This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The non-existence of horizontally flat singularity for steady axisymmetric free surface flows near stagnation points

Lili Du School of Mathematical Sciences, Shenzhen University, Shenzhen, P. R. China [email protected]  and  Chunlei Yang Department of Mathematics, Sichuan University, Chengdu, P. R. China [email protected]
Abstract.

In a recent research on degenerate points of steady axisymmetric gravity flows with general vorticity, it has been shown that the possible asymptotics near any stagnation point must be the “Stokes corner”, the “horizontal cusp”, or the “horizontal flatness”(Theorem 1.1, Du, Huang, Pu, Commun. Math. Phys., 400, 2137-2179, 2023). In this paper, we focus on the horizontally flat singularity and show that it is not possible, and therefore the “Stokes corner” and the “cusp” are the only possible asymptotics at the stagnation points. The basic idea of our proof relies on a perturbation of the frequency formula for the two-dimensional problem (Vǎrvǎrucǎ, Weiss, Acta Math., 206, 363-403, 2011). Our analysis also suggests that, for steady axisymmetric rotational gravity flows, the singular asymptotic profiles at stagnation points are similar to the scenario observed in two-dimensional waves with vorticity. (Vǎrvǎrucǎ, Weiss, Ann. I. H. Poincaré-AN, 29, 861-885, 2012).

2020 Mathematics Subject Classification:
Primary: 35Q35, 35R35, Secondary: 76B47.
The first author is supported by National Nature Science Foundation of China Grant 11971331, 12125102, and Sichuan Youth Science and Technology Foundation 2021JDTD0024.

1. Introduction

The model problem we have in mind is the following semilinear Bernoulli-type free boundary problem, which describes an incompressible axisymmetric rotational flow acted on by gravity and with a free surface,

(1.1) {div\br1xψ=xf(ψ) in Ω{ψ>0},1x2|ψ|2=y on Ω{ψ>0}.\begin{cases}\displaystyle\operatorname{div}\br{\frac{1}{x}\nabla\psi}=-xf(\psi)&\text{ in }\Omega\cap\{\psi>0\},\\ \displaystyle\frac{1}{x^{2}}|\nabla\psi|^{2}=-y&\text{ on }\Omega\cap\partial\{\psi>0\}.\end{cases}

Here ψ\psi is the Stokes stream function and Ω\Omega is a connected open subset relative to the right half-plane +2={(x,y)2:x0}\mathbb{R}_{+}^{2}=\{(x,y)\in\mathbb{R}^{2}:x\geqslant 0\} (This implies that (Ω{x=0})Ω=(\Omega\cap\{x=0\})\cap\partial\Omega=\varnothing). The given function ff in the first equation of (1.1) represents the strength of the vorticity, and Ω{ψ>0}\Omega\cap\partial\{\psi>0\} denotes the free surface of the flow. Physically the equation (1.1) arises for example as the “axially symmetric rising jet” or “a bubble within a semi-infinitely long cylindrical tube” and we kindly refer readers to [4, Section 2] for a comprehensive description.

Regarding (1.1) as a free boundary problem, our primary interest lies in the geometry profiles of the free surface at which the relative fluid velocity (1xψy,1xψx)(\frac{1}{x}\psi_{y},-\frac{1}{x}\psi_{x}) is the zero vector, and the regularity of the free surface when it is not the zero vector. In the formal case, a glance of the second equation in (1.1) indicates that such points are distributed along the axis of symmetry {x=0}\{x=0\} or the set {y=0}\{y=0\}. As for the latter case, it is evident that at those free boundary points that are away from both the axis of symmetry and the set {y=0}\{y=0\}, the gradient of ψ\psi can never reduce to zero. Due to the degeneracy or the non-degeneracy of the free boundary condition, we classify them as the set of stagnation points SψsS_{\psi}^{s} (Type I points, which includes those free boundary points (x0,0)(x_{0},0), x0>0x_{0}>0), the set of symmetric axis points SψaS_{\psi}^{a} (Type II points, which includes free boundary points (0,y0)(0,y_{0}), y0<0y_{0}<0), the origin O=(0,0)O=(0,0) (which can be regarded as the intersection of Type I and Type II points), and the set of non-degenerate points NψN_{\psi} (which consists of points on the free boundary points (x0,y0)(x_{0},y_{0}), x0>0x_{0}>0, y0<0y_{0}<0). We now briefly review some results known to us with respect to the singularity and regularity of the free surface near the degenerate points (Type I, Type II and the origin OO) and non-degenerate points (NψN_{\psi}). In [4], the first author and et al. demonstrated that the possible singular asymptotics for any point in SψsS_{\psi}^{s} are the “Stokes corner” wherein the free surface exhibits a corner of 23π\frac{2}{3}\pi, a “horizontal cusp”, or a “horizontal flatness” (Figure 1).

23π\frac{2}{3}\piψ>0\psi>0ψ=0\psi=0Stokes cornerxxyyxxyyHorizontal flatnessψ>0\psi>0ψ=0\psi=0Horizontal cuspxxyyψ=0\psi=0ψ=0\psi=0ψ>0\psi>0Stagnation pointStagnation pointStagnation point
Figure 1. Asymptotics for Type I point.

Furthermore, at any point in axis SψaS_{\psi}^{a}, the singular profiles of the free surface must be a “cusp”. At the origin OO, they concluded that the possibilities are the “Garabedian pointed bubble”, a “horizontal cusp”, or a “horizontal flatness” (we refer readers to [4, Table 1] for these singular asymptotics). These findings suggest that the asymptotic profiles in proximity to various degenerate points for axisymmetric inviscid gravity flows with vorticity are akin to those observed in the irrotational case [11]. Ultimately, it is not beyond our expectations that the free boundary near all non-degenerate points can be expressed as a graph of a C1,αC^{1,\alpha} (0<α<1)(0<\alpha<1) smooth function, and we would like to refer readers to our recent work [5] on this subject.

In this paper, we focus on horizontally flat singularities near stagnation points (The third graph in Figure 1). Originally, they were observed and excluded during the investigation of Stokes conjecture for water waves with zero vorticity [9, Theorem B], and also for water waves with non-zero vorticity [10, Theorem 4.6]. Furthermore, horizontally flat singularities do not exist at stagnation points of axisymmetric gravity irrotational flows [11, Theorem 3.8]. Physical intuitions that relate to this kind of singularities can be interpreted as there being an infinite number of connected components of the air region. Mathematically, these singularities correspond to a specific density, which we shall discuss in the subsequent section (cf. Proposition 2.5), at the stagnation points. This density, which arises as the limits of rescaled variational solutions of the Weiss-boundary adjusted energy, plays an important role in classifying asymptotics at the stagnation points. One of the primary contributions of the work [4, Theorem 1.1] was to compute all the possible blow-up limits and densities at the stagnation points when the vorticity is considered, and the objective of this article is to prove that the set of stagnation point that corresponds to the density of horizontal flat singularities is an empty set.

The appearance of the horizontally flat singularities and the cusp singularities is caused by the lack of compactness for variational solutions of the problem (1.1). It should be worth noting that the cusp singularities near the stagnation points were proved to be not possible when assuming the strong Bernstein estimates for water waves without vorticity [9, Lemma 4.4], and were conjectured to be impossible for water waves with vorticity with the additional Rayleigh-Taylor condition [10, Remark 4.7]. As for the horizontally flat singularities, Vǎrvǎrucǎ and Weiss considered for the first time the so-called frequency formula [9, Section 7], and successfully applied this formula to exclude them. The frequency of the harmonic functions was initially observed by Almgren in [1] for QQ-valued harmonic functions and later developed by Garofalo and Lin to more general elliptic equations in [6, 7]. The aim of this paper is to develop ingenious tools introduced in [10, 11]: a frequency formula (presented in Theorem 3.2) in the context of axisymmetric rotational waves. The new frequency formula helps us to investigate the blow-up limits of the frequency function (presented in Proposition 4.3). The situation is complicated here by the fact that the axisymmetric problem is not as the same as the true two-dimensional problem, and it is unavoidable to deal with the integrability of those additional terms caused by the axis of symmetry. A major part of this work, which is originally inspired by [11, Remark 3.11], is to prove that these terms are indeed behave like small perturbations of the two-dimensional problem (Presented in Proposition 3.8).

Our method in the present work can also be used to study the degenerate points at the origin (cf. Proposition 5.3 in [4]). We can find a non-trivial solution by following the same steps as in Section 3-Section 5. This solution is a homogeneous function of degree 33 and has the form

u0(x,y)=x12x2+B1+x13(x2+)2𝑑1.\displaystyle u_{0}(x,y)=\frac{x_{1}^{2}x_{2}^{+}}{\sqrt{\int_{\partial B_{1}^{+}}x_{1}^{3}(x_{2}^{+})^{2}d\mathcal{H}^{1}}}.

Notice that it was proved in [4, Proposition 5.3] that the only non-trivial asymptotics suggested by the invariant scaling of the equation at the origin is the Garabedian pointed bubble with water above air. Thus, our approach gives the possibility (existence) of a solution that has a higher growth than that asked by the invariant scaling.

The flow of the paper is the following: after clarifying some notations and some preliminary results in Section 2, we follow in Section 3 the approach in [10] in order to compute the frequency formula in our settings. Then, we apply in Section 4 the ideas of [10, 11] to study blow-up limits of the frequency sequence. Finally, we prove that the set of horizontally flat singularities is indeed empty and we prove this result in Section 5.

2. Notations and technical tools

For the abuse of confusion, we adhere some notations utilized in the previous works. In what follows, we denote by χA\chi_{A} the characteristic function of a set AA, by X=(x,y)X=(x,y) a point in 2\mathbb{R}^{2}, by Br(X0):={X2:|XX0|<r}B_{r}(X_{0}):=\{X\in\mathbb{R}^{2}:|X-X_{0}|<r\} the ball of center X0X_{0} and radius rr and by BrB_{r} the ball Br(0)B_{r}(0). Also, s\mathcal{H}^{s} shall denote the ss-dimensional Hausdorff measure and ν\nu will always refer to the outer normal on a given surface. We will say O(1)O(1) and O(r)O(r), etc., if |O(1)|C|O(1)|\leqslant C, |O(r)|Cr|O(r)|\leqslant Cr for some positive constant CC.

Moreover, dX:=dxdydX:=dxdy shall stand for the volume element and we further introduce weighted Lebesgue Lw2(E)L_{\mathrm{w}}^{2}(E) and Sobolev space Ww1,2(E)W_{\mathrm{w}}^{1,2}(E), which are defined for any open subset EE of +2\mathbb{R}_{+}^{2} by

Lw2(E):={ψ:E is measurable and E1x|ψ|2𝑑X<+},\displaystyle L_{\mathrm{w}}^{2}(E):=\left\{\psi\colon E\to\mathbb{R}\text{ is measurable and }\int_{E}\frac{1}{x}|\psi|^{2}\>dX<+\infty\right\},

and

Ww1,2(E):={ψLw2(E):\pdψxLw2(E) and \pdψyLw2(E)}\displaystyle W_{\mathrm{w}}^{1,2}(E):=\left\{\psi\in L_{\mathrm{w}}^{2}(E):\pd{\psi}{x}\in L_{\mathrm{w}}^{2}(E)\text{ and }\pd{\psi}{y}\in L_{\mathrm{w}}^{2}(E)\right\}

respectively. For the sake of convenience we are going to reflect the problem at the line {y=0}\{y=0\}, namely, we study the solutions of the problem

(2.2) {div\br1xψ=xf(ψ) in Ω{ψ>0},1x2|ψ|2=y on Ω{ψ>0}.\begin{cases}\displaystyle\operatorname{div}\br{\frac{1}{x}\nabla\psi}=-xf(\psi)&\text{ in }\Omega\cap\{\psi>0\},\\ \displaystyle\frac{1}{x^{2}}|\nabla\psi|^{2}=y&\text{ on }\Omega\cap\partial\{\psi>0\}.\end{cases}

The nonlinearity ff in the first equation of (2.2) is assumed at present a continuous function with primitive F(z):=0zf(s)𝑑sF(z):=\int_{0}^{z}f(s)ds. We define the set of stagnation points SψsS_{\psi}^{s} by

Sψs:={X0=(x0,0)Ω{ψ>0}:x0>0}.\displaystyle S_{\psi}^{s}:=\{X_{0}=(x_{0},0)\in\Omega\cap\partial\{\psi>0\}\colon x_{0}>0\}.

Since our problem is completely local, we do not impose any boundary condition on Ω\partial\Omega. Finally, for any X0SψsX_{0}\in S_{\psi}^{s}, we define the number

(2.3) δ:=min{x0,dist(X0,Ω)}2.\displaystyle\delta:=\frac{\min\{x_{0},\operatorname{dist}(X_{0},\partial\Omega)\}}{2}.

We now introduce our notion of a variational solution of the problem (2.2).

Definition 2.1 (Variational solutions).

The function ψWw,loc1,2(Ω)\psi\in W_{\mathrm{w},\mathrm{loc}}^{1,2}(\Omega) such that ψ0\psi\geqslant 0 in Ω\Omega, ψ=0\psi=0 in Ω{x=0}\Omega\cap\{x=0\} is called a variational solution of the problem (2.2), provided that ψC0(Ω)C2(Ω{ψ>0})\psi\in C^{0}(\Omega)\cap C^{2}(\Omega\cap\{\psi>0\}), ψ0\psi\equiv 0 in {y0}\{y\leqslant 0\},

limXX0,XΩ{ψ>0}1x\pdψy=0,limXX0,XΩ{ψ>0}1x\pdψx exists,\displaystyle\lim_{\begin{subarray}{c}X\to X_{0},\\ X\in\Omega\cap\{\psi>0\}\end{subarray}}\frac{1}{x}\pd{\psi}{y}=0,\qquad\lim_{\begin{subarray}{c}X\to X_{0},\\ X\in\Omega\cap\{\psi>0\}\end{subarray}}\frac{1}{x}\pd{\psi}{x}\text{ exists, }

for any X0Ω{x=0}X_{0}\in\Omega\cap\{x=0\}, and

(2.4) Ω(1x|ψ|22xF(ψ)+xyχ{ψ>0})divϕ2xψDϕψdX+Ω(1x2|ψ|22F(ψ)+yχ{ψ>0})ϕ1𝑑X+Ωxχ{ψ>0}ϕ2𝑑X=0,\displaystyle\begin{split}&\int_{\Omega}\left(\frac{1}{x}|\nabla\psi|^{2}-2xF(\psi)+xy\chi_{\{\psi>0\}}\right)\operatorname{div}\phi-\frac{2}{x}\nabla\psi D\phi\nabla\psi dX\\ &\qquad\qquad+\int_{\Omega}\left(-\frac{1}{x^{2}}|\nabla\psi|^{2}-2F(\psi)+y\chi_{\{\psi>0\}}\right)\phi_{1}dX+\int_{\Omega}x\chi_{\{\psi>0\}}\phi_{2}dX=0,\end{split}

for any ϕ=(ϕ1,ϕ2)C0(Ω;2)\phi=(\phi_{1},\phi_{2})\in C_{0}^{\infty}(\Omega;\mathbb{R}^{2}) such that ϕ1=0\phi_{1}=0 on {x=0}\{x=0\}.

Remark 2.1.

The equation (2.4) is nothing but the Euler-Lagrange equation of the energy

E(ϕ):=Ω(1x|ϕ|22xF(ϕ)+xyχ{ϕ>0})𝑑X\displaystyle E(\phi):=\int_{\Omega}\left(\frac{1}{x}|\nabla\phi|^{2}-2xF(\phi)+xy\chi_{\{\phi>0\}}\right)dX

with respect to domain variation. Assume that the free boundary Γ:=Ω{ψ>0}\varGamma:=\Omega\cap\partial\{\psi>0\} and ψ\psi are C2C^{2} smooth, then an integration by parts both in the water phase and on the free surface of the formula (2.4) shows that ψ\psi solves the equation (2.2) in the classical sense.

Remark 2.2.

In this remark, we introduce an energy identity (cf. [4, (3.3)]) which is helpful for our future discussion. For any X0SψsX_{0}\in S_{\psi}^{s} and any r(0,δ)r\in(0,\delta), the following identity holds.

(2.5) Br(X0)(1x|ψ|2xψf(ψ))𝑑X=Br(X0)1xψψνd1.\displaystyle\int_{B_{r}(X_{0})}\left(\frac{1}{x}|\nabla\psi|^{2}-x\psi f(\psi)\right)dX=\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi\nabla\psi\cdot\nu d\mathcal{H}^{1}.

The technical tools at our disposition comprise a monotonicity formula and a density estimate introduced in [4]. For the sake of completeness, let us state them respectively.

Proposition 2.3 (Weiss’s monotonicity formula, [4, Lemma 3.1]).

Let ψ\psi be a variational solution of the problem (2.2) and let X0SψsX_{0}\in S_{\psi}^{s}. For any r(0,δ)r\in(0,\delta), define

(2.6a) IX0,ψ(r)=I(r)=r3Br(X0)(1x|ψ|2xψf(ψ)+xyχ{ψ>0})𝑑X,\displaystyle I_{X_{0},\psi}(r)=I(r)=r^{-3}\int_{B_{r}(X_{0})}\left(\frac{1}{x}|\nabla\psi|^{2}-x\psi f(\psi)+xy\chi_{\{\psi>0\}}\right)dX,
(2.6b) JX0,ψ(r)=J(r)=r4Br(X0)1xψ2𝑑1,\displaystyle J_{X_{0},\psi}(r)=J(r)=r^{-4}\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1},
(2.6c) KX0,ψ(r)=K(r)=rBr(X0)(2xF(ψ)xψf(ψ))𝑑1+Br(X0)(2x0F(ψ)6xF(ψ))𝑑X,\displaystyle K_{X_{0},\psi}(r)=K(r)=r\int_{\partial B_{r}(X_{0})}(2xF(\psi)-x\psi f(\psi))d\mathcal{H}^{1}+\int_{B_{r}(X_{0})}(2x_{0}F(\psi)-6xF(\psi))dX,
(2.6d) I1,X0,ψ(r)=I1(r)=Br(X0)xx0x2|ψ|2dX,\displaystyle I_{1,X_{0},\psi}(r)=I_{1}(r)=\int_{B_{r}(X_{0})}-\frac{x-x_{0}}{x^{2}}|\nabla\psi|^{2}dX,
(2.6e) I2,X0,ψ(r)=I2(r)=Br(X0)(xx0)yχ{ψ>0}𝑑X,,\displaystyle I_{2,X_{0},\psi}(r)=I_{2}(r)=\int_{B_{r}(X_{0})}(x-x_{0})y\chi_{\{\psi>0\}}dX,,
and
(2.6f) J1,X0,ψ(r)=J1(r)=Br(X0)xx0x2ψ2𝑑1.\displaystyle J_{1,X_{0},\psi}(r)=J_{1}(r)=\int_{\partial B_{r}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}.
Then the Weiss-boundary adjusted energy
(2.6g) ΦX0,ψ(r)=Φ(r)=I(r)32J(r)\displaystyle\Phi_{X_{0},\psi}(r)=\Phi(r)=I(r)-\frac{3}{2}J(r)
satisfies for a.e. r(0,δ)r\in(0,\delta),
(2.6h) Φ(r)=2r3Br(X0)1x(ψν32ψr)2𝑑1+r4K(r)+r4i=12Ii(r)+32r5J1(r).\displaystyle\Phi^{\prime}(r)=2r^{-3}\int\limits_{\partial B_{r}(X_{0})}\frac{1}{x}\left(\nabla\psi\cdot\nu-\frac{3}{2}\frac{\psi}{r}\right)^{2}d\mathcal{H}^{1}+r^{-4}K(r)+r^{-4}\sum_{i=1}^{2}I_{i}(r)+\frac{3}{2}r^{-5}J_{1}(r).
Proof.

After choosing particular test function into (2.4) and a straightforward calculation (cf. [4, proof of Lemma 3.1]), we obtain

(2.7) I(r)=r4(2rBr(X0)1x(ψν)2𝑑13Br(X0)1xψψνd1+K(r))+r4i=12Ii(r),\displaystyle I^{\prime}(r)=r^{-4}\left(2r\int_{\partial B_{r}(X_{0})}\frac{1}{x}(\nabla\psi\cdot\nu)^{2}d\mathcal{H}^{1}-3\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi\nabla\psi\cdot\nu d\mathcal{H}^{1}+K(r)\right)+r^{-4}\sum_{i=1}^{2}I_{i}(r),

and

(2.8) J(r)=r5(2rBr(X0)1xψψνd13Br(X0)1xψ2𝑑1J1(r)).\displaystyle J^{\prime}(r)=r^{-5}\left(2r\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi\nabla\psi\cdot\nu d\mathcal{H}^{1}-3\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}-J_{1}(r)\right).

We now recall the definition of weak solutions of the problem (2.2).

Definition 2.2 (Weak solutions).

The function ψWw1,2(Ω)\psi\in W_{\mathrm{w}}^{1,2}(\Omega) is called a weak solution of the problem (2.2), provided that ψ\psi is a variational solution of the problem (2.2) and the topological free boundary {ψ>0}Ω{x>0}{y0}\partial\{\psi>0\}\cap\Omega\cap\{x>0\}\cap\{y\neq 0\} is locally a C2,αC^{2,\alpha} curve.

Remark 2.4.

The smoothness of the topological free boundary of the problem (2.2) was recently proved in [5, Theorem 1.1].

For weak solutions of the problem (2.2), the first author and his collaborators prove the following density estimates with respect to the stagnation points (cf. [4, Proposition 3.3]).

Proposition 2.5 (Density estimates, [4, Proposition 3.3]).

Let ψ\psi be a weak solution with the following growth assumption

(2.9) |ψ|2x2C(|y|+|xx0|) in Br(X0), for any X0Ω{ψ>0},\displaystyle\frac{|\nabla\psi|^{2}}{x^{2}}\leqslant C(|y|+|x-x_{0}|)\quad\text{ in }\quad B_{r}(X_{0}),\quad\text{ for any }\quad X_{0}\in\Omega\cap\partial\{\psi>0\},

and let X0SψsX_{0}\in S_{\psi}^{s}. Then the following statements hold:

  1. (1)

    limr0+Φ(r)\lim_{r\to 0+}\Phi(r) exists and

    Φ(0+){0,x0B1y+χ{x:π/6<θ<5π/6}𝑑X,x0B1y+𝑑X}.\displaystyle\Phi(0+)\in\left\{0,x_{0}\int\limits_{B_{1}}y^{+}\chi_{\{x\colon\pi/6<\theta<5\pi/6\}}dX,x_{0}\int\limits_{B_{1}}y^{+}dX\right\}.
  2. (2)

    In the case Φ(0+)=x0B1y+χ{x:π/6<θ<5π/6}𝑑X\Phi(0+)=x_{0}\int_{B_{1}}y^{+}\chi_{\{x\colon\pi/6<\theta<5\pi/6\}}dX, we have

    ψ((x0,0)+r(x,y))r3/22x03ρ3/2cos(32(min(max(θ,π6),5π6)π2)) as r0+,\displaystyle\frac{\psi((x_{0},0)+r(x,y))}{r^{3/2}}\to\frac{\sqrt{2}x_{0}}{3}\rho^{3/2}\cos\left(\frac{3}{2}\left(\min\left(\max\left(\theta,\frac{\pi}{6}\right),\frac{5\pi}{6}\right)-\frac{\pi}{2}\right)\right)\quad\text{ as }\quad r\to 0+,

    strongly in Wloc1,2(2)W_{\mathrm{loc}}^{1,2}(\mathbb{R}^{2}) and locally uniformly in 2\mathbb{R}^{2}, where X=(ρcosθ,ρsinθ)X=(\rho\cos\theta,\rho\sin\theta).

  3. (3)

    In the case Φ(0+){0,x0B1y+𝑑X}\Phi(0+)\in\{0,x_{0}\int_{B_{1}}y^{+}dX\}, we have

    ψ((x0,0)+r(x,y))r3/20 as r0+,\displaystyle\frac{\psi((x_{0},0)+r(x,y))}{r^{3/2}}\to 0\quad\text{ as }\quad r\to 0+,

    strongly in Wloc1,2(2)W_{\mathrm{loc}}^{1,2}(\mathbb{R}^{2}) and locally uniformly in 2\mathbb{R}^{2}.

In order to better describe the asymptotics of different singularities, authors in [4] imposed an assumption (cf. [4, Assumption 1.2]) on the free boundary of the problem (2.2), which we states here.

Assumption 2.6 (Curve assumption).

Suppose that in a small neighborhood Br0(X0)B_{r_{0}}(X_{0}) of X0SψsX_{0}\in S_{\psi}^{s}, the free boundary {ψ>0}Br0(X0)\partial\{\psi>0\}\cap B_{r_{0}}(X_{0}) is a continuous injective curve γ(t):=(γ1(t),γ2(t)):I2\gamma(t):=(\gamma_{1}(t),\gamma_{2}(t)):I\to\mathbb{R}^{2}, where II is an interval of \mathbb{R} containing 0 and γ(0)=X0\gamma(0)=X_{0}.

Remark 2.7.

It should be worth noted that the asymptotic profiles related to different densities can be graphed explicitly when assuming the Assumption 2.6. In particular, we obtain in case (3) of Proposition 2.5 that if Φ(0+)=x0B1y+𝑑X\Phi(0+)=x_{0}\int_{B_{1}}y^{+}dX, then (cf. Figure 2) γ1(t)x0\gamma_{1}(t)\neq x_{0} in (t1,t1){0}(-t_{1},t_{1})\setminus\{0\}, γ1x0\gamma_{1}-x_{0} changes sign at t=0t=0, and

limt0γ2(t)γ1(t)x0=0.\displaystyle\lim_{t\to 0}\frac{\gamma_{2}(t)}{\gamma_{1}(t)-x_{0}}=0.
xxyyψ>0\psi>0ψ=0\psi=0OOX0X_{0}
Figure 2. Horizontal flat asymptotics.

If Φ(0+)=0\Phi(0+)=0, then (cf. Figure 3) γ1(t)x0\gamma_{1}(t)\neq x_{0} in (t1,t1){0}(-t_{1},t_{1})\setminus\{0\}, γ1x0\gamma_{1}-x_{0} does not change its sign at t=0t=0, and

limt0γ(t)γ1(t)x0=0.\displaystyle\lim_{t\to 0}\frac{\gamma(t)}{\gamma_{1}(t)-x_{0}}=0.
xxyyψ=0\psi=0ψ=0\psi=0OOX0X_{0}
Figure 3. Cusp asymptotics

In the forthcoming three sections, we will focus our analysis on those stagnation points at which the density takes the value x0B1y+𝑑Xx_{0}\int_{B_{1}}y^{+}dX, and the asymptotic profile is smooth (Figure 2). We collect these points together and call them degenerate points. The behavior of solutions in proximity to degenerate points will be investigated via a “frequency formula” (Section 3). The analysis derived from the “frequency formula” implies that the order of solutions is indeed higher than 3/23/2. Then we are able to apply a blow-up analysis to exclude the horizontal flat singularities (Section 4 and Section 5).

3. Degenerate points and a frequency formula

This section aims to investigate qualitative properties of degenerate points and introduces a frequency formula. We begin with the definition of the set of degenerate points.

Definition 3.1 (Degenerate points).

Let ψ\psi be a variational solution of (2.2). We define the set of degenerate points to be the set of free boundary points whose density takes the value x0B1y+𝑑Xx_{0}\int_{B_{1}}y^{+}dX. Namely,

Σψ:={X0Sψs:Φ(0+)=x0B1y+𝑑X}.\displaystyle\Sigma_{\psi}:=\left\{X_{0}\in S_{\psi}^{s}\colon\Phi(0+)=x_{0}\int_{B_{1}}y^{+}dX\right\}.
Remark 3.1.

The set Σψ\Sigma_{\psi} is closed, as a consequence of the upper semicontinuity of the monotonicity formula XΦψ,X(0+)X\mapsto\Phi_{\psi,X}(0+) in {y=0}\{y=0\} and the characterization of the set of values of Φ(0+)\Phi(0+). (cf. [4, Proposition 3.3]).

We now introduce our strategy of formulating the frequency formula. Consider first a function Φ~(r)\tilde{\Phi}(r) defined by

(3.10) Φ~(r):=Φ(r)0rt4i=12Ii(t)dt320rt5J1(t)𝑑t0rt4K(t)𝑑t,\displaystyle\tilde{\Phi}(r):=\Phi(r)-\int_{0}^{r}t^{-4}\sum_{i=1}^{2}I_{i}(t)dt-\frac{3}{2}\int_{0}^{r}t^{-5}J_{1}(t)dt-\int_{0}^{r}t^{-4}K(t)dt,

where Φ(r)\Phi(r), Ii(r)I_{i}(r), J1(r)J_{1}(r) and K(r)K(r) are defined in (2.6g), (2.6d), (2.6e), (2.6f) and (2.6c), respectively. It follows from [4, Proposition 3.3] that the functions rr4i=12Ii(r)r\mapsto r^{-4}\sum_{i=1}^{2}I_{i}(r), rr5J1(r)r\mapsto r^{-5}J_{1}(r) and rr4K(r)r\mapsto r^{-4}K(r) are all integrable functions for all r(0,δ)r\in(0,\delta) when assuming the growth assumption (2.9). We deduce that rΦ~(r)r\mapsto\tilde{\Phi}(r) is differentiable for a.e. r(0,δ)r\in(0,\delta) and it follows from (2.6h) that

Φ~(r)0 for a.e. r(0,δ).\displaystyle\tilde{\Phi}^{\prime}(r)\geqslant 0\quad\text{ for a.e. }r\in(0,\delta).

Thus Φ~(r)\tilde{\Phi}(r) is a nondecreasing function with respect to rr and this implies that Φ~(r)Φ~(0+)\tilde{\Phi}(r)\geqslant\tilde{\Phi}(0+). Moreover, the integrability of functions rr4i=12Ii(r)r\mapsto r^{-4}\sum_{i=1}^{2}I_{i}(r), rr5J1(r)r\mapsto r^{-5}J_{1}(r) and rr4K(r)r\mapsto r^{-4}K(r) gives that Φ~(0+)=Φ(0+)=x0B1y+𝑑X\tilde{\Phi}(0+)=\Phi(0+)=x_{0}\int_{B_{1}}y^{+}dX. Then the inequality Φ~(r)r3Br(X0)x0y+𝑑X\tilde{\Phi}(r)\geqslant r^{-3}\int_{B_{r}(X_{0})}x_{0}y^{+}dX can be rearranged into

(3.11) r3Br(X0)(1x|ψ|2xψf(ψ))𝑑X32r4Br(X0)1xψ2𝑑1r3Br(X0)x0y+(1χ{ψ>0})𝑑Xr3Br(X0)(xx0)y+χ{ψ>0}𝑑X+0rt4I2(t)𝑑t+0rt4I1(t)𝑑t+320rt5J1(t)𝑑t+0rt4K(t)𝑑t.\displaystyle\begin{split}&r^{-3}\int_{B_{r}(X_{0})}\left(\frac{1}{x}|\nabla\psi|^{2}-x\psi f(\psi)\right)dX-\frac{3}{2}r^{-4}\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}\\ &\geqslant r^{-3}\int_{B_{r}(X_{0})}x_{0}y^{+}(1-\chi_{\{\psi>0\}})dX-r^{-3}\int_{B_{r}(X_{0})}(x-x_{0})y^{+}\chi_{\{\psi>0\}}dX+\int_{0}^{r}t^{-4}I_{2}(t)dt\\ &\quad+\int_{0}^{r}t^{-4}I_{1}(t)dt+\frac{3}{2}\int_{0}^{r}t^{-5}J_{1}(t)dt+\int_{0}^{r}t^{-4}K(t)dt.\end{split}

Introduce a new function

(3.12) e(r):=r40rt4I2(t)𝑑trBr(X0)(xx0)y+χ{ψ>0}𝑑X+r40rt4I1(t)𝑑t+32r40rt5J1(t)𝑑t.\displaystyle e(r):=r^{4}\int_{0}^{r}t^{-4}I_{2}(t)dt-r\int_{B_{r}(X_{0})}(x-x_{0})y^{+}\chi_{\{\psi>0\}}dX+r^{4}\int_{0}^{r}t^{-4}I_{1}(t)dt+\frac{3}{2}r^{4}\int_{0}^{r}t^{-5}J_{1}(t)dt.

Then (3.11) can be rewritten as

r3Br(X0)(1x|ψ|2xψf(ψ))𝑑X32r4Br(X0)1xψ2𝑑1\displaystyle r^{-3}\int_{B_{r}(X_{0})}\left(\frac{1}{x}|\nabla\psi|^{2}-x\psi f(\psi)\right)dX-\frac{3}{2}r^{-4}\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}
r3Br(X0)x0y+(1χ{ψ>0})𝑑X+r4e(r)+0rt4K(t)𝑑t.\displaystyle\geqslant r^{-3}\int_{B_{r}(X_{0})}x_{0}y^{+}(1-\chi_{\{\psi>0\}})dX+r^{-4}e(r)+\int_{0}^{r}t^{-4}K(t)dt.

Dividing both sides by r4Br(X0)1xψ2𝑑1r^{-4}\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}, we have

(3.13) rBr(X0)(1x|ψ|2xψf(ψ))𝑑XBr(X0)1xψ2𝑑132rBr(X0)x0y+(1χ{ψ>0})𝑑X+e(r)Br(X0)1xψ2𝑑1+r40rt4K(t)𝑑tBr(X0)1xψ2𝑑1.\displaystyle\begin{split}&\frac{r\int_{B_{r}(X_{0})}\left(\frac{1}{x}|\nabla\psi|^{2}-x\psi f(\psi)\right)dX}{\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}-\frac{3}{2}\geqslant\frac{r\int_{B_{r}(X_{0})}x_{0}y^{+}(1-\chi_{\{\psi>0\}})dX+e(r)}{\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}+\frac{r^{4}\int_{0}^{r}t^{-4}K(t)dt}{\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}.\end{split}

Roughly speaking, the inequality (3.13) can be understood as the difference of the mean frequency and 32\frac{3}{2}. Moreover, it implies the structure of the frequency formula and we now exhibit our first main result.

Theorem 3.2 (Frequency formula).

Let ψ\psi be a variational solution of the problem (2.2). Let X0SψsX_{0}\in S_{\psi}^{s} and assume that ψ\psi satisfies the growth assumption (2.9). Define, for a.e. r(0,δ)r\in(0,\delta),

(3.14) DX0,ψ(r)=D(r)=rBr(X0)(1x|ψ|2xψf(ψ))𝑑XBr(X0)1xψ2𝑑1,\displaystyle D_{X_{0},\psi}(r)=D(r)=\frac{\displaystyle r\int_{B_{r}(X_{0})}\left(\frac{1}{x}|\nabla\psi|^{2}-x\psi f(\psi)\right)dX}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}},

and

(3.15) VX0,ψ(r)=V(r)=rBr(X0)x0y+(1χ{ψ>0})𝑑X+e(r)Br(X0)1xψ2𝑑1,\displaystyle V_{X_{0},\psi}(r)=V(r)=\frac{\displaystyle r\int_{B_{r}(X_{0})}x_{0}y^{+}(1-\chi_{\{\psi>0\}})dX+e(r)}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}},

where e(r)e(r) is defined in (3.12). Moreover, set

(3.16) ZX0,ψ(r)=Z(r)=Br(X0)xx0x2ψ2𝑑1Br(X0)1xψ2𝑑1.\displaystyle Z_{X_{0},\psi}(r)=Z(r)=\frac{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}.

Then the “frequency”

(3.17) HX0,ψ(r)=H(r)=D(r)V(r)\displaystyle H_{X_{0},\psi}(r)=H(r)=D(r)-V(r)

satisfies for a.e. r(0,δ)r\in(0,\delta) the identities

(3.18) H(r)=2rBr(X0)1x[r(ψν)(Br(X0)1xψ2𝑑1)1/2D(r)ψ(Br(X0)1xψ2𝑑1)1/2]2𝑑1+2rV2(r)+2rV(r)(H(r)32)+1rZ(r)(H(r)32)+K(r)Br(X0)1xψ2𝑑1\displaystyle\begin{split}H^{\prime}(r)&=\frac{2}{r}\int\limits_{\partial B_{r}(X_{0})}\frac{1}{x}\left[\frac{r(\nabla\psi\cdot\nu)}{(\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1})^{1/2}}-D(r)\frac{\psi}{(\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1})^{1/2}}\right]^{2}d\mathcal{H}^{1}\\ &\quad+\frac{2}{r}V^{2}(r)+\frac{2}{r}V(r)\left(H(r)-\frac{3}{2}\right)+\frac{1}{r}Z(r)\left(H(r)-\frac{3}{2}\right)+\frac{K(r)}{\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}\end{split}
(3.19) =2rBr(X0)1x[r(ψν)(Br(X0)1xψ2𝑑1)1/2H(r)ψ(Br(X0)1xψ2𝑑1)1/2]2𝑑1+2rV(r)(H(r)32)+1rZ(r)(H(r)32)+K(r)Br(X0)1xψ2𝑑1.\displaystyle\begin{split}&=\frac{2}{r}\int\limits_{\partial B_{r}(X_{0})}\frac{1}{x}\left[\frac{r(\nabla\psi\cdot\nu)}{(\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1})^{1/2}}-H(r)\frac{\psi}{(\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1})^{1/2}}\right]^{2}d\mathcal{H}^{1}\\ &\quad+\frac{2}{r}V(r)\left(H(r)-\frac{3}{2}\right)+\frac{1}{r}Z(r)\left(H(r)-\frac{3}{2}\right)+\frac{K(r)}{\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}.\end{split}

Here K(r)K(r) is given in (2.6c).

Proof.

It follows from our definition of D(r)D(r), V(r)V(r) and (2.6b) that

(3.20) J(r)(D(r)V(r))=r3Br(X0)(1x|ψ|2xψf(ψ))𝑑Xr3Br(X0)x0y+(1χ{ψ>0})𝑑Xr4e(r)=r3Br(X0)(1x|ψ|2xψf(ψ)+xy+χ{ψ>0})𝑑X0rt4i=12Ii(t)dt320rt5J1(t)𝑑tr3Br(X0)x0y+𝑑X.\displaystyle\begin{split}&J(r)(D(r)-V(r))\\ &=r^{-3}\int_{B_{r}(X_{0})}\left(\frac{1}{x}|\nabla\psi|^{2}-x\psi f(\psi)\right)dX-r^{-3}\int_{B_{r}(X_{0})}x_{0}y^{+}(1-\chi_{\{\psi>0\}})dX-r^{-4}e(r)\\ &=r^{-3}\int_{B_{r}(X_{0})}\left(\frac{1}{x}|\nabla\psi|^{2}-x\psi f(\psi)+xy^{+}\chi_{\{\psi>0\}}\right)dX-\int_{0}^{r}t^{-4}\sum_{i=1}^{2}I_{i}(t)dt-\frac{3}{2}\int_{0}^{r}t^{-5}J_{1}(t)dt\\ &\quad-r^{-3}\int_{B_{r}(X_{0})}x_{0}y^{+}dX.\end{split}

Define the quantity

(3.21) I~(r):=I(r)0rt4i=12Ii(t)dt320rt5J1(t)𝑑t,\displaystyle\tilde{I}(r):=I(r)-\int_{0}^{r}t^{-4}\sum_{i=1}^{2}I_{i}(t)dt-\frac{3}{2}\int_{0}^{r}t^{-5}J_{1}(t)dt,

where I(r)I(r), I1(r)I_{1}(r), I2(r)I_{2}(r) and J1(r)J_{1}(r) are defined in (2.6a), (2.6d), (2.6e) and (2.6f) respectively. Then it follows from (2.7) that for a.e. r(0,δ)r\in(0,\delta),

(3.22) I~(r)=r4(2rBr(X0)1x(ψν)2𝑑13Br(X0)1xψψνd1+K(r))32r5J1(r).\displaystyle\tilde{I}^{\prime}(r)=r^{-4}\left(2r\int_{\partial B_{r}(X_{0})}\frac{1}{x}(\nabla\psi\cdot\nu)^{2}d\mathcal{H}^{1}-3\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi\nabla\psi\cdot\nu d\mathcal{H}^{1}+K(r)\right)-\frac{3}{2}r^{-5}J_{1}(r).

Observe now that by the definition (3.17) and (3.20),

H(r)=D(r)V(r)=I~(r)r3Br(X0)x0y+𝑑XJ(r).\displaystyle H(r)=D(r)-V(r)=\frac{\tilde{I}(r)-r^{-3}\int_{B_{r}(X_{0})}x_{0}y^{+}dX}{J(r)}.

Thus, it follows from (2.8), (3.22) and a direct computation that

(3.23) H(r)=I~(r)J(r)(I~(r)r3Br(X0)x0y+𝑑X)J(r)J(r)J(r)=(2rBr(X0)1x(ψν)2𝑑13Br(X0)1xψψνd1+K(r))Br(X0)1xψ2𝑑132Z(r)r(D(r)V(r))1r(2rBr(X0)1xψψνd13Br(X0)1xψ2𝑑1J1(r))Br(X0)1xψ2𝑑1,\displaystyle\begin{split}H^{\prime}(r)&=\frac{\tilde{I}^{\prime}(r)}{J(r)}-\frac{(\tilde{I}(r)-r^{-3}\int_{B_{r}(X_{0})}x_{0}y^{+}dX)}{J(r)}\frac{J^{\prime}(r)}{J(r)}\\ &=\frac{\displaystyle\left(2r\int_{\partial B_{r}(X_{0})}\frac{1}{x}(\nabla\psi\cdot\nu)^{2}d\mathcal{H}^{1}-3\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi\nabla\psi\cdot\nu d\mathcal{H}^{1}+K(r)\right)}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}-\frac{3}{2}\frac{Z(r)}{r}\\ &\quad-(D(r)-V(r))\dfrac{1}{r}\frac{\displaystyle\left(2r\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi\nabla\psi\cdot\nu d\mathcal{H}^{1}-3\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}-J_{1}(r)\right)}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}},\end{split}

where we have used the fact that Z(r)r=r5J1(r)J(r)\frac{Z(r)}{r}=\frac{r^{-5}J_{1}(r)}{J(r)} (recalling (2.6b) and (2.6f)). With the aid of the energy identity (2.5) mentioned in the Remark 2.2, it is easy to obtain the identity

(3.24) D(r)=rBr(X0)1xψψνd1Br(X0)1xψ2𝑑1.\displaystyle D(r)=\frac{r\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi\nabla\psi\cdot\nu d\mathcal{H}^{1}}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}.

Introducing (3.24) into (3.19) gives

H(r)\displaystyle H^{\prime}(r) =2r[r2Br(X0)1x(ψν)2𝑑1Br(X0)1xψ2𝑑132D(r)]32Z(r)r\displaystyle=\frac{2}{r}\left[\frac{\displaystyle r^{2}\int_{\partial B_{r}(X_{0})}\frac{1}{x}(\nabla\psi\cdot\nu)^{2}d\mathcal{H}^{1}}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}-\frac{3}{2}D(r)\right]-\frac{3}{2}\frac{Z(r)}{r}
2r(D(r)V(r))[D(r)32Z(r)2]+K(r)Br(X0)1xψ2𝑑1\displaystyle\quad-\frac{2}{r}(D(r)-V(r))\left[D(r)-\frac{3}{2}-\frac{Z(r)}{2}\right]+\frac{K(r)}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}
=2r[r2Br(X0)1x(ψν)2𝑑1Br(X0)1xψ2𝑑1D2(r)]+Z(r)r[D(r)V(r)32]\displaystyle=\frac{2}{r}\left[\frac{\displaystyle r^{2}\int_{\partial B_{r}(X_{0})}\frac{1}{x}(\nabla\psi\cdot\nu)^{2}d\mathcal{H}^{1}}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}-D^{2}(r)\right]+\frac{Z(r)}{r}\left[D(r)-V(r)-\frac{3}{2}\right]
+2rV(r)(D(r)32)+K(r)Br(X0)1xψ2𝑑1\displaystyle\quad+\frac{2}{r}V(r)\left(D(r)-\frac{3}{2}\right)+\frac{K(r)}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}
=2r[r2Br(X0)1x(ψν)2𝑑1Br(X0)1xψ2𝑑1D2(r)]\displaystyle=\frac{2}{r}\left[\frac{\displaystyle r^{2}\int_{\partial B_{r}(X_{0})}\frac{1}{x}(\nabla\psi\cdot\nu)^{2}d\mathcal{H}^{1}}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}-D^{2}(r)\right]
+2rV(r)(V(r)+H(r)32)+1rZ(r)(H(r)32)+K(r)Br(X0)1xψ2𝑑1,\displaystyle\quad+\frac{2}{r}V(r)\left(V(r)+H(r)-\frac{3}{2}\right)+\frac{1}{r}Z(r)\left(H(r)-\frac{3}{2}\right)+\frac{K(r)}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}},

where we have used the fact that H(r)=D(r)V(r)H(r)=D(r)-V(r) in the second identity. Using the identity (3.24) once again, we obtain (3.18). Observe now that

Br(X0)1x[r(ψν)D(r)ψ]2𝑑1\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}[r(\nabla\psi\cdot\nu)-D(r)\psi]^{2}d\mathcal{H}^{1}
=Br(X0)1x[r(ψν)H(r)ψ]2𝑑12V(r)rBr(X0)1xψψνd1+2H(r)V(r)Br(X0)1xψ2𝑑1\displaystyle=\int_{\partial B_{r}(X_{0})}\frac{1}{x}[r(\nabla\psi\cdot\nu)-H(r)\psi]^{2}d\mathcal{H}^{1}-2V(r)r\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi\nabla\psi\cdot\nu d\mathcal{H}^{1}+2H(r)V(r)\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}
+V2(r)Br(X0)1xψ2𝑑1\displaystyle\quad+V^{2}(r)\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}
=Br(X0)1x[r(ψν)H(r)ψ]2𝑑12V(r)D(r)Br(X0)1xψ2𝑑1+2H(r)V(r)Br(X0)1xψ2𝑑1\displaystyle=\int_{\partial B_{r}(X_{0})}\frac{1}{x}[r(\nabla\psi\cdot\nu)-H(r)\psi]^{2}d\mathcal{H}^{1}-2V(r)D(r)\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}+2H(r)V(r)\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}
+V2(r)Br(X0)1xψ2𝑑1\displaystyle\quad+V^{2}(r)\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}
=Br(X0)1x[r(ψν)H(r)ψ]2𝑑1V2(r)Br(X0)1xψ2𝑑1.\displaystyle=\int_{\partial B_{r}(X_{0})}\frac{1}{x}[r(\nabla\psi\cdot\nu)-H(r)\psi]^{2}d\mathcal{H}^{1}-V^{2}(r)\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}.

Here we have used (3.24) in the third identity. Then (3.19) follows. ∎

Remark 3.3.

In this remark, we make a comparison between the frequency formula (3.18), (3.19) in our context and that for the two-dimensional problem (cf. [10, (6.1), (6.2) in Theorem 6.7]), and explain the perturbation idea. Recalling first the frequency formulas for the two-dimensional problem in [10], which have the form

H(r)\displaystyle H^{\prime}(r) =2rBr(X0)[r(ψν)Br(X0)ψ2𝑑1D(r)ψBr(X0)ψ2𝑑1]2𝑑1\displaystyle=\frac{2}{r}\int_{\partial B_{r}(X_{0})}\left[\frac{r(\nabla\psi\cdot\nu)}{\int_{\partial B_{r}(X_{0})}\psi^{2}d\mathcal{H}^{1}}-D(r)\frac{\psi}{\int_{\partial B_{r}(X_{0})}\psi^{2}d\mathcal{H}^{1}}\right]^{2}d\mathcal{H}^{1}
+2rV2(r)+2rV(r)(H(r)32)+K(r)Br(X0)ψ2𝑑1\displaystyle\quad+\frac{2}{r}V^{2}(r)+\frac{2}{r}V(r)\left(H(r)-\frac{3}{2}\right)+\frac{K(r)}{\int_{\partial B_{r}(X_{0})}\psi^{2}d\mathcal{H}^{1}}
=2rBr(X0)[r(ψν)Br(X0)ψ2𝑑1H(r)ψBr(X0)ψ2𝑑1]2𝑑1\displaystyle=\frac{2}{r}\int_{\partial B_{r}(X_{0})}\left[\frac{r(\nabla\psi\cdot\nu)}{\int_{\partial B_{r}(X_{0})}\psi^{2}d\mathcal{H}^{1}}-H(r)\frac{\psi}{\int_{\partial B_{r}(X_{0})}\psi^{2}d\mathcal{H}^{1}}\right]^{2}d\mathcal{H}^{1}
+2rV(r)(H(r)32)+K(r)Br(X0)ψ2𝑑1.\displaystyle\quad+\frac{2}{r}V(r)\left(H(r)-\frac{3}{2}\right)+\frac{K(r)}{\int_{\partial B_{r}(X_{0})}\psi^{2}d\mathcal{H}^{1}}.

It is common that both two formulas consist of a non-negative part, which is the first integral on the right-hand side of H(r)H^{\prime}(r). We also note that in both problems, D(r)D(r) is the “ mean frequency” and is different because the governing equations for the two problems are different. Here the major differences arise in V(r)V(r), Z(r)Z(r) and K(r)K(r). As for V(r)V(r), it is defined to be the non-negative quantity

V(r):=rBr(X0)y+(1χ{ψ>0})𝑑XBr(X0)ψ2𝑑1\displaystyle V(r):=\frac{r\int_{B_{r}(X_{0})}y^{+}(1-\chi_{\{\psi>0\}})dX}{\int_{\partial B_{r}(X_{0})}\psi^{2}d\mathcal{H}^{1}}

in the two-dimensional problem. However, recalling (3.15), we see that it has no sign and is consist of a non-negative part plus a perturbation term e(r)e(r). The components of the perturbation term e(r)e(r) actually encode the axisymmetric nature of a problem. In fact, it consists of a term Br(X0)(xx0)y+χ{ψ>0}𝑑X\int_{B_{r}(X_{0})}(x-x_{0})y^{+}\chi_{\{\psi>0\}}dX, which can be viewed as the difference of the density with respect to the xx-variable, and two terms 0ri=12t4Ii(t)+320rt5J1(t)𝑑t\int_{0}^{r}\sum_{i=1}^{2}t^{-4}I_{i}(t)+\frac{3}{2}\int_{0}^{r}t^{-5}J_{1}(t)dt caused by the axis of symmetry. These terms are vanishing for the two-dimensional problem and we will eventually prove that near each degenerate points, V(r)0V(r)\geqslant 0 for every r(0,r0)r\in(0,r_{0}) with r0>0r_{0}>0 sufficiently small. We achieve this by showing that the perturbation term e(r)e(r) (which has no sign) tends to zero faster than the leading term rBr(X0)x0y+(1χ{ψ>0})𝑑Xr\int_{B_{r}(X_{0})}x_{0}y^{+}(1-\chi_{\{\psi>0\}})dX (which is non-negative). On the other hand, note that the term Z(r)Z(r) is also new in our axisymmetric case and introduces new difficulties. This is based on a simple fact that for axisymmetric problems, the corresponding energy is no longer Br(X0)|u|2𝑑X\int_{B_{r}(X_{0})}|\nabla u|^{2}dX, but Br(X0)1x|u|2𝑑X\int_{B_{r}(X_{0})}\frac{1}{x}|\nabla u|^{2}dX, and we have to deal with the derivatives with respect to the weight 1x\tfrac{1}{x} (cf. (2.7) and (2.8)). Incidentally, we point out that although the term K(r)K(r) in two formulas are also not the same, we still hope to deal with this term similarly as in [10], based on a simple fact that the weight 1x\frac{1}{x} is uniformly bounded in Br(X0)B_{r}(X_{0}) for every r(0,δ)r\in(0,\delta).

In what follows, we first consider the term K(r)K(r) in the frequency formula associates with the vorticity strength ff. First note that when the vorticity is negative, the horizontally flat singularities are possible even for the two-dimensional problem. What is of particular interest to us, as suggested by Vǎrvǎrucǎ and Weiss in [10, Page 863], is the case when the vorticity is 0 at the free surface, and may have infinitely many sign changes accumulating there. Based on this observation, we impose the following growth assumption on ff.

Assumption 3.4.

There exists a constant C<+C<+\infty such that

(3.25) |f(z)|Cz for all z(0,z0).\displaystyle|f(z)|\leqslant Cz\quad\text{ for all }\quad z\in(0,z_{0}).

Note that (3.25) also implies

(3.26) |F(z)|Cz2/2 for all z(0,z0).\displaystyle|F(z)|\leqslant Cz^{2}/2\quad\text{ for all }\quad z\in(0,z_{0}).

The following Lemma was inspired by [6, (4.11)] and [10, Lemma 6.9].

Lemma 3.5.

Let ψ\psi be a variational solution of the problem (2.2). Then for each X0=(x0,y0)SψsX_{0}=(x_{0},y_{0})\in S_{\psi}^{s} and for all r>0r>0 sufficiently small,

(3.27) rBr(X0)1xψ2𝑑1=Br(X0)[2ψ2xxx0x2ψ2+(|ψ|2xxψf(ψ))(r2|XX0|2)]𝑑X.\displaystyle r\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}=\int_{B_{r}(X_{0})}\left[2\frac{\psi^{2}}{x}-\frac{x-x_{0}}{x^{2}}\psi^{2}+\left(\frac{|\nabla\psi|^{2}}{x}-x\psi f(\psi)\right)(r^{2}-|X-X_{0}|^{2})\right]dX.
Proof.

An integration by parts yields

(3.28) Br(X0)div\br(ψ2)x(r2|XX0|2)𝑑X=Br(X0)(ψ2)x\brr2|XX0|2dX+Br(X0)(ψ2)xν\brr2|XX0|2d1=0=Br(X0)ψ2div\br(r2|XX0|2xdXBr(X0)ψ2x\brr2|XX0|2XX0|XX0|d1=Br(X0)ψ2Δ\brr2|XX0|2x𝑑XBr(X0)ψ2x2\pd(r2|XX0|2)x𝑑X+2rBr(X0)ψ2x𝑑1=4Br(X0)ψ2x𝑑X+2Br(X0)xx0x2ψ2𝑑X+2rBr(X0)ψ2x𝑑1.\displaystyle\begin{split}&\int_{B_{r}(X_{0})}\operatorname{div}\br{\frac{\nabla(\psi^{2})}{x}}\cdot(r^{2}-|X-X_{0}|^{2})dX\\ &=-\int_{B_{r}(X_{0})}\frac{\nabla(\psi^{2})}{x}\cdot\nabla\br{r^{2}-|X-X_{0}|^{2}}dX+\underbrace{\int_{\partial B_{r}(X_{0})}\frac{\nabla(\psi^{2})}{x}\cdot\nu\cdot\br{r^{2}-|X-X_{0}|^{2}}d\mathcal{H}^{1}}_{=0}\\ &=\int_{B_{r}(X_{0})}\psi^{2}\operatorname{div}\br{\frac{\nabla(r^{2}-|X-X_{0}|^{2}}{x}}dX-\int_{\partial B_{r}(X_{0})}\frac{\psi^{2}}{x}\nabla\br{r^{2}-|X-X_{0}|^{2}}\cdot\frac{X-X_{0}}{|X-X_{0}|}d\mathcal{H}^{1}\\ &=\int_{B_{r}(X_{0})}\psi^{2}\frac{\Delta\br{r^{2}-|X-X_{0}|^{2}}}{x}dX-\int_{B_{r}(X_{0})}\frac{\psi^{2}}{x^{2}}\pd{(r^{2}-|X-X_{0}|^{2})}{x}dX+2r\int_{\partial B_{r}(X_{0})}\frac{\psi^{2}}{x}d\mathcal{H}^{1}\\ &=-4\int_{B_{r}(X_{0})}\frac{\psi^{2}}{x}dX+2\int_{B_{r}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}dX+2r\int_{\partial B_{r}(X_{0})}\frac{\psi^{2}}{x}d\mathcal{H}^{1}.\end{split}

On the other hand, noticing that

(3.29) div\br(ψ2)x=2div\brψψx=2ψψx+2ψdiv\brψx=2|ψ|2x2xψf(ψ).\displaystyle\operatorname{div}\br{\frac{\nabla(\psi^{2})}{x}}=2\operatorname{div}\br{\psi\frac{\nabla\psi}{x}}=2\nabla\psi\cdot\frac{\nabla\psi}{x}+2\psi\operatorname{div}\br{\frac{\nabla\psi}{x}}=2\frac{|\nabla\psi|^{2}}{x}-2x\psi f(\psi).

A combination of (3.28) and (3.29) gives the desired result. ∎

As a direct corollary of Lemma 3.5 and the Assumption 3.4, we obtain the following estimates for K(r)K(r).

Corollary 3.6.

Let ψ\psi be a variational solution of the problem (2.2) with the growth assumption (2.9). Assume that the nonlinearity ff satisfies (3.25). Then there exists r0>0r_{0}>0 sufficiently small such that

(3.30) rBr(X0)1xψ2𝑑1Br(X0)1xψ2𝑑X for all r(0,r0),\displaystyle r\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}\geqslant\int_{B_{r}(X_{0})}\frac{1}{x}\psi^{2}dX\quad\text{ for all }\quad r\in(0,r_{0}),

and

(3.31) |K(r)|C0rBr(X0)1xψ2𝑑1 for all r(0,r0).\displaystyle|K(r)|\leqslant C_{0}r\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}\quad\text{ for all }\quad r\in(0,r_{0}).

Here C0C_{0} depends only on x0x_{0}.

Proof.

It follows from (3.27) and the Assumption 3.4 that

rBr(X0)1xψ2𝑑1Br(X0)(2xx0xCx2(r2|XX0|2))ψ2x𝑑X.\displaystyle r\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}\geqslant\int_{B_{r}(X_{0})}\left(2-\frac{x-x_{0}}{x}-Cx^{2}(r^{2}-|X-X_{0}|^{2})\right)\frac{\psi^{2}}{x}dX.

Consequently, there exists a r0(0,r)r_{0}\in(0,r) sufficiently small so that

2xx0xCx2(r2|XX0|2)1 for all r(0,r0) and XBr(X0),\displaystyle 2-\frac{x-x_{0}}{x}-Cx^{2}(r^{2}-|X-X_{0}|^{2})\geqslant 1\quad\text{ for all }\quad r\in(0,r_{0})\quad\text{ and }\quad X\in B_{r}(X_{0}),

and this proves (3.30). As for (3.31), recalling the definition of K(r)K(r) (2.6c) and applying (3.26), one has

|K(r)|Br(X0)2x0xF(ψ)x+6x2F(ψ)xdX+rBr(X0)2x2F(ψ)x+x2ψf(ψ)xd1.\displaystyle|K(r)|\leqslant\int_{B_{r}(X_{0})}2x_{0}x\cdot\frac{F(\psi)}{x}+6x^{2}\cdot\frac{F(\psi)}{x}dX+r\int_{\partial B_{r}(X_{0})}2x^{2}\cdot\frac{F(\psi)}{x}+x^{2}\cdot\frac{\psi f(\psi)}{x}d\mathcal{H}^{1}.

With the help of (3.30), we obtain the desired result. ∎

Proposition 3.7.

Let ψ\psi be a variational solution of (2.2) with the growth assumption (2.9). Assume that the nonlinearity ff satisfies (3.25). Let X0ΣψX_{0}\in\Sigma_{\psi}, then the following holds, for some r0(0,δ)r_{0}\in(0,\delta) sufficiently small.

  1. (1)

    There exists a positive constant C1C_{1} such that

    H(r)32C1r2 for all r(0,r0).\displaystyle H(r)-\frac{3}{2}\geqslant-C_{1}r^{2}\quad\text{ for all }\quad r\in(0,r_{0}).
  2. (2)

    The function reβr2J(r)r\mapsto e^{\beta r^{2}}J(r) is nondecreasing on (0,r0)(0,r_{0}).

  3. (3)

    r1rV2(r)L1(0,r0)r\mapsto\frac{1}{r}V^{2}(r)\in L^{1}(0,r_{0}).

  4. (4)

    The function rH(r)r\mapsto H(r) has a right limit H(0+)32H(0+)\geqslant\frac{3}{2}.

  5. (5)

    The function

    H(r)2rBr(X0)1x[r(ψν)(Br(X0)1xψ2𝑑1)1/2H(r)ψ(Br(x0)1xψ2𝑑1)1/2]2𝑑1\displaystyle H^{\prime}(r)-\frac{2}{r}\int\limits_{\partial B_{r}(X_{0})}\frac{1}{x}\left[\frac{r(\nabla\psi\cdot\nu)}{(\int_{\partial B_{r}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1})^{1/2}}-H(r)\frac{\psi}{(\int_{\partial B_{r}(x^{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1})^{1/2}}\right]^{2}\>d\mathcal{H}^{1}

    is bounded below by a function in L1(0,r0)L^{1}(0,r_{0}).

Proof.

We deduce from the inequality (3.11) that

(3.32) r3Br(X0)(1x|ψ|2xψf(ψ))𝑑X32r4Br(X0)1xψ2𝑑112r4Br(X0)xx0x2ψ2𝑑1r3Br(X0)x0y+(1χ{ψ>0})𝑑X+0rt4I2(t)𝑑tr3Br(X0)(xx0)y+χ{ψ>0}𝑑X+0rt4I1(t)𝑑t+t5J1(t)dt+120rt5J1(t)𝑑t12r4Br(X0)xx0x2ψ2𝑑1+0rt4K(t)𝑑t.\displaystyle\begin{split}&r^{-3}\int_{B_{r}(X_{0})}\left(\frac{1}{x}|\nabla\psi|^{2}-x\psi f(\psi)\right)dX-\frac{3}{2}r^{-4}\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}-\frac{1}{2}r^{-4}\int_{\partial B_{r}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}\\ &\geqslant r^{-3}\int_{B_{r}(X_{0})}x_{0}y^{+}(1-\chi_{\{\psi>0\}})dX+\int_{0}^{r}t^{-4}I_{2}(t)dt-r^{-3}\int_{B_{r}(X_{0})}(x-x_{0})y^{+}\chi_{\{\psi>0\}}dX\\ &\quad+\int_{0}^{r}t^{-4}I_{1}(t)dt+t^{-5}J_{1}(t)dt+\frac{1}{2}\int_{0}^{r}t^{-5}J_{1}(t)dt-\frac{1}{2}r^{-4}\int_{\partial B_{r}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}+\int_{0}^{r}t^{-4}K(t)dt.\end{split}

Define now

U1(r)=0rt4I2(t)𝑑t=0rt4Bt(X0)(xx0)y+χ{ψ>0}𝑑X,\displaystyle U_{1}(r)=\int_{0}^{r}t^{-4}I_{2}(t)dt=\int_{0}^{r}t^{-4}\int_{B_{t}(X_{0})}(x-x_{0})y^{+}\chi_{\{\psi>0\}}dX,

it follows that U1(r)U_{1}(r) is differentiable and that

0rt4I2(t)𝑑tr3Br(X0)(xx0)y+χ{ψ>0}𝑑X=U1(r)rU1(r).\displaystyle\int_{0}^{r}t^{-4}I_{2}(t)dt-r^{-3}\int_{B_{r}(X_{0})}(x-x_{0})y^{+}\chi_{\{\psi>0\}}dX=U_{1}(r)-rU_{1}^{\prime}(r).

Since U1(0)=0U_{1}(0)=0, we obtain U1(r)rU1(r)=U1(r)U1(0)rU1(r)=r(U1(r~)U1(r))U_{1}(r)-rU_{1}^{\prime}(r)=U_{1}(r)-U_{1}(0)-rU_{1}^{\prime}(r)=r(U_{1}^{\prime}(\tilde{r})-U_{1}^{\prime}(r)), where r~(0,r)\tilde{r}\in(0,r). Consider the function ss4Bs(X0)(x0x)y+χ{ψ>0}(x)𝑑xs\mapsto s^{-4}\int_{B_{s}(X_{0})}(x_{0}-x)y^{+}\chi_{\{\psi>0\}}(x)dx, then for any σ1\sigma_{1}, σ2\sigma_{2} and X0SψsX_{0}\in S_{\psi}^{s}, we have

|U1(σ1)U1(σ2)|\displaystyle|U_{1}^{\prime}(\sigma_{1})-U_{1}^{\prime}(\sigma_{2})| =|σ14Bσ1(X0)(x0x)y+χ{ψ>0}𝑑Xσ24Bσ2(X0)(x0x)y+χ{ψ>0}𝑑X|\displaystyle=\left|\sigma_{1}^{-4}\int_{B_{\sigma_{1}}(X_{0})}(x_{0}-x)y^{+}\chi_{\{\psi>0\}}dX-\sigma_{2}^{-4}\int_{B_{\sigma_{2}}(X_{0})}(x_{0}-x)y^{+}\chi_{\{\psi>0\}}dX\right|
=|B1{ψ(X0+σ1X)>0}xy+𝑑XB1{ψ(X0+σ2X)>0}xy+𝑑X|\displaystyle=\left|\int_{B_{1}\cap\{\psi(X_{0}+\sigma_{1}X)>0\}}xy^{+}dX-\int_{B_{1}\cap\{\psi(X_{0}+\sigma_{2}X)>0\}}xy^{+}dX\right|
C|{ψ(X0+σ1X)>0}{ψ(X0+σ2X)>0}|.\displaystyle\leqslant C|\{\psi(X_{0}+\sigma_{1}X)>0\}\setminus\{\psi(X_{0}+\sigma_{2}X)>0\}|.

We infer from the above calculation that if |σ1σ2|0+|\sigma_{1}-\sigma_{2}|\to 0+, then |U1(σ1)U2(σ2)|0+|U_{1}^{\prime}(\sigma_{1})-U_{2}^{\prime}(\sigma_{2})|\to 0+. Therefore, if r(0,r0)r\in(0,r_{0}) with r0r_{0} sufficiently small, one has |rr~||r-\tilde{r}| is sufficiently small and this implies that

(3.33) 0rt4I2(t)𝑑tr3Br(X0)(xx0)y+χ{ψ>0}𝑑X=0 for all r(0,r0).\displaystyle\int_{0}^{r}t^{-4}I_{2}(t)dt-r^{-3}\int_{B_{r}(X_{0})}(x-x_{0})y^{+}\chi_{\{\psi>0\}}dX=0\quad\text{ for all }r\in(0,r_{0}).

Similarly, define

U2(r):=0rt5J1(t)𝑑t=0rt5Bt(X0)xx0x2ψ2𝑑1,\displaystyle U_{2}(r):=\int_{0}^{r}t^{-5}J_{1}(t)dt=\int_{0}^{r}t^{-5}\int_{\partial B_{t}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1},

we have for any σ1\sigma_{1}, σ2\sigma_{2} and any X0SψsX_{0}\in S_{\psi}^{s} that

(3.34) |U2(σ1)U2(σ2)|=|σ15Bσ1(X0)xx0x2ψ2𝑑1σ25Bσ2(X0)xx0x2ψ2𝑑1|=|B11(x0+σ1x)2ψσ12𝑑1B11(x0+σ2x)2ψσ22𝑑1||B1[2x0x(σ2σ1)+(σ22σ12)(x0+σ1ξ)2(x0+σ2ξ)2]ψσ12𝑑1|+|B11(x0+σ2ξ)2(ψσ12ψσ22)𝑑1|,\displaystyle\begin{split}|U_{2}^{\prime}(\sigma_{1})-U_{2}^{\prime}(\sigma_{2})|&=\left|\sigma_{1}^{-5}\int_{\partial B_{\sigma_{1}}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}-\sigma_{2}^{-5}\int_{\partial B_{\sigma_{2}}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}\right|\\ &=\left|\int_{\partial B_{1}}\frac{1}{(x_{0}+\sigma_{1}x)^{2}}\psi_{\sigma_{1}}^{2}d\mathcal{H}^{1}-\int_{\partial B_{1}}\frac{1}{(x_{0}+\sigma_{2}x)^{2}}\psi_{\sigma_{2}}^{2}d\mathcal{H}^{1}\right|\\ &\leqslant\left|\int_{\partial B_{1}}\left[\frac{2x_{0}x(\sigma_{2}-\sigma_{1})+(\sigma_{2}^{2}-\sigma_{1}^{2})}{(x_{0}+\sigma_{1}\xi)^{2}(x_{0}+\sigma_{2}\xi)^{2}}\right]\psi_{\sigma_{1}}^{2}d\mathcal{H}^{1}\right|+\left|\int_{\partial B_{1}}\frac{1}{(x_{0}+\sigma_{2}\xi)^{2}}(\psi_{\sigma_{1}}^{2}-\psi_{\sigma_{2}}^{2})d\mathcal{H}^{1}\right|,\end{split}

where ψσ(ξ):=ψ(X0+σξ)σ3/2\psi_{\sigma}(\xi):=\frac{\psi(X_{0}+\sigma\xi)}{\sigma^{3/2}} for ξB1\xi\in\partial B_{1}. A direct computation gives

(3.35) |ψσ1ψσ2(x)|=|σ1σ2ddσ(ψ(X0+σξ)σ3/2)𝑑σ|=|σ1σ2(ψ(X0+σξ)ξσ3/232ψ(X0+σξ)σ5/2)𝑑σ|=|σ1σ21σ(ψσξ32ψσ)𝑑σ|.\displaystyle\begin{split}|\psi_{\sigma_{1}}-\psi_{\sigma_{2}}(x)|&=\left|\int_{\sigma_{1}}^{\sigma_{2}}\frac{d}{d\sigma}\left(\frac{\psi(X_{0}+\sigma\xi)}{\sigma^{3/2}}\right)d\sigma\right|\\ &=\left|\int_{\sigma_{1}}^{\sigma_{2}}\left(\frac{\nabla\psi(X_{0}+\sigma\xi)\cdot\xi}{\sigma^{3/2}}-\frac{3}{2}\frac{\psi(X_{0}+\sigma\xi)}{\sigma^{5/2}}\right)d\sigma\right|\\ &=\left|\int_{\sigma_{1}}^{\sigma_{2}}\frac{1}{\sigma}\left(\nabla\psi_{\sigma}\cdot\xi-\frac{3}{2}\psi_{\sigma}\right)d\sigma\right|.\end{split}

Thanks to Schwardz inequality, we infer from (3.35) that

(3.36) B1|ψσ1ψσ2|𝑑1n2ωn2B1|ψσ1ψσ2|2𝑑n1n2ωn2B1(σ1σ21σ|ψσξ32ψσ|)2𝑑n1n2ωn2(σ1σ2σ2𝑑σ)σ1σ2B1(ψσξ32ψσ)2𝑑n1C|1σ11σ2|B1(ψσξ32ψσ)2𝑑n1.\displaystyle\begin{split}\int_{\partial B_{1}}|\psi_{\sigma_{1}}-\psi_{\sigma_{2}}|d\mathcal{H}^{1}&\leqslant n^{2}\omega_{n}^{2}\int_{\partial B_{1}}|\psi_{\sigma_{1}}-\psi_{\sigma_{2}}|^{2}d\mathcal{H}^{n-1}\\ &\leqslant n^{2}\omega_{n}^{2}\int_{\partial B_{1}}\left(\int_{\sigma_{1}}^{\sigma_{2}}\frac{1}{\sigma}\left|\nabla\psi_{\sigma}\cdot\xi-\frac{3}{2}\psi_{\sigma}\right|\right)^{2}d\mathcal{H}^{n-1}\\ &\leqslant n^{2}\omega_{n}^{2}\left(\int_{\sigma_{1}}^{\sigma_{2}}\sigma^{-2}d\sigma\right)\int_{\sigma_{1}}^{\sigma_{2}}\int_{\partial B_{1}}\left(\nabla\psi_{\sigma}\cdot\xi-\frac{3}{2}\psi_{\sigma}\right)^{2}d\mathcal{H}^{n-1}\\ &\leqslant C\left|\frac{1}{\sigma_{1}}-\frac{1}{\sigma_{2}}\right|\int_{\partial B_{1}}\left(\nabla\psi_{\sigma}\cdot\xi-\frac{3}{2}\psi_{\sigma}\right)^{2}d\mathcal{H}^{n-1}.\end{split}

Since ψ\psi is a continuous function, it follows from (3.34) and (3.36) that |U2(σ1)U2(σ2)|0+|U_{2}^{\prime}(\sigma_{1})-U_{2}^{\prime}(\sigma_{2})|\to 0+ provided that |σ1σ2|0+|\sigma_{1}-\sigma_{2}|\to 0+. Observe that

0rt5J1(t)𝑑tr4Br(X0)xx0x2ψ2𝑑1=U2(r)rU2(r)=r(U2(r~)U2(r)),\displaystyle\int_{0}^{r}t^{-5}J_{1}(t)dt-r^{-4}\int_{\partial B_{r}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}=U_{2}(r)-rU_{2}^{\prime}(r)=r(U_{2}^{\prime}(\tilde{r})-U_{2}^{\prime}(r)),

where 0<r~<r0<\tilde{r}<r. It follows that for all r(0,r0)r\in(0,r_{0}) with r0r_{0} sufficiently small,

(3.37) 0rt5J1(t)𝑑tr4Br(X0)xx0x2ψ2𝑑1=0 for all r(0,r0).\displaystyle\int_{0}^{r}t^{-5}J_{1}(t)dt-r^{-4}\int_{\partial B_{r}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}=0\quad\text{ for all }r\in(0,r_{0}).

Let now ε(0,t)\varepsilon\in(0,t) be sufficiently small such that ε+t(0,r)\varepsilon+t\in(0,r). Define tε,s:=ε+st(ε,ε+t)t_{\varepsilon,s}:=\varepsilon+st\in(\varepsilon,\varepsilon+t) for some s(0,1)s\in(0,1) and let φ(t):=Btxx0x2ψ2𝑑X\varphi(t):=\int_{B_{t}}\frac{x-x_{0}}{x^{2}}\psi^{2}dX. Then φ(t)\varphi(t) is an absolute continuous function on (0,1)(0,1), and we obtain

t5J1(t)\displaystyle t^{-5}J_{1}(t) =t5Bt(X0)xx0x2ψ2𝑑1\displaystyle=t^{-5}\int_{\partial B_{t}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}
=t501Bt(X0)xx0x2ψ2𝑑1𝑑s\displaystyle=t^{-5}\int_{0}^{1}\int_{\partial B_{t}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}ds
=t501Btε,s(X0)xx0x2ψ2𝑑1𝑑s+O(ε)\displaystyle=t^{-5}\int_{0}^{1}\int_{\partial B_{t_{\varepsilon,s}}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}ds+O(\varepsilon)
=t6(φ(t+ε)φ(ε))+O(ε),\displaystyle=t^{-6}(\varphi(t+\varepsilon)-\varphi(\varepsilon))+O(\varepsilon),

where we have used the fact that t1(φ(t+ε)φ(ε))=01φ(tε,s)𝑑st^{-1}(\varphi(t+\varepsilon)-\varphi(\varepsilon))=\int_{0}^{1}\varphi^{\prime}(t_{\varepsilon,s})ds. Passing to the limit as ε0+\varepsilon\to 0+ and writing X=X0+tξBt(X0)X=X_{0}+t\xi\in\partial B_{t}(X_{0}) for ξB1\xi\in\partial B_{1} yields

t5J1(t)\displaystyle t^{-5}J_{1}(t) =t6Bt(X0)xx0x2ψ2𝑑X\displaystyle=t^{-6}\int_{B_{t}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}dX
=t4B1tξ(x0+tξ)2(ψ(X0+tξ)ψ(X0))2𝑑X(ξ)\displaystyle=t^{-4}\int_{B_{1}}\frac{t\xi}{(x_{0}+t\xi)^{2}}(\psi(X_{0}+t\xi)-\psi(X_{0}))^{2}dX(\xi)
=t3B1ξ(x0+tξ)2(0tψ(X0+sξ)ξ𝑑s)2𝑑X(ξ),\displaystyle=t^{-3}\int_{B_{1}}\frac{\xi}{(x_{0}+t\xi)^{2}}\left(\int_{0}^{t}\nabla\psi(X_{0}+s\xi)\cdot\xi ds\right)^{2}dX(\xi),

where we have also used the fact that ψ(X0)=0\psi(X_{0})=0 in the second identity since X0SψsX_{0}\in S_{\psi}^{s}. On the other hand, notice that

t4I1(t)=t3B1ξ(x0+tξ)2(0tψ(X0+s0ξ)ξ𝑑s)2dX(ξ),\displaystyle t^{-4}I_{1}(t)=t^{-3}\int_{B_{1}}-\frac{\xi}{(x_{0}+t\xi)^{2}}\left(\int_{0}^{t}\nabla\psi(X_{0}+s_{0}\xi)\cdot\xi ds\right)^{2}dX(\xi),

for some s0(0,t)s_{0}\in(0,t). Since t(0,r)t\in(0,r) and r(0,r0)r\in(0,r_{0}) is sufficiently small, we obtain

(3.38) t4I1(t)+t5J1(t)=0 for all t(0,r).\displaystyle t^{-4}I_{1}(t)+t^{-5}J_{1}(t)=0\quad\text{ for all }\quad t\in(0,r).

It follows from (3.32), (3.33), (3.37), (3.38) and r3Br(X0)x0y+(1χ{ψ>0})𝑑X0r^{-3}\int_{B_{r}(X_{0})}x_{0}y^{+}(1-\chi_{\{\psi>0\}})dX\geqslant 0 that for all r(0,r0)r\in(0,r_{0}) with r0r_{0} sufficiently small,

(3.39) r3Br(X0)(1x|ψ|2xψf(ψ))𝑑X32r4Br(X0)1xψ2𝑑112r4Br(X0)xx0x2ψ2𝑑10rt4K(t)𝑑tC00rt3Bt(X0)1xψ2𝑑1𝑑t.\displaystyle\begin{split}&r^{-3}\int_{B_{r}(X_{0})}\left(\frac{1}{x}|\nabla\psi|^{2}-x\psi f(\psi)\right)dX-\frac{3}{2}r^{-4}\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}-\frac{1}{2}r^{-4}\int_{\partial B_{r}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}\\ &\geqslant\int_{0}^{r}t^{-4}K(t)dt\geqslant-C_{0}\int_{0}^{r}t^{-3}\int_{\partial B_{t}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}dt.\end{split}

Here we applied (3.31) in the last inequality.

Recalling I~(r)\tilde{I}(r) defined in (3.21), then for rr sufficiently small,

(3.40) I~(r)32J(r)B1x0y+𝑑X=I(r)32J(r)0ri=12t4Ii(t)dt320rt5J1(t)𝑑tB1x0y+𝑑X=Φ(r)Φ(0+)0ri=12t4Ii(t)dt320rt5J1(t)𝑑t=0r[Φ(t)i=12t4Ii(t)32t5J1(t)]𝑑t=0r2t3Bt(X0)1x(ψν32ψr)2𝑑1𝑑t+0rt4K(t)𝑑tC00rt3Bt(X0)1xψ2𝑑1𝑑t,\displaystyle\begin{aligned} &\tilde{I}(r)-\frac{3}{2}J(r)-\int_{B_{1}}x_{0}y^{+}dX\\ &=I(r)-\frac{3}{2}J(r)-\int_{0}^{r}\sum_{i=1}^{2}t^{-4}I_{i}(t)dt-\frac{3}{2}\int_{0}^{r}t^{-5}J_{1}(t)dt-\int_{B_{1}}x_{0}y^{+}dX\\ &=\Phi(r)-\Phi(0+)-\int_{0}^{r}\sum_{i=1}^{2}t^{-4}I_{i}(t)dt-\frac{3}{2}\int_{0}^{r}t^{-5}J_{1}(t)dt\\ &=\int_{0}^{r}\left[\Phi^{\prime}(t)-\sum_{i=1}^{2}t^{-4}I_{i}(t)-\frac{3}{2}t^{-5}J_{1}(t)\right]dt\\ &=\int_{0}^{r}2t^{-3}\int_{\partial B_{t}(X_{0})}\frac{1}{x}\left(\nabla\psi\cdot\nu-\frac{3}{2}\frac{\psi}{r}\right)^{2}d\mathcal{H}^{1}dt+\int_{0}^{r}t^{-4}K(t)dt\\ &\geqslant-C_{0}\int_{0}^{r}t^{-3}\int_{\partial B_{t}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}dt,\end{aligned}

where we have used the definition of Φ(r)\Phi(r) (2.6g) in the second identity, the fact on Φ(r)\Phi^{\prime}(r) (2.6h) in the fourth identity and the estimate (3.31) in the last inequality. Let Y(r):(0,r0)Y(r):(0,r_{0})\to\mathbb{R} be defined by

(3.41) Y(r)=0rt3Bt(X0)1xψ2𝑑1𝑑t.\displaystyle Y(r)=\int_{0}^{r}t^{-3}\int_{\partial B_{t}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}dt.

It follows from (2.5), (2.6b) and (2.8) that

(3.42) ddr(Y(r)r)=J(r)=2r(r3Br(X0)(1x|ψ|2xψf(ψ))𝑑X32r4Br(X0)1xψ2𝑑112r4J1(r)),\displaystyle\begin{split}\frac{d}{dr}\left(\frac{Y^{\prime}(r)}{r}\right)&=J^{\prime}(r)\\ &=\frac{2}{r}\left(r^{-3}\int_{B_{r}(X_{0})}\left(\frac{1}{x}|\nabla\psi|^{2}-x\psi f(\psi)\right)dX-\frac{3}{2}r^{-4}\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}-\frac{1}{2}r^{-4}J_{1}(r)\right),\end{split}

Thanks to (3.39), we obtain

(3.43) ddr(Y(r)r)αY(r)r.\displaystyle\frac{d}{dr}\left(\frac{Y^{\prime}(r)}{r}\right)\geqslant-\alpha\frac{Y(r)}{r}.

Here α<+\alpha<+\infty is a positive constant. As an application of the Bessel type differential inequality [10, (6.12)], we have that the function rY(r)/r1/2r\mapsto Y(r)/r^{1/2} is a convex function on (0,r0)(0,r_{0}). A similar argument as in the proof of [10, Theorem 6.12] yields that

32Y(r)rY(r) for all r(0,r0).\displaystyle\frac{3}{2}\frac{Y(r)}{r}\leqslant Y^{\prime}(r)\quad\text{ for all }\quad r\in(0,r_{0}).

This together with (3.40) gives that

(3.44) I~(r)32J(r)B1x0y+𝑑X23C0r2Br(X0)1xψ2𝑑1,\displaystyle\tilde{I}(r)-\frac{3}{2}J(r)-\int_{B_{1}}x_{0}y^{+}dX\geqslant-\frac{2}{3}C_{0}r^{-2}\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1},

which proves (1).

(2). Recalling (2.8), (3.43), and (3.44), we have

J(r)=ddr(Y(r)r)2r1(23C0r2Br(X0)1xψ2𝑑1)2βrJ(r),\displaystyle J^{\prime}(r)=\frac{d}{dr}\left(\frac{Y^{\prime}(r)}{r}\right)\geqslant 2r^{-1}\cdot\left(-\frac{2}{3}C_{0}r^{-2}\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}\right)\geqslant-2\beta rJ(r),

for some β>0\beta>0. This proves (2).

(3). Using (3.31) and the frequency formula (3.18) obtained previously, we get that for a.e. r(0,r0)r\in(0,r_{0}).

H(r)2rV2(r)2C1r|V(r)|C1r|Z(r)|C0r.\displaystyle H^{\prime}(r)\geqslant\frac{2}{r}V^{2}(r)-2C_{1}r|V(r)|-C_{1}r|Z(r)|-C_{0}r.

Recalling (3.16), we have

Z(r)=Br(X0)xx0x2ψ2𝑑1Br(X0)1xψ2𝑑1=Br(X0)1xψ2(xx0x)𝑑1Br(X0)1xψ2𝑑1,\displaystyle Z(r)=\frac{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}=\frac{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}\cdot\left(\frac{x-x_{0}}{x}\right)d\mathcal{H}^{1}}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}},

Since X0SψsX_{0}\in S_{\psi}^{s}, we have xx0x=O(r)\frac{x-x_{0}}{x}=O(r) and thus

(3.45) |Z(r)|C2r for all r(0,r0).\displaystyle|Z(r)|\leqslant C_{2}r\quad\text{ for all }\quad r\in(0,r_{0}).

Moreover,

2C1r|V(r)|1rV2(r)+C12r3,\displaystyle 2C_{1}r|V(r)|\leqslant\frac{1}{r}V^{2}(r)+C_{1}^{2}r^{3},

we get for a.e. r(0,r0)r\in(0,r_{0})

(3.46) H(r)1rV2(r)C12r3C1C2r2C0r.\displaystyle H^{\prime}(r)\geqslant\frac{1}{r}V^{2}(r)-C_{1}^{2}r^{3}-C_{1}C_{2}r^{2}-C_{0}r.

Since rH(r)r\mapsto H(r) is bounded below as r0+r\to 0+, rH(r)r\mapsto H(r) must be bounded below as r0+r\to 0+, this implies that r1rV2(r)L1(0,r0)r\mapsto\tfrac{1}{r}V^{2}(r)\in L^{1}(0,r_{0}).

(4). The existence of the limit limr0+H(r)\lim_{r\to 0+}H(r) follows directly from (3.46) and then H(0+)32H(0+)\geqslant\frac{3}{2}.

(5). Consider now (3.19), a similar argument as in the proof of part (3) gives

(3.47) H(r)2rBr(X0)1x[r(ψν)(Br(X0)1xψ2𝑑1)1/2D(r)ψ(Br(X0)1xψ2𝑑1)1/2]2𝑑12C1r|V(r)|C1r|Z(r)|C0r1rV2(r)C12r3C1C2r2C0r,\displaystyle\begin{split}&H^{\prime}(r)-\frac{2}{r}\int\limits_{\partial B_{r}(X_{0})}\frac{1}{x}\left[\frac{r(\nabla\psi\cdot\nu)}{(\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1})^{1/2}}-D(r)\frac{\psi}{(\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1})^{1/2}}\right]^{2}d\mathcal{H}^{1}\\ &\geqslant-2C_{1}r|V(r)|-C_{1}r|Z(r)|-C_{0}r\geqslant-\frac{1}{r}V^{2}(r)-C_{1}^{2}r^{3}-C_{1}C_{2}r^{2}-C_{0}r,\end{split}

which, together with (3), gives (5). ∎

To conclude this section, we prove the following results, which states that V(r)V(r) can be viewed as a non-negative part V~(r)\tilde{V}(r) plus a perturbation term.

Lemma 3.8.

Let ψ\psi be a variational solution of the problem (2.2) and let V(r)V(r) be given as in (3.15). Then for every X0ΣψX_{0}\in\Sigma_{\psi} there exists some sufficiently small r0(0,δ)r_{0}\in(0,\delta) so that

(3.48) V(r)=V~(r)+12Z(r) for all r(0,r0).\displaystyle V(r)=\widetilde{V}(r)+\frac{1}{2}Z(r)\quad\text{ for all }\quad r\in(0,r_{0}).

Here,

(3.49) V~(r):=rBr(X0)x0y+(1χ{ψ>0})𝑑XBr(X0)1xψ2𝑑10.\displaystyle\widetilde{V}(r):=\frac{\displaystyle r\int_{B_{r}(X_{0})}x_{0}y^{+}(1-\chi_{\{\psi>0\}})\>dX}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}\geqslant 0.
Proof.

It follows from the definition of V(r)V(r) (3.15) that

(V(r)V~(r))Br(X0)1xψ2𝑑1=e(r).\displaystyle\left(V(r)-\widetilde{V}(r)\right)\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}=e(r).

It follows from (3.33), (3.37) and (3.38) that r4(e(r)12Br(X0)xx0x2ψ2𝑑1)=0r^{-4}\left(e(r)-\frac{1}{2}\int_{\partial B_{r}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}\right)=0 for all r(0,r0)r\in(0,r_{0}) with r0r_{0} sufficiently small. Thus, we obtain

V(r)V~(r)=12Br(X0)xx0x2ψ2𝑑1Br(X0)1xψ2𝑑1 for all r(0,r0).\displaystyle V(r)-\widetilde{V}(r)=\frac{1}{2}\frac{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{x-x_{0}}{x^{2}}\psi^{2}d\mathcal{H}^{1}}{\displaystyle\int_{\partial B_{r}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}\quad\text{ for all }\quad r\in(0,r_{0}).

Then the desired result follows from the definition of Z(r)Z(r) (recalling (3.16)). ∎

4. Blow-up limits

In this section, we consider the blow-up sequence {ϕm}\{\phi_{m}\} defined by

(4.50) ϕm(X):=ψ(X0+rmX)rm1Brm(X0)1xψ2𝑑1,\displaystyle\phi_{m}(X):=\frac{\psi(X_{0}+r_{m}X)}{\sqrt{r_{m}^{-1}\int\limits_{\partial B_{r_{m}}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}},

where rm0+r_{m}\to 0+ as mm\to\infty. With the aid of the frequency formula derived in the previous section, we are able to passing to the limit as mm\rightarrow\infty. One particular difficulty that arises here is that it is not obvious whether limits of ϕm\phi_{m} are again variational solutions. To overcome this, we would like to employ a concentration compactness result for axisymmetric waves introduced in [11, Theorem 6.1], making it possible to pass to the limit in the domain variation formula for ϕm\phi_{m} (presented in Proposition 4.4). We begin with the following Lemma, which indicates that along a subsequence, vmv_{m} converges weakly to a homogeneous function of degree HX0,ψ(0+)H_{X_{0},\psi}(0+).

Lemma 4.1.

Let ψ\psi be a variational solution and let X0ΣψX_{0}\in\Sigma_{\psi}, and let ϕm\phi_{m} be the sequence defined in (4.50). Then for every 0<ϱ<σ<10<\varrho<\sigma<1,

(4.51) BσBϱ1x0|X|5[ϕm(X~)X~HX0,ψ(0+)ϕm]2𝑑X0 as m.\displaystyle\int\limits_{B_{\sigma}\setminus B_{\varrho}}\frac{1}{x_{0}}|X|^{-5}[\nabla\phi_{m}(\tilde{X})\cdot\tilde{X}-H_{X_{0},\psi}(0+)\phi_{m}]^{2}\>dX\to 0\quad\text{ as }m\to\infty.
Proof.

Recalling the inequality (3.47) and integrating it from (rmϱ,rmσ)(r_{m}\varrho,r_{m}\sigma) with respect to rr for every 0<ϱ<σ0<\varrho<\sigma gives

(4.52) rmϱrmσ2rBr(X0)1x[r(ψν)H(r)ψ]2𝑑1Br(X0)1xψ2𝑑1𝑑r\displaystyle\int\limits_{r_{m}\varrho}^{r_{m}\sigma}\frac{2}{r}\frac{\int\limits_{\partial B_{r}(X_{0})}\tfrac{1}{x}[r(\nabla\psi\cdot\nu)-H(r)\psi]^{2}\>d\mathcal{H}^{1}}{\int\limits_{\partial B_{r}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}dr
rmϱrmσH(r)𝑑r+rmϱrmσ(1rV2(r)+C12r3+C1C2r2+C0r)𝑑r.\displaystyle\leqslant\int_{r_{m}\varrho}^{r_{m}\sigma}H^{\prime}(r)\>dr+\int_{r_{m}\varrho}^{r_{m}\sigma}\left(\frac{1}{r}V^{2}(r)+C_{1}^{2}r^{3}+C_{1}C_{2}r^{2}+C_{0}r\right)\>dr.

Changing variables X~:=XX0rm\tilde{X}:=\frac{X-X_{0}}{r_{m}} and set r~:=rrm\tilde{r}:=\frac{r}{r_{m}} for simplicity, we rewrite the left-hand side of the inequality (4.52) as

ϱσ2r~rmBr/rm1x0+rmx~[r~rmψ(X0+rmX~)X~r~H(r~rm)ψ(X0+rmX~)]2rm𝑑1Br/rm1x0+rmx~ψ2(X0+rmX~)rm𝑑1rm𝑑r~\displaystyle\int\limits_{\varrho}^{\sigma}\frac{2}{\tilde{r}r_{m}}\frac{\int\limits_{\partial B_{r/r_{m}}}\tfrac{1}{x_{0}+r_{m}\tilde{x}}[\tilde{r}r_{m}\nabla\psi(X_{0}+r_{m}\tilde{X})\cdot\frac{\tilde{X}}{\tilde{r}}-H(\tilde{r}r_{m})\psi(X_{0}+r_{m}\tilde{X})]^{2}r_{m}\>d\mathcal{H}^{1}}{\int\limits_{\partial B_{r/r_{m}}}\tfrac{1}{x_{0}+r_{m}\tilde{x}}\psi^{2}(X_{0}+r_{m}\tilde{X})r_{m}\>d\mathcal{H}^{1}}r_{m}\>d\tilde{r}
=ϱσ2r~Br~1x0+rmx~[rmψ(X0+rmX~)X~H(r~rm)ψ(X0+rmX~)]2𝑑1Br~1x0+rmx~ψ2(X0+rmX~)𝑑1𝑑r~\displaystyle=\int\limits_{\varrho}^{\sigma}\frac{2}{\tilde{r}}\frac{\int\limits_{\partial B_{\tilde{r}}}\tfrac{1}{x_{0}+r_{m}\tilde{x}}[r_{m}\nabla\psi(X_{0}+r_{m}\tilde{X})\cdot\tilde{X}-H(\tilde{r}r_{m})\psi(X_{0}+r_{m}\tilde{X})]^{2}\>d\mathcal{H}^{1}}{\int\limits_{\partial B_{\tilde{r}}}\tfrac{1}{x_{0}+r_{m}\tilde{x}}\psi^{2}(X_{0}+r_{m}\tilde{X})\>d\mathcal{H}^{1}}\>d\tilde{r}

It follows from (4.50) that

rmψ(X0+rmX~)=ϕm(X~)rm1Brm(X0)1xψ2𝑑1.\displaystyle r_{m}\nabla\psi(X_{0}+r_{m}\tilde{X})=\nabla\phi_{m}(\tilde{X})\sqrt{r_{m}^{-1}\int_{\partial B_{r_{m}}(X_{0})}\frac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}.

Introducing this into the previous integral gives

ϱσ2r~Br~1x0+rmx~[rm1Brm(X0)1xψ2𝑑1ϕm(X~)X~H(r~rm)ψ(X0+rmX~)]2𝑑1Br~1x0+rmx~ψ2(X0+rmX~)𝑑1𝑑r~\displaystyle\int\limits_{\varrho}^{\sigma}\frac{2}{\tilde{r}}\frac{\int\limits_{\partial B_{\tilde{r}}}\tfrac{1}{x_{0}+r_{m}\tilde{x}}\left[\sqrt{r_{m}^{-1}\int\limits_{\partial B_{r_{m}}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}\nabla\phi_{m}(\tilde{X})\cdot\tilde{X}-H(\tilde{r}r_{m})\psi(X_{0}+r_{m}\tilde{X})\right]^{2}\>d\mathcal{H}^{1}}{\int\limits_{\partial B_{\tilde{r}}}\tfrac{1}{x_{0}+r_{m}\tilde{x}}\psi^{2}(X_{0}+r_{m}\tilde{X})\>d\mathcal{H}^{1}}\>d\tilde{r}
=ϱσ2r~rm1Brm(X0)1xψ2𝑑1Br~1x0+rmx~[ϕm(X~)X~H(rmr~)ψ(X0+rmX~)rm1Brm(X0)1xψ2𝑑1]2𝑑1Br~1x0+rmx~ψ2(X0+rmX~)𝑑1𝑑r~\displaystyle=\int\limits_{\varrho}^{\sigma}\frac{2}{\tilde{r}}\frac{r_{m}^{-1}\int\limits_{\partial B_{r_{m}}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}\int\limits_{\partial B_{\tilde{r}}}\tfrac{1}{x_{0}+r_{m}\tilde{x}}\left[\nabla\phi_{m}(\tilde{X})\cdot\tilde{X}-H(r_{m}\tilde{r})\tfrac{\psi(X_{0}+r_{m}\tilde{X})}{\sqrt{r_{m}^{-1}\int\limits_{\partial B_{r_{m}}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}}\right]^{2}\>d\mathcal{H}^{1}}{\int\limits_{\partial B_{\tilde{r}}}\tfrac{1}{x_{0}+r_{m}\tilde{x}}\psi^{2}(X_{0}+r_{m}\tilde{X})\>d\mathcal{H}^{1}}\>d\tilde{r}
=ϱσ2r~Br~1x0+rmx~[ϕm(X~)X~H(r~rm)ϕm]2rm1Brm(X0)1xψ2𝑑1Br~1x0+rmx~ψ2(X0+rmX~)𝑑1𝑑1𝑑r~\displaystyle=\int\limits_{\varrho}^{\sigma}\frac{2}{\tilde{r}}\int\limits_{\partial B_{\tilde{r}}}\frac{1}{x_{0}+r_{m}\tilde{x}}[\nabla\phi_{m}(\tilde{X})\cdot\tilde{X}-H(\tilde{r}r_{m})\phi_{m}]^{2}\frac{r_{m}^{-1}\int_{\partial B_{r_{m}}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}{\int_{\partial B_{\tilde{r}}}\frac{1}{x_{0}+r_{m}\tilde{x}}\psi^{2}(X_{0}+r_{m}\tilde{X})d\mathcal{H}^{1}}d\mathcal{H}^{1}d\tilde{r}
=ϱσ2r~Br~1x0+rmx~[ϕm(X~)X~H(r~rm)ϕm]2Br~1x0+rmx~ϕm2(X~)𝑑1𝑑r~.\displaystyle=\int\limits_{\varrho}^{\sigma}\frac{2}{\tilde{r}}\int\limits_{\partial B_{\tilde{r}}}\frac{1}{x_{0}+r_{m}\tilde{x}}\frac{[\nabla\phi_{m}(\tilde{X})\cdot\tilde{X}-H(\tilde{r}r_{m})\phi_{m}]^{2}}{\int_{\partial B_{\tilde{r}}}\frac{1}{x_{0}+r_{m}\tilde{x}}\phi_{m}^{2}(\tilde{X})d\mathcal{H}^{1}}d\tilde{r}.

This together with (4.52) gives

ϱσ2r~Br~1x0+rmx~[ϕm(X~)X~H(r~rm)ϕm]2Br~1x0+rmxϕm2(X~)𝑑1𝑑r~\displaystyle\int\limits_{\varrho}^{\sigma}\frac{2}{\tilde{r}}\int\limits_{\partial B_{\tilde{r}}}\frac{1}{x_{0}+r_{m}\tilde{x}}\frac{[\nabla\phi_{m}(\tilde{X})\cdot\tilde{X}-H(\tilde{r}r_{m})\phi_{m}]^{2}}{\int_{\partial B_{\tilde{r}}}\frac{1}{x_{0}+r_{m}x}\phi_{m}^{2}(\tilde{X})d\mathcal{H}^{1}}d\tilde{r}
H(rmσ)H(rmϱ)+rmϱrmσ(1rV2(r)+C12r3+C1C2r2+C0r)𝑑r0,\displaystyle\leqslant H(r_{m}\sigma)-H(r_{m}\varrho)+\int_{r_{m}\varrho}^{r_{m}\sigma}\left(\frac{1}{r}V^{2}(r)+C_{1}^{2}r^{3}+C_{1}C_{2}r^{2}+C_{0}r\right)\>dr\to 0,

as mm\to\infty. Now note that for every r~(ϱ,σ)(0,1)\tilde{r}\in(\varrho,\sigma)\subset(0,1) and all mm as above,

Br~1x0+rmx~ϕm2𝑑1\displaystyle\int\limits_{\partial B_{\tilde{r}}}\frac{1}{x_{0}+r_{m}\tilde{x}}\phi_{m}^{2}\>d\mathcal{H}^{1} =Br~1x0+rmx~ψ2(X0+rmX~)𝑑1rm1Brm(X0)1xψ2𝑑1\displaystyle=\frac{\int\limits_{\partial B_{\tilde{r}}}\tfrac{1}{x_{0}+r_{m}\tilde{x}}\psi^{2}(X_{0}+r_{m}\tilde{X})\>d\mathcal{H}^{1}}{r_{m}^{-1}\int\limits_{\partial B_{r_{m}}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}
=rm1Br~rm(X0)1xψ2𝑑1rm1Brm(X0)1xψ2𝑑1\displaystyle=\frac{r_{m}^{-1}\int\limits_{\partial B_{\tilde{r}r_{m}}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}{r_{m}^{-1}\int\limits_{\partial B_{r_{m}}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}
=(rmr~)4J(rmr~)rm4J(rm)r~4eβrm2(1r2)r~4,\displaystyle=\frac{(r_{m}\tilde{r})^{4}J(r_{m}\tilde{r})}{r_{m}^{4}J(r_{m})}\leqslant\tilde{r}^{4}e^{\beta r_{m}^{2}(1-r^{2})}\to\tilde{r}^{4},

as mm\to\infty, where we have used Proposition 3.7 (ii) and rmr~rmr_{m}\tilde{r}\leqslant r_{m} in the last inequality. Therefore,

limmϱσ2r~5Br~1x0+rmx~[ϕm(X~)X~H(r~rm)ϕm]2𝑑1𝑑r~=0.\displaystyle\lim_{m\to\infty}\int\limits_{\varrho}^{\sigma}\frac{2}{\tilde{r}^{5}}\int\limits_{\partial B_{\tilde{r}}}\frac{1}{x_{0}+r_{m}\tilde{x}}\left[\nabla\phi_{m}(\tilde{X})\cdot\tilde{X}-H(\tilde{r}r_{m})\phi_{m}\right]^{2}\>d\mathcal{H}^{1}d\tilde{r}=0.

Thanks to the identity

r~5Br~1x0+rmx~[ϕm(X~)X~H(r~rm)ϕm]2𝑑1=ddr~Br~|X~|5x0+rmx~[ϕm(X~)X~H(r~rm)ϕm]2𝑑X~.\displaystyle\tilde{r}^{-5}\int\limits_{\partial B_{\tilde{r}}}\frac{1}{x_{0}+r_{m}\tilde{x}}[\nabla\phi_{m}(\tilde{X})\cdot\tilde{X}-H(\tilde{r}r_{m})\phi_{m}]^{2}\>d\mathcal{H}^{1}=\frac{d}{d\tilde{r}}\int_{B_{\tilde{r}}}\frac{|\tilde{X}|^{-5}}{x_{0}+r_{m}\tilde{x}}\left[\nabla\phi_{m}(\tilde{X})\cdot\tilde{X}-H(\tilde{r}r_{m})\phi_{m}\right]^{2}\>d\tilde{X}.

We obtain for every 0<ϱ<σ<10<\varrho<\sigma<1,

limmBσBϱ1x0+rmx~|X~|5[ϕm(X~)X~H(r~rm)ϕm]2𝑑X~=0.\displaystyle\lim_{m\to\infty}\int_{B_{\sigma}\setminus B_{\varrho}}\frac{1}{x_{0}+r_{m}\tilde{x}}|\tilde{X}|^{-5}[\nabla\phi_{m}(\tilde{X})\cdot\tilde{X}-H(\tilde{r}r_{m})\phi_{m}]^{2}\>d\tilde{X}=0.

As H(r~rm)H(0+)H(\tilde{r}r_{m})\to H(0+) uniformly in |X~||\tilde{X}|, we obtain the desired result. ∎

Remark 4.2.

Let ϕm\phi_{m} be defined as in (4.50) and let X0ΣψX_{0}\in\Sigma_{\psi}. Then a direct calculation yields

Brm(X0)1x|ψ|2𝑑X\displaystyle\int_{B_{r_{m}}(X_{0})}\frac{1}{x}|\nabla\psi|^{2}dX =B11x0+rmx~|ψ(X0+rmX~)|2rm2𝑑X~\displaystyle=\int_{B_{1}}\frac{1}{x_{0}+r_{m}\tilde{x}}|\nabla\psi(X_{0}+r_{m}\tilde{X})|^{2}r_{m}^{2}d\tilde{X}
=rm1Brm(X0)1xψ2𝑑1B11x0+rmx~|ϕm|2𝑑X~.\displaystyle=r_{m}^{-1}\int_{\partial B_{r_{m}}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}\int_{B_{1}}\frac{1}{x_{0}+r_{m}\tilde{x}}|\nabla\phi_{m}|^{2}d\tilde{X}.

This implies that

B11x0+rmx~|ϕm|2𝑑X=rmBrm(X0)1x|ψ|2𝑑XBrm(X0)1xψ2𝑑1.\displaystyle\int_{B_{1}}\frac{1}{x_{0}+r_{m}\tilde{x}}|\nabla\phi_{m}|^{2}dX=\frac{\displaystyle r_{m}\int_{B_{r_{m}}(X_{0})}\frac{1}{x}|\nabla\psi|^{2}dX}{\displaystyle\int_{\partial B_{r_{m}}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}.

It follows from (3.14) that

(4.53) |D(rm)B11x0+rmx~|ϕm(X~)|2𝑑X~|=|rmBrm(X0)xψf(ψ)𝑑XBrm(X0)1xψ2𝑑1|C(X0)rmBrm(X0)1xψ2𝑑XBrm(X0)1xψ2𝑑1C(X0)rm2,\displaystyle\begin{split}\left|D(r_{m})-\int_{B_{1}}\frac{1}{x_{0}+r_{m}\tilde{x}}|\nabla\phi_{m}(\tilde{X})|^{2}d\tilde{X}\right|&=\left|\frac{r_{m}\displaystyle\int_{B_{r_{m}}(X_{0})}x\psi f(\psi)dX}{\displaystyle\int_{\partial B_{r_{m}}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}\right|\\ &\leqslant C(X_{0})\frac{\displaystyle r_{m}\int_{B_{r_{m}}(X_{0})}\frac{1}{x}\psi^{2}dX}{\displaystyle\int_{\partial B_{r_{m}}(X_{0})}\frac{1}{x}\psi^{2}d\mathcal{H}^{1}}\\ &\leqslant C(X_{0})r_{m}^{2},\end{split}

for every rr sufficiently small, where we have used (3.30) in the last inequality. This implies that ϕm\phi_{m} is bounded by D(rm)D(r_{m}) in W1,2W^{1,2}-norms, and in what follows next, we will prove that limmD(rm)=H(0+)\lim_{m\to\infty}D(r_{m})=H(0+) and thus {ϕm}\{\phi_{m}\} is a sequence bounded in W1,2(B1)W^{1,2}(B_{1}).

We are now able to prove the following result.

Proposition 4.3.

Let ψ\psi be a variational solution of the problem (2.2), and let X0ΣψX_{0}\in\Sigma_{\psi}. Then

  1. (1)

    There exist limr0+V(r)=0\lim_{r\to 0+}V(r)=0 and limr0+D(r)=H(0+)\lim_{r\to 0+}D(r)=H(0+).

  2. (2)

    Let ϕm\phi_{m} be defined in (4.50) for any rm0+r_{m}\to 0+ as mm\to\infty, then the sequence is bounded in W1,2(B1)W^{1,2}(B_{1}).

  3. (3)

    For any sequence rm0+r_{m}\to 0+ as mm\to\infty such that the sequence ϕm\phi_{m} converges in W1,2(B1)W^{1,2}(B_{1}) to a blow-up limit ϕ0\phi_{0}, then the function ϕ0\phi_{0} is a homogeneous function of degree HX0,ψ(0+)H_{X_{0},\psi}(0+) in B1B_{1}, and satisfies

    ϕ00 in B1,ϕ00 in B1{y0},B11x0ϕ02𝑑1=1.\displaystyle\phi_{0}\geqslant 0\quad\text{ in }\quad B_{1},\qquad\phi_{0}\equiv 0\quad\text{ in }\quad B_{1}\cap\{y\leqslant 0\},\qquad\int_{\partial B_{1}}\frac{1}{x_{0}}\phi_{0}^{2}\>d\mathcal{H}^{1}=1.
Proof.

(1). Assume for the sake of contradiction this is not the case. Let sm0s_{m}\to 0 be such that the sequence V(sm)V(s_{m}) is bounded away from 0. The integrability of r1rV2L1(0,r0)r\mapsto\frac{1}{r}V^{2}\in L^{1}(0,r_{0}) (Proposition 3.7 (3)) implies that

minr[sm,2sm]V(r)0 as m.\displaystyle\min_{r\in[s_{m},2s_{m}]}V(r)\to 0\quad\text{ as }\quad m\to\infty.

It follows from (3.48) that

minr[sm,2sm](V~(r)+12Z(r))0 as m.\displaystyle\min_{r\in[s_{m},2s_{m}]}\left(\widetilde{V}(r)+\frac{1}{2}Z(r)\right)\to 0\quad\text{ as }\quad m\to\infty.

Furthermore, it follows from (3.45) that

minr[sm,2sm]V~(r)0 as m.\displaystyle\min_{r\in[s_{m},2s_{m}]}\widetilde{V}(r)\to 0\quad\text{ as }\quad m\to\infty.

Let tm[sm,s2m]t_{m}\in[s_{m},s_{2m}] be such that V~(tm)0\widetilde{V}(t_{m})\to 0 as mm\to\infty. For the choice rm:=tmr_{m}:=t_{m} for every mm, the sequence ϕm\phi_{m} given by (4.50) satisfies (4.51). The fact that V(rm)0V(r_{m})\to 0 implies that D(rm)D(r_{m}) is bounded. It follows from (4.53) that ϕm\phi_{m} is bounded in W1,2(B1)W^{1,2}(B_{1}). Let ϕ0\phi_{0} be any weak limit of ϕm\phi_{m} along a subsequence. Note that by the compact embedding W1,2(B1)L2(B1)W^{1,2}(B_{1})\hookrightarrow L^{2}(\partial B_{1}), ϕ0\phi_{0} has norm 11 on L2(B1)L^{2}(\partial B_{1}), since this is true for all mm. It follows from (4.51) that ϕ0\phi_{0} is a homogeneous function of degree H(0+)H(0+). Thanks to Proposition 3.7 (2), one has

V~(sm)\displaystyle\widetilde{V}(s_{m}) =sm3Bsm(X0)x0y+(1χ{ψ>0})𝑑Xsm4Bsm(X0)1xψ2𝑑1\displaystyle=\frac{s_{m}^{-3}\int_{B_{s_{m}}(X_{0})}x_{0}y^{+}(1-\chi_{\{\psi>0\}})\>dX}{s_{m}^{-4}\int_{\partial B_{s_{m}}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}
sm3Brm(X0)x0y+(1χ{ψ>0})𝑑Xeβ[(rm2/4)sm2]Brm/2(X0)1xψ2𝑑1\displaystyle\leqslant\frac{s_{m}^{-3}\int_{B_{r_{m}}(X_{0})}x_{0}y^{+}(1-\chi_{\{\psi>0\}})\>dX}{e^{\beta[(r_{m}^{2}/4)-s_{m}^{2}]}\int_{\partial B_{r_{m}/2}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}
e3βrm2/42Brm(X0)1xψ2𝑑1Brm/2(X0)1xψ2𝑑1V~(rm)\displaystyle\leqslant\frac{e^{3\beta r_{m}^{2}/4}}{2}\frac{\int_{\partial B_{r_{m}}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}{\int_{\partial B_{r_{m}/2}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}\widetilde{V}(r_{m})
(4.54) =e3βrm2/42B1/21x0+rmxϕm2𝑑1V~(rm).\displaystyle=\frac{e^{3\beta r_{m}^{2}/4}}{2\int_{\partial B_{1/2}}\tfrac{1}{x_{0}+r_{m}x}\phi_{m}^{2}\>d\mathcal{H}^{1}}\widetilde{V}(r_{m}).

Since, at least along a subsequence

B1/21x0+rmxϕm2𝑑1B1/21x0ϕ02𝑑1>0,\displaystyle\int_{\partial B_{1/2}}\frac{1}{x_{0}+r_{m}x}\phi_{m}^{2}\>d\mathcal{H}^{1}\to\int_{\partial B_{1/2}}\frac{1}{x_{0}}\phi_{0}^{2}\>d\mathcal{H}^{1}>0,

we have from (4) that V~(rm)0\widetilde{V}(r_{m})\to 0, which implies that V~(sm)0\widetilde{V}(s_{m})\to 0. This together with V(sm)=V~(sm)+12Z(sm)V(s_{m})=\widetilde{V}(s_{m})+\frac{1}{2}Z(s_{m}) imply that V(sm)0V(s_{m})\to 0 as mm\to\infty. This contradicts to the choice of V(sm)V(s_{m}). It follows indeed that V(r)0V(r)\to 0 as r0+r\to 0+, and therefore D(r)H(0+)D(r)\to H(0+).

(2). It follows from (4.53) that the boundedness of the sequence ϕm\phi_{m} in W1,2(B1)W^{1,2}(B_{1}) is equivalent to the boundedness of D(rm)D(r_{m}), which is true by the statement (1).

(3). Let rm0+r_{m}\to 0+ be an arbitrary sequence such that ϕm\phi_{m} converges weakly to ϕ0\phi_{0}. The fact that ϕ0\phi_{0} is a homogeneous function of degree H(0+)H(0+) follows directly from (4.51). Since ϕ0\phi_{0} belongs to W1,2(B1)W^{1,2}(B_{1}), its homogeneity implies that ϕ0\phi_{0} is continuous in B1B_{1}. The fact that B11x0ϕ02𝑑1=1\int_{\partial B_{1}}\frac{1}{x_{0}}\phi_{0}^{2}\>d\mathcal{H}^{1}=1 is a consequence of B11x0+rmxϕm2𝑑1=1\int_{\partial B_{1}}\tfrac{1}{x_{0}+r_{m}x}\phi_{m}^{2}\>d\mathcal{H}^{1}=1 for all mm. This concludes the proof. ∎

Proposition 4.4.

Let ψ\psi be a variational solution of the problem (2.2) with the growth assumption (2.9). Assume that the nonlinearity ff satisfies (3.25). Let X0ΣψX_{0}\in\Sigma_{\psi} and let rm0+r_{m}\to 0+ be such that the sequence ϕm\phi_{m} given by (4.50) converges weakly to ϕ0\phi_{0} in W1,2(B1)W^{1,2}(B_{1}). Then ϕm\phi_{m} converges to ϕ0\phi_{0} strongly in Wloc1,2(B1{0})W_{\mathrm{loc}}^{1,2}(B_{1}\setminus\{0\}), ϕ0\phi_{0} is continuous in B1B_{1} and Δϕ0\Delta\phi_{0} is a nonnegative Radon measure satisfying ϕ0Δϕ0=0\phi_{0}\Delta\phi_{0}=0 in the sense of Radon measures in B1B_{1}.

Proof.

The proof is similar to [11, Theorem 6.1] and we only exhibit the major differences in the following. Note first that

(4.55) div(1x0+rmxϕm(x))=rmrm1Brm(X0)1xψ2𝑑1div(ψ(X0+rmX)x0+rmx)=rm(x0+rmx)f(ψ(X0+rmX))rm1Brm(X0)1xψ2𝑑1Crm(x0+rmx)ψ(X0+rmX)rm1Brm(X0)1xψ2𝑑1C1rmϕm for ϕm>0,\displaystyle\begin{split}\operatorname{div}\left(\frac{1}{x_{0}+r_{m}x}\nabla\phi_{m}(x)\right)&=\frac{r_{m}}{\sqrt{r_{m}^{-1}\int_{\partial B_{r_{m}}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}}\operatorname{div}\left(\tfrac{\nabla\psi(X_{0}+r_{m}X)}{x_{0}+r_{m}x}\right)\\ &=\frac{-r_{m}(x_{0}+r_{m}x)f(\psi(X_{0}+r_{m}X))}{\sqrt{r_{m}^{-1}\int_{\partial B_{r_{m}}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}}\\ &\geqslant\frac{-Cr_{m}(x_{0}+r_{m}x)\psi(X_{0}+r_{m}X)}{\sqrt{r_{m}^{-1}\int_{\partial B_{r_{m}}(X_{0})}\tfrac{1}{x}\psi^{2}\>d\mathcal{H}^{1}}}\\ &\geqslant-C_{1}r_{m}\phi_{m}\quad\text{ for }\quad\phi_{m}>0,\end{split}

in the sense of distributions. We infer from [8, Theorem 8.17] that

div(1x0+rmxϕm)C3(σ)rm in Bσ\displaystyle\operatorname{div}\left(\frac{1}{x_{0}+r_{m}x}\nabla\phi_{m}\right)\geqslant-C_{3}(\sigma)r_{m}\quad\text{ in }\quad B_{\sigma}

in the sense of measures. Here we use the fact that ϕm\phi_{m} is bounded in L1(B1)L^{1}(B_{1}). Set μm:=div(1x0+rmxϕm)\mu_{m}:=\operatorname{div}\left(\tfrac{1}{x_{0}+r_{m}x}\nabla\phi_{m}\right) for all mm, and it follows that for each non-negative ηC0(B1)\eta\in C_{0}^{\infty}(B_{1}) such that η=1\eta=1 in B(σ+1)/2B_{(\sigma+1)/2}

B(σ+1)/2η𝑑μmC4 for all m,\displaystyle\int_{B_{(\sigma+1)/2}}\eta\>d\mu_{m}\leqslant C_{4}\quad\text{ for all }\quad m\in\mathbb{N},

where we have used (4.55) in the third inequality and the fact that ϕm\phi_{m} is bounded in L1(B1)L^{1}(B_{1}) in the last inequality. Since x0>0x_{0}>0, we deduce from (4.55) that Δϕ0\Delta\phi_{0} is a non-negative Radon measure in B1B_{1}. The continuity of ϕ0\phi_{0} implies therefore that ϕ0Δϕ0\phi_{0}\Delta\phi_{0} is well defined as a non-negative Radon measure on B1B_{1}. In order to apply the concentration compactness by Delort in [3], we modify each ϕm\phi_{m} to

ϕ~m:=(ϕm+C3(σ)rm(x0x22+rmx33))φmC(B1),\displaystyle\tilde{\phi}_{m}:=(\phi_{m}+C_{3}(\sigma)r_{m}(\tfrac{x_{0}x^{2}}{2}+\tfrac{r_{m}x^{3}}{3}))\star\varphi_{m}\in C^{\infty}(B_{1}),

where \star denotes the convolution and φm\varphi_{m} is a standard mollifier such that

(4.56) div(1x0+rmxϕ~m)0 in B(σ+1)/2,B(σ+1)/2η𝑑μ~mC<+, for all m,\displaystyle\operatorname{div}\left(\frac{1}{x_{0}+r_{m}x}\nabla\tilde{\phi}_{m}\right)\geqslant 0\quad\text{ in }\quad B_{(\sigma+1)/2},\qquad\int_{B_{(\sigma+1)/2}}\eta d\tilde{\mu}_{m}\leqslant C<+\infty,\quad\text{ for all }m,

and

(4.57) ϕmϕ~mW1,2(Bσ)0 as m,\displaystyle\|\phi_{m}-\tilde{\phi}_{m}\|_{W^{1,2}(B_{\sigma})}\to 0\quad\text{ as }\quad m\to\infty,

where μ~m:=div(1x0+rmxϕ~m)\tilde{\mu}_{m}:=\operatorname{div}\left(\frac{1}{x_{0}+r_{m}x}\nabla\tilde{\phi}_{m}\right). Introduce a new set of coordinates x=x0+rmxx^{\prime}=x_{0}+r_{m}x and y=rmyy^{\prime}=r_{m}y and consider the velocity vector field associated with ϕm(x,y)\phi_{m}(x^{\prime},y^{\prime}):

Vm(X,Y,Z):=(1xyϕmcosθ,1xyϕmsinθ,1xxϕm),\displaystyle V^{m}(X,Y,Z):=\left(-\frac{1}{x^{\prime}}\partial_{y^{\prime}}\phi_{m}\cos\theta,-\frac{1}{x^{\prime}}\partial_{y^{\prime}}\phi_{m}\sin\theta,\frac{1}{x^{\prime}}\partial_{x^{\prime}}\phi_{m}\right),

where (X,Y,Z)=(xcosφ,xsinφ,y)(X,Y,Z)=(x^{\prime}\cos\varphi,x^{\prime}\sin\varphi,y^{\prime}). We use the notation =(x,y)\nabla^{\prime}=(\partial_{x^{\prime}},\partial_{y^{\prime}}) and div=x+y\operatorname{div}^{\prime}=\partial_{x^{\prime}}+\partial_{y^{\prime}}. We define the velocity vector field associated with the function ϕ~m(x,y)\tilde{\phi}_{m}(x^{\prime},y^{\prime}),

V~m(X,Y,Z):=(1xyϕ~mcosθ,1xyϕ~msinθ,1xxϕ~m).\displaystyle\widetilde{V}^{m}(X,Y,Z):=\left(-\frac{1}{x^{\prime}}\partial_{y^{\prime}}\tilde{\phi}_{m}\cos\theta,-\frac{1}{x^{\prime}}\partial_{y^{\prime}}\tilde{\phi}_{m}\sin\theta,\frac{1}{x^{\prime}}\partial_{x^{\prime}}\tilde{\phi}_{m}\right).

We have that V~m\widetilde{V}^{m} is smooth and satisfies divV~m(X,Y,Z)=0\operatorname{div}^{\prime}\widetilde{V}^{m}(X,Y,Z)=0 and

curlV~m=div(1xϕ~m)(sinθ,cosθ,0)0,\displaystyle\operatorname{curl}\widetilde{V}^{m}=\operatorname{div}^{\prime}\left(\frac{1}{x^{\prime}}\nabla^{\prime}\tilde{\phi}_{m}\right)(-\sin\theta,\cos\theta,0)\geqslant 0,

where we have used (4.56) in the last inequality. We consider also

V0(X,Y,Z):=(1x0yϕ0cosθ,1x0yϕ0sinθ,1x0xϕ0).\displaystyle V^{0}(X,Y,Z):=\left(-\frac{1}{x_{0}}\partial_{y^{\prime}}\phi_{0}\cos\theta,-\frac{1}{x_{0}}\partial_{y^{\prime}}\phi_{0}\sin\theta,\frac{1}{x_{0}}\partial_{x^{\prime}}\phi_{0}\right).

Taking into account (4.56) we are in a position to proceed as a similar argument as in [11, Theorem 6.1] to conclude the following convergence

(4.58) 1x0+rmxxϕmyϕm1x0xϕ0yϕ0\displaystyle\frac{1}{x_{0}+r_{m}x}\partial_{x}\phi_{m}\partial_{y}\phi_{m}\to\frac{1}{x_{0}}\partial_{x}\phi_{0}\partial_{y}\phi_{0}

and

(4.59) 1x0+rmx((xϕm)2(yϕm)2)1x0((xϕ0)2(yϕ0)2)\displaystyle\frac{1}{x_{0}+r_{m}x}((\partial_{x}\phi_{m})^{2}-(\partial_{y}\phi_{m})^{2})\to\frac{1}{x_{0}}((\partial_{x}\phi_{0})^{2}-(\partial_{y}\phi_{0})^{2})

in the sense of distributions in BσB_{\sigma} as mm\to\infty. Observe now that (4.51) shows that

(4.60) 1x0+rmx(ϕmXH(0+)ϕm)0\displaystyle\frac{1}{x_{0}+r_{m}x}\left(\nabla\phi_{m}\cdot X-H(0+)\phi_{m}\right)\to 0

strongly in L2(BσBτ)L^{2}(B_{\sigma}\setminus B_{\tau}) as mm\to\infty. A combination of (4.58)- (4.60) and a similar argument as in the proof of [11, Theorem 6.1] gives that

BσBτ(xϕm)2η𝑑XBσBτ(xϕ0)2η𝑑X\displaystyle\int_{B_{\sigma}\setminus B_{\tau}}(\partial_{x}\phi_{m})^{2}\eta dX\to\int_{B_{\sigma}\setminus B_{\tau}}(\partial_{x}\phi_{0})^{2}\eta dX

for every 0ηC00(BσBτ)0\leqslant\eta\in C_{0}^{0}(B_{\sigma}\setminus B_{\tau}). Using (4.58) once more again yields that ϕmϕ0\nabla\phi_{m}\to\nabla\phi_{0} strongly in Lloc2(BσBτ)L_{\mathrm{loc}}^{2}(B_{\sigma}\setminus B_{\tau}) with 0<τ<σ<10<\tau<\sigma<1 arbitrarily. It follows that ϕm\nabla\phi_{m} converges to ϕ0\nabla\phi_{0} strongly in Lloc2(B1{0})L_{\mathrm{loc}}^{2}(B_{1}\setminus\{0\}). As a direct application of the strong convergence,

B11x0(ηx0)ϕ0dX=0 for all ηC01(B1{0}).\displaystyle\int_{B_{1}}\frac{1}{x_{0}}\nabla(\eta x_{0})\cdot\nabla\phi_{0}dX=0\quad\text{ for all }\quad\eta\in C_{0}^{1}(B_{1}\setminus\{0\}).

Since ϕ0=0\phi_{0}=0 in B1{y0}B_{1}\cap\{y\leqslant 0\}, we have that ϕ0Δϕ0=0\phi_{0}\Delta\phi_{0}=0 in the sense of distributions in B1B_{1}. ∎

With the aid of the strong convergence of ϕm\phi_{m} to ϕ0\phi_{0}, let rm0+r_{m}\to 0+ be an arbitrary sequence so that the sequence ϕm\phi_{m} defined in (4.50) converges weakly in W1,2(B1)W^{1,2}(B_{1}) to a limit ϕ0\phi_{0}. It follows from Proposition 4.3 (3) that ϕ00\phi_{0}\geqslant 0, ϕ0\phi_{0} is continuous and is a homogeneous function of degree H(0+)3/2H(0+)\geqslant 3/2. Moreover, ϕ0Δϕ0\phi_{0}\Delta\phi_{0} is a non-negative Radon measure satisfying ϕ0Δϕ0=0\phi_{0}\Delta\phi_{0}=0 in B1B_{1}. The strong convergence of ϕm\phi_{m} to ϕ0\phi_{0} in W1,2(B1{0})W^{1,2}(B_{1}\setminus\{0\}) and V(rm)0V(r_{m})\to 0 as mm\to\infty imply that

0=B1|ϕ0|2divξ2ϕ0Dξϕ0dX,\displaystyle 0=\int_{B_{1}}|\nabla\phi_{0}|^{2}\operatorname{div}\xi-2\nabla\phi_{0}D\xi\nabla\phi_{0}dX,

for each ξC01(B1{y>0};2)\xi\in C_{0}^{1}(B_{1}\cap\{y>0\};\mathbb{R}^{2}). Then a similar argument as in the proof of [10, Theorem 9.1] gives the following result.

Proposition 4.5.

Let ψ\psi be a variational solution of the problem (2.2) with the growth assumption (2.9). Assume that the nonlinearity ff satisfies (3.25). Then at each point X0X_{0} of the set Σψ\Sigma_{\psi} there exists an integer N(X0)2N(X_{0})\geqslant 2 such that

HX0,ψ(0+)=N(X0)H_{X_{0},\psi}(0+)=N(X_{0})

and

(4.61) ψ(X0+rX)r1Br(X0)1xψ2𝑑1x0ρN(X0)|sin(N(X0)min(max(θ,0),π))|0πsin2(N(X0)θ)𝑑θ as r0+,\displaystyle\frac{\psi(X_{0}+rX)}{\sqrt{r^{-1}\int_{\partial B_{r}(X_{0})}\tfrac{1}{x}\psi^{2}d\mathcal{H}^{1}}}\to\frac{\sqrt{x_{0}}\rho^{N(X_{0})}|\sin(N(X_{0})\min(\max(\theta,0),\pi))|}{\sqrt{\int_{0}^{\pi}\sin^{2}(N(X_{0})\theta)d\theta}}\quad\text{ as }\quad r\to 0+,

strongly in Wloc1,2(B1{0})W_{\mathrm{loc}}^{1,2}(B_{1}\setminus\{0\}) and weakly in W1,2(B1)W^{1,2}(B_{1}), where X=(ρcosθ,ρsinθ)X=(\rho\cos\theta,\rho\sin\theta).

5. Conclusions

In this section, we collect two main results, the first states that Σψ\Sigma_{\psi} is locally finite in Ω\Omega, while the second one demonstrates that Σψ=\Sigma_{\psi}=\varnothing. Thus, we proved that the set of horizontally flat singularities is an empty set.

Theorem 5.1.

Let ψ\psi be a variational solution of the problem (2.2) with the growth assumption (2.9). Assume that the nonlinearity ff satisfies (3.25). Then the set Σψ\Sigma_{\psi} is a finite set locally in Ω\Omega.

Proof.

The proof is similar to [10, Theorem 9.2], we sketch the proof here.

Assume for the sake of contradiction that there is a sequence of points XmΣψX_{m}\in\Sigma_{\psi} converging to X0ΩX_{0}\in\Omega with XmX0X_{m}\neq X_{0} for all mm. It follows from the upper semicontinuity (recalling Remark 3.1) that X0ΣψX_{0}\in\Sigma_{\psi}. Choose rm:=2|XmX0|r_{m}:=2|X_{m}-X_{0}|, and assume without loss of generality that the sequence (XmX0)/rm(X_{m}-X_{0})/r_{m} is constant, with value P{(1/2,0),(1/2,0)}P\in\{(1/2,0),(-1/2,0)\}. Let ϕm\phi_{m} be the sequence defined in (4.50), and consider also the sequence

ψm(X):=ψ(X0+rmX)rm3/2.\displaystyle\psi_{m}(X):=\frac{\psi(X_{0}+r_{m}X)}{r_{m}^{3/2}}.

Note that each ψm\psi_{m} is a variational solution of the problem

{div(1x0+rmxψm)=(x0+rmx)rm1/2ψmf(rm3/2ψm) in Bδ/rm{ψm>0},|ψm|2=(x0+rmx)2y on Bδ/rm{ψm>0}.\displaystyle\begin{cases}\operatorname{div}\left(\frac{1}{x_{0}+r_{m}x}\nabla\psi_{m}\right)=-(x_{0}+r_{m}x)r_{m}^{1/2}\psi_{m}f(r_{m}^{3/2}\psi_{m})\quad&\text{ in }\quad B_{\delta/r_{m}}\cap\{\psi_{m}>0\},\\ |\nabla\psi_{m}|^{2}=(x_{0}+r_{m}x)^{2}y\quad&\text{ on }\quad B_{\delta/r_{m}}\cap\partial\{\psi_{m}>0\}.\end{cases}

It is easy check that ϕm\phi_{m} is a scalar multiple of ψm\psi_{m}, that is,

(5.62) ϕm(X)=ψm(X)B11x0+rmxψm2𝑑1.\displaystyle\phi_{m}(X)=\frac{\psi_{m}(X)}{\sqrt{\int_{\partial B_{1}}\tfrac{1}{x_{0}+r_{m}x}\psi_{m}^{2}d\mathcal{H}^{1}}}.

Since XmΣψX_{m}\in\Sigma_{\psi}, it follows that PΣψmP\in\Sigma_{\psi_{m}}. Therefore, Proposition 3.7 (1) shows that

DP,ψm(r)VP,ψm(r)+32C1r2 for all r(0,r0),\displaystyle D_{P,\psi_{m}}(r)\geqslant V_{P,\psi_{m}}(r)+\frac{3}{2}-C_{1}r^{2}\quad\text{ for all }r\in(0,r_{0}),

where r0(0,1/2)r_{0}\in(0,1/2) is sufficiently small and C1>0C_{1}>0 is a positive constant. It then follows from Lemma 3.8 that V(r)=V~(r)+12Z(r)V(r)=\widetilde{V}(r)+\frac{1}{2}Z(r) for all r(0,r0)r\in(0,r_{0}) and therefore,

DP,ψm(r)\displaystyle D_{P,\psi_{m}}(r) V~P,ψm(r)+12ZP,ψm(r)+32C1r2\displaystyle\geqslant\widetilde{V}_{P,\psi_{m}}(r)+\frac{1}{2}Z_{P,\psi_{m}}(r)+\frac{3}{2}-C_{1}r^{2}
32+12ZP,ψm(r)C1r2,\displaystyle\geqslant\frac{3}{2}+\frac{1}{2}Z_{P,\psi_{m}}(r)-C_{1}r^{2},

where we have used the fact that V~P,ψm(r)0\widetilde{V}_{P,\psi_{m}}(r)\geqslant 0. Also observe that

rBr(P)(x0+rmx)rm1/2ψmf(rm3/2ψm)𝑑X\displaystyle r\int_{B_{r}(P)}(x_{0}+r_{m}x)r_{m}^{1/2}\psi_{m}f(r_{m}^{3/2}\psi_{m})dX Crrm2Br(P)1x0+rmxψm2𝑑X\displaystyle\leqslant Crr_{m}^{2}\int_{B_{r}(P)}\frac{1}{x_{0}+r_{m}x}\psi_{m}^{2}dX
Cr2rm2Br(P)1x0+rmxψm2𝑑1\displaystyle\leqslant Cr^{2}r_{m}^{2}\int_{\partial B_{r}(P)}\frac{1}{x_{0}+r_{m}x}\psi_{m}^{2}d\mathcal{H}^{1}

where we have used (3.25) and (3.30) in the second and the third inequality. Therefore,

rBr(P)1x0+rmx|ψm|2𝑑X(32+12Z(r)C1r2Cr2rm2)Br(P)1x0+rmxψm2𝑑1.\displaystyle r\int_{B_{r}(P)}\frac{1}{x_{0}+r_{m}x}|\nabla\psi_{m}|^{2}dX\geqslant\left(\frac{3}{2}+\frac{1}{2}Z(r)-C_{1}r^{2}-Cr^{2}r_{m}^{2}\right)\int_{\partial B_{r}(P)}\frac{1}{x_{0}+r_{m}x}\psi_{m}^{2}d\mathcal{H}^{1}.

Recalling (5.62), we obtain

rBr(P)1x0+rmx|ϕm|2𝑑X(32+12Z(r)C1r2Cr2rm2)Br(P)1x0+rmxϕm2𝑑1.\displaystyle r\int_{B_{r}(P)}\frac{1}{x_{0}+r_{m}x}|\nabla\phi_{m}|^{2}dX\geqslant\left(\frac{3}{2}+\frac{1}{2}Z(r)-C_{1}r^{2}-Cr^{2}r_{m}^{2}\right)\int_{\partial B_{r}(P)}\frac{1}{x_{0}+r_{m}x}\phi_{m}^{2}d\mathcal{H}^{1}.

It is a consequence of Proposition 4.4 that ϕm\phi_{m} converges strongly in W1,2(B1/4(P))W^{1,2}(B_{1/4}(P)) to ϕ0\phi_{0} given by (4.61), hence

rBr(P)1x0|ϕ0|2𝑑X(32+12Z(r)C1r2)Br(P)1x0ϕ02𝑑1.\displaystyle r\int_{B_{r}(P)}\frac{1}{x_{0}}|\nabla\phi_{0}|^{2}dX\geqslant\left(\frac{3}{2}+\frac{1}{2}Z(r)-C_{1}r^{2}\right)\int_{\partial B_{r}(P)}\frac{1}{x_{0}}\phi_{0}^{2}d\mathcal{H}^{1}.

However, this contradicts with the fact that

limr0+rBr(P)|ϕ0|2𝑑XBr(P)ϕ02𝑑1=1,\displaystyle\lim_{r\to 0+}\frac{r\int_{B_{r}(P)}|\nabla\phi_{0}|^{2}dX}{\int_{\partial B_{r}(P)}\phi_{0}^{2}d\mathcal{H}^{1}}=1,

where we have used the fact that limr0+Z(r)=0\lim_{r\to 0+}Z(r)=0. ∎

The next theorem states that the horizontally flat singularities do not exist.

Theorem 5.2.

Let ψ\psi be a weak solution of the problem (2.2) with the growth assumption (2.9). Assume that the nonlinearity ff satisfies (3.25) and that the free boundary satisfies the Assumption 2.6. Then Σψ=\Sigma_{\psi}=\varnothing.

Proof.

The idea of the proof mainly borrows from [10, Theorem 10.1]

Suppose towards a contradiction that there exists a point X0ΣψX_{0}\in\Sigma_{\psi}. We infer from Proposition 4.5 that there exists an integer N(X0)2N(X_{0})\geqslant 2 such that

(5.63) ϕr(X):=ψ(X0+rX)r1Br(X0)1xψ2𝑑1x0ρN(X0)|sin(N(X0)min(max(θ,0),π))|0πsin2(N(X0)θ)𝑑θ as r0+,\displaystyle\begin{split}\phi_{r}(X)&:=\frac{\psi(X_{0}+rX)}{\sqrt{r^{-1}\int_{\partial B_{r}(X_{0})}\tfrac{1}{x}\psi^{2}d\mathcal{H}^{1}}}\to\frac{\sqrt{x_{0}}\rho^{N(X_{0})}|\sin(N(X_{0})\min(\max(\theta,0),\pi))|}{\sqrt{\int_{0}^{\pi}\sin^{2}(N(X_{0})\theta)d\theta}}\quad\text{ as }\quad r\to 0+,\end{split}

strongly in Wloc1,2(B1{0})W_{\mathrm{loc}}^{1,2}(B_{1}\setminus\{0\}) and weakly in W1,2(B1)W^{1,2}(B_{1}), where X=(ρcosθ,ρsinθ)X=(\rho\cos\theta,\rho\sin\theta). On the other hand, it follows from that for any B~B1{y>0}\tilde{B}\subset B_{1}\cap\{y>0\}, ϕr>0\phi_{r}>0 in B~\tilde{B} for sufficiently small rr. Consequently, recalling (4.55),

|div(1x0+rxϕr)|C1rϕr in B~\displaystyle\left|\operatorname{div}\left(\frac{1}{x_{0}+rx}\nabla\phi_{r}\right)\right|\leqslant C_{1}r\phi_{r}\quad\text{ in }\quad\tilde{B}

for sufficiently small rr. It follows that Δϕ0=0\Delta\phi_{0}=0 in B~\tilde{B}. This yields a contradiction to (5.63) since N(X0)2N(X_{0})\geqslant 2. Hence Σψ\Sigma_{\psi} is indeed empty. ∎

References

  • [1] F. J. Almgren, Almgren’s Big Regular Paper, World Scientific Monograph Series in Mathematcis, 1. World Scientific, River Edge, NJ, (2000).
  • [2] H. W. Alt, L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325, 105-144, (1981).
  • [3] Delort, J.-M., Une remarque sur le probleme des nappes de tourbillon axisymetriques sur 3\mathbb{R}^{3}, J. Funct. Anal., 108, (1992).
  • [4] L. L. Du, J. L. Huang, Y. Pu, The free boundary of steady axisymmetric inviscid flow with vorticity I: near the degenerate point, Commun. Math. Phys., 400, 2137-2179, (2023).
  • [5] L. L. Du, C. L. Yang, The free boundary of steady axisymmetric inviscid flow with vorticity II: near the non-degenerate points, arXiv:2310.09477v1.
  • [6] N. Garofalo, F. H. Lin, Monotonicity properties of variational integrals: ApA_{p} weights and unique continuation, Indiana Univ. Math. J, 35, no. 2, 245-268, (1986).
  • [7] N. Garofalo, F. H. Lin, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl, Math, XL, 347-366, (1987).
  • [8] D. Gilbarg, N S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second Edition, Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin, (1983).
  • [9] Vărvărucă, G. Weiss, A geometric approach to generalized Stokes conjectures, Acta Math., 206(2), 363-403, (2011).
  • [10] E. Vărvărucă, G. Weiss, The stokes conjecture for waves with vorticity, Ann. Inst. H. Poincaré., 29, 861-885, (2012).
  • [11] E. Vărvărucă, G. Weiss, Singularities of steady axisymmetric free surface flows with gravity, Comm. Pure Appl. Math, 67(8), 1263-1306, (2014).