This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Institute for Solid State Physics, TU Wien, 1040 Vienna, Austria

The plain and simple parquet approximation: single- and multi-boson exchange in the two-dimensional Hubbard model

Friedrich Krien    Anna Kauch
(December 18, 2024)
Abstract

The parquet approach to vertex corrections is unbiased but computationally demanding. Most applications are therefore restricted to small cluster sizes or rely on various simplifying approximations. We have recently shown that the bosonization of the parquet diagrams provides interpretative and algorithmic advantages over the original purely fermionic formulation. Here we present first results of the numerical implementation of this method by applying it to the half-filled Hubbard model on the square lattice at weak coupling. The improved algorithmic performance allows us to evaluate the parquet approximation for a 16×1616\times 16 lattice, retaining the full momentum and frequency structure of the various vertex functions. We discuss their symmetries and consider parametrizations of their momentum dependence using the truncated unity approximation.

1 Introduction

Methods of quantum field theory represent a cornerstone of many-body physics. In their most general form they require the computation of multi-point correlation functions, whose dependence on several momentum and frequency labels lies beyond any practical implementation in most cases. An elegant formalism for the derivation of computationally feasible approximations for the electronic self-energy was introduced by Hedin Hedin65 , who expressed the latter in terms of the Green’s function (GG), the screened interaction (WW), and a vertex correction (γ\gamma). The simplest, so-called GWGW approximation already includes the feedback of collective excitations on fermions and has become a standard tool of electronic structure theory, see, for example, Ref. Kutepov16 and references therein.

It is hard to go beyond the GWGW approximation, although it is desirable in cases of gross quantitative discrepancies to experiment Kutepov16 or, for example, at strong coupling where vertex corrections may alter the interaction between fermions and bosons qualitatively Krien21 . However, it is not a trivial task to even define proper strategies to extend the GWGW approximation: as usual, derivability from a potential leads to approximations that respect conservation laws Almbladh99 ; on the other hand one may also prefer, for example, a positive semi-definite real-axis spectrum as a stringent criterion Leeuwen14 ; Leeuwen16 ; or aim at including strong correlation effects Biermann03 ; Ayral15 . Here, on yet a different note, we are interested in an unbiased approach to the vertex correction γ\gamma as it is provided, for example, by the parquet approach Diatlov57 ; Dominicis64-2 or by the functional renormalization group (fRG, Metzner12 ; Dupuis21 ), which respect the crossing symmetry of two-particle correlation functions.

Following this path, we recently introduced a variation of Hedin’s equations which is equivalent to the parquet approach Krien21-2 ; or, vice versa, one may say that the parquet approach was recast exactly into the GWγGW\gamma form. As such, it requires as an input the fully irreducible vertex Λ\Lambda of the parquet formalism, where fully irreducible implies that it can not be cut into two parts by removing two Green’s function lines (GGGG-irreducible, Rohringer12 ). The quantities that appear in Hedin’s equations are, however, irreducible with respect to the bare interaction (UU-irreducible, Krien21-2 ). Therefore, the reformulated parquet equations actually use Λ~=ΛU\tilde{\Lambda}=\Lambda-U as a fundamental building block, where UU is the Hubbard interaction. In the application presented in this work we consider the parquet approximation, where Λ~\tilde{\Lambda} vanishes, leading nevertheless to a highly nontrivial approximation for the Hubbard model.

To put the unification of Hedin’s formalism with the parquet approach into perspective, we recall that a key technique of quantum field theory is the boldification of Feynman diagrams: summarily denoting a partial series of diagrams by an effective quantity, as for example the self-energy, reduces the number of Feynman diagrams that need to be evaluated, at the expense of keeping track of the effective quantity which has to be computed self-consistently. In Hedin’s original approach further diagrams are summarized in the screened interaction WW and in the polarization, representing, respectively, a boson and a bosonic self-energy. The corresponding reduction in the number of Feynman diagrams is concisely put on display in Ref. Molinari06 , where it is also noted that keeping track of yet another quantity, the UU-irreducible Hedin vertex γ\gamma which mediates a Yukawa-like coupling between fermions and bosons, can be used to boldify diagrams even further. In this spirit, the key theoretical step taken in Ref. Krien21-2 is to boldify a subset of diagrams arising from the Bethe-Salpeter equations, which are of a simple structure. Namely, the UU-reducible diagrams, coined single-boson exchange (SBE) in Ref. Krien19-2 , are representable in terms of the bold objects γ\gamma and WW (see Fig. 1). The remaining UU-irreducible diagrams, to which we refer as multi-boson exchange (MM), do not permit a representation in terms of γ,W\gamma,W alone, but instead capture repeated exchange of bosons. The resulting picture of bosons mediating effective interactions Bonetti22 is physically appealing and remains valid even at strong coupling Harkov21 ; Krien21 .

Further, it is plausible that fewer Feynman diagrams correspond to reduced computational cost in practical applications. Indeed, using the bosonized parquet approach, we are in a position to evaluate the parquet approximation for the Hubbard model on a 16×1616\times 16 lattice, which is, to our knowledge, the hitherto largest cluster size reached before any approximate parametrization of the momentum-dependent vertex functions as, for example, the truncated unity (TU) approximation Husemann09 ; Wang12 ; Lichtenstein17 ; Eckhardt20 . We note in passing that the performance may be also improved through a nonlocal formulation of the parquet approach Krien20 ; Astretsov19 . But we refrain from applying any further approximations (besides the parquet approximation itself). Therefore, the computational cost is reduced here only by the asymptotic decay of the vertex functions MM after the SBE diagrams are treated separately, because the latter determine the parquet vertices asymptotically Wentzell20 . As a result, frequency summations involving the vertex functions MM decay by one power faster compared to diagrams arising in the traditional parquet approach and, hence, the number of Matsubara frequencies can be reduced and the momentum grid refined. We thus arrive at the full-fledged parquet approximation for the Hubbard model, as envisioned in the seminal papers Diatlov57 ; Dominicis64-2 , progressing further along the path of pioneering applications to the Anderson impurity model Chen92 and small Hubbard clusters Yang09 ; Tam13 .

Recently, the parquet approach has also been unified with the multi-loop functional renormalization group (mfRG, Kugler18-3 ). By extension the latter can be recast in terms of boson exchange as well, a corresponding theory is presented in Ref. Walter22 . Further efforts aim at unbiased extensions of the dynamical mean-field theory (DMFT, Georges96 ) in order to reach the strong-coupling regime Toschi07 ; Taranto14 ; Rohringer18 ; Krien20 . Implementation details of the different methods vary widely and often additional approximations need to be applied. Therefore, we put here a spotlight on the plain parquet approximation as a (comparatively) simple reference case, which nevertheless provides a quantitative description of the Hubbard model in the weak-coupling limit Hille20 ; Schaefer21 . The aim of this paper is therefore twofold: On one hand, we discuss the qualitative behavior of various correlation functions, evaluated within the parquet approximation for the half-filled square lattice at weak coupling. On the other hand, with the full momentum dependence of the vertex functions readily available, we put two important tools to the test, namely, the TU approximation Eckhardt20 and the vertex asymptotics Wentzell20 . In the latter case our presentation extends to nonlocal correlations the investigation of Ref. Harkov21 , which compared the SBE diagrams to the vertex asymptotics for the Anderson impurity model.

The paper is structured as follows. We recollect definitions of the bosonized parquet formalism in Sec. 2. The screened interaction and Yukawa couplings are presented in Sec. 3, various four-point vertex functions are examined in Sec. 4. The convergence of the truncated unity is benchmarked in Sec. 5. We conclude in Sec. 6.

FF
=+γWγ+++Λ~+Mph+Mph¯+Mpp=Λ+Φph+Φph¯+Φpp\begin{array}[]{ccccc}=&\leavevmode\hbox to17.87pt{\vbox to17.87pt{\pgfpicture\makeatletter\hbox{\hskip 8.9359pt\lower-8.9359pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@curveto{2.0pt}{1.10458pt}{1.10458pt}{2.0pt}{0.0pt}{2.0pt}\pgfsys@curveto{-1.10458pt}{2.0pt}{-2.0pt}{1.10458pt}{-2.0pt}{0.0pt}\pgfsys@curveto{-2.0pt}{-1.10458pt}{-1.10458pt}{-2.0pt}{0.0pt}{-2.0pt}\pgfsys@curveto{1.10458pt}{-2.0pt}{2.0pt}{-1.10458pt}{2.0pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-3.2845pt}{-3.2845pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{8.5359pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{-0.84853}{0.84853}{0.84853}{-5.2514pt}{5.2514pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{5.2514pt}{-5.2514pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{0.84853}{-0.84853}{0.84853}{3.2845pt}{3.2845pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&+\leavevmode\hbox to47.24pt{\vbox to26.07pt{\pgfpicture\makeatletter\hbox{\hskip 5.52151pt\lower-13.03331pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.94140625,0.94140625,0.94140625}\pgfsys@color@rgb@fill{0.94140625}{0.94140625}{0.94140625}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{7.51163pt}\pgfsys@lineto{11.26746pt}{0.0pt}\pgfsys@lineto{0.0pt}{-7.51163pt}\pgfsys@lineto{0.0pt}{7.51163pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.42603pt}{-1.06248pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$\gamma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.00006pt}{-7.51172pt}\pgfsys@lineto{-5.12152pt}{-12.63332pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-0.38223pt}{-7.89401pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-5.12152pt}{12.63332pt}\pgfsys@lineto{0.00006pt}{7.51172pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{-0.84853}{0.84853}{0.84853}{-4.73923pt}{12.25102pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{}} } \pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{1.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{11.26746pt}{0.0pt}\pgfsys@curveto{11.97878pt}{0.0pt}{12.33443pt}{1.70717pt}{13.04575pt}{1.70717pt}\pgfsys@curveto{13.75708pt}{1.70717pt}{14.11273pt}{0.0pt}{14.82405pt}{0.0pt}\pgfsys@lineto{24.92497pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{13.22108pt}{2.90025pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$W$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.94140625,0.94140625,0.94140625}\pgfsys@color@rgb@fill{0.94140625}{0.94140625}{0.94140625}\pgfsys@invoke{ }{}\pgfsys@moveto{24.92497pt}{0.0pt}\pgfsys@lineto{36.19218pt}{7.51163pt}\pgfsys@lineto{36.19218pt}{-7.51163pt}\pgfsys@lineto{24.92497pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{30.10657pt}{-1.06248pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\small$\gamma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{41.3146pt}{-12.63332pt}\pgfsys@lineto{36.19301pt}{-7.51172pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{40.93231pt}{-12.25102pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{36.19301pt}{7.51172pt}\pgfsys@lineto{41.3146pt}{12.63332pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{0.84853}{-0.84853}{0.84853}{36.5753pt}{7.89401pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&+\leavevmode\hbox to26.07pt{\vbox to47.24pt{\pgfpicture\makeatletter\hbox{\hskip 13.03331pt\lower-23.61803pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.94140625,0.94140625,0.94140625}\pgfsys@color@rgb@fill{0.94140625}{0.94140625}{0.94140625}\pgfsys@invoke{ }{}\pgfsys@moveto{-7.51163pt}{18.09608pt}\pgfsys@lineto{7.51163pt}{18.09608pt}\pgfsys@lineto{0.0pt}{6.82861pt}\pgfsys@lineto{-7.51163pt}{18.09608pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{14.34026pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-12.63332pt}{23.21803pt}\pgfsys@lineto{-7.51172pt}{18.09644pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{-0.84853}{0.84853}{0.84853}{-12.25102pt}{22.83574pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{7.51172pt}{18.09644pt}\pgfsys@lineto{12.63332pt}{23.21803pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{0.84853}{-0.84853}{0.84853}{7.89401pt}{18.47873pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{1.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{6.82861pt}\pgfsys@curveto{0.0pt}{6.1173pt}{1.70717pt}{5.76164pt}{1.70717pt}{5.05032pt}\pgfsys@curveto{1.70717pt}{4.53534pt}{0.87407pt}{4.09148pt}{0.0pt}{3.62769pt}\pgfsys@curveto{-0.87405pt}{3.16391pt}{-1.70717pt}{2.72005pt}{-1.70717pt}{2.20505pt}\pgfsys@curveto{-1.70717pt}{1.69006pt}{-0.87407pt}{1.2462pt}{0.0pt}{0.78241pt}\pgfsys@curveto{0.87405pt}{0.31863pt}{1.70717pt}{-0.12523pt}{1.70717pt}{-0.64023pt}\pgfsys@curveto{1.70717pt}{-1.15521pt}{0.87407pt}{-1.59908pt}{0.0pt}{-2.06287pt}\pgfsys@curveto{-0.87405pt}{-2.52664pt}{-1.70717pt}{-2.9705pt}{-1.70717pt}{-3.4855pt}\pgfsys@lineto{0.0pt}{-6.82861pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.94140625,0.94140625,0.94140625}\pgfsys@color@rgb@fill{0.94140625}{0.94140625}{0.94140625}\pgfsys@invoke{ }{}\pgfsys@moveto{-7.51163pt}{-18.09608pt}\pgfsys@lineto{7.51163pt}{-18.09608pt}\pgfsys@lineto{0.0pt}{-6.82861pt}\pgfsys@lineto{-7.51163pt}{-18.09608pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-14.34026pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-7.51172pt}{-18.09644pt}\pgfsys@lineto{-12.63332pt}{-23.21803pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-7.89401pt}{-18.47873pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{12.63332pt}{-23.21803pt}\pgfsys@lineto{7.51172pt}{-18.09644pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{12.25102pt}{-22.83574pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&+\leavevmode\hbox to47.24pt{\vbox to29pt{\pgfpicture\makeatletter\hbox{\hskip 5.52158pt\lower-13.03323pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ \pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.94140625,0.94140625,0.94140625}\pgfsys@color@rgb@fill{0.94140625}{0.94140625}{0.94140625}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{7.51163pt}\pgfsys@lineto{11.26746pt}{0.0pt}\pgfsys@lineto{0.0pt}{-7.51163pt}\pgfsys@lineto{0.0pt}{7.51163pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.75581pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{}} } \pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{1.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{11.26746pt}{0.0pt}\pgfsys@curveto{11.97878pt}{0.0pt}{12.33443pt}{1.70717pt}{13.04575pt}{1.70717pt}\pgfsys@curveto{13.75708pt}{1.70717pt}{14.11273pt}{0.0pt}{14.82405pt}{0.0pt}\pgfsys@lineto{24.92497pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.09608pt}{12.63324pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.94140625,0.94140625,0.94140625}\pgfsys@color@rgb@fill{0.94140625}{0.94140625}{0.94140625}\pgfsys@invoke{ }{}\pgfsys@moveto{24.92497pt}{0.0pt}\pgfsys@lineto{36.19218pt}{7.51163pt}\pgfsys@lineto{36.19218pt}{-7.51163pt}\pgfsys@lineto{24.92497pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.43636pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{-7.51163pt}\pgfsys@lineto{-5.12158pt}{-12.63324pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-0.3823pt}{-7.89392pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{41.31378pt}{-12.63324pt}\pgfsys@lineto{36.19218pt}{-7.51163pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{40.93149pt}{-12.25095pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{7.51163pt}\pgfsys@curveto{15.25833pt}{13.06528pt}{25.07626pt}{12.63324pt}{41.31378pt}{12.63324pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}{}}{{}{}}{{}{}}{{}{}{}{}{{}}{}{{}}}{{}{}{}{}{{}}{}{{}}}{{}{}{}{}{{}}{}{{}}}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}{}}{{}{}{}{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{1.2}{0.00006}{-0.00006}{1.2}{29.41072pt}{12.64075pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}{}}{{}{}{}{}{{}}{}{{}}}{{}{}{}{}{{}}{}{{}}}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}{}}{{}{}{}{}{{}}{}{{}} {{{}}} }{{}{}}{{}{}}{{}{}{}{}{{}}{}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-5.12158pt}{12.63324pt}\pgfsys@curveto{11.11592pt}{12.63324pt}{20.93384pt}{13.06528pt}{36.19218pt}{7.51163pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}{}}{{}{}}{{}{}}{{}{}{}{}{{}}{}{{}}}{{}{}{}{}{{}}{}{{}}}{{}{}{}{}{{}}{}{{}}}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}{}}{{}{}{}{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{1.19936}{-0.03944}{0.03944}{1.19936}{3.9334pt}{12.71985pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}{}}{{}{}{}{}{{}}{}{{}}}{{}{}{}{}{{}}{}{{}}}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{{}{}}{{}{}{}{}{{}}{}{{}} {{}} }{{}{}}{{}{}}{{}{}{}{}{{}}{}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\\ &&&&\\ &&-\leavevmode\hbox to17.87pt{\vbox to17.87pt{\pgfpicture\makeatletter\hbox{\hskip 8.9359pt\lower-8.9359pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@curveto{2.0pt}{1.10458pt}{1.10458pt}{2.0pt}{0.0pt}{2.0pt}\pgfsys@curveto{-1.10458pt}{2.0pt}{-2.0pt}{1.10458pt}{-2.0pt}{0.0pt}\pgfsys@curveto{-2.0pt}{-1.10458pt}{-1.10458pt}{-2.0pt}{0.0pt}{-2.0pt}\pgfsys@curveto{1.10458pt}{-2.0pt}{2.0pt}{-1.10458pt}{2.0pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-3.2845pt}{-3.2845pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{8.5359pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{-0.84853}{0.84853}{0.84853}{-5.2514pt}{5.2514pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{5.2514pt}{-5.2514pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{0.84853}{-0.84853}{0.84853}{3.2845pt}{3.2845pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&-\leavevmode\hbox to17.87pt{\vbox to17.87pt{\pgfpicture\makeatletter\hbox{\hskip 8.9359pt\lower-8.9359pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@curveto{2.0pt}{1.10458pt}{1.10458pt}{2.0pt}{0.0pt}{2.0pt}\pgfsys@curveto{-1.10458pt}{2.0pt}{-2.0pt}{1.10458pt}{-2.0pt}{0.0pt}\pgfsys@curveto{-2.0pt}{-1.10458pt}{-1.10458pt}{-2.0pt}{0.0pt}{-2.0pt}\pgfsys@curveto{1.10458pt}{-2.0pt}{2.0pt}{-1.10458pt}{2.0pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-3.2845pt}{-3.2845pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{8.5359pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{-0.84853}{0.84853}{0.84853}{-5.2514pt}{5.2514pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{5.2514pt}{-5.2514pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{0.84853}{-0.84853}{0.84853}{3.2845pt}{3.2845pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&-\leavevmode\hbox to17.87pt{\vbox to17.87pt{\pgfpicture\makeatletter\hbox{\hskip 8.9359pt\lower-8.9359pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@curveto{2.0pt}{1.10458pt}{1.10458pt}{2.0pt}{0.0pt}{2.0pt}\pgfsys@curveto{-1.10458pt}{2.0pt}{-2.0pt}{1.10458pt}{-2.0pt}{0.0pt}\pgfsys@curveto{-2.0pt}{-1.10458pt}{-1.10458pt}{-2.0pt}{0.0pt}{-2.0pt}\pgfsys@curveto{1.10458pt}{-2.0pt}{2.0pt}{-1.10458pt}{2.0pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-3.2845pt}{-3.2845pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{8.5359pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{-0.84853}{0.84853}{0.84853}{-5.2514pt}{5.2514pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{5.2514pt}{-5.2514pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{0.84853}{-0.84853}{0.84853}{3.2845pt}{3.2845pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\\ &&&&\\ &+\leavevmode\hbox to34.94pt{\vbox to34.94pt{\pgfpicture\makeatletter\hbox{\hskip 17.4718pt\lower-17.4718pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ ; ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{} {{}}{}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.94140625,0.94140625,0.94140625}\pgfsys@color@rgb@fill{0.94140625}{0.94140625}{0.94140625}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.77779pt}{-3.61111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\tilde{\Lambda}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-17.07181pt}{-17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-11.8204pt}{-11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-17.07181pt}{17.07181pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{-0.84853}{0.84853}{0.84853}{-13.78731pt}{13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{17.07181pt}{-17.07181pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{13.78731pt}{-13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07181pt}{17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{0.84853}{-0.84853}{0.84853}{11.8204pt}{11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&+\leavevmode\hbox to34.94pt{\vbox to34.94pt{\pgfpicture\makeatletter\hbox{\hskip 17.4718pt\lower-17.4718pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ ; ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{} {{}}{}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.94140625,0.94140625,0.94140625}\pgfsys@color@rgb@fill{0.94140625}{0.94140625}{0.94140625}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.41782pt}{-4.38887pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$M^{{ph}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-17.07181pt}{-17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-11.8204pt}{-11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-17.07181pt}{17.07181pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{-0.84853}{0.84853}{0.84853}{-13.78731pt}{13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{17.07181pt}{-17.07181pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{13.78731pt}{-13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07181pt}{17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{0.84853}{-0.84853}{0.84853}{11.8204pt}{11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&+\leavevmode\hbox to34.94pt{\vbox to34.94pt{\pgfpicture\makeatletter\hbox{\hskip 17.4718pt\lower-17.4718pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ ; ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{} {{}}{}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.94140625,0.94140625,0.94140625}\pgfsys@color@rgb@fill{0.94140625}{0.94140625}{0.94140625}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.31667pt}{-3.86888pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\footnotesize$M^{\overline{ph}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-17.07181pt}{-17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-11.8204pt}{-11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-17.07181pt}{17.07181pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{-0.84853}{0.84853}{0.84853}{-13.78731pt}{13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{17.07181pt}{-17.07181pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{13.78731pt}{-13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07181pt}{17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{0.84853}{-0.84853}{0.84853}{11.8204pt}{11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&+\leavevmode\hbox to34.94pt{\vbox to34.94pt{\pgfpicture\makeatletter\hbox{\hskip 17.4718pt\lower-17.4718pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ ; ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{} {{}}{}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.94140625,0.94140625,0.94140625}\pgfsys@color@rgb@fill{0.94140625}{0.94140625}{0.94140625}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.57066pt}{-3.21555pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\footnotesize$M^{{pp}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-17.07181pt}{-17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-11.8204pt}{-11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-17.07181pt}{17.07181pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{-0.84853}{0.84853}{0.84853}{-13.78731pt}{13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{17.07181pt}{-17.07181pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{13.78731pt}{-13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07181pt}{17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{0.84853}{-0.84853}{0.84853}{11.8204pt}{11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\\ &&&&\\ \hline\cr&&&&\\ =&\leavevmode\hbox to34.94pt{\vbox to34.94pt{\pgfpicture\makeatletter\hbox{\hskip 17.4718pt\lower-17.4718pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ ; ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{} {{}}{}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.94140625,0.94140625,0.94140625}\pgfsys@color@rgb@fill{0.94140625}{0.94140625}{0.94140625}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.47221pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Lambda$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-17.07181pt}{-17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-11.8204pt}{-11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-17.07181pt}{17.07181pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{-0.84853}{0.84853}{0.84853}{-13.78731pt}{13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{17.07181pt}{-17.07181pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{13.78731pt}{-13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07181pt}{17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{0.84853}{-0.84853}{0.84853}{11.8204pt}{11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&+\leavevmode\hbox to34.94pt{\vbox to34.94pt{\pgfpicture\makeatletter\hbox{\hskip 17.4718pt\lower-17.4718pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ ; ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{} {{}}{}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.94140625,0.94140625,0.94140625}\pgfsys@color@rgb@fill{0.94140625}{0.94140625}{0.94140625}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.6331pt}{-4.38887pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Phi^{{ph}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-17.07181pt}{-17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-11.8204pt}{-11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-17.07181pt}{17.07181pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{-0.84853}{0.84853}{0.84853}{-13.78731pt}{13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{17.07181pt}{-17.07181pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{13.78731pt}{-13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07181pt}{17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{0.84853}{-0.84853}{0.84853}{11.8204pt}{11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&+\leavevmode\hbox to34.94pt{\vbox to34.94pt{\pgfpicture\makeatletter\hbox{\hskip 17.4718pt\lower-17.4718pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ ; ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{} {{}}{}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.94140625,0.94140625,0.94140625}\pgfsys@color@rgb@fill{0.94140625}{0.94140625}{0.94140625}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.61111pt}{-4.5522pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Phi^{\overline{ph}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-17.07181pt}{-17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-11.8204pt}{-11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-17.07181pt}{17.07181pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{-0.84853}{0.84853}{0.84853}{-13.78731pt}{13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{17.07181pt}{-17.07181pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{13.78731pt}{-13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07181pt}{17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{0.84853}{-0.84853}{0.84853}{11.8204pt}{11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&+\leavevmode\hbox to34.94pt{\vbox to34.94pt{\pgfpicture\makeatletter\hbox{\hskip 17.4718pt\lower-17.4718pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ ; ; {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{} {{}}{}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0.94140625,0.94140625,0.94140625}\pgfsys@color@rgb@fill{0.94140625}{0.94140625}{0.94140625}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.42862pt}{-4.01942pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Phi^{{pp}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{-8.5359pt}\pgfsys@lineto{-17.07181pt}{-17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{-0.84853}{0.84853}{-0.84853}{-11.8204pt}{-11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-17.07181pt}{17.07181pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{-0.84853}{0.84853}{0.84853}{-13.78731pt}{13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{17.07181pt}{-17.07181pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{-0.84853}{0.84853}{-0.84853}{-0.84853}{13.78731pt}{-13.78731pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07181pt}{17.07181pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@transformcm{0.84853}{0.84853}{-0.84853}{0.84853}{11.8204pt}{11.8204pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\\ \end{array}
Figure 1: Traditional and bosonized parquet decomposition, drawn below and above the horizontal line, respectively. The Hedin vertex (triangles) and the screened interaction (wiggly lines) are bold diagrammatic building blocks not used in the traditional formalism. Arrows indicate attached Green’s function legs, dots the bare interaction. Notice that equality holds for each column separately; here we focus on the horizontal particle-hole channel [second column, cf. Eq. (6)].

2 Model, approximation, and observables

We consider the paramagnetic Hubbard model on the square lattice at half-filling,

H=\displaystyle H= ijσtijciσcjσ+Uinini,\displaystyle-\sum_{\langle ij\rangle\sigma}{t}_{ij}c^{\dagger}_{i\sigma}c_{j\sigma}+U\sum_{i}n_{i\uparrow}n_{i\downarrow}, (1)

where tijt_{ij} denotes the hopping between nearest neighbors i and j, its absolute value t=1t=1 sets the unit of energy. c,cc,c^{\dagger} are the annihilation and creation operators with the spin index σ=,\sigma=\uparrow,\downarrow. We denote the Hubbard repulsion between the densities nσ=cσcσn_{\sigma}=c^{\dagger}_{\sigma}c_{\sigma} as UU; we consider the weak-coupling regime, 2U/t42\leq U/t\leq 4. The lattice size is fixed to 16×1616\times 16. The temperature is T/t=0.2T/t=0.2.

We solve the Hubbard model (1) using the parquet approximation Diatlov57 ; Dominicis64-2 . In the following, we recollect only the most essential definitions. Readers with a background in parquet theory find a complete set of definitions, derivations, and the calculation cycle of our implementation in Ref. Krien21-2 . The notation used in this work is fully equivalent to Ref. Krien21-2 , it corresponds to a compromise between notations frequently used in the parquet and GWGW literature. On the other hand, readers more familiar with the fRG find the corresponding definitions in Refs. Bonetti22 ; Walter22 , which use a notation more consistent with the fRG literature.

In the traditional parquet formalism the full vertex function is given in terms of the parquet decomposition,

F=Λ+Φph+Φph¯+Φpp.\displaystyle F=\Lambda+\Phi^{{ph}}+\Phi^{\overline{ph}}+\Phi^{{pp}}. (2)

Here, Λ\Lambda is the fully GGGG-irreducible vertex as explained in the introduction. The Φ\Phi’s denote the vertices GGGG-reducible in the horizontal (ph{ph}), vertical (ph¯\overline{ph}), and particle-particle (pp{pp}) channel. Each vertex, e.g., Φph,α(k,k,q)\Phi^{{ph},\alpha}(k,k^{\prime},q) carries a flavor label, in the particle-hole channel α=ch/sp\alpha=\text{ch}/\text{sp} corresponds charge or spin, and k=(𝐤,ν)k=(\mathbf{k},\nu), q=(𝐪,ω)q=(\mathbf{q},\omega) denote fermionic, bosonic momentum and Matsubara frequency, respectively. The parquet decomposition is shown at the bottom of Fig. 1.

On the other hand, Refs. Krien20 ; Krien21-2 introduced a bosonized parquet formalism where vertex diagrams are further decomposed, namely, the full vertex is expressed through the SBE decomposition Krien19-2 ,

F=ΛUirr+Δph+Δph¯+Δpp2U.\displaystyle F=\Lambda^{\text{Uirr}}+\Delta^{{ph}}+\Delta^{\overline{ph}}+\Delta^{{pp}}-2U. (3)

The Δ\Delta’s represent the UU-reducible diagrams which can be cut in two parts by removing a bare interaction Krien21-2 ; Walter22 . They are given in terms of the Yukawa coupling (Hedin vertex) and the screened interaction, for example,

Δph,α(k,k,q)=γα(k,q)Wα(q)γα(k,q).\displaystyle\Delta^{{ph},\alpha}(k,k^{\prime},q)=\gamma^{\alpha}(k,q)W^{\alpha}(q)\gamma^{\alpha}(k^{\prime},q). (4)

The bare interaction arises as the leading order of all the Δ\Delta’s, it is therefore subtracted twice in Eq. (3) to avoid overcounting. Notice that in Eq. (3) it also carries a flavor label, Uch/sp=±UU^{\text{ch}/\text{sp}}=\pm U.

In turn, ΛUirr\Lambda^{\text{Uirr}} is the fully UU-irreducible vertex given through a parquet-like decomposition,

ΛUirr=Λ~+Mph+Mph¯+Mpp,\displaystyle\Lambda^{\text{Uirr}}=\tilde{\Lambda}+M^{{ph}}+M^{\overline{ph}}+M^{{pp}}, (5)

where Λ~=ΛU\tilde{\Lambda}=\Lambda-U is the fully GGGG-irreducible vertex with the bare interaction removed. The MM’s represent the multi-boson exchange, they are GGGG-reducible but fully UU-irreducible vertices, whose momentum-energy dependence does not dissociate in the manner of Eq. (4).

Inserting Eq. (5) into Eq. (3), the resulting vertex decomposition of the bosonized parquet approach is shown in Fig. 1, above the horizontal line. It is convenient to add and subtract the bare interaction, represented by a black dot, so that the diagrams above the horizontal line are arranged consistently: summing the diagrams in a column yields the corresponding vertex of the traditional parquet formalism drawn below the horizontal line, for example,

Φph,α=Δph,αUα+Mph,α,α=ch,sp,\displaystyle\Phi^{{ph},\alpha}=\Delta^{{ph},\alpha}-U^{\alpha}+M^{{ph},\alpha},\;\alpha=\text{ch},\text{sp}, (6)

which connects the traditional and the bosonized parquet quantities on the left- and right-hand-side, respectively. Lastly, we introduce the parquet approximation:

Λ~0.\displaystyle\tilde{\Lambda}\equiv 0. (7)

As a matter of fact, this is a rich approximation with nontrivial properties, as our results exemplify.

In this work we consider only the particle-hole quantities in Eqs. (4) and (6). In the traditional parquet formalism the set of equations is closed via the Bethe-Salpeter, Dyson, and Schwinger-Dyson equations. In the bosonized formalism the latter is replaced with the Hedin equation (Σ=GWγ\Sigma=GW\gamma) and one defines a bosonic self-energy (Π=GGγ\Pi=GG\gamma), which determines the screened interaction via another Dyson-like equation (W=U+UΠWW=U+U\Pi W). However, to keep the presentation concise and general, we refer to Refs. Krien21-2 ; Bonetti22 ; Walter22 for detailed information including a calculation cycle or (m)fRG flow equations, respectively.

In our numerical application we use Nνγ=32N^{\gamma}_{\nu}=32 fermionic and Nωγ=32N^{\gamma}_{\omega}=32 bosonic Matsubara frequencies for the Yukawa couplings γ\gamma. The MM’s are evaluated on a smaller fermionic frequency grid, using NνM=16N^{M}_{\nu}=16 and NωM=32N^{M}_{\omega}=32 for bosonic frequencies. Even though frequency summations like νM(ν,ν,ω)G(ν)G(ν+ω)\sum_{\nu^{\prime}}M(\nu,\nu^{\prime},\omega)G(\nu^{\prime})G(\nu^{\prime}+\omega) decay by one power of ν\nu^{\prime} faster compared to a summation over the corresponding Φ\Phi’s of the traditional parquet approach, a cutoff error arises in the γ\gamma’s for ν(2NνM+1)πT\nu\approx(2N^{M}_{\nu}+1)\pi T. Using smaller momentum grids we checked that our results for small ν\nu presented in the following are not affected qualitatively by the frequency cutoff error. Quantitative convergence analysis for the 16×1616\times 16 grid is however beyond computational capability of the current implementation. As γ\gamma determines the key observables GG and WW, it is desirable to achieve convergence in γ\gamma with respect to frequencies which would correspond to a very high standard of convergence for the parquet approach. An asymptotic treatment of γ\gamma goes however beyond the established theory of vertex asymptotics Wentzell20 ; this problem may be considered elsewhere in the future.

Refer to caption
Figure 2: Left: The screened interaction in the charge (red) and spin (blue) channel normalized by the bare interaction. Center (right): Yukawa coupling in the charge (spin) channel as a function of 𝐪\mathbf{q}. Different palettes show the first four fermionic frequencies ν\nu, color tones indicate momenta 𝐤\mathbf{k} (see text).

3 Screened interaction and Yukawa coupling

Fermionic properties of the Hubbard model at weak coupling, in particular the formation of a pseudogap due to long-ranged spin fluctuations, have been discussed in great detail in the recent literature, see, for example, Refs. Hille20-2 ; Schaefer21 . However, electronic correlations renormalize also the Yukawa coupling between fermions and bosons, an effect which has received much less attention Krien20-2 . The parquet approach respects the crossing symmetry and hence provides us by construction with the full dependence of the Yukawa couplings on fermionic and bosonic momentum. Notice that we do not enter the pseudogap regime, which requires roughly 1000 lattice sites to avoid a finite-size effect Schaefer21 . However, we still observe an interesting evolution of γ\gamma as antiferromagnetic fluctuations begin to build up.

3.1 Screened interaction

The left panels of Fig. 2 show the static screened interactions Wch/sp(𝐪,ω=0)W^{\text{ch}/\text{sp}}(\mathbf{q},\omega=0) along the high-symmetry path. For comparison we normalize it with the absolute value UU of the bare interaction. The sign of the different curves therefore signals repulsion (W/U>0W/U>0) or attraction (W/U<0W/U<0) and the amplitude indicates whether the interaction Uch/sp=±UU^{\text{ch}/\text{sp}}=\pm U in the respective channel is screened (|W/U|<1|W/U|<1) or enhanced (|W/U|>1|W/U|>1). As expected, with increasing UU a strong attractive interaction develops in the spin channel along the 𝐪=(π,π)\mathbf{q}=(\pi,\pi) direction.

3.2 Yukawa couplings

The center and right panels show the Yukawa coupling γch/sp(𝐤,ν,𝐪,ω=0)\gamma^{\text{ch}/\text{sp}}(\mathbf{k},\nu,\mathbf{q},\omega=0) between fermions and static charge/spin fluctuations as a function of the bosonic momentum 𝐪\mathbf{q} for U/t=2U/t=2 and U/t=3U/t=3. The four color palettes (blue, red, green, yellow) correspond to the four smallest fermionic Matsubara frequencies (ν0=πT,ν1=3πT,ν2=5πT,ν3=7πT\nu_{0}=\pi T,\nu_{1}=3\pi T,\nu_{2}=5\pi T,\nu_{3}=7\pi T), respectively. Colors from dark to light indicate fermionic momenta 𝐤=(x,πx)\mathbf{k}=(x,\pi-x) on the Fermi surface, where x{0,π/8,π/4,3π/8,π/2}x\in\{0,\pi/8,\pi/4,3\pi/8,\pi/2\}, starting with the antinode (0,π)(0,\pi) [darkest] and ending with the node (π/2,π/2)(\pi/2,\pi/2) [lightest]. Notice that at particle-hole symmetry the γ\gamma’s are real-valued.

Overall, γch/sp\gamma^{\text{ch}/\text{sp}} depend most strongly on 𝐪\mathbf{q}, less strongly on ν\nu, and the least on 𝐤\mathbf{k} (dependence on ω\omega will be considered elsewhere). However, this can not be generalized, as γch(𝐤,ν=πT,𝐪,ω=0)\gamma^{\text{ch}}(\mathbf{k},\nu=\pi T,\mathbf{q},\omega=0) shows a sizable 𝐤\mathbf{k}-dependence for U/t=3U/t=3, whereas γsp\gamma^{\text{sp}} is largely independent of 𝐤\mathbf{k} for the same set of parameters and labels. In the non-interacting system the Yukawa coupling is unity; Fig. 2 shows that a weak interaction leads to screening (γch/sp<1\gamma^{\text{ch}/\text{sp}}<1). Notice that γ\gamma determines both the fermionic (Σ=GWγ\Sigma=GW\gamma), as well as the bosonic self-energy (Π=GGγ\Pi=GG\gamma), which also enters Σ\Sigma via WW. Close to an instability an increase of γ\gamma, even by a few percent, can drastically enhance WW. Indeed, we showed recently that even for the harmless parameters U/t=2,T/t=0.2U/t=2,T/t=0.2 the screening of γsp\gamma^{\text{sp}} is indispensable to obtain a reasonable approximation for Σ\Sigma Krien21-2 .

Furthermore, as the system is driven to the antiferromagnetic instability, fermions decouple from the soft bosons (γsp0\gamma^{\text{sp}}\rightarrow 0 as WspW^{\text{sp}}\rightarrow-\infty), since the Goldstone excitations of the ordered phase are protected (Adler principle, Adler65 ; Schrieffer95 ). Indeed, comparing U/t=2U/t=2 and U/t=3U/t=3 in Fig. 2 we see that γsp\gamma^{\text{sp}} is much more strongly screened around 𝐪=(π,π)\mathbf{q}=(\pi,\pi) for the larger interaction, which corresponds to a longer correlation length (see also Sec. 5). On the other hand, we found in recent investigations that, as soon as fermionic states are destroyed due to the feedback from the spin fluctuations, this requirement is lifted and γsp\gamma^{\text{sp}} rises again for those 𝐤\mathbf{k} where a pseudogap opens, resulting in a nodal/antinodal dichotomy of γsp\gamma^{\text{sp}} with respect to 𝐤\mathbf{k} Krien20-2 ; Krien21 . There hence exists a subtle interplay between bosonic fluctuations, Fermi surface features, and the Yukawa couplings, which needs to be considered when dependencies of the latter are neglected or parametrized.

Refer to caption
Figure 3: Numerical validation of Eq. (9) for the static charge Yukawa coupling γch(𝐤,𝐪,ν,ω=0)\gamma^{\text{ch}}(\mathbf{k},\mathbf{q},\nu,\omega=0): shifting 𝐤\mathbf{k} by 𝐪-\mathbf{q} is the same as going from 𝐤\mathbf{k} to 𝐤-\mathbf{k}.

3.3 Symmetries

We also discuss symmetries of the Yukawa couplings, see Refs. vanLoon18 ; Rohringerthesis . Firstly, we note that inversion symmetry of the lattice, as well as time-reversal and SU(22) symmetry are required for the derivation in Ref. Krien21-2 and by our implementation. This set of symmetries allows to interchange the fermionic labels of the full vertex function F(k,k,q)=F(k,k,q)F(k,k^{\prime},q)=F(k^{\prime},k,q), see also Refs. Rohringer12 ; Rohringerthesis . Since the Yukawa coupling is just a four-point vertex with tapered Green’s function legs on one side (plus 11Krien21-2 , the symmetry of the full vertex implies that it does not matter on which side the legs are attached. As a result, the left- and right-handed Yukawa couplings shown in Fig. 1 are identical. It is important to keep in mind, however, that in a more general setting our formalism needs to be re-derived using left- and right-handed Yukawa couplings Bonetti22 ; Walter22 .

A symmetry valid by definition is due to complex conjugation, γ(k,q)=γ(k,q)\gamma^{*}(k,q)=\gamma(-k,-q). On the other hand, the γ\gamma’s are invariant under symmetry operations of the point group of the lattice Thomale13 . For example, inversion symmetry implies γ(𝐤,𝐪,ν,ω)=γ(𝐤,𝐪,ν,ω)\gamma(\mathbf{k},\mathbf{q},\nu,\omega)=\gamma(-\mathbf{k},-\mathbf{q},\nu,\omega). Since the symmetry operations needs to be applied to both momenta at the same time, in a practical implementation only one of the momenta can be mapped to the irreducible wedge of the lattice. Hence, for the 16×1616\times 16 square lattice each Yukawa coupling requires 45256(256)2NνγNωγ\sim\frac{45}{256}(256)^{2}N^{\gamma}_{\nu}N^{\gamma}_{\omega} complex numbers. Inversion combined with complex conjugation further implies γ(𝐤,𝐪,ν,ω)=γ(𝐤,𝐪,ν,ω)\gamma(\mathbf{k},\mathbf{q},\nu,\omega)=\gamma^{*}(\mathbf{k},\mathbf{q},-\nu,-\omega). Since γ\gamma is real-valued at particle-hole symmetry it follows for ω=0\omega=0 that

γ(𝐤,𝐪,ν,ω=0)=\displaystyle\gamma(\mathbf{k},\mathbf{q},\nu,\omega=0)= γ(𝐤,𝐪,ν,ω=0),\displaystyle\gamma(\mathbf{k},\mathbf{q},-\nu,\omega=0), (8)

which we use in the following section.

(π,0)(-\pi,0)(π,0)(\pi,0)(0,π)(0,-\pi)(0,π)(0,\pi)11332244
Figure 4: Path on the Fermi surface traversed by 𝐤F,𝐤F\mathbf{k}_{F},\mathbf{k}^{\prime}_{F}.

Lastly, we verify numerically that a nontrivial symmetry of the γ\gamma’s is respected by our implementation. Namely, the full four-point vertex satisfies by definition the “swapping symmetry” Fkkq=Fk+q,k+q,qF_{kk^{\prime}q}=F_{k^{\prime}+q,k+q,-q} Galler17 . Together with Fkkq=FkkqF_{kk^{\prime}q}=F_{k^{\prime}kq} it follows vanLoon14 that γch/sp(kq,q)=γch/sp(k,q){\gamma}^{\text{ch}/\text{sp}}(k-q,q)={\gamma}^{\text{ch}/\text{sp}}(k,-q) 111 For completeness, we report also the corresponding symmetry for the singlet particle-particle vertex Krien21-2 : γk+q,qs=γk,qs{\gamma}^{\text{s}}_{k+q,q}={\gamma}^{\text{s}}_{-k,q}. We do not consider this vertex here since at particle-hole symmetry it can be obtained from the charge vertex, γs(k,q)=γch(k,q)\gamma^{\text{s}}(k,q)=-\gamma^{\text{ch}}(-k,q) Krien19-2 .. We set q=(𝐪,ω=0)q=(\mathbf{q},\omega=0), resulting in,

γch/sp(𝐤𝐪,𝐪,ν,ω=0)\displaystyle{\gamma}^{\text{ch}/\text{sp}}(\mathbf{k}-\mathbf{q},\mathbf{q},\nu,\omega=0)
=\displaystyle= γch/sp(𝐤,𝐪,ν,ω=0)\displaystyle{\gamma}^{\text{ch}/\text{sp}}(\mathbf{k},-\mathbf{q},\nu,\omega=0)
=\displaystyle= γch/sp(𝐤,𝐪,ν,ω=0).\displaystyle{\gamma}^{\text{ch}/\text{sp}}(-\mathbf{k},\mathbf{q},\nu,\omega=0). (9)

In the last line we applied the inversion symmetry. Equation (9) implies for γch/sp(𝐤,𝐪,ν,ω=0){\gamma}^{\text{ch}/\text{sp}}(\mathbf{k},\mathbf{q},\nu,\omega=0) that shifting 𝐤𝐤𝐪\mathbf{k}\rightarrow\mathbf{k}-\mathbf{q} has the same effect as 𝐤𝐤\mathbf{k}\rightarrow-\mathbf{k}. That this is indeed the case in our implementation can be seen in Fig. 3 which shows γch\gamma^{\text{ch}} for, e.g., 𝐪=(π/2,π/4)\mathbf{q}=(\pi/2,\pi/4) and 𝐪=(3π/4,0)\mathbf{q}=(3\pi/4,0). We chose here γch\gamma^{\text{ch}} for U/t=3U/t=3, as it depends strongly on 𝐤\mathbf{k} (see Fig. 2), and incommensurate 𝐪\mathbf{q} for a generic result. Symmetries put strong conditions on the γ\gamma’s which are useful to verify code during debugging, or to save memory space.

4 Single- and multi-boson exchange

We analyze the quantities Φ,Δ,\Phi,\Delta, and MM in Eq. (6). These are four-point vertex functions depending on three momenta 𝐤,𝐤,𝐪\mathbf{k},\mathbf{k}^{\prime},\mathbf{q}, and three frequencies ν,ν,ω\nu,\nu^{\prime},\omega. To get a grasp of these quantities, we focus on fermionic momenta 𝐤F,𝐤F\mathbf{k}_{F},\mathbf{k}^{\prime}_{F} on the Fermi surface which traverse the path shown in Fig. 4, thereby passing through all four antinodal points. The fermionic frequencies are set to ν=ν=πT\nu=\nu^{\prime}=\pi T or ν=ν=πT\nu=-\nu^{\prime}=-\pi T. We focus on the static limit ω=0\omega=0 and first set the bosonic transfer momentum to 𝐪=(π,π)\mathbf{q}=(\pi,\pi), which always guides scattered quasiparticles to final states on the Fermi surface.

Refer to captionRefer to caption
Figure 5: Momentum dependence of spin multi- (left) and single-boson (center) exchange for U/t=2U/t=2. Right panels show the corresponding reducible vertex of the traditional parquet formalism. Top (bottom) panels show ν=πT\nu=\pi T (ν=πT\nu=-\pi T). The two fermionic momenta traverse along the entire Fermi surface as shown in Fig. 4, other labels as shown in the title.
Refer to captionRefer to caption
Figure 6: Charge quantities corresponding to Fig. 5.

In this manner we plot Msp(𝐤F,𝐤F,𝐪=(π,π),ν=πT,ν=πT,ω=0)M^{\text{sp}}(\mathbf{k}_{F},\mathbf{k}_{F}^{\prime},\mathbf{q}=(\pi,\pi),\nu=\pi T,\nu^{\prime}=\pi T,\omega=0) for U/t=2U/t=2 in the top left panel of Fig. 5. Comparison with Δsp\Delta^{\text{sp}} with the same labels, drawn in the center, shows that the latter exhibits a higher symmetry with respect to the fermionic momenta. Finally, Φsp\Phi^{\text{sp}} on the right is obtained as the sum of MspM^{\text{sp}} and Δsp\Delta^{\text{sp}}, with the bare interaction Usp=UU^{\text{sp}}=-U subtracted [cf. Eq. (6) and compare the magnitude of the color bars]. The high symmetry of Δsp\Delta^{\text{sp}}, which repeats along each of the four edges of the Fermi surface (cf. Fig. 4), implies that in a scattering event of two quasiparticles, mediated by this vertex, it is irrelevant to which of the four edges their initial momenta belong. In contrast, the lower symmetry of MspM^{\text{sp}} implies that it mediates scattering events where it does matter whether the respective scattering partner lives on the same, an adjacent, or on the opposite edge of the Fermi surface.

Let us now consider the effect of flipping the sign of one fermionic frequency, νπT\nu\rightarrow-\pi T. According to Eq. (8) in the previous section, γsp(ω=0)\gamma^{\text{sp}}(\omega=0) is symmetric with respect to ν\nu. Since the frequency dependence of the Δ\Delta’s stems from the γ\gamma’s, Δ(ω=0)\Delta(\omega=0) is also invariant under the sign flip, which can be seen in the bottom center panel of Fig. 5. The situation is again quite different for MspM^{\text{sp}} whose momentum structure is completely overturned under the sign flip of ν\nu. It was observed already in Refs. Krien19-2 ; Harkov21 that the fully UU-irreducible vertex changes drastically when going from the sectors sgn(ν)=sgn(ν)\text{sgn}(\nu)=\text{sgn}(\nu^{\prime}) to sgn(ν)=sgn(ν)\text{sgn}(\nu)=-\text{sgn}(\nu^{\prime}). Apparently, in case of nonlocal correlations this is intertwined with its dependence on the fermionic momenta.

The patterns visible in Φsp\Phi^{\text{sp}} arise from the superposition of those in MspM^{\text{sp}} with the more symmetric ones in Δsp\Delta^{\text{sp}}, with an optically astounding result. Notice however that the color plot overemphasizes small variations in these quantities. It is |Δsp||Msp||\Delta^{\text{sp}}|\gg|M^{\text{sp}}|, because the former inherits a large absolute value from Wsp(𝐪=(π,π),ω=0)W^{\text{sp}}(\mathbf{q}=(\pi,\pi),\omega=0), and a weak 𝐤\mathbf{k} dependence from γsp\gamma^{\text{sp}} (cf. Fig. 2). We find that for larger interaction the difference in magnitude is even more enhanced and a discussion of the tiny variations is moot.

However, in the charge channel we find that MchM^{\text{ch}} is larger than Δch\Delta^{\text{ch}} at small frequencies, see Fig. 6. The resulting Φch\Phi^{\text{ch}} is thus dominated by MchM^{\text{ch}}. Again Δch\Delta^{\text{ch}} is symmetric with respect to momenta and under a sign flip of ν\nu, whereas MchM^{\text{ch}} not only changes its asymmetric momentum structure completely under the sign flip, but also its magnitude by a factor 44 to 88. Finally, we also present the charge quantities for an incommensurate bosonic momentum, 𝐪=(π/2,π/4)\mathbf{q}=(\pi/2,\pi/4), in Fig. 7. Although Δch\Delta^{\text{ch}} retains some regularity compared to MchM^{\text{ch}}, it loses much of its symmetry with respect to momenta, but remains symmetric under under a sign flip of ν\nu.

5 Truncated unity and vertex asymptotics

5.1 Convergence of the truncated unity

While in this work we kept the full momentum dependence of the various vertex functions, this is in general undesirable beyond applications to simple model systems. It is therefore, on one hand, a question of practical interest to parametrize the momentum dependencies in a memory-efficient way. On the other hand, the formal construction of the theory should also work towards this goal. Here, for example, the single-boson exchange Δ\Delta is by construction parametrized through WW and γ\gamma. However, if a simplified parquet or fRG scheme keeps also the multi-boson exchange MM, the question arises whether the bosonized theory offers any advantages over a traditional fermionic formulation using the Φ\Phi’s. Moreover, the vertex asymptotics Wentzell20 is often used to parametrize the Φ\Phi’s at high frequencies. Since the vertex asymptote corresponds itself to high-frequency limits of the Δ\Delta’s Krien19-2 ; Harkov21 , the bosonized theory may only offer advantages in the low-frequency regime.

Refer to captionRefer to caption
Figure 7: Charge quantities as in Fig. 6 for incommensurate bosonic momentum 𝐪=(π/2,π/4)\mathbf{q}=(\pi/2,\pi/4).

In this regard, Ref. Harkov21 recently demonstrated that the Δ\Delta’s capture resonant low-frequency features of the local full vertex function FlocF_{\text{loc}} of the Anderson impurity model (AIM). Even though other low-frequency features reside in the MM’s, the two-particle quantities of the DMFT approximation are recovered to good accuracy using only the Δ\Delta’s (cf. Fig. 1; FlocF_{\text{loc}} was approximated by neglecting all of the MM’s). If however low-frequency information in the Δ\Delta’s is also neglected, the parametrization of FlocF_{\text{loc}} fails at strong coupling Harkov21 . Concretely, we find the difference between Δsp\Delta^{\text{sp}} and its asymptotic expression as follows,

Δsp(k,k,q)=\displaystyle\Delta^{\text{sp}}(k,k^{\prime},q)= Wsp(q)[γsp(k,q)+γsp(k,q)1]\displaystyle W^{\text{sp}}(q)\left[\gamma^{\text{sp}}(k,q)+\gamma^{\text{sp}}(k^{\prime},q)-1\right]
+ΔRsp(k,k,q)\displaystyle+\Delta_{R}^{\text{sp}}(k,k^{\prime},q)
ΔRsp(k,k,q)=\displaystyle\Delta_{R}^{\text{sp}}(k,k^{\prime},q)= [γsp(k,q)1]Wsp(q)[γsp(k,q)1],\displaystyle[\gamma^{\text{sp}}(k,q)-1]W^{\text{sp}}(q)[\gamma^{\text{sp}}(k^{\prime},q)-1], (10)

and Ref. Harkov21 showed for the AIM (k,k,qν,ν,ωk,k^{\prime},q\rightarrow\nu,\nu^{\prime},\omega) that an approximation for FlocF_{\text{loc}} should keep the term ΔRsp\Delta^{\text{sp}}_{R}, which vanishes asymptotically for |ν||\nu|\rightarrow\infty and/or |ν||\nu^{\prime}|\rightarrow\infty.

Here we draw an analogy to the present investigation: While the effective AIM of the DMFT approximation exhibits strong local spin fluctuations at strong coupling, here the Hubbard model at weak coupling develops long-ranged spin-density wave fluctuations. Physically these scenarios are of course quite different; for example, in the AIM γsp\gamma^{\text{sp}} seems to diverge for small ν\nu and low temperature Harkov21 , while Fig. 2 shows that in the Hubbard model 0<γsp<10<\gamma^{\text{sp}}<1 is screened. However, a similarity is that the screened interaction WspW^{\text{sp}} is large, either due to the local moment in the AIM, or, here, because of the growing antiferromagnetic correlation length ξ\xi. In the latter case it is therefore plausible that the term ΔRsp\Delta_{R}^{\text{sp}} in Eq. (10) grows with ξ\xi, and at the same time also develops a strong dependence on the bosonic momentum 𝐪\mathbf{q}. In this case it could be advantageous to keep ΔRsp\Delta_{R}^{\text{sp}} parametrized as a part of Δsp\Delta^{\text{sp}}, rather than to assign it to a memory-intensive four-point vertex. This is what we show in the following.

To this end, we expand the 𝐪\mathbf{q}-dependence of various vertices in the form-factor basis Eckhardt20 and observe the convergence with respect to the number of expansion coefficients; see also Ref. Krien21-2 where this was done for U/t=2U/t=2 and T/t=0.2T/t=0.2. To keep the maximal number of form factors f(,𝐪)f(\ell,\mathbf{q}) small we use results for an 8×88\times 8 lattice. We transform, for example, Φsp\Phi^{\text{sp}} to the form-factor basis and back into 𝐪\mathbf{q}-space, after discarding all but NN_{\ell} form factors,

Φsp(𝐪,N)=1Nf(,𝐪)𝐪f(,𝐪)Φsp(𝐪),\displaystyle\Phi^{\text{sp}}(\mathbf{q},N_{\ell})\equiv\sum_{\ell=1}^{N_{\ell}}f^{*}(\ell,\mathbf{q})\sum_{\mathbf{q}^{\prime}}f(\ell,\mathbf{q}^{\prime})\Phi^{\text{sp}}(\mathbf{q}^{\prime}), (11)

where we set ν=ν=πT,ω=0,𝐤=𝐤=(π2,π2)\nu=\nu^{\prime}=\pi T,\omega=0,\mathbf{k}=\mathbf{k}^{\prime}=(\frac{\pi}{2},\frac{\pi}{2}) fixed. The complete 𝐪\mathbf{q} dependence is thus recovered for N=64N_{\ell}=64, but the series may be truncated at a smaller NN_{\ell} if the expanded vertex is sufficiently short-ranged in real space (truncated unity). Blue lines in Fig. 8 show for 𝐪=(π,π)\mathbf{q}=(\pi,\pi) the thus expanded Φsp\Phi^{\text{sp}}, the reducible vertex of the traditional parquet formalism, for U/t=2,3,4U/t=2,3,4. Notice that in the considered regime the antiferromagnetic correlation length ξ\xi increases monotonously with UU. Namely, we find for U/t=2U/t=2 and 33 that ξ1.5\xi\approx 1.5 and 22, respectively, which are consistent with our calculations for the 16×1616\times 16 lattice. For U/t=4U/t=4 we expect a sizable finite-size effect for the 8×88\times 8 lattice Klett20 , which arises for ξ\xi on the order of half the linear lattice size or larger.

Since the form-factor expansion of Φsp\Phi^{\text{sp}} with respect to 𝐪\mathbf{q} converges only slowly, Ref. Krien20 introduced the idea, within the bosonized parquet approach, to expand only the multi-boson exchange MspM^{\text{sp}} in form factors while the full momentum dependence of Δsp\Delta^{\text{sp}} was kept. Using Eq. (6) this corresponds to the approximation Φsp(𝐪)Msp(𝐪,N)+Δsp(𝐪)Usp\Phi^{\text{sp}}(\mathbf{q})\approx M^{\text{sp}}(\mathbf{q},N_{\ell})+\Delta^{\text{sp}}(\mathbf{q})-U^{\text{sp}}. Red lines in Fig. 8 show this result again for 𝐪=(π,π)\mathbf{q}=(\pi,\pi). For U/t=2,3,4U/t=2,3,4 this approximation lies close to the fully converged Φsp\Phi^{\text{sp}} even for N=1N_{\ell}=1. This indicates, remarkably, that the relative importance of MspM^{\text{sp}} compared to Δsp\Delta^{\text{sp}} does not increase with ξ\xi at all (even if the correlations described by MspM^{\text{sp}} grow in range as ξ\xi increases, they do not grow faster than it is the case for Δsp\Delta^{\text{sp}}).

On the other hand, we show now that the relative importance of the term ΔRsp\Delta_{R}^{\text{sp}} compared to Δsp\Delta^{\text{sp}} does increase with the correlation length. To this end, we expand this term together with MspM^{\text{sp}}, such an approximation may be written as Φsp(𝐪)Msp(𝐪,N)+ΔRsp(𝐪,N)+(Δsp(𝐪)ΔRsp(𝐪))Usp\Phi^{\text{sp}}(\mathbf{q})\approx M^{\text{sp}}(\mathbf{q},N_{\ell})+\Delta_{R}^{\text{sp}}(\mathbf{q},N_{\ell})+(\Delta^{\text{sp}}(\mathbf{q})-\Delta^{\text{sp}}_{R}(\mathbf{q}))-U^{\text{sp}}. This corresponds to a parametrization of Φsp\Phi^{\text{sp}} where its high-frequency limits are given through the vertex asymptote, ΔspΔRsp\Delta^{\text{sp}}-\Delta^{\text{sp}}_{R}, retaining full momentum dependence, while the rest function Msp+ΔRspM^{\text{sp}}+\Delta_{R}^{\text{sp}} is expanded in form factors. The convergence of this parametrization can be observed in the green lines drawn in Fig. 8. As expected, the convergence with form factors worsens considerably as the correlation length increases at larger U/tU/t, in fact, for U/t=4U/t=4 it becomes comparable to the slow convergence of Φsp\Phi^{\text{sp}}. We conclude that it is advantageous to keep ΔR\Delta_{R} parametrized through Δ\Delta, rather than to combine it with MspM^{\text{sp}} in a rest function.

Refer to caption
Figure 8: Convergence of the truncated unity applied in three different ways: Blue lines show the direct application to Φsp\Phi^{\text{sp}}, cf. Ref. Eckhardt20 , red lines the application only to MspM^{\text{sp}}, cf. Refs. Krien20 ; Krien20-2 . Green lines indicate application to Msp+ΔRspM^{\text{sp}}+\Delta^{\text{sp}}_{R}, the rest function of the vertex asymptote Wentzell20 .

5.2 Remarks

Several remarks are in order to put the result reported in Fig. 8 into perspective. Firstly, we recall that the truncated unity is intended foremost to parametrize the dependence on fermionic momenta 𝐤,𝐤\mathbf{k},\mathbf{k}^{\prime}, which is often much weaker than the 𝐪\mathbf{q} dependence. However, an unbiased approach to two-particle correlations, such as parquet or fRG schemes, requires channel projections which map the 𝐪\mathbf{q} dependence in one channel to the 𝐤,𝐤\mathbf{k},\mathbf{k}^{\prime} dependence in another. It was therefore noted in Ref. Eckhardt20 that the truncated unity cutoff unfortunately also appears in bosonic arguments. This explains the fast convergence of the truncated unity in Refs. Krien20 ; Krien20-2 , where it was only applied to the MM’s. In this respect it is also encouraging that the relative importance of MspM^{\text{sp}} compared to Δsp\Delta^{\text{sp}} appears to be independent of the correlation length (Fig. 8), so that the quality of a fixed truncated unity cutoff NN_{\ell} does not deteriorate with growing ξ\xi. Compared to the traditional parquet formalism, the improved performance of our implementation, and the generally weaker momentum dependence of the quantities calculated in it, are reminiscent of similar observations in the context of vertex-corrected GWGW approaches Kotliar06 ; Kutepov16 .

On the other hand, one has to keep in mind that the practical advantage of the bosonized formalism depends on the physical regime and the correlation functions of interest. For example, we find in the half-filled Hubbard model at weak coupling that Δsp\Delta^{\text{sp}} is much larger than MspM^{\text{sp}}, however, in the charge channel we find the opposite in the low-frequency regime. In particular in applications to pseudogaps induced by spin-density wave fluctuations the charge sector is of a lesser interest, however, it remains to be seen how much improvement the bosonized formalism offers in other physical settings. One may hope that in a regime which exhibits strong charge fluctuations the importance of Δch\Delta^{\text{ch}} may be enhanced over MchM^{\text{ch}}.

However, a case where a breakdown of the fast convergence of the truncated unity can be expected is, for example, a regime of long-ranged dd-wave singlet fluctuations. They are captured by the corresponding MsM^{\text{s}} of the particle-particle channel Bonetti22 . How much the results suffer from this may depend on the importance of the feedback of the dd-wave fluctuations on other channels, which requires a projection operation, as discussed above. In this regard, it is intriguing to consider a re-bosonization and suitable parametrization (through new γ\gamma’s and WW’s) of the corresponding strongly fluctuating channel captured by the MM’s. As the example of the dd-wave shows, the bosonized formalism does not come with an autopilot for improved performance. However, in any case the interpretative advantages of the bosonization remain, and there are, to our knowledge, no disadvantages associated with it.

6 Conclusions

We applied the parquet approximation to the Hubbard model on a 16×1616\times 16 lattice and presented two-particle correlation functions corresponding to the bosonized parquet formalism introduced in Refs. Krien20 ; Krien21-2 .

The vertex functions reveal intriguing patterns as a function of the momenta, and the few shown examples scratch only the surface of the diverse variations that we observed in our calculations. It is an exciting outlook to consider the effects of next-nearest neighbor hopping, doping, larger interaction Krien20 ; Chalupa21 , and other modifications, where one or the other of the patterns may emerge as a physically important one.

We applied the truncated unity to quantities defined in the bosonized parquet formalism and benchmarked its convergence with the number of form factors. Similar to Ref. Harkov21 our analysis reveals that, in the considered setting, the formalism extends the asymptotic parametrization of the vertex functions Wentzell20 in a practically useful way to low frequencies. In particular, it facilitates fast convergence of the truncated unity approximation even in presence of long-ranged antiferromagnetic correlations.

Our implementation can be used to investigate properties of parquet-based approximations in their pure form for reasonably large lattice sizes, such as the fulfillment of Ward identities Janis17 ; Chalupa21-2 or nontrivial sum rules for the vertex functions Mermin67 , without any additional approximations.

Acknowledgments We acknowledge financial support from the Austrian Science Fund (FWF) through Projects No. P32044 and No. P30997.

Author contributions

A.K. implemented the algorithm of Ref. Krien21-2 . Both authors analyzed the results and jointly prepared the text.

References

  • (1) L. Hedin, Phys. Rev. 139, A796 (1965)
  • (2) A.L. Kutepov, Phys. Rev. B 94, 155101 (2016)
  • (3) F. Krien, P. Worm, P. Chalupa, A. Toschi, K. Held, Spin scattering turns complex at strong coupling: the key to pseudogap and fermi arcs in the hubbard model (2021), arXiv:2107.06529
  • (4) C.O. Almbladh, U. von Barth, R. van Leeuwen, International Journal of Modern Physics B 13, 535 (1999)
  • (5) G. Stefanucci, Y. Pavlyukh, A.M. Uimonen, R. van Leeuwen, Phys. Rev. B 90, 115134 (2014)
  • (6) Y. Pavlyukh, A.M. Uimonen, G. Stefanucci, R. van Leeuwen, Phys. Rev. Lett. 117, 206402 (2016)
  • (7) S. Biermann, F. Aryasetiawan, A. Georges, Phys. Rev. Lett. 90, 086402 (2003)
  • (8) T. Ayral, O. Parcollet, Phys. Rev. B 92, 115109 (2015)
  • (9) I.T. Diatlov, V.V. Sudakov, K.A. Ter-Martirosian, Zh. Eksp. Teor. Fiz. 32, 4 (1957), [JETP 5, 631 (1957)]
  • (10) C. De Dominicis, P.C. Martin, Journal of Mathematical Physics 5, 31 (1964)
  • (11) W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, K. Schönhammer, Rev. Mod. Phys. 84, 299 (2012)
  • (12) N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. Pawlowski, M. Tissier, N. Wschebor, Physics Reports 910, 1 (2021)
  • (13) F. Krien, A. Kauch, K. Held, Phys. Rev. Research 3, 013149 (2021)
  • (14) G. Rohringer, A. Valli, A. Toschi, Phys. Rev. B 86, 125114 (2012)
  • (15) L.G. Molinari, N. Manini, The European Physical Journal B 51, 331 (2006)
  • (16) F. Krien, A. Valli, M. Capone, Phys. Rev. B 100, 155149 (2019)
  • (17) P.M. Bonetti, A. Toschi, C. Hille, S. Andergassen, D. Vilardi, Phys. Rev. Research 4, 013034 (2022)
  • (18) V. Harkov, A.I. Lichtenstein, F. Krien, Phys. Rev. B 104, 125141 (2021)
  • (19) C. Husemann, M. Salmhofer, Phys. Rev. B 79, 195125 (2009)
  • (20) X. Wang, M.J. Han, L. de’ Medici, H. Park, C.A. Marianetti, A.J. Millis, Phys. Rev. B 86, 195136 (2012)
  • (21) J. Lichtenstein, D. Sánchez de la Peña, D. Rohe, E. Di Napoli, C. Honerkamp, S. Maier, Computer Physics Communications 213, 100 (2017)
  • (22) C.J. Eckhardt, C. Honerkamp, K. Held, A. Kauch, Phys. Rev. B 101, 155104 (2020)
  • (23) F. Krien, A. Valli, P. Chalupa, M. Capone, A.I. Lichtenstein, A. Toschi, Phys. Rev. B 102, 195131 (2020)
  • (24) G.V. Astretsov, G. Rohringer, A.N. Rubtsov, Phys. Rev. B 101, 075109 (2020)
  • (25) N. Wentzell, G. Li, A. Tagliavini, C. Taranto, G. Rohringer, K. Held, A. Toschi, S. Andergassen, Phys. Rev. B 102, 085106 (2020)
  • (26) C.X. Chen, N. Bickers, Solid State Communications 82, 311 (1992)
  • (27) S.X. Yang, H. Fotso, J. Liu, T.A. Maier, K. Tomko, E.F. D’Azevedo, R.T. Scalettar, T. Pruschke, M. Jarrell, Phys. Rev. E 80, 046706 (2009)
  • (28) K.M. Tam, H. Fotso, S.X. Yang, T.W. Lee, J. Moreno, J. Ramanujam, M. Jarrell, Phys. Rev. E 87, 013311 (2013)
  • (29) F.B. Kugler, J. von Delft, Phys. Rev. Lett. 120, 057403 (2018)
  • (30) E. Walter, M. Gievers, A. Ge, J. von Delft, F.B. Kugler, Multiloop flow equations for single-boson exchange frg (2022), arXiv:2201.04878
  • (31) A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)
  • (32) A. Toschi, A.A. Katanin, K. Held, Phys. Rev. B 75, 045118 (2007)
  • (33) C. Taranto, S. Andergassen, J. Bauer, K. Held, A. Katanin, W. Metzner, G. Rohringer, A. Toschi, Phys. Rev. Lett. 112, 196402 (2014)
  • (34) G. Rohringer, H. Hafermann, A. Toschi, A.A. Katanin, A.E. Antipov, M.I. Katsnelson, A.I. Lichtenstein, A.N. Rubtsov, K. Held, Rev. Mod. Phys. 90, 025003 (2018)
  • (35) C. Hille, F.B. Kugler, C.J. Eckhardt, Y.Y. He, A. Kauch, C. Honerkamp, A. Toschi, S. Andergassen, Phys. Rev. Research 2, 033372 (2020)
  • (36) T. Schäfer, N. Wentzell, F. Šimkovic, Y.Y. He, C. Hille, M. Klett, C.J. Eckhardt, B. Arzhang, V. Harkov, F.m.c.M. Le Régent et al., Phys. Rev. X 11, 011058 (2021)
  • (37) C. Hille, D. Rohe, C. Honerkamp, S. Andergassen, Phys. Rev. Research 2, 033068 (2020)
  • (38) F. Krien, A.I. Lichtenstein, G. Rohringer, Phys. Rev. B 102, 235133 (2020)
  • (39) S.L. Adler, Phys. Rev. 137, B1022 (1965)
  • (40) J.R. Schrieffer, Journal of Low Temperature Physics 99, 397 (1995)
  • (41) E.G.C.P. van Loon, F. Krien, H. Hafermann, A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. B 98, 205148 (2018)
  • (42) G. Rohringer, New routes towards a theoretical treatment of nonlocal electronic correlations, PhD Thesis (2013)
  • (43) C. Platt, W. Hanke, R. Thomale, Advances in Physics 62, 453 (2013), https://doi.org/10.1080/00018732.2013.862020
  • (44) A. Galler, P. Thunström, P. Gunacker, J.M. Tomczak, K. Held, Phys. Rev. B 95, 115107 (2017)
  • (45) E.G.C.P. van Loon, A.I. Lichtenstein, M.I. Katsnelson, O. Parcollet, H. Hafermann, Phys. Rev. B 90, 235135 (2014)
  • (46) M. Klett, N. Wentzell, T. Schäfer, F. Simkovic, O. Parcollet, S. Andergassen, P. Hansmann, Phys. Rev. Research 2, 033476 (2020)
  • (47) N.E. Zein, S.Y. Savrasov, G. Kotliar, Phys. Rev. Lett. 96, 226403 (2006)
  • (48) P. Chalupa, T. Schäfer, M. Reitner, D. Springer, S. Andergassen, A. Toschi, Phys. Rev. Lett. 126, 056403 (2021)
  • (49) V. Janiš, A. Kauch, V. Pokorný, Phys. Rev. B 95, 045108 (2017)
  • (50) P. Chalupa-Gantner, F.B. Kugler, C. Hille, J. von Delft, S. Andergassen, A. Toschi, Fulfillment of sum rules and ward identities in the multiloop functional renormalization group solution of the anderson impurity model (2021), arXiv:2110.07455
  • (51) N.D. Mermin, Phys. Rev. 159, 161 (1967)