A 90 052327
  • (10) Coles P J and Piani M 2014 Phys. Rev. A 89 022112
  • (11) Berta M, Coles P J, and Wehner S 2014 Phys. Rev. A 90 062127
  • (12) Walborn S P, Salles A, Gomes R M, Toscano F, and Souto Ribeiro P H 2011 Phys. Rev. Lett. 106 130402
  • (13) Hu M L and Fan H 2012 Phys. Rev. A 86 032338
  • (14) Giovannetti V, Lloyd S, and Maccone L 2011 Nat. Photon. 5 222
  • (15) Yuan X, Zhou H Y, Cao Z, and Ma X F 2015 Phys. Rev. A 92 022124
  • (16) Luo S L and Sun Y 2017 Phys. Rev. A 96 022130
  • (17) Marvian I and Spekkens R W 2016 Phys. Rev. A 94 052324
  • (18) Wu K D, Streltsov A, Regula B, and Xiang G Y 2021 Adv. Quantum Technol. 4 2100040
  • (19) Streltsov A, Adesso G, and Plenio M B 2017 Rev. Mod. Phys. 89 041003
  • (20) Baumgratz T, Cramer M, and Plenio M B 2014 Phys. Rev. Lett. 113 140401
  • (21) Qi X F, Gao T, and Yan F L 2017 J. Phys. A: Math. Theor. 50 285301
  • (22) Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N, and Adesso G 2016 Phys. Rev. Lett. 116 150502
  • (23) Liu C L, Zhang D J, Yu X D, Ding Q M, and Liu L J 2017 Quantum Inf. Process. 16 198
  • (24) Yuan X, Bai G, Peng T Y, and Ma X F 2017 Phys. Rev. A 96 032313
  • (25) Rastegin A E 2023 Phys. Scr. 98 015107
  • (26) Zhang F and Li Y 2018 Sci. China Phys. Mech. Astron. 61 080312
  • (27) Mu H and Li Y 2020 Phys. Rev. A 102 022217
  • (28) Luo S L and Sun Y 2019 Commun. Theor. Phys. 71 12
  • (29) Hu B Y and Zhao M J 2023 J. Phys. A: Math. Theor. 56 455309
  • (30) J. W. Xu 2019 Phys. Rev. A 100 052311
  • (31) Xuan D P, Hu X H and Nan H 2023 Quantum Inf. Process. 22 48
  • (32) Fan Y J, Guo X, and Yang X Y 2022 Quantum Inf. Process. 21 339
  • (33) Jin Z X, Yang L M, Fei S M, L-Jost X Q, and Wang Z X 2021 Sci. China Phys. Mech. Astron. 64 280311
  • (34) Zhao M J, Ma T, Quan Q, Fan H, and Pereira R 2019 Phys. Rev. A 100 012315
  • (35) Machado P, Monken C H, and Pádua S 2024 Phys. Rev. A 109 012210
  • (36) Liu Z W, Hu X Y, and Lloyd S 2017 Phys. Rev. Lett. 118 060502