This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The problem of ultracompact rotating gravastars

Mieszko Rutkowski [email protected]    Andrzej Rostworowski Institute of Theoretical Physics, Jagiellonian University, 30-348 Kraków, Poland
Abstract

A number of authors provided arguments that a rotating gravastar is a good candidate for a source of the Kerr metric. These arguments were based on the second order perturbation analysis. In the following paper, we construct a perturbative solution of the rotating gravastar up to the third perturbation order and show that it cannot be continuously matched with the Kerr spacetime.

I Introduction

Gravastars, proposed by Mazur and Mottola (Mazur and Mottola, 2004) as an alternative to black holes, have been studied extensively in the recent years ((Cattoen et al., 2005; Carter, 2005; Chirenti and Rezzolla, 2007; Cardoso et al., 2008; Chirenti and Rezzolla, 2008; Pani et al., 2009, 2010; Chirenti and Rezzolla, 2016)). One of the issues concerning gravastars is to find a rotating gravastar solution. So far only perturbative versions of such a solution exist ((Uchikata and Yoshida, 2015; Uchikata et al., 2016; Posada, 2017)). These studies indicate that in the ultracompact limit ((Mazur and Mottola, 2015)) the rotating gravastar can be a source of the Kerr metric (i.e. I, Love, Q numbers tend to those of Kerr in this limit). Similar perturbation-type sources (thin shells) of the Kerr metric were studied earlier by e.g, (Cohen, 1967; De La Cruz and Israel, 1968; Pfister and Braun, 1986). On the other hand, constructing perturbation sources of the Kerr metric have been criticised by Krasiński (1978).

In this work, we take perturbation approach to check if the matching of the gravastar with the Kerr spacetime survives at higher orders. It means that we want to construct a rotating analogue of (Mazur and Mottola, 2015) with the Kerr spacetime outside. We use slightly different framework to ((Uchikata and Yoshida, 2015; Uchikata et al., 2016; Posada, 2017)) and instead of solving Einstein equations both for interior and exterior, we a priori assume that an exterior solution is the Kerr metric. Then we seek for an interior solution and try to match it with the Kerr metric.

Most of the work on rotating gravastars was based on Hartle’s structure equations Hartle (1967) (see also (Reina and Vera, 2015; Mars et al., 2020a, b)). Hartle’s framework allows to study slowly rotating perfect fluid objects up to the second order in angular momentum. To go beyond the second order, we find it easier to follow Rostworowski (2017), who provided a nonlinear extension of Regge-Wheeler and Zerilli formalisms. Formalism given by Rostworowski (2017) is dedicated to (Λ\Lambda-) vacuum spacetimes and can be easily adapted to our needs. The difference between Hartle’s framework and our approach is only on the level of ansatz on metric perturbation form and they are physically equivalent within the range of applicability of Hartle’s framework. We find that (Rostworowski, 2017) provides a very powerful tool for dealing with nonlinear perturbations. Although in the present article we describe perturbation analysis only up to the third order, we solved Einstein equations up to the sixth order to calculate Kretschmann scalar and we think it’s possible to go further if needed.

The paper is organised as follows: in Sections II, III and IV we provide preliminaries, in Section V we discuss the matching, in Section VI we expand the Kerr metric, in sections VII and VIII we solve interior Einstein equations and try to match interior and exterior metrics and in Section IX we summarise and discuss our calculations.

II Background solution

As a background, we take the ultracompact gravastar model (Mazur and Mottola, 2015). In static coordinates (tt,rr,uu,φ\varphi), where u=cosθu=\cos\theta, it’s metric is given by:

g¯=f(r)dt2+1h(r)dr2+r2(du21u2+(1u2)dφ2),\displaystyle\bar{g}=f(r)dt^{2}+\frac{1}{h(r)}dr^{2}+r^{2}\left(\frac{du^{2}}{1-u^{2}}+(1-u^{2})d\varphi^{2}\right)\,, (1)

where

f(r)=\displaystyle f(r)= {14(1r24M2)rR,12Mrr>R,\displaystyle\left\{\begin{array}[]{ll}\frac{1}{4}\left(1-\frac{r^{2}}{4M^{2}}\right)&\quad r\leq R\,,\\ 1-\frac{2M}{r}&\quad r>R\,,\end{array}\right. (4)
h(r)=\displaystyle h(r)= {1r24M2rR,12Mrr>R.\displaystyle\left\{\begin{array}[]{ll}1-\frac{r^{2}}{4M^{2}}&\quad r\leq R\,,\\ 1-\frac{2M}{r}&\quad r>R\,.\end{array}\right. (7)

An induced metric is continuous across the (null) matching surface r=2Mr=2M. There is a nonzero stress-energy tensor induced on this shell, see Mazur and Mottola (2015) for the details. The exterior metric is a solution to vacuum Einstein equations and the interior metric is a solution to Einstein equations with a cosmological constant Λ=34M2\Lambda=\frac{3}{4M^{2}}. Both interior and exterior metrics are singular at r=2Mr=2M. To keep them regular, also in higher perturbation orders, we use Eddington–Finkelstein (EF) coordinates (vv,rr,uu,φ\varphi). Interior metric in EF coordinates reads:

g¯=14(1r24M2)dv2+drdv+r2(du21u2+(1u2)dφ2).\displaystyle\bar{g}=\frac{1}{4}\left(1-\frac{r^{2}}{4M^{2}}\right)dv^{2}+drdv+r^{2}\left(\frac{du^{2}}{1-u^{2}}+(1-u^{2})d\varphi^{2}\right)\,. (8)

and exterior metric in EF coordinates reads:

g¯=(12Mr)dv2+2drdv+r2(du21u2+(1u2)dφ2).\displaystyle\bar{g}=\left(1-\frac{2M}{r}\right)dv^{2}+2drdv+r^{2}\left(\frac{du^{2}}{1-u^{2}}+(1-u^{2})d\varphi^{2}\right)\,. (9)

III Polar expansion

In a spherically symmetric background, in 3+1 dimensions, vector and tensor components split into two sectors: polar and axial (for the details see e.g. (Regge and Wheeler, 1957; Zerilli, 1970a, b; Nollert, 1999; Mukohyama, 2000)). Symmetric tensors have 7 polar and 3 axial components. Below we list the expansion of the components of symmetric tensors in axial symmetry (PP_{\ell} denotes the \ell-th Legendre polynomial).

The symmetric tensor, polar sector:

Sab(r,u)=0Sab(r)P(u),a,b=v,r,\displaystyle S_{ab}(r,u)=\sum\limits_{0\leq\ell}{S_{\ell}}_{ab}(r)P_{\ell}(u)\,,\quad a,b=v,r\,, (10)
Sau(r,u)=1Sau(r)uP(u),a=v,r,\displaystyle S_{au}(r,u)=-\sum\limits_{1\leq\ell}{S_{\ell}}_{au}(r)\partial_{u}P_{\ell}(u)\,,\quad a=v,r\,, (11)
12((1u2)Suu(r,u)+Sφφ(r,u)(1u2))=0S+(r)P(u),\displaystyle\frac{1}{2}\left((1-u^{2})S_{uu}(r,u)+\frac{S_{\varphi\varphi}(r,u)}{(1-u^{2})}\right)=\sum\limits_{0\leq\ell}{S_{\ell}}_{+}(r)P_{\ell}(u)\,, (12)
12((1u2)Suu(r,u)Sφφ(r,u)(1u2))=\displaystyle\frac{1}{2}\left((1-u^{2})S_{uu}(r,u)-\frac{S_{\varphi\varphi}(r,u)}{(1-u^{2})}\right)=
=2S(r)((+1)P(u)+2uuP(u)).\displaystyle=\sum\limits_{2\leq\ell}{S_{\ell}}_{-}(r)(-\ell(\ell+1)P_{\ell}(u)+2u\partial_{u}P_{\ell}(u))\,. (13)

The symmetric tensor, axial sector:

Saφ(r,u)=1Saφ(r)(1+u2)uP(u),a=v,r,\displaystyle S_{a\varphi}(r,u)=\sum\limits_{1\leq\ell}{S_{\ell}}_{a\varphi}(r)(-1+u^{2})\partial_{u}P_{\ell}(u)\,,\quad a=v,r\,, (14)
Suφ(r,u)=2Suφ(r)((+1)P(u)2uuP(u)).\displaystyle S_{u\varphi}(r,u)=\sum\limits_{2\leq\ell}{S_{\ell}}_{u\varphi}(r)\left(\ell(\ell+1)P_{\ell}(u)-2u\partial_{u}P_{\ell}(u)\right)\,. (15)

IV Metric perturbations

We assume that there exists an exact, stationary and axially symmetric solution to Einstein equations, which we expand into series in a parameter aa (which will be an angular momentum per unit mass of a an exterior metric) around the static metric (4):

gμν=g¯μν+i=1aii!hμν(i)\displaystyle g_{\mu\nu}=\bar{g}_{\mu\nu}+\sum\limits_{i=1}^{\infty}\frac{a^{i}}{i!}{}^{(i)}h_{\mu\nu} (16)

After perturbation expansion we polar–expand metric perturbations according to (10) - (15). Thus, apart from the perturbation index ii, all perturbations gain an index \ell corresponding to the \ell-th Legendre polynomial.

For axial perturbations we take:

h(i)=(000hvφ(i)(r)(1+u2)uP(u)000hrφ(i)(r)(1+u2)uP(u)0000hvφ(i)(r)(1+u2)uP(u)hrφ(i)(r)(1+u2)uP(u)00).\displaystyle{}^{(i)}h_{\ell}=\begin{pmatrix}0&0&0&{}^{(i)}h_{\ell\,v\varphi}(r)(-1+u^{2})\partial_{u}P_{\ell}(u)\\ 0&0&0&{}^{(i)}h_{\ell\,r\varphi}(r)(-1+u^{2})\partial_{u}P_{\ell}(u)\\ 0&0&0&0\\ {}^{(i)}h_{\ell\,v\varphi}(r)(-1+u^{2})\partial_{u}P_{\ell}(u)&{}^{(i)}h_{\ell\,r\varphi}(r)(-1+u^{2})\partial_{u}P_{\ell}(u)&0&0\end{pmatrix}\,. (17)

Using the gauge freedom, we set huφ(i)(r)=0{}^{(i)}h_{\ell\,u\varphi}(r)=0, what corresponds to the Regge-Wheeler (RW) gauge.

For the polar perturbations we take:

h(i)=(hvv(i)(r)P(u)hvr(i)(r)P(u)00hvr(i)(r)P(u)hrr(i)(r)P(u)0000h+(i)(r)P(u)1u20000h+(i)(r)(1u2)P(u)).\displaystyle{}^{(i)}h_{\ell}=\begin{pmatrix}{}^{(i)}h_{\ell\,vv}(r)P_{\ell}(u)&{}^{(i)}h_{\ell\,vr}(r)P_{\ell}(u)&0&0\\ {}^{(i)}h_{\ell\,vr}(r)P_{\ell}(u)&{}^{(i)}h_{\ell\,rr}(r)P_{\ell}(u)&0&0\\ 0&0&{}^{(i)}h_{\ell\,+}(r)\frac{P_{\ell}(u)}{1-u^{2}}&0\\ 0&0&0&{}^{(i)}h_{\ell\,+}(r)\left(1-u^{2}\right)P_{\ell}(u)\end{pmatrix}\,. (18)

Using the gauge freedom, we set hru(i)=hvu(i)=h(i)=0{}^{(i)}h_{\ell\,ru}={}^{(i)}h_{\ell\,vu}={}^{(i)}h_{\ell\,-}=0, what also corresponds to the RW gauge. Note that in Hartle (1967) there are no hvr(i){}^{(i)}h_{\ell\,vr} and hrφ(i){}^{(i)}h_{\ell\,r\varphi} coefficients in the metric ansatz. This fact arises from the fact that Hartle uses static coordinates. For EF coordinates in the background both hvr(i){}^{(i)}h_{\ell\,vr} and hrφ(i){}^{(i)}h_{\ell\,r\varphi} turn out to be nonzero in most cases.

In the interior, we solve perturbation Einstein equations with a cosmological constant Λ=34M2\Lambda=\frac{3}{4M^{2}}. For a given order ii and a given multipole \ell, they have the following form:

δGμν=Sμν(i),\displaystyle\delta G_{\ell\,\mu\nu}={}^{(i)}S_{\ell\,\mu\nu}\,, (19)

where δGμν\delta G_{\ell\,\mu\nu} denotes the components of the Einstein tensor expansion. Sμν(i){}^{(i)}S_{\mu\nu} denotes a source for the ii-th order Einstein equations consisting of metric perturbations of orders lower that ii. We provide an explicit form of equations (19) in the Appendix A.

V Matching interior with exterior

We match the exterior metric with the interior metric on a three-dimensional hypersurface located at r±=rb±r^{\pm}=r_{b}^{\pm}, where “+” and “-” stand for exterior and interior, respectively. From the first Israel junction condition ((Israel, 1966; Barrabès and Israel, 1991)) we demand continuity of the induced metric at the matching hypersurface:

[[𝔤ab±]]=0,\displaystyle[[\mathfrak{g}^{\pm}_{ab}]]=0\,, (20)

where [[E]]=E+(rb+)E(rb)[[E]]=E^{+}(r_{b}^{+})-E^{-}(r_{b}^{-}). Following (Uchikata et al., 2016), we introduce intrinsic coordinates on the three-dimensional hypersurface: ya=(V,U,Φ)y^{a}=(V,U,{\Phi}). Then we express interior and exterior coordinates x±μ{x}^{\pm\,\mu} on a hypersurface in terms of yay^{a}:

xμ|rb\displaystyle x^{-\mu}\big{|}_{r_{b}^{-}} =(AV,rb(U),F(U),Φ),\displaystyle=\left(A^{-}\,V,r_{b}^{-}(U),F^{-}(U),\Phi\right)\,, (21)
x+μ|rb+\displaystyle x^{+\mu}\big{|}_{r_{b}^{+}} =(A+V,rb+(U),F+(U),Φ),\displaystyle=\left(A^{+}\,V,r_{b}^{+}(U),F^{+}(U),\Phi\right)\,, (22)

where rb±(U)=2M+a2M2η±(U)+𝒪(a4)r_{b}^{\pm}(U)=2M+\frac{a^{2}}{M^{2}}\eta^{\pm}(U)+\mathcal{O}(a^{4}), F±(U)=U+a2M2λ±(U)+𝒪(a4)F^{\pm}(U)=U+\frac{a^{2}}{M^{2}}\lambda^{\pm}(U)+\mathcal{O}(a^{4}). We expand η±\eta^{\pm} into η±(U)=η0±+η2±P2(U)\eta^{\pm}(U)=\eta_{0}^{\pm}+\eta_{2}^{\pm}P_{2}(U).

The metric induced on this hypersurface is given by:

𝔤ab±=((A±)2gvv±A±gvr±rb±(U)+A±gvu±F±(U)A±gvφ±A±gvr±rb±(U)+A±gvu±F±(U)(F±(U))2guu±+(rb±(U))2grr±+2F±(U)rb±(U)gru±F±(U)guφ±+rb±(U)grφ±A±gvφ±F±(U)guφ±+rb±(U)grφ±gφφ±).\displaystyle\mathfrak{g}^{\pm}_{ab}=\left(\begin{array}[]{ccc}\left(A^{\pm}\right)^{2}g^{\pm}_{vv}&A^{\pm}g^{\pm}_{vr}{r^{\pm}_{b}}^{\prime}(U)+A^{\pm}g^{\pm}_{vu}{F^{\pm}}^{\prime}(U)&A^{\pm}g^{\pm}_{v\varphi}\\ A^{\pm}g^{\pm}_{vr}{r^{\pm}_{b}}^{\prime}(U)+A^{\pm}g^{\pm}_{vu}{F^{\pm}}^{\prime}(U)&\left({F^{\pm}}^{\prime}(U)\right)^{2}g^{\pm}_{uu}+\left({r^{\pm}_{b}}^{\prime}(U)\right)^{2}g^{\pm}_{rr}+2{F^{\pm}}^{\prime}(U){r^{\pm}_{b}}^{\prime}(U)g^{\pm}_{ru}&{F^{\pm}}^{\prime}(U)g^{\pm}_{u\varphi}+{r^{\pm}_{b}}^{\prime}(U)g^{\pm}_{r\varphi}\\ A^{\pm}g^{\pm}_{v\varphi}&{F^{\pm}}^{\prime}(U)g^{\pm}_{u\varphi}+{r^{\pm}_{b}}^{\prime}(U)g^{\pm}_{r\varphi}&g^{\pm}_{\varphi\varphi}\\ \end{array}\right)\,. (26)

Using the freedom in a choice of coordinates V,U,ΦV,U,\Phi, we set F+(U)=UF^{+}(U)=U and A+=1A^{+}=1 (see e.g. Uchikata and Yoshida (2015)). For simplicity, we denote A=AA^{-}=A.

The location of the matching hypersurface is not known a priori and η±(U)\eta^{\pm}(U) and λ(U)\lambda^{-}(U) are unknown functions that need to be found. Our procedure of matching interior and exterior metrics for a given perturbation order is the following:

  1. 1.

    We solve perturbation Einstein equations for the interior. These solutions contain two constans per \ell in every perturbation order, but most of these constants need to be set to zero to keep Kretschmann scalar regular at r=0r=0 and r=2Mr=2M. However, this is not straightforward to apply, because in our case singularities of the Kretschmann scalar occur in higher perturbation orders than the singularities of the metric itself (in the opposition to the exterior case, e.g. Raposo et al. (2019)). Therefore, to settle constants in the third order, we solved Einstein equations up to the sixth perturbation order to study behaviour of the Kretschmann scalar. Since these expressions are too long to be listed in this paper, we make them available in the Mathematica notebook (Kre, ).

  2. 2.

    We act with the general gauge transformation on the interior metric, and then we solve matching conditions (20) for constants arising from Einstein equations, for η±(U),λ(U),\eta^{\pm}(U),\,\lambda(U), and for gauge components. Finding a proper gauge is a part of the matching problem and using the result of Bruni et al. (1997), we are able to control the impact of the gauge from the lower perturbation order on the metric functions in the higher perturbation order.

  3. 3.

    If the matching is successful, we go to the higher perturbation order.

The second junction condition tells about the energy content of the matching hypersurface - already in the background solution there is a thin shell located at r=2Mr=2M (since this is a null hypersurface, second junction condition needs to be modified, see (Barrabès and Israel, 1991), (Mazur and Mottola, 2015) for the details). However, in the next sections we show that even the first junction condition is not possible to fulfil, therefore we don’t find it necessary to discuss second junction condition at all.

VI Kerr metric expansion

As an exterior metric, we take the Kerr solution. In the advanced EF coordinates it reads:

ds2=\displaystyle ds^{2}= (12Mra2u2+r2)dv2+2dvdr+a2u2+r21u2du2+(1u2)(2a2Mr(1u2)a2u2+r2+a2+r2)dφ2+\displaystyle-\left(1-\frac{2Mr}{a^{2}u^{2}+r^{2}}\right)dv^{2}+2dvdr+\frac{a^{2}u^{2}+r^{2}}{1-u^{2}}du^{2}+\left(1-u^{2}\right)\left(\frac{2a^{2}Mr\left(1-u^{2}\right)}{a^{2}u^{2}+r^{2}}+a^{2}+r^{2}\right)d\varphi^{2}+
+4aMr(1u2)a2u2+r2dvdφ+2a(1u2)drdφ.\displaystyle+\frac{4aMr\left(1-u^{2}\right)}{a^{2}u^{2}+r^{2}}dvd\varphi+2a\left(1-u^{2}\right)drd\varphi\,. (27)

Since we solve the interior equations in RW gauge, we prefer to use the Kerr metric in RW gauge as well. To do this, we expand (27) into series in aa up to the 3rd order, and then act with the gauge transformations (115)-(117) to move to the RW gauge. Finally, we obtain:

ds2=\displaystyle ds^{2}= ((12Mr)a2M(u2(6M2Mr3r2)2M2+Mr+r2)r5)dv2+\displaystyle-\left(\left(1-\frac{2M}{r}\right)-\frac{a^{2}M\left(u^{2}\left(6M^{2}-Mr-3r^{2}\right)-2M^{2}+Mr+r^{2}\right)}{r^{5}}\right)dv^{2}+
+(2a2M(13u2)r3)dr2+(r21u2+a2M(3u21)(2M+r)r2(u21))du2\displaystyle+\left(\frac{2a^{2}M\left(1-3u^{2}\right)}{r^{3}}\right)dr^{2}+\left(\frac{r^{2}}{1-u^{2}}+\frac{a^{2}M\left(3u^{2}-1\right)(2M+r)}{r^{2}\left(u^{2}-1\right)}\right)du^{2}
+(r2(1u2)+a2M(u21)(3u21)(2M+r)r2)dφ2+\displaystyle+\left(r^{2}\left(1-u^{2}\right)+\frac{a^{2}M\left(u^{2}-1\right)\left(3u^{2}-1\right)(2M+r)}{r^{2}}\right)d\varphi^{2}+
+2(1+a2M(3u21)(M+r)r4)dvdr+2(a3M(1u2)(5u21)(9M+5r)5r4)drdφ+\displaystyle+2\left(1+\frac{a^{2}M\left(3u^{2}-1\right)(M+r)}{r^{4}}\right)dvdr+2\left(\frac{a^{3}M\left(1-u^{2}\right)\left(5u^{2}-1\right)(9M+5r)}{5r^{4}}\right)drd\varphi+
+2(2aM(1u2)ra3M(u21)(M2(6u22)+M(r5ru2)+r2(15u2))r5)dvdφ+𝒪(a4),\displaystyle+2\left(\frac{2aM\left(1-u^{2}\right)}{r}-\frac{a^{3}M\left(u^{2}-1\right)\left(M^{2}\left(6u^{2}-2\right)+M\left(r-5ru^{2}\right)+r^{2}\left(1-5u^{2}\right)\right)}{r^{5}}\right)dvd\varphi\,+\mathcal{O}(a^{4}), (28)

For simplicity, we omit “+” and “-” coordinate superscripts and use them only when it’s necessary to differentiate the interior from the exterior. We expand (28) into series in aa. Below we list nonzero components of this expansion after the polar decomposition.

h1,vφ+(1)=2Mr,h0,vv+(2)=4M23r4,h2,vv+(2)=4M(6M2Mr3r2)3r5,h2,vr+(2)=4M(M+r)r4,h2,rr+(2)=8Mr3,h2,++(2)=4M(2M+r)r2,h1,vφ+(3)=24M35r5,h3,vφ+(3)=4M(6M2+5Mr+5r2)5r5,h3,rφ+(3)=4M(9M+5r)5r4.\displaystyle\begin{split}{}^{(1)}h^{+}_{1,\,v\varphi}&=-\frac{2M}{r}\,,\\ {}^{(2)}h^{+}_{0,\,vv}&=\frac{4M^{2}}{3r^{4}}\,,\\ {}^{(2)}h^{+}_{2,\,vv}&=\frac{4M\left(6M^{2}-Mr-3r^{2}\right)}{3r^{5}}\,,\\ {}^{(2)}h^{+}_{2,\,vr}&=\frac{4M(M+r)}{r^{4}}\,,\\ {}^{(2)}h^{+}_{2,\,rr}&=-\frac{8M}{r^{3}}\,,\end{split}\begin{split}{}^{(2)}h^{+}_{2,\,+}&=-\frac{4M(2M+r)}{r^{2}}\,,\\ {}^{(3)}h^{+}_{1,\,v\varphi}&=\frac{24M^{3}}{5r^{5}}\,,\\ {}^{(3)}h^{+}_{3,\,v\varphi}&=\frac{4M\left(-6M^{2}+5Mr+5r^{2}\right)}{5r^{5}}\,,\\ {}^{(3)}h^{+}_{3,\,r\varphi}&=-\frac{4M(9M+5r)}{5r^{4}}\,.\end{split} (29)

VII Interior solution

VII.1 The first order

VII.1.1 Axial =1\ell=1

For =1\ell=1 there is no huφh_{u\varphi} component and we can use the remaining gauge freedom to set h1rφ(1)=0{}^{(1)}h^{-}_{1\,r\varphi}=0. Linearized Einstein equation are homogeneous (96)-(98) and yield:

h1vφ(1)=Ω11r2+Π11r\displaystyle{}^{(1)}h^{-}_{1\,v\varphi}=\Omega_{11}r^{2}+\frac{\Pi_{11}}{r} (30)

where Ω11\Omega_{11} and Π11\Pi_{11} are arbitrary constants. We set Π11=0\Pi_{11}=0 to make Kretchmann scalar regular at r=0, therefore we are left with h1vφ(1)=Ω11r2{}^{(1)}h^{-}_{1\,v\varphi}=\Omega_{11}r^{2}. It turns out that this solution is a pure gauge, but we will discuss it later.

VII.2 The second order

VII.2.1 Polar =0\ell=0

For =0\ell=0 there are no h,hvu,hruh_{-},\,h_{vu},\,h_{ru} components in the polar decomposition and we have an additional gauge freedom, which we use to set h0vr(2),h0+(2){}^{(2)}h^{-}_{0\,vr},\,{}^{(2)}h^{-}_{0\,+} to zero. The only nonzero variables left are h0vv(2){}^{(2)}h^{-}_{0\,vv} and h0rr(2){}^{(2)}h^{-}_{0\,rr}.

Solution to Einstein equations (99)-(105) with =0\ell=0 and with sources (108)-(110) reads:

h0vv(2)\displaystyle{}^{(2)}h^{-}_{0\,vv} =4r2Ω1123c20(r24M2)64M4+d20r,\displaystyle=\frac{4r^{2}\Omega_{11}^{2}}{3}-\frac{c_{20}\left(r^{2}-4M^{2}\right)}{64M^{4}}+\frac{d_{20}}{r}\,, (31)
h0rr(2)\displaystyle{}^{(2)}h^{-}_{0\,rr} =c20r24M2.\displaystyle=\frac{c_{20}}{r^{2}-4M^{2}}\,. (32)

where c20c_{20} and d20d_{20} are arbitrary constants. This solution is singular at r=0r=0 and r=2Mr=2M. To avoid singularity in Kretschmann scalar at r=0, we set d20=0d_{20}=0. Singularity at r=2Mr=2M can be removed using a gauge transformation (ξ0v(2)=c20((r24M2)tanh1(r2M)+2Mr)64M3{}^{(2)}\xi_{0\,v}=\frac{c_{20}\left(\left(r^{2}-4M^{2}\right)\tanh^{-1}\left(\frac{r}{2M}\right)+2Mr\right)}{64M^{3}}, ξ0r(2)=c20tanh1(r2M)8M{}^{(2)}\xi_{0\,r}=\frac{c_{20}\tanh^{-1}\left(\frac{r}{2M}\right)}{8M}), what yields:

h0vv(2)\displaystyle{}^{(2)}h^{-}_{0\,vv} =4r2Ω1123+c2016M2,\displaystyle=\frac{4r^{2}\Omega_{11}^{2}}{3}+\frac{c_{20}}{16M^{2}}\,, (33)
h0vr(2)\displaystyle{}^{(2)}h^{-}_{0\,vr} =0,\displaystyle=0\,, (34)
h0rr(2)\displaystyle{}^{(2)}h^{-}_{0\,rr} =0,\displaystyle=0\,, (35)
h0+(2)\displaystyle{}^{(2)}h^{-}_{0\,+} =c20r24M2.\displaystyle=\frac{c_{20}r^{2}}{4M^{2}}\,. (36)

VII.2.2 Polar =2\ell=2

Solution to Einstein equations (99)-(105) with =2\ell=2 and with sources (111)-(114) reads:

h2vv(2)=\displaystyle{}^{(2)}h^{-}_{2\,vv}= (r24M2)2128M4h2rr(2)43r2Ω112,\displaystyle\frac{\left(r^{2}-4M^{2}\right)^{2}}{128M^{4}}{}^{(2)}h^{-}_{2\,rr}-\frac{4}{3}r^{2}\Omega_{11}^{2}\,, (37)
h2vr(2)=\displaystyle{}^{(2)}h^{-}_{2\,vr}= 14(1r24M2)h2rr(2),\displaystyle-\frac{1}{4}\left(1-\frac{r^{2}}{4M^{2}}\right){}^{(2)}h^{-}_{2\,rr}\,, (38)
h2rr(2)=\displaystyle{}^{(2)}h^{-}_{2\,rr}= c2216M4r3+d22(3(r24M2)2coth1(2Mr)+2Mr(5r212M2))32M3r3(r24M2)2,\displaystyle\frac{c_{22}}{16M^{4}r^{3}}+\frac{d_{22}\left(3\left(r^{2}-4M^{2}\right)^{2}\coth^{-1}\left(\frac{2M}{r}\right)+2Mr(5r^{2}-12M^{2})\right)}{32M^{3}r^{3}\left(r^{2}-4M^{2}\right)^{2}}\,, (39)
h2+(2)=\displaystyle{}^{(2)}h^{-}_{2\,+}= c22(4M2+r2)128M6r+d22(3M(4M2+r2)coth1(2Mr)2r(3M2+r2))256M6r,\displaystyle\frac{c_{22}\left(4M^{2}+r^{2}\right)}{128M^{6}r}+\frac{d_{22}\left(3M\left(4M^{2}+r^{2}\right)\coth^{-1}\left(\frac{2M}{r}\right)-2r\left(3M^{2}+r^{2}\right)\right)}{256M^{6}r}\,, (40)

where c22c_{22} and d22d_{22} are arbitrary constants. To avoid singularity in the Kretschmann scalar at r=0r=0 and r=2Mr=2M we need to set c22=0c_{22}=0, d22=0d_{22}=0, what yields:

h2vv(2)\displaystyle{}^{(2)}h^{-}_{2\,vv} =43r2Ω112,,\displaystyle=-\frac{4}{3}r^{2}\Omega_{11}^{2},, (41)
h2vr(2)\displaystyle{}^{(2)}h^{-}_{2\,vr} =0,\displaystyle=0\,, (42)
h2rr(2)\displaystyle{}^{(2)}h^{-}_{2\,rr} =0,\displaystyle=0\,, (43)
h2+(2)\displaystyle{}^{(2)}h^{-}_{2\,+} =0.\displaystyle=0\,. (44)

VII.3 The third order

VII.3.1 Axial =1\ell=1

The solution to Einstein equations (96)–(98) with =1\ell=1 reads:

h1vφ(3)=Ω31r2+Π31r.\displaystyle{}^{(3)}h^{-}_{1\,v\varphi}=\Omega_{31}r^{2}+\frac{\Pi_{31}}{r}\,. (45)

To keep Kretschmann scalar regular at r=0, we set Π31=0\Pi_{31}=0.

VII.3.2 Axial =3\ell=3

Solution to Einstein equations (96)-(98) with =3\ell=3 reads:

h3vφ(3)\displaystyle{}^{(3)}h^{-}_{3\,v\varphi} =(r24M2)r3Π33+(120M4r+20M2r3+60(4M5M3r2)coth1(2Mr)+r5)3r3Ω33,\displaystyle=\frac{\left(r^{2}-4M^{2}\right)}{r^{3}}\Pi_{33}+\frac{\left(-120M^{4}r+20M^{2}r^{3}+60\left(4M^{5}-M^{3}r^{2}\right)\coth^{-1}\left(\frac{2M}{r}\right)+r^{5}\right)}{3r^{3}}\Omega_{33}\,, (46)
h3rφ(3)\displaystyle{}^{(3)}h^{-}_{3\,r\varphi} =8M2r3Π33+8M2(r(120M4+20M2r2+r4)r24M260M3coth1(2Mr))3r3Ω33,\displaystyle=\frac{8M^{2}}{r^{3}}\Pi_{33}+\frac{8M^{2}\left(\frac{r\left(-120M^{4}+20M^{2}r^{2}+r^{4}\right)}{r^{2}-4M^{2}}-60M^{3}\coth^{-1}\left(\frac{2M}{r}\right)\right)}{3r^{3}}\Omega_{33}\,, (47)

where Ω33\Omega_{33} and Π33\Pi_{33} are arbitrary constants. Singularities at r=0r=0 and r=2Mr=2M lead to the singularity in the Kretschmann scalar, therefore Ω33=0\Omega_{33}=0, Π33=0\Pi_{33}=0.

VIII Matching

VIII.0.1 First order

Before matching, we act with the general gauge transformation on the interior metric. Although we consider stationary metrics, we take gauge vectors that depend on vv coordinate. It might happen, that acting with gauge vectors depending on vv explicitly, we obtain metric independent of vv (we discuss such a case in Section IX). From the matching conditions (20) we have:

h1vφ+(1)(2M)Ah1vφ(1)(2M)=vξ1φ(1)(v,2M),\displaystyle\frac{{}^{(1)}h^{+}_{1\,v\varphi}(2M)}{A}-{}^{(1)}h^{-}_{1\,v\varphi}(2M)=-\partial_{v}{}^{(1)}\xi_{1\,\varphi}(v,2M)\,, (48)

To keep transformed metric vv-independent, we use (118) and (119) and obtain a condition:

ξ1φ(1)=q11vr2+γ1φ(1)(r),\displaystyle{}^{(1)}\xi_{1\,\varphi}=q_{11}vr^{2}+{}^{(1)}\gamma_{1\,\varphi}(r)\,, (49)

where q11q_{11} is an arbitrary constant and γ1\gamma_{1} is an arbitrary function of rr. From (48) we obtain:

Ω11=14AM2+q11.\displaystyle\Omega_{11}=-\frac{1}{4AM^{2}}+q_{11}\,. (50)

VIII.0.2 Second order

We act with the most general second order gauge transformation (115)-(116) on the interior metric. To keep transformed metric vv-indepedent, we use (121)-(127) and obtain conditions:

ξ0v(2)=4M2fq20v+γ0v(2)(r),\displaystyle{}^{(2)}\xi_{0\,v}=-4M^{2}fq_{20}v+{}^{(2)}\gamma_{0\,v}(r)\,, (51)
ξ0r(2)=8M2q20v+γ0r(2)(r),\displaystyle{}^{(2)}\xi_{0\,r}=8M^{2}q_{20}v+{}^{(2)}\gamma_{0\,r}(r)\,, (52)
ξ2v(2)=γ2v(2)(r),\displaystyle{}^{(2)}\xi_{2\,v}={}^{(2)}\gamma_{2\,v}(r)\,, (53)
ξ2r(2)=γ2r(2)(r),\displaystyle{}^{(2)}\xi_{2\,r}={}^{(2)}\gamma_{2\,r}(r)\,, (54)
ξ2u(2)=γ2u(2)(r),\displaystyle{}^{(2)}\xi_{2\,u}={}^{(2)}\gamma_{2\,u}(r)\,, (55)

where q20q_{20} is an arbitrary constant and γμ(i){}^{(i)}\gamma_{\ell\,\mu} are functions of rr.

Matching conditions (20) yield:

h0vv+(2)(2M)A2h0vv(2)(2M)\displaystyle{}^{(2)}h^{+}_{0\,vv}(2M)-A^{2}{}^{(2)}h^{-}_{0\,vv}(2M) =A2η0+2η0+2M3+163A2M2q11(q112Ω11)+A22Mγ0v(2)(2M),\displaystyle=\frac{A^{2}\eta_{0}^{-}+2\eta_{0}^{+}}{2M^{3}}+\frac{16}{3}A^{2}M^{2}q_{11}\left(q_{11}-2\Omega_{11}\right)+\frac{A^{2}}{2M}{}^{(2)}\gamma_{0\,v}(2M)\,, (56)
h2vv+(2)(2M)A2h2vv(2)(2M)\displaystyle{}^{(2)}h^{+}_{2\,vv}(2M)-A^{2}{}^{(2)}h^{-}_{2\,vv}(2M) =A2η2+2η2+2M3163A2M2q11(q112Ω11)+A22Mγ2v(2)(2M),\displaystyle=\frac{A^{2}\eta_{2}^{-}+2\eta_{2}^{+}}{2M^{3}}-\frac{16}{3}A^{2}M^{2}q_{11}\left(q_{11}-2\Omega_{11}\right)+\frac{A^{2}}{2M}{}^{(2)}\gamma_{2\,v}(2M)\,, (57)
2η2+η2A\displaystyle 2\eta_{2}^{+}-\eta_{2}^{-}A =AM2γ2v(2)(2M),\displaystyle=AM^{2}{}^{(2)}\gamma_{2\,v}(2M)\,, (58)
[[h0+(2)(2M)]]\displaystyle[[{}^{(2)}h_{0\,+}(2M)]] =8(η0+η0)M+8λ(U)+8Mγ0v(2)(2M),\displaystyle=-\frac{8(\eta_{0}^{+}-\eta_{0}^{-})}{M}+8\lambda^{\prime}(U)+8M{}^{(2)}\gamma_{0\,v}(2M)\,, (59)
[[h2+(2)(2M)]]\displaystyle[[{}^{(2)}h_{2\,+}(2M)]] =8(η2+η2)M+8Mγ2v(2)(2M)6γ2u(2)(2M),\displaystyle=-\frac{8(\eta_{2}^{+}-\eta_{2}^{-})}{M}+8M{}^{(2)}\gamma_{2\,v}(2M)-6{}^{(2)}\gamma_{2\,u}(2M)\,, (60)
[[h2(2)(2M)]]\displaystyle[[{}^{(2)}h_{2\,-}(2M)]] =γ2u(2)(2M)+16Uλ(U)+8(1U2)λ(U)3(U21)2.\displaystyle={}^{(2)}\gamma_{2\,u}(2M)+\frac{16U\lambda(U)+8\left(1-U^{2}\right)\lambda^{\prime}(U)}{3\left(U^{2}-1\right)^{2}}\,. (61)

After plugging solutions to perturbation equations into (56)-(61), we obtain:

η0\displaystyle\eta_{0}^{-} =M2γ0v(2)(2M)4MU3λ1M8c20M614M(3U21)γ2u(2)(2M),\displaystyle-=-M^{2}{}^{(2)}\gamma_{0\,v}(2M)-\frac{4MU}{3}\lambda_{1}-\frac{M}{8}c_{20}-\frac{M}{6}-\frac{1}{4}M\left(3U^{2}-1\right){}^{(2)}\gamma_{2\,u}(2M)\,, (62)
η2\displaystyle\eta_{2}^{-} =M3M2γ2v(2)(2M)+12Mγ2u(2)(2M),\displaystyle=-\frac{M}{3}-M^{2}{}^{(2)}\gamma_{2\,v}(2M)+\frac{1}{2}M{}^{(2)}\gamma_{2\,u}(2M)\,, (63)
η0+\displaystyle\eta_{0}^{+} =M6+2λ1MU3+18M(3U21)γ2u(2)(2M),\displaystyle=-\frac{M}{6}+\frac{2\lambda_{1}MU}{3}+\frac{1}{8}M\left(3U^{2}-1\right){}^{(2)}\gamma_{2\,u}(2M)\,, (64)
η2+\displaystyle\eta_{2}^{+} =M614Mγ2u(2)(2M),\displaystyle=\frac{M}{6}-\frac{1}{4}M{}^{(2)}\gamma_{2\,u}(2M)\,, (65)
A\displaystyle A =1,\displaystyle=-1\,, (66)
λ(U)\displaystyle\lambda(U) =λ1(U21)+38U(U21)γ2u(2)(2M).\displaystyle=\lambda_{1}\left(U^{2}-1\right)+\frac{3}{8}U\left(U^{2}-1\right){}^{(2)}\gamma_{2\,u}(2M)\,. (67)

where λ1\lambda_{1} is an arbitrary constant. To keep η0\eta_{0}^{-} independent of UU, we have to set λ1=0\lambda_{1}=0 and γ2u(2)(2M)=0{}^{(2)}\gamma_{2\,u}(2M)=0, what leads to:

η0\displaystyle\eta_{0}^{-} =M2γ0v(2)(2M)M8c20M6,\displaystyle-=-M^{2}{}^{(2)}\gamma_{0\,v}(2M)-\frac{M}{8}c_{20}-\frac{M}{6}\,, (68)
η2\displaystyle\eta_{2}^{-} =M3M2γ2v(2)(2M),\displaystyle=-\frac{M}{3}-M^{2}{}^{(2)}\gamma_{2\,v}(2M)\,, (69)
η0+\displaystyle\eta_{0}^{+} =M6,\displaystyle=-\frac{M}{6}\,, (70)
η2+\displaystyle\eta_{2}^{+} =M6,\displaystyle=\frac{M}{6}\,, (71)
A\displaystyle A =1,\displaystyle=-1\,, (72)
λ(U)\displaystyle\lambda(U) =0,\displaystyle=0\,, (73)
γ2u(2)(2M)\displaystyle{}^{(2)}\gamma_{2\,u}(2M) =0.\displaystyle=0\,. (74)

VIII.0.3 Third order

Again, we act with the most general third order gauge transformation (115)-(117) on the interior metric. To keep transformed metric vv-indepedent, we use (118)-(120) and obtain conditions:

ξ1φ(3)=q31r2v+γ1φ(3)(r),\displaystyle{}^{(3)}\xi_{1\,\varphi}=q_{31}r^{2}v+{}^{(3)}\gamma_{1\,\varphi}(r)\,, (75)
ξ3φ(3)=γ3φ(3)(r),\displaystyle{}^{(3)}\xi_{3\,\varphi}={}^{(3)}\gamma_{3\,\varphi}(r)\,, (76)

where q31q_{31} is an arbitrary constant and γμ(i){}^{(i)}\gamma_{\ell\,\mu} are functions of rr. Using (50) and (68)-(74), third order matching conditions (20) yield:

h1vφ(3)(2M)Ah1vφ(3)(2M)=\displaystyle{}^{(3)}h_{1\,v\varphi}(2M)-A{}^{(3)}h_{1\,v\varphi}(2M)= 3(5c20+8)20M2+3c20q11192M4q11q20+M24(q3112q20),\displaystyle\frac{3(5c_{20}+8)}{20M^{2}}+3c_{20}q_{11}-192M^{4}q_{11}q_{20}+M^{2}4\left(q_{31}-12q_{20}\right)\,, (77)
h3vφ(3)(2M)Ah3vφ(3)(2M)=\displaystyle{}^{(3)}h_{3\,v\varphi}(2M)-A{}^{(3)}h_{3\,v\varphi}(2M)= 310M2,\displaystyle\frac{3}{10M^{2}}\,, (78)
5M2ξ3,φ(3)(2M)=\displaystyle 5M^{2}{}^{(3)}\xi_{3,\varphi}(2M)= 6γ2r(2)(2M)(4M2q11+1)+2(3Mγ2v(2)(2M)+1)(Mγ1φ(1)(2M)γ1φ(1)(2M)).\displaystyle 6{}^{(2)}\gamma_{2\,r}(2M)\left(4M^{2}q_{11}+1\right)+2\left(3M{}^{(2)}\gamma_{2\,v}(2M)+1\right)\left(M{}^{(1)}\gamma_{1\,\varphi}^{\prime}(2M)-{}^{(1)}\gamma_{1\,\varphi}(2M)\right)\,. (79)

Condition (79) can be fulfilled just by setting all the gauge components to zero. Setting ξ2u=0\xi_{2\,u}=0 and plugging (45)-(47) into (77), we obtain:

Ω31=980M4+q31+3(4M2q11+1)(c2064M4q20)16M4.\displaystyle\Omega_{31}=\frac{9}{80M^{4}}+q_{31}+\frac{3\left(4M^{2}q_{11}+1\right)\left(c_{20}-64M^{4}q_{20}\right)}{16M^{4}}\,. (80)

However, (78) does not have any free parameters and it cannot be fulfilled (we obtain contradiction 310M2=0-\frac{3}{10M^{2}}=0) . That makes impossible to match interior with exterior in the third order.

IX Discussion and summary

Although we found the matching impossible, it is interesting to know what is the interior solution we obtained. The regular interior solution up to the third order reads:

ds2=(14(1r24M2)+a2(c2032M2+r2(1u2)Ω112)12016ar2(u21)(6Ω11+a2Ω31)1200000r21u2+a2c20r28M2(1u2)016ar2(u21)(6Ω11+a2Ω31)00r2(1u2)+a2c20r2(1u2)8M2).\displaystyle ds^{2}=\left(\begin{array}[]{cccc}-\frac{1}{4}\left(1-\frac{r^{2}}{4M^{2}}\right)+a^{2}\left(\frac{c_{20}}{32M^{2}}+r^{2}\left(1-u^{2}\right)\Omega_{11}^{2}\right)&\frac{1}{2}&0&\frac{1}{6}ar^{2}\left(u^{2}-1\right)\left(6\Omega_{11}+a^{2}\Omega_{31}\right)\\ \frac{1}{2}&0&0&0\\ 0&0&\frac{r^{2}}{1-u^{2}}+\frac{a^{2}c_{20}r^{2}}{8M^{2}\left(1-u^{2}\right)}&0\\ \frac{1}{6}ar^{2}\left(u^{2}-1\right)\left(6\Omega_{11}+a^{2}\Omega_{31}\right)&0&0&r^{2}\left(1-u^{2}\right)+\frac{a^{2}c_{20}r^{2}\left(1-u^{2}\right)}{8M^{2}}\\ \end{array}\right)\,. (85)

It turns out that this is an exact solution to Einstein equations – a gauge–transformed de Sitter space. To see this, let’s take the gauge vector with components:

ξ1(1)=\displaystyle{}^{(1)}\xi_{1}= (0,0,0,r2Ω11v),\displaystyle\left(0,0,0,r^{2}\Omega_{11}v\right)\,, (86)
ξ0(2)=\displaystyle{}^{(2)}\xi_{0}= (c20r16M2+c20(r24M2)128M4v,c20v16M2,0,0),\displaystyle\left(-\frac{c_{20}r}{16M^{2}}+\frac{c_{20}\left(r^{2}-4M^{2}\right)}{128M^{4}}v,\frac{c_{20}v}{16M^{2}},0,0\right)\,, (87)
ξ2(2)=\displaystyle{}^{(2)}\xi_{2}= (0,0,0,0),\displaystyle\left(0,0,0,0\right)\,, (88)
ξ1(3)=\displaystyle{}^{(3)}\xi_{1}= (0,0,0,(r2Ω133c20r2Ω118M2)v),\displaystyle\left(0,0,0,(r^{2}\Omega_{13}-\frac{3c_{20}r^{2}\Omega_{11}}{8M^{2}})v\right)\,, (89)
ξ3(3)=\displaystyle{}^{(3)}\xi_{3}= (0,0,0,0).\displaystyle\left(0,0,0,0\right)\,. (90)

Acting with those vectors on (85) (using formulas (115)-(117)), we obtain

ds2=(14(1r24M2)12001200000r21u20000r2(u21)),\displaystyle ds^{2}=\left(\begin{array}[]{cccc}-\frac{1}{4}\left(1-\frac{r^{2}}{4M^{2}}\right)&\frac{1}{2}&0&0\\ \frac{1}{2}&0&0&0\\ 0&0&\frac{r^{2}}{1-u^{2}}&0\\ 0&0&0&-r^{2}\left(u^{2}-1\right)\\ \end{array}\right)\,, (95)

what is exactly the background de Sitter metric, so all perturbations we obtained are a pure gauge. Therefore, from our calculations it follows that one cannot match a regular de Sitter vacuum with the Kerr metric, at least when in the limit a0a\rightarrow 0 one has the ultracompact gravastar solution. One can ask, if allowing for a change in the background density does not affect this result, but the answer is no. We repeated the calculation allowing for the perturbations of density and pressure (within the equation of state p=ρp=-\rho), but they do not change the conclusions.

To sum up, we made an attempt to match the ultracompact rotating gravastar with the Kerr metric using the nonlinear perturbation theory. Although the matching can be performed up to the second order, in the third order it is is no longer possible, therefore the rotating gravastar in the discussed form is not a good candidate for the source of the Kerr metric. What’s more, the interior of the ultracompact rotating gravastar is just the de Sitter metric. Since some of the proposed sources of the Kerr metric are based on the second perturbation order calculations, we find it necessary to check if these results survive at the higher perturbation orders.

Acknowledgements.
This research was supported by the Polish National Science Centre grant no. 2017/26/A/ST2/00530. We wish to thank Prof. Paweł Mazur for a discussion.

Appendix A Einstein equations

Einstein equations (19) of order ii divide into two parts: the homogeneous part δGμν\delta G_{\ell\,\mu\nu} consisting of metric perturbations of order ii and sources Sμν(i){}^{(i)}S_{\ell\,\mu\nu}\, consisting of metric perturbations of orders jj (j<ij<i). These equations needs to be solved order by order: after solving Einstein equations up to order ii one can construct explicit form of i+1i+1 order source.

A.0.1 Homogeneous part

For the axial sector in the RW gauge, there are two nonzero variables: hvφ(i){{}^{(i)}}h_{\ell v\varphi} and hrφ(i){{}^{(i)}}h_{\ell r\varphi} (for simplicity, we denote hμν(i)(r)=hμν{}^{(i)}h_{\ell\,\mu\nu}(r)=h_{\mu\nu}). Homogeneous parts of Einstein equations read:

2i!r2(δG)vφ\displaystyle 2i!r^{2}\left(\delta G\right)_{\ell\,v\varphi} =hvφ(2f+(+1)2)hvφr2fhvφ′′,\displaystyle=h_{v\varphi}\left(2f+\ell(\ell+1)-2\right)h_{v\varphi}-r^{2}fh_{v\varphi}^{\prime\prime}\,, (96)
2i!r2(δG)rφ\displaystyle 2i!r^{2}\left(\delta G\right)_{\ell\,r\varphi} =2r2hvφ′′4hvφ+((+1)2)hrφ,\displaystyle=2r^{2}h_{v\varphi}^{\prime\prime}-4h_{v\varphi}+\left(\ell(\ell+1)-2\right)h_{r\varphi}\,, (97)
2i!(δG)uφ\displaystyle 2i!\left(\delta G\right)_{\ell\,u\varphi} =fhrφ+2hvφ+fhrφ.\displaystyle=fh_{r\varphi}^{\prime}+2h_{v\varphi}^{\prime}+f^{\prime}h_{r\varphi}\,. (98)

For the polar sector in the RW gauge, there are four nonzero variables: hvv(i){{}^{(i)}}h_{\ell vv}, hvr(i){{}^{(i)}}h_{\ell vr}, hrr(i){{}^{(i)}}h_{\ell rr}, h+(i){{}^{(i)}}h_{\ell+} (for simplicity, we denote hμν(i)(r)=hμν{}^{(i)}h_{\ell\,\mu\nu}(r)=h_{\mu\nu}). Homogeneous parts of Einstein equations read:

8i!r4(δG)vv=\displaystyle 8i!r^{4}\left(\delta G\right)_{\ell\,vv}= 2f3r3hrr+8f2r3hvr2f2r2h+′′+4fr2(2rf+2f+(+1))hvr+\displaystyle 2f^{3}r^{3}h_{rr}^{\prime}+8f^{2}r^{3}h_{vr}^{\prime}-2f^{2}r^{2}h_{+}^{\prime\prime}+4fr^{2}\left(2rf^{\prime}+2f+\ell(\ell+1)\right)h_{vr}+
+f(2rf+(+1)2)h++fr(2frf)h++f2r2(4rf+2f+(+1))hrr+\displaystyle+f\left(2rf^{\prime}+\ell(\ell+1)-2\right)h_{+}+fr\left(2f-rf^{\prime}\right)h_{+}^{\prime}+f^{2}r^{2}\left(4rf^{\prime}+2f+\ell(\ell+1)\right)h_{rr}+
+4r2(2f+(+1))hvv+8fr3hvv,\displaystyle+4r^{2}(2f+\ell(\ell+1))h_{vv}+8fr^{3}h_{vv}^{\prime}\,, (99)
4i!r4(δG)vr=\displaystyle 4i!r^{4}\left(\delta G\right)_{\ell\,vr}= 2f2r3hrr+(2rf(+1)+2)h+fr2(4rf+2f+(+1))hrr+\displaystyle-2f^{2}r^{3}h_{rr}^{\prime}+\left(-2rf^{\prime}-\ell(\ell+1)+2\right)h_{+}-fr^{2}\left(4rf^{\prime}+2f+\ell(\ell+1)\right)h_{rr}+
2r2(4rf+4f+(+1))hvr+r(rf2f)h+8fr3hvr+2fr2h+′′+\displaystyle-2r^{2}\left(4rf^{\prime}+4f+\ell(\ell+1)\right)h_{vr}+r\left(rf^{\prime}-2f\right)h_{+}^{\prime}-8fr^{3}h_{vr}^{\prime}+2fr^{2}h_{+}^{\prime\prime}+
8r3hvv8r2hvv,\displaystyle-8r^{3}h_{vv}^{\prime}-8r^{2}h_{vv}\,, (100)
2i!r4(δG)rr=\displaystyle 2i!r^{4}\left(\delta G\right)_{\ell\,rr}= r2(2rf+(+1))hrr+2fr3hrr+8r3hvr2r2h+′′+4rh+4h+,\displaystyle r^{2}\left(2rf^{\prime}+\ell(\ell+1)\right)h_{rr}+2fr^{3}h_{rr}^{\prime}+8r^{3}h_{vr}^{\prime}-2r^{2}h_{+}^{\prime\prime}+4rh_{+}^{\prime}-4h_{+}\,, (101)
2i!(δG)vu=\displaystyle 2i!\left(\delta G\right)_{\ell\,vu}= hvrf+fhvr+2hvv,\displaystyle h_{vr}f^{\prime}+fh_{vr}^{\prime}+2h_{vv}^{\prime}\,, (102)
4i!r3(δG)ru=\displaystyle 4i!r^{3}\left(\delta G\right)_{\ell\,ru}= r2(rf+2f)hrr4r3hvr+8r2hvr2rh++4h+,\displaystyle r^{2}\left(rf^{\prime}+2f\right)h_{rr}-4r^{3}h_{vr}^{\prime}+8r^{2}h_{vr}-2rh_{+}^{\prime}+4h_{+}\,, (103)
4i!r2(δG)+=\displaystyle 4i!r^{2}\left(\delta G\right)_{\ell\,+}= 4r2(4rf+4f+(+1)4)hvrfr3(rf+2f)hrr4r3(rf+2f)hvr+\displaystyle-4r^{2}\left(4rf^{\prime}+4f+\ell(\ell+1)-4\right)h_{vr}-fr^{3}\left(rf^{\prime}+2f\right)h_{rr}^{\prime}-4r^{3}\left(rf^{\prime}+2f\right)h_{vr}^{\prime}+
+2r(rf2f)h++4(frf)h+r2(4f2+f(6rf+(+1)4)+r2f2)hrr+\displaystyle+2r\left(rf^{\prime}-2f\right)h_{+}^{\prime}+4\left(f-rf^{\prime}\right)h_{+}-r^{2}\left(4f^{2}+f\left(6rf^{\prime}+\ell(\ell+1)-4\right)+r^{2}f^{\prime 2}\right)h_{rr}+
+2fr2h+′′8r4hvv′′16r3hvv,\displaystyle+2fr^{2}h_{+}^{\prime\prime}-8r^{4}h_{vv}^{\prime\prime}-16r^{3}h_{vv}^{\prime}\,, (104)
4i!(δG)=\displaystyle 4i!\left(\delta G\right)_{\ell\,-}= fhrr+4hvr.\displaystyle fh_{rr}+4h_{vr}\,. (105)

A.0.2 Sources

Below we list the nonzero components of sources for Einstein equations. Sources for the ii-th order perturbation equations can be found in the following way (see e.g. appendix A of (Rutkowski, 2019)). Let’s assume that we already know the solution to perturbation Einstein equations up to the ii-th order (it consists of metric perturbations hμν(j){}^{(j)}h_{\mu\nu} with jij\leq i):

g~μν=g¯μν+j=1ihμν(j)ajj!.\displaystyle\tilde{g}_{\mu\nu}=\bar{g}_{\mu\nu}+\sum\limits_{j=1}^{i}\sum\limits_{\ell}{{}^{(j)}h_{\ell}}_{\mu\nu}\frac{a^{j}}{j!}\,. (106)

Using this solution we can calculate the Einstein tensor Gμν(g~)G_{\mu\nu}(\tilde{g}). Although this tensor vanishes up to the order ii, it contributes to the i+1i+1 (and higher) perturbation equations. Finally, the source of the order i+1i+1 is given by:

Sμν(i+1)\displaystyle{{}^{(i+1)}S}_{\mu\nu} =[i+1](Gμν(g~)),\displaystyle=[i+1]\left(-G_{\mu\nu}(\tilde{g})\right)\,, (107)

where [k]()[k]\left(...\right) denotes the kk-th order expansion of a given quantity. Although in most cases expressions for the sources Sμν(i+1){{}^{(i+1)}S}_{\mu\nu} are complicated, their construction is a purely algebraic task and can be easily performed using computer algebra. Below we list nonzero components of ii-th order sources in terms of explicit solutions hμν(j){}^{(j)}h_{\mu\nu} found for lower orders.

The source for the second order:

S0vv(2)\displaystyle{}^{(2)}S_{0\,vv} =4(1r24M2)Ω112,\displaystyle=4\left(1-\frac{r^{2}}{4M^{2}}\right)\Omega_{11}^{2}\,, (108)
S0vr(2)\displaystyle{}^{(2)}S_{0\,vr} =8Ω112,\displaystyle=-8\Omega_{11}^{2}\,, (109)
S0+(2)\displaystyle{}^{(2)}S_{0\,+} =16Ω112,\displaystyle=-16\Omega_{11}^{2}\,, (110)
S2vv(2)\displaystyle{}^{(2)}S_{2\,vv} =(r2M28)Ω112,\displaystyle=\left(\frac{r^{2}}{M^{2}}-8\right)\Omega_{11}^{2}\,, (111)
S2vr(2)\displaystyle{}^{(2)}S_{2\,vr} =8Ω112,\displaystyle=8\Omega_{11}^{2}\,, (112)
S2vu(2)\displaystyle{}^{(2)}S_{2\,vu} =83rΩ112,\displaystyle=\frac{8}{3}r\Omega_{11}^{2}\,, (113)
S2+(2)\displaystyle{}^{(2)}S_{2\,+} =16r2Ω112.\displaystyle=16r^{2}\Omega_{11}^{2}\,. (114)

The sources for the third order are zero.

Appendix B Gauge transformations

Consider a gauge transformation induced by a gauge vector ξ=i=0aii!ξ(i)\xi=\sum\limits_{i=0}^{\infty}\frac{a^{i}}{i!}{}^{(i)}\xi. According to (Bruni et al., 1997), metric perturbations transform in the following way:

hμν(1)hμν(1)\displaystyle{}^{(1)}h_{\mu\nu}\rightarrow{}^{(1)}h_{\mu\nu} +£ξ(1)g¯μν,\displaystyle+\mathsterling_{{{}^{(1)}}\xi}\bar{g}_{\mu\nu}\,, (115)
hμν(2)hμν(2)\displaystyle{}^{(2)}h_{\mu\nu}\rightarrow{}^{(2)}h_{\mu\nu} +(£ξ(2)+£ξ(1)2)g¯μν+2£ξ(1)hμν(1),\displaystyle+(\mathsterling_{{{}^{(2)}}\xi}+\mathsterling_{{{}^{(1)}}\xi}^{2})\bar{g}_{\mu\nu}+2\mathsterling_{{{}^{(1)}}\xi}{}^{(1)}h_{\mu\nu}\,, (116)
hμν(3)hμν(3)\displaystyle{}^{(3)}h_{\mu\nu}\rightarrow{}^{(3)}h_{\mu\nu} +(£ξ(1)3+3£ξ(1)£ξ(2)+£ξ(3))g¯μν+3(£ξ(1)2+£ξ(2))hμν(1)+3£ξ(1)hμν(2).\displaystyle+(\mathsterling_{{{}^{(1)}}\xi}^{3}+3\mathsterling_{{{}^{(1)}}\xi}\mathsterling_{{{}^{(2)}}\xi}+\mathsterling_{{{}^{(3)}}\xi})\bar{g}_{\mu\nu}+3(\mathsterling_{{{}^{(1)}}\xi}^{2}+\mathsterling_{{{}^{(2)}}\xi}){}^{(1)}h_{\mu\nu}+3\mathsterling_{{{}^{(1)}}\xi}{}^{(2)}h_{\mu\nu}\,. (117)

An explicit form of (115)-(117) for a gauge vector of order ii acting on a metric components of order ii reads (for clarity, we omit ii indices, dots and primes correspond to derivatives with respect to vv and rr, respectively):

hvφ\displaystyle h_{\ell\,v\varphi}\rightarrow hvφξ˙φ,\displaystyle h_{\ell\,v\varphi}-\dot{\xi}_{\varphi}\,, (118)
hrφ\displaystyle h_{\ell\,r\varphi}\rightarrow hrφ+2ξφrξφ,\displaystyle h_{\ell\,r\varphi}+\frac{2\xi_{\varphi}}{r}-\xi_{\varphi}^{\prime}\,, (119)
huφ\displaystyle h_{\ell\,u\varphi}\rightarrow huφ+ξφ,\displaystyle h_{\ell\,u\varphi}+\xi_{\varphi}\,, (120)
hvv\displaystyle h_{\ell\,vv}\rightarrow hvv14(fξr+2ξv)f+2ξ˙v,\displaystyle h_{\ell\,vv}-\frac{1}{4}\left(f\xi_{r}+2\xi_{v}\right)f^{\prime}+2\dot{\xi}_{v}\,, (121)
hvr\displaystyle h_{\ell\,vr}\rightarrow hvr+12fξr+ξv+ξ˙r,\displaystyle h_{\ell\,vr}+\frac{1}{2}f^{\prime}\xi_{r}+\xi_{v}^{\prime}+\dot{\xi}_{r}\,, (122)
hrr\displaystyle h_{\ell\,rr}\rightarrow hrr+2ξr,\displaystyle h_{\ell\,rr}+2\xi_{r}^{\prime}\,, (123)
h+\displaystyle h_{\ell\,+}\rightarrow h++2rfξr(+1)ξu+4rξv,\displaystyle h_{\ell\,+}+2rf\xi_{r}-\ell(\ell+1)\xi_{u}+4r\xi_{v}\,, (124)
h\displaystyle h_{\ell\,-}\rightarrow hξu,\displaystyle h_{\ell\,-}-\xi_{u}\,, (125)
hvu\displaystyle h_{\ell\,vu}\rightarrow hvuξvξ˙u,\displaystyle h_{\ell\,vu}-\xi_{v}-\dot{\xi}_{u}\,, (126)
hru\displaystyle h_{\ell\,ru}\rightarrow hruξr+2rξuξu.\displaystyle h_{\ell\,ru}-\xi_{r}+\frac{2}{r}\xi_{u}-\xi_{u}^{\prime}\,. (127)

References