This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The number of automorphic representations of GL2\mathrm{GL}_{2} with exceptional eigenvalues

Dohoon Choi Min Lee Youngmin Lee  and  Subong Lim Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea [email protected] School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K. [email protected] School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea [email protected] Department of Mathematics Education, Sungkyunkwan University, Jongno-gu, Seoul 03063, Republic of Korea [email protected]
Abstract.

We obtain an upper bound for the dimension of the cuspidal automorphic forms for GL2\mathrm{GL}_{2} over a number field, whose archimedean local representations are not tempered. More precisely, we prove the following result.

Let FF be a number field and 𝔸F\mathbb{A}_{F} be the ring of adeles of FF. Let 𝒪F\mathcal{O}_{F} be the ring of integers of FF. Let 𝔛F,ex\mathfrak{X}_{F,\mathrm{ex}} be the set of irreducible cuspidal automorphic representations π\pi of GL2(𝔸F)\mathrm{GL}_{2}(\mathbb{A}_{F}) with the trivial central character such that for each archimedean place vv of FF, the local representation of π\pi at vv is an unramified principal series and is not tempered. For an ideal JJ of 𝒪F\mathcal{O}_{F}, let K0(J)\mathrm{K}_{0}(J) be the subgroup of GL2(𝔸F)\mathrm{GL}_{2}(\mathbb{A}_{F}) corresponding to Γ0(J)SL2(𝒪F)\Gamma_{0}(J)\subset\mathrm{SL}_{2}(\mathcal{O}_{F}). Let r1r_{1} be the number of real embeddings of FF and r2r_{2} be the number of conjugate pairs of complex embeddings of FF. Using the Arthur-Selberg trace formula, we have

π𝔛F,exdimπK0(J)F[SL2(𝒪F):Γ0(J)](log(NF/(J)))2r1+3r2 as |NF/(J)|.\sum_{\pi\in\mathfrak{X}_{F,\mathrm{ex}}}\dim\pi^{\mathrm{K}_{0}(J)}\ll_{F}\frac{[\mathrm{SL}_{2}(\mathcal{O}_{F}):\Gamma_{0}(J)]}{(\log(N_{F/\mathbb{Q}}(J)))^{2r_{1}+3r_{2}}}\quad\text{ as }\quad|N_{F/\mathbb{Q}}(J)|\to\infty.

From this result, we obtain the result on an upper bound for the number of Hecke-Maass cusp forms of weight 0 on Γ0(N)\Gamma_{0}(N) which do not satisfy the Selberg eigenvalue conjecture.

2020 Mathematics Subject Classification:
11F72 (Primary) ; 11F12 (Secondary)
Keywords : Selberg eigenvalue conjecture, Arthur-Selberg trace formula

1. Introduction

Let Γ\Gamma be a congruence subgroup of SL2()\mathrm{SL}_{2}(\mathbb{Z}) and ff be a Maass cusp form of weight 0 on Γ\Gamma. Let Δ:=y2(2x2+2y2)\Delta:=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) be the hyperbolic Laplace operator on the upper half plane \mathbb{H}, and λf\lambda_{f} be the eigenvalue of Δ\Delta on ff. In [19], Selberg proved that λf316\lambda_{f}\geq\frac{3}{16}, and asserted that λf14\lambda_{f}\geq\frac{1}{4}. It is called the Selberg eigenvalue conjecture. The best known lower bound for λf\lambda_{f} is that

λf14(764)2,\lambda_{f}\geq\frac{1}{4}-\left(\frac{7}{64}\right)^{2},

which was proved by Kim and Sarnak [15]. This conjecture has been proven for some congruence subgroups (see [2, 3, 11]).

For λ\lambda\in\mathbb{R}, the space VλV_{\lambda} of Maass cusp forms of weight 0 on Γ\Gamma with the Laplacian eigenvalue λ\lambda is a finite-dimensional vector space over \mathbb{C}. If λf<14\lambda_{f}<\frac{1}{4}, then we call λf\lambda_{f} an exceptional eigenvalue, and its multiplicity is equal to the dimension of VλfV_{\lambda_{f}} over \mathbb{C}. The number of exceptional eigenvalues with multiplicities also has been studied in various aspects, as shown in [10, 11, 12, 14]. For Γ=Γ0(N)\Gamma=\Gamma_{0}(N) with a positive integer NN, Iwaniec and Szmidt [14] and Huxley [11] independently proved that if e=2e=2, then the number of exceptional eigenvalues λf\lambda_{f} with multiplicities satisfying 0<λf<14δ20<\lambda_{f}<\frac{1}{4}-\delta^{2} is less than CϵN1eδ+ϵC_{\epsilon}\cdot N^{1-e\delta+\epsilon} for some constant CϵC_{\epsilon} depending on ϵ\epsilon with ϵ>0\epsilon>0. Later, Iwaniec [12] proved that it holds for e=4e=4.

Let FF be a number field and 𝔸F\mathbb{A}_{F} be the ring of adeles of FF. In this paper, we consider the number of Maass cusp forms of GL2(𝔸F)\mathrm{GL}_{2}(\mathbb{A}_{F}) with exceptional eigenvalues. The Selberg eigenvalue conjecture for Maass cusp forms of GL2(𝔸F)\mathrm{GL}_{2}(\mathbb{A}_{F}) can be stated via automorphic representations as follows. Let 𝔛F\mathfrak{X}_{F} denote the set of irreducible cuspidal automorphic representations πvπv\pi\cong\otimes_{v}\pi_{v} of GL2(𝔸F)\mathrm{GL}_{2}(\mathbb{A}_{F}) with the trivial central character such that the local representation πv\pi_{v} of π\pi at each archimedean place vv of FF is an unramified principal series. When F=F=\mathbb{Q} and Γ\Gamma is a congruence subgroup of SL2()\mathrm{SL}_{2}(\mathbb{Z}), there is a correspondence between Maass cusp forms of weight 0 on Γ\Gamma and the fixed vectors under Γ𝔸\Gamma_{\mathbb{A}_{\mathbb{Q}}} of automorphic representations π𝔛\pi\in\mathfrak{X}_{\mathbb{Q}}. Here, Γ𝔸\Gamma_{\mathbb{A}_{\mathbb{Q}}} is the subgroup of GL2(𝔸)\mathrm{GL}_{2}(\mathbb{A}_{\mathbb{Q}}) corresponding to Γ\Gamma. For a Maass cusp form ff of weight 0 on Γ\Gamma, let πf𝔛\pi_{f}\in\mathfrak{X}_{\mathbb{Q}} be the irreducible cuspidal automorphic representation of GL2(𝔸)\mathrm{GL}_{2}(\mathbb{A}_{\mathbb{Q}}) corresponding to ff. By the (𝔤,K)(\mathfrak{g},K)-module theory due to Harish-Chandra, λf14\lambda_{f}\geq\frac{1}{4} if and only if (πf)(\pi_{f})_{\infty} is tempered. Thus, the Selberg eigenvalue conjecture is equivalent to that (πf)(\pi_{f})_{\infty} is tempered for every Maass cusp form ff of weight 0 on Γ\Gamma. Moreover, the number of exceptional eigenvalues with multiplicities is equal to the sum of dimπfΓ𝔸\dim\pi_{f}^{\Gamma_{\mathbb{A}_{\mathbb{Q}}}} with respect to ff, where ff is a Maass form of weight 0 on Γ\Gamma such that (πf)(\pi_{f})_{\infty} is not tempered. Here, for π𝔛F\pi\in\mathfrak{X}_{F} and HGL2(𝔸F)H\leq\mathrm{GL}_{2}(\mathbb{A}_{F}), πH\pi^{H} denotes the space of fixed vectors under HH of π\pi, i.e.,

πH:={vVπ:π(g)v=v for gH},\pi^{H}:=\left\{v\in V_{\pi}:\pi(g)v=v\text{ for }g\in H\right\},

where VπV_{\pi} is the underlying vector space of π\pi. Let 𝔛F,ex\mathfrak{X}_{F,\mathrm{ex}} be the subset of 𝔛F\mathfrak{X}_{F} consisting of π\pi such that for every archimedean place vv of FF, πv\pi_{v} is not tempered.

Let 𝒪F\mathcal{O}_{F} be the ring of integers of FF. For each place vv of FF, let FvF_{v} be the completion of FF at vv and 𝒪Fv\mathcal{O}_{F_{v}} be the ring of integers of FvF_{v}. Let SF,finS_{F,\mathrm{fin}} (resp. SF,S_{F,\infty}) be the set of non-archimedean (resp. archimedean) places of FF. For vSF,finv\in S_{F,\mathrm{fin}}, let 𝔭v\mathfrak{p}_{v} be the prime ideal of 𝒪F\mathcal{O}_{F} corresponding to vv. For a non-negative integer ee, we define Kv,e\mathrm{K}_{v,e} by

Kv,e:={(abcd)GL2(𝒪Fv):c𝔭ve}.\mathrm{K}_{v,e}:=\left\{\begin{pmatrix}a&b\\ c&d\end{pmatrix}\in\mathrm{GL}_{2}(\mathcal{O}_{F_{v}}):c\in\mathfrak{p}_{v}^{e}\right\}.

For each vSF,v\in S_{F,\infty}, let Kv0\mathrm{K}_{v}^{0} be the maximal connected compact subgroup of GL2(Fv)\mathrm{GL}_{2}(F_{v}) defined by

Kv0:={SO(2)if Fv=,U(2)if Fv=.\mathrm{K}_{v}^{0}:=\begin{cases}\mathrm{SO}(2)\quad&\text{if }F_{v}=\mathbb{R},\\ \mathrm{U}(2)\quad&\text{if }F_{v}=\mathbb{C}.\end{cases}

Let JJ be an ideal of 𝒪F\mathcal{O}_{F}, and NF/(J):=[𝒪F:J]N_{F/\mathbb{Q}}(J):=[\mathcal{O}_{F}:J] be the absolute norm of JJ. Since 𝒪F\mathcal{O}_{F} is a Dedekind domain, there is a unique non-negative integer valv(J)\mathrm{val}_{v}(J) for each vSF,finv\in S_{F,\mathrm{fin}} such that

J=vSF,fin𝔭vvalv(J).J=\prod_{v\in S_{F,\mathrm{fin}}}\mathfrak{p}_{v}^{\mathrm{val}_{v}(J)}.

Then, we let

K(J):=vSF,finKv,valv(J)vSF,Kv0\mathrm{K}(J):=\prod_{v\in S_{F,\mathrm{fin}}}\mathrm{K}_{v,\mathrm{val}_{v}(J)}\cdot\prod_{v\in S_{F,\infty}}\mathrm{K}_{v}^{0}

and

𝒩(J):=π𝔛F,exdimπK(J).\mathcal{N}(J):=\sum_{\pi\in\mathfrak{X}_{F,\mathrm{ex}}}\dim\pi^{\mathrm{K}(J)}.

In the following theorem, we obtain an upper bound for 𝒩(J)\mathcal{N}(J).

Theorem 1.1.

Assume that FF is a number field. Assume that r1r_{1} is the number of real embeddings of FF and that r2r_{2} is the number of conjugate pairs of complex embeddings of FF. Then, for non-trivial ideals JJ in 𝒪F\mathcal{O}_{F},

𝒩(J)F[SL2(𝒪F):Γ0(J)](log(NF/(J)))2r1+3r2,|NF/(J)|.\mathcal{N}(J)\ll_{F}\frac{[\mathrm{SL}_{2}(\mathcal{O}_{F}):\Gamma_{0}(J)]}{(\log(N_{F/\mathbb{Q}}(J)))^{2r_{1}+3r_{2}}},\quad|N_{F/\mathbb{Q}}(J)|\to\infty.

Let us consider the case when the number of archimedean places of FF is 11. In this case, FF is the field of rational numbers or an imaginary quadratic field, and 𝒩(J)\mathcal{N}(J) means the number of exceptional eigenvalues with multiplicities for a congruence subgroup corresponding to JJ.

When FF is an imaginary quadratic field, an automorphic form on 3\mathbb{H}^{3} corresponding to a fixed vector of π𝔛F\pi\in\mathfrak{X}_{F} is called a Maass cusp form of weight 0 over FF (for details, see [4]). Note that the Laplace–Beltrami operator Δ3\Delta_{\mathbb{H}^{3}} on 3:={x+iy+jr:x,y,r and r>0}\mathbb{H}^{3}:=\{x+iy+jr:x,y,r\in\mathbb{R}\text{ and }r>0\} is defined by

Δ3:=r2(2x2+2y2+2r2)rr.\Delta_{\mathbb{H}^{3}}:=r^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial r^{2}}\right)-r\frac{\partial}{\partial r}.

Assume that ff is a Maass cusp form of weight 0 over an imaginary quadratic field FF and πf𝔛F\pi_{f}\in\mathfrak{X}_{F} is an automorphic representation corresponding to ff. Let λf\lambda_{f} be the eigenvalue of Δ3\Delta_{\mathbb{H}^{3}} on ff. Then, the Selberg eigenvalue conjecture is equivalent to that λf1\lambda_{f}\geq 1.

Let TvT_{v} be the Hecke operator for vSF,finv\in S_{F,\mathrm{fin}}. For an ideal JJ of 𝒪F\mathcal{O}_{F}, a Hecke-Maass cusp form of weight 0 on Γ0(J)\Gamma_{0}(J) over FF is a Maass cusp form of weight 0 on Γ0(J)\Gamma_{0}(J) over FF that is an eigenform for all TvT_{v} with valv(J)=0\mathrm{val}_{v}(J)=0. A Hecke-Maass cusp form ff is called a normalized Hecke-Maass cusp form if the L2L^{2}-norm of ff is 11. Then, the vector space VλV_{\lambda} of Maass cusp forms of weight 0 on Γ0(J)\Gamma_{0}(J) over FF with the Laplacian eigenvalue λ\lambda has a basis consisting of normalized Hecke-Maass cusp forms. The following corollary is immediately implied by Theorem 1.1.

Corollary 1.2.

Assume that the number of archimedean places of FF is 11. Let JJ be a non-trivial ideal of 𝒪F\mathcal{O}_{F} and 𝒩(Γ0(J))\mathcal{N}(\Gamma_{0}(J)) be the number of normalized Hecke-Maass cusp forms of weight 0 on Γ0(J)\Gamma_{0}(J) over FF that do not satisfy the Selberg eigenvalue conjecture. Then, the followings are true.

  1. (1)

    Assume that F=F=\mathbb{Q} and NN is a positive integer with N>1N>1. For convenience, we write Γ0(N)\Gamma_{0}(N) for Γ0((N))\Gamma_{0}((N)). Then, we have

    𝒩(Γ0(N))[SL2():Γ0(N)](logN)2,N.\mathcal{N}(\Gamma_{0}(N))\ll\frac{[\mathrm{SL}_{2}(\mathbb{Z}):\Gamma_{0}(N)]}{(\log N)^{2}},\quad N\to\infty.
  2. (2)

    Assume that FF is an imaginary quadratic field. Then, we have

    𝒩(Γ0(J))F[SL2(𝒪F):Γ0(J)](log(NF/(J)))3,|NF/(J)|.\mathcal{N}(\Gamma_{0}(J))\ll_{F}\frac{[\mathrm{SL}_{2}(\mathcal{O}_{F}):\Gamma_{0}(J)]}{(\log(N_{F/\mathbb{Q}}(J)))^{3}},\quad|N_{F/\mathbb{Q}}(J)|\to\infty.
Remark 1.3.

Recalling the result of Iwaniec [12], the number of normalized Hecke-Maass cusp forms ff of weight 0 on Γ0(N)\Gamma_{0}(N) satisfying 0<λf<14δ20<\lambda_{f}<\frac{1}{4}-\delta^{2} is less than CϵN14δ+ϵC_{\epsilon}\cdot N^{1-4\delta+\epsilon}, where CϵC_{\epsilon} is a constant depending only on ϵ>0\epsilon>0. If we take δ=0\delta=0, then we have

(1.1) 𝒩(Γ0(N))ϵN1+ϵ,N.\mathcal{N}(\Gamma_{0}(N))\ll_{\epsilon}N^{1+\epsilon},\quad N\to\infty.

Since [SL2():Γ0(N)]NloglogN[\mathrm{SL}_{2}(\mathbb{Z}):\Gamma_{0}(N)]\ll N\log\log N, Corollary 1.2 implies

𝒩(Γ0(N))NloglogN(logN)2,N.\mathcal{N}(\Gamma_{0}(N))\ll\frac{N\log\log N}{(\log N)^{2}},\quad N\to\infty.

The rest of this paper is organized as follows. In Section 2, we review the Arthur-Selberg trace formula which is mainly used to prove Theorem 1.1 and describe how to obtain an upper bound for 𝒩(J)\mathcal{N}(J) by using the Arthur-Selberg trace formula. In Section 3, we compute the geometric side of the Arthur-Selberg trace formula. In Section 4, we prove Theorem 1.1.

Acknowledgments.

The authors appreciate Andrew Knightly for his kind and helpful comments. The second author is supported by a Royal Society University Research Fellowship.

2. Preliminaries

We introduce some notions as follows. Let G:=GL2\mathrm{G}:=\mathrm{GL}_{2} and G¯:=G/Z\overline{\mathrm{G}}:=\mathrm{G}/\mathrm{Z}, where Z\mathrm{Z} is defined by the center of G\mathrm{G}. Let FF be a number field and SF,finS_{F,\mathrm{fin}} (resp. SF,S_{F,\infty}) be the set of non-archimedean (resp. archimedean) places of FF, and SF:=SF,finSF,S_{F}:=S_{F,\mathrm{fin}}\cup S_{F,\infty} be the set of places of FF. Let 𝔸F\mathbb{A}_{F} be the ring of adeles of FF and 𝔸F,\mathbb{A}_{F,\infty} be the ring of infinite adeles of FF. For each vSFv\in S_{F}, let FvF_{v} be the completion of FF at vv and 𝒪Fv\mathcal{O}_{F_{v}} be the ring of integers of FvF_{v}. Let Kv\mathrm{K}_{v} be the maximal compact subgroup of G(Fv)\mathrm{G}(F_{v}) defined by

Kv:={G(𝒪Fv)if vSF,fin,O(2)if vSF, and Fv=,U(2)if vSF, and Fv=.\mathrm{K}_{v}:=\begin{cases}\mathrm{G}(\mathcal{O}_{F_{v}})\quad&\text{if $v\in S_{F,\mathrm{fin}}$,}\\ \mathrm{O}(2)\quad&\text{if $v\in S_{F,\infty}$ and $F_{v}=\mathbb{R}$,}\\ \mathrm{U}(2)\quad&\text{if $v\in S_{F,\infty}$ and $F_{v}=\mathbb{C}$.}\end{cases}

For each vSF,finv\in S_{F,\mathrm{fin}}, let ϖv\varpi_{v} be the uniformizer of 𝒪Fv\mathcal{O}_{F_{v}} and qv:=[𝒪Fv:(ϖv)]q_{v}:=[\mathcal{O}_{F_{v}}:(\varpi_{v})]. Let 𝔭v:=(ϖv)\mathfrak{p}_{v}:=(\varpi_{v}) be a unique prime ideal of 𝒪Fv\mathcal{O}_{F_{v}}. For g=(abcd)G(Fv)g=\left(\begin{smallmatrix}a&b\\ c&d\end{smallmatrix}\right)\in\mathrm{G}(F_{v}) with vSF,finv\in S_{F,\mathrm{fin}}, a Haar measure dgdg on G(Fv)\mathrm{G}(F_{v}) is defined by

(2.1) dg:=qv3(qv1)2(qv+1)dvadvbdvcdvd|adbc|v2,dg:=\frac{q_{v}^{3}}{(q_{v}-1)^{2}(q_{v}+1)}\cdot\frac{d_{v}a\,d_{v}b\,d_{v}c\,d_{v}d}{|ad-bc|_{v}^{2}},

where dvxd_{v}x is a Haar measure on FvF_{v} satisfying Vol(𝒪Fv)=1\mathrm{Vol}(\mathcal{O}_{F_{v}})=1, and ||v|\cdot|_{v} denotes the vv-adic absolute value on FvF_{v}. From (2.1), we have Vol(Kv)=1\mathrm{Vol}(\mathrm{K}_{v})=1. For vSF,finv\in S_{F,\mathrm{fin}}, a multiplicative Haar measure dv×xd_{v}^{\times}x on Fv×F_{v}^{\times} is defined by

dv×x:=qvqv1dvx|x|v.d_{v}^{\times}x:=\frac{q_{v}}{q_{v}-1}\cdot\frac{d_{v}x}{|x|_{v}}.

For vSF,v\in S_{F,\infty}, a multiplicative Haar measure dv×xd_{v}^{\times}x on Fv×F_{v}^{\times} is defined by

dv×x:={dx2|x|vif Fv=,dxπ|x|vif Fv=,d_{v}^{\times}x:=\begin{cases}\frac{d_{\mathbb{R}}x}{2|x|_{v}}\quad&\text{if }F_{v}=\mathbb{R},\\ \frac{d_{\mathbb{C}}x}{\pi|x|_{v}}\quad&\text{if }F_{v}=\mathbb{C},\end{cases}

and |y|v:=|y|[Fv:]|y|_{v}:=|y|^{[F_{v}:\mathbb{R}]}. If gG(Fv)g\in\mathrm{G}(F_{v}) with vSF,v\in S_{F,\infty}, then by the Iwasawa decomposition, there are y,zFv×y,z\in F_{v}^{\times}, xFvx\in F_{v} and κKv\kappa\in\mathrm{K}_{v} such that g=(z00z)(y001)(1x01)κg=\left(\begin{smallmatrix}z&0\\ 0&z\end{smallmatrix}\right)\left(\begin{smallmatrix}y&0\\ 0&1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&x\\ 0&1\end{smallmatrix}\right)\kappa. Then, a Haar measure dgdg on G(Fv)\mathrm{G}(F_{v}) is defined by

dg:=dv×zdv×ydvxdvκ,dg:=d_{v}^{\times}z\,d_{v}^{\times}y\,d_{v}x\,d_{v}\kappa,

where dvκd_{v}\kappa is a Haar measure on Kv\mathrm{K}_{v}. For any vSFv\in S_{F}, we set a Haar measure dvκ¯d_{v}\overline{\kappa} on Z(Fv)\Z(Fv)Kv\mathrm{Z}(F_{v})\backslash\mathrm{Z}(F_{v})\mathrm{K}_{v} such that the volume of Z(Fv)\Z(Fv)Kv\mathrm{Z}(F_{v})\backslash\mathrm{Z}(F_{v})\mathrm{K}_{v} is equal to 11. Then, a Haar measure dgdg on G¯(Fv)\overline{\mathrm{G}}(F_{v}) is defined by

dg:=dv×ydvxdvκ¯,dg:=d_{v}^{\times}y\,d_{v}x\,d_{v}\overline{\kappa},

where g=(y001)(1x01)κ¯g=\left(\begin{smallmatrix}y&0\\ 0&1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&x\\ 0&1\end{smallmatrix}\right)\overline{\kappa}. Thus, a Haar measure on G¯(𝔸F)\overline{\mathrm{G}}(\mathbb{A}_{F}) is defined by the product of Haar measures on G¯(Fv)\overline{\mathrm{G}}(F_{v}) for all vSFv\in S_{F}.

For a non-archimedean place vv of FF and a non-negative integer ee, let

Kv,e:={(abcd)G(𝒪Fv):ϖvec}.\mathrm{K}_{v,e}:=\left\{\begin{pmatrix}a&b\\ c&d\end{pmatrix}\in\mathrm{G}(\mathcal{O}_{F_{v}}):\varpi_{v}^{e}\mid c\right\}.

Assume that JJ is an ideal of 𝒪F\mathcal{O}_{F}. Then, for each vSF,finv\in S_{F,\mathrm{fin}}, there is a unique non-negative integer valv(J)\mathrm{val}_{v}(J) such that

J=vSF,fin𝔭vvalv(J).J=\prod_{v\in S_{F,\mathrm{fin}}}\mathfrak{p}_{v}^{\mathrm{val}_{v}(J)}.

For convenience, let valv(m):=valv((m))\mathrm{val}_{v}(m):=\mathrm{val}_{v}((m)) for m𝒪Fm\in\mathcal{O}_{F}, where (m)=m𝒪F(m)=m\mathcal{O}_{F} denotes the principal ideal generated by mm in 𝒪F\mathcal{O}_{F}. Let NF/(J):=[𝒪F:J]N_{F/\mathbb{Q}}(J):=[\mathcal{O}_{F}:J] be the absolute norm of JJ. Let Kfin(J):=vSF,finKv,valv(J)\mathrm{K}_{\mathrm{fin}}(J):=\prod_{v\in S_{F,\mathrm{fin}}}\mathrm{K}_{v,\mathrm{val}_{v}(J)} and K(J):=Kfin(J)vSF,Kv0\mathrm{K}(J):=\mathrm{K}_{\mathrm{fin}}(J)\cdot\prod_{v\in S_{F,\infty}}\mathrm{K}_{v}^{0}, where

(2.2) Kv0:={SO(2)if Fv=,U(2)if Fv=\mathrm{K}_{v}^{0}:=\begin{cases}\mathrm{SO}(2)\quad&\text{if }F_{v}=\mathbb{R},\\ \mathrm{U}(2)\quad&\text{if }F_{v}=\mathbb{C}\end{cases}

is the maximal connected compact subgroup of G(Fv)\mathrm{G}(F_{v}).

For each vSF,v\in S_{F,\infty} and ss\in\mathbb{C}, let

v(||vs,||vs):={f:G(Fv)|Kv|f(κv)|2dvκv< and f((ax0b)g)=|ab|vs+12f(g)}.\mathbb{H}_{v}\left(|\cdot|_{v}^{s},|\cdot|_{v}^{-s}\right):=\left\{f:\mathrm{G}(F_{v})\to\mathbb{C}\quad\bigg{|}\int_{\mathrm{K}_{v}}|f(\kappa_{v})|^{2}d_{v}\kappa_{v}<\infty\text{ and }f\left(\left(\begin{smallmatrix}a&x\\ 0&b\end{smallmatrix}\right)g\right)=\left|\frac{a}{b}\right|_{v}^{s+\frac{1}{2}}f(g)\right\}.

Recall that 𝔛F\mathfrak{X}_{F} is defined by the set of irreducible cuspidal automorphic representations π\pi of G(𝔸F)\mathrm{G}(\mathbb{A}_{F}) with the trivial central character such that the local representation πv\pi_{v} of π\pi at each archimedean place vv of FF is an unramified principal series, and that 𝔛F,ex\mathfrak{X}_{F,\mathrm{ex}} is the subset of 𝔛F\mathfrak{X}_{F} consisting of π\pi such that πv\pi_{v} is not tempered for every vSF,v\in S_{F,\infty}. In other words, if π𝔛F\pi\in\mathfrak{X}_{F}, then for each vSF,v\in S_{F,\infty}, there is a unique spectral parameter ν(πv)\nu(\pi_{v})\in\mathbb{C} such that πv\pi_{v} is a right regular representation of G(Fv)\mathrm{G}(F_{v}) on v(||vν(πv),||vν(πv))\mathbb{H}_{v}\left(|\cdot|_{v}^{\nu(\pi_{v})},|\cdot|_{v}^{-\nu(\pi_{v})}\right). Note that for π𝔛F\pi\in\mathfrak{X}_{F}, the spectral parameter ν(πv)\nu(\pi_{v}) is either a purely imaginary number or a non-zero real number with |ν(πv)|12|\nu(\pi_{v})|\leq\frac{1}{2}. Since πv\pi_{v} is tempered if and only if ν(πv)\nu(\pi_{v}) is a purely imaginary number, it follows that 𝔛F,ex\mathfrak{X}_{F,\mathrm{ex}} is the subset of 𝔛F\mathfrak{X}_{F} consisting of π\pi such that ν(πv)×\nu(\pi_{v})\in\mathbb{R}^{\times} for all vSF,v\in S_{F,\infty}. For π𝔛F\pi\in\mathfrak{X}_{F}, let VπV_{\pi} be the underlying vector space of π\pi and

πK(J):={vVπ:π(g)v=v for gK(J)}.\pi^{\mathrm{K}(J)}:=\left\{v\in V_{\pi}:\pi(g)v=v\text{ for }g\in\mathrm{K}(J)\right\}.

As in Section 1, we define

𝒩(J):=π𝔛F,exdimπK(J).\mathcal{N}(J):=\sum_{\pi\in\mathfrak{X}_{F,\mathrm{ex}}}\dim\pi^{\mathrm{K}(J)}.

The goal of this section is to derive the formula for an upper bound for 𝒩(J)\mathcal{N}(J) by using the Arthur-Selberg trace formula.

For each vSF,v\in S_{F,\infty}, let ϕv\phi_{v} be a smooth function on G(Fv)\mathrm{G}(F_{v}) satisfying the following conditions :

  1. (a)

    ϕv(zκ1gκ2)=ϕv(g)\phi_{v}(z\kappa_{1}g\kappa_{2})=\phi_{v}(g) for every zZ(Fv)z\in\mathrm{Z}(F_{v}), κ1,κ2Kv0\kappa_{1},\kappa_{2}\in\mathrm{K}_{v}^{0} and gG(Fv)g\in\mathrm{G}(F_{v}),

  2. (b)

    ϕv\phi_{v} is compactly supported modulo Z(Fv)\mathrm{Z}(F_{v}),

  3. (c)

    If Fv=F_{v}=\mathbb{R}, then the support of ϕv\phi_{v} is contained in GL2+()\mathrm{GL}_{2}^{+}(\mathbb{R}).

Since ϕv\phi_{v} is a Z(Fv)\mathrm{Z}(F_{v})-invariant function, throughout this paper we see that ϕv\phi_{v} is a function on G¯(Fv)\overline{\mathrm{G}}(F_{v}) by abusing the notation. Let hϕv^:\widehat{h_{\phi_{v}}}:\mathbb{R}\to\mathbb{C} and hϕv:h_{\phi_{v}}:\mathbb{C}\to\mathbb{C} be defined by

(2.3) hϕv^(t):=2π1+ϵv2π|t|1+ϵvϕv((er200er2))(sinh2(r2)sinh2(πt))1ϵv2sinh(r)𝑑r,\widehat{h_{\phi_{v}}}(t):=2\pi^{1+\epsilon_{v}}\int_{\frac{2\pi|t|}{1+\epsilon_{v}}}^{\infty}\frac{\phi_{v}\left(\left(\begin{smallmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{smallmatrix}\right)\right)}{(\sinh^{2}(\frac{r}{2})-\sinh^{2}(\pi t))^{\frac{1-\epsilon_{v}}{2}}}\sinh(r)\,dr,

where ϵv:=[Fv:]1\epsilon_{v}:=[F_{v}:\mathbb{R}]-1, and

(2.4) hϕv(z):=hϕv^(x)e2πizx𝑑x.h_{\phi_{v}}(z):=\int_{\mathbb{R}}\widehat{h_{\phi_{v}}}(x)e^{-2\pi izx}dx.

Assume that h^:0\widehat{h}:\mathbb{R}\to\mathbb{R}_{\geq 0} and h(z):=h^(x)e2πizx𝑑xh(z):=\int_{\mathbb{R}}\widehat{h}(x)e^{-2\pi izx}dx satisfy the following conditions :

  1. (1)

    h^\widehat{h} is smooth and compactly supported,

  2. (2)

    h^\widehat{h} is even,

  3. (3)

    h^(0)=h(x)𝑑x=1\widehat{h}(0)=\int_{\mathbb{R}}h(x)dx=1,

  4. (4)

    hh is entire,

  5. (5)

    hh is rapidly decreasing on horizontal strips,

  6. (6)

    h(x)0h(x)\geq 0 on xx\in\mathbb{R},

  7. (7)

    h(x)>0h(x)>0 and h(ix)>0h(ix)>0 on x[12,12]x\in[-\frac{1}{2},\frac{1}{2}].

To show the existence of hh and h^\widehat{h}, let us take g0:g_{0}:\mathbb{R}\to\mathbb{R} such that g0g_{0} is smooth, even, non-negative on \mathbb{R} and supported on [1,1][-1,1]. Let g1:=g0g0g_{1}:=g_{0}*g_{0}. Then, g1g_{1} is supported on [2,2][-2,2] and

g1(0)=g0(x)2𝑑x>0.g_{1}(0)=\int_{-\infty}^{\infty}g_{0}(x)^{2}dx>0.

Let h1^:=g1/g1(0)\widehat{h_{1}}:=g_{1}/g_{1}(0). Since h1=h1^^h_{1}=\widehat{\widehat{h_{1}}}, we have for xx\in\mathbb{R},

(2.5) h1(x)=1g1(0)g0^(x)20,h_{1}(x)=\frac{1}{g_{1}(0)}\widehat{g_{0}}(x)^{2}\geq 0,

and h1(0)>0h_{1}(0)>0. Note that if xx\in\mathbb{R}, then h1(x)h_{1}(x)\in\mathbb{R} and h1(ix)h_{1}(ix)\in\mathbb{R}. Thus, there is δ>0\delta>0 such that h1(x)h_{1}(x) and h1(ix)h_{1}(ix) are positive on x[δ2,δ2]x\in[-\frac{\delta}{2},\frac{\delta}{2}]. Let h(z):=h1(δz)h(z):=h_{1}(\delta z). Then, h^\widehat{h} and hh satisfy the conditions (1) \sim (7). Using the Abel inversion formula, we obtain the following lemma.

Lemma 2.1.

Let h:h:\mathbb{C}\to\mathbb{C} be a function satisfying the conditions (1)(7)(1)\sim(7). Assume that a function ϕv:G(Fv)\phi_{v}:\mathrm{G}(F_{v})\to\mathbb{C} satisfies the conditions (a)(c)(a)\sim(c) such that

hϕv=h.h_{\phi_{v}}=h.

Then, when Fv=F_{v}=\mathbb{R}, we have for rr\in\mathbb{R},

(2.6) ϕv((er200er2))\displaystyle\phi_{v}\left(\begin{pmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{pmatrix}\right) =14π2r2πhϕv^(t)sinh2(πt)sinh2(r/2)𝑑t\displaystyle=-\frac{1}{4\pi^{2}}\int_{\frac{r}{2\pi}}^{\infty}\frac{\widehat{h_{\phi_{v}}}^{\prime}(t)}{\sqrt{\sinh^{2}(\pi t)-\sinh^{2}(r/2)}}dt
(2.7) =12πr2πxhϕv(x)sin(2πxt)sinh2(πt)sinh2(r/2)𝑑x𝑑t.\displaystyle=\frac{1}{2\pi}\int_{\frac{r}{2\pi}}^{\infty}\int_{-\infty}^{\infty}xh_{\phi_{v}}(x)\frac{\sin(2\pi xt)}{\sqrt{\sinh^{2}(\pi t)-\sinh^{2}(r/2)}}dxdt.

When Fv=F_{v}=\mathbb{C}, we have for rr\in\mathbb{R},

(2.8) ϕv((er200er2))=hϕv^(r/π)2π3sinh(r)=1π2xhϕv(x)sin(2xr)sinh(r)𝑑x.\phi_{v}\left(\begin{pmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{pmatrix}\right)=-\frac{\widehat{h_{\phi_{v}}}^{\prime}(r/\pi)}{2\pi^{3}\sinh(r)}=\frac{1}{\pi^{2}}\int_{-\infty}^{\infty}xh_{\phi_{v}}(x)\frac{\sin(2xr)}{\sinh(r)}dx.
Proof.

When Fv=F_{v}=\mathbb{R}, see [8, Proposition 4.1, pp 15-16] and when Fv=F_{v}=\mathbb{C}, see [4, Lemma 3.5.5, pp 121]. ∎

Conversely, for a function hh satisfying the conditions (1)(7)(1)\sim(7), we define a function ϕv\phi_{v} on G(Fv)\mathrm{G}(F_{v}) satisfying the conditions (a)(c)(a)\sim(c) as follows. If Fv=F_{v}=\mathbb{R}, then

ϕv(zκ1(er200er2)κ2)=ϕv((er200er2)):=14π2r2πh^(t)sinh2(πt)sinh2(r/2)𝑑t\phi_{v}\left(z\kappa_{1}\begin{pmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{pmatrix}\kappa_{2}\right)=\phi_{v}\left(\begin{pmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{pmatrix}\right):=-\frac{1}{4\pi^{2}}\int_{\frac{r}{2\pi}}^{\infty}\frac{\widehat{h}^{\prime}(t)}{\sqrt{\sinh^{2}(\pi t)-\sinh^{2}(r/2)}}dt

and if Fv=F_{v}=\mathbb{C}, then

ϕv(zκ1(er200er2)κ2)=ϕv((er200er2)):=h^(r/π)2π3sinh(r).\phi_{v}\left(z\kappa_{1}\begin{pmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{pmatrix}\kappa_{2}\right)=\phi_{v}\left(\begin{pmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{pmatrix}\right):=-\frac{\widehat{h}^{\prime}(r/\pi)}{2\pi^{3}\sinh(r)}.

Here, zZ(Fv)z\in\mathrm{Z}(F_{v}), κ1,κ2Kv0\kappa_{1},\kappa_{2}\in\mathrm{K}_{v}^{0} and r0r\geq 0. By (2.3), we see that hϕvh_{\phi_{v}} is an even function. When Fv=F_{v}=\mathbb{R}, we have for t0t\geq 0,

(2.9) hϕv^(t)\displaystyle\widehat{h_{\phi_{v}}}(t) =2π2πtϕv((er200er2))sinh2(r2)sinh2(πt))sinh(r)𝑑r\displaystyle=2\pi\int_{2\pi t}^{\infty}\frac{\phi_{v}\left(\left(\begin{smallmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{smallmatrix}\right)\right)}{\sqrt{\sinh^{2}(\frac{r}{2})-\sinh^{2}(\pi t))}}\sinh(r)dr
=12π2πtr2πsinh(r)sinh2(r2)sinh2(πt)h^(x)sinh2(πx)sinh2(r2)𝑑x𝑑r\displaystyle=-\frac{1}{2\pi}\int_{2\pi t}^{\infty}\int_{\frac{r}{2\pi}}^{\infty}\frac{\sinh(r)}{\sqrt{\sinh^{2}(\frac{r}{2})-\sinh^{2}(\pi t)}}\cdot\frac{\widehat{h}^{\prime}(x)}{\sqrt{\sinh^{2}(\pi x)-\sinh^{2}(\frac{r}{2})}}dxdr
=12πth^(x)2πt2πxsinh(r)sinh2(r2)sinh2(πt)sinh2(πx)sinh2(r2)𝑑r𝑑x.\displaystyle=-\frac{1}{2\pi}\int_{t}^{\infty}\widehat{h}^{\prime}(x)\int_{2\pi t}^{2\pi x}\frac{\sinh(r)}{\sqrt{\sinh^{2}(\frac{r}{2})-\sinh^{2}(\pi t)}\sqrt{\sinh^{2}(\pi x)-\sinh^{2}(\frac{r}{2})}}drdx.

The last equality holds by Fubini’s theorem. By changing the variable y=sinh2(r2)y=\sinh^{2}(\frac{r}{2}), we have

2πt2πxsinh(r)sinh2(r2)sinh2(πt)sinh2(πx)sinh2(r2)𝑑r=2π.\int_{2\pi t}^{2\pi x}\frac{\sinh(r)}{\sqrt{\sinh^{2}(\frac{r}{2})-\sinh^{2}(\pi t)}\sqrt{\sinh^{2}(\pi x)-\sinh^{2}(\frac{r}{2})}}dr=2\pi.

Thus, (2.9) becomes

hϕv^(t)=th^(x)𝑑x=h^(t).\widehat{h_{\phi_{v}}}(t)=-\int_{t}^{\infty}\widehat{h}^{\prime}(x)dx=\widehat{h}(t).

When Fv=F_{v}=\mathbb{C}, for t0t\geq 0, we have

hϕv^(t)\displaystyle\widehat{h_{\phi_{v}}}(t) =2π2πtϕv((er200er2))sinh(r)𝑑r\displaystyle=2\pi^{2}\int_{\pi t}^{\infty}\phi_{v}\left(\begin{pmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{pmatrix}\right)\sinh(r)dr
=1ππth^(rπ)𝑑r\displaystyle=-\frac{1}{\pi}\int_{\pi t}^{\infty}\widehat{h}^{\prime}\left(\frac{r}{\pi}\right)dr
=h^(t).\displaystyle=\widehat{h}(t).

Since h^\widehat{h} is smooth and compactly supported, it follows that ϕv\phi_{v} is also smooth and compactly supported modulo Z(Fv)\mathrm{Z}(F_{v}). Hence, ϕv\phi_{v} satisfies the conditions (a)(c)(a)\sim(c) and

hϕv=h.h_{\phi_{v}}=h.

Let (π,Vπ)(\pi,V_{\pi}) be an irreducible cuspidal automorphic representation of G(𝔸F)\mathrm{G}(\mathbb{A}_{F}) with the trivial central character. Assume that a smooth function ϕ\phi on G(𝔸F)\mathrm{G}(\mathbb{A}_{F}) is Z(𝔸F)\mathrm{Z}(\mathbb{A}_{F})-invariant and compactly supported modulo Z(𝔸F)\mathrm{Z}(\mathbb{A}_{F}). We define an operator π(ϕ)\pi(\phi) on VπV_{\pi} by

π(ϕ)v:=G¯(𝔸F)ϕ(g)π(g)v𝑑g.\pi(\phi)v:=\int_{\overline{\mathrm{G}}(\mathbb{A}_{F})}\phi(g)\pi(g)vdg.

Then, the operator π(ϕ)\pi(\phi) is a trace class.

For vSF,finv\in S_{F,\mathrm{fin}}, let ϕv\phi_{v} be a function on G(Fv)\mathrm{G}(F_{v}) defined by the characteristic function of Z(Fv)Kv,valv(J)\mathrm{Z}(F_{v})\mathrm{K}_{v,\mathrm{val}_{v}(J)}. From the definition of ϕv\phi_{v}, we see that

G¯(Fv)ϕv(g)𝑑g=1[Kv:Kv,valv(J)].\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(g)dg=\frac{1}{[\mathrm{K}_{v}:\mathrm{K}_{v,\mathrm{val}_{v}(J)}]}.

We define a constant AJA_{J} by

(2.10) AJ:\displaystyle A_{J}: =vSF,finG¯(Fv)ϕv(g)𝑑g=vSF,fin1[Kv:Kv,valv(J)]=1[SL2(𝒪F):Γ0(J)].\displaystyle=\prod_{v\in S_{F,\mathrm{fin}}}\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(g)dg=\prod_{v\in S_{F,\mathrm{fin}}}\frac{1}{[\mathrm{K}_{v}:\mathrm{K}_{v,\mathrm{val}_{v}(J)}]}=\frac{1}{[\mathrm{SL}_{2}(\mathcal{O}_{F}):\Gamma_{0}(J)]}.

The following lemma provides the expression of trπ(ϕ)\mathrm{tr}\pi(\phi) in terms of hϕvh_{\phi_{v}} for vSF,v\in S_{F,\infty}.

Lemma 2.2.

Let FF be a number field and π=vSFπv𝔛F\pi=\otimes_{v\in S_{F}}\pi_{v}\in\mathfrak{X}_{F}. Let r1r_{1} be the number of archimedean places vv of FF with Fv=F_{v}=\mathbb{R}. Let JJ be an ideal of 𝒪F\mathcal{O}_{F} and for each vSF,finv\in S_{F,\mathrm{fin}}, ϕv\phi_{v} is defined as the characteristic function of Z(Fv)Kv,valv(J)\mathrm{Z}(F_{v})\mathrm{K}_{v,\mathrm{val}_{v}(J)}. Assume that for each vSF,v\in S_{F,\infty}, ϕv\phi_{v} satisfies the conditions (a)(c)(a)\sim(c). Let ϕ\phi be a function on G(𝔸F)\mathrm{G}(\mathbb{A}_{F}) defined by ϕ:=vSFϕv\phi:=\prod_{v\in S_{F}}\phi_{v}. Then, we have

trπ(ϕ)=AJ2r1vSF,hϕv(ν(πv)/i)dimπK(J).\mathrm{tr}\pi(\phi)=\frac{A_{J}}{2^{r_{1}}}\cdot\prod_{v\in S_{F,\infty}}h_{\phi_{v}}(\nu(\pi_{v})/i)\cdot\dim\pi^{\mathrm{K}(J)}.
Proof.

For any 𝐯Vπ\mathbf{v}\in V_{\pi} and κK(J)\kappa\in\mathrm{K}(J), we have

π(κ)(π(ϕ)𝐯)\displaystyle\pi(\kappa)\left(\pi(\phi)\mathbf{v}\right) =π(κ)(G¯(𝔸F)ϕ(g)π(g)𝐯𝑑g)\displaystyle=\pi(\kappa)\left(\int_{\bar{\mathrm{G}}(\mathbb{A}_{F})}\phi(g)\pi(g)\mathbf{v}dg\right)
=G¯(𝔸F)ϕ(g)π(κg)𝐯𝑑g\displaystyle=\int_{\bar{\mathrm{G}}(\mathbb{A}_{F})}\phi(g)\pi(\kappa g)\mathbf{v}dg
=G¯(𝔸F)ϕ(κ1g)π(g)𝐯𝑑g.\displaystyle=\int_{\bar{\mathrm{G}}(\mathbb{A}_{F})}\phi(\kappa^{-1}g)\pi(g)\mathbf{v}dg.

Since ϕ(κ1g)=ϕ(g)\phi(\kappa^{-1}g)=\phi(g) for any κK(J)\kappa\in\mathrm{K}(J) and gG(𝔸F)g\in\mathrm{G}(\mathbb{A}_{F}), it follows that π(ϕ)𝐯πK(J)\pi(\phi)\mathbf{v}\in\pi^{\mathrm{K}(J)}. Thus, the trace of π(ϕ)\pi(\phi) is the same as the trace of the restriction of π(ϕ)\pi(\phi) to the space πK(J)\pi^{\mathrm{K}(J)}. To complete the proof of Lemma 2.2, we prove that for any 𝐯πK(J)\mathbf{v}\in\pi^{\mathrm{K}(J)},

(2.11) π(ϕ)(𝐯)=(AJ2r1vSF,hϕv(ν(πv)/i))𝐯.\pi(\phi)(\mathbf{v})=\left(\frac{A_{J}}{2^{r_{1}}}\cdot\prod_{v\in S_{F,\infty}}h_{\phi_{v}}(\nu(\pi_{v})/i)\right)\cdot\mathbf{v}.

For each place vv of FF, let (πv,Vπv)(\pi_{v},V_{\pi_{v}}) be the local representation of π\pi at vv. Assume 𝐯=vSF𝐯vπK(J)\mathbf{v}=\otimes_{v\in S_{F}}\mathbf{v}_{v}\in\pi^{\mathrm{K}(J)}. Then, for each vSF,finv\in S_{F,\mathrm{fin}}, we have

(2.12) πv(ϕv)𝐯v\displaystyle\pi_{v}(\phi_{v})\mathbf{v}_{v} =G¯(Fv)ϕv(g)πv(g)𝐯v𝑑g\displaystyle=\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(g)\pi_{v}(g)\mathbf{v}_{v}dg
=Kv,valv(J)¯𝐯v𝑑g\displaystyle=\int_{\overline{\mathrm{K}_{v,\mathrm{val}_{v}(J)}}}\mathbf{v}_{v}dg
=Vol(Kv,valv(J)¯)𝐯v,\displaystyle=\mathrm{Vol}\left(\overline{\mathrm{K}_{v,\mathrm{val}_{v}(J)}}\right)\cdot\mathbf{v}_{v},

where Kv,valv(J)¯\overline{\mathrm{K}_{v,\mathrm{val}_{v}(J)}} is the image of Kv,valv(J)\mathrm{K}_{v,\mathrm{val}_{v}(J)} under the canonical projection modulo Z(Fv)\mathrm{Z}(F_{v}). Following the proof of [18, Theorems 4.1 and 5.1], if vSF,v\in S_{F,\infty}, then we have

(2.13) πv(ϕv)𝐯v={12hϕv(ν(πv)/i)𝐯vif Fv=,hϕv(ν(πv)/i)𝐯vif Fv=.\pi_{v}(\phi_{v})\mathbf{v}_{v}=\begin{cases}\frac{1}{2}h_{\phi_{v}}(\nu(\pi_{v})/i)\mathbf{v}_{v}\quad&\text{if }F_{v}=\mathbb{R},\\ h_{\phi_{v}}(\nu(\pi_{v})/i)\mathbf{v}_{v}\quad&\text{if }F_{v}=\mathbb{C}.\end{cases}

Combining (2.12) and (2.13), we complete the proof of Lemma 2.2. ∎

Note that for vSF,v\in S_{F,\infty} and zz\in\mathbb{R}, we have

(2.14) hϕv(iz)=hϕv^(x)e2πzx𝑑x=20hϕv^(x)cosh(2πzx)𝑑x20hϕv^(x)𝑑x=hϕv(0).h_{\phi_{v}}(iz)=\int_{\mathbb{R}}\widehat{h_{\phi_{v}}}(x)e^{2\pi zx}dx=2\int_{0}^{\infty}\widehat{h_{\phi_{v}}}(x)\cosh(2\pi zx)dx\geq 2\int_{0}^{\infty}\widehat{h_{\phi_{v}}}(x)dx=h_{\phi_{v}}(0).

Thus, we obtain the following lemma which provides the relation between π𝔛Ftrπ(ϕ)\sum_{\pi\in\mathfrak{X}_{F}}\mathrm{tr}\pi(\phi) and 𝒩(J)\mathcal{N}(J).

Lemma 2.3.

Let JJ be an ideal of 𝒪F\mathcal{O}_{F}. Let ϕ\phi be a function on G(𝔸F)\mathrm{G}(\mathbb{A}_{F}) defined as in Lemma 2.2. Then, we have

π𝔛Ftrπ(ϕ)AJ𝒩(J)2r1(vSF,hϕv(0)).\sum_{\pi\in\mathfrak{X}_{F}}\mathrm{tr}\pi(\phi)\geq\frac{A_{J}\cdot\mathcal{N}(J)}{2^{r_{1}}}\left(\prod_{v\in S_{F,\infty}}h_{\phi_{v}}(0)\right).
Proof.

By Lemma 2.2, we have

(2.15) π𝔛Ftrπ(ϕ)=AJ2r1π𝔛F(vSF,hϕv(ν(πv)/i)dimπK(J)).\sum_{\pi\in\mathfrak{X}_{F}}\mathrm{tr}\pi(\phi)=\frac{A_{J}}{2^{r_{1}}}\cdot\sum_{\pi\in\mathfrak{X}_{F}}\left(\prod_{v\in S_{F,\infty}}h_{\phi_{v}}(\nu(\pi_{v})/i)\cdot\dim\pi^{\mathrm{K}(J)}\right).

Assume that π𝔛F\pi\in\mathfrak{X}_{F} and vSF,v\in S_{F,\infty}. Note that ν(πv)[12,12]\nu(\pi_{v})\in[-\frac{1}{2},\frac{1}{2}] or ν(πv)/i×\nu(\pi_{v})/i\in\mathbb{R}^{\times}. By the assumption of hϕvh_{\phi_{v}} and (2.14), if xx\in\mathbb{R} or x/i[12,12]x/i\in[-\frac{1}{2},\frac{1}{2}], then hϕv(x)0h_{\phi_{v}}(x)\geq 0. It follows that

(2.16) π𝔛F(vSF,hϕv(ν(πv)/i)dimπK(J))\displaystyle\sum_{\pi\in\mathfrak{X}_{F}}\left(\prod_{v\in S_{F,\infty}}h_{\phi_{v}}(\nu(\pi_{v})/i)\cdot\dim\pi^{\mathrm{K}(J)}\right) π𝔛F,ex(vSF,hϕv(ν(πv)/i)dimπK(J))\displaystyle\geq\sum_{\pi\in\mathfrak{X}_{F,\mathrm{ex}}}\left(\prod_{v\in S_{F,\infty}}h_{\phi_{v}}(\nu(\pi_{v})/i)\cdot\dim\pi^{\mathrm{K}(J)}\right)
(vSF,hϕv(0))𝒩(J).\displaystyle\geq\left(\prod_{v\in S_{F,\infty}}h_{\phi_{v}}(0)\right)\cdot\mathcal{N}(J).

By the Arthur-Selberg trace formula, we have

(2.17) π𝔛Ftrπ(ϕ)=Sone(ϕ)+Sid(ϕ)+Sell(ϕ)+Shyp(ϕ)+Spar(ϕ)+SEis(ϕ)+SRes(ϕ).\sum_{\pi\in\mathfrak{X}_{F}}\mathrm{tr}\pi(\phi)=-S_{\mathrm{one}}(\phi)+S_{\mathrm{id}}(\phi)+S_{\rm ell}(\phi)+S_{\rm hyp}(\phi)+S_{\rm par}(\phi)+S_{\rm Eis}(\phi)+S_{\rm Res}(\phi).

Here, the definitions of Sone(ϕ),Sid(ϕ),Sell(ϕ),Shyp(ϕ),Spar(ϕ),SEis(ϕ)S_{\mathrm{one}}(\phi),S_{\mathrm{id}}(\phi),S_{\rm ell}(\phi),S_{\rm hyp}(\phi),S_{\rm par}(\phi),S_{\rm Eis}(\phi), and SRes(ϕ)S_{\rm Res}(\phi) are in Section 3. Then, Lemma 2.3 implies that

𝒩(J)\displaystyle\mathcal{N}(J) 2r1AJvSF,hϕv(0)\displaystyle\leq\frac{2^{r_{1}}}{A_{J}\cdot\prod_{v\in S_{F,\infty}}h_{\phi_{v}}(0)}
×(|Sone(ϕ)|+|Sid(ϕ)|+|Sell(ϕ)|+|Shyp(ϕ)|+|Spar(ϕ)|+|SEis(ϕ)|+|SRes(ϕ)|).\displaystyle\times\left(|S_{\mathrm{one}}(\phi)|+|S_{\mathrm{id}}(\phi)|+|S_{\rm ell}(\phi)|+|S_{\rm hyp}(\phi)|+|S_{\rm par}(\phi)|+|S_{\rm Eis}(\phi)|+|S_{\rm Res}(\phi)|\right).

Therefore, we have to compute an upper bound for

|Sone(ϕ)|+|Sid(ϕ)|+|Sell(ϕ)|+|Shyp(ϕ)|+|Spar(ϕ)|+|SEis(ϕ)|+|SRes(ϕ)|vSF,hϕv(0).\frac{|S_{\mathrm{one}}(\phi)|+|S_{\mathrm{id}}(\phi)|+|S_{\rm ell}(\phi)|+|S_{\rm hyp}(\phi)|+|S_{\rm par}(\phi)|+|S_{\rm Eis}(\phi)|+|S_{\rm Res}(\phi)|}{\prod_{v\in S_{F,\infty}}h_{\phi_{v}}(0)}.

3. Geometric side

In this section, we compute the geometric side of the Arthur-Selberg trace formula. For two non-negative functions XX and YY of nn variables t1,,tnt_{1},\dots,t_{n}, we write Xt1,,tmYX\ll_{t_{1},\dots,t_{m}}Y if there exists a constant C(t1,,tm)C(t_{1},\dots,t_{m}), dependent on t1,,tmt_{1},\dots,t_{m} such that

C(t1,,tm)XY.C(t_{1},\dots,t_{m})\cdot X\leq Y.

Here, nn and mm are positive integers with mnm\leq n. For simplicity, if there is a constant CC which is independent on t1,,tnt_{1},\dots,t_{n} such that

CXY,C\cdot X\leq Y,

then we write XYX\ll Y. We follow the notation in Section 2. Throughout this section, we fix an ideal JJ of 𝒪F\mathcal{O}_{F} and ev:=valv(J)e_{v}:=\mathrm{val}_{v}(J) for each vSF,finv\in S_{F,\mathrm{fin}}. Moreover, ϕ\phi is a function on G(𝔸F)\mathrm{G}(\mathbb{A}_{F}) defined as in Lemma 2.2.

3.1. One-dimensional representations

In [6], Sone(ϕ)S_{\mathrm{one}}(\phi) is defined by

Sone(ϕ):=χ2=1χ idele class character G¯(𝔸)ϕ(g)χ(detg)𝑑g.S_{\mathrm{one}}(\phi):=\sum_{\begin{subarray}{c}\chi^{2}=1\\ \chi\text{ idele class character }\end{subarray}}\int_{\bar{\rm G}(\mathbb{A})}\phi(g)\chi(\mathrm{det}g)dg.

Then, we compute Sone(ϕ)S_{\mathrm{one}}(\phi) in the following lemma.

Lemma 3.1.

Let JJ be an ideal of 𝒪F\mathcal{O}_{F}. Then, we have

Sone(ϕ)=AJvSF,hϕv(i2).S_{\mathrm{one}}(\phi)=A_{J}\cdot\prod_{v\in S_{F,\infty}}h_{\phi_{v}}\left(\frac{i}{2}\right).
Proof.

Assume that χ:F×\𝔸F××\chi:F^{\times}\backslash\mathbb{A}_{F}^{\times}\to\mathbb{C}^{\times} is an idele class character with χ2=1\chi^{2}=1 such that

(3.1) G¯(𝔸F)ϕ(g)χ(detg)𝑑g0.\int_{\bar{\mathrm{G}}(\mathbb{A}_{F})}\phi(g)\chi(\mathrm{det}g)dg\neq 0.

Let χ=vSFχv\chi=\otimes_{v\in S_{F}}\chi_{v}, where χv:Fv××\chi_{v}:F_{v}^{\times}\to\mathbb{C}^{\times} is a character. Then, we have

G¯(𝔸F)ϕ(g)χ(detg)𝑑g=(vSF,finG¯(Fv)ϕv(g)χv(detg)𝑑g)(vSF,G¯(Fv)ϕv(g)χv(detg)𝑑g).\int_{\bar{\mathrm{G}}(\mathbb{A}_{F})}\phi(g)\chi(\mathrm{det}g)dg=\left(\prod_{v\in S_{F,\mathrm{fin}}}\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(g)\chi_{v}(\mathrm{det}g)dg\right)\cdot\left(\prod_{v\in S_{F,\infty}}\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(g)\chi_{v}(\mathrm{det}g)dg\right).

For each vSF,finv\in S_{F,\mathrm{fin}}, we assume gvZ(Fv)Kv,valv(J)g_{v}\in\mathrm{Z}(F_{v})\mathrm{K}_{v,\mathrm{val}_{v}(J)}. Since ϕv\phi_{v} is the characteristic function of Z(Fv)Kv,valv(J)\mathrm{Z}(F_{v})\mathrm{K}_{v,\mathrm{val}_{v}(J)}, it follows that ϕv(ggv)=ϕv(g)\phi_{v}(gg_{v})=\phi_{v}(g) for any gG(Fv)g\in\mathrm{G}(F_{v}). Then, we have

G¯(Fv)ϕv(g)χv(detg)𝑑g\displaystyle\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(g)\chi_{v}(\mathrm{det}g)dg =G¯(Fv)ϕv(ggv)χv(det(ggv))d(ggv)\displaystyle=\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(gg_{v})\chi_{v}(\mathrm{det}(gg_{v}))d(gg_{v})
=χv(detgv)G¯(Fv)ϕv(g)χv(detg)𝑑g.\displaystyle=\chi_{v}(\mathrm{det}g_{v})\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(g)\chi_{v}(\mathrm{det}g)dg.

Hence, we obtain that χv(detgv)=1\chi_{v}(\mathrm{det}g_{v})=1 for gvZ(Fv)Kv,valv(J)g_{v}\in\mathrm{Z}(F_{v})\mathrm{K}_{v,\mathrm{val}_{v}(J)}. Since the set of determinants of all elements in Z(Fv)Kv,valv(J)\mathrm{Z}(F_{v})\mathrm{K}_{v,\mathrm{val}_{v}(J)} contains Fv×F_{v}^{\times}, it follows that χv=1\chi_{v}=1.

For each vSF,v\in S_{F,\infty}, if Fv=F_{v}=\mathbb{C} and χv2=1\chi_{v}^{2}=1, then χv\chi_{v} is the trivial character since the image of χv\chi_{v} is connected. If Fv=F_{v}=\mathbb{R}, then the characters χv:××\chi_{v}:\mathbb{R}^{\times}\to\mathbb{C}^{\times} satisfying χv2=1\chi_{v}^{2}=1 are only the trivial character and the sign character. Since the support of ϕv\phi_{v} is contained in GL2+()\mathrm{GL}_{2}^{+}(\mathbb{R}) when Fv=F_{v}=\mathbb{R}, we obtain that

Sone(ϕ)\displaystyle S_{\mathrm{one}}(\phi) =(vSF,finG¯(Fv)ϕv(g)𝑑g)\displaystyle=\left(\prod_{v\in S_{F,\mathrm{fin}}}\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(g)dg\right)
×Fv=(G¯(Fv)ϕv(g)dg+G¯(Fv)ϕv(g)sgn(detg)dvg)Fv=(G¯(Fv)ϕv(g)dg)\displaystyle\times\prod_{F_{v}=\mathbb{R}}\left(\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(g)dg+\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(g)\mathop{\rm sgn}(\mathrm{det}g)d_{v}g\right)\cdot\prod_{F_{v}=\mathbb{C}}\left(\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(g)dg\right)
=2r1AJFv=(GL2+¯()ϕv(g)𝑑g)Fv=(G¯(Fv)ϕv(g)𝑑g),\displaystyle=2^{r_{1}}A_{J}\cdot\prod_{F_{v}=\mathbb{R}}\left(\int_{\overline{\mathrm{GL}_{2}^{+}}(\mathbb{R})}\phi_{v}(g)dg\right)\cdot\prod_{F_{v}=\mathbb{C}}\left(\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(g)dg\right),

where r1r_{1} denotes the number of archimedean places vv of FF satisfying Fv=F_{v}=\mathbb{R}, and GL2+¯()\overline{\mathrm{GL}_{2}^{+}}(\mathbb{R}) denotes the image of GL2+()\mathrm{GL}_{2}^{+}(\mathbb{R}) modulo Z()\mathrm{Z}(\mathbb{R}). Following the proof of Lemma 2.2, we obtain that if Fv=F_{v}=\mathbb{R}, then

GL2+¯()ϕv(g)𝑑g=12hϕv(i2),\int_{\overline{\mathrm{GL}_{2}^{+}}(\mathbb{R})}\phi_{v}(g)dg=\frac{1}{2}h_{\phi_{v}}\left(\frac{i}{2}\right),

and if Fv=F_{v}=\mathbb{C}, then

G¯(Fv)ϕv(g)𝑑g=hϕv(i2).\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(g)dg=h_{\phi_{v}}\left(\frac{i}{2}\right).

3.2. Identity contribution

Let I2I_{2} be the identity matrix of size 22. In [6], Sid(ϕ)S_{\mathrm{id}}(\phi) is defined by

(3.2) Sid(ϕ):=Vol(G¯(F)\G¯(𝔸F))ϕ(I2).S_{\mathrm{id}}(\phi):=\mathrm{Vol}(\bar{\mathrm{G}}(F)\backslash\bar{\mathrm{G}}(\mathbb{A}_{F}))\phi(I_{2}).

Note that ϕv(I2)=1\phi_{v}(I_{2})=1 for each vSF,finv\in S_{F,\mathrm{fin}}. Then, we have the following lemma.

Lemma 3.2.

For each vSF,v\in S_{F,\infty}, let ϵv:=[Fv:]1\epsilon_{v}:=[F_{v}:\mathbb{R}]-1. Then, we have

ϕ(I2)=vSF,(1+ϵv(2ϵv)2(1ϵv)π1+ϵvx1+ϵvhv(x)tanh1ϵv(πx)𝑑x).\phi(I_{2})=\prod_{v\in S_{F,\infty}}\left(\frac{1+\epsilon_{v}}{(2-\epsilon_{v})^{2(1-\epsilon_{v})}\pi^{1+\epsilon_{v}}}\int_{-\infty}^{\infty}x^{1+\epsilon_{v}}h_{v}(x)\tanh^{1-\epsilon_{v}}(\pi x)\,dx\right).
Proof.

By (2.7), when Fv=F_{v}=\mathbb{R}, we get

ϕv(I2)=12πxhϕv(x)(0sin(2πxt)sinh(πt)𝑑t)𝑑x=14πxhϕv(x)tanh(πx)𝑑x\phi_{v}(I_{2})=\frac{1}{2\pi}\int_{-\infty}^{\infty}xh_{\phi_{v}}(x)\left(\int_{0}^{\infty}\frac{\sin(2\pi xt)}{\sinh(\pi t)}\,dt\right)\,dx=\frac{1}{4\pi}\int_{-\infty}^{\infty}xh_{\phi_{v}}(x)\tanh(\pi x)dx

since by [7, 3.986.2],

0sin(2πxt)sinh(πt)𝑑t=12tanh(πx).\int_{0}^{\infty}\frac{\sin(2\pi xt)}{\sinh(\pi t)}dt=\frac{1}{2}\tanh(\pi x).

When Fv=F_{v}=\mathbb{C}, we use (2.8). Then, we get

ϕv(I2)=2π2x2hϕv(x)𝑑x.\phi_{v}(I_{2})=\frac{2}{\pi^{2}}\int_{-\infty}^{\infty}x^{2}h_{\phi_{v}}(x)dx.

3.3. Elliptic contribution

For γG¯(F)\gamma\in\bar{\mathrm{G}}(F), let G¯γ(F)\bar{\mathrm{G}}_{\gamma}(F) (resp. G¯γ(𝔸F)\bar{\mathrm{G}}_{\gamma}(\mathbb{A}_{F})) be the centralizer of γ\gamma in G¯(F)\bar{\mathrm{G}}(F) (resp. G¯(𝔸F)\bar{\mathrm{G}}(\mathbb{A}_{F})). For an elliptic matrix γG¯(F)\gamma\in\bar{\mathrm{G}}(F), the conjugacy class [γ][\gamma] of γ\gamma is defined by

[γ]:={δ1γδ:δG¯γ(F)\G¯(F)}.[\gamma]:=\left\{\delta^{-1}\gamma\delta\;:\;\delta\in\bar{\mathrm{G}}_{\gamma}(F)\backslash\bar{\mathrm{G}}(F)\right\}.

Let Gγ(F)\mathrm{G}_{\gamma}(F) (resp. Gγ(𝔸F)\mathrm{G}_{\gamma}(\mathbb{A}_{F})) be the centralizer of γ~\tilde{\gamma} in G(F)\mathrm{G}(F) (resp. G(𝔸F)\mathrm{G}(\mathbb{A}_{F})), where γ~G(F)\tilde{\gamma}\in\mathrm{G}(F) is a representative of [γ][\gamma]. Let Gγ(F)¯:=Z(F)\Gγ(F)\overline{\mathrm{G}_{\gamma}(F)}:=\mathrm{Z}(F)\backslash\mathrm{G}_{\gamma}(F) and Gγ(𝔸F)¯:=Z(𝔸F)\Gγ(𝔸F)\overline{\mathrm{G}_{\gamma}(\mathbb{A}_{F})}:=\mathrm{Z}(\mathbb{A}_{F})\backslash\mathrm{G}_{\gamma}(\mathbb{A}_{F}). Then, by [16, Lemma 3.4], we see that

[G¯γ(F):Gγ(F)¯]={1if trγ0,2otherwise.[\bar{\mathrm{G}}_{\gamma}(F):\overline{\mathrm{G}_{\gamma}(F)}]=\begin{cases}1&\text{if }\mathrm{tr}\gamma\neq 0,\\ 2&\text{otherwise.}\end{cases}

In [6, pp. 244], Sell(ϕ)S_{\mathrm{ell}}(\phi) is defined by

Sell(ϕ):=elliptic γG¯(F)G¯(F)\G¯(𝔸F)ϕ(g1γg)𝑑g.S_{\mathrm{ell}}(\phi):=\sum_{\text{elliptic }\gamma\in\bar{\mathrm{G}}(F)}\int_{\bar{\mathrm{G}}(F)\backslash\bar{\mathrm{G}}(\mathbb{A}_{F})}\phi(g^{-1}\gamma g)dg.

Since g1δ1γδg=g1γgg^{-1}\delta^{-1}\gamma\delta g=g^{-1}\gamma g for δG¯γ(𝔸F)\delta\in\bar{\mathrm{G}}_{\gamma}(\mathbb{A}_{F}) and ϕ=vSFϕv\phi=\prod_{v\in S_{F}}\phi_{v} is factorizable, we obtain that

Sell(ϕ)\displaystyle S_{\mathrm{ell}}(\phi) =[γ] elliptic G¯(F)\G¯(𝔸F)δG¯γ(F)\G¯(F)ϕ(g1δ1γδg)dg\displaystyle=\sum_{[\gamma]\text{ elliptic }}\int_{\bar{\mathrm{G}}(F)\backslash\bar{\mathrm{G}}(\mathbb{A}_{F})}\sum_{\delta\in\bar{\mathrm{G}}_{\gamma}(F)\backslash\bar{\mathrm{G}}(F)}\phi(g^{-1}\delta^{-1}\gamma\delta g)dg
=[γ] elliptic G¯γ(F)\G¯(𝔸F)ϕ(g1γg)𝑑g\displaystyle=\sum_{[\gamma]\text{ elliptic }}\int_{\bar{\mathrm{G}}_{\gamma}(F)\backslash\bar{\mathrm{G}}(\mathbb{A}_{F})}\phi(g^{-1}\gamma g)dg
=[γ] elliptic CγGγ(F)¯\G¯(𝔸F)ϕ(g1γg)𝑑g\displaystyle=\sum_{[\gamma]\text{ elliptic }}C_{\gamma}\int_{\overline{\mathrm{G}_{\gamma}(F)}\backslash\bar{\mathrm{G}}(\mathbb{A}_{F})}\phi(g^{-1}\gamma g)dg
=[γ] elliptic Vol(Gγ(F)¯\Gγ(𝔸F)¯)S[γ](ϕ),\displaystyle=\sum_{[\gamma]\text{ elliptic }}\mathrm{Vol}(\overline{\mathrm{G}_{\gamma}(F)}\backslash\overline{\mathrm{G}_{\gamma}(\mathbb{A}_{F})})\cdot S_{[\gamma]}(\phi),

where for each conjugacy class [γ][\gamma],

(3.3) S[γ](ϕ):=vSF,finGγ(Fv)¯\G¯(Fv)ϕv(g1γg)𝑑gvSF,Gσv(γ)(Fv)¯\G¯(Fv)ϕv(g1σv(γ)g)𝑑g.S_{[\gamma]}(\phi):=\prod_{v\in S_{F,\mathrm{fin}}}\int_{\overline{\mathrm{G}_{\gamma}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\gamma g)dg\cdot\prod_{v\in S_{F,\infty}}\int_{\overline{\mathrm{G}_{\sigma_{v}(\gamma)}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\sigma_{v}(\gamma)g)dg.

Here, Cγ:=[G¯γ(F):Gγ(F)¯]1C_{\gamma}:=[\bar{\mathrm{G}}_{\gamma}(F):\overline{\mathrm{G}_{\gamma}(F)}]^{-1} and σv:FFv\sigma_{v}:F\to F_{v} is an embedding corresponding to vSF,v\in S_{F,\infty}.

Assume that S[γ](ϕ)0S_{[\gamma]}(\phi)\neq 0. Then, for vSF,finv\in S_{F,\mathrm{fin}}, we have

(3.4) Gγ(Fv)¯\G¯(Fv)ϕv(g1γg)𝑑g0.\int_{\overline{\mathrm{G}_{\gamma}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\gamma g)dg\neq 0.

Since the centralizer Gγ~(Fv)\mathrm{G}_{\tilde{\gamma}}(F_{v}) of γ~\tilde{\gamma} in G(Fv)\mathrm{G}(F_{v}) contains Z(Fv)\mathrm{Z}(F_{v}), we see that

Gγ(Fv)¯\G¯(Fv)ϕv(g1γg)𝑑g=Gγ~(Fv)\G(Fv)ϕv(g1γ~g)𝑑g.\int_{\overline{\mathrm{G}_{\gamma}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\gamma g)dg=\int_{\mathrm{G}_{\tilde{\gamma}}(F_{v})\backslash\mathrm{G}(F_{v})}\phi_{v}(g^{-1}\tilde{\gamma}g)dg.

Note that the integral Gγ~(Fv)\G(Fv)ϕv(g1γ~g)𝑑g\int_{\mathrm{G}_{\tilde{\gamma}}(F_{v})\backslash\mathrm{G}(F_{v})}\phi_{v}(g^{-1}\tilde{\gamma}g)dg is independent of the choice of the representative γ~\tilde{\gamma} of [γ][\gamma] since a Haar measure is invariant under the right multiplication. By (3.4), there are gvG(Fv)g_{v}\in\mathrm{G}(F_{v}) and αvZ(Fv)\alpha_{v}\in\mathrm{Z}(F_{v}) such that αv(gv1γ~gv)G(𝒪Fv)\alpha_{v}(g_{v}^{-1}\tilde{\gamma}g_{v})\in\mathrm{G}(\mathcal{O}_{F_{v}}). It follows that det(γ~)𝒪Fv×Fv×2\mathrm{det}(\tilde{\gamma})\in\mathcal{O}_{F_{v}}^{\times}F_{v}^{\times^{2}} for each vSF,finv\in S_{F,\mathrm{fin}}. Since the entries of γ~\tilde{\gamma} are in FF, we have det(γ~)𝒪F×F×2\mathrm{det}(\tilde{\gamma})\in\mathcal{O}_{F}^{\times}F^{\times^{2}}. By multiplying a non-zero element in FF, we can assume that the determinant of γ~\tilde{\gamma} is in 𝒪F×\mathcal{O}_{F}^{\times}. Since αv(gv1γ~gv)G(𝒪Fv)\alpha_{v}(g_{v}^{-1}\tilde{\gamma}g_{v})\in\mathrm{G}(\mathcal{O}_{F_{v}}), it follows that αvZ(𝒪Fv)\alpha_{v}\in\mathrm{Z}(\mathcal{O}_{F_{v}}) for every vSF,finv\in S_{F,\mathrm{fin}}. From this, we obtain that gv1γ~gvG(𝒪Fv)g_{v}^{-1}\tilde{\gamma}g_{v}\in\mathrm{G}(\mathcal{O}_{F_{v}}). Thus, tr(γ~)𝒪Fv\mathrm{tr}(\tilde{\gamma})\in\mathcal{O}_{F_{v}} for each vSF,finv\in S_{F,\mathrm{fin}}, and then tr(γ~)𝒪F\mathrm{tr}(\tilde{\gamma})\in\mathcal{O}_{F}. Note that γ~\tilde{\gamma} is similar to (01detγ~trγ~)\left(\begin{smallmatrix}0&1\\ -\mathrm{det}\tilde{\gamma}&\mathrm{tr}\tilde{\gamma}\end{smallmatrix}\right) over FF. Therefore, there is a unique pair (m,u)𝒪F×(𝒪F×/𝒪F×2)(m,u)\in\mathcal{O}_{F}\times\left(\mathcal{O}_{F}^{\times}/\mathcal{O}_{F}^{\times^{2}}\right) such that (01um)\left(\begin{smallmatrix}0&1\\ -u&m\end{smallmatrix}\right) is in [γ][\gamma].

Let UFU_{F} be the set of representatives of 𝒪F×/𝒪F×2\mathcal{O}_{F}^{\times}/\mathcal{O}_{F}^{\times^{2}}. Dirichlet’s unit theorem implies that UFU_{F} is a finite set. Let γm,u:=(01um)\gamma_{m,u}:=\left(\begin{smallmatrix}0&1\\ -u&m\end{smallmatrix}\right) with (m,u)𝒪F×UF(m,u)\in\mathcal{O}_{F}\times U_{F}. For a ring RR containing 𝒪F\mathcal{O}_{F}, the centralizer Gγm,u(R)\mathrm{G}_{\gamma_{m,u}}(R) of γm,u\gamma_{m,u} in G(R)\mathrm{G}(R) is equal to

Gγm,u(R)={(acu1cacmu1):a,cR and a2acmu1+c2u1R×}.\mathrm{G}_{\gamma_{m,u}}(R)=\left\{\begin{pmatrix}a&-cu^{-1}\\ c&a-cmu^{-1}\end{pmatrix}:a,c\in R\text{ and }a^{2}-acmu^{-1}+c^{2}u^{-1}\in R^{\times}\right\}.

Here, R×R^{\times} denotes the set of units in RR. Let E:=F(m24u)E:=F(\sqrt{m^{2}-4u}). Since γm,u\gamma_{m,u} is an elliptic matrix over FF, it follows that [E:F]=2[E:F]=2. We define an isomorphism ψ:Gγm,u(F)E×\psi:\mathrm{G}_{\gamma_{m,u}}(F)\to E^{\times} by

(3.5) ψ(aI2cu1γm,u):=acu1(m+m24u2).\psi(aI_{2}-cu^{-1}\gamma_{m,u}):=a-cu^{-1}\left(\frac{m+\sqrt{m^{2}-4u}}{2}\right).

The isomorphism (3.5) deduces that

(3.6) Gγm,u(𝔸F)𝔸E×.\mathrm{G}_{\gamma_{m,u}}(\mathbb{A}_{F})\cong\mathbb{A}_{E}^{\times}.

Note that a Haar measure on 𝔸E×\mathbb{A}_{E}^{\times} is given by an isomorphism (3.6). From this isomorphism (3.6), we compute the volume of Gγm,u(F)¯\Gγm,u(𝔸F)¯\overline{\mathrm{G}_{\gamma_{m,u}}(F)}\backslash\overline{\mathrm{G}_{\gamma_{m,u}}(\mathbb{A}_{F})} in the following lemma.

For a number field KK, let 𝔸K1\mathbb{A}_{K}^{1} (resp. 𝔸K,1\mathbb{A}_{K,\infty}^{1}) be the subset of 𝔸K\mathbb{A}_{K} (resp. 𝔸K,\mathbb{A}_{K,\infty}) consisting of (kv)vSK(k_{v})_{v\in S_{K}} (resp. (kv)vSK,(k_{v})_{v\in S_{K,\infty}}) such that vSK|kv|v=1\prod_{v\in S_{K}}|k_{v}|_{v}=1 (resp. vSK,|kv|v=1\prod_{v\in S_{K,\infty}}|k_{v}|_{v}=1).

Lemma 3.3.

Let (m,u)𝒪F×𝒪F×(m,u)\in\mathcal{O}_{F}\times\mathcal{O}_{F}^{\times} and E:=F(m24u)E:=F(\sqrt{m^{2}-4u}). Let cl(E)\mathrm{cl}(E) be the class number of EE. Let i:E𝔸E,i_{\infty}:E\to\mathbb{A}_{E,\infty} be an inclusion map defined by

i(e):=(σv(e))vSE,.i_{\infty}(e):=(\sigma_{v}(e))_{v\in S_{E,\infty}}.

Assume that [E:F]=2[E:F]=2. Then, we have

Vol(Gγm,u(F)¯\Gγm,u(𝔸F)¯)=2cl(E)Vol(i(𝒪E×)\𝔸E,1)wSE,finVol(𝒪Ew×)Vol(F×\𝔸F1).\mathrm{Vol}\left(\overline{\mathrm{G}_{\gamma_{m,u}}(F)}\backslash\overline{\mathrm{G}_{\gamma_{m,u}}(\mathbb{A}_{F})}\right)=\frac{2\cdot\mathrm{cl}(E)\cdot\mathrm{Vol}\left(i_{\infty}(\mathcal{O}_{E}^{\times})\backslash\mathbb{A}^{1}_{E,\infty}\right)\cdot\prod_{w\in S_{E,\mathrm{fin}}}\mathrm{Vol}(\mathcal{O}_{E_{w}}^{\times})}{\mathrm{Vol}\left(F^{\times}\backslash\mathbb{A}_{F}^{1}\right)}.
Remark 3.4.

The exact volume of Gγm,u(F)¯\Gγm,u(𝔸F)¯\overline{\mathrm{G}_{\gamma_{m,u}}(F)}\backslash\overline{\mathrm{G}_{\gamma_{m,u}}(\mathbb{A}_{F})} is obtained by [16, Theorem 4.16]. For the calculation of the orbital integral Gγ(Fv)¯\G¯(Fv)ϕv(g1γg)𝑑g\int_{\overline{\mathrm{G}_{\gamma}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\gamma g)dg, we construct a Haar measure of each set in Section 3.3. Note that the difference between these constructed Haar measures and the Haar measures in [16] is a constant multiple.

Proof of Lemma 3.3.

By an isomorphism (3.6), Gγm,u(F)¯\Gγm,u(𝔸F)¯=Z(𝔸F)Gγm,u(F)\Gγm,u(𝔸F)\overline{\mathrm{G}_{\gamma_{m,u}}(F)}\backslash\overline{\mathrm{G}_{\gamma_{m,u}}(\mathbb{A}_{F})}=\mathrm{Z}(\mathbb{A}_{F})\mathrm{G}_{\gamma_{m,u}}(F)\backslash\mathrm{G}_{\gamma_{m,u}}(\mathbb{A}_{F}) can be identified (𝔸F×E×)\𝔸E×\left(\mathbb{A}_{F}^{\times}\cdot E^{\times}\right)\backslash\mathbb{A}_{E}^{\times}. By (4.31) in [16], we have

Vol((𝔸F×E×)\𝔸E×)=Vol(E×\𝔸E1)12Vol(F×\𝔸F1)=2Vol(E×\𝔸E1)Vol(F×\𝔸F1).\mathrm{Vol}\left(\left(\mathbb{A}_{F}^{\times}\cdot E^{\times}\right)\backslash\mathbb{A}_{E}^{\times}\right)=\frac{\mathrm{Vol}\left(E^{\times}\backslash\mathbb{A}_{E}^{1}\right)}{\frac{1}{2}\cdot\mathrm{Vol}\left(F^{\times}\backslash\mathbb{A}_{F}^{1}\right)}=\frac{2\cdot\mathrm{Vol}\left(E^{\times}\backslash\mathbb{A}_{E}^{1}\right)}{\mathrm{Vol}\left(F^{\times}\backslash\mathbb{A}_{F}^{1}\right)}.

Following the proof of [20, Theorem 4.3.2], we conclude that

Vol(Gγm,u(F)¯\Gγm,u(𝔸F)¯)=2cl(E)Vol(i(𝒪E×)\𝔸E,1)wSE,finVol(𝒪Ew×)Vol(F×\𝔸F1).\mathrm{Vol}\left(\overline{\mathrm{G}_{\gamma_{m,u}}(F)}\backslash\overline{\mathrm{G}_{\gamma_{m,u}}(\mathbb{A}_{F})}\right)=\frac{2\cdot\mathrm{cl}(E)\cdot\mathrm{Vol}\left(i_{\infty}(\mathcal{O}_{E}^{\times})\backslash\mathbb{A}^{1}_{E,\infty}\right)\cdot\prod_{w\in S_{E,\mathrm{fin}}}\mathrm{Vol}(\mathcal{O}_{E_{w}}^{\times})}{\mathrm{Vol}\left(F^{\times}\backslash\mathbb{A}_{F}^{1}\right)}.

To compute the volume of 𝒪Ew×\mathcal{O}^{\times}_{E_{w}} for wSE,finw\in S_{E,\mathrm{fin}}, we define a Haar measure on Ew×E_{w}^{\times} as follows. For vSF,finv\in S_{F,\mathrm{fin}}, a Haar measure dgdg on Gγm,u(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v}) is defined by

(3.7) dg:=qv3(qv1)2(qv+1)dvadvc|a2acmu1+c2u1|v,dg:=\frac{q_{v}^{3}}{(q_{v}-1)^{2}(q_{v}+1)}\cdot\frac{d_{v}a\,d_{v}c}{|a^{2}-acmu^{-1}+c^{2}u^{-1}|_{v}},

where g=(acu1cacmu1)Gγm,u(Fv)g=\left(\begin{smallmatrix}a&-cu^{-1}\\ c&a-cmu^{-1}\end{smallmatrix}\right)\in\mathrm{G}_{\gamma_{m,u}}(F_{v}). Here, dvad_{v}a is an additive measure on FvF_{v} satisfying Vol(𝒪Fv)=1\mathrm{Vol}(\mathcal{O}_{F_{v}})=1. If there exists an element xFvx\in F_{v} such that x2=m24ux^{2}=m^{2}-4u, then the prime ideal 𝔭v\mathfrak{p}_{v} corresponding to vv splits completely in EE. Thus, there are exactly two places wSE,finw\in S_{E,\mathrm{fin}} lying over vv, and then there is an isomorphism ψv:Gγm,u(Fv)wvEw×\psi_{v}:\mathrm{G}_{\gamma_{m,u}}(F_{v})\to\prod_{w\mid v}E_{w}^{\times} defined by

(3.8) ψv(aI2cu1γm,u):=(acu1(m+x12),acu1(m+x22)),\psi_{v}(aI_{2}-cu^{-1}\gamma_{m,u}):=\left(a-cu^{-1}\left(\frac{m+x_{1}}{2}\right),a-cu^{-1}\left(\frac{m+x_{2}}{2}\right)\right),

where x1x_{1} and x2x_{2} are roots of x2=m24ux^{2}=m^{2}-4u in FvF_{v}. If there is no xFvx\in F_{v} satisfying x2=m24ux^{2}=m^{2}-4u, then there is a unique wSF,finw\in S_{F,\mathrm{fin}} lying over vv. Thus, there is an isomorphism ψv:Gγm,u(Fv)Ew×\psi_{v}:\mathrm{G}_{\gamma_{m,u}}(F_{v})\to E_{w}^{\times} defined by

(3.9) ψv(aI2cu1γm,u):=acu1(m+m24u2).\psi_{v}(aI_{2}-cu^{-1}\gamma_{m,u}):=a-cu^{-1}\left(\frac{m+\sqrt{m^{2}-4u}}{2}\right).

Hence, a Haar measure on wvEw×\prod_{w\mid v}E_{w}^{\times} is given by the isomorphism ψv\psi_{v} for each vSF,finv\in S_{F,\mathrm{fin}}. Thus, the volume of wv𝒪Ew×\prod_{w\mid v}\mathcal{O}_{E_{w}}^{\times} is equal to the volume of the preimage of it under ψv\psi_{v}, i.e.,

Vol(wv𝒪Ew×)=Vol(ψv1(wv𝒪Ew×)).\mathrm{Vol}\left(\prod_{w\mid v}\mathcal{O}_{E_{w}}^{\times}\right)=\mathrm{Vol}\left(\psi_{v}^{-1}\left(\prod_{w\mid v}\mathcal{O}_{E_{w}}^{\times}\right)\right).

The following lemma provides an upper bound for Vol(wv𝒪Ew×)\mathrm{Vol}(\prod_{w\mid v}\mathcal{O}_{E_{w}}^{\times}) in terms of qvq_{v} when vSF,finv\in S_{F,\mathrm{fin}}.

Lemma 3.5.

Assume that vSF,finv\in S_{F,\mathrm{fin}} and that (m,u)𝒪Fv×𝒪Fv×(m,u)\in\mathcal{O}_{F_{v}}\times\mathcal{O}_{F_{v}}^{\times}. Let NvN_{v} be defined by the number of t𝒪Fv/ϖv𝒪Fvt\in\mathcal{O}_{F_{v}}/\varpi_{v}\mathcal{O}_{F_{v}} satisfying t2mt+u=0t^{2}-mt+u=0. Let fv:=valv(m24u)f_{v}:=\mathrm{val}_{v}(m^{2}-4u). If fv>0f_{v}>0, then

Vol(wv𝒪Ew×)qv3+2[fv+12](qv1)2(qv+1),\mathrm{Vol}\left(\prod_{w\mid v}\mathcal{O}_{E_{w}}^{\times}\right)\leq\frac{q_{v}^{3+2\cdot[\frac{f_{v}+1}{2}]}}{(q_{v}-1)^{2}(q_{v}+1)},

and if fv=0f_{v}=0, then

Vol(wv𝒪Ew×)qv(qv+1Nv)qv21.\mathrm{Vol}\left(\prod_{w\mid v}\mathcal{O}_{E_{w}}^{\times}\right)\leq\frac{q_{v}(q_{v}+1-N_{v})}{q_{v}^{2}-1}.
Proof.

By the definition of ψv\psi_{v}, we have

ψv1\displaystyle\psi_{v}^{-1} (wv𝒪Ew×)\displaystyle\left(\prod_{w\mid v}\mathcal{O}_{E_{w}}^{\times}\right)
{(acu1cacmu1):min(valv(a),valv(c))fv2 and valv(a2acmu1+c2u1)=0}.\displaystyle\subset\left\{\begin{pmatrix}a&-cu^{-1}\\ c&a-cmu^{-1}\end{pmatrix}:\min\left(\mathrm{val}_{v}(a),\mathrm{val}_{v}(c)\right)\geq-\frac{f_{v}}{2}\text{ and }\mathrm{val}_{v}(a^{2}-acmu^{-1}+c^{2}u^{-1})=0\right\}.

Recall that the Haar measure on Gγ(Fv)\mathrm{G}_{\gamma}(F_{v}) is given by (3.7). If fv>0f_{v}>0, then we have

Vol(ψv1(wv𝒪Ew×))\displaystyle\mathrm{Vol}\left(\psi_{v}^{-1}\left(\prod_{w\mid v}\mathcal{O}_{E_{w}}^{\times}\right)\right) qv3(qv1)2(qv+1)ϖv[fv+12]𝒪Fvϖv[fv+12]𝒪Fvdvadvc\displaystyle\leq\frac{q_{v}^{3}}{(q_{v}-1)^{2}(q_{v}+1)}\int_{\varpi_{v}^{-[\frac{f_{v}+1}{2}]}\mathcal{O}_{F_{v}}}\int_{\varpi_{v}^{-[\frac{f_{v}+1}{2}]}\mathcal{O}_{F_{v}}}d_{v}a\,d_{v}c
=qv3(qv1)2(qv+1)qv2[fv+12].\displaystyle=\frac{q_{v}^{3}}{(q_{v}-1)^{2}(q_{v}+1)}\cdot q_{v}^{2\cdot[\frac{f_{v}+1}{2}]}.

Assume that fv=0f_{v}=0. Since a2acmu1+c2u1=c2u2((au/c)2m(au/c)+u)a^{2}-acmu^{-1}+c^{2}u^{-1}=c^{2}u^{-2}((au/c)^{2}-m(au/c)+u), it follows that

{(a,c)𝒪Fv×𝒪Fv:valv(a2acmu1+c2u1)=0}\displaystyle\{(a,c)\in\mathcal{O}_{F_{v}}\times\mathcal{O}_{F_{v}}:\mathrm{val}_{v}(a^{2}-acmu^{-1}+c^{2}u^{-1})=0\}
=𝒪Fv×𝒪Fv{(ctu1+a1,c):c𝒪Fv×,a1ϖv𝒪Fv and ϖvt2mt+u}ϖv𝒪Fv×ϖv𝒪Fv.\displaystyle=\mathcal{O}_{F_{v}}\times\mathcal{O}_{F_{v}}-\{(ctu^{-1}+a_{1},c):c\in\mathcal{O}_{F_{v}}^{\times},a_{1}\in\varpi_{v}\mathcal{O}_{F_{v}}\text{ and }\varpi_{v}\mid t^{2}-mt+u\}-\varpi_{v}\mathcal{O}_{F_{v}}\times\varpi_{v}\mathcal{O}_{F_{v}}.

Therefore, we conclude that

Vol(wv𝒪Ew×)\displaystyle\mathrm{Vol}\left(\prod_{w\mid v}\mathcal{O}_{E_{w}}^{\times}\right) qv3(qv1)2(qv+1)(1Nv(qv1)qv21qv2)\displaystyle\leq\frac{q_{v}^{3}}{(q_{v}-1)^{2}(q_{v}+1)}\left(1-\frac{N_{v}(q_{v}-1)}{q_{v}^{2}}-\frac{1}{q_{v}^{2}}\right)
=qv(qv+1Nv)qv21.\displaystyle=\frac{q_{v}(q_{v}+1-N_{v})}{q_{v}^{2}-1}.

Since Gγm,u(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v}) contains Z(Fv)\mathrm{Z}(F_{v}), it follows that Gγm,u(Fv)¯\G¯(Fv)\overline{\mathrm{G}_{\gamma_{m,u}}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v}) is isomorphic to Gγm,u(Fv)\G(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v})\backslash\mathrm{G}(F_{v}). In the following lemma, we compute the set of representatives of Gγm,u(Fv)\G(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v})\backslash\mathrm{G}(F_{v}).

Lemma 3.6.

Assume that vSF,finv\in S_{F,\mathrm{fin}} and that (m,u)𝒪F×𝒪F×(m,u)\in\mathcal{O}_{F}\times\mathcal{O}_{F}^{\times} satisfies m24uF2m^{2}-4u\not\in F^{2}. If there is αFv\alpha\in F_{v} such that α2mα+u=0\alpha^{2}-m\alpha+u=0, then

{(1u1αiαi1):i{1,2}}{(1xαi0):xFv× and i{1,2}}{(1x0y):xFv and yFv×}\left\{\begin{pmatrix}1&u^{-1}\alpha_{i}\\ \alpha_{i}&1\end{pmatrix}:i\in\{1,2\}\right\}\cup\left\{\begin{pmatrix}1&x\\ \alpha_{i}&0\end{pmatrix}:x\in F_{v}^{\times}\text{ and }i\in\{1,2\}\right\}\cup\left\{\begin{pmatrix}1&x\\ 0&y\end{pmatrix}:x\in F_{v}\text{ and }y\in F_{v}^{\times}\right\}

is a set of representatives of Gγm,u(Fv)\G(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v})\backslash\mathrm{G}(F_{v}). Here, α1\alpha_{1} and α2\alpha_{2} are roots of x2mx+u=0x^{2}-mx+u=0 in FvF_{v}. If there is no αFv\alpha\in F_{v} satisfying α2mα+u=0\alpha^{2}-m\alpha+u=0, then

{(1x0y):xFv and yFv×}\left\{\begin{pmatrix}1&x\\ 0&y\end{pmatrix}:x\in F_{v}\text{ and }y\in F_{v}^{\times}\right\}

is a set of representatives of Gγm,u(Fv)\G(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v})\backslash\mathrm{G}(F_{v}).

Proof.

For (abcd)G(Fv)\left(\begin{smallmatrix}a&b\\ c&d\end{smallmatrix}\right)\in\mathrm{G}(F_{v}) with a2macu1+c2u10a^{2}-macu^{-1}+c^{2}u^{-1}\neq 0, we have

(3.10) (abcd)=(acu1cacmu1)(1ab+cdu1bcmu1a2acmu1+c2u10adbca2acmu1+c2u1).\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\begin{pmatrix}a&-cu^{-1}\\ c&a-cmu^{-1}\end{pmatrix}\begin{pmatrix}1&\frac{ab+cdu^{-1}-bcmu^{-1}}{a^{2}-acmu^{-1}+c^{2}u^{-1}}\\ 0&\frac{ad-bc}{a^{2}-acmu^{-1}+c^{2}u^{-1}}\end{pmatrix}.

Moreover, if (x1,y1)(x2,y2)(x_{1},y_{1})\neq(x_{2},y_{2}), then

(1x10y1)(1x20y2)1=1y2(y2x1x20y1)Gγm,u(Fv).\begin{pmatrix}1&x_{1}\\ 0&y_{1}\end{pmatrix}\begin{pmatrix}1&x_{2}\\ 0&y_{2}\end{pmatrix}^{-1}=\frac{1}{y_{2}}\begin{pmatrix}y_{2}&x_{1}-x_{2}\\ 0&y_{1}\end{pmatrix}\not\in\mathrm{G}_{\gamma_{m,u}}(F_{v}).

Thus, if there is no root of x2mx+ux^{2}-mx+u in FvF_{v}, then

{(1x0y):xFv and yFv×}\left\{\begin{pmatrix}1&x\\ 0&y\end{pmatrix}:x\in F_{v}\text{ and }y\in F_{v}^{\times}\right\}

is a set of representatives of Gγm,u(Fv)\G(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v})\backslash\mathrm{G}(F_{v}).

Assume that there is αFv\alpha\in F_{v} satisfying α2mα+u=0\alpha^{2}-m\alpha+u=0. Let α1\alpha_{1} and α2\alpha_{2} be roots of x2mx+u=0x^{2}-mx+u=0 in FvF_{v}. Note that if a2acmu1+c2u1=0a^{2}-acmu^{-1}+c^{2}u^{-1}=0, then c=aαic=a\alpha_{i} for i{1,2}i\in\{1,2\}. Thus, we assume that c=aαc=a\alpha with α{α1,α2}\alpha\in\{\alpha_{1},\alpha_{2}\}. If bdu1αb\neq du^{-1}\alpha, then

(3.11) (abaαd)\displaystyle\begin{pmatrix}a&b\\ a\alpha&d\end{pmatrix} =(ab(bdu1α)1adu1(bdu1α)1ad(bdu1α)1a(bmu1d)(bdu1α)1)(1a1(bdu1α)α0)\displaystyle=\begin{pmatrix}ab(b-du^{-1}\alpha)^{-1}&-adu^{-1}(b-du^{-1}\alpha)^{-1}\\ ad(b-du^{-1}\alpha)^{-1}&a(b-mu^{-1}d)(b-du^{-1}\alpha)^{-1}\end{pmatrix}\begin{pmatrix}1&a^{-1}(b-du^{-1}\alpha)\\ \alpha&0\end{pmatrix}
Gγm,u(Fv)(1a1(bdu1α)α0).\displaystyle\in\mathrm{G}_{\gamma_{m,u}}(F_{v})\begin{pmatrix}1&a^{-1}(b-du^{-1}\alpha)\\ \alpha&0\end{pmatrix}.

Note that for any aa and dd in Fv×F_{v}^{\times}, we get

adu1α2m(ad)u1α\displaystyle a-du^{-1}\alpha^{2}-m(a-d)u^{-1}\alpha =adu1α2m(ad)u1α+(da)u1(α2mα+u)\displaystyle=a-du^{-1}\alpha^{2}-m(a-d)u^{-1}\alpha+(d-a)u^{-1}(\alpha^{2}-m\alpha+u)
=dau1α2\displaystyle=d-au^{-1}\alpha^{2}

and

(3.12) (adu1αaαd)=11u1α2(adu1α2(ad)u1α(ad)αau1α2+d)(1u1αα1)Gγ(Fv)(1u1αα1).\begin{pmatrix}a&du^{-1}\alpha\\ a\alpha&d\end{pmatrix}=\frac{1}{1-u^{-1}\alpha^{2}}\begin{pmatrix}a-du^{-1}\alpha^{2}&-(a-d)u^{-1}\alpha\\ (a-d)\alpha&-au^{-1}\alpha^{2}+d\end{pmatrix}\begin{pmatrix}1&u^{-1}\alpha\\ \alpha&1\end{pmatrix}\in\mathrm{G}_{\gamma}(F_{v})\begin{pmatrix}1&u^{-1}\alpha\\ \alpha&1\end{pmatrix}.

Let SS be the collection of (1u1αiαi1)\left(\begin{smallmatrix}1&u^{-1}\alpha_{i}\\ \alpha_{i}&1\end{smallmatrix}\right), (1yαi0)\left(\begin{smallmatrix}1&y\\ \alpha_{i}&0\end{smallmatrix}\right), and (1x0y)\left(\begin{smallmatrix}1&x\\ 0&y\end{smallmatrix}\right), where i{1,2}i\in\{1,2\}, xFvx\in F_{v} and yFv×y\in F_{v}^{\times}. By (3.10), (3.11) and (3.12), we see that for any gG(Fv)g\in\mathrm{G}(F_{v}), there is g0Sg_{0}\in S such that

(3.13) gGγm,u(Fv)g0.g\in\mathrm{G}_{\gamma_{m,u}}(F_{v})\cdot g_{0}.

Moreover, by a calculation, we deduce that there is a unique g0g_{0} in SS satisfying (3.13). Therefore, the set SS is a set of representatives of Gγm,u(Fv)\G(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v})\backslash\mathrm{G}(F_{v}). ∎

Since Gγm,u(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v}) is an abelian group and G(Fv)\mathrm{G}(F_{v}) is a unimodular group, there is the unique right G(Fv)\mathrm{G}(F_{v})-invariant measure on the homogeneous space Gγm,u(Fv)\G(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v})\backslash\mathrm{G}(F_{v}) up to constant multiplication. Thus, Haar measures on G(Fv)\mathrm{G}(F_{v}) and Gγm,u(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v}) naturally induce a right G(Fv)\mathrm{G}(F_{v})-invariant Haar measure on Gγm,u(Fv)\G(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v})\backslash\mathrm{G}(F_{v}) as follows. By using Lemma 3.6, a measure dgdg on Gγm,u(Fv)\G(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v})\backslash\mathrm{G}(F_{v}) is defined by

(3.14) dg:={dvxdvy|y|v2if g=Gγm,u(Fv)(1x0y),0otherwise,dg:=\begin{cases}\frac{d_{v}xd_{v}y}{|y|_{v}^{2}}\quad&\text{if }g=\mathrm{G}_{\gamma_{m,u}}(F_{v})\left(\begin{smallmatrix}1&x\\ 0&y\end{smallmatrix}\right),\\ 0\quad&\text{otherwise,}\end{cases}

where xFvx\in F_{v} and yFv×y\in F_{v}^{\times}. We have to check whether Haar measures on G(Fv)\mathrm{G}(F_{v}), Gγm,u(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v}), and Gγm,u(Fv)\G(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v})\backslash\mathrm{G}(F_{v}) are compatible. Let h1:=aI2cu1γm,uGγm,u(Fv)h_{1}:=aI_{2}-cu^{-1}\gamma_{m,u}\in\mathrm{G}_{\gamma_{m,u}}(F_{v}), and let h2h_{2} be an element in the set of representatives of Gγm,u(Fv)\G(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v})\backslash\mathrm{G}(F_{v}) as given in Lemma 3.6. Let g:=h1h2G(Fv)g:=h_{1}h_{2}\in\mathrm{G}(F_{v}). Assume that h2=(1x0y)h_{2}=\left(\begin{smallmatrix}1&x\\ 0&y\end{smallmatrix}\right) with xFvx\in F_{v} and yFv×y\in F_{v}^{\times}. By the definitions of Haar measures on Gγm,u(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v}) and Gγm,u(Fv)\G(Fv)\mathrm{G}_{\gamma_{m,u}}(F_{v})\backslash\mathrm{G}(F_{v}), we have

dh1dh2=qv3(qv1)2(qv+1)dvadvc|a2acmu1+c2u1|vdvxdvy|y|v2.dh_{1}\,dh_{2}=\frac{q_{v}^{3}}{(q_{v}-1)^{2}(q_{v}+1)}\cdot\frac{d_{v}a\,d_{v}c}{|a^{2}-acmu^{-1}+c^{2}u^{-1}|_{v}}\cdot\frac{d_{v}x\,d_{v}y}{|y|_{v}^{2}}.

In another way, since g=(aaxcu1ycay+cxcmu1y)g=\left(\begin{smallmatrix}a&ax-cu^{-1}y\\ c&ay+cx-cmu^{-1}y\end{smallmatrix}\right), it follows that

dg=qv3(qv1)2(qv+1)dvadvcdv(axcu1y)dv(ay+cxcmu1y)|y(a2acmu1+c2u1)|v2=dh1dh2.\displaystyle dg=\frac{q_{v}^{3}}{(q_{v}-1)^{2}(q_{v}+1)}\cdot\frac{d_{v}a\,d_{v}c\,d_{v}(ax-cu^{-1}y)\,d_{v}(ay+cx-cmu^{-1}y)}{|y(a^{2}-acmu^{-1}+c^{2}u^{-1})|_{v}^{2}}=dh_{1}\,dh_{2}.

Similarly, when h2h_{2} does not have the form (1x0y)\left(\begin{smallmatrix}1&x\\ 0&y\end{smallmatrix}\right), we can obtain dg=dh1dh2dg=dh_{1}\,dh_{2}.

In the following lemma, we obtain an upper bound for the integral

Gγm,u(Fv)¯\G¯(Fv)ϕv(g1γm,ug)𝑑g.\int_{\overline{\mathrm{G}_{\gamma_{m,u}}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\gamma_{m,u}g)dg.
Lemma 3.7.

Assume that vSF,finv\in S_{F,\mathrm{fin}}. Let mm, uu, fvf_{v} and NvN_{v} be defined as in Lemma 3.5. Then, we have

|Gγm,u(Fv)¯\G¯(Fv)ϕv(g1γm,ug)𝑑g|{1qv(qv1+Nv)if ev=fv=0,4qvev+fv2otherwise.\left|\int_{\overline{\mathrm{G}_{\gamma_{m,u}}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\gamma_{m,u}g)dg\right|\leq\begin{cases}\frac{1}{q_{v}}(q_{v}-1+N_{v})\quad&\text{if }e_{v}=f_{v}=0,\\ 4\cdot q_{v}^{-e_{v}+\frac{f_{v}}{2}}\quad&\text{otherwise}.\end{cases}

Here, the measure on Gγm,u(Fv)¯\G¯(Fv)\overline{\mathrm{G}_{\gamma_{m,u}}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v}) is given by (3.14).

Proof.

Assume that g=Gγm,u(Fv)(1x0y)Gγm,u(Fv)\G(Fv)g=\mathrm{G}_{\gamma_{m,u}}(F_{v})\left(\begin{smallmatrix}1&x\\ 0&y\end{smallmatrix}\right)\in\mathrm{G}_{\gamma_{m,u}}(F_{v})\backslash\mathrm{G}(F_{v}) with xFvx\in F_{v} and yFv×y\in F_{v}^{\times} satisfies ϕv(g1γm,ug)0\phi_{v}(g^{-1}\gamma_{m,u}g)\neq 0. Then, we get

(3.15) g1γm,ug=(1x0y)1(01um)(1x0y)=1y(xux2umxy+y2uux+my)Z(Fv)Kv,ev.\displaystyle g^{-1}\gamma_{m,u}g=\begin{pmatrix}1&x\\ 0&y\end{pmatrix}^{-1}\begin{pmatrix}0&1\\ -u&m\end{pmatrix}\begin{pmatrix}1&x\\ 0&y\end{pmatrix}=\frac{1}{y}\begin{pmatrix}xu&x^{2}u-mxy+y^{2}\\ -u&-ux+my\end{pmatrix}\in\mathrm{Z}(F_{v})\cdot\mathrm{K}_{v,e_{v}}.

Since det(g1γm,ug)𝒪Fv×\mathrm{det}(g^{-1}\gamma_{m,u}g)\in\mathcal{O}_{F_{v}}^{\times}, it follows that g1γm,ugKv,evg^{-1}\gamma_{m,u}g\in\mathrm{K}_{v,e_{v}}. By (3.15), if ϕv(g1γm,ug)0\phi_{v}(g^{-1}\gamma_{m,u}g)\neq 0, then we obtain that (x,y)(x,y) is in

(3.16) {(x,y)F×F×:y1ϖvev𝒪Fv,xy1𝒪Fv, and (x2umxy+y2)y1𝒪Fv}.\left\{(x,y)\in F\times F^{\times}:y^{-1}\in\varpi_{v}^{e_{v}}\mathcal{O}_{F_{v}},\quad xy^{-1}\in\mathcal{O}_{F_{v}},\text{ and }(x^{2}u-mxy+y^{2})y^{-1}\in\mathcal{O}_{F_{v}}\right\}.

If ev=0e_{v}=0 and y𝒪Fv×y\in\mathcal{O}_{F_{v}}^{\times}, then any x𝒪Fvx\in\mathcal{O}_{F_{v}} satisfies the condition (3.16). If valv(y)<0\mathrm{val}_{v}(y)<0 and valv(x)>valv(y)\mathrm{val}_{v}(x)>\mathrm{val}_{v}(y), then we have

valv((x2umxy+y2)y1)=valv(y)<0.\mathrm{val}_{v}\left((x^{2}u-mxy+y^{2})y^{-1}\right)=\mathrm{val}_{v}(y)<0.

Thus, if (x,y)(x,y) is in the set (3.16) with valv(y)<0\mathrm{val}_{v}(y)<0, then valv(x)=valv(y)\mathrm{val}_{v}(x)=\mathrm{val}_{v}(y). From this, we obtain that if ev=0e_{v}=0, then the set (3.16) is equal to

{(x,y)𝒪Fv×𝒪Fv×}{(ϖvαx0,ϖvαy0):α>0,x0,y0𝒪Fv× and x02umx0y0+y02ϖvα𝒪Fv},\{(x,y)\in\mathcal{O}_{F_{v}}\times\mathcal{O}_{F_{v}}^{\times}\}\cup\{(\varpi_{v}^{-\alpha}x_{0},\varpi_{v}^{-\alpha}y_{0}):\alpha>0,\quad x_{0},y_{0}\in\mathcal{O}_{F_{v}}^{\times}\text{ and }x_{0}^{2}u-mx_{0}y_{0}+y_{0}^{2}\in\varpi_{v}^{\alpha}\mathcal{O}_{F_{v}}\},

and if ev>0e_{v}>0, then the set (3.16) is equal to

{(ϖvαx0,ϖvαy0):αev,x0,y0𝒪Fv× and x02umx0y0+y02ϖvα𝒪Fv}.\{(\varpi_{v}^{-\alpha}x_{0},\varpi_{v}^{-\alpha}y_{0}):\alpha\geq e_{v},\quad x_{0},y_{0}\in\mathcal{O}_{F_{v}}^{\times}\text{ and }x_{0}^{2}u-mx_{0}y_{0}+y_{0}^{2}\in\varpi_{v}^{\alpha}\mathcal{O}_{F_{v}}\}.

For a positive integer α\alpha, let

Sv,α,m,u:={t𝒪Fv/ϖvα𝒪Fv:t2mt+u=0}.S_{v,\alpha,m,u}:=\{t\in\mathcal{O}_{F_{v}}/\varpi_{v}^{\alpha}\mathcal{O}_{F_{v}}:t^{2}-mt+u=0\}.

Then, we have

{(ϖvαx0,ϖvαy0):x0,y0𝒪Fv× and x02umx0y0+y02ϖvα𝒪Fv}\displaystyle\{(\varpi_{v}^{-\alpha}x_{0},\varpi_{v}^{-\alpha}y_{0}):x_{0},y_{0}\in\mathcal{O}_{F_{v}}^{\times}\text{ and }x_{0}^{2}u-mx_{0}y_{0}+y_{0}^{2}\in\varpi_{v}^{\alpha}\mathcal{O}_{F_{v}}\}
={(ϖvαx0,ϖvαx0tα+y):x0𝒪Fv×,y𝒪Fv and tαSv,α,m,u}\displaystyle=\{(\varpi_{v}^{-\alpha}x_{0},\varpi_{v}^{-\alpha}x_{0}t_{\alpha}+y):x_{0}\in\mathcal{O}_{F_{v}}^{\times},y\in\mathcal{O}_{F_{v}}\text{ and }t_{\alpha}\in S_{v,\alpha,m,u}\}
={(ϖvαtα1(x0tα+ϖvαy)tα1y,ϖvα(x0tα+ϖvαy)):x0𝒪Fv×,y𝒪Fv and tαSv,α,m,u}\displaystyle=\{(\varpi_{v}^{-\alpha}t_{\alpha}^{-1}(x_{0}t_{\alpha}+\varpi_{v}^{\alpha}y)-t_{\alpha}^{-1}y,\varpi_{v}^{-\alpha}(x_{0}t_{\alpha}+\varpi_{v}^{\alpha}y)):x_{0}\in\mathcal{O}_{F_{v}}^{\times},y\in\mathcal{O}_{F_{v}}\text{ and }t_{\alpha}\in S_{v,\alpha,m,u}\}
={(ϖvαtα1y1+x1,ϖvαy1):x1𝒪Fv,y1𝒪Fv× and tαSv,α,m,u}.\displaystyle=\{(\varpi_{v}^{-\alpha}t_{\alpha}^{-1}y_{1}+x_{1},\varpi_{v}^{-\alpha}y_{1}):x_{1}\in\mathcal{O}_{F_{v}},y_{1}\in\mathcal{O}_{F_{v}}^{\times}\text{ and }t_{\alpha}\in S_{v,\alpha,m,u}\}.

Hence, the set of g=(1x0y)g=\left(\begin{smallmatrix}1&x\\ 0&y\end{smallmatrix}\right) satisfying ϕv(g1γm,ug)0\phi_{v}(g^{-1}\gamma_{m,u}g)\neq 0 is equal to

(3.17) {(1ϖvαtα1y1+x10ϖvαy1):α1,x1𝒪Fv,y1𝒪Fv× and tαSv,α,m,u}\displaystyle\left\{\begin{pmatrix}1&\varpi_{v}^{-\alpha}t_{\alpha}^{-1}y_{1}+x_{1}\\ 0&\varpi_{v}^{-\alpha}y_{1}\end{pmatrix}:\alpha\geq 1,x_{1}\in\mathcal{O}_{F_{v}},y_{1}\in\mathcal{O}_{F_{v}}^{\times}\text{ and }t_{\alpha}\in S_{v,\alpha,m,u}\right\}
{(1x0y):x𝒪Fv and y𝒪Fv×}\displaystyle\cup\left\{\begin{pmatrix}1&x\\ 0&y\end{pmatrix}:x\in\mathcal{O}_{F_{v}}\text{ and }y\in\mathcal{O}_{F_{v}}^{\times}\right\}

if ev=0e_{v}=0, and

(3.18) {(1ϖvαtα1y1+x10ϖvαy1):αev,x1𝒪Fv,y1𝒪Fv× and tαSv,α,m,u}\left\{\begin{pmatrix}1&\varpi_{v}^{-\alpha}t_{\alpha}^{-1}y_{1}+x_{1}\\ 0&\varpi_{v}^{-\alpha}y_{1}\end{pmatrix}:\alpha\geq e_{v},x_{1}\in\mathcal{O}_{F_{v}},y_{1}\in\mathcal{O}_{F_{v}}^{\times}\text{ and }t_{\alpha}\in S_{v,\alpha,m,u}\right\}

if ev>0e_{v}>0.

For tαSv,α,m,ut_{\alpha}\in S_{v,\alpha,m,u}, the volume of

{(1ϖvαtα1y1+x10ϖvαy1):x1𝒪Fv and y1𝒪Fv×}\left\{\begin{pmatrix}1&\varpi_{v}^{-\alpha}t_{\alpha}^{-1}y_{1}+x_{1}\\ 0&\varpi_{v}^{-\alpha}y_{1}\end{pmatrix}:x_{1}\in\mathcal{O}_{F_{v}}\text{ and }y_{1}\in\mathcal{O}_{F_{v}}^{\times}\right\}

is computed by

(3.19) ϖvα𝒪Fv×𝒪Fvdvxdvy|y|v2=qvα𝒪Fv×𝒪Fvdvxdvy=qvα1(qv1).\displaystyle\int_{\varpi_{v}^{-\alpha}\mathcal{O}_{F_{v}}^{\times}}\int_{\mathcal{O}_{F_{v}}}\frac{d_{v}xd_{v}y}{|y|^{2}_{v}}=q_{v}^{-\alpha}\int_{\mathcal{O}_{F_{v}}^{\times}}\int_{\mathcal{O}_{F_{v}}}d_{v}xd_{v}y=q_{v}^{-\alpha-1}(q_{v}-1).

Similarly, we get

Vol({(1x0y):x𝒪Fv and y𝒪Fv×})=qv1(qv1).\mathrm{Vol}\left(\left\{\begin{pmatrix}1&x\\ 0&y\end{pmatrix}:x\in\mathcal{O}_{F_{v}}\text{ and }y\in\mathcal{O}_{F_{v}}^{\times}\right\}\right)=q_{v}^{-1}(q_{v}-1).

To complete the proof of Lemma 3.7, we compute the number of elements in Sv,α,m,uS_{v,\alpha,m,u}. Assume that fv=0f_{v}=0 and α1\alpha\geq 1. For each tSv,α,m,ut\in S_{v,\alpha,m,u}, there is t0𝒪Fvt_{0}\in\mathcal{O}_{F_{v}} such that the reduction of t0t_{0} modulo ϖvα\varpi_{v}^{\alpha} is equal to tt. Since tSv,α,m,ut\in S_{v,\alpha,m,u} and fv=0f_{v}=0, there is s𝒪Fvs\in\mathcal{O}_{F_{v}} such that

t02mt0+u=ϖvαs,t_{0}^{2}-mt_{0}+u=\varpi_{v}^{\alpha}s,

and then 2t0m𝒪Fv×2t_{0}-m\in\mathcal{O}_{F_{v}}^{\times}. Note that for a𝒪Fva\in\mathcal{O}_{F_{v}}, we have

(t0+aϖvα)2m(t0+aϖvα)+u=ϖvα(s+a(2t0m))+ϖv2αa2.(t_{0}+a\varpi_{v}^{\alpha})^{2}-m(t_{0}+a\varpi_{v}^{\alpha})+u=\varpi_{v}^{\alpha}(s+a(2t_{0}-m))+\varpi_{v}^{2\alpha}a^{2}.

Since 2t0m2t_{0}-m is a unit in 𝒪Fv\mathcal{O}_{F_{v}}, the reduction of aa modulo ϖv\varpi_{v} is equal to the reduction of (2t0m)1s-(2t_{0}-m)^{-1}s modulo ϖv\varpi_{v} if and only if the reduction of t0+aϖvαt_{0}+a\varpi_{v}^{\alpha} modulo ϖvα+1\varpi_{v}^{\alpha+1} is in Sv,α+1,m,uS_{v,\alpha+1,m,u}. Thus, if fv=0f_{v}=0 and α1\alpha\geq 1, then #Sv,α,m,u=#Sv,α+1,m,u\#S_{v,\alpha,m,u}=\#S_{v,\alpha+1,m,u}.

If ev=fv=0e_{v}=f_{v}=0, then #Sv,α,m,u=#Sv,1,m,u=Nv\#S_{v,\alpha,m,u}=\#S_{v,1,m,u}=N_{v} for α1\alpha\geq 1. Thus, we have

|Gγm,u(Fv)¯\G¯(Fv)ϕv(g1γm,ug)𝑑g|\displaystyle\left|\int_{\overline{\mathrm{G}_{\gamma_{m,u}}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\gamma_{m,u}g)dg\right| qv1(qv1)+α1Nvqvα1(qv1)\displaystyle\leq q_{v}^{-1}(q_{v}-1)+\sum_{\alpha\geq 1}N_{v}q_{v}^{-\alpha-1}(q_{v}-1)
=qv1+Nvqv.\displaystyle=\frac{q_{v}-1+N_{v}}{q_{v}}.

For any vSF,finv\in S_{F,\mathrm{fin}} and α0\alpha\geq 0, if tSv,α,m,ut\in S_{v,\alpha,m,u}, then

(tm2)2m24u4ϖvα𝒪Fv.\left(t-\frac{m}{2}\right)^{2}-\frac{m^{2}-4u}{4}\in\varpi_{v}^{\alpha}\mathcal{O}_{F_{v}}.

This implies that

#Sv,α,m,u4qvfv2.\#S_{v,\alpha,m,u}\leq 4q_{v}^{\frac{f_{v}}{2}}.

Therefore, if ev+fv>0e_{v}+f_{v}>0, then we conclude that

|Gγm,u(Fv)¯\G¯(Fv)ϕv(g1γm,ug)𝑑g|\displaystyle\left|\int_{\overline{\mathrm{G}_{\gamma_{m,u}}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\gamma_{m,u}g)dg\right| αev#Sv,α,m,uqvα1(qv1)\displaystyle\leq\sum_{\alpha\geq e_{v}}\#S_{v,\alpha,m,u}\cdot q_{v}^{-\alpha-1}(q_{v}-1)
4qvev+fv2.\displaystyle\leq 4q_{v}^{-e_{v}+\frac{f_{v}}{2}}.

Now, we assume that vSF,v\in S_{F,\infty}. Suppose that there are two roots α1\alpha_{1} and α2\alpha_{2} of x2σv(m)x+σv(u)=0x^{2}-\sigma_{v}(m)x+\sigma_{v}(u)=0 in FvF_{v}. Since (α100α2)\left(\begin{smallmatrix}\alpha_{1}&0\\ 0&\alpha_{2}\end{smallmatrix}\right) is similar to (01σv(u)σv(m))\left(\begin{smallmatrix}0&1\\ -\sigma_{v}(u)&\sigma_{v}(m)\end{smallmatrix}\right) over FvF_{v}, we take γ=(α100α2)\gamma=\left(\begin{smallmatrix}\alpha_{1}&0\\ 0&\alpha_{2}\end{smallmatrix}\right) as a representative of the conjugacy class [γm,u][\gamma_{m,u}]. Then, we have

Gγ(Fv)={(z100z2):z1,z2Fv×}\mathrm{G}_{\gamma}(F_{v})=\left\{\begin{pmatrix}z_{1}&0\\ 0&z_{2}\end{pmatrix}:z_{1},z_{2}\in F_{v}^{\times}\right\}

and

Gγ(Fv)\G(Fv)={(1x01)κ¯:xFv and κ¯(Z(Fv)Kv)\Kv}.\mathrm{G}_{\gamma}(F_{v})\backslash\mathrm{G}(F_{v})=\left\{\begin{pmatrix}1&x\\ 0&1\end{pmatrix}\overline{\kappa}:x\in F_{v}\text{ and }\overline{\kappa}\in\left(\mathrm{Z}(F_{v})\cap\mathrm{K}_{v}\right)\backslash\mathrm{K}_{v}\right\}.

Thus, there is an isomorphism ψv:Gγ(Fv)wvEw×\psi_{v}:\mathrm{G}_{\gamma}(F_{v})\to\prod_{w\mid v}E_{w}^{\times} given by

(3.20) ψv((z100z2)):=(z1,z2).\psi_{v}\left(\begin{pmatrix}z_{1}&0\\ 0&z_{2}\end{pmatrix}\right):=(z_{1},z_{2}).

An isomorphism (3.20) induces a Haar measure dgdg on wvEw×\prod_{w\mid v}E_{w}^{\times} defined by

(3.21) dg:=dw×z1dw×z2,dg:=d_{w}^{\times}z_{1}\,d_{w}^{\times}z_{2},

where g=(z1,z2)wvEw×g=(z_{1},z_{2})\in\prod_{w\mid v}E_{w}^{\times}. In this case, FvF_{v} is isomorphic to EwE_{w} for wvw\mid v. Also, a Haar measure dgdg on Gγ(Fv)\G(Fv)\mathrm{G}_{\gamma}(F_{v})\backslash\mathrm{G}(F_{v}) is defined by

(3.22) dg:=dvxdvκ¯,dg:=d_{v}x\,d_{v}\overline{\kappa},

where g=(1x01)κ¯Gγ(Fv)\G(Fv)g=\left(\begin{smallmatrix}1&x\\ 0&1\end{smallmatrix}\right)\overline{\kappa}\in\mathrm{G}_{\gamma}(F_{v})\backslash\mathrm{G}(F_{v}). Here, dvκ¯d_{v}\overline{\kappa} is a Haar measure on (Z(Fv)Kv)\Kv(\mathrm{Z}(F_{v})\cap\mathrm{K}_{v})\backslash\mathrm{K}_{v}.

Assume that there is no root of x2σv(m)x+σv(u)=0x^{2}-\sigma_{v}(m)x+\sigma_{v}(u)=0 in FvF_{v}. This only occurs when Fv=F_{v}=\mathbb{R} and σv(m24u)<0\sigma_{v}(m^{2}-4u)<0. Then, γ=(r00r)(cosθsinθsinθcosθ)\gamma=\left(\begin{smallmatrix}r&0\\ 0&r\end{smallmatrix}\right)\left(\begin{smallmatrix}\cos\theta&-\sin\theta\\ \sin\theta&\cos\theta\end{smallmatrix}\right) is similar to (01σv(u)σv(m))\left(\begin{smallmatrix}0&1\\ -\sigma_{v}(u)&\sigma_{v}(m)\end{smallmatrix}\right) over \mathbb{R}, where

(3.23) r:=σv(u), and θ:=tan1(σv(4um2)σv(m)).r:=\sqrt{\sigma_{v}(u)},\text{ and }\theta:=\tan^{-1}\left(\frac{\sqrt{\sigma_{v}(4u-m^{2})}}{\sigma_{v}(m)}\right).

Thus, we obtain that

Gγ(Fv)={(r00r)κ:r>0 and κSO(2)}\mathrm{G}_{\gamma}(F_{v})=\left\{\begin{pmatrix}r&0\\ 0&r\end{pmatrix}\cdot\kappa:r>0\text{ and }\kappa\in\mathrm{SO}(2)\right\}

and that

Gγ(Fv)\G(Fv)={(y001)(1x01):y× and x}.\mathrm{G}_{\gamma}(F_{v})\backslash\mathrm{G}(F_{v})=\left\{\begin{pmatrix}y&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&x\\ 0&1\end{pmatrix}:y\in\mathbb{R}^{\times}\text{ and }x\in\mathbb{R}\right\}.

By the Iwasawa decomposition, for gG(Fv)g\in\mathrm{G}(F_{v}), we have

g=(r100r1)(y1001)(1x101)κ1=(r200r2)κ2(y2001)(1x201).g=\begin{pmatrix}r_{1}&0\\ 0&r_{1}\end{pmatrix}\begin{pmatrix}y_{1}&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&x_{1}\\ 0&1\end{pmatrix}\kappa_{1}=\begin{pmatrix}r_{2}&0\\ 0&r_{2}\end{pmatrix}\kappa_{2}\begin{pmatrix}y_{2}&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&x_{2}\\ 0&1\end{pmatrix}.

Since a Haar measure on G()\mathrm{G}(\mathbb{R}) is a unique up to constant multiple, there is a constant C>0C>0 such that

(3.24) dg=dv×r1dv×y1dvx1dvκ1=Cdv×r2dvκ2dv×y2dvx2.dg=d^{\times}_{v}r_{1}\,d_{v}^{\times}y_{1}\,d_{v}x_{1}\,d_{v}\kappa_{1}=C\cdot d^{\times}_{v}r_{2}\,d_{v}\kappa_{2}\,d_{v}^{\times}y_{2}\,d_{v}x_{2}.

Note that there is an isomorphism ψv:Gγ(Fv)wvEw×\psi_{v}:\mathrm{G}_{\gamma}(F_{v})\to\prod_{w\mid v}E_{w}^{\times} given by

(3.25) ψv((r00r)κθ):=reiθ.\psi_{v}\left(\begin{pmatrix}r&0\\ 0&r\end{pmatrix}\cdot\kappa_{\theta}\right):=r\cdot e^{i\theta}.

An isomorphism (3.25) induces a Haar measure dgdg on Ew×E_{w}^{\times} defined by

(3.26) dg:=Cdv×rdκθ=Cdrdθ2πr=Cd×g2,dg:=C\cdot d_{v}^{\times}r\,d\kappa_{\theta}=C\cdot\frac{dr\,d\theta}{2\pi r}=C\cdot\frac{d^{\times}_{\mathbb{C}}g}{2},

where CC is given as in (3.24) and g=reiθg=re^{i\theta}. Also a Haar measure dgdg on Gγ(Fv)\G(Fv)\mathrm{G}_{\gamma}(F_{v})\backslash\mathrm{G}(F_{v}) is defined by

(3.27) dg:=dv×ydvx,dg:=d_{v}^{\times}y\,d_{v}x,

where g=(y001)(1x01)Gγ(Fv)\G(Fv)g=\left(\begin{smallmatrix}y&0\\ 0&1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&x\\ 0&1\end{smallmatrix}\right)\in\mathrm{G}_{\gamma}(F_{v})\backslash\mathrm{G}(F_{v}).

By (3.21), (3.26) and the definition of the regulator of a number field, we have

Vol(i(𝒪E×)\𝔸E,1)=(C2)areg(E)wE.\mathrm{Vol}\left(i_{\infty}(\mathcal{O}_{E}^{\times})\backslash\mathbb{A}^{1}_{E,\infty}\right)=\left(\frac{C}{2}\right)^{a}\cdot\frac{\mathrm{reg}(E)}{w_{E}}.

Here, wEw_{E} denotes the number of roots of unity in EE, reg(E)\mathrm{reg}(E) denotes the regulator of EE, and aa is the number of vSF,v\in S_{F,\infty} such that Fv=F_{v}=\mathbb{R} and σv(m24u)<0\sigma_{v}(m^{2}-4u)<0. It follows that

(3.28) Vol(i(𝒪E×)\𝔸E,1)Freg(E).\mathrm{Vol}\left(i_{\infty}(\mathcal{O}_{E}^{\times})\backslash\mathbb{A}^{1}_{E,\infty}\right)\ll_{F}\mathrm{reg}(E).

Combining Lemmas 3.3, 3.5, 3.7 and (3.28), we obtain

Vol(Gγm,u(F)¯\Gγm,u(𝔸F)¯)vSF,fin|Gγm,u(Fv)¯\G¯(Fv)ϕv(g1γm,ug)𝑑g|\displaystyle\mathrm{Vol}\left(\overline{\mathrm{G}_{\gamma_{m,u}}(F)}\backslash\overline{\mathrm{G}_{\gamma_{m,u}}(\mathbb{A}_{F})}\right)\prod_{v\in S_{F,\mathrm{fin}}}\left|\int_{\overline{\mathrm{G}_{\gamma_{m,u}}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\gamma_{m,u}g)dg\right|
Fcl(E)reg(E)vSF,finfv>0(qv2[fv+12]+3(qv1)2(qv+1))vSF,finfv=0(qv(qv+1Nv)qv21)\displaystyle\ll_{F}\mathrm{cl}(E)\cdot\mathrm{reg}(E)\cdot\prod_{\begin{subarray}{c}v\in S_{F,\mathrm{fin}}\\ f_{v}>0\end{subarray}}\left(\frac{q_{v}^{2[\frac{f_{v}+1}{2}]+3}}{(q_{v}-1)^{2}(q_{v}+1)}\right)\cdot\prod_{\begin{subarray}{c}v\in S_{F,\mathrm{fin}}\\ f_{v}=0\end{subarray}}\left(\frac{q_{v}(q_{v}+1-N_{v})}{q_{v}^{2}-1}\right)
×vSF,finev+fv=0(qv1+Nvqv)vSF,finev+fv>0(4qvev+fv2).\displaystyle\times\prod_{\begin{subarray}{c}v\in S_{F,\mathrm{fin}}\\ e_{v}+f_{v}=0\end{subarray}}\left(\frac{q_{v}-1+N_{v}}{q_{v}}\right)\cdot\prod_{\begin{subarray}{c}v\in S_{F,\mathrm{fin}}\\ e_{v}+f_{v}>0\end{subarray}}\left(4q_{v}^{-e_{v}+\frac{f_{v}}{2}}\right).

Note that we have

vSF,fin,fv>0qv2[fv+12]+3(qv1)2(qv+1)vSF,fin,fv>0qv5fv=|NF/(m24u)|5.\prod_{\begin{subarray}{c}v\in S_{F,\mathrm{fin}},\\ f_{v}>0\end{subarray}}\frac{q_{v}^{2[\frac{f_{v}+1}{2}]+3}}{(q_{v}-1)^{2}(q_{v}+1)}\leq\prod_{\begin{subarray}{c}v\in S_{F,\mathrm{fin}},\\ f_{v}>0\end{subarray}}q_{v}^{5f_{v}}=\left|N_{F/\mathbb{Q}}(m^{2}-4u)\right|^{5}.

Let n:=[F:]n:=[F:\mathbb{Q}] and ω(m)\omega(m) be the number of prime divisors of an integer mm. Since there are at most nn prime ideals in 𝒪F\mathcal{O}_{F} lying over a prime pp\in\mathbb{Z}, the number of vSF,finv\in S_{F,\mathrm{fin}} such that ev>0e_{v}>0 is less than or equal to nω(|NF/(J)|)n\cdot\omega(|N_{F/\mathbb{Q}}(J)|). Thus, we obtain

vSF,finfv=0(qv(qv+1Nv)qv21)vSF,finev+fv=0(qv1+Nvqv)\displaystyle\prod_{\begin{subarray}{c}v\in S_{F,\mathrm{fin}}\\ f_{v}=0\end{subarray}}\left(\frac{q_{v}(q_{v}+1-N_{v})}{q_{v}^{2}-1}\right)\cdot\prod_{\begin{subarray}{c}v\in S_{F,\mathrm{fin}}\\ e_{v}+f_{v}=0\end{subarray}}\left(\frac{q_{v}-1+N_{v}}{q_{v}}\right)
=vSF,finfv=0(qv(qv+1Nv)qv21qv1+Nvqv)vSF,finfv=0,ev>0(qv1+Nvqv)1\displaystyle=\prod_{\begin{subarray}{c}v\in S_{F,\mathrm{fin}}\\ f_{v}=0\end{subarray}}\left(\frac{q_{v}(q_{v}+1-N_{v})}{q_{v}^{2}-1}\cdot\frac{q_{v}-1+N_{v}}{q_{v}}\right)\cdot\prod_{\begin{subarray}{c}v\in S_{F,\mathrm{fin}}\\ f_{v}=0,\,e_{v}>0\end{subarray}}\left(\frac{q_{v}-1+N_{v}}{q_{v}}\right)^{-1}
2nω(|NF/(J)|).\displaystyle\leq 2^{n\cdot\omega(|N_{F/\mathbb{Q}}(J)|)}.

The last inequality holds since qvqv1+Nv2\frac{q_{v}}{q_{v}-1+N_{v}}\leq 2. Similarly, we get

vSF,finev+fv>04qvev+fv24nω(|NF/(J)||NF/(m24u)|)|NF/(J)|1|NF/(m24u)|12.\prod_{\begin{subarray}{c}v\in S_{F,\mathrm{fin}}\\ e_{v}+f_{v}>0\end{subarray}}4q_{v}^{-e_{v}+\frac{f_{v}}{2}}\leq 4^{n\cdot\omega(|N_{F/\mathbb{Q}}(J)|\cdot|N_{F/\mathbb{Q}}(m^{2}-4u)|)}\cdot|N_{F/\mathbb{Q}}(J)|^{-1}\cdot|N_{F/\mathbb{Q}}(m^{2}-4u)|^{\frac{1}{2}}.

By [17, Theorem 1], we also have

(3.29) cl(E)reg(E)wE2(2π)r2,E(elogΔE4(2n1))2n1ΔE,\mathrm{cl}(E)\cdot\mathrm{reg}(E)\leq\frac{w_{E}}{2}\cdot\left(\frac{2}{\pi}\right)^{r_{2,E}}\cdot\left(\frac{e\log\Delta_{E}}{4(2n-1)}\right)^{2n-1}\sqrt{\Delta_{E}},

where ee denotes the Euler number, r2,Er_{2,E} denotes the number of conjugate pairs of complex embeddings of EE, and ΔE\Delta_{E} denotes the discriminant of EE. Note that the number of roots of unity of a number field KK is bounded if the extension degree [K:][K:\mathbb{Q}] is fixed. Since E:=F(m24u)E:=F(\sqrt{m^{2}-4u}), it follows that ΔE=ΔF2NF/(m24u)\Delta_{E}=\Delta_{F}^{2}\cdot N_{F/\mathbb{Q}}(m^{2}-4u). Note that for a fixed positive integer MM and for any ϵ>0\epsilon>0, we have

Mω(N)ϵNϵ,N.M^{\omega(N)}\ll_{\epsilon}N^{\epsilon},\quad N\to\infty.

Thus, we conclude that

(3.30) Vol(Gγm,u(F)¯\Gγm,u(𝔸F)¯)\displaystyle\mathrm{Vol}\left(\overline{\mathrm{G}_{\gamma_{m,u}}(F)}\backslash\overline{\mathrm{G}_{\gamma_{m,u}}(\mathbb{A}_{F})}\right) vSF,fin|Gγm,u(Fv)¯\G¯(Fv)ϕv(g1γm,ug)𝑑g|\displaystyle\prod_{v\in S_{F,\mathrm{fin}}}\left|\int_{\overline{\mathrm{G}_{\gamma_{m,u}}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\gamma_{m,u}g)dg\right|
F|NF/(J)|12|NF/(m24u)|7.\displaystyle\ll_{F}|N_{F/\mathbb{Q}}(J)|^{-\frac{1}{2}}\cdot|N_{F/\mathbb{Q}}(m^{2}-4u)|^{7}.

To complete the calculation of Sell(ϕ)S_{\mathrm{ell}}(\phi), we compute the integral

(3.31) Gσv(γ)(Fv)¯\G¯(Fv)ϕv(g1σv(γ)g)𝑑g\int_{\overline{\mathrm{G}_{\sigma_{v}(\gamma)}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\sigma_{v}(\gamma)g)dg

for vSF,v\in S_{F,\infty}. Since the Haar measure on Gσv(γ)(Fv)¯\G¯(Fv)\overline{\mathrm{G}_{\sigma_{v}(\gamma)}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v}) is defined differently in the two cases, we compute (3.31) in the following two lemmas.

Lemma 3.8.

Assume that vSF,v\in S_{F,\infty} and that there are two roots of x2σv(m)x+σv(u)=0x^{2}-\sigma_{v}(m)x+\sigma_{v}(u)=0 in FvF_{v}. Let

σv(αγ):=σv(m)+σv(m24u)σv(m)σv(m24u).\sigma_{v}(\alpha_{\gamma}):=\frac{\sigma_{v}(m)+\sqrt{\sigma_{v}(m^{2}-4u)}}{\sigma_{v}(m)-\sqrt{\sigma_{v}(m^{2}-4u)}}.

Then, we have

(3.32) |Gσv(γm,u)(Fv)¯\G¯(Fv)ϕv(g1σv(γm,u)g)𝑑g|(1+ϵv)2π|σv(u)σv(m24u)|1+ϵv2.\left|\int_{\overline{\mathrm{G}_{\sigma_{v}(\gamma_{m,u})}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\sigma_{v}(\gamma_{m,u})g)dg\right|\leq\frac{(1+\epsilon_{v})}{2\pi}\left|\frac{\sigma_{v}(u)}{\sigma_{v}(m^{2}-4u)}\right|^{\frac{1+\epsilon_{v}}{2}}.
Proof.

Since σv(αγ)\sigma_{v}(\alpha_{\gamma}) is the ratio of two roots of x2σv(m)x+σv(u)=0x^{2}-\sigma_{v}(m)x+\sigma_{v}(u)=0 in FvF_{v}, there are g0G(Fv)g_{0}\in\mathrm{G}(F_{v}) and z0Z(Fv)z_{0}\in\mathrm{Z}(F_{v}) such that

γv:=(σv(αγ)001)=z0g0γm,ug01.\gamma_{v}:=\begin{pmatrix}\sigma_{v}(\alpha_{\gamma})&0\\ 0&1\end{pmatrix}=z_{0}g_{0}\gamma_{m,u}g_{0}^{-1}.

Thus, we have

Gσv(γm,u)(Fv)¯\G¯(Fv)ϕv(g1σv(γm,u)g)𝑑g=Gγv(Fv)¯\G¯(Fv)ϕv(g1γvg)𝑑g.\int_{\overline{\mathrm{G}_{\sigma_{v}(\gamma_{m,u})}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\sigma_{v}(\gamma_{m,u})g)dg=\int_{\overline{\mathrm{G}_{\gamma_{v}}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\gamma_{v}g)dg.

By the Iwasawa decomposition,

Gγv(Fv)¯\G¯(Fv){(1x01):xFv}Kv¯.\overline{\rm G_{\gamma_{v}}(F_{v})}\backslash\bar{\rm G}(F_{v})\cong\left\{\begin{pmatrix}1&x\\ 0&1\end{pmatrix}:x\in F_{v}\right\}\overline{{\rm K}_{v}}.

Since ϕv\phi_{v} is bi-Kv\mathrm{K}_{v}-invariant and Vol(Kv¯)=1\mathrm{Vol}(\overline{\mathrm{K}_{v}})=1, we have

(3.33) Gγv(Fv)¯\G¯(Fv)ϕv(g1γvg)𝑑g=Fvϕv((1x01)(σv(αγ)001)(1x01))dvx.\int_{\overline{\rm G_{\gamma_{v}}(F_{v})}\backslash\bar{\rm G}(F_{v})}\phi_{v}(g^{-1}\gamma_{v}g)dg=\int_{F_{v}}\phi_{v}\left(\begin{pmatrix}1&-x\\ 0&1\end{pmatrix}\begin{pmatrix}\sigma_{v}(\alpha_{\gamma})&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&x\\ 0&1\end{pmatrix}\right)d_{v}x.

Assume that Fv=F_{v}=\mathbb{R}. Since the support of ϕv\phi_{v} is contained in GL2+()\mathrm{GL}_{2}^{+}(\mathbb{R}), it follows that

ϕv((1x01)(σv(αγ)001)(1x01))=ϕv((σv(αγ)x(σv(αγ)1)01))=0\phi_{v}\left(\begin{pmatrix}1&-x\\ 0&1\end{pmatrix}\begin{pmatrix}\sigma_{v}(\alpha_{\gamma})&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&x\\ 0&1\end{pmatrix}\right)=\phi_{v}\left(\begin{pmatrix}\sigma_{v}(\alpha_{\gamma})&x(\sigma_{v}(\alpha_{\gamma})-1)\\ 0&1\end{pmatrix}\right)=0

unless σv(αγ)>0\sigma_{v}(\alpha_{\gamma})>0. If σv(αγ)>0\sigma_{v}(\alpha_{\gamma})>0, then by the Cartan decomposition, there exist r>0r>0 and κ1,κ2Kv\kappa_{1},\kappa_{2}\in\mathrm{K}_{v} such that

(3.34) g:=(σv(αγ)x(σv(αγ)1)01)=σv(αγ)12κ1(er200er2)κ2.g:=\begin{pmatrix}\sigma_{v}(\alpha_{\gamma})&x(\sigma_{v}(\alpha_{\gamma})-1)\\ 0&1\end{pmatrix}=\sigma_{v}(\alpha_{\gamma})^{\frac{1}{2}}\kappa_{1}\begin{pmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{pmatrix}\kappa_{2}.

Then, we have the following relation between xx and rr:

tr(gg)=σv(αγ)2+x2(σv(αγ)1)2+1=2σv(αγ)cosh(r),{\rm tr}(gg^{*})=\sigma_{v}(\alpha_{\gamma})^{2}+x^{2}(\sigma_{v}(\alpha_{\gamma})-1)^{2}+1=2\sigma_{v}(\alpha_{\gamma})\cosh(r),

where gg^{*} denotes the conjugate transpose of gg. Since ϕv\phi_{v} is Z(Fv)\mathrm{Z}(F_{v})-invariant and bi-Kv\mathrm{K}_{v}-invariant, it follows that

ϕv(g)=ϕv((er200er2)).\phi_{v}(g)=\phi_{v}\left(\begin{pmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{pmatrix}\right).

Let g1:=(σv(αγ)|x(σv(αγ)1)|01)g_{1}:=\left(\begin{smallmatrix}\sigma_{v}(\alpha_{\gamma})&|x(\sigma_{v}(\alpha_{\gamma})-1)|\\ 0&1\end{smallmatrix}\right). Since the trace of gggg^{*} is equal to the trace of g1g1g_{1}g_{1}^{*}, we have

(3.35) ϕv((σv(αγ)x(σv(αγ)1)01))=ϕv((σv(αγ)|x(σv(αγ)1)|01)).\phi_{v}\left(\begin{pmatrix}\sigma_{v}(\alpha_{\gamma})&x(\sigma_{v}(\alpha_{\gamma})-1)\\ 0&1\end{pmatrix}\right)=\phi_{v}\left(\begin{pmatrix}\sigma_{v}(\alpha_{\gamma})&|x(\sigma_{v}(\alpha_{\gamma})-1)|\\ 0&1\end{pmatrix}\right).

Hence, by changing the variable x2(σv(αγ)1)2=2σv(αγ)cosh(r)σv(αγ)21x^{2}(\sigma_{v}(\alpha_{\gamma})-1)^{2}=2\sigma_{v}(\alpha_{\gamma})\cosh(r)-\sigma_{v}(\alpha_{\gamma})^{2}-1, we have

(3.36) Fv\displaystyle\int_{F_{v}} ϕv((σv(αγ)x(σv(αγ)1)01))dx\displaystyle\phi_{v}\left(\begin{pmatrix}\sigma_{v}(\alpha_{\gamma})&x(\sigma_{v}(\alpha_{\gamma})-1)\\ 0&1\end{pmatrix}\right)dx
=σv(αγ)12|σv(αγ)1|logσv(αγ)ϕv((er200er2))sinh(r)sinh2(r/2)sinh2(logσv(αγ)2)𝑑r\displaystyle=\frac{\sigma_{v}(\alpha_{\gamma})^{\frac{1}{2}}}{|\sigma_{v}(\alpha_{\gamma})-1|}\int_{\log\sigma_{v}(\alpha_{\gamma})}^{\infty}\frac{\phi_{v}\left(\left(\begin{smallmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{smallmatrix}\right)\right)\sinh(r)}{\sqrt{\sinh^{2}(r/2)-\sinh^{2}\left(\frac{\log\sigma_{v}(\alpha_{\gamma})}{2}\right)}}dr
=σv(αγ)122π|σv(αγ)1|hϕv^(logσv(αγ)2π).\displaystyle=\frac{\sigma_{v}(\alpha_{\gamma})^{\frac{1}{2}}}{2\pi|\sigma_{v}(\alpha_{\gamma})-1|}\widehat{h_{\phi_{v}}}\left(\frac{\log\sigma_{v}(\alpha_{\gamma})}{2\pi}\right).

The last equality holds by (2.3).

Assume that Fv=F_{v}=\mathbb{C}. Similarly, for xx\in\mathbb{C}, we have

ϕv((σv(αγ)x(σv(αγ)1)01))=ϕv((|σv(αγ)||x||σv(αγ)1|01)).\phi_{v}\left(\begin{pmatrix}\sigma_{v}(\alpha_{\gamma})&x(\sigma_{v}(\alpha_{\gamma})-1)\\ 0&1\end{pmatrix}\right)=\phi_{v}\left(\begin{pmatrix}|\sigma_{v}(\alpha_{\gamma})|&|x||\sigma_{v}(\alpha_{\gamma})-1|\\ 0&1\end{pmatrix}\right).

Then, we have

(3.37) Fvϕv((σv(αγ)x(σv(αγ)1)01))𝑑x\displaystyle\int_{F_{v}}\phi_{v}\left(\begin{pmatrix}\sigma_{v}(\alpha_{\gamma})&x(\sigma_{v}(\alpha_{\gamma})-1)\\ 0&1\end{pmatrix}\right)dx =Fvϕv((|σv(αγ)||x||σv(αγ)1|01))𝑑x\displaystyle=\int_{F_{v}}\phi_{v}\left(\begin{pmatrix}|\sigma_{v}(\alpha_{\gamma})|&|x||\sigma_{v}(\alpha_{\gamma})-1|\\ 0&1\end{pmatrix}\right)dx
=2π0ϕv((|σv(αγ)|y|σv(αγ)1|01))y𝑑y.\displaystyle=2\pi\int_{0}^{\infty}\phi_{v}\left(\begin{pmatrix}|\sigma_{v}(\alpha_{\gamma})|&y|\sigma_{v}(\alpha_{\gamma})-1|\\ 0&1\end{pmatrix}\right)ydy.

Similarly, by changing the variable y2|σv(αγ)1|2=2|σv(αγ)|cosh(r)|σv(αγ)|21y^{2}|\sigma_{v}(\alpha_{\gamma})-1|^{2}=2|\sigma_{v}(\alpha_{\gamma})|\cosh(r)-|\sigma_{v}(\alpha_{\gamma})|^{2}-1, we have

(3.38) 2π0ϕv((|σv(αγ)|y|σv(αγ)1|01))y𝑑y\displaystyle 2\pi\int_{0}^{\infty}\phi_{v}\left(\begin{pmatrix}|\sigma_{v}(\alpha_{\gamma})|&y|\sigma_{v}(\alpha_{\gamma})-1|\\ 0&1\end{pmatrix}\right)ydy =2π|σv(αγ)||σv(αγ)1|2log|σv(αγ)|ϕv((er200er2))sinh(r)𝑑r\displaystyle=\frac{2\pi|\sigma_{v}(\alpha_{\gamma})|}{|\sigma_{v}(\alpha_{\gamma})-1|^{2}}\int_{\log|\sigma_{v}(\alpha_{\gamma})|}^{\infty}\phi_{v}\left(\begin{pmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{pmatrix}\right)\sinh(r)dr
=|σv(αγ)|π|σv(αγ)1|2hϕv^(log|σv(αγ)|π).\displaystyle=\frac{|\sigma_{v}(\alpha_{\gamma})|}{\pi|\sigma_{v}(\alpha_{\gamma})-1|^{2}}\widehat{h_{\phi_{v}}}\left(\frac{\log|\sigma_{v}(\alpha_{\gamma})|}{\pi}\right).

Since hvh_{v} is a non-negative even function on \mathbb{R}, for any xx\in\mathbb{R}, we have

|hv^(x)|=|hv(z)e2πixz𝑑z|=|hv(z)cos(2πxz)𝑑z||hv(z)𝑑z|=1.\displaystyle\left|\widehat{h_{v}}(x)\right|=\left|\int_{\mathbb{R}}h_{v}(z)e^{-2\pi ixz}dz\right|=\left|\int_{\mathbb{R}}h_{v}(z)\cos(2\pi xz)dz\right|\leq\left|\int_{\mathbb{R}}h_{v}(z)dz\right|=1.

Thus, we complete the proof of Lemma 3.8. ∎

Lemma 3.9.

Assume that vSF,v\in S_{F,\infty} and that there is no root of x2σv(m)x+σv(u)=0x^{2}-\sigma_{v}(m)x+\sigma_{v}(u)=0 in FvF_{v}. Then, we have

|Gσv(γm,u)(Fv)¯\G¯(Fv)ϕv(g1σv(γm,u)g)𝑑g|12|σv(u)σv(4um2)|hϕv(0).\left|\int_{\overline{\mathrm{G}_{\sigma_{v}(\gamma_{m,u})}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\sigma_{v}(\gamma_{m,u})g)dg\right|\leq\frac{1}{\sqrt{2}}\left|\frac{\sigma_{v}(u)}{\sigma_{v}(4u-m^{2})}\right|\cdot h_{\phi_{v}}(0).
Proof.

Following the proof of the case for D<0D<0 of [1, Lemma 2.1], we have

(3.39) Gσv(γm,u)(Fv)¯\G¯(Fv)ϕv(g1σv(γm,u)g)𝑑g=142hϕv^(x)cosh(πx)sinh2(πx)+σv(4um24u)𝑑x.\int_{\overline{\mathrm{G}_{\sigma_{v}(\gamma_{m,u})}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\sigma_{v}(\gamma_{m,u})g)dg=\frac{1}{4\sqrt{2}}\int_{-\infty}^{\infty}\widehat{h_{\phi_{v}}}(x)\frac{\cosh(\pi x)}{\sinh^{2}(\pi x)+\sigma_{v}\left(\frac{4u-m^{2}}{4u}\right)}dx.

Since

|sinh2(πx)+σv(4um24u)||σv(4um24u)cosh(πx)|,\displaystyle\left|\sinh^{2}(\pi x)+\sigma_{v}\left(\frac{4u-m^{2}}{4u}\right)\right|\geq\left|\sigma_{v}\left(\frac{4u-m^{2}}{4u}\right)\cdot\cosh(\pi x)\right|,

we conclude that

|142hϕv^(x)cosh(πx)sinh2(πx)+σv(4um24u)𝑑x|\displaystyle\left|\frac{1}{4\sqrt{2}}\int_{-\infty}^{\infty}\widehat{h_{\phi_{v}}}(x)\frac{\cosh(\pi x)}{\sinh^{2}(\pi x)+\sigma_{v}\left(\frac{4u-m^{2}}{4u}\right)}dx\right| 142|σv(4u)σv(4um2)||hϕv^(x)𝑑x|\displaystyle\leq\frac{1}{4\sqrt{2}}\left|\frac{\sigma_{v}(4u)}{\sigma_{v}(4u-m^{2})}\right|\cdot\left|\int_{-\infty}^{\infty}\widehat{h_{\phi_{v}}}(x)dx\right|
=12|σv(u)σv(4um2)|hϕv(0).\displaystyle=\frac{1}{\sqrt{2}}\left|\frac{\sigma_{v}(u)}{\sigma_{v}(4u-m^{2})}\right|\cdot h_{\phi_{v}}(0).

3.4. Hyperbolic contribution

For each place vv of FF, we define a function HvH_{v} on G(Fv)\mathrm{G}(F_{v}) by

(3.40) Hv((ax0b)κ):=|ab|v,H_{v}\left(\begin{pmatrix}a&x\\ 0&b\end{pmatrix}\kappa\right):=\left|\frac{a}{b}\right|_{v},

where a,b,xFva,b,x\in F_{v} and κvKv\kappa_{v}\in\mathrm{K}_{v}. Let HH be a function on G(𝔸F)\mathrm{G}(\mathbb{A}_{F}) defined by

H:=vSFHv.H:=\prod_{v\in S_{F}}H_{v}.

In [6, (6.35)], Shyp(ϕ)S_{\mathrm{hyp}}(\phi) is defined by

(3.41) Shyp(ϕ):=Vol(F×\𝔸F1)2αF×α1Jα(ϕ),S_{\mathrm{hyp}}(\phi):=-\frac{{\mathrm{Vol}}(F^{\times}\backslash\mathbb{A}_{F}^{1})}{2}\sum_{\begin{subarray}{c}\alpha\in F^{\times}\\ \alpha\neq 1\end{subarray}}J_{\alpha}(\phi),

where for each αF×\alpha\in F^{\times} with α1\alpha\neq 1,

(3.42) Jα(ϕ):=K𝔸Fϕ(κ1(1x01)(α001)(1x01)κ)vSFlogHv((0110)(1x01)κ)dxdκ.J_{\alpha}(\phi):=\int_{\mathrm{K}}\int_{\mathbb{A}_{F}}\phi\left(\kappa^{-1}\begin{pmatrix}1&-x\\ 0&1\end{pmatrix}\begin{pmatrix}\alpha&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&x\\ 0&1\end{pmatrix}\kappa\right)\sum_{v\in S_{F}}\log H_{v}\left(\begin{pmatrix}0&1\\ -1&0\end{pmatrix}\begin{pmatrix}1&x\\ 0&1\end{pmatrix}\kappa\right)dx\,d\kappa.

If Jα(ϕ)0J_{\alpha}(\phi)\neq 0, then there are κvKv\kappa_{v}\in\mathrm{K}_{v} and xvFvx_{v}\in F_{v} such that ϕv(κv1(1xv01)(α001)(1xv01)κv)\phi_{v}\left(\kappa_{v}^{-1}\left(\begin{smallmatrix}1&-x_{v}\\ 0&1\end{smallmatrix}\right)\left(\begin{smallmatrix}\alpha&0\\ 0&1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&x_{v}\\ 0&1\end{smallmatrix}\right)\kappa_{v}\right) is non-zero for each vSF,finv\in S_{F,\mathrm{fin}}. Since ϕv\phi_{v} is a characteristic function of Z(Fv)Kv,ev\mathrm{Z}(F_{v})\mathrm{K}_{v,e_{v}}, we have

κv1(1xv01)(α001)(1xv01)κvZ(Fv)Kv,evZ(Fv)Kv.\kappa_{v}^{-1}\begin{pmatrix}1&-x_{v}\\ 0&1\end{pmatrix}\begin{pmatrix}\alpha&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&x_{v}\\ 0&1\end{pmatrix}\kappa_{v}\in\mathrm{Z}(F_{v})\mathrm{K}_{v,e_{v}}\subset\mathrm{Z}(F_{v})\mathrm{K}_{v}.

This implies that

(1xv01)(α001)(1xv01)=(αxv(α1)01)Z(Fv)Kv.\begin{pmatrix}1&-x_{v}\\ 0&1\end{pmatrix}\begin{pmatrix}\alpha&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&x_{v}\\ 0&1\end{pmatrix}=\begin{pmatrix}\alpha&x_{v}(\alpha-1)\\ 0&1\end{pmatrix}\in\mathrm{Z}(F_{v})\mathrm{K}_{v}.

Hence, if Jα(ϕ)0J_{\alpha}(\phi)\neq 0, then α𝒪Fv×\alpha\in\mathcal{O}_{F_{v}}^{\times} for each vSF,finv\in S_{F,\mathrm{fin}}, and so α𝒪F×\alpha\in\mathcal{O}_{F}^{\times}.

For v,wSFv,w\in S_{F}, if vwv\neq w, then let

Jα,vw(ϕv):=KvFvϕv(κ1(1x01)(α001)(1x01)κ)dvxdvκ,J_{\alpha,v}^{w}(\phi_{v}):=\int_{\mathrm{K}_{v}}\int_{F_{v}}\phi_{v}\left(\kappa^{-1}\begin{pmatrix}1&-x\\ 0&1\end{pmatrix}\begin{pmatrix}\alpha&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&x\\ 0&1\end{pmatrix}\kappa\right)d_{v}x\,d_{v}\kappa,

and if v=wv=w, then

Jα,vv(ϕv):=KvFvϕv(κ1(1x01)(α001)(1x01)κ)logHv((0110)(1x01)κ)dvxdvκ.J_{\alpha,v}^{v}(\phi_{v}):=\int_{\mathrm{K}_{v}}\int_{F_{v}}\phi_{v}\left(\kappa^{-1}\begin{pmatrix}1&-x\\ 0&1\end{pmatrix}\begin{pmatrix}\alpha&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&x\\ 0&1\end{pmatrix}\kappa\right)\log H_{v}\left(\begin{pmatrix}0&1\\ -1&0\end{pmatrix}\begin{pmatrix}1&x\\ 0&1\end{pmatrix}\kappa\right)d_{v}x\,d_{v}\kappa.

Let σv:FFv\sigma_{v}:F\to F_{v} be an embedding corresponding to an archimedean place vv of FF. By (3.42), we have

(3.43) Jα(ϕ)=wSFvSF,finJα,vw(ϕv)vSF,Jσv(α),vw(ϕv).J_{\alpha}(\phi)=\sum_{w\in S_{F}}\prod_{v\in S_{F,\mathrm{fin}}}J_{\alpha,v}^{w}(\phi_{v})\prod_{v\in S_{F,\infty}}J_{\sigma_{v}(\alpha),v}^{w}(\phi_{v}).
Lemma 3.10.

Let α𝒪F×\alpha\in\mathcal{O}_{F}^{\times} and vSF,finv\in S_{F,\mathrm{fin}}. If valv(α1)=0\mathrm{val}_{v}(\alpha-1)=0, then Jα,vv(ϕv)=0J_{\alpha,v}^{v}(\phi_{v})=0.

Proof.

Assume that κvKv\kappa_{v}\in\mathrm{K}_{v} and xvFvx_{v}\in F_{v} satisfying

ϕv(κv1(1xv01)(α001)(1xv01)κv)0.\phi_{v}\left(\kappa_{v}^{-1}\begin{pmatrix}1&-x_{v}\\ 0&1\end{pmatrix}\begin{pmatrix}\alpha&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&x_{v}\\ 0&1\end{pmatrix}\kappa_{v}\right)\neq 0.

Since the determinant of κv1(1xv01)(α001)(1xv01)κv\kappa_{v}^{-1}\left(\begin{smallmatrix}1&-x_{v}\\ 0&1\end{smallmatrix}\right)\left(\begin{smallmatrix}\alpha&0\\ 0&1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&x_{v}\\ 0&1\end{smallmatrix}\right)\kappa_{v} is in 𝒪F×\mathcal{O}_{F}^{\times}, we have

κv1(1xv01)(α001)(1xv01)κvKv,ev.\kappa_{v}^{-1}\begin{pmatrix}1&-x_{v}\\ 0&1\end{pmatrix}\begin{pmatrix}\alpha&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&x_{v}\\ 0&1\end{pmatrix}\kappa_{v}\in\mathrm{K}_{v,e_{v}}.

Let κv=(avbvcvdv)Kv\kappa_{v}=\left(\begin{smallmatrix}a_{v}&b_{v}\\ c_{v}&d_{v}\end{smallmatrix}\right)\in\mathrm{K}_{v}. By a computation, we have

κv1(1xv01)(α001)(1xv01)κv\displaystyle\kappa_{v}^{-1}\begin{pmatrix}1&-x_{v}\\ 0&1\end{pmatrix}\begin{pmatrix}\alpha&0\\ 0&1\end{pmatrix}\begin{pmatrix}1&x_{v}\\ 0&1\end{pmatrix}\kappa_{v}
=(detκv)1(αavdv+(α1)xvcvdvbvcvαbvdv+(α1)xvdv2bvdv(α1)cv(av+xvcv)αbvcv(α1)xvcvdv+avdv).\displaystyle=(\mathrm{det}\kappa_{v})^{-1}\begin{pmatrix}\alpha a_{v}d_{v}+(\alpha-1)x_{v}c_{v}d_{v}-b_{v}c_{v}&\alpha b_{v}d_{v}+(\alpha-1)x_{v}d_{v}^{2}-b_{v}d_{v}\\ \ -(\alpha-1)c_{v}(a_{v}+x_{v}c_{v})&-\alpha b_{v}c_{v}-(\alpha-1)x_{v}c_{v}d_{v}+a_{v}d_{v}\end{pmatrix}.

Thus, we obtain that

(3.44) (α1)xvcvdv𝒪Fv,(α1)xvdv2𝒪Fv, and (α1)cv(av+xvcv)ϖvev𝒪Fv.(\alpha-1)x_{v}c_{v}d_{v}\in\mathcal{O}_{F_{v}},\quad(\alpha-1)x_{v}d_{v}^{2}\in\mathcal{O}_{F_{v}},\text{ and }(\alpha-1)c_{v}(a_{v}+x_{v}c_{v})\in\varpi_{v}^{e_{v}}\mathcal{O}_{F_{v}}.

From the assumption that α1𝒪Fv×\alpha-1\in\mathcal{O}_{F_{v}}^{\times}, the conditions (3.44) are equivalent to

xvcvdv𝒪Fv,xvdv2𝒪Fv, and cv(av+xvcv)ϖvev𝒪Fv.x_{v}c_{v}d_{v}\in\mathcal{O}_{F_{v}},\quad x_{v}d_{v}^{2}\in\mathcal{O}_{F_{v}},\text{ and }c_{v}(a_{v}+x_{v}c_{v})\in\varpi_{v}^{e_{v}}\mathcal{O}_{F_{v}}.

Since det(κv)=avdvbvcv𝒪Fv×\mathrm{det}(\kappa_{v})=a_{v}d_{v}-b_{v}c_{v}\in\mathcal{O}_{F_{v}}^{\times}, it follows that at least one of cvc_{v} and dvd_{v} is in 𝒪Fv×\mathcal{O}_{F_{v}}^{\times}. If cv𝒪Fv×c_{v}\in\mathcal{O}_{F_{v}}^{\times}, then xv𝒪Fvx_{v}\in\mathcal{O}_{F_{v}} because cv(xvcv+av)𝒪Fvc_{v}(x_{v}c_{v}+a_{v})\in\mathcal{O}_{F_{v}}. Otherwise, if dv𝒪Fv×d_{v}\in\mathcal{O}_{F_{v}}^{\times}, then we also have xv𝒪Fvx_{v}\in\mathcal{O}_{F_{v}} by xvdv2𝒪Fvx_{v}d_{v}^{2}\in\mathcal{O}_{F_{v}}. Thus, we obtain that xv𝒪Fvx_{v}\in\mathcal{O}_{F_{v}}. This implies that

(3.45) (0110)(1xv01)κvKv.\begin{pmatrix}0&1\\ -1&0\end{pmatrix}\begin{pmatrix}1&x_{v}\\ 0&1\end{pmatrix}\kappa_{v}\in\mathrm{K}_{v}.

Therefore, we have

logHv((0110)(1xv01)κv)=0.\log H_{v}\left(\begin{pmatrix}0&1\\ -1&0\end{pmatrix}\begin{pmatrix}1&x_{v}\\ 0&1\end{pmatrix}\kappa_{v}\right)=0.

By (3.43) and Lemma 3.10, we can rewrite Jα(ϕ)J_{\alpha}(\phi) as

(3.46) Jα(ϕ)=wSF,fin,valw(α1)>0vSF,finJα,vw(ϕv)vSF,Jσv(α),vw(ϕv)+wSF,vSF,finJα,vw(ϕv)vSF,Jσv(α),vw(ϕv).J_{\alpha}(\phi)=\sum_{\begin{subarray}{c}w\in S_{F,\mathrm{fin}},\\ \mathrm{val}_{w}(\alpha-1)>0\end{subarray}}\prod_{v\in S_{F,\mathrm{fin}}}J_{\alpha,v}^{w}(\phi_{v})\prod_{v\in S_{F,\infty}}J_{\sigma_{v}(\alpha),v}^{w}(\phi_{v})+\sum_{w\in S_{F,\infty}}\prod_{v\in S_{F,\mathrm{fin}}}J_{\alpha,v}^{w}(\phi_{v})\prod_{v\in S_{F,\infty}}J_{\sigma_{v}(\alpha),v}^{w}(\phi_{v}).

The following lemma provides an upper bound for |Jα,vw(ϕv)||J^{w}_{\alpha,v}(\phi_{v})| when vSF,finv\in S_{F,\mathrm{fin}}.

Lemma 3.11.

Assume that vSF,finv\in S_{F,\mathrm{fin}} and α𝒪F×\alpha\in\mathcal{O}_{F}^{\times}. Let gv:=valv(α1)g_{v}:=\mathrm{val}_{v}(\alpha-1). Then,

|Jα,vw(ϕv)|{qvgvev2if wv,2fvlogqvqvgvev2if w=v.\left|J_{\alpha,v}^{w}(\phi_{v})\right|\leq\begin{cases}q_{v}^{g_{v}-\frac{e_{v}}{2}}\quad&\text{if }w\neq v,\\ 2f_{v}\cdot\log q_{v}\cdot q_{v}^{g_{v}-\frac{e_{v}}{2}}\quad&\text{if }w=v.\end{cases}
Proof.

First, we assume that wvw\neq v. Let RvR_{v} be the collection of all (κv,xv)Kv×Fv(\kappa_{v},x_{v})\in\mathrm{K}_{v}\times F_{v} satisfying the condition ϕv(κv1(1xv01)(α001)(1xv01)κv)0\phi_{v}\left(\kappa_{v}^{-1}\left(\begin{smallmatrix}1&-x_{v}\\ 0&1\end{smallmatrix}\right)\left(\begin{smallmatrix}\alpha&0\\ 0&1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&x_{v}\\ 0&1\end{smallmatrix}\right)\kappa_{v}\right)\neq 0. Since ϕv\phi_{v} is a characteristic function of Z(Fv)Kv,ev\mathrm{Z}(F_{v})\mathrm{K}_{v,e_{v}}, it follows that |Jα,vw(ϕv)||J_{\alpha,v}^{w}(\phi_{v})| is equal to the volume of RvR_{v}. By (3.44), we obtain that ((avbvcvdv),xv)Rv\left(\left(\begin{smallmatrix}a_{v}&b_{v}\\ c_{v}&d_{v}\end{smallmatrix}\right),x_{v}\right)\in R_{v} if and only if

(3.47) xvcvdvϖvgv𝒪Fv,xvdv2ϖvgv𝒪Fv, and cv(av+xvcv)ϖvevgv𝒪Fv.x_{v}c_{v}d_{v}\in\varpi_{v}^{-g_{v}}\mathcal{O}_{F_{v}},\quad x_{v}d_{v}^{2}\in\varpi_{v}^{-g_{v}}\mathcal{O}_{F_{v}},\text{ and }c_{v}(a_{v}+x_{v}c_{v})\in\varpi_{v}^{e_{v}-g_{v}}\mathcal{O}_{F_{v}}.

By dividing the set RvR_{v} according to valv(cv)\mathrm{val}_{v}(c_{v}), we have

(3.48) Rv=(Rv(Kv,[ev2]+1×Fv))(i=0[ev2]Rv((Kv,i\Kv,i+1)×Fv)).R_{v}=\left(R_{v}\cap\left(\mathrm{K}_{v,[\frac{e_{v}}{2}]+1}\times F_{v}\right)\right)\bigcup\left(\bigcup_{i=0}^{[\frac{e_{v}}{2}]}R_{v}\cap\left(\left(\mathrm{K}_{v,i}\backslash\mathrm{K}_{v,i+1}\right)\times F_{v}\right)\right).

If valv(cv)[ev2]+1>0\mathrm{val}_{v}(c_{v})\geq[\frac{e_{v}}{2}]+1>0, then dv𝒪Fv×d_{v}\in\mathcal{O}_{F_{v}}^{\times}. Then, we have xvϖvgv𝒪Fvx_{v}\in\varpi_{v}^{-g_{v}}\mathcal{O}_{F_{v}} by (3.47). Thus, we get

(3.49) Vol(Rv(Kv,[ev2]+1×Fv))\displaystyle\mathrm{Vol}\left(R_{v}\cap\left(\mathrm{K}_{v,[\frac{e_{v}}{2}]+1}\times F_{v}\right)\right) Vol({((avbvcvdv),xv):valv(cv)[ev2]+1 and xvϖvgv𝒪Fv})\displaystyle\leq\mathrm{Vol}\left(\left\{\left(\left(\begin{smallmatrix}a_{v}&b_{v}\\ c_{v}&d_{v}\end{smallmatrix}\right),x_{v}\right):\mathrm{val}_{v}(c_{v})\geq[\frac{e_{v}}{2}]+1\text{ and }x_{v}\in\varpi_{v}^{-g_{v}}\mathcal{O}_{F_{v}}\right\}\right)
=Vol(Kv,[ev2]+1)×Vol(ϖvgv𝒪Fv).\displaystyle=\mathrm{Vol}\left(\mathrm{K}_{v,[\frac{e_{v}}{2}]+1}\right)\times\mathrm{Vol}\left(\varpi_{v}^{-g_{v}}\mathcal{O}_{F_{v}}\right).

Now, we assume that valv(cv)[ev2]\mathrm{val}_{v}(c_{v})\leq[\frac{e_{v}}{2}]. Since cv(av+cvxv)ϖvevgv𝒪Fvc_{v}(a_{v}+c_{v}x_{v})\in\varpi_{v}^{e_{v}-g_{v}}\mathcal{O}_{F_{v}}, it follows that xv=avcv1+yvx_{v}=-a_{v}c_{v}^{-1}+y_{v}, where yvϖvevgv2valv(cv)𝒪Fvy_{v}\in\varpi_{v}^{e_{v}-g_{v}-2\mathrm{val}_{v}(c_{v})}\mathcal{O}_{F_{v}}. Thus, for each integer i{0,[ev2]}i\in\{0,\dots[\frac{e_{v}}{2}]\}, we have

(3.50) Vol(Rv((Kv,i\Kv,i+1)×Fv))\displaystyle\mathrm{Vol}\left(R_{v}\cap\left(\left(\mathrm{K}_{v,i}\backslash\mathrm{K}_{v,i+1}\right)\times F_{v}\right)\right)
Vol({((avbvcvdv),xv):valv(cv)=i and xv=avcv1+yv for some yvϖvevgv2i𝒪Fv})\displaystyle\leq\mathrm{Vol}\left(\left\{\left(\left(\begin{smallmatrix}a_{v}&b_{v}\\ c_{v}&d_{v}\end{smallmatrix}\right),x_{v}\right):\mathrm{val}_{v}(c_{v})=i\text{ and }x_{v}=-a_{v}c_{v}^{-1}+y_{v}\text{ for some }y_{v}\in\varpi_{v}^{e_{v}-g_{v}-2i}\mathcal{O}_{F_{v}}\right\}\right)
=Vol(Kv,i\Kv,i+1)×Vol(ϖvevgv2i𝒪Fv).\displaystyle=\mathrm{Vol}\left(\mathrm{K}_{v,i}\backslash\mathrm{K}_{v,i+1}\right)\times\mathrm{Vol}\left(\varpi_{v}^{e_{v}-g_{v}-2i}\mathcal{O}_{F_{v}}\right).

Combining (3.48) \sim (3.50), we obtain that

Vol(Rv)Vol(Kv,[ev2]+1)×Vol(ϖvgv𝒪Fv)+i=0[ev2]Vol(Kv,i\Kv,i+1)×Vol(ϖvevgv2i𝒪Fv).\mathrm{Vol}(R_{v})\leq\mathrm{Vol}\left(\mathrm{K}_{v,[\frac{e_{v}}{2}]+1}\right)\times\mathrm{Vol}\left(\varpi_{v}^{-g_{v}}\mathcal{O}_{F_{v}}\right)+\sum_{i=0}^{[\frac{e_{v}}{2}]}\mathrm{Vol}\left(\mathrm{K}_{v,i}\backslash\mathrm{K}_{v,i+1}\right)\times\mathrm{Vol}\left(\varpi_{v}^{e_{v}-g_{v}-2i}\mathcal{O}_{F_{v}}\right).

Similar to deduce [SL2():Γ0(N)]=NpN(1+1p)[\mathrm{SL}_{2}(\mathbb{Z}):\Gamma_{0}(N)]=N\prod_{p\mid N}(1+\frac{1}{p}), we have

(3.51) Vol(Kv,i)=1[G(𝒪Fv):Kv,i]={1if i=0,qv1i(qv+1)1if i>0,\mathrm{Vol}(\mathrm{K}_{v,i})=\frac{1}{[\mathrm{G}(\mathcal{O}_{F_{v}}):\mathrm{K}_{v,i}]}=\begin{cases}1\quad&\text{if }i=0,\\ q_{v}^{1-i}(q_{v}+1)^{-1}\quad&\text{if }i>0,\end{cases}

and

Vol(ϖvi𝒪Fv)=qvi.\mathrm{Vol}(\varpi_{v}^{i}\mathcal{O}_{F_{v}})=q_{v}^{-i}.

Then, we have

(3.52) Vol(Kv,[ev2]+1)×Vol(ϖvgv𝒪Fv)+i=0[ev2]Vol(Kv,i\Kv,i+1)×Vol(ϖvevgv2i𝒪Fv)\displaystyle\mathrm{Vol}\left(\mathrm{K}_{v,[\frac{e_{v}}{2}]+1}\right)\times\mathrm{Vol}\left(\varpi_{v}^{-g_{v}}\mathcal{O}_{F_{v}}\right)+\sum_{i=0}^{[\frac{e_{v}}{2}]}\mathrm{Vol}\left(\mathrm{K}_{v,i}\backslash\mathrm{K}_{v,i+1}\right)\times\mathrm{Vol}\left(\varpi_{v}^{e_{v}-g_{v}-2i}\mathcal{O}_{F_{v}}\right)
=qvgv(qv+1)1(qv1ev+[ev2]+qv[ev2])\displaystyle=q_{v}^{g_{v}}(q_{v}+1)^{-1}\left(q_{v}^{1-e_{v}+[\frac{e_{v}}{2}]}+q_{v}^{-[\frac{e_{v}}{2}]}\right)
qvgvev2.\displaystyle\leq q_{v}^{g_{v}-\frac{e_{v}}{2}}.

Thus, we complete the proof of Lemma 3.11 for the case when wvw\neq v.

For the case when w=vw=v, it is enough to show that for (κv,xv)Rv(\kappa_{v},x_{v})\in R_{v}, |logHv((0110)(1xv01)κv)||\log H_{v}(\left(\begin{smallmatrix}0&1\\ -1&0\end{smallmatrix}\right)\left(\begin{smallmatrix}1&x_{v}\\ 0&1\end{smallmatrix}\right)\kappa_{v})| is less than or equal to 2gvlogqv2g_{v}\log q_{v}. If xv𝒪Fvx_{v}\in\mathcal{O}_{F_{v}}, then by the definition of HvH_{v} in (3.40) we have

logHv((0110)(1xv01)κv)=0.\log H_{v}\left(\begin{pmatrix}0&1\\ -1&0\end{pmatrix}\begin{pmatrix}1&x_{v}\\ 0&1\end{pmatrix}\kappa_{v}\right)=0.

If xv=ϖvmux_{v}=\varpi_{v}^{-m}u for some m>0m>0 and u𝒪Fv×u\in\mathcal{O}_{F_{v}}^{\times}, then we have

(3.53) (0110)(1ϖvmu01)=(ϖvmu10ϖvm)(u10ϖvmu).\begin{pmatrix}0&1\\ -1&0\end{pmatrix}\begin{pmatrix}1&\varpi_{v}^{-m}u\\ 0&1\end{pmatrix}=\begin{pmatrix}\varpi_{v}^{m}&-u^{-1}\\ 0&\varpi_{v}^{-m}\end{pmatrix}\begin{pmatrix}-u^{-1}&0\\ -\varpi_{v}^{m}&-u\end{pmatrix}.

From (3.53), we obtain

(3.54) logHv((0110)(1xv01)κv)=2mlogqv.\log H_{v}\left(\begin{pmatrix}0&1\\ -1&0\end{pmatrix}\begin{pmatrix}1&x_{v}\\ 0&1\end{pmatrix}\kappa_{v}\right)=-2m\log q_{v}.

Assume that (κv,xv):=((avbvcvdv),xv)Rv(\kappa_{v},x_{v}):=\left(\left(\begin{smallmatrix}a_{v}&b_{v}\\ c_{v}&d_{v}\end{smallmatrix}\right),x_{v}\right)\in R_{v}. If valv(cv)=0\mathrm{val}_{v}(c_{v})=0, then by (3.47) we have av+xvcvϖvevgv𝒪Fva_{v}+x_{v}c_{v}\in\varpi_{v}^{e_{v}-g_{v}}\mathcal{O}_{F_{v}}. It follows that valv(xv)min(0,evgv)\mathrm{val}_{v}(x_{v})\geq\min(0,e_{v}-g_{v}). If valv(cv)>0\mathrm{val}_{v}(c_{v})>0, then dv𝒪Fv×d_{v}\in\mathcal{O}_{F_{v}}^{\times}. Again, by (3.47), we obtain that valv(xv)gv\mathrm{val}_{v}(x_{v})\geq-g_{v}. Thus, we conclude that if (κv,xv)Rv(\kappa_{v},x_{v})\in R_{v}, then valv(xv)gv\mathrm{val}_{v}(x_{v})\geq-g_{v}. Combining (3.54), we obtain for (κv,xv)Rv(\kappa_{v},x_{v})\in R_{v},

|logHv((0110)(1xv01)κv)|2gvlogqv.|\log H_{v}(\left(\begin{smallmatrix}0&1\\ -1&0\end{smallmatrix}\right)\left(\begin{smallmatrix}1&x_{v}\\ 0&1\end{smallmatrix}\right)\kappa_{v})|\leq 2g_{v}\log q_{v}.

Note that

vSF,finqvgvev2=|NF\(α1)||NF\(J)|12.\prod_{v\in S_{F,\mathrm{fin}}}q_{v}^{g_{v}-\frac{e_{v}}{2}}=\left|N_{F\backslash\mathbb{Q}}(\alpha-1)\right|\cdot\left|N_{F\backslash\mathbb{Q}}(J)\right|^{-\frac{1}{2}}.

Combining (3.46) and Lemma 3.11, we have

(3.55) |Jα(ϕ)|\displaystyle|J_{\alpha}(\phi)| |NF\(α1)||NF\(J)|12\displaystyle\leq\left|N_{F\backslash\mathbb{Q}}(\alpha-1)\right|\cdot\left|N_{F\backslash\mathbb{Q}}(J)\right|^{-\frac{1}{2}}
×(2log|NF\(α1)||vSF,Jσv(α),vw0(ϕv)|+wSF,|vSF,Jσv(α),vw(ϕv)|),\displaystyle\times\left(2\log|N_{F\backslash\mathbb{Q}}(\alpha-1)|\cdot\left|\prod_{v\in S_{F,\infty}}J_{\sigma_{v}(\alpha),v}^{w_{0}}(\phi_{v})\right|+\sum_{w\in S_{F,\infty}}\left|\prod_{v\in S_{F,\infty}}J_{\sigma_{v}(\alpha),v}^{w}(\phi_{v})\right|\right),

where w0w_{0} is an arbitrary non-archimedean place of FF. In the following lemma, we compute Jα,vw(ϕv)J_{\alpha,v}^{w}(\phi_{v}) when vv is an archimedean place of FF.

Lemma 3.12.

Assume that vSF,v\in S_{F,\infty}. Fix αFv×\alpha\in F_{v}^{\times} and α1\alpha\neq 1. When wvw\neq v,

(3.56) |Jα,vw(ϕv)|(1+ϵv)|α|1+ϵv22π|α1|1+ϵv.\left|J_{\alpha,v}^{w}(\phi_{v})\right|\leq\frac{(1+\epsilon_{v})\cdot|\alpha|^{\frac{1+\epsilon_{v}}{2}}}{2\pi|\alpha-1|^{1+\epsilon_{v}}}.

When w=vw=v and Fv=F_{v}=\mathbb{R},

(3.57) |Jα,vv(ϕv)|2|α||α1|2log|α|2πhϕv^(t)cosh(πt)𝑑t.\left|J^{v}_{\alpha,v}(\phi_{v})\right|\leq\frac{2|\alpha|}{|\alpha-1|^{2}}\int_{\frac{\log|\alpha|}{2\pi}}^{\infty}\widehat{h_{\phi_{v}}}(t)\cosh(\pi t)dt.

When w=vw=v and Fv=F_{v}=\mathbb{C},

(3.58) |Jα,vv(ϕv)|2|α||α1|2log|α|πhϕv^(t)sinh(πt)cosh(πt)(α)|α|𝑑t.\left|J_{\alpha,v}^{v}(\phi_{v})\right|\leq-\frac{2|\alpha|}{|\alpha-1|^{2}}\int_{\frac{\log|\alpha|}{\pi}}^{\infty}\widehat{h_{\phi_{v}}}(t)\frac{\sinh(\pi t)}{\cosh(\pi t)-\frac{\Re(\alpha)}{|\alpha|}}\,dt.
Proof.

Following the proof of Lemma 3.8, we obtain (3.56). By the Iwasawa decomposition, we have

(011x)(1|x|2+1x¯|x|2+101)Z(Fv)Kv.\begin{pmatrix}0&1\\ -1&-x\end{pmatrix}\in\begin{pmatrix}\frac{1}{|x|^{2}+1}&-\frac{\bar{x}}{|x|^{2}+1}\\ 0&1\end{pmatrix}\mathrm{Z}(F_{v}){\rm K}_{v}.

Then, we get

logHv((011x))=(1+ϵv)log(|x|2+1).\log H_{v}\left(\begin{pmatrix}0&1\\ -1&-x\end{pmatrix}\right)=-(1+\epsilon_{v})\log(|x|^{2}+1).

By (3.35) and (3.37), we have

Jα,vv(ϕv)\displaystyle J_{\alpha,v}^{v}(\phi_{v}) =(1+ϵv)Fvϕv((αx(α1)01))log(|x|2+1)𝑑x\displaystyle=-(1+\epsilon_{v})\int_{F_{v}}\phi_{v}\left(\begin{pmatrix}\alpha&x(\alpha-1)\\ 0&1\end{pmatrix}\right)\log(|x|^{2}+1)dx
=2πϵv(1+ϵv)0ϕv((|α|x|α1|01))log(x2+1)xϵv𝑑x\displaystyle=-2\pi^{\epsilon_{v}}(1+\epsilon_{v})\int_{0}^{\infty}\phi_{v}\left(\begin{pmatrix}|\alpha|&x|\alpha-1|\\ 0&1\end{pmatrix}\right)\log(x^{2}+1)x^{\epsilon_{v}}dx
=2πϵv(1+ϵv)|α1|1+ϵv0ϕv((|α|x01))log(x2|α1|2+1)xϵv𝑑x.\displaystyle=-\frac{2\pi^{\epsilon_{v}}(1+\epsilon_{v})}{|\alpha-1|^{1+\epsilon_{v}}}\int_{0}^{\infty}\phi_{v}\left(\begin{pmatrix}|\alpha|&x\\ 0&1\end{pmatrix}\right)\log(x^{2}|\alpha-1|^{-2}+1)x^{\epsilon_{v}}dx.

As in the proof of Lemma 3.8, there are r>0r>0, κ1,κ2Kv\kappa_{1},\kappa_{2}\in\mathrm{K}_{v} such that

(|α|x01)=|α|12κ1(er200er2)κ2,\begin{pmatrix}|\alpha|&x\\ 0&1\end{pmatrix}=|\alpha|^{\frac{1}{2}}\kappa_{1}\begin{pmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{pmatrix}\kappa_{2},

and that

(3.59) |α|2+x2+1=2|α|cosh(r).|\alpha|^{2}+x^{2}+1=2|\alpha|\cosh(r).

Assume that Fv=F_{v}=\mathbb{R} and α>0\alpha>0. Since ϕv\phi_{v} is Z(Fv)\mathrm{Z}(F_{v})-invariant and bi-Kv\mathrm{K}_{v}-invariant, we have by Lemma 2.1

ϕv((αx01))=ϕv((er200er2))=14π2r2πhϕv^(t)sinh2(πt)sinh2(r2)𝑑t.\displaystyle\phi_{v}\left(\begin{pmatrix}\alpha&x\\ 0&1\end{pmatrix}\right)=\phi_{v}\left(\begin{pmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{pmatrix}\right)=-\frac{1}{4\pi^{2}}\int_{\frac{r}{2\pi}}^{\infty}\frac{\widehat{h_{\phi_{v}}}^{\prime}(t)}{\sqrt{\sinh^{2}(\pi t)-\sinh^{2}\left(\frac{r}{2}\right)}}dt.

Then, we have

Jα,vv(ϕv)=12π2|α1|0r2πhϕv^(t)sinh2(πt)sinh2(r2)log(x2|α1|2+1)𝑑t𝑑x.J^{v}_{\alpha,v}(\phi_{v})=\frac{1}{2\pi^{2}|\alpha-1|}\int_{0}^{\infty}\int_{\frac{r}{2\pi}}^{\infty}\frac{\widehat{h_{\phi_{v}}}^{\prime}(t)}{\sqrt{\sinh^{2}(\pi t)-\sinh^{2}\left(\frac{r}{2}\right)}}\log(x^{2}|\alpha-1|^{-2}+1)dt\,dx.

Note that r2πt\frac{r}{2\pi}\leq t implies

x2=2|α|cosh(r)|α|212|α|cosh(2πt)|α|21=4|α|(sinh2(πt)sinh2(log|α|2)).x^{2}=2|\alpha|\cosh(r)-|\alpha|^{2}-1\leq 2|\alpha|\cosh(2\pi t)-|\alpha|^{2}-1=4|\alpha|\left(\sinh^{2}(\pi t)-\sinh^{2}\left(\frac{\log|\alpha|}{2}\right)\right).

Using the relation sinh2(r2)=sinh2(log|α|2)+x24|α|\sinh^{2}(\frac{r}{2})=\sinh^{2}(\frac{\log|\alpha|}{2})+\frac{x^{2}}{4|\alpha|} and Fubini’s theorem, we have

Jα,vv(ϕv)\displaystyle J^{v}_{\alpha,v}(\phi_{v})
=12π2|α1|log|α|2πhϕv^(t)02|α|sinh2(πt)sinh2(log|α|2)log(x2|α1|2+1)sinh2(πt)sinh2(r2)𝑑x𝑑t\displaystyle=\frac{1}{2\pi^{2}|\alpha-1|}\int_{\frac{\log|\alpha|}{2\pi}}^{\infty}\widehat{h_{\phi_{v}}}^{\prime}(t)\int_{0}^{2\sqrt{|\alpha|}\sqrt{\sinh^{2}(\pi t)-\sinh^{2}\left(\frac{\log|\alpha|}{2}\right)}}\frac{\log\bigg{(}\frac{x^{2}}{|\alpha-1|^{2}}+1\bigg{)}}{\sqrt{\sinh^{2}(\pi t)-\sinh^{2}\left(\frac{r}{2}\right)}}dx\,dt
=12π2|α1|log|α|2πhϕv^(t)02|α|sinh2(πt)sinh2(log|α|2)log(x2|α1|2+1)sinh2(πt)sinh2(log|α|2)x24|α|𝑑x𝑑t\displaystyle=\frac{1}{2\pi^{2}|\alpha-1|}\int_{\frac{\log|\alpha|}{2\pi}}^{\infty}\widehat{h_{\phi_{v}}}^{\prime}(t)\int_{0}^{2\sqrt{|\alpha|}\sqrt{\sinh^{2}(\pi t)-\sinh^{2}\left(\frac{\log|\alpha|}{2}\right)}}\frac{\log\bigg{(}\frac{x^{2}}{|\alpha-1|^{2}}+1\bigg{)}}{\sqrt{\sinh^{2}(\pi t)-\sinh^{2}\left(\frac{\log|\alpha|}{2}\right)-\frac{x^{2}}{4|\alpha|}}}dx\,dt
=α|π2|α1|log|α|2πhϕv^(t)0sinh2(πt)sinh2(log|α|2)log(4|α|x2|α1|2+1)sinh2(πt)sinh2(log|α|2)x2𝑑x𝑑t.\displaystyle=\frac{\sqrt{\alpha|}}{\pi^{2}|\alpha-1|}\int_{\frac{\log|\alpha|}{2\pi}}^{\infty}\widehat{h_{\phi_{v}}}^{\prime}(t)\int_{0}^{\sqrt{\sinh^{2}(\pi t)-\sinh^{2}\left(\frac{\log|\alpha|}{2}\right)}}\frac{\log\bigg{(}\frac{4|\alpha|x^{2}}{|\alpha-1|^{2}}+1\bigg{)}}{\sqrt{\sinh^{2}(\pi t)-\sinh^{2}\left(\frac{\log|\alpha|}{2}\right)-x^{2}}}dx\,dt.

By [7, 4.295(38)], and then applying the integration by parts, we have

Jα,vv(ϕv)\displaystyle J_{\alpha,v}^{v}(\phi_{v}) =|α|π2|α1|log|α|2πhϕv^(t)πlog(1+1+4|α||α1|2(sinh2(πt)sinh2(log|α|2))2)𝑑t\displaystyle=\frac{\sqrt{|\alpha|}}{\pi^{2}|\alpha-1|}\int_{\frac{\log|\alpha|}{2\pi}}^{\infty}\widehat{h_{\phi_{v}}}^{\prime}(t)\pi\log\bigg{(}\frac{1+\sqrt{1+\frac{4|\alpha|}{|\alpha-1|^{2}}\left(\sinh^{2}(\pi t)-\sinh^{2}\left(\frac{\log|\alpha|}{2}\right)\right)}}{2}\bigg{)}dt
=|α|π|α1|log|α|2πhϕv^(t)π4|α||α1|2sinh(πt)cosh(πt)(1+1+4|α||α1|2fα(t))1+4|α||α1|2fα(t)𝑑t,\displaystyle=-\frac{\sqrt{|\alpha|}}{\pi|\alpha-1|}\int_{\frac{\log|\alpha|}{2\pi}}^{\infty}\widehat{h_{\phi_{v}}}(t)\frac{\pi\frac{4|\alpha|}{|\alpha-1|^{2}}\sinh(\pi t)\cosh(\pi t)}{\left(1+\sqrt{1+\frac{4|\alpha|}{|\alpha-1|^{2}}f_{\alpha}(t)}\right)\sqrt{1+\frac{4|\alpha|}{|\alpha-1|^{2}}f_{\alpha}(t)}}dt,

where

fα(t):=sinh2(πt)sinh2(log|α|2).f_{\alpha}(t):=\sinh^{2}(\pi t)-\sinh^{2}\left(\frac{\log|\alpha|}{2}\right).

Since |α1|2(|α|1)2|\alpha-1|^{2}\geq(|\alpha|-1)^{2}, it follows that

1+4|α||α1|2fα(t)4|α||α1|2sinh2(πt)1+\frac{4|\alpha|}{|\alpha-1|^{2}}f_{\alpha}(t)\geq\frac{4|\alpha|}{|\alpha-1|^{2}}\sinh^{2}(\pi t)

and that

|(1+1+4|α||α1|2fα(t))1+4|α||α1|2fα(t)|>2|α||α1|sinh(πt).\left|\left(1+\sqrt{1+\frac{4|\alpha|}{|\alpha-1|^{2}}f_{\alpha}(t)}\right)\sqrt{1+\frac{4|\alpha|}{|\alpha-1|^{2}}f_{\alpha}(t)}\right|>\frac{2\sqrt{|\alpha|}}{|\alpha-1|}\sinh(\pi t).

Hence, we get (3.57).

Assume that Fv=F_{v}=\mathbb{C}. Then, we have by Lemma 2.1

ϕv((|α|x01))=ϕv((er200er2))=12π3sinh(r)hϕv^(rπ),\phi_{v}\left(\begin{pmatrix}|\alpha|&x\\ 0&1\end{pmatrix}\right)=\phi_{v}\left(\begin{pmatrix}e^{-\frac{r}{2}}&0\\ 0&e^{\frac{r}{2}}\end{pmatrix}\right)=-\frac{1}{2\pi^{3}\sinh(r)}\widehat{h_{\phi_{v}}}^{\prime}\left(\frac{r}{\pi}\right),

where |α|2+x2+1=2|α|cosh(r)|\alpha|^{2}+x^{2}+1=2|\alpha|\cosh(r). By changing the variable x2=2|α|cosh(r)|α|21x^{2}=2|\alpha|\cosh(r)-|\alpha|^{2}-1, we obtain

Jα,vv(ϕv)\displaystyle J^{v}_{\alpha,v}(\phi_{v}) =2|α|π2|α1|2log|α|hϕv^(rπ)log(2|α|cosh(r)|α|21+|α1|2|α1|2)𝑑r\displaystyle=\frac{2|\alpha|}{\pi^{2}|\alpha-1|^{2}}\int_{\log|\alpha|}^{\infty}\widehat{h_{\phi_{v}}}^{\prime}\left(\frac{r}{\pi}\right)\log\left(\frac{2|\alpha|\cosh(r)-|\alpha|^{2}-1+|\alpha-1|^{2}}{|\alpha-1|^{2}}\right)dr
=2|α|π|α1|2log|α|πhϕv^(t)log(2|α|cosh(πt)|α|21+|α1|2|α1|2)𝑑t\displaystyle=\frac{2|\alpha|}{\pi|\alpha-1|^{2}}\int_{\frac{\log|\alpha|}{\pi}}^{\infty}\widehat{h_{\phi_{v}}}^{\prime}(t)\log\left(\frac{2|\alpha|\cosh(\pi t)-|\alpha|^{2}-1+|\alpha-1|^{2}}{|\alpha-1|^{2}}\right)dt

Applying the integration by parts, we get (3.58). ∎

3.5. Parabolic contribution

For ss\in\mathbb{C} with Re(s)>1\mathrm{Re}(s)>1, Z(s,ϕ)Z(s,\phi) is defined by

(3.60) Z(s,ϕ):=vSFZv(s,ϕv),Z(s,\phi):=\prod_{v\in S_{F}}Z_{v}(s,\phi_{v}),

where for each vSFv\in S_{F},

Zv(s,ϕv):=KvFv×ϕv(κ1(1y01)κ)|y|vsdv×ydvκ.Z_{v}(s,\phi_{v}):=\int_{\mathrm{K}_{v}}\int_{F_{v}^{\times}}\phi_{v}\left(\kappa^{-1}\left(\begin{smallmatrix}1&y\\ 0&1\end{smallmatrix}\right)\kappa\right)|y|_{v}^{s}d^{\times}_{v}y\,d_{v}\kappa.

In [6, (6.34)], Spar(ϕ)S_{\mathrm{par}}(\phi) is defined by

Spar(ϕ):=lims1(Z(s,ϕ) principal part of Z(s,ϕ) at s=1).S_{\mathrm{par}}(\phi):=\lim_{s\to 1}\bigg{(}Z(s,\phi)-\text{ principal part of $Z(s,\phi)$ at $s=1$}\bigg{)}.

In the following lemma, we compute Zv(s,ϕv)Z_{v}(s,\phi_{v}) for vSF,finv\in S_{F,\mathrm{fin}}.

Lemma 3.13.

For each vSF,finv\in S_{F,\mathrm{fin}}, let

gv(s):=1qv+1(qv1evs+(qv1)qv(2ev)s1qv(2s1)[ev2]1qv2s11+qv[ev2]).g_{v}(s):=\frac{1}{q_{v}+1}\left(q_{v}^{1-e_{v}s}+(q_{v}-1)q_{v}^{(2-e_{v})s-1}\frac{q_{v}^{(2s-1)[\frac{e_{v}}{2}]}-1}{q_{v}^{2s-1}-1}+q_{v}^{-[\frac{e_{v}}{2}]}\right).

Then, we have

Zv(s,ϕv)=gv(s)1qvs.Z_{v}(s,\phi_{v})=\frac{g_{v}(s)}{1-q_{v}^{-s}}.
Proof.

Suppose that ev=0e_{v}=0. If ϕv(κ1(1y01)κ)\phi_{v}\left(\kappa^{-1}\left(\begin{smallmatrix}1&y\\ 0&1\end{smallmatrix}\right)\kappa\right) is non-zero for some κG(𝒪Fv)\kappa\in\mathrm{G}(\mathcal{O}_{F_{v}}) and yFv×y\in F_{v}^{\times}, then κ1(1y01)κZ(Fv)G(𝒪Fv)\kappa^{-1}\left(\begin{smallmatrix}1&y\\ 0&1\end{smallmatrix}\right)\kappa\in\mathrm{Z}(F_{v})\cdot\mathrm{G}(\mathcal{O}_{F_{v}}). This implies that y𝒪Fv{0}y\in\mathcal{O}_{F_{v}}-\{0\}. Conversely, if y𝒪Fv{0}y\in\mathcal{O}_{F_{v}}-\{0\} and κKv\kappa\in\mathrm{K}_{v}, then we have ϕv(κ1(1y01)κ)\phi_{v}\left(\kappa^{-1}\left(\begin{smallmatrix}1&y\\ 0&1\end{smallmatrix}\right)\kappa\right) is 11. Thus, we have

Zv(s,ϕv)\displaystyle Z_{v}(s,\phi_{v}) =Vol(Kv)𝒪Fv{0}|y|vsdv×y\displaystyle=\mathrm{Vol}(\mathrm{K}_{v})\int_{\mathcal{O}_{F_{v}}-\{0\}}|y|^{s}_{v}d_{v}^{\times}y
=m=0ϖvm𝒪v×|y|vsdv×y\displaystyle=\sum_{m=0}^{\infty}\int_{\varpi_{v}^{m}\mathcal{O}_{v}^{\times}}|y|_{v}^{s}d_{v}^{\times}y
=11qvs.\displaystyle=\frac{1}{1-q_{v}^{-s}}.

Now, we assume that eve_{v} is a positive integer. Let κ=(abcd)Kv\kappa=\left(\begin{smallmatrix}a&b\\ c&d\end{smallmatrix}\right)\in\mathrm{K}_{v}. Since ϕv\phi_{v} is the characteristic function of Z(Fv)Kv,ev\mathrm{Z}(F_{v})\mathrm{K}_{v,e_{v}}, it follows that ϕv(κ1(1y01)κ)\phi_{v}\left(\kappa^{-1}\left(\begin{smallmatrix}1&y\\ 0&1\end{smallmatrix}\right)\kappa\right) is non-zero if and only if

(3.61) κ1(1y01)κ=1adbc(cdy+adbcd2yc2ycdy+adbc)Z(Fv)Kv,ev.\kappa^{-1}\begin{pmatrix}1&y\\ 0&1\end{pmatrix}\kappa=\frac{1}{ad-bc}\begin{pmatrix}cdy+ad-bc&d^{2}y\\ -c^{2}y&-cdy+ad-bc\end{pmatrix}\in\mathrm{Z}(F_{v})\cdot\mathrm{K}_{v,e_{v}}.

Since the determinant of κ1(1y01)κ\kappa^{-1}\begin{pmatrix}1&y\\ 0&1\end{pmatrix}\kappa is 11, the condition (3.61) is equivalent to

(3.62) cdy𝒪Fv,d2y𝒪Fv, and c2yϖvev𝒪Fv.cdy\in\mathcal{O}_{F_{v}},\quad d^{2}y\in\mathcal{O}_{F_{v}},\text{ and }c^{2}y\in\varpi_{v}^{e_{v}}\mathcal{O}_{F_{v}}.

Note that at least one of cc and dd is in 𝒪Fv×\mathcal{O}_{F_{v}}^{\times} since κKv\kappa\in\mathrm{K}_{v}. Thus, (3.62) is equivalent to

(3.63) y𝒪Fv and c2yϖvev𝒪Fv.y\in\mathcal{O}_{F_{v}}\text{ and }c^{2}y\in\varpi_{v}^{e_{v}}\mathcal{O}_{F_{v}}.

As in the proof of Lemma 3.11, we consider the condition (3.63) according to valv(c)\mathrm{val}_{v}(c). If valv(c)[ev2]\mathrm{val}_{v}(c)\leq[\frac{e_{v}}{2}], then yϖvev2valv(c)𝒪Fvy\in\varpi_{v}^{e_{v}-2\mathrm{val}_{v}(c)}\mathcal{O}_{F_{v}}, and if valv(c)>[ev2]\mathrm{val}_{v}(c)>[\frac{e_{v}}{2}], then y𝒪Fvy\in\mathcal{O}_{F_{v}}. Thus, we have

(3.64) Zv(s,ϕv)\displaystyle Z_{v}(s,\phi_{v}) =i=0[ev2]Vol(Kv,i\Kv,i+1)ϖev2i𝒪Fv{0}|y|vsdv×y+Vol(Kv,[ev2]+1)𝒪Fv{0}|y|vsdv×y.\displaystyle=\sum_{i=0}^{[\frac{e_{v}}{2}]}\mathrm{Vol}(\mathrm{K}_{v,i}\backslash\mathrm{K}_{v,i+1})\cdot\int_{\varpi^{e_{v}-2i}\mathcal{O}_{F_{v}}-\{0\}}|y|_{v}^{s}d_{v}^{\times}y+\mathrm{Vol}(\mathrm{K}_{v,[\frac{e_{v}}{2}]+1})\cdot\int_{\mathcal{O}_{F_{v}}-\{0\}}|y|_{v}^{s}d_{v}^{\times}y.

For each integer ii, we have

(3.65) ϖvev2i𝒪Fv{0}|y|vsdv×y=qv(ev2i)s1qvs.\int_{\varpi_{v}^{e_{v}-2i}\mathcal{O}_{F_{v}}-\{0\}}|y|_{v}^{s}d_{v}^{\times}y=\frac{q_{v}^{-(e_{v}-2i)s}}{1-q_{v}^{-s}}.

Combining (3.51), (3.64) and (3.65), we complete the proof of Lemma 3.13. ∎

By Lemma 3.13, we have

Z(s,ϕ)=ζF(s)vSF,fingv(s)vSF,Zv(s,ϕv),Z(s,\phi)=\zeta_{F}(s)\cdot\prod_{v\in S_{F,\mathrm{fin}}}g_{v}(s)\cdot\prod_{v\in S_{F,\infty}}Z_{v}(s,\phi_{v}),

where ζF\zeta_{F} denotes the Dedekind zeta function of FF. Let

g(s):=vSF,fingv(s)g(s):=\prod_{v\in S_{F,\mathrm{fin}}}g_{v}(s)

and

Z(s,ϕ):=vSF,Zv(s,ϕv).Z_{\infty}(s,\phi_{\infty}):=\prod_{v\in S_{F,\infty}}Z_{v}(s,\phi_{v}).

Note that the Laurent series of ζF\zeta_{F} at s=1s=1 has the form

ζF(s)=λ1s1+λ0+n=1λn(s1)n.\zeta_{F}(s)=\frac{\lambda_{-1}}{s-1}+\lambda_{0}+\sum_{n=1}^{\infty}\lambda_{n}(s-1)^{n}.

By the definition of gvg_{v}, we see that gv(s)g_{v}(s) is holomorphic at s=1s=1 for each vSF,finv\in S_{F,\mathrm{fin}}. Also, Z(s,ϕ)Z_{\infty}(s,\phi_{\infty}) is holomorphic at s=1s=1 (see [6, pp. 242]). Thus, we have

Z(s,ϕ)\displaystyle Z(s,\phi) =(λ1s1+λ0+)(g(1)+g(1)(s1)+)(Z(1,ϕ)+Z(1,ϕ)(s1)+)\displaystyle=\left(\frac{\lambda_{-1}}{s-1}+\lambda_{0}+\cdots\right)\left(g(1)+g^{\prime}(1)(s-1)+\cdots\right)\left(Z_{\infty}(1,\phi_{\infty})+Z_{\infty}^{\prime}(1,\phi_{\infty})(s-1)+\cdots\right)
=λ1g(1)Z(1,ϕ)s1+(λ0g(1)Z(1,ϕ)+λ1(g(1)Z(1,ϕ)+g(1)Z(1,ϕ)))+.\displaystyle=\frac{\lambda_{-1}\cdot g(1)\cdot Z_{\infty}(1,\phi_{\infty})}{s-1}+\left(\lambda_{0}\cdot g(1)\cdot Z_{\infty}(1,\phi_{\infty})+\lambda_{-1}\left(g(1)\cdot Z^{\prime}_{\infty}(1,\phi_{\infty})+g^{\prime}(1)\cdot Z_{\infty}(1,\phi_{\infty})\right)\right)+\cdots.

Then, we get

(3.66) Spar(ϕ)=λ0g(1)Z(1,ϕ)+λ1(g(1)Z(1,ϕ)+g(1)Z(1,ϕ)).S_{\mathrm{par}}(\phi)=\lambda_{0}\cdot g(1)\cdot Z_{\infty}(1,\phi_{\infty})+\lambda_{-1}\left(g(1)\cdot Z^{\prime}_{\infty}(1,\phi_{\infty})+g^{\prime}(1)\cdot Z_{\infty}(1,\phi_{\infty})\right).

From Lemma 3.13, we have for each vSF,finv\in S_{F,\mathrm{fin}},

|gv(1)|=|(qv+1)1(qv[ev2]+1ev+qv[ev2])|qvev2|g_{v}(1)|=\left|(q_{v}+1)^{-1}\left(q_{v}^{[\frac{e_{v}}{2}]+1-e_{v}}+q_{v}^{-[\frac{e_{v}}{2}]}\right)\right|\leq q_{v}^{-\frac{e_{v}}{2}}

and

|gv(1)|\displaystyle|g_{v}^{\prime}(1)| =|logqv(qv+1)1((2[ev2]ev)qv[ev2]ev+12(qv1)1(qv[ev2]ev+1qv1ev))|\displaystyle=\left|\log q_{v}\cdot(q_{v}+1)^{-1}\cdot\left(\left(2\left[\frac{e_{v}}{2}\right]-e_{v}\right)\cdot q_{v}^{[\frac{e_{v}}{2}]-e_{v}+1}-2(q_{v}-1)^{-1}\left(q_{v}^{[\frac{e_{v}}{2}]-e_{v}+1}-q_{v}^{1-e_{v}}\right)\right)\right|
6logqvqvev2.\displaystyle\leq 6\log q_{v}\cdot q_{v}^{-\frac{e_{v}}{2}}.

Then, we get

|g(1)|=|vSF,fingv(1)||NF\(J)|12|g(1)|=\left|\prod_{v\in S_{F,\mathrm{fin}}}g_{v}(1)\right|\leq\left|N_{F\backslash\mathbb{Q}}(J)\right|^{-\frac{1}{2}}

and

|g(1)|=|wSF,fingw(1)vSF,finvwgv(1)|6|NF\(J)|12log|NF\(J)|.|g^{\prime}(1)|=\left|\sum_{w\in S_{F,\mathrm{fin}}}g_{w}^{\prime}(1)\prod_{\begin{subarray}{c}v\in S_{F,\mathrm{fin}}\\ v\neq w\end{subarray}}g_{v}(1)\right|\leq 6\left|N_{F\backslash\mathbb{Q}}(J)\right|^{-\frac{1}{2}}\log\left|N_{F\backslash\mathbb{Q}}(J)\right|.

Again by (3.66), we conclude that

(3.67) |Spar(ϕ)||NF\(J)|12(λ0Z(1,ϕ)+λ1(Z(1,ϕ)+6Z(1,ϕ)log|NF\(J)|)).|S_{\rm par}(\phi)|\leq\left|N_{F\backslash\mathbb{Q}}(J)\right|^{-\frac{1}{2}}\left(\lambda_{0}Z_{\infty}(1,\phi_{\infty})+\lambda_{-1}\left(Z^{\prime}_{\infty}(1,\phi_{\infty})+6\cdot Z_{\infty}(1,\phi_{\infty})\log\left|N_{F\backslash\mathbb{Q}}(J)\right|\right)\right).

In the following lemma, we compute Zv(1,ϕv)Z_{v}(1,\phi_{v}) and Zv(1,ϕv)Z_{v}^{\prime}(1,\phi_{v}) for vSF,v\in S_{F,\infty}.

Lemma 3.14.

Assume that vSF,v\in S_{F,\infty}. Let ϵv:=[Fv:]1\epsilon_{v}:=[F_{v}:\mathbb{R}]-1. Then, we have

Zv(1,ϕv)=(1+ϵv)24π1+ϵvZ_{v}(1,\phi_{v})=\frac{(1+\epsilon_{v})^{2}}{4\pi^{1+\epsilon_{v}}}

and

(3.68) Zv(1,ϕv)=Cv,1+Cv,2hϕv(0)+Cv,3hϕv(t)ΓΓ(1+(1+ϵv)it)𝑑t,Z_{v}^{\prime}(1,\phi_{v})=C_{v,1}+C_{v,2}\cdot h_{\phi_{v}}(0)+C_{v,3}\cdot\int_{-\infty}^{\infty}h_{\phi_{v}}(t)\frac{\Gamma^{\prime}}{\Gamma}(1+(1+\epsilon_{v})it)dt,

where Cv,1,Cv,2C_{v,1},C_{v,2} and Cv,3C_{v,3} are constants depending on FvF_{v}.

Proof.

See [9, Theorem 6.2] or [4, Proposition 6.5.3(1)]. ∎

3.6. Eisenstein series and residual contribution

Let χ=vSFχv\chi=\otimes_{v\in S_{F}}\chi_{v} be an idele class character of F×\𝔸F×F^{\times}\backslash\mathbb{A}_{F}^{\times} and χv\chi_{v} be a character of Fv×F_{v}^{\times}. For a:=(av)vSF𝔸Fa:=(a_{v})_{v\in S_{F}}\in\mathbb{A}_{F}, let a:=vSF|av|v\|a\|:=\prod_{v\in S_{F}}|a_{v}|_{v}. For a complex number ss, we define Vχ,sV_{\chi,s} by the space of functions φ\varphi on G(𝔸F)\mathrm{G}(\mathbb{A}_{F}) satisfying

  1. (1)

    φ((ax0b)g)=χ(ab1)abs+12φ(g)\varphi\left(\left(\begin{smallmatrix}a&x\\ 0&b\end{smallmatrix}\right)g\right)=\chi(ab^{-1})\left\|\frac{a}{b}\right\|^{s+\frac{1}{2}}\varphi(g),

  2. (2)

    K|φ(k)|2𝑑k<\int_{\mathrm{K}}|\varphi(k)|^{2}dk<\infty.

Similarly, for each place vv of FF, we define Vχv,sV_{\chi_{v},s} by the space of functions φv\varphi_{v} on G(Fv)\mathrm{G}(F_{v}) satisfying

  1. (1)

    φv((ax0b)g)=χv(ab1)|ab|vs+12φv(g)\varphi_{v}\left(\left(\begin{smallmatrix}a&x\\ 0&b\end{smallmatrix}\right)g\right)=\chi_{v}(ab^{-1})\left|\frac{a}{b}\right|_{v}^{s+\frac{1}{2}}\varphi_{v}(g),

  2. (2)

    Kv|φ(k)|2𝑑k<\int_{\mathrm{K}_{v}}|\varphi(k)|^{2}dk<\infty.

For φVχ,s\varphi\in V_{\chi,s} and φvVχv,s\varphi_{v}\in V_{\chi_{v},s}, M(ηχ,s)(φ)M\left(\eta_{\chi,s}\right)(\varphi) and M(ηχv,s)(φv)M\left(\eta_{\chi_{v},s}\right)(\varphi_{v}) are defined by

(M(ηχ,s)(φ))(g):=𝔸Fφ(w(1x01)g)𝑑x,\left(M\left(\eta_{\chi,s}\right)(\varphi)\right)(g):=\int_{\mathbb{A}_{F}}\varphi\left(w\begin{pmatrix}1&x\\ 0&1\end{pmatrix}g\right)dx,

and

(M(ηχv,s)(φv))(g):=Fvφv(w(1x01)g)dvx,\left(M\left(\eta_{\chi_{v},s}\right)(\varphi_{v})\right)(g):=\int_{F_{v}}\varphi_{v}\left(w\begin{pmatrix}1&x\\ 0&1\end{pmatrix}g\right)d_{v}x,

where w:=(0110)w:=\left(\begin{smallmatrix}0&-1\\ 1&0\end{smallmatrix}\right). Let πχ,s(ϕ):Vχ,sVχ,s\pi_{\chi,s}(\phi):V_{\chi,s}\to V_{\chi,s} and πχv,s(ϕv):Vχv,sVχv,s\pi_{\chi_{v},s}(\phi_{v}):V_{\chi_{v},s}\to V_{\chi_{v},s} be defined by

(πχ,s(ϕ)φ)(g):=G¯(𝔸F)ϕ(x)φ(gx)𝑑x\left(\pi_{\chi,s}(\phi)\varphi\right)(g):=\int_{\bar{\mathrm{G}}(\mathbb{A}_{F})}\phi(x)\varphi(gx)dx

and

(πχv,s(ϕv)φv)(g):=G¯(Fv)ϕv(x)φv(gx)dvx.\left(\pi_{\chi_{v},s}(\phi_{v})\varphi_{v}\right)(g):=\int_{\bar{\mathrm{G}}(F_{v})}\phi_{v}(x)\varphi_{v}(gx)d_{v}x.

Then, we have by [6, pp. 243]

SEis(ϕ)=14πχiitr(M(ηχ,s)1M(ηχ,s)πχ,s(ϕ))𝑑s,S_{\rm Eis}(\phi)=\frac{1}{4\pi}\sum_{\chi}\int_{-i\infty}^{i\infty}\mathrm{tr}\left(M(\eta_{\chi,s})^{-1}M^{\prime}(\eta_{\chi,s})\pi_{\chi,s}(\phi)\right)ds,

where the sum is over all χ\chi whose restriction to F+F_{\infty}^{+} is trivial. Here, F+F_{\infty}^{+} is the subset of 𝔸F\mathbb{A}_{F} consisting of a:=(av)vSFa:=(a_{v})_{v\in S_{F}} such that av=1a_{v}=1 for all vSF,finv\in S_{F,\mathrm{fin}}, and av>0a_{v}>0 for all vSF,v\in S_{F,\infty}.

Note that M(ηχv,s)M(\eta_{\chi_{v},s}) acts by a scalar multiplication. Thus, there is a constant (aχv,s)vFv(a_{\chi_{v},s})_{v}\in F_{v} such that for all φvVχv,s\varphi_{v}\in V_{\chi_{v},s},

(M(ηχv,s)φv)=(aχv,s)vφv.\left(M(\eta_{\chi_{v},s})\varphi_{v}\right)=(a_{\chi_{v},s})_{v}\cdot\varphi_{v}.

Then, for φVχ,s\varphi\in V_{\chi,s}, we obtain that

(3.69) M(ηχ,s)φ=(vSF(aχv,s)v)φM(\eta_{\chi,s})\varphi=\left(\prod_{v\in S_{F}}(a_{\chi_{v},s})_{v}\right)\varphi

and

M(ηχ,s)1M(ηχ,s)φ=(vSF(aχv,s)v(aχv,s)v)φ.M(\eta_{\chi,s})^{-1}M(\eta_{\chi,s})^{\prime}\varphi=\left(\sum_{v\in S_{F}}\frac{(a_{\chi_{v},s})^{\prime}_{v}}{(a_{\chi_{v},s})_{v}}\right)\varphi.

It implies that

(3.70) tr(M(ηχ,s)1M(ηχ,s)πχ,s(ϕ))=(vSF(aχv,s)v(aχv,s)v)trπχ,s(ϕ).\mathrm{tr}\left(M(\eta_{\chi,s})^{-1}M^{\prime}(\eta_{\chi,s})\pi_{\chi,s}(\phi)\right)=\left(\sum_{v\in S_{F}}\frac{(a_{\chi_{v},s})^{\prime}_{v}}{(a_{\chi_{v},s})_{v}}\right)\mathrm{tr}\pi_{\chi,s}(\phi).

Assume that there is v0SF,v_{0}\in S_{F,\infty} such that Fv0=F_{v_{0}}=\mathbb{C} and χv0\chi_{v_{0}} is non-trivial on the unit circle S1S^{1}. Then, there is θ0[0,2π)\theta_{0}\in[0,2\pi) such that χv0(eiθ0)1\chi_{v_{0}}(e^{i\theta_{0}})\neq 1. Let g0:=(g0,v)vSFG(𝔸F)g_{0}:=(g_{0,v})_{v\in S_{F}}\in\mathrm{G}(\mathbb{A}_{F}) be defined by

g0,v:={(eiθ0001)if v=v0,I2otherwise.g_{0,v}:=\begin{cases}\left(\begin{smallmatrix}e^{i\theta_{0}}&0\\ 0&1\end{smallmatrix}\right)\quad&\text{if }v=v_{0},\\ I_{2}\quad&\text{otherwise}.\end{cases}

Then, we have

(πχ,s(ϕ)φ)(I2)\displaystyle\left(\pi_{\chi,s}(\phi)\varphi\right)(I_{2}) =G¯(𝔸F)ϕ(x)φ(x)𝑑x\displaystyle=\int_{\bar{\mathrm{G}}(\mathbb{A}_{F})}\phi(x)\varphi(x)dx
=G¯(𝔸F)ϕ(g0x)φ(g0x)𝑑x\displaystyle=\int_{\bar{\mathrm{G}}(\mathbb{A}_{F})}\phi(g_{0}x)\varphi(g_{0}x)dx
=χv0(eiθ0)(πχ,s(ϕ)φ)(I2).\displaystyle=\chi_{v_{0}}(e^{i\theta_{0}})\cdot\left(\pi_{\chi,s}(\phi)\varphi\right)(I_{2}).

This implies that (πχ,s(ϕ)φ)(I2)=0\left(\pi_{\chi,s}(\phi)\varphi\right)(I_{2})=0 and that (πχ,s(ϕ)φ)(κ)=0\left(\pi_{\chi,s}(\phi)\varphi\right)(\kappa)=0 for all κvSF,Kv0\kappa\in\prod_{v\in S_{F,\infty}}\mathrm{K}_{v}^{0} since

(πχ,s(ϕ)φ)(κ)\displaystyle\left(\pi_{\chi,s}(\phi)\varphi\right)(\kappa) =G¯(𝔸F)ϕ(x)φ(κx)𝑑x\displaystyle=\int_{\bar{\mathrm{G}}(\mathbb{A}_{F})}\phi(x)\varphi(\kappa x)dx
=G¯(𝔸F)ϕ(κ1x)φ(x)𝑑x\displaystyle=\int_{\bar{\mathrm{G}}(\mathbb{A}_{F})}\phi(\kappa^{-1}x)\varphi(x)dx
=G¯(𝔸F)ϕ(x)φ(x)𝑑x\displaystyle=\int_{\bar{\mathrm{G}}(\mathbb{A}_{F})}\phi(x)\varphi(x)dx
=(πχ,s(ϕ)φ)(I2).\displaystyle=\left(\pi_{\chi,s}(\phi)\varphi\right)(I_{2}).

By the Iwasawa decomposition, we conclude that πχ,s(ϕ)=0\pi_{\chi,s}(\phi)=0 if there is v0SF,v_{0}\in S_{F,\infty} such that Fv0=F_{v_{0}}=\mathbb{C} and χv0\chi_{v_{0}} is non-trivial on S1S^{1}.

Thus, if trπχ,s(ϕ)0\mathrm{tr}\pi_{\chi,s}(\phi)\neq 0 and the restriction of χ\chi to F+F^{+}_{\infty} is trivial, then we have

(3.71) χv={χ0,v or sgnif Fv=,χ0,votherwise.\chi_{v}=\begin{cases}\chi_{0,v}\text{ or }\mathop{\rm sgn}\quad&\text{if }F_{v}=\mathbb{R},\\ \chi_{0,v}\quad&\text{otherwise.}\end{cases}

Here, χ0,v\chi_{0,v} is the trivial character of Fv×F_{v}^{\times} for each vSFv\in S_{F} and sgn\mathop{\rm sgn} denotes the sign function. Assume that χ=vSFχv\chi=\otimes_{v\in S_{F}}\chi_{v} is an idele class character of F×\𝔸F×F^{\times}\backslash\mathbb{A}_{F}^{\times} such that χv\chi_{v} satisfies (3.71) for each vSFv\in S_{F}. If χ\chi is a non-trivial idele class character, then there is v0SF,v_{0}\in S_{F,\infty} such that χv0\chi_{v_{0}} is a non-trivial character of Fv0×F_{v_{0}}^{\times}. By the strong approximation theorem, there is aF×a\in F^{\times} such that σv0(a)<0\sigma_{v_{0}}(a)<0 and σv(a)>0\sigma_{v}(a)>0 for vSF,v\in S_{F,\infty} with Fv=F_{v}=\mathbb{R} and vv0v\neq v_{0}. This contradicts our assumption that χ\chi is trivial on F×F^{\times}. Hence, we get

(3.72) SEis(ϕ)=14πiitr(M(ηχ0,s)1M(ηχ0,s)πχ0,s(ϕ))𝑑s.S_{\rm Eis}(\phi)=\frac{1}{4\pi}\int_{-i\infty}^{i\infty}\mathrm{tr}\left(M(\eta_{\chi_{0},s})^{-1}M^{\prime}(\eta_{\chi_{0},s})\pi_{\chi_{0},s}(\phi)\right)ds.

Here, χ0\chi_{0} is the trivial idele class character of F×\𝔸F×F^{\times}\backslash\mathbb{A}_{F}^{\times}. Let Vχ0,sK(J)V_{\chi_{0},s}^{\mathrm{K}(J)} denote the subspace of Vχ0,sV_{\chi_{0},s} consisting of vv such that v=πχ0,s(k)vv=\pi_{\chi_{0},s}(k)v for all kK(J)k\in\mathrm{K}(J). From (3.72), we compute SEis(ϕ)S_{\mathrm{Eis}}(\phi) in the following lemma.

Lemma 3.15.

Let r1r_{1} be the number of real embeddings of FF and r2r_{2} be the number of conjugate pairs of complex embeddings of FF. Let ζF\zeta_{F} be the Dedekind zeta function of FF and ΔF\Delta_{F} be the discriminant of FF. Let ΛF(s)\Lambda_{F}(s) be the completed zeta function defined by

ΛF(s):=|ΔF|s/2(πs/2Γ(s/2))r1((2(2π)sΓ(s))r2ζF(s).\Lambda_{F}(s):=|\Delta_{F}|^{s/2}(\pi^{-s/2}\Gamma(s/2))^{r_{1}}((2(2\pi)^{-s}\Gamma(s))^{r_{2}}\zeta_{F}(s).

Let AJA_{J} be defined as in (2.10). Then, we have

SEis(ϕ)=AJ2r1+2π(ΛF(2it)ΛF(2it)ΛF(2it+1)ΛF(2it+1))vSF,hϕv(t)dimVitK(J)dtS_{\rm Eis}(\phi)=\frac{A_{J}}{2^{r_{1}+2}\pi}\int_{\mathbb{R}}\bigg{(}\frac{\Lambda_{F}^{\prime}(2it)}{\Lambda_{F}(2it)}-\frac{\Lambda_{F}^{\prime}(2it+1)}{\Lambda_{F}(2it+1)}\bigg{)}\prod_{v\in S_{F,\infty}}h_{\phi_{v}}(t)\cdot\dim V_{it}^{\mathrm{K}(J)}dt
Proof.

By (3.72), it is enough to show that

tr(M(ηχ0,it)1M(ηχ0,it)πχ0,it(ϕ))=2r1AJ(ΛF(2it)ΛF(2it)ΛF(2it+1)ΛF(2it+1))vSF,hϕv(t)dimVitK(J).\mathrm{tr}\left(M(\eta_{\chi_{0},it})^{-1}M^{\prime}(\eta_{\chi_{0},it})\pi_{\chi_{0},it}(\phi)\right)=2^{-r_{1}}A_{J}\bigg{(}\frac{\Lambda_{F}^{\prime}(2it)}{\Lambda_{F}(2it)}-\frac{\Lambda_{F}^{\prime}(2it+1)}{\Lambda_{F}(2it+1)}\bigg{)}\prod_{v\in S_{F,\infty}}h_{\phi_{v}}(t)\cdot\dim V_{it}^{\mathrm{K}(J)}.

Assume that vSF,finv\in S_{F,\mathrm{fin}}. We take φvVχ0,v,s\varphi_{v}\in V_{\chi_{0,v},s} such that the φv|Kv=1\varphi_{v}|_{\mathrm{K}_{v}}=1. Then, we have

(3.73) (M(ηχ0,v,s)φv)(w)\displaystyle\left(M(\eta_{\chi_{0,v},s})\varphi_{v}\right)(w) =Fvφv(w(1x01)w)dvx\displaystyle=\int_{F_{v}}\varphi_{v}\left(w\begin{pmatrix}1&x\\ 0&1\end{pmatrix}w\right)d_{v}x
=Fvφv((10x1))dvx\displaystyle=\int_{F_{v}}\varphi_{v}\left(\begin{pmatrix}1&0\\ -x&1\end{pmatrix}\right)d_{v}x
=nqvn(1qv1)𝒪Fv×φv((10uϖvn1))dv×u.\displaystyle=\sum_{n\in\mathbb{Z}}q_{v}^{-n}(1-q_{v}^{-1})\int_{\mathcal{O}_{F_{v}}^{\times}}\varphi_{v}\left(\begin{pmatrix}1&0\\ -u\varpi_{v}^{n}&1\end{pmatrix}\right)d_{v}^{\times}u.

When n0n\geq 0, we have (10uϖvn1)Kv\left(\begin{smallmatrix}1&0\\ -u\varpi_{v}^{n}&1\end{smallmatrix}\right)\in\mathrm{K}_{v} for all u𝒪Fv×u\in\mathcal{O}_{F_{v}}^{\times}. Thus, we have by (3.73)

(3.74) (M(ηχ0,v,s)φv)(w)=n0qvn(1qv1)+n<0qvn(1qv1)𝒪Fv×φv((10uϖvn1))dv×u.\left(M(\eta_{\chi_{0,v},s})\varphi_{v}\right)(w)=\sum_{n\geq 0}q_{v}^{-n}(1-q_{v}^{-1})+\sum_{n<0}q_{v}^{-n}(1-q_{v}^{-1})\int_{\mathcal{O}_{F_{v}}^{\times}}\varphi_{v}\left(\begin{pmatrix}1&0\\ -u\varpi_{v}^{n}&1\end{pmatrix}\right)d_{v}^{\times}u.

For n<0n<0, we have

(10uϖvn1)=(u1ϖvn10uϖvn)(011u1ϖvn).\begin{pmatrix}1&0\\ -u\varpi_{v}^{n}&1\end{pmatrix}=\begin{pmatrix}u^{-1}\varpi_{v}^{-n}&1\\ 0&-u\varpi_{v}^{n}\end{pmatrix}\begin{pmatrix}0&1\\ 1&-u^{-1}\varpi_{v}^{-n}\end{pmatrix}.

Since (011u1ϖvn)Kv\left(\begin{smallmatrix}0&1\\ 1&-u^{-1}\varpi_{v}^{-n}\end{smallmatrix}\right)\in\mathrm{K}_{v}, it follows that

(3.75) φv((10uϖvn1))=qv2n(s+12)=qv2ns+n.\varphi_{v}\left(\begin{pmatrix}1&0\\ -u\varpi_{v}^{n}&1\end{pmatrix}\right)=q_{v}^{2n(s+\frac{1}{2})}=q_{v}^{2ns+n}.

Combining (3.74) and (3.75), we deduce that

(3.76) (aχ0,v,s)v=(M(ηχ0,v,s)φv)(w)=1qv2s11qv2s.(a_{\chi_{0,v},s})_{v}=\left(M(\eta_{\chi_{0,v},s})\varphi_{v}\right)(w)=\frac{1-q_{v}^{-2s-1}}{1-q_{v}^{-2s}}.

Now, we consider an archimedean place vv of FF. When Fv=F_{v}=\mathbb{R}, since φv\varphi_{v} is a bi-SO(2)\mathrm{SO}(2)-invariant function, we have

(M(ηχ0,v,s)φv)(I2)\displaystyle\left(M(\eta_{\chi_{0,v},s})\varphi_{v}\right)(I_{2}) =φv(w(1x01))𝑑x\displaystyle=\int_{\mathbb{R}}\varphi_{v}\left(w\begin{pmatrix}1&x\\ 0&1\end{pmatrix}\right)dx
=φv(w(1x01)w1)𝑑x.\displaystyle=\int_{\mathbb{R}}\varphi_{v}\left(w\begin{pmatrix}1&x\\ 0&1\end{pmatrix}w^{-1}\right)dx.

Note that there is κSO(2)\kappa\in\mathrm{SO}(2) such that

w(1x01)w1=(1x2+1xx2+10x2+1)κ.w\begin{pmatrix}1&x\\ 0&1\end{pmatrix}w^{-1}=\begin{pmatrix}\frac{1}{\sqrt{x^{2}+1}}&-\frac{x}{\sqrt{x^{2}+1}}\\ 0&\sqrt{x^{2}+1}\end{pmatrix}\kappa.

Thus, for vSF,v\in S_{F,\infty} with Fv=F_{v}=\mathbb{R}, we have by [7, 3.251(2)]

(3.77) (aχ0,v,s)v=(M(ηχ0,v,s)φv)(I2)=φv((1x2+1xx2+10x2+1))𝑑x=(x2+1)s12𝑑x=πΓ(s)Γ(s+12).(a_{\chi_{0,v},s})_{v}=\left(M(\eta_{\chi_{0,v},s})\varphi_{v}\right)(I_{2})=\int_{\mathbb{R}}\varphi_{v}\left(\left(\begin{smallmatrix}\frac{1}{\sqrt{x^{2}+1}}&-\frac{x}{\sqrt{x^{2}+1}}\\ 0&\sqrt{x^{2}+1}\end{smallmatrix}\right)\right)dx=\int_{\mathbb{R}}(x^{2}+1)^{-s-\frac{1}{2}}dx=\frac{\sqrt{\pi}\Gamma\left(s\right)}{\Gamma\left(s+\frac{1}{2}\right)}.

When Fv=F_{v}=\mathbb{C}, by taking z=reiθz=re^{i\theta}, we have

(M((ηχ0,v,s)v)φv)(I2)=φv(w(1z01))𝑑z=02π0φv((w(1reiθ01)w1))r𝑑r𝑑θ.(M((\eta_{\chi_{0,v},s})_{v})\varphi_{v})(I_{2})=\int_{\mathbb{C}}\varphi_{v}\left(w\left(\begin{smallmatrix}1&z\\ 0&1\end{smallmatrix}\right)\right)dz=\int_{0}^{2\pi}\int_{0}^{\infty}\varphi_{v}\left(\left(\begin{smallmatrix}w\left(\begin{smallmatrix}1&re^{i\theta}\\ 0&1\end{smallmatrix}\right)w^{-1}\end{smallmatrix}\right)\right)rdr\,d\theta.

Similarly, we have

w(1reiθ01)w1=(eiθ1)(10r1)(eiθ1)(eiθ1)(1r2+1rr2+10r2+1)U(2).w\left(\begin{smallmatrix}1&re^{i\theta}\\ 0&1\end{smallmatrix}\right)w^{-1}=\left(\begin{smallmatrix}e^{-i\theta}&\\ &1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&0\\ -r&1\end{smallmatrix}\right)\left(\begin{smallmatrix}e^{i\theta}&\\ &1\end{smallmatrix}\right)\in\left(\begin{smallmatrix}e^{-i\theta}&\\ &1\end{smallmatrix}\right)\left(\begin{smallmatrix}\frac{1}{\sqrt{r^{2}+1}}&\frac{-r}{\sqrt{r^{2}+1}}\\ 0&\sqrt{r^{2}+1}\end{smallmatrix}\right)\mathrm{U}(2).

Then, we get by [7, 3.251(2)]

(M((ηχ0,v,s)v)fv)(I2)\displaystyle(M((\eta_{\chi_{0,v},s})_{v})f_{v})(I_{2}) =02π0φv((eiθr2+1reiθr2+10r2+1))r𝑑r𝑑θ\displaystyle=\int_{0}^{2\pi}\int_{0}^{\infty}\varphi_{v}\left(\left(\begin{smallmatrix}\frac{e^{-i\theta}}{\sqrt{r^{2}+1}}&\frac{-re^{-i\theta}}{\sqrt{r^{2}+1}}\\ 0&\sqrt{r^{2}+1}\end{smallmatrix}\right)\right)rdr\,d\theta
=2π0(r2+1)2s1r𝑑r\displaystyle=2\pi\int_{0}^{\infty}(r^{2}+1)^{-2s-1}rdr
=πΓ(2s)Γ(2s+1)\displaystyle=\frac{\pi\Gamma\left(2s\right)}{\Gamma\left(2s+1\right)}

for (s)>34\Re(s)>-\frac{3}{4}. This implies that

(3.78) a((ηχ0,v,s)v)=πΓ(2s)Γ(2s+1).a((\eta_{\chi_{0,v},s})_{v})=\frac{\pi\Gamma\left(2s\right)}{\Gamma\left(2s+1\right)}.

Combining (3.70), (3.76), (3.77), and (3.78), we obtain that

tr(M(ηχ0,it)1M(ηχ0,it)πχ0,it(ϕ))=(ΛF(2it)ΛF(2it)ΛF(2it+1)ΛF(2it+1))trπχ0,it(ϕ).\mathrm{tr}\left(M(\eta_{\chi_{0},it})^{-1}M^{\prime}(\eta_{\chi_{0},it})\pi_{\chi_{0},it}(\phi)\right)=\bigg{(}\frac{\Lambda_{F}^{\prime}(2it)}{\Lambda_{F}(2it)}-\frac{\Lambda_{F}^{\prime}(2it+1)}{\Lambda_{F}(2it+1)}\bigg{)}\mathrm{tr}\pi_{\chi_{0},it}(\phi).

By Lemma 2.2, we complete the proof of Proposition 3.15. ∎

In [6, pp. 244], SRes(ϕ)S_{\mathrm{Res}}(\phi) is given by

SRes(ϕ):=14χ2=χ0tr(M(ηχ,0)πχ,0(ϕ)).S_{\mathrm{Res}}(\phi):=-\frac{1}{4}\sum_{\chi^{2}=\chi_{0}}\mathrm{tr}\left(M(\eta_{\chi,0})\pi_{\chi,0}(\phi)\right).

By a similar argument to the Eisenstein series contribution, if an idele class character χ\chi of F×\𝔸F×F^{\times}\backslash\mathbb{A}_{F}^{\times} satisfies χ2=χ0\chi^{2}=\chi_{0} and tr(M(ηχ,0)πχ,0(ϕ))0\mathrm{tr}(M(\eta_{\chi,0})\pi_{\chi,0}(\phi))\neq 0, then χ=χ0\chi=\chi_{0}. This implies that

SRes(ϕ)=14tr(M(ηχ0,0)πχ0,0(ϕ)).S_{\mathrm{Res}}(\phi)=-\frac{1}{4}\mathrm{tr}\left(M(\eta_{\chi_{0},0})\pi_{\chi_{0},0}(\phi)\right).

Combining (3.76), (3.77), and (3.78), we obtain the following lemma which provides the formula for SRes(ϕ)S_{\mathrm{Res}}(\phi).

Lemma 3.16.

With the above notation, we have

SRes(ϕ)=2r1r22ΔFlims0ΛF(2s)ΛF(2s+1)AJvSF,hϕv(0)dimV0K(J).S_{\rm Res}(\phi)=-2^{-r_{1}-r_{2}-2}\cdot\sqrt{\Delta_{F}}\cdot\lim_{s\to 0}\frac{\Lambda_{F}(2s)}{\Lambda_{F}(2s+1)}\cdot A_{J}\cdot\prod_{v\in S_{F,\infty}}h_{\phi_{v}}(0)\cdot\dim V_{0}^{\mathrm{K}(J)}.

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We follow the notation in Sections 2 and 3. In the definitions of Sell(ϕ)S_{\mathrm{ell}}(\phi) and Shyp(ϕ)S_{\mathrm{hyp}}(\phi), the sums seem to be infinite sums. However, the following lemma guarantees that these sums are finite.

Lemma 4.1.

Let vSF,v\in S_{F,\infty} and ϵv:=[Fv:]1\epsilon_{v}:=[F_{v}:\mathbb{R}]-1. Assume that the support of hϕv^\widehat{h_{\phi_{v}}} is contained in [a,a][-a,a] for some positive real number aa. If γSL2(Fv)\gamma\in\mathrm{SL}_{2}(F_{v}) satisfies

tr(γγ)e2πa1+ϵv+e2πa1+ϵv,\mathrm{tr}(\gamma\gamma^{*})\geq e^{-\frac{2\pi a}{1+\epsilon_{v}}}+e^{\frac{2\pi a}{1+\epsilon_{v}}},

then ϕv(γ)=0\phi_{v}(\gamma)=0.

Proof.

By the Cartan decomposition, there are κ1,κ2Kv0\kappa_{1},\kappa_{2}\in\mathrm{K}_{v}^{0} and a non-negative real number a(γ)a(\gamma) such that

γ=κ1(ea(γ)200ea(γ)2)κ2.\gamma=\kappa_{1}\begin{pmatrix}e^{-\frac{a(\gamma)}{2}}&0\\ 0&e^{\frac{a(\gamma)}{2}}\end{pmatrix}\kappa_{2}.

Then, the trace of γγ\gamma\gamma^{*} is equal to ea(γ)+ea(γ)e^{-a(\gamma)}+e^{a(\gamma)}. Since ϕv\phi_{v} is a bi-Kv0\mathrm{K}_{v}^{0}-invariant function, we have

(4.1) ϕv(γ)=ϕv((ea(γ)200ea(γ)2)).\phi_{v}(\gamma)=\phi_{v}\left(\begin{pmatrix}e^{-\frac{a(\gamma)}{2}}&0\\ 0&e^{\frac{a(\gamma)}{2}}\end{pmatrix}\right).

By Lemma 2.1, we have if Fv=F_{v}=\mathbb{R}, then

(4.2) ϕv((ea(γ)200ea(γ)2))=14π2a(γ)2πhϕv^(t)sinh2(πt)sinh2(a(γ)2)𝑑t,\phi_{v}\left(\begin{pmatrix}e^{-\frac{a(\gamma)}{2}}&0\\ 0&e^{\frac{a(\gamma)}{2}}\end{pmatrix}\right)=-\frac{1}{4\pi^{2}}\int_{\frac{a(\gamma)}{2\pi}}^{\infty}\frac{\widehat{h_{\phi_{v}}}^{\prime}(t)}{\sqrt{\sinh^{2}(\pi t)-\sinh^{2}\left(\frac{a(\gamma)}{2}\right)}}dt,

and if Fv=F_{v}=\mathbb{C}, then

ϕv((ea(γ)200ea(γ)2))=hϕv^(a(γ)/π)2π3sinh(a(γ)).\phi_{v}\left(\begin{pmatrix}e^{-\frac{a(\gamma)}{2}}&0\\ 0&e^{\frac{a(\gamma)}{2}}\end{pmatrix}\right)=-\frac{\widehat{h_{\phi_{v}}}^{\prime}(a(\gamma)/\pi)}{2\pi^{3}\sinh(a(\gamma))}.

Thus, we obtain that if a(γ)2πa1+ϵva(\gamma)\geq\frac{2\pi a}{1+\epsilon_{v}}, then ϕv(γ)=0\phi_{v}(\gamma)=0. ∎

For each vSF,v\in S_{F,\infty}, assume that hv^:0\widehat{h_{v}}:\mathbb{R}\to\mathbb{R}_{\geq 0} and hv:h_{v}:\mathbb{C}\to\mathbb{C} satisfy the conditions (1)(7)(1)\sim(7) in Section 2. For a real positive number tt, let

hv,t^(x):=hv^(tx).\widehat{h_{v,t}}(x):=\widehat{h_{v}}(tx).

Then, hv,t^\widehat{h_{v,t}} and hv,th_{v,t} also satisfy the conditions (1)(7)(1)\sim(7) in Section 2. Thus, we may assume that the support of hv^\widehat{h_{v}} is contained in [1,1][-1,1] for all vSF,v\in S_{F,\infty}. For each vSF,v\in S_{F,\infty}, we fix hvh_{v}. Let ava_{v} be a positive real number. Then, the support of hv,av^\widehat{h_{v,a_{v}}} is contained in [1av,1av][-\frac{1}{a_{v}},\frac{1}{a_{v}}] and

(4.3) hv,av(z)=1avhv(zav).h_{v,a_{v}}(z)=\frac{1}{a_{v}}h_{v}\left(\frac{z}{a_{v}}\right).

Note that there is a function ϕv,av\phi_{v,a_{v}} on G(Fv)\mathrm{G}(F_{v}) satisfying the conditions (a)(c)(a)\sim(c) in Section 2 such that

hϕv,av=hv,av.h_{\phi_{v,a_{v}}}=h_{v,a_{v}}.

For 𝐚:=(av)vSF,>0#SF,\mathbf{a}:=(a_{v})_{v\in S_{F,\infty}}\in\mathbb{R}_{>0}^{\#S_{F,\infty}}, let ϕ(𝐚):=vSF,finϕvvSF,ϕv,av\phi^{(\mathbf{a})}:=\prod_{v\in S_{F,\mathrm{fin}}}\phi_{v}\cdot\prod_{v\in S_{F,\infty}}\phi_{v,a_{v}} be a function on G(𝔸F)\mathrm{G}(\mathbb{A}_{F}). Recalling that for each vSF,finv\in S_{F,\mathrm{fin}}, ϕv\phi_{v} is the characteristic function of Z(Fv)Kv,valv(J)\mathrm{Z}(F_{v})\mathrm{K}_{v,\mathrm{val}_{v}(J)}.

In the following lemmas, we compute upper bounds for Sone(ϕ(𝐚))S_{\mathrm{one}}(\phi^{(\mathbf{a})}), Sid(ϕ(𝐚))S_{id}(\phi^{(\mathbf{a})}), Sell(ϕ(𝐚))S_{\rm ell}(\phi^{(\mathbf{a})}), Shyp(ϕ(𝐚))S_{\rm hyp}(\phi^{(\mathbf{a})}), Spar(ϕ(𝐚))S_{\rm par}(\phi^{(\mathbf{a})}) and SEis(ϕ(𝐚))S_{\rm Eis}(\phi^{(\mathbf{a})}).

Lemma 4.2.

With the above notation, we have

|Sone(ϕ(𝐚))|AJvSF,(eπavhv,av(0))\displaystyle\left|S_{\mathrm{one}}(\phi^{(\mathbf{a})})\right|\leq A_{J}\cdot\prod_{v\in S_{F,\infty}}\left(e^{\frac{\pi}{a_{v}}}\cdot h_{v,a_{v}}(0)\right)
Proof.

By Lemma 3.1, we have

Sone(ϕ(𝐚))=AJvSF,hv,av(i2).S_{\mathrm{one}}(\phi^{(\mathbf{a})})=A_{J}\cdot\prod_{v\in S_{F,\infty}}h_{v,a_{v}}\left(\frac{i}{2}\right).

Note that we get

|hv,av(i2)|\displaystyle\left|h_{v,a_{v}}\left(\frac{i}{2}\right)\right| =1av|hv(i2av)|\displaystyle=\frac{1}{a_{v}}\left|h_{v}\left(\frac{i}{2a_{v}}\right)\right|
=1av|hv^(x)eπxav𝑑x|\displaystyle=\frac{1}{a_{v}}\left|\int_{\mathbb{R}}\widehat{h_{v}}(x)e^{\frac{\pi x}{a_{v}}}dx\right|
=2av|01hv^(x)cosh(πxav)𝑑x|\displaystyle=\frac{2}{a_{v}}\left|\int_{0}^{1}\widehat{h_{v}}(x)\cosh\left(\frac{\pi x}{a_{v}}\right)dx\right|
cosh(πav)hv,av(0)\displaystyle\leq\cosh\left(\frac{\pi}{a_{v}}\right)\cdot h_{v,a_{v}}(0)
eπavhv,av(0).\displaystyle\leq e^{\frac{\pi}{a_{v}}}\cdot h_{v,a_{v}}(0).

Therefore, we conclude that

|Sone(ϕ(𝐚))|AJvSF,(eπavhv,av(0)).\displaystyle\left|S_{\mathrm{one}}(\phi^{(\mathbf{a})})\right|\leq A_{J}\cdot\prod_{v\in S_{F,\infty}}\left(e^{\frac{\pi}{a_{v}}}\cdot h_{v,a_{v}}(0)\right).

Lemma 4.3.

With the above notation, we have

|Sid(ϕ(𝐚))|FvSF,(av2+ϵvhv,av(0)).\left|S_{\rm id}(\phi^{(\mathbf{a})})\right|\ll_{F}\prod_{v\in S_{F,\infty}}\left(a_{v}^{2+\epsilon_{v}}\cdot h_{v,a_{v}}(0)\right).
Proof.

By Lemma 3.2, we have

Sid(ϕ(𝐚))\displaystyle S_{\rm id}(\phi^{(\mathbf{a})}) =Vol(G¯(F)\G¯(𝔸F))vSF,(1+ϵv(2ϵv)2(1ϵv)π1+ϵvx1+ϵvhv,av(x)tanh1ϵv(πx)𝑑x)\displaystyle=\mathrm{Vol}(\bar{\mathrm{G}}(F)\backslash\bar{\mathrm{G}}(\mathbb{A}_{F}))\cdot\prod_{v\in S_{F,\infty}}\left(\frac{1+\epsilon_{v}}{(2-\epsilon_{v})^{2(1-\epsilon_{v})}\pi^{1+\epsilon_{v}}}\int_{-\infty}^{\infty}x^{1+\epsilon_{v}}h_{v,a_{v}}(x)\tanh^{1-\epsilon_{v}}(\pi x)\,dx\right)
=Vol(G¯(F)\G¯(𝔸F))vSF,(2(1+ϵv)(2ϵv)2(1ϵv)π1+ϵv0x1+ϵvhv,av(x)tanh1ϵv(πx)𝑑x)\displaystyle=\mathrm{Vol}(\bar{\mathrm{G}}(F)\backslash\bar{\mathrm{G}}(\mathbb{A}_{F}))\cdot\prod_{v\in S_{F,\infty}}\left(\frac{2(1+\epsilon_{v})}{(2-\epsilon_{v})^{2(1-\epsilon_{v})}\pi^{1+\epsilon_{v}}}\int_{0}^{\infty}x^{1+\epsilon_{v}}h_{v,a_{v}}(x)\tanh^{1-\epsilon_{v}}(\pi x)\,dx\right)

Since |tanh(x)|1|\tanh(x)|\leq 1, for each vSF,v\in S_{F,\infty}, we have

|0x1+ϵvhv,av(x)tanh1ϵv(πx)𝑑x|\displaystyle\left|\int_{0}^{\infty}x^{1+\epsilon_{v}}h_{v,a_{v}}(x)\tanh^{1-\epsilon_{v}}(\pi x)\,dx\right| |0x1+ϵvhv,av(x)𝑑x|\displaystyle\leq\left|\int_{0}^{\infty}x^{1+\epsilon_{v}}h_{v,a_{v}}(x)\,dx\right|
=|0x1+ϵvavhv(xav)𝑑x|\displaystyle=\left|\int_{0}^{\infty}\frac{x^{1+\epsilon_{v}}}{a_{v}}\cdot h_{v}\left(\frac{x}{a_{v}}\right)\,dx\right|
=av1+ϵv|0x1+ϵvhv(x)𝑑x|\displaystyle=a_{v}^{1+\epsilon_{v}}\left|\int_{0}^{\infty}x^{1+\epsilon_{v}}h_{v}(x)dx\right|
=(1hv(0)|0x1+ϵvhv(x)𝑑x|)av2+ϵhv,av(0).\displaystyle=\left(\frac{1}{h_{v}(0)}\left|\int_{0}^{\infty}x^{1+\epsilon_{v}}h_{v}(x)dx\right|\right)a_{v}^{2+\epsilon}\cdot h_{v,a_{v}}(0).

Now, we introduce the following lemma which is useful to compute upper bounds for Sell(ϕ(𝐚))S_{\rm ell}(\phi^{(\mathbf{a})}) and Shyp(ϕ(𝐚))S_{\rm hyp}(\phi^{(\mathbf{a})}).

Lemma 4.4.

For each vSF,v\in S_{F,\infty}, let MvM_{v} be a positive real number. Let n:=[F:]n:=[F:\mathbb{Q}]. Then, we have

#{a𝒪F:|σv(a)|Mv for all vSF,}n(2vSF,(|Mv|+1)1+ϵv)n.\#\left\{a\in\mathcal{O}_{F}:|\sigma_{v}(a)|\leq M_{v}\text{ for all }v\in S_{F,\infty}\right\}\leq n\cdot\left(2\cdot\prod_{v\in S_{F,\infty}}(|M_{v}|+1)^{1+\epsilon_{v}}\right)^{n}.
Proof.

Assume that a𝒪Fa\in\mathcal{O}_{F} satisfies |σv(a)|Mv|\sigma_{v}(a)|\leq M_{v} for all vSF,v\in S_{F,\infty}. Let fa(x)[x]f_{a}(x)\in\mathbb{Z}[x] be a monic irreducible polynomial of aa. Note that the coefficients of faf_{a} can be expressed as a symmetric function of a subset of {σv(a)}vS\{\sigma_{v}(a)\}_{v\in S_{\infty}} and that the absolute value of each coefficient of faf_{a} is less than or equal to

vSF,(|Mv|+1)1+ϵv.\prod_{v\in S_{F,\infty}}(|M_{v}|+1)^{1+\epsilon_{v}}.

Since the degree of faf_{a} is less than or equal to nn and faf_{a} has at most nn roots, we complete the proof of Lemma 4.4. ∎

For convenience, let A:=|NF/(J)|A:=|N_{F/\mathbb{Q}}(J)| and Bm,u:=|NF/(m24u)|B_{m,u}:=|N_{F/\mathbb{Q}}(m^{2}-4u)|.

Lemma 4.5.

With the above notation, assume that av1a_{v}\leq 1 for all vSF,v\in S_{F,\infty}. Then, we have

|Sell(ϕ(𝐚))|FA12vSF,(e2π(n+13)avhv,av(0)).\left|S_{\rm ell}(\phi^{(\mathbf{a})})\right|\ll_{F}A^{-\frac{1}{2}}\cdot\prod_{v\in S_{F,\infty}}\left(e^{\frac{2\pi(n+13)}{a_{v}}}\cdot h_{v,a_{v}}(0)\right).
Proof.

Recalling (3.3), S[γ](ϕ)S_{[\gamma]}(\phi) is defined by

S[γ](ϕ):=vSF,finGγ(Fv)¯\G¯(Fv)ϕv(g1γg)𝑑gvSF,Gσv(γ)(Fv)¯\G¯(Fv)ϕv(g1σv(γ)g)𝑑g.S_{[\gamma]}(\phi):=\prod_{v\in S_{F,\mathrm{fin}}}\int_{\overline{\mathrm{G}_{\gamma}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\gamma g)dg\cdot\prod_{v\in S_{F,\infty}}\int_{\overline{\mathrm{G}_{\sigma_{v}(\gamma)}(F_{v})}\backslash\bar{\mathrm{G}}(F_{v})}\phi_{v}(g^{-1}\sigma_{v}(\gamma)g)dg.

First, we find the condition of (m,u)𝒪F×𝒪F×(m,u)\in\mathcal{O}_{F}\times\mathcal{O}_{F}^{\times} such that S[γm,u](ϕ(𝐚))0S_{[\gamma_{m,u}]}(\phi^{(\mathbf{a})})\neq 0. Suppose that S[γm,u](ϕ(𝐚))0S_{[\gamma_{m,u}]}(\phi^{(\mathbf{a})})\neq 0. For each (m,u)𝒪F×𝒪F×(m,u)\in\mathcal{O}_{F}\times\mathcal{O}_{F}^{\times}, let Sm,u1S_{m,u}^{1} be the subset of SF,S_{F,\infty} consisting of vv such that there are two roots of x2σv(m)x+σv(u)=0x^{2}-\sigma_{v}(m)x+\sigma_{v}(u)=0 in FvF_{v} and Sm,u2:=SF,\Sm,u1S_{m,u}^{2}:=S_{F,\infty}\backslash S_{m,u}^{1}. Note that vSm,u2v\in S_{m,u}^{2} if and only if Fv=F_{v}=\mathbb{R} and σv(m24u)<0\sigma_{v}(m^{2}-4u)<0. Thus, if vSm,u2v\in S_{m,u}^{2}, then we have

|σv(m)|<2|σv(u)|2e2πav(1+ϵv)|σv(u)||\sigma_{v}(m)|<2\sqrt{|\sigma_{v}(u)|}\leq 2\cdot e^{\frac{2\pi}{a_{v}(1+\epsilon_{v})}}\sqrt{|\sigma_{v}(u)|}

and

|σv(m24u)||σv(m2)|+4|σv(u)|8|σv(u)|8e4πav(1+ϵv)|σv(u)|.|\sigma_{v}(m^{2}-4u)|\leq|\sigma_{v}(m^{2})|+4|\sigma_{v}(u)|\leq 8|\sigma_{v}(u)|\leq 8\cdot e^{\frac{4\pi}{a_{v}(1+\epsilon_{v})}}\cdot|\sigma_{v}(u)|.

If vSm,u1v\in S_{m,u}^{1}, then we have by (3.36) and (3.38)

e4πav(1+ϵv)<|σv(αγ)|<e4πav(1+ϵv).e^{-\frac{4\pi}{a_{v}(1+\epsilon_{v})}}<\left|\sigma_{v}(\alpha_{\gamma})\right|<e^{\frac{4\pi}{a_{v}(1+\epsilon_{v})}}.

This implies that

(4.4) |σv(m)±σv(m24u)|2<4e4πav(1+ϵv)|σv(u)|.\left|\sigma_{v}(m)\pm\sqrt{\sigma_{v}(m^{2}-4u)}\right|^{2}<4\cdot e^{\frac{4\pi}{a_{v}(1+\epsilon_{v})}}\cdot|\sigma_{v}(u)|.

Note that we have

(4.5) |σv(m)+σv(m24u)|2+|σv(m)σv(m24u)|2=2(|σv(m)|2+|σv(m24u)|).\left|\sigma_{v}(m)+\sqrt{\sigma_{v}(m^{2}-4u)}\right|^{2}+\left|\sigma_{v}(m)-\sqrt{\sigma_{v}(m^{2}-4u)}\right|^{2}=2(|\sigma_{v}(m)|^{2}+|\sigma_{v}(m^{2}-4u)|).

Combining (4.4) and (4.5), we get

|σv(m)|2+|σv(m24u)|<4e4πav(1+ϵv)|σv(u)|.|\sigma_{v}(m)|^{2}+|\sigma_{v}(m^{2}-4u)|<4\cdot e^{\frac{4\pi}{a_{v}(1+\epsilon_{v})}}\cdot|\sigma_{v}(u)|.

It immediately implies that

(4.6) |σv(m)|<2e2πav(1+ϵv)|σv(u)| and |σv(m24u)|<8e4πav(1+ϵv)|σv(u)|.|\sigma_{v}(m)|<2\cdot e^{\frac{2\pi}{a_{v}(1+\epsilon_{v})}}\sqrt{|\sigma_{v}(u)|}\text{ and }|\sigma_{v}(m^{2}-4u)|<8\cdot e^{\frac{4\pi}{a_{v}(1+\epsilon_{v})}}\cdot|\sigma_{v}(u)|.

Hence, we conclude that if S[γ](ϕ(𝐚))S_{[\gamma]}(\phi^{(\mathbf{a})}) is non-zero, then (m,u)(m,u) satisfies (4.6) for all vSF,v\in S_{F,\infty}.

Recalling Section 3, let UFU_{F} be a set of representatives of 𝒪F×/𝒪F×2\mathcal{O}_{F}^{\times}/\mathcal{O}_{F}^{\times^{2}}. Then, Dirichlet’s unit theorem implies that UFU_{F} is a finite set. In Section 3.3, we see that if S[γ](ϕ(𝐚))S_{[\gamma]}(\phi^{(\mathbf{a})}) is non-zero, then there is a unique pair (m,u)𝒪F×UF(m,u)\in\mathcal{O}_{F}\times U_{F} corresponding to γ\gamma such that γm,u:=(01um)[γ]\gamma_{m,u}:=\left(\begin{smallmatrix}0&1\\ -u&m\end{smallmatrix}\right)\in[\gamma]. For 𝐚:=(av)vSF,\mathbf{a}:=(a_{v})_{v\in S_{F,\infty}}, let X𝐚X_{\mathbf{a}} be the subset of 𝒪F×UF\mathcal{O}_{F}\times U_{F} consisting of (m,u)(m,u) satisfying (4.6) for all vSF,v\in S_{F,\infty}. Then, we have

(4.7) |Sell(ϕ(𝐚))|(m,u)X𝐚Vol(Gγm,u(F)¯\Gγm,u(𝔸F)¯)|S[γm,u](ϕ(𝐚))|.\left|S_{\rm ell}(\phi^{(\mathbf{a})})\right|\leq\sum_{(m,u)\in X_{\mathbf{a}}}\mathrm{Vol}(\overline{\mathrm{G}_{\gamma_{m,u}}(F)}\backslash\overline{\mathrm{G}_{\gamma_{m,u}}(\mathbb{A}_{F})})\left|S_{[\gamma_{m,u}]}(\phi^{(\mathbf{a})})\right|.

Note that we have

(4.8) Bm,u:=NF/(m24u)=vSF,|σv(m24u)|1+ϵv.B_{m,u}:=N_{F/\mathbb{Q}}(m^{2}-4u)=\prod_{v\in S_{F,\infty}}|\sigma_{v}(m^{2}-4u)|^{1+\epsilon_{v}}.

Combining (3.30), (4.8), Lemmas 3.8 and 3.9, for each (m,u)X𝐚(m,u)\in X_{\mathbf{a}}, we have

Vol(Gγm,u(F)¯\Gγm,u(𝔸F)¯)|S[γm,u](ϕ(𝐚))|\displaystyle\mathrm{Vol}(\overline{\mathrm{G}_{\gamma_{m,u}}(F)}\backslash\overline{\mathrm{G}_{\gamma_{m,u}}(\mathbb{A}_{F})})\left|S_{[\gamma_{m,u}]}(\phi^{(\mathbf{a})})\right|
F,uA12vSm,u1|σv(m24u)|13(1+ϵv)2vSm,u2(|σv(m24u)|6hv,av(0))\displaystyle\ll_{F,u}A^{-\frac{1}{2}}\cdot\prod_{v\in S_{m,u}^{1}}\left|\sigma_{v}(m^{2}-4u)\right|^{\frac{13(1+\epsilon_{v})}{2}}\prod_{v\in S_{m,u}^{2}}\left(\left|\sigma_{v}(m^{2}-4u)\right|^{6}\cdot h_{v,a_{v}}(0)\right)
F,uA12vSF,e26πavvSm,u2hv,av(0)\displaystyle\ll_{F,u}A^{-\frac{1}{2}}\cdot\prod_{v\in S_{F,\infty}}e^{\frac{26\pi}{a_{v}}}\cdot\prod_{v\in S_{m,u}^{2}}h_{v,a_{v}}(0)
F,uA12vSF,e26πavvSm,u1hv,av1(0)vSF,hv,av(0)\displaystyle\ll_{F,u}A^{-\frac{1}{2}}\cdot\prod_{v\in S_{F,\infty}}e^{\frac{26\pi}{a_{v}}}\cdot\prod_{v\in S_{m,u}^{1}}h_{v,a_{v}}^{-1}(0)\cdot\prod_{v\in S_{F,\infty}}h_{v,a_{v}}(0)
F,uA12vSF,(e26πavhv,av(0)).\displaystyle\ll_{F,u}A^{-\frac{1}{2}}\cdot\prod_{v\in S_{F,\infty}}\left(e^{\frac{26\pi}{a_{v}}}\cdot h_{v,a_{v}}(0)\right).

Here, the last inequality holds since a positive real number ava_{v} is less than 11 for each vSF,v\in S_{F,\infty}. Since UFU_{F} is a finite set, it follows that

(4.9) Vol(Gγm,u(F)¯\Gγm,u(𝔸F)¯)|S[γm,u](ϕ(𝐚))|FA12vSF,(e26πavhv,av(0)).\mathrm{Vol}(\overline{\mathrm{G}_{\gamma_{m,u}}(F)}\backslash\overline{\mathrm{G}_{\gamma_{m,u}}(\mathbb{A}_{F})})\left|S_{[\gamma_{m,u}]}(\phi^{(\mathbf{a})})\right|\ll_{F}A^{-\frac{1}{2}}\cdot\prod_{v\in S_{F,\infty}}\left(e^{\frac{26\pi}{a_{v}}}\cdot h_{v,a_{v}}(0)\right).

By the finiteness of UFU_{F}, Lemma 4.4 implies

(4.10) #X𝐚FvSF,e2πnav.\#X_{\mathbf{a}}\ll_{F}\prod_{v\in S_{F,\infty}}e^{\frac{2\pi n}{a_{v}}}.

Therefore, we complete the proof of Lemma 4.5 by combining (4.7), (4.9) and (4.10). ∎

Lemma 4.6.

With the above notation, assume that av1a_{v}\leq 1 for all vSF,v\in S_{F,\infty}. Then, we have

|Shyp(ϕ(𝐚))|FA12vSF,(e5πavhv,av(0)).\left|S_{\rm hyp}(\phi^{(\mathbf{a})})\right|\ll_{F}A^{-\frac{1}{2}}\cdot\prod_{v\in S_{F,\infty}}\left(e^{\frac{5\pi}{a_{v}}}\cdot h_{v,a_{v}}(0)\right).
Proof.

By (3.43), if Jα(ϕ(𝐚))0J_{\alpha}(\phi^{(\mathbf{a})})\neq 0, then there is wSFw\in S_{F} such that

vSF,Jσv(α),vw(ϕv,av)0.\prod_{v\in S_{F,\infty}}J_{\sigma_{v}(\alpha),v}^{w}(\phi_{v,a_{v}})\neq 0.

Lemma 3.12 implies that for all vSF,v\in S_{F,\infty}, we have

(4.11) e4πav(1+ϵv)<|σv(α)|<e4πav(1+ϵv).e^{-\frac{4\pi}{a_{v}(1+\epsilon_{v})}}<|\sigma_{v}(\alpha)|<e^{\frac{4\pi}{a_{v}(1+\epsilon_{v})}}.

Let Y𝐚Y_{\mathbf{a}} be the subset of 𝒪F×\mathcal{O}_{F}^{\times} consisting of α\alpha satisfying (4.11) for all vSF,v\in S_{F,\infty}. Then, we get

|Shyp(ϕ(𝐚))|Vol(F×\𝔸F1)2αY𝐚|Jα(ϕ(𝐚))|.\left|S_{\rm hyp}(\phi^{(\mathbf{a})})\right|\leq\frac{\mathrm{Vol}(F^{\times}\backslash\mathbb{A}_{F}^{1})}{2}\sum_{\alpha\in Y_{\mathbf{a}}}\left|J_{\alpha}(\phi^{(\mathbf{a})})\right|.

Assume that αY𝐚\alpha\in Y_{\mathbf{a}}. Since α1𝒪F\alpha-1\in\mathcal{O}_{F}, it follows that

(4.12) 1|NF/(α1)|=vSF,|σv(α1)|1+ϵv.1\leq\left|N_{F/\mathbb{Q}}(\alpha-1)\right|=\prod_{v\in S_{F,\infty}}\left|\sigma_{v}(\alpha-1)\right|^{1+\epsilon_{v}}.

Then, for wSF,w\in S_{F,\infty}, we have

(4.13) |σw(α1)|=|σw(α)1||σw(α)|+1<e4πaw(1+ϵw)+12e4πaw(1+ϵw).|\sigma_{w}(\alpha-1)|=|\sigma_{w}(\alpha)-1|\leq|\sigma_{w}(\alpha)|+1<e^{\frac{4\pi}{a_{w}(1+\epsilon_{w})}}+1\leq 2\cdot e^{\frac{4\pi}{a_{w}(1+\epsilon_{w})}}.

Combining (4.12) and (4.13), for any vSF,v\in S_{F,\infty}, we get

(4.14) 1|σv(α1)|1+ϵv<2n1wve4πaw.\frac{1}{|\sigma_{v}(\alpha-1)|^{1+\epsilon_{v}}}<2^{n-1}\prod_{w\neq v}e^{\frac{4\pi}{a_{w}}}.

Since αY𝐚\alpha\in Y_{\mathbf{a}}, it follows that |σv(α)|<e4πav(1+ϵv)|\sigma_{v}(\alpha)|<e^{\frac{4\pi}{a_{v}(1+\epsilon_{v})}} and that

(4.15) (|σv(α)|12|σv(α)1|)1+ϵv<2n1e2πavwve4πaw.\left(\frac{|\sigma_{v}(\alpha)|^{\frac{1}{2}}}{|\sigma_{v}(\alpha)-1|}\right)^{1+\epsilon_{v}}<2^{n-1}e^{\frac{2\pi}{a_{v}}}\prod_{w\neq v}e^{\frac{4\pi}{a_{w}}}.

Note that (α)|α|=(α1)|α1|\frac{\Re(\alpha)}{|\alpha|}=\frac{\Re(\alpha^{-1})}{|\alpha^{-1}|}, |α||α1|2=|α1||α11|2\frac{|\alpha|}{|\alpha-1|^{2}}=\frac{|\alpha^{-1}|}{|\alpha^{-1}-1|^{2}} and hϕv^\widehat{h_{\phi_{v}}} is an even function. By Lemma 3.12, we may assume that |σv(α)|1|\sigma_{v}(\alpha)|\geq 1 without loss of generality. If vwv\neq w, then Lemma 3.12 says that

(4.16) |Jσv(α),vw(ϕv,av)|1+ϵv2π|σv(α)|1+ϵv2|σv(α)1|1+ϵv.\left|J_{\sigma_{v}(\alpha),v}^{w}(\phi_{v,a_{v}})\right|\leq\frac{1+\epsilon_{v}}{2\pi}\cdot\frac{|\sigma_{v}(\alpha)|^{\frac{1+\epsilon_{v}}{2}}}{|\sigma_{v}(\alpha)-1|^{1+\epsilon_{v}}}.

Assume that Fv=F_{v}=\mathbb{R}. By Lemma 3.12 and (4.15), we have

(4.17) |Jσv(α),vv(ϕv,av)|\displaystyle\left|J_{\sigma_{v}(\alpha),v}^{v}(\phi_{v,a_{v}})\right| 2|σv(α)||σv(α)1|2log|σv(α)|2π1avhv,av^(x)cosh(πx)𝑑x\displaystyle\leq\frac{2|\sigma_{v}(\alpha)|}{|\sigma_{v}(\alpha)-1|^{2}}\int_{\frac{\log|\sigma_{v}(\alpha)|}{2\pi}}^{\frac{1}{a_{v}}}\widehat{h_{v,a_{v}}}(x)\cosh(\pi x)dx
|σv(α)||σv(α)1|2cosh(πav)hv,av(0)\displaystyle\leq\frac{|\sigma_{v}(\alpha)|}{|\sigma_{v}(\alpha)-1|^{2}}\cdot\cosh\left(\frac{\pi}{a_{v}}\right)\cdot h_{v,a_{v}}(0)
<|σv(α)|12|σv(α)1|(2n1e2πavwve4πaw)cosh(πav)hv,av(0)\displaystyle<\frac{|\sigma_{v}(\alpha)|^{\frac{1}{2}}}{|\sigma_{v}(\alpha)-1|}\left(2^{n-1}e^{\frac{2\pi}{a_{v}}}\prod_{w\neq v}e^{\frac{4\pi}{a_{w}}}\right)\cdot\cosh\left(\frac{\pi}{a_{v}}\right)\cdot h_{v,a_{v}}(0)
<2n1|σv(α)|12|σv(α)1|wv1hw(0)wSF,e4πawhw,aw(0).\displaystyle<\frac{2^{n-1}|\sigma_{v}(\alpha)|^{\frac{1}{2}}}{|\sigma_{v}(\alpha)-1|}\prod_{w\neq v}\frac{1}{h_{w}(0)}\prod_{w\in S_{F,\infty}}e^{\frac{4\pi}{a_{w}}}\cdot h_{w,a_{w}}(0).

The last inequality holds since hw,aw(0)=1awhw(0)hw(0)>0h_{w,a_{w}}(0)=\frac{1}{a_{w}}h_{w}(0)\geq h_{w}(0)>0.

Assume that Fv=F_{v}=\mathbb{C}. Since hv^\widehat{h_{v}} is a smooth function with compact support, there is a positive real number MvM_{v} such that

|hv,av^(x)|Mv\left|\widehat{h_{v,a_{v}}}(x)\right|\leq M_{v}

for all xx\in\mathbb{R}. By Lemma 3.12, we have

(4.18) |Jσv(α),vv(ϕv,av)|\displaystyle\left|J_{\sigma_{v}(\alpha),v}^{v}(\phi_{v,a_{v}})\right| 2|σv(α)||σv(α)1|2Mvlog(|σv(α)|)π1avsinh(πx)cosh(πx)(σv(α))|σv(α)|𝑑x\displaystyle\leq\frac{2|\sigma_{v}(\alpha)|}{|\sigma_{v}(\alpha)-1|^{2}}\cdot M_{v}\cdot\int_{\frac{\log(|\sigma_{v}(\alpha)|)}{\pi}}^{\frac{1}{a_{v}}}\frac{\sinh(\pi x)}{\cosh(\pi x)-\frac{\Re(\sigma_{v}(\alpha))}{|\sigma_{v}(\alpha)|}}dx
=2|σv(α)||σv(α)1|2Mv(logs2logs1)π,\displaystyle=\frac{2|\sigma_{v}(\alpha)|}{|\sigma_{v}(\alpha)-1|^{2}}\cdot M_{v}\cdot\frac{\left(\log s_{2}-\log s_{1}\right)}{\pi},

where

s1:=cosh(log|σv(α)|)(σv(α))|σv(α)|=|σv(α)1|22|σv(α)| and s2:=cosh(πav)(σv(α))|σv(α)|.s_{1}:=\cosh(\log|\sigma_{v}(\alpha)|)-\frac{\Re(\sigma_{v}(\alpha))}{|\sigma_{v}(\alpha)|}=\frac{|\sigma_{v}(\alpha)-1|^{2}}{2|\sigma_{v}(\alpha)|}\text{ and }s_{2}:=\cosh\left(\frac{\pi}{a_{v}}\right)-\frac{\Re(\sigma_{v}(\alpha))}{|\sigma_{v}(\alpha)|}.

By (4.15), we obtain

(4.19) logs2logs1\displaystyle\log s_{2}-\log s_{1} log(cosh(πav)+1)+log(2|σv(α)||σv(α)1|2)\displaystyle\leq\log\left(\cosh\left(\frac{\pi}{a_{v}}\right)+1\right)+\log\left(\frac{2|\sigma_{v}(\alpha)|}{|\sigma_{v}(\alpha)-1|^{2}}\right)
πav+log(2ne2πavwve4πaw)\displaystyle\leq\frac{\pi}{a_{v}}+\log\left(2^{n}e^{\frac{2\pi}{a_{v}}}\prod_{w\neq v}e^{\frac{4\pi}{a_{w}}}\right)
nlog2+4πwSF,1aw\displaystyle\leq n\log 2+4\pi\sum_{w\in S_{F,\infty}}\frac{1}{a_{w}}
(4π+2log2)wSF,1aw.\displaystyle\leq(4\pi+2\log 2)\sum_{w\in S_{F,\infty}}\frac{1}{a_{w}}.

The last inequality holds since wSF,1awn2\sum_{w\in S_{F,\infty}}\frac{1}{a_{w}}\geq\frac{n}{2}. Thus, combining (4.18) and (4.19), we have

(4.20) |Jσv(α),vv(ϕv,av)|\displaystyle\left|J_{\sigma_{v}(\alpha),v}^{v}(\phi_{v,a_{v}})\right| 2(4π+2log2)Mv|σv(α)|π|σv(α)1|2wSF,1aw\displaystyle\leq\frac{2(4\pi+2\log 2)M_{v}|\sigma_{v}(\alpha)|}{\pi|\sigma_{v}(\alpha)-1|^{2}}\sum_{w\in S_{F,\infty}}\frac{1}{a_{w}}
=2(4π+2log2)Mv|σv(α)|π|σv(α)1|2(wSF,aw)(wSF,1aw)wSF,hw(0)wSF,hw,aw(0)\displaystyle=\frac{2(4\pi+2\log 2)M_{v}|\sigma_{v}(\alpha)|}{\pi|\sigma_{v}(\alpha)-1|^{2}}\cdot\frac{\left(\prod_{w\in S_{F,\infty}}a_{w}\right)\left(\sum_{w\in S_{F,\infty}}\frac{1}{a_{w}}\right)}{\prod_{w\in S_{F,\infty}}h_{w}(0)}\prod_{w\in S_{F,\infty}}h_{w,a_{w}}(0)
2(4π+2log2)Mv|σv(α)|π|σv(α)1|2nwSF,hw(0)wSF,hw,aw(0)\displaystyle\leq\frac{2(4\pi+2\log 2)M_{v}|\sigma_{v}(\alpha)|}{\pi|\sigma_{v}(\alpha)-1|^{2}}\cdot\frac{n}{\prod_{w\in S_{F,\infty}}h_{w}(0)}\prod_{w\in S_{F,\infty}}h_{w,a_{w}}(0)
2(4π+2log2)Mv|σv(α)|π|σv(α)1|2nwSF,hw(0)wSF,e4πawhw,aw(0).\displaystyle\leq\frac{2(4\pi+2\log 2)M_{v}|\sigma_{v}(\alpha)|}{\pi|\sigma_{v}(\alpha)-1|^{2}}\cdot\frac{n}{\prod_{w\in S_{F,\infty}}h_{w}(0)}\prod_{w\in S_{F,\infty}}e^{\frac{4\pi}{a_{w}}}\cdot h_{w,a_{w}}(0).

Recalling (3.55), we have

(4.21) |Jα(ϕ(𝐚))|\displaystyle\left|J_{\alpha}(\phi^{(\mathbf{a})})\right| A12|NF\(α1)|\displaystyle\leq A^{-\frac{1}{2}}\cdot\left|N_{F\backslash\mathbb{Q}}(\alpha-1)\right|
×(2log|NF\(α1)||vSF,Jσv(α),vw0(ϕv,av)|+wSF,|vSF,Jσv(α),vw(ϕv,av)|)\displaystyle\times\left(2\log|N_{F\backslash\mathbb{Q}}(\alpha-1)|\cdot\left|\prod_{v\in S_{F,\infty}}J_{\sigma_{v}(\alpha),v}^{w_{0}}(\phi_{v,a_{v}})\right|+\sum_{w\in S_{F,\infty}}\left|\prod_{v\in S_{F,\infty}}J_{\sigma_{v}(\alpha),v}^{w}(\phi_{v,a_{v}})\right|\right)

for any w0SF,finw_{0}\in S_{F,\mathrm{fin}}. Combining (4.16), (4.17) and (4.20), we deduce that (4.21) becomes

|Jα(ϕ(𝐚))|\displaystyle\left|J_{\alpha}(\phi^{(\mathbf{a})})\right|\leq A12|NF/(α1)|vSF,|σv(α)|1+ϵv2|σv(α1)|1+ϵv\displaystyle A^{-\frac{1}{2}}\cdot\left|N_{F/\mathbb{Q}}(\alpha-1)\right|\cdot\prod_{v\in S_{F,\infty}}\frac{|\sigma_{v}(\alpha)|^{\frac{1+\epsilon_{v}}{2}}}{|\sigma_{v}(\alpha-1)|^{1+\epsilon_{v}}}
×\displaystyle\times (2C1log|NF/(α1)|+wSF,Cw,1vSF,(e4πavhv,av(0)))\displaystyle\bigg{(}2\cdot C_{1}\cdot\log\left|N_{F/\mathbb{Q}}(\alpha-1)\right|+\sum_{w\in S_{F,\infty}}C_{w,1}\prod_{v\in S_{F,\infty}}\left(e^{\frac{4\pi}{a_{v}}}\cdot h_{v,a_{v}}(0)\right)\bigg{)}
=\displaystyle= A12|NF/(α)|12(2C1log|NF/(α1)|+wSF,Cw,1vSF,(e4πavhv,av(0)))\displaystyle A^{-\frac{1}{2}}\cdot\left|N_{F/\mathbb{Q}}(\alpha)\right|^{\frac{1}{2}}\bigg{(}2\cdot C_{1}\cdot\log\left|N_{F/\mathbb{Q}}(\alpha-1)\right|+\sum_{w\in S_{F,\infty}}C_{w,1}\prod_{v\in S_{F,\infty}}\left(e^{\frac{4\pi}{a_{v}}}\cdot h_{v,a_{v}}(0)\right)\bigg{)}

for some constants C1C_{1} and Cw,1C_{w,1} with wSF,w\in S_{F,\infty}. Since α𝒪F×\alpha\in\mathcal{O}_{F}^{\times}, the absolute value of the norm NF/(α)N_{F/\mathbb{Q}}(\alpha) of α\alpha is 11. By (4.13), we have

log|NF/(α1)|\displaystyle\log\left|N_{F/\mathbb{Q}}(\alpha-1)\right| =log(wSF,|σw(α1)|1+ϵw)\displaystyle=\log\left(\prod_{w\in S_{F,\infty}}|\sigma_{w}(\alpha-1)|^{1+\epsilon_{w}}\right)
nlog2+4πwSF,1aw\displaystyle\leq n\log 2+4\pi\sum_{w\in S_{F,\infty}}\frac{1}{a_{w}}
(4π+2log2)wSF,1aw\displaystyle\leq(4\pi+2\log 2)\sum_{w\in S_{F,\infty}}\frac{1}{a_{w}}
n(2log2+4π)wSF,hw(0)wSF,hw,aw(0).\displaystyle\leq\frac{n(2\log 2+4\pi)}{\prod_{w\in S_{F,\infty}}h_{w}(0)}\prod_{w\in S_{F,\infty}}h_{w,a_{w}}(0).

Therefore, we complete the proof of Lemma 4.6. ∎

Lemma 4.7.

With the above notation, assume that av1a_{v}\leq 1 for all vSF,v\in S_{F,\infty}. Then, we have

(4.22) |Spar(ϕ(𝐚))|FA12logAvSF,hv,av(0).\left|S_{\rm par}(\phi^{(\mathbf{a})})\right|\ll_{F}A^{-\frac{1}{2}}\log A\cdot\prod_{v\in S_{F,\infty}}h_{v,a_{v}}(0).
Proof.

Assume that vSF,v\in S_{F,\infty}. Since hv,avh_{v,a_{v}} is an even function, it follows that

hv,av(t)ΓΓ(1+(1+ϵv)it)𝑑t=20hv,av(t)(ΓΓ(1+(1+ϵv)it))𝑑t.\int_{\mathbb{R}}h_{v,a_{v}}(t)\cdot\frac{\Gamma^{\prime}}{\Gamma}(1+(1+\epsilon_{v})it)dt=2\int_{0}^{\infty}h_{v,a_{v}}(t)\cdot\Re\left(\frac{\Gamma^{\prime}}{\Gamma}(1+(1+\epsilon_{v})it)\right)dt.

By the asymptotic behavior of ΓΓ(1+it)\frac{\Gamma^{\prime}}{\Gamma}(1+it), there are non-negative real numbers AA and BB such that

|(ΓΓ(1+(1+ϵv)it))|A+Bt\left|\Re\left(\frac{\Gamma^{\prime}}{\Gamma}(1+(1+\epsilon_{v})it)\right)\right|\leq A+Bt

for all non-negative real numbers tt. Thus,

|0hv,av(t)(ΓΓ(1+(1+ϵv)it))𝑑t|\displaystyle\left|\int_{0}^{\infty}h_{v,a_{v}}(t)\cdot\Re\left(\frac{\Gamma^{\prime}}{\Gamma}(1+(1+\epsilon_{v})it)\right)dt\right| 01avhv(tav)(A+Bt)𝑑t\displaystyle\leq\int_{0}^{\infty}\frac{1}{a_{v}}\cdot h_{v}\left(\frac{t}{a_{v}}\right)(A+Bt)dt
=A01avhv(tav)𝑑t+B0tavhv(tav)𝑑t\displaystyle=A\int_{0}^{\infty}\frac{1}{a_{v}}\cdot h_{v}\left(\frac{t}{a_{v}}\right)dt+B\int_{0}^{\infty}\frac{t}{a_{v}}\cdot h_{v}\left(\frac{t}{a_{v}}\right)dt
=A0hv(t)𝑑t+avB0thv(t)𝑑t.\displaystyle=A\int_{0}^{\infty}h_{v}(t)dt+a_{v}\cdot B\int_{0}^{\infty}th_{v}(t)dt.

Since av1a_{v}\leq 1, we have

|hv,av(t)ΓΓ(1+it)𝑑t|v1.\left|\int_{\mathbb{R}}h_{v,a_{v}}(t)\cdot\frac{\Gamma^{\prime}}{\Gamma}(1+it)dt\right|\ll_{v}1.

Then, Lemma 3.14 implies that there are positive constants Cv(1)C_{v}^{(1)} and Cv(2)C_{v}^{(2)} satisfying

|Zv(1,ϕv,av)|Cv(1)+Cv(2)hv,av(0).\left|Z_{v}^{\prime}(1,\phi_{v,a_{v}})\right|\leq C_{v}^{(1)}+C_{v}^{(2)}\cdot h_{v,a_{v}}(0).

Again, since av1a_{v}\leq 1 for all vSF,v\in S_{F,\infty}, we obtain (4.22) by (3.67). ∎

Lemma 4.8.

With the above notation, assume that av1a_{v}\leq 1 for all vSF,v\in S_{F,\infty}. Then, we have

|SEis(ϕ(𝐚))|FAJA12vSF,hv,av(0).\left|S_{\rm Eis}(\phi^{(\mathbf{a})})\right|\ll_{F}A_{J}\cdot A^{\frac{1}{2}}\cdot\prod_{v\in S_{F,\infty}}h_{v,a_{v}}(0).
Proof.

Recalling Lemma 3.15, we have

SEis(ϕ(𝐚))=AJ2r1+2π(ΛF(2it)ΛF(2it)ΛF(2it+1)ΛF(2it+1))(vSF,hv,av(t))dimVitK(J)dt.S_{\rm Eis}(\phi^{(\mathbf{a})})=\frac{A_{J}}{2^{r_{1}+2}\pi}\cdot\int_{\mathbb{R}}\bigg{(}\frac{\Lambda_{F}^{\prime}(2it)}{\Lambda_{F}(2it)}-\frac{\Lambda_{F}^{\prime}(2it+1)}{\Lambda_{F}(2it+1)}\bigg{)}\cdot\left(\prod_{v\in S_{F,\infty}}h_{v,a_{v}}(t)\right)\cdot\dim V_{it}^{\mathrm{K}(J)}dt.

There are only finitely many vSF,finv\in S_{F,\mathrm{fin}} such that valv(J)>0\mathrm{val}_{v}(J)>0. By [5, pp. 73], we have

(4.23) dimVitK(J)2r1vSF,(1+valv(J)).\dim V_{it}^{\mathrm{K}(J)}\leq 2^{r_{1}}\cdot\prod_{v\in S_{F,\infty}}(1+\mathrm{val}_{v}(J)).

For each vSF,finv\in S_{F,\mathrm{fin}}, let rv:=[𝒪F/𝔭v:𝔽p]r_{v}:=[\mathcal{O}_{F}/\mathfrak{p}_{v}:\mathbb{F}_{p}], where 𝔭v\mathfrak{p}_{v} denotes a prime ideal of 𝒪F\mathcal{O}_{F} corresponding to vv and pp denotes a prime satisfying (p):=𝔭v(p):=\mathfrak{p}_{v}\cap\mathbb{Z}. Then, we have

(4.24) NF/(J)=p(𝔭vpNF/(𝔭v)valv(J))=pp𝔭vprvvalv(J).N_{F/\mathbb{Q}}(J)=\prod_{p}\left(\prod_{\mathfrak{p}_{v}\mid p}N_{F/\mathbb{Q}}(\mathfrak{p}_{v})^{\mathrm{val}_{v}(J)}\right)=\prod_{p}p^{\sum_{\mathfrak{p}_{v}\mid p}r_{v}\cdot\mathrm{val}_{v}(J)}.

Let d(N)d(N) be the number of divisors of an integer NN. Let n:=[F:]n:=[F:\mathbb{Q}]. Since the number of prime ideals 𝔭v\mathfrak{p}_{v} of 𝒪F\mathcal{O}_{F} lying over pp is less than or equal nn, it follows that

(d(NF/(J)))n=p(1+𝔭vprvvalv(J))np(𝔭vp(1+valv(J)))=vSF,fin(1+valv(J)).\left(d\left(N_{F/\mathbb{Q}}(J)\right)\right)^{n}=\prod_{p}\left(1+\sum_{\mathfrak{p}_{v}\mid p}r_{v}\cdot\mathrm{val}_{v}(J)\right)^{n}\geq\prod_{p}\left(\prod_{\mathfrak{p}_{v}\mid p}(1+\mathrm{val}_{v}(J))\right)=\prod_{v\in S_{F,\mathrm{fin}}}(1+\mathrm{val}_{v}(J)).

Combining (4.23) and (4.24), we get

dimVitK0(J)2r1(d(NF/(J)))n=d(A)n.\frac{\dim V_{it}^{\mathrm{K}_{0}(J)}}{2^{r_{1}}}\leq\left(d\left(N_{F/\mathbb{Q}}(J)\right)\right)^{n}=d(A)^{n}.

Since d(A)ϵAϵd(A)\ll_{\epsilon}A^{\epsilon} for ϵ>0\epsilon>0, it follows that

|SEis(ϕ(𝐚))|\displaystyle\left|S_{\rm Eis}(\phi^{(\mathbf{a})})\right| FAJA12|ΛF(2it)ΛF(2it)ΛF(2it+1)ΛF(2it+1)|vSF,hv,av(t)dt.\displaystyle\ll_{F}A_{J}\cdot A^{\frac{1}{2}}\cdot\int_{\mathbb{R}}\left|\frac{\Lambda_{F}^{\prime}(2it)}{\Lambda_{F}(2it)}-\frac{\Lambda_{F}^{\prime}(2it+1)}{\Lambda_{F}(2it+1)}\right|\prod_{v\in S_{F,\infty}}h_{v,a_{v}}(t)dt.

By [13, Proposition 5.7], there are positive real numbers C1C_{1} and C2C_{2} such that for any tt\in\mathbb{R},

|ΛF(2it)ΛF(2it)ΛF(2it+1)ΛF(2it+1)|C1+C2|t|.\left|\frac{\Lambda_{F}^{\prime}(2it)}{\Lambda_{F}(2it)}-\frac{\Lambda_{F}^{\prime}(2it+1)}{\Lambda_{F}(2it+1)}\right|\leq C_{1}+C_{2}|t|.

Thus, we obtain that

|SEis(ϕ(𝐚))|\displaystyle\left|S_{\rm Eis}(\phi^{(\mathbf{a})})\right| FAJA120(C1+C2t)vSF,hv,av(t)dt.\displaystyle\ll_{F}A_{J}\cdot A^{\frac{1}{2}}\cdot\int_{0}^{\infty}(C_{1}+C_{2}t)\prod_{v\in S_{F,\infty}}h_{v,a_{v}}(t)dt.

Since hv,av^\widehat{h_{v,a_{v}}} is a non-negative function, hv,av(t)h_{v,a_{v}}(t) is less than or equal to hv,av(0)h_{v,a_{v}}(0). Then, we have

|0(C1+C2t)vSF,hv,av(t)dt|\displaystyle\left|\int_{0}^{\infty}(C_{1}+C_{2}t)\prod_{v\in S_{F,\infty}}h_{v,a_{v}}(t)dt\right| vwhv,av(0)|0(C1+C2t)hw,aw(t)𝑑t|\displaystyle\leq\prod_{v\neq w}h_{v,a_{v}}(0)\cdot\left|\int_{0}^{\infty}(C_{1}+C_{2}t)h_{w,a_{w}}(t)dt\right|
=vwhv,av(0)|C10hw(t)𝑑t+C2aw0thw(t)𝑑t|\displaystyle=\prod_{v\neq w}h_{v,a_{v}}(0)\cdot\left|C_{1}\cdot\int_{0}^{\infty}h_{w}(t)dt+C_{2}\cdot a_{w}\int_{0}^{\infty}th_{w}(t)dt\right|
FvSF,hv,av(0).\displaystyle\ll_{F}\prod_{v\in S_{F,\infty}}h_{v,a_{v}}(0).

Here, the last inequality holds because awa_{w} is a positive real number with aw1a_{w}\leq 1. ∎

Using the argument in the proof of Lemma 4.8, we have

dimV0K(J)FA12.\dim V_{0}^{\mathrm{K}(J)}\ll_{F}A^{\frac{1}{2}}.

Thus, Lemma 3.16 implies the following lemma.

Lemma 4.9.

With the above notation, we have

|SRes(ϕ(𝐚))|FAJA12vSF,hv,av(0).\left|S_{\mathrm{Res}}(\phi^{(\mathbf{a})})\right|\ll_{F}A_{J}\cdot A^{\frac{1}{2}}\cdot\prod_{v\in S_{F,\infty}}h_{v,a_{v}}(0).

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1.

Let (𝐚):=(av)vSF,>0#SF,(\mathbf{a}):=(a_{v})_{v\in S_{F,\infty}}\in\mathbb{R}_{>0}^{\#S_{F,\infty}}. For each vSF,v\in S_{F,\infty}, assume that av1a_{v}\leq 1. By Lemma 2.3 and (2.17), we have

(4.25) 𝒩(J)\displaystyle\mathcal{N}(J) 2r1AJvSF,hv,av(0)π𝔛Ftrπ(ϕ(𝐚))\displaystyle\leq\frac{2^{r_{1}}}{A_{J}\cdot\prod_{v\in S_{F,\infty}}h_{v,a_{v}}(0)}\sum_{\pi\in\mathfrak{X}_{F}}\mathrm{tr}\pi(\phi^{(\mathbf{a})})
2r1AJvSF,hv,av(0)(|Sone(ϕ(𝐚))|+|Sid(ϕ(𝐚))|+|Sell(ϕ(𝐚))|+|Shyp(ϕ(𝐚))|\displaystyle\leq\frac{2^{r_{1}}}{A_{J}\cdot\prod_{v\in S_{F,\infty}}h_{v,a_{v}}(0)}\bigg{(}\left|S_{\mathrm{one}}(\phi^{(\mathbf{a})})\right|+\left|S_{\rm id}(\phi^{(\mathbf{a})})\right|+\left|S_{\rm ell}(\phi^{(\mathbf{a})})\right|+\left|S_{\rm hyp}(\phi^{(\mathbf{a})})\right|
+|Spar(ϕ(𝐚))|+|SEis(ϕ(𝐚))|+|SRes(ϕ(𝐚))|).\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\qquad+\left|S_{\rm par}(\phi^{(\mathbf{a})})\right|+\left|S_{\rm Eis}(\phi^{(\mathbf{a})})\right|+\left|S_{\mathrm{Res}}(\phi^{(\mathbf{a})})\right|\bigg{)}.

By Lemmas 4.2, 4.3, 4.5, 4.6, 4.7, 4.8, and 4.9, we have

(4.26) 𝒩(J)F1AJ(\displaystyle\mathcal{N}(J)\ll_{F}\frac{1}{A_{J}}\bigg{(} AJvSF,eπav+vSF,av2+ϵv+A12vSF,e2π(n+13)av\displaystyle A_{J}\cdot\prod_{v\in S_{F,\infty}}e^{\frac{\pi}{a_{v}}}+\prod_{v\in S_{F,\infty}}a_{v}^{2+\epsilon_{v}}+A^{-\frac{1}{2}}\cdot\prod_{v\in S_{F,\infty}}e^{\frac{2\pi(n+13)}{a_{v}}}
+A12vSF,e5πav+A12logA+AJA12).\displaystyle+A^{-\frac{1}{2}}\cdot\prod_{v\in S_{F,\infty}}e^{\frac{5\pi}{a_{v}}}+A^{-\frac{1}{2}}\log A+A_{J}\cdot A^{\frac{1}{2}}\bigg{)}.

For each vSF,v\in S_{F,\infty}, let

av:=8πn(n+13)logA.a_{v}:=\frac{8\pi n(n+13)}{\log A}.

We see that av1a_{v}\leq 1 as AA\to\infty. Since A=|NF/(J)|AJ1A=|N_{F/\mathbb{Q}}(J)|\leq A_{J}^{-1}, the main term of the right hand side of (4.26)\eqref{eq 86} comes from AJ1vSF,av2+ϵvA_{J}^{-1}\prod_{v\in S_{F,\infty}}a_{v}^{2+\epsilon_{v}}. Therefore, we conclude that

𝒩(J)F1AJ(logA)2r1+3r2=[SL2(𝒪F):Γ0(J)](log(NF/(J)))2r1+3r2,|NF/(J)|.\mathcal{N}(J)\ll_{F}\frac{1}{A_{J}(\log A)^{2r_{1}+3r_{2}}}=\frac{[\mathrm{SL}_{2}(\mathcal{O}_{F}):\Gamma_{0}(J)]}{(\log(N_{F/\mathbb{Q}}(J)))^{2r_{1}+3r_{2}}},\quad\left|N_{F/\mathbb{Q}}(J)\right|\to\infty.

References

  • [1] A. R. Booker and M. Lee. The Selberg trace formula as a Dirichlet series. Forum Math., 29(3):519–542, 2017.
  • [2] A. R. Booker, M. Lee, and A. Strömbergsson. Twist-minimal trace formulas and the Selberg eigenvalue conjecture. J. Lond. Math. Soc. (2), 102(3):1067–1134, 2020.
  • [3] A. R. Booker and A. Strömbergsson. Numerical computations with the trace formula and the Selberg eigenvalue conjecture. J. Reine Angew. Math., 607:113–161, 2007.
  • [4] J. Elstrodt, F. Grunewald, and J. Mennicke. Groups acting on hyperbolic space. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. Harmonic analysis and number theory.
  • [5] S. Gelbart. Automorphic forms on adèle groups. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. Annals of Mathematics Studies, No. 83.
  • [6] S. Gelbart and H. Jacquet. Forms of GL(2){\rm GL}(2) from the analytic point of view. In Automorphic forms, representations and LL-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pages 213–251. Amer. Math. Soc., Providence, R.I., 1979.
  • [7] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. Elsevier/Academic Press, Amsterdam, seventh edition, 2007. Translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, With one CD-ROM (Windows, Macintosh and UNIX).
  • [8] D. A. Hejhal. The Selberg trace formula for PSL(2,R){\rm PSL}(2,R). Vol. I, volume Vol. 548 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1976.
  • [9] D. A. Hejhal. The Selberg trace formula for PSL(2,𝐑){\rm PSL}(2,\,{\bf R}). Vol. 2, volume 1001 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1983.
  • [10] P. Humphries. Density theorems for exceptional eigenvalues for congruence subgroups. Algebra Number Theory, 12(7):1581–1610, 2018.
  • [11] M. N. Huxley. Exceptional eigenvalues and congruence subgroups. In The Selberg trace formula and related topics (Brunswick, Maine, 1984), volume 53 of Contemp. Math., pages 341–349. Amer. Math. Soc., Providence, RI, 1986.
  • [12] H. Iwaniec. Spectral methods of automorphic forms, volume 53 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, second edition, 2002.
  • [13] H. Iwaniec and E. Kowalski. Analytic number theory, volume 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004.
  • [14] H. Iwaniec and J. Szmidt. Density theorems for exceptional eigenvalues of the Laplacian for congruence groups. In Elementary and analytic theory of numbers (Warsaw, 1982), volume 17 of Banach Center Publ., pages 317–331. PWN, Warsaw, 1985.
  • [15] H. H. Kim. Functoriality for the exterior square of GL4{\rm GL}_{4} and the symmetric fourth of GL2{\rm GL}_{2}. J. Amer. Math. Soc., 16(1):139–183, 2003. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak.
  • [16] A. Knightly. Counting locally supercuspidal newforms. arxiv: 2310.17047.
  • [17] S. Louboutin. Explicit bounds for residues of Dedekind zeta functions, values of LL-functions at s=1s=1, and relative class numbers. J. Number Theory, 85(2):263–282, 2000.
  • [18] M. Palm. The character of GL(2)GL(2) automorphic forms. J. Number Theory, 160:679–699, 2016.
  • [19] A. Selberg. On the estimation of Fourier coefficients of modular forms. In Proc. Sympos. Pure Math., Vol. VIII, pages 1–15. Amer. Math. Soc., Providence, RI, 1965.
  • [20] J. T. Tate. Fourier analysis in number fields, and Hecke’s zeta-functions. In Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pages 305–347. Academic Press, London, 1967.