This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Parameter Sensitivities of a Jump-diffusion Process in Basic Credit Risk Analysis

Bin Xie [email protected] University of Georgia, Mathematics Department. Athens, GA 30605, USA Beijing Wuzi University, Information College, Tongzhou, Beijing 101149, P.R.China    Weiping Li [email protected] Southwest Jiaotong University, Chengdu, Sichuan Province 611756, P.R.China Oklahoma State University, Mathematics Department, Stillwater,OK 74078, USA
Abstract

We detect the parameter sensitivities of bond pricing which is driven by a Brownian motion and a compound Poisson process as the discontinuous case in credit risk research. The strict mathematical deductions are given theoretically due to the explicit call price formula. Furthermore, we illustrate Matlab simulation to verify these conclusions.

Key words: jump-diffusion process, compound Poisson process, credit risk, parameter sensitivity.

I Introduction

The continuous model of option pricing was rising up in Black and Scholes BS on 1973 and the discontinuous one with Compound Poisson Process was studied by Merton Merton on 1976. Zhou Zhou disclosed the credit risk approach base on this jump-diffusion process on 1997.

With the explicit Black-Scholes option formulas, the strict derivation of parameters sensitivities were disclosed and named with Greeks. The Greeks are very useful in the stock market due to hedging practices. We also explore the parameter sensitivities for bond price through the complicated jump-diffusion formula according to the log-normal distributed compound Poisson processes strictly in this paper. Beyond the proofs, the analytic illustrations are provided by Matlab simulation.

The rest of the paper is organized as follows. Sections 2 is model framework about the bond price formula of jump-diffusion model with compound Poisson processes. Section 3 is the proportions of parameter sensitivities with strict proofs. Section 4 concludes.

II Model Framework

The financial market has a big part which is called credit market or bond market. The participants can issue new debts or securities on the credit market. Credit risk is the crucial problem for the loss risk of borrower’s failure to meet the obligations.

II.1 Basic Credit Risk Concepts

Assume that we are in the setting of the standard Black-Scholes model, i.e. we analyze a market with continuous trading which is frictionless and competitive with assumptions Lando .
1. agents are price takers.
2. there are no transaction costs.
3. there is unlimited access to short selling and no indivisibilities of assets.
4. borrowing and lending through a money-market account can be done at some riskless, continuously compounded rate rr.

We want to price bonds issued by a firm whose assets are assumed to follow a geometric Brownian motion:

dVt=μVtdt+σVtdWt.dV_{t}=\mu V_{t}dt+\sigma V_{t}dW_{t}.

Here, WW is a standard Brownian motion under the probability measure P.
Let the starting value of assets is V0V_{0}. Then by Ito-Doeblin formula:

Vt=V0exp((μ12σ2)t+σWt).V_{t}=V_{0}exp((\mu-\frac{1}{2}\sigma^{2})t+\sigma W_{t}).

We take it to be well known that in an economy consisting of these two assets, the price C0C_{0} at time 0 of a contingent claim paying C(VT)=CTC(V_{T})=C_{T} at time TT is equal to

C0=EQ[ertCT],C_{0}=E^{Q}[e^{-rt}C_{T}],

where Q is the equivalent martingale measure under which the dynamics of VV are given as

Vt=V0exp((r12σ2)t+σWtQ).V_{t}=V_{0}exp((r-\frac{1}{2}\sigma^{2})t+\sigma W^{Q}_{t}).

Here, WtQW^{Q}_{t} is a Brownian motion and we can see that the drift term μ\mu has been replaced by rr.Lando

Now, assume that the firm at time 0 has issued two types of claims: debt and equity. In the simple model, debt is a zero-coupon bond with a face value of DD and maturity date TT. We think of the firm run by the equity owners. At maturity of bond, equity holder pay the face value of debt precisely when the assets value is higher than the face value of the bond. On the other hand, if assets are worth less than DD, equity owners do not want to pay DD. And since they have limited liability they don’t have to do that. Bond holders then take over the remaining assets of VTV_{T} instead of the promised payment DD. With this assumption, the payoffs to debt, BTB_{T}, and equity, STS_{T}, at date TT are given as:

BT=min(D,VT)=Dmax(DVT,0),\displaystyle B_{T}=min(D,V_{T})=D-max(D-V_{T},0),
ST=max(VTD,0).\displaystyle S_{T}=max(V_{T}-D,0).

From the structure, debt can be viewed as the difference between a riskless bond and a put option, and equity can be viewed as a call option on the firm’s assets. Lando

We assumed there are no transaction costs, bankruptcy costs, taxes and so on for simpleness. We then get VT=BT+STV_{T}=B_{T}+S_{T}. Given the current level VV and volatility σ\sigma of assets, and the riskless rate rr, we denote the Black-Scholes model of European call as C(Vt,D,σ,r,Tt)C(V_{t},D,\sigma,r,T-t) with strike price DD and maturity time TT, Lando i.e.

C(Vt,D,σ,r,Tt)=VtN(d1)Der(Tt)N(d2).C(V_{t},D,\sigma,r,T-t)=V_{t}N(d_{1})-De^{-r(T-t)}N(d_{2}).

Where NN is the standard normal distribution function and

d1,2=ln(Vt/D)+(r±12σ2)(Tt)σTt,\displaystyle d_{1,2}=\dfrac{ln(V_{t}/D)+(r\pm\dfrac{1}{2}\sigma^{2})(T-t)}{\sigma\sqrt{T-t}},
d1d2=σTt.\displaystyle d_{1}-d_{2}=\sigma\sqrt{T-t}.

Applying the Black-Scholes formula to price these options, we obtain the Merton model for values of debt and equity at time t as:

St=C(Vt,D,σ,r,Tt),\displaystyle S_{t}=C(V_{t},D,\sigma,r,T-t),
Bt=De(r(Tt))P(Vt,D,σ,r,Tt)\displaystyle B_{t}=De^{(-r(T-t))}-P(V_{t},D,\sigma,r,T-t)

From the put-call parity for European options on non-dividend paying stocks

C(Vt,D,σ,r,Tt)P(Vt,D,σ,r,Tt)=VtDer(Tt).C(V_{t},D,\sigma,r,T-t)-P(V_{t},D,\sigma,r,T-t)=V_{t}-De^{-r(T-t)}.

We get

Bt\displaystyle B_{t} =De(r(Tt))P(Vt,D,σ,r,Tt)\displaystyle=De^{(-r(T-t))}-P(V_{t},D,\sigma,r,T-t)
=VtC(Vt,D,σ,r,Tt)\displaystyle=V_{t}-C(V_{t},D,\sigma,r,T-t)
=Vt(1N(d1))+Der(Tt)N(d2).\displaystyle=V_{t}(1-N(d_{1}))+De^{-r(T-t)}N(d_{2}).

II.2 Basic Credit Risk Analysis with Compound Poisson Jumps

For the discontinuous Black-Scholes model, we may consider the case of compound Poisson jumps which has the explicit formula for the the call price. Therefore, the bond price is obvious from the call-put parity and equality VT=BT+STV_{T}=B_{T}+S_{T} at maturity time TT.

Suppose asset value VtV_{t} has dynamics of jumps, then the equity value StS_{t} is priced as a call option CJC^{J} with jumps. First, we focus the compound Poisson jumps with i.i.d. log-normal distributed Yi+1Y_{i}+1 (i.e., ln(Yi+1)N(μ,δ2)ln(Y_{i}+1)\sim N(\mu,\delta^{2})) which has the explicit formula, the price of call option CJC^{J} is as following Merton :

CJ(Vt,D,τ,σ2,r,δ2,λ,k)=n=0(λτ)nn!eλτC(Vt,D,τ,σn,rn)C^{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)\\ =\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C(V_{t},D,\tau,\sigma_{n},r_{n}) (1)

where λ\lambda is the intensity of Poisson process, C(Vt,D,τ,σn,rn)C(V_{t},D,\tau,\sigma_{n},r_{n}) is the standard Black-Scholes formula for a call and

k=E(Yi),\displaystyle k=E(Y_{i}),
λ=λ(1+k),\displaystyle\lambda^{\prime}=\lambda(1+k),
rn=r+nγ/τλk,\displaystyle r_{n}=r+n\gamma/\tau-\lambda k,
σn2=σ2+nδ2/τ,\displaystyle\sigma_{n}^{2}=\sigma^{2}+n\delta^{2}/\tau,
γ=ln(1+k)=μ+12δ2.\displaystyle\gamma=ln(1+k)=\mu+\frac{1}{2}\delta^{2}.

In advance, some facts of general Black-Scholes call price are listed JH :

Cx=N(d1)=Δ>0,\displaystyle C_{x}=N(d_{1})=\Delta>0,
Cτ=Stσ2τn(d1)+KrerτN(d2)=Θ>0,\displaystyle C_{\tau}=\frac{S_{t}\sigma}{2\sqrt{\tau}}n(d_{1})+Kre^{-r\tau}N(d_{2})=\Theta>0,
Cσ=Stτn(d1)=Vega>0,\displaystyle C_{\sigma}=S_{t}\sqrt{\tau}n(d_{1})=Vega>0,
Cr=τerτN(d2)=Rho>0,\displaystyle C_{r}=\tau e^{-r\tau}N(d_{2})=Rho>0,
CK=erτN(d2)<0.\displaystyle C_{K}=-e^{-r\tau}N(d_{2})<0.

III Sensitivities of Bond Pricing for Log-normal Jumps Process

Due to the explicit formula, the derivatives with respect to all parameters are examined as the sensitivities of bond price.

Proposition III.1

(i) The bond price is increasing in VtV_{t} for log-normal jumps process.

(ii) Btx(0,1).\dfrac{\partial B_{t}}{\partial x}\in(0,1).

Proof.

Let Vt=xV_{t}=x, Tt=τ.T-t=\tau. Then we check the partial derivative of BtB_{t} with respect to xx. Hence,

Btx=x(VtCJ(Vt,D,τ,σ2,r,δ2,λ,k))\displaystyle\dfrac{\partial B_{t}}{\partial x}=\dfrac{\partial}{\partial x}(V_{t}-C^{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k))
=1x(n=0(λτ)nn!eλτC(Vt,D,τ,σn,rn))\displaystyle=1-\dfrac{\partial}{\partial x}(\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C(V_{t},D,\tau,\sigma_{n},r_{n}))
=1n=0(λτ)nn!eλτC(Vt,D,τ,σn,rn)x)\displaystyle=1-\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}\dfrac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial x})
=1n=0(λτ)nn!eλτN(d1n)\displaystyle=1-\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}N(d_{1n})
=n=0(λτ)nn!eλτ(1N(d1n))(0,1).\displaystyle=\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}(1-N(d_{1n}))\in(0,1).

Where n=0(λτ)nn!eλτ=1\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}=1 is convergent. ∎

\Box

It is clear that the bond price goes up as VtV_{t} increases. We can check this trend by Matlab numerically in using formula 1 (See Figure 1).

Refer to caption
Figure 1: Bond price - VtV_{t}. (VtV_{t} is from 8080 to 120120 with step size 22, D=110,D=110, τ=2,\tau=2, σ=0.2,\sigma=0.2, r=0.05,r=0.05, λ=0.1,\lambda=0.1, μ=0.2,\mu=-0.2, δ=0.6,\delta=0.6, upbound of summation n=50.n=50.)
Proposition III.2

(i) The bond price is increasing in face value DD for log-normal jumps process.

(ii)BtD(0,e(rλk)τ)\dfrac{\partial B_{t}}{\partial D}\in(0,e^{-(r-\lambda k)\tau}).

Proof.

In fact,

CJ(Vt,D,τ,σ2,r,δ2,λ,k)D\displaystyle\dfrac{\partial C_{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial D}
=D(n=0(λτ)nn!eλτC(Vt,D,τ,σn,rn))\displaystyle=\dfrac{\partial}{\partial D}(\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C(V_{t},D,\tau,\sigma_{n},r_{n}))
=n=0(λτ)nn!eλτC(Vt,D,τ,σn,rn)D\displaystyle=\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}\dfrac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial D}
=n=0(λτ)nn!eλτernτN(d2n)\displaystyle=-\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}e^{-r_{n}\tau}N(d_{2n})
=n=0(λτ)nn!eλτe(rτ+nγλkτ)N(d2n)\displaystyle=-\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}e^{-(r\tau+n\gamma-\lambda k\tau)}N(d_{2n})
=e(rλk)τn=0(λτ)nn!eλτenγN(d2n)\displaystyle=-e^{-(r-\lambda k)\tau}\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}e^{-n\gamma}N(d_{2n})
(e(rλk)τ,0).\displaystyle\in(-e^{-(r-\lambda k)\tau},0).

Then,BtD=CJ(Vt,D,τ,σ2,r,δ2,λ,k)D(0,e(rλk)τ)\dfrac{\partial B_{t}}{\partial D}=-\dfrac{\partial C_{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial D}\in(0,e^{-(r-\lambda k)\tau}).

\Box

Definitely, increasing the face value typically will produce a larger payoff. (See Figure 2).

Refer to caption
Figure 2: Bond price - D. (D is from 8080 to 120120 with step size 22, Vt=100,V_{t}=100, τ=2,\tau=2, σ=0.2,\sigma=0.2, r=0.05,r=0.05, λ=0.1,\lambda=0.1, μ=0.2,\mu=-0.2, δ=0.6,\delta=0.6, upbound of summation n=50.n=50.)
Proposition III.3

The bond price is decreasing in volatility, σ\sigma, for log-normal jumps process.

Proof.

Mathematically,

CJ(Vt,D,τ,σ2,r,δ2,λ,k)σ\displaystyle\dfrac{\partial C_{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial\sigma}
=σ(n=0(λτ)nn!eλτC(Vt,D,τ,σn,rn))\displaystyle=\dfrac{\partial}{\partial\sigma}(\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C(V_{t},D,\tau,\sigma_{n},r_{n}))
=n=0(λτ)nn!eλτC(Vt,D,τ,σn,rn)σn\displaystyle=\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}\dfrac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial\sigma_{n}}
=n=0(λτ)nn!eλτxτn(d1n)\displaystyle=\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}x\sqrt{\tau}n(d_{1n})
=xτn=0(λτ)nn!eλτn(d1n)>0.\displaystyle=x\sqrt{\tau}\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}n(d_{1n})>0.

Then, Btσ=CJ(Vt,D,τ,σ2,r,δ2,λ,k)σ<0\dfrac{\partial B_{t}}{\partial\sigma}=-\dfrac{\partial C_{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial\sigma}<0.

\Box

When the volatility goes up, BtB_{t} must decrease because the sum of StS_{t} and BtB_{t} remains unchanged, call price increases as VtV_{t} is more fluctuable. (See Figure 3).

Refer to caption
Figure 3: Bond price - σ\sigma. (σ\sigma is from 0.050.05 to 0.50.5 with step size 0.010.01, Vt=100,V_{t}=100, D=110,D=110, τ=2,\tau=2, r=0.05,r=0.05, λ=0.1,\lambda=0.1, μ=0.2,\mu=-0.2, δ=0.6,\delta=0.6, upbound of summation n=50.n=50.)
Proposition III.4

(i) The bond price is decreasing in risk-free interest rate rr for log-normal jumps process.

(ii) Btr(τDe(rλk)τ,0)\dfrac{\partial B_{t}}{\partial r}\in(-\tau De^{-(r-\lambda k)\tau},0).

Proof.

Actually,

CJ(Vt,D,τ,σ2,r,δ2,λ,k)r\displaystyle\dfrac{\partial C_{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial r}
=r(n=0(λτ)nn!eλτC(Vt,D,τ,σn,rn))\displaystyle=\dfrac{\partial}{\partial r}(\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C(V_{t},D,\tau,\sigma_{n},r_{n}))
=n=0(λτ)nn!eλτC(Vt,D,τ,σn,rn)rn\displaystyle=\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}\dfrac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial r_{n}}
=n=0(λτ)nn!eλττDernτN(d2n)\displaystyle=\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}\tau De^{-r_{n}\tau}N(d_{2n})
=τDe(rλk)τn=0(λτ)nn!enγN(d2n)\displaystyle=\tau De^{-(r-\lambda k)\tau}\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-n\gamma}N(d_{2n})
(0,τDe(rλk)τ).\displaystyle\in(0,\tau De^{-(r-\lambda k)\tau}).

Then, Btr=CJ(Vt,D,τ,σ2,r,δ2,λ,k)r(τDe(rλk)τ,0)\dfrac{\partial B_{t}}{\partial r}=-\dfrac{\partial C_{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial r}\in(-\tau De^{-(r-\lambda k)\tau},0).

\Box

Since the call option increases as rr goes up, BtB_{t} must decrease the money market looks more attractive.(See Figure 4).

Refer to caption
Figure 4: Bond price - rr. ( rr is from 0.010.01 to 0.10.1 with step size 0.0020.002, Vt=100,V_{t}=100, D=110,D=110, τ=2,\tau=2, σ=0.2,\sigma=0.2, λ=0.1,\lambda=0.1, μ=0.2,\mu=-0.2, δ=0.6,\delta=0.6, upbound of summation n=50.n=50.)
Proposition III.5

(i) The call price is increasing in time-to-maturity, τ\tau, for the log-normal jumps process if rλk0r-\lambda k\geq 0.

(ii) The bond price is decreasing in time-to-maturity, τ\tau, for the log-normal jumps process rλk0r-\lambda k\geq 0.

Proof.

See details at Appendix part 1.

We have Btk<0\frac{\partial B_{t}}{\partial k}<0. BtB_{t} is decreasing due to the value of call increases when time-to-maturity is bigger.

In some extreme case, when S2S_{2} is very small as a negative number, the sum of S1S_{1} and S2S_{2} can be negative which causes the tendency of BtB_{t} w.r.t. τ\tau is not decreasing.

\Box

These two illustrations are listed as figure 5 and figure 6.

Refer to caption
Figure 5: Bond price - τ\tau with condition satisfied. (τ\tau is from 0.10.1 to 55 with step size 0.10.1, Vt=100,V_{t}=100, D=110,D=110, σ=0.2,\sigma=0.2, r=0.05,r=0.05, λ=0.1,\lambda=0.1, μ=0.2,\mu=-0.2, δ=0.6,\delta=0.6, upbound of summation n=50.n=50.)
Refer to caption
Figure 6: Bond price - τ\tau trend is somehow increasing when condition rλk0r-\lambda k\geq 0 is not satisfied at extreme case. (Here k=199.34k=199.34 under μ=0.8,δ=3\mu=0.8,\delta=3. λ=0.1,r=0.05\lambda=0.1,r=0.05. rλk=19.88r-\lambda k=-19.88, Vt=12,D=10V_{t}=12,D=10. τ\tau is from 0.1 to 5 with step pace 0.1.)
Proposition III.6

The bond price is decreasing in δ\delta for the log-normal jumps process.

Proof.

We have

CJ(Vt,D,τ,σ2,r,δ2,λ,k)δ\displaystyle\dfrac{\partial C_{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial\delta}
=δ(n=0(λτ)nn!eλτC(Vt,D,τ,σn,rn))\displaystyle=\dfrac{\partial}{\partial\delta}(\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C(V_{t},D,\tau,\sigma_{n},r_{n}))
=n=0(λτ)nn!eλτC(Vt,D,τ,σn,rn))σnσnδ\displaystyle=\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}\dfrac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n}))}{\partial\sigma_{n}}\dfrac{\partial\sigma_{n}}{\partial\delta}
=n=0(λτ)nn!eλτxτn(d1n)2nδτ\displaystyle=\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}x\sqrt{\tau}n(d_{1n})\frac{2n\delta}{\tau}
=2xδτn=0(λτ)nn!eλτn(d1n)n>0.\displaystyle=\frac{2x\delta}{\sqrt{\tau}}\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}n(d_{1n})n>0.

Then,Btδ=CJ(Vt,D,τ,σ2,r,δ2,λ,k)δ<0\dfrac{\partial B_{t}}{\partial\delta}=-\dfrac{\partial C_{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial\delta}<0.

\Box

See Figure 7 for the simulation.

Refer to caption
Figure 7: Bond price - δ\delta. (δ\delta is from 0.010.01 to 11 with step size 0.020.02, Vt=100,V_{t}=100, D=110,D=110, τ=2,\tau=2, σ=0.2,\sigma=0.2, r=0.05,r=0.05, λ=0.1,\lambda=0.1, μ=0.2,\mu=-0.2, upbound of summation n=50.n=50.)
Proposition III.7

The bond price is decreasing in λ\lambda for the log-normal jumps process.

Proof.

See details at Appendix part 2. Finally,

Btλ<0\frac{\partial B_{t}}{\partial\lambda}<0 holds.

\Box

In fact, since λ\lambda is the intensity of Poisson process, λ\lambda increasing means the jump rate is bigger, the fluctuation will make the call price go up, so the bond price is decreasing accordingly. (See Figure 8)

Refer to caption
Figure 8: Bond price - λ\lambda. (λ\lambda is from 0.010.01 to 0.20.2 with step size 0.010.01, Vt=100,V_{t}=100, D=110,D=110, τ=2,\tau=2, σ=0.2,\sigma=0.2, r=0.05,r=0.05, μ=0.2,\mu=-0.2, δ=0.6,\delta=0.6, upbound of summation n=50.n=50.)
Proposition III.8

The bond price is decreasing in kk for the log-normal jumps process.

Proof.

See details at Appendix part 3.

The result is Btk<0\frac{\partial B_{t}}{\partial k}<0.

\Box

Refer to caption
Figure 9: Bond price - k. (k=exp(μ+12σ2)1,k=exp(\mu+\frac{1}{2}\sigma^{2})-1, where μ\mu is from 0.1-0.1 to 0.20.2 with step size 0.010.01, Vt=100,V_{t}=100, D=110,D=110, τ=2,\tau=2, σ=0.2,\sigma=0.2, r=0.05,r=0.05, λ=0.1,\lambda=0.1, δ=0.6,\delta=0.6, upbound of summation n=50.n=50.)

IV Conclusion

In this paper, we analytically explored the parameter sensitivities of bond price driven by compound Poisson process with log-normal distributed jumps. Meanwhile, we disclosed the corresponding interval of the sensitivities if available. Generally, the bond price in this case is increasing with respect to asset value VtV_{t} and face value DD, decreasing with respect to volatility σ\sigma, risk-free interest rate rr, log-normal standard deviation δ\delta, Poisson intensity λ\lambda and jumps’ mean kk. For the time-to-maturity τ\tau, it is decreasing when rλk0r-\lambda k\geq 0 and undetermined for other cases.

Appendix

1. Proof of Proposition III.5

(i) The call price is increasing in time-to-maturity, τ\tau, for the log-normal jumps process if rλk0r-\lambda k\geq 0.

(ii) The bond price is decreasing in time-to-maturity, τ\tau, for the log-normal jumps process rλk0r-\lambda k\geq 0.

Proof.
CJ(Vt,D,τ,σ2,r,δ2,λ,k)τ\displaystyle\dfrac{\partial C^{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial\tau}
=τ(n=0(λτ)nn!eλτC(Vt,D,τ,σn,rn))\displaystyle=\dfrac{\partial}{\partial\tau}(\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C(V_{t},D,\tau,\sigma_{n},r_{n}))
=n=1[n(λτ)n1λn!eλτCn(Vt,D,τ,σn,rn)]\displaystyle=\sum^{\infty}_{n=1}[n(\lambda^{\prime}\tau)^{n-1}\frac{\lambda^{\prime}}{n!}e^{-\lambda^{\prime}\tau}C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})]
+n=0[(λτ)nn!(λ)eλτCn(Vt,D,τ,σn,rn)]\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}(-\lambda^{\prime})e^{-\lambda^{\prime}\tau}C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})]
+n=0[(λτ)nn!eλτ(C(Vt,D,τ,σn,rn)τ\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}(\frac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial\tau}
+C(Vt,D,τ,σn,rn)rnrnτ\displaystyle\quad+\frac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial r_{n}}\frac{\partial r_{n}}{\partial\tau}
+C(Vt,D,τ,σn,rn)τσnτ)]\displaystyle\quad+\frac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial\tau}\frac{\partial\sigma_{n}}{\partial\tau})]
=n=1[(λτ)n1(n1)!λeλτCn(Vt,D,τ,σn,rn)]\displaystyle=\sum^{\infty}_{n=1}[\frac{(\lambda^{\prime}\tau)^{n-1}}{(n-1)!}\lambda^{\prime}e^{-\lambda^{\prime}\tau}C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})]
+n=0[(λτ)nn!(λ)eλτCn(Vt,D,τ,σn,rn)]\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}(-\lambda^{\prime})e^{-\lambda^{\prime}\tau}C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})]
+n=0[(λτ)nn!eλτ(C(Vt,D,τ,σn,rn)τ\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}(\frac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial\tau}
+C(Vt,D,τ,σn,rn)rnrnτ\displaystyle\quad+\frac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial r_{n}}\frac{\partial r_{n}}{\partial\tau}
+C(Vt,D,τ,σn,rn)τσnτ)]\displaystyle\quad+\frac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial\tau}\frac{\partial\sigma_{n}}{\partial\tau})]
=n=0[(λτ)nn!λeλτ(Cn+1(Vt,D,τ,σn,rn)\displaystyle=\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}\lambda^{\prime}e^{-\lambda^{\prime}\tau}(C_{n+1}(V_{t},D,\tau,\sigma_{n},r_{n})
Cn(Vt,D,τ,σn,rn))]\displaystyle\quad-C_{n}(V_{t},D,\tau,\sigma_{n},r_{n}))]
+n=0[(λτ)nn!eλτ(C(Vt,D,τ,σn,rn)τ\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}(\frac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial\tau}
+C(Vt,D,τ,σn,rn)rnrnτ\displaystyle\quad+\frac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial r_{n}}\frac{\partial r_{n}}{\partial\tau}
+C(Vt,D,τ,σn,rn)τσnτ)]\displaystyle\quad+\frac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial\tau}\frac{\partial\sigma_{n}}{\partial\tau})]
=S1+S2,\displaystyle=S_{1}+S_{2},

Separately, we consider the 1st part S1S_{1} and 2nd part S2S_{2}.

For S1S_{1}, since

C(Vt,D,τ,σn,rn)n\displaystyle\dfrac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial n}
=xN(d1n)d1nnDernτ(rnn)τN(d2n)\displaystyle=xN^{\prime}(d_{1n})\dfrac{\partial d_{1n}}{\partial n}-De^{-r_{n}\tau}(-\dfrac{\partial r_{n}}{\partial n})\tau N(d_{2n})
+DernτN(d2n)d2nn\displaystyle\quad+De^{-r_{n}\tau}N^{\prime}(d_{2n})\dfrac{\partial d_{2n}}{\partial n}
=xN(d1n)(d1nnd2nn)+DernτγτN(d2n)\displaystyle=xN^{\prime}(d_{1n})(\dfrac{\partial d_{1n}}{\partial n}-\dfrac{\partial d_{2n}}{\partial n})+De^{-r_{n}\tau}\gamma\tau N(d_{2n})
>0\displaystyle>0

Where we used the facts:

xN(d1n)=KernτN(d2n),\displaystyle xN^{\prime}(d_{1n})=Ke^{-r_{n}\tau}N^{\prime}(d_{2n}),
d1nd2n=σnτd1nnd2nn=12σnδ2ττ>0.\displaystyle d_{1n}-d_{2n}=\sigma_{n}\sqrt{\tau}\Rightarrow\dfrac{\partial d_{1n}}{\partial n}-\dfrac{\partial d_{2n}}{\partial n}=\frac{1}{2\sqrt{\sigma_{n}}}\dfrac{\delta^{2}}{\tau}\sqrt{\tau}>0.

That means the function C(Vt,D,τ,σn,rn)C(V_{t},D,\tau,\sigma_{n},r_{n}) is increasing w.r.t. nn, such that S1S_{1} part is positive.

For S2S_{2}, we taking partial derivative of C(Vt,D,τ,σn,rn)C(V_{t},D,\tau,\sigma_{n},r_{n}) w.r.t. τ\tau,

S2=C(Vt,D,τ,σn,rn)τ+C(Vt,D,τ,σn,rn)rnrnτ\displaystyle S_{2}=\frac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial\tau}+\frac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial r_{n}}\frac{\partial r_{n}}{\partial\tau}
+C(Vt,D,τ,σn,rn)τσnτ\displaystyle\quad+\frac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial\tau}\frac{\partial\sigma_{n}}{\partial\tau}
=xσn2τn(d1n)+DrnernτN(d2n)\displaystyle=\frac{x\sigma_{n}}{2\sqrt{\tau}}n(d_{1n})+Dr_{n}e^{-r_{n}\tau}N(d_{2n})
+τDernτN(d2n)[nγ(τ2)]\displaystyle\quad+\tau De^{-r_{n}\tau}N(d_{2n})[n\gamma(-\tau^{-2})]
+xτn(d1n)[12(σn2)12nδ2(τ2)]\displaystyle\quad+x\sqrt{\tau}n(d_{1n})[\frac{1}{2}(\sigma_{n}^{2})^{-\frac{1}{2}}n\delta^{2}(-\tau^{-2})]
=12τxn(d1n)σn2τnδ2σnτ+DernτN(d2n)rnτnγτ\displaystyle=\frac{1}{2\sqrt{\tau}}xn(d_{1n})\frac{\sigma_{n}^{2}\tau-n\delta^{2}}{\sigma_{n}\tau}+De^{-r_{n}\tau}N(d_{2n})\frac{r_{n}\tau-n\gamma}{\tau}
=12τxn(d1n)σ2σn+DernτN(d2n)(rλk).\displaystyle=\frac{1}{2\sqrt{\tau}}xn(d_{1n})\frac{\sigma^{2}}{\sigma_{n}}+De^{-r_{n}\tau}N(d_{2n})(r-\lambda k).

here rλkr-\lambda k is non-negative as the condition, then S2S_{2} is also positive, such that the initial CJ(Vt,D,τ,σ2,r,δ2,λ,k)τ\frac{\partial C_{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial\tau} is positive.

Hence Btk=CJ(Vt,D,τ,σ2,r,δ2,λ,k)k<0\frac{\partial B_{t}}{\partial k}=-\frac{\partial C_{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial k}<0. BtB_{t} is decreasing due to the value of call increases when time-to-maturity is bigger.

In some extreme case, when S2S_{2} is very small as a negative number, the sum of S1S_{1} and S2S_{2} can be negative which causes the tendency of BtB_{t} w.r.t. τ\tau is not decreasing.

\Box

2. Proof of Proposition III.7

The bond price is decreasing in λ\lambda for the log-normal jumps process.

Proof.

Firstly, we can get that the call price is increasing in λ\lambda.

Take partial derivative with respect to λ\lambda in formula Merton ,

CJ(Vt,D,τ,σ2,r,δ2,λ,k)λ\displaystyle\frac{\partial C_{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial\lambda}
=n=1[n(λτ)n1(1+β)τn!eλτC(Vt,D,τ,σn,rn)]\displaystyle=\sum^{\infty}_{n=1}[n(\lambda^{\prime}\tau)^{n-1}(1+\beta)\frac{\tau}{n!}e^{-\lambda^{\prime}\tau}C(V_{t},D,\tau,\sigma_{n},r_{n})]
+n=0[(λτ)nn!(τ)(1+β)eλτC(Vt,D,τ,σn,rn)]\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}(-\tau)(1+\beta)e^{-\lambda^{\prime}\tau}C(V_{t},D,\tau,\sigma_{n},r_{n})]
+n=0[(λτ)nn!eλτC(Vt,D,τ,σn,rn)λ]\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}\frac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial\lambda}]
=n=1[nλ(λτ)n(n)!eλτ)C(Vt,D,τ,σn,rn)]\displaystyle=\sum^{\infty}_{n=1}[\frac{n}{\lambda}\frac{(\lambda^{\prime}\tau)^{n}}{(n)!}e^{-\lambda^{\prime}\tau)}C(V_{t},D,\tau,\sigma_{n},r_{n})]
+n=0[(λτ)nn!(τ)(1+β)eλτC(Vt,D,τ,σn,rn)]\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}(-\tau)(1+\beta)e^{-\lambda^{\prime}\tau}C(V_{t},D,\tau,\sigma_{n},r_{n})]
+n=0[(λτ)nn!eλτC(Vt,D,τ,σn,rn)λ]\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}\frac{\partial C(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial\lambda}]
=n=1[(λτ)nn!eλτC(Vt,D,τ,σn,rn)(nλ(1+β)τ)]\displaystyle=\sum^{\infty}_{n=1}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C(V_{t},D,\tau,\sigma_{n},r_{n})(\frac{n}{\lambda}-(1+\beta)\tau)]
+(τ)(1+β)eλτC0(V,τ,rn,σn)\displaystyle\quad+(-\tau)(1+\beta)e^{-\lambda^{\prime}\tau}C_{0}(V,\tau,r_{n},\sigma_{n})
+n=0[(λτ)nn!eλτ(xN(d1n)d1nrn(β)\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}(xN^{\prime}(d_{1n})\frac{\partial d_{1n}}{\partial r_{n}}(-\beta)
Kernτ(τ)(β)N(d2n)\displaystyle\quad-Ke^{-r_{n}\tau}(-\tau)(-\beta)N(d_{2n})
KernτN(d2n)d2nrn(β))]\displaystyle\quad-Ke^{-r_{n}\tau}N^{\prime}(d_{2n})\frac{\partial d_{2n}}{\partial r_{n}}(-\beta))]
=n=1[(λτ)nn!eλτC(Vt,D,τ,σn,rn)(nλ(1+β)τ)]\displaystyle=\sum^{\infty}_{n=1}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C(V_{t},D,\tau,\sigma_{n},r_{n})(\frac{n}{\lambda}-(1+\beta)\tau)]
+(τ)(1+β)eλτC0(V,τ,rn,σn)\displaystyle\quad+(-\tau)(1+\beta)e^{-\lambda^{\prime}\tau}C_{0}(V,\tau,r_{n},\sigma_{n})
+n=0[(λτ)nn!eλτ(KernττβN(d2n))]\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}(-Ke^{-r_{n}\tau}\tau\beta N(d_{2n}))]
=n=1[(λτ)nn!eλτCn(V,τ,rn,σn)(nλτβτ\displaystyle=\sum^{\infty}_{n=1}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C_{n}(V,\tau,r_{n},\sigma_{n})(\frac{n}{\lambda}-\tau-\beta\tau
+βτKernτN(d2n)Cn(V,τ,rn,σn))]eλτKer0ττβN(d20)\displaystyle\quad+\beta\tau\frac{-Ke^{-r_{n}\tau}N(d_{2n})}{C_{n}(V,\tau,r_{n},\sigma_{n})})]-e^{-\lambda^{\prime}\tau}Ke^{-r_{0}\tau}\tau\beta N(d_{20})
τ(1+β)eλτC0(V,τ,rn,σn)\displaystyle\quad-\tau(1+\beta)e^{-\lambda^{\prime}\tau}C_{0}(V,\tau,r_{n},\sigma_{n})
=n=1[(λτ)nn!eλτCn(V,τ,rn,σn)(nλτ\displaystyle=\sum^{\infty}_{n=1}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C_{n}(V,\tau,r_{n},\sigma_{n})(\frac{n}{\lambda}-\tau
βτxN(d1n)Cn(V,τ,rn,σn))]\displaystyle\quad-\beta\tau\frac{xN(d_{1n})}{C_{n}(V,\tau,r_{n},\sigma_{n})})]
eλττ(C0(Vt,D,τ,σn,rn)+βxN(d10))\displaystyle\quad-e^{-\lambda^{\prime}\tau}\tau(C_{0}(V_{t},D,\tau,\sigma_{n},r_{n})+\beta xN(d_{10}))
=n=0[(λτ)nn!eλτCn(V,τ,rn,σn)(nλτ\displaystyle=\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C_{n}(V,\tau,r_{n},\sigma_{n})(\frac{n}{\lambda}-\tau
βτxN(d1n)Cn(V,τ,rn,σn))]\displaystyle\quad-\beta\tau\frac{xN(d_{1n})}{C_{n}(V,\tau,r_{n},\sigma_{n})})]

where we used the fact that

d1rn=d2rn,\displaystyle\frac{\partial d_{1}}{\partial r_{n}}=\frac{\partial d_{2}}{\partial r_{n}},
xN(d1n)=KernτN(d2n),\displaystyle xN^{\prime}(d_{1n})=Ke^{-r_{n}\tau}N^{\prime}(d_{2n}),
Cn(V,τ,rn,σn)=xN(d1n)KernτN(d2n).\displaystyle C_{n}(V,\tau,r_{n},\sigma_{n})=xN(d_{1n})-Ke^{-r_{n}\tau}N(d_{2n}).

Since nn can be a very large number in the sum, then the term nλτβτxN(d1n)Cn\frac{n}{\lambda}-\tau-\beta\tau\frac{xN(d_{1n})}{C_{n}} is positive for most cases. That means the partial derivative w.r.t. λ\lambda is positive. So the call price is increasing against λ\lambda.

We know CJ(Vt,D,τ,σ2,r,δ2,λ,k)λ>0.\frac{\partial C_{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial\lambda}>0. Therefore, Btλ=CJ(Vt,D,τ,σ2,r,δ2,λ,k)λ<0\frac{\partial B_{t}}{\partial\lambda}=-\frac{\partial C_{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial\lambda}<0 holds.

\Box

3. Proof of Proposition III.8

The bond price is decreasing in kk for the log-normal jumps process.

Proof.

Since

CJ(Vt,D,τ,σ2,r,δ2,λ,k)k\displaystyle\dfrac{\partial C_{J}(V_{t},D,\tau,\sigma^{2},r,\delta^{2},\lambda,k)}{\partial k}
=k(n=0(λτ)nn!eλτCn(Vt,D,τ,σn,rn))\displaystyle=\dfrac{\partial}{\partial k}(\sum^{\infty}_{n=0}\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C_{n}(V_{t},D,\tau,\sigma_{n},r_{n}))
=n=1[n(λτ)n1λτn!eλτCn(Vt,D,τ,σn,rn)]\displaystyle=\sum^{\infty}_{n=1}[n(\lambda^{\prime}\tau)^{n-1}\frac{\lambda\tau}{n!}e^{-\lambda^{\prime}\tau}C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})]
+n=0[(λτ)nn!(τλ)eλτCn(Vt,D,τ,σn,rn)]\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}(-\tau\lambda)e^{-\lambda^{\prime}\tau}C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})]
+n=0[(λτ)nn!eλτCn(Vt,D,τ,σn,rn)k]\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}\frac{\partial C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial k}]
=n=1[n1+k(λτ)n(n)!eλτ)Cn(Vt,D,τ,σn,rn)]\displaystyle=\sum^{\infty}_{n=1}[\frac{n}{1+k}\frac{(\lambda^{\prime}\tau)^{n}}{(n)!}e^{-\lambda^{\prime}\tau)}C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})]
+n=0[(λτ)nn!(λτ)eλτCn(Vt,D,τ,σn,rn)]\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}(-\lambda\tau)e^{-\lambda^{\prime}\tau}C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})]
+n=0[(λτ)nn!eλτCn(Vt,D,τ,σn,rn)k]\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}\frac{\partial C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})}{\partial k}]
=n=1[(λτ)nn!eλτCn(Vt,D,τ,σn,rn)(n1+kλτ)]\displaystyle=\sum^{\infty}_{n=1}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})(\frac{n}{1+k}-\lambda\tau)]
+(λτ)eλτC0(Vt,D,τ,σn,rn)\displaystyle\quad+(-\lambda\tau)e^{-\lambda^{\prime}\tau}C_{0}(V_{t},D,\tau,\sigma_{n},r_{n})
+n=0[(λτ)nn!eλτ(xN(d1n)d1nrn(n(1+k)τλ)\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}(xN^{\prime}(d_{1n})\frac{\partial d_{1n}}{\partial r_{n}}(\frac{n}{(1+k)\tau}-\lambda)
Dernτ(τ)(n(1+k)τλ)N(d2n)\displaystyle\quad-De^{-r_{n}\tau}(-\tau)(\frac{n}{(1+k)\tau}-\lambda)N(d_{2n})
DernτN(d2n)d2nrn(n(1+k)τλ))]\displaystyle\quad-De^{-r_{n}\tau}N^{\prime}(d_{2n})\frac{\partial d_{2n}}{\partial r_{n}}(\frac{n}{(1+k)\tau}-\lambda))]
=n=1[(λτ)nn!eλτCn(Vt,D,τ,σn,rn)(n1+kλτ)]\displaystyle=\sum^{\infty}_{n=1}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})(\frac{n}{1+k}-\lambda\tau)]
+(λτ)eλτC0(Vt,D,τ,σn,rn)\displaystyle\quad+(-\lambda\tau)e^{-\lambda^{\prime}\tau}C_{0}(V_{t},D,\tau,\sigma_{n},r_{n})
+n=0[(λτ)nn!eλτ(Dernτ(n1+kλτ)N(d2n))]\displaystyle\quad+\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}(De^{-r_{n}\tau}(\frac{n}{1+k}-\lambda\tau)N(d_{2n}))]
=n=1[(λτ)nn!eλτCn(Vt,D,τ,σn,rn)(nλτ1+k)\displaystyle=\sum^{\infty}_{n=1}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})(\frac{n-\lambda^{\prime}\tau}{1+k})
Cn(Vt,D,τ,σn,rn)+DernτN(d2n)Cn(Vt,D,τ,σn,rn))]\displaystyle\quad\frac{C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})+De^{-r_{n}\tau}N(d_{2n})}{C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})})]
λτeλτC0(Vt,D,τ,σn,rn)eλτDer0τλτN(d20)\displaystyle\quad-\lambda\tau e^{-\lambda^{\prime}\tau}C_{0}(V_{t},D,\tau,\sigma_{n},r_{n})-e^{-\lambda^{\prime}\tau}De^{-r_{0}\tau}\lambda\tau N(d_{20})
=n=1[(λτ)nn!eλτ(nλτ1+k)xN(d1n))]\displaystyle=\sum^{\infty}_{n=1}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}(\frac{n-\lambda^{\prime}\tau}{1+k})xN(d_{1n}))]
eλτλτ(C0(Vt,D,τ,σn,rn)+Der0τN(d20))\displaystyle\quad-e^{-\lambda^{\prime}\tau}\lambda\tau(C_{0}(V_{t},D,\tau,\sigma_{n},r_{n})+De^{-r_{0}\tau}N(d_{20}))
=n=1[(λτ)nn!eλτ(nλτ1+k)xN(d1n)]eλτλτxN(d10)\displaystyle=\sum^{\infty}_{n=1}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}(\frac{n-\lambda^{\prime}\tau}{1+k})xN(d_{1n})]-e^{-\lambda^{\prime}\tau}\lambda\tau xN(d_{10})
=n=0[(λτ)nn!eλτ(nλτ1+k)xN(d1n)].\displaystyle=\sum^{\infty}_{n=0}[\frac{(\lambda^{\prime}\tau)^{n}}{n!}e^{-\lambda^{\prime}\tau}(\frac{n-\lambda^{\prime}\tau}{1+k})xN(d_{1n})].

where we used the fact that

d1rn=d2rn,\displaystyle\frac{\partial d_{1}}{\partial r_{n}}=\frac{\partial d_{2}}{\partial r_{n}},
xN(d1n)=DernτN(d2n),\displaystyle xN^{\prime}(d_{1n})=De^{-r_{n}\tau}N^{\prime}(d_{2n}),
Cn(Vt,D,τ,σn,rn)=xN(d1n)DernτN(d2n).\displaystyle C_{n}(V_{t},D,\tau,\sigma_{n},r_{n})=xN(d_{1n})-De^{-r_{n}\tau}N(d_{2n}).

Since nn goes to larger and large in the sum, then the term nλτ1+k\frac{n-\lambda^{\prime}\tau}{1+k} is positive for most cases. That means the partial derivative w.r.t. kk is positive. Then,Btk=CJk<0\frac{\partial B_{t}}{\partial k}=-\frac{\partial C_{J}}{\partial k}<0.

\Box

References

  • (1) Black, Fischer and Myron Scholes (1973), The Pricing of Options and Corporate Liabilities Journal of Political Economy, 81, 637-659.
  • (2) Merton, R. C. (1976), Option pricing when underlying stock returns are discontinuous., J. Financial Economy. 3 125–144.
  • (3) Steven Shreve, (2010), Stochastic Calculus for Finance II: Continuous-Time Models, Springer.
  • (4) David Lando, (2004), Credit Risk Modeling: Theory and Applications, Princeton University Press.
  • (5) Chunsheng Zhou, A Jump-Diffusion Approach to Modeling Credit Risk and Valuing Defaultable Securities, Finance and Economics Discussion Series 1997-15 / Board of Governors of the Federal Reserve System, 1997.
  • (6) Hull, J. C. (2003). Options futures and other derivatives. Pearson Education India.
  • (7) Scott, Louis (1997), Pricing Stock Options in a Jump-Diffusion Model with Stochastic Volatility and Interest Rates: Application of Fourier Inversion Methods Mathematical Finance, 7, 413-426.
  • (8) Camara, Antonio and Li, Weiping, Jump-Diffusion Option Pricing without IID Jumps Available at SSRN: https://ssrn.com/abstract=1282882 or http://dx.doi.org/10.2139/ssrn.1282882
  • (9) Bates, David (1996), Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutschemark Options Review of Financial Studies, 9, 69-108.
  • (10) Hirsa, Ali, (2011), Computational Methods in Finance Chapman&Hull/CRC.
  • (11) Kienitz, J., Wetterau, D. (2012), Financial Modelling: Theory, Implementation and Practice with MATLAB Source Wiley Finance, Chichester..
  • (12) N. Cai and S. Kou. Pricing Asian options under a hyper-exponential jump diffusion model. Oper. Res., 60(1):64–77, 2012.
  • (13) S. Kou. A jump-diffusion model for option pricing. Management Sci., 48(8):1086–1101, 2002.