This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The New Charm-Strange Resonances in the DK+D^{-}K^{+} Channel

R.M. Albuquerque111Speaker. [email protected] Faculty of Technology, Rio de Janeiro State University (FAT,UERJ), Brazil. S. Narison [email protected] Laboratoire Univers et Particules de Montpellier, CNRS-IN2P3, Case 070, Place Eugène Bataillon, 34095 - Montpellier, France. Institute of High-Energy Physics of Madagascar (iHEPMAD), University of Ankatso, Antananarivo 101, Madagascar. D. Rabetiarivony [email protected] G. Randriamanatrika [email protected]
Abstract

We evaluate the masses and decay constants of the 0+0^{+} and 11^{-} open-charm (c¯d¯)(us)(\bar{c}\bar{d})(us) tetraquarks and molecular states from QCD spectral sum rules (QSSR) by using QCD Laplace sum rule (LSR). This method takes into account the stability criteria where the factorised perturbative NLO corrections and the contributions of quark and gluon condensates up to dimension-6 in the OPE are included. We confront our results with the DK+D^{-}K^{+} invariant mass recently reported by LHCb from B+D+(DK+)B^{+}\to D^{+}(D^{-}K^{+}) decays. We expect that the resonance near the DK+D^{-}K^{+} threshold can be originated from the 0+(DK+)0^{+}(D^{-}K^{+}) molecule and/or DK+D^{-}K^{+} scattering. The X0(2900)X_{0}(2900) scalar state and the resonance XJ(3150)X_{J}(3150) (if J=0J=0) can emerge from a minimal mixing model, with a tiny mixing angle θ0(5.2±1.9)0\theta_{0}\simeq(5.2\pm 1.9)^{0}, between a scalar Tetramole (𝒯0)({\cal T}_{\!\!{\cal M}0}) (superposition of nearly degenerated hypothetical molecules and compact tetraquarks states with the same quantum numbers), having a mass M𝒯0=2743(18)M_{{\cal T}_{\!\!{\cal M}0}}=2743(18) MeV, and the first radial excitation of the DK+D^{-}K^{+} molecule with mass M(DK)1=3678(310)M_{(DK)_{1}}=3678(310) MeV. In an analogous way, the X1(2900)X_{1}(2900) and the XJ(3350)X_{J}(3350) (if J=1J=1) could be a mixture between the vector Tetramole (𝒯1)({\cal T}_{\!\!{\cal M}1}), with a mass M𝒯1=2656(20)M_{{\cal T}_{\!\!{\cal M}1}}=2656(20) MeV, and its first radial excitation having a mass M𝒯1=4592(141)M_{{\cal T}_{\!\!{\cal M}1}}=4592(141) MeV with an angle θ0(9.1±0.6)0\theta_{0}\simeq(9.1\pm 0.6)^{0}. A (non)-confirmation of these statements requires experimental findings of the quantum numbers of the resonances at 31503150 and 33503350 MeV.

keywords:
QCD sum rules , Perturbative and non-perturbative QCD , Exotic hadrons , Masses and decay constants.

1 Introduction

In this work, based on the paper in Ref. [1], we attempt to estimate, from LSR, the masses and couplings of the 0+0^{+} and 11^{-} molecules and compact tetraquarks states for interpreting the recent LHCb data from BD+(DK+)B\to D^{+}(D^{-}K^{+}) decays [2, 3], where one finds two prominent peaks (units of MeV):

MX0(0+)=(2866.3±6.5±2.0),\displaystyle M_{X_{0}}(0^{+})=(2866.3\pm 6.5\pm 2.0), ΓX0=(57.2±12.9),\displaystyle\Gamma_{X_{0}}=(57.2\pm 12.9),
MX1(1)=(2904.1±4.8±1.3),\displaystyle M_{X_{1}}(1^{-})=(2904.1\pm 4.8\pm 1.3), ΓX1=(110.3±11.5).\displaystyle\Gamma_{X_{1}}=(110.3\pm 11.5).

We have studied in Ref. [4] the masses and couplings of the D0K0(0+)D^{0}K^{0}(0^{+}) molecule and of the corresponding tetraquark states decaying into D0K0D^{0}K^{0} but not into DK+D^{-}K^{+} and we found the lowest ground state masses:

MDK=2402(42)MeV,\displaystyle M_{DK}=2402(42)~{}{\rm MeV}, fDK=254(48)keV,\displaystyle f_{DK}=254(48)~{}{\rm keV},
Mc¯d¯us=2395(68)MeV,\displaystyle M_{\bar{c}\bar{d}{us}}=2395(68)~{}{\rm MeV}, fc¯d¯us=221(47)keV.\displaystyle f_{\bar{c}\bar{d}{us}}=221(47)~{}{\rm keV}.

We have used this result to interpret the nature of the Ds0D^{*}_{s0}(2317) compiled by PDG [5] where the existence of a DKDK pole at this energy has been recently confirmed from lattice calculations of scattering amplitudes [6].

Table 1: Interpolating operators describing the scalar (0+)(0^{+}) and vector (1)(1^{-}) molecules and tetraquark states.
      Scalar states (0+0^{+}) Vector states (11^{-})
      Tetraquarks
      𝒪SS0=ϵijkϵmnk(uiTCγ5dj)(c¯mγ5Cs¯nT){\cal O}^{0}_{SS}=\epsilon_{ijk}\>\epsilon_{mnk}\left(u_{i}^{T}\,C\gamma_{5}\,d_{j}\right)\left(\bar{c}_{m}\,\gamma_{5}C\,\bar{s}_{n}^{T}\right) 𝒪AP1=ϵmnkϵijk(c¯mγμCs¯nT)(uiTCdj){\cal O}^{1}_{AP}=\epsilon_{mnk}\>\epsilon_{ijk}\left(\bar{c}_{m}\,\gamma_{\mu}C\,\bar{s}_{n}^{T}\right)\left(u_{i}^{T}\,C\,d_{j}\right)
      𝒪PP0=ϵijkϵmnk(uiTCdj)(c¯mCs¯nT){\cal O}^{0}_{PP}=\epsilon_{ijk}\>\epsilon_{mnk}\left(u_{i}^{T}\,C\,d_{j}\right)\left(\bar{c}_{m}\,C\,\bar{s}_{n}^{T}\right) 𝒪PA1=ϵmnkϵijk(c¯mCs¯nT)(uiTCγμdj){\cal O}^{1}_{PA}=\epsilon_{mnk}\>\epsilon_{ijk}\left(\bar{c}_{m}\,C\,\bar{s}_{n}^{T}\right)\left(u_{i}^{T}\,C\gamma_{\mu}\,d_{j}\right)
      𝒪VV0=ϵijkϵmnk(uiTCγ5γμdj)(c¯mγμγ5Cs¯nT){\cal O}^{0}_{VV}=\epsilon_{ijk}\>\epsilon_{mnk}\left(u_{i}^{T}\,C\gamma_{5}\gamma_{\mu}\,d_{j}\right)\left(\bar{c}_{m}\,\gamma^{\mu}\gamma_{5}C\,\bar{s}_{n}^{T}\right) 𝒪SV1=ϵijkϵmnk(uiTCγ5dj)(c¯mγμγ5Cs¯nT){\cal O}^{1}_{SV}=\epsilon_{ijk}\>\epsilon_{mnk}\left(u_{i}^{T}\,C\gamma_{5}\,d_{j}\right)\left(\bar{c}_{m}\,\gamma_{\mu}\gamma_{5}C\,\bar{s}_{n}^{T}\right)
      𝒪AA0=ϵijkϵmnk(uiTCγμdj)(c¯mγμCs¯nT){\cal O}^{0}_{AA}=\epsilon_{ijk}\>\epsilon_{mnk}\left(u_{i}^{T}\,C\gamma_{\mu}\,d_{j}\right)\left(\bar{c}_{m}\,\gamma^{\mu}C\,\bar{s}_{n}^{T}\right) 𝒪VS1=ϵijkϵmnk(uiTCγ5γμdj)(c¯mγ5Cs¯nT){\cal O}^{1}_{VS}=\epsilon_{ijk}\>\epsilon_{mnk}\left(u_{i}^{T}\,C\gamma_{5}\gamma_{\mu}\,d_{j}\right)\left(\bar{c}_{m}\,\gamma_{5}C\,\bar{s}_{n}^{T}\right)
      Molecules
      𝒪DK0=(c¯γ5d)(s¯γ5u){\cal O}^{0}_{DK}=(\bar{c}\gamma_{5}d)(\bar{s}\gamma_{5}u) 𝒪D1K1=(c¯γμγ5d)(s¯γ5u){\cal O}^{1}_{D_{1}K}=\left(\bar{c}\gamma_{\mu}\gamma_{5}d\right)\left(\bar{s}\gamma_{5}\,u\right)
      𝒪DK0=(c¯γμd)(s¯γμu){\cal O}^{0}_{D^{*}K^{*}}=(\bar{c}\gamma^{\mu}d)(\bar{s}\gamma_{\mu}u) 𝒪DK11=(c¯γ5d)(s¯γμγ5u){\cal O}^{1}_{DK_{1}}=\left(\bar{c}\gamma_{5}d\right)\left(\bar{s}\,\gamma_{\mu}\gamma_{5}\,u\right)
      𝒪D1K10=(c¯γμγ5d)(s¯γμγ5u){\cal O}^{0}_{D_{1}K_{1}}=(\bar{c}\gamma^{\mu}\gamma_{5}d)(\bar{s}\gamma_{\mu}\gamma_{5}u) 𝒪DK01=(c¯γμd)(s¯u){\cal O}^{1}_{D^{*}K^{*}_{0}}=\left(\bar{c}\gamma_{\mu}d\right)\left(\bar{s}\,u\right)
      𝒪D0K00=(c¯d)(s¯u){\cal O}^{0}_{D^{*}_{0}K^{*}_{0}}=(\bar{c}d)(\bar{s}u) 𝒪D0K1=(c¯d)(s¯γμu){\cal O}^{1}_{D^{*}_{0}K^{*}}=\left(\bar{c}\,d\right)\left(\bar{s}\,\gamma_{\mu}\,u\right)

For the molecular state, we can interchange the uu and dd quarks in the interpolating current and deduce from SU(2) symmetry that the DK+(0+)D^{-}K^{+}(0^{+}) molecule mass is degenerated with the D0K0D^{0}K^{0} one. Compared with the LHCb data, one may invoke that this charged molecule can be responsible of the bump near the DK threshold around 2.4 GeV but is too light to explain the X0,1X_{0,1} peaks.

For the tetraquark state, one may not use a simple SU(2) symmetry (rotation of uu and dd quarks) to deduce the ones decaying into DK+D^{-}K^{+} due to our present ignorance of the diquark dynamics (for some attempts see [7, 8]).

Therefore, recent analysis based on QSSR at lowest order (LO) of perturbation theory (PT) using some specific tetraquarks and / or molecules configurations appear in the literature [9, 10, 11, 12] (see also [13, 14]) to explain these new candidates for the exotic states.

2 The Laplace sum rule (LSR)

We shall work with the Finite Energy version of the QCD Inverse Laplace sum rules (LSR) and their ratios [15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 24, 26, 27]:

nc(τ,μ)\displaystyle{\cal L}^{c}_{n}(\tau,\mu) =\displaystyle= (Mc+ms)2tc𝑑ttnetτ1πImΠ,𝒯(t,μ),\displaystyle\int_{(M_{c}+m_{s})^{2}}^{t_{c}}dt~{}t^{n}~{}e^{-t\tau}\frac{1}{\pi}~{}\mbox{Im}~{}\Pi_{\cal M,T}(t,\mu)~{}, (1)
nc(τ)\displaystyle{\cal R}^{c}_{n}(\tau) =\displaystyle= n+1cnc,\displaystyle\frac{{\cal L}^{c}_{n+1}}{{\cal L}^{c}_{n}}, (2)

where McM_{c} and msm_{s} are the on-shell / pole charm and running strange quark masses, τ\tau is the LSR variable, n=0,1n=0,1 is the degree of moments, tct_{c} is the threshold of the “QCD continuum” which parametrizes, from the discontinuity of the Feynman diagrams, the spectral function is evaluated by the calculation of the scalar correlator defined as:

Π,𝒯(q2)\displaystyle\Pi_{\cal M,T}(q^{2}) =\displaystyle= id4xeiqx0|T𝒪,𝒯J(x)𝒪,𝒯J(0)|0,\displaystyle i\int d^{4}x~{}e^{-iqx}\langle 0|T{\cal O}^{J}_{\cal M,T}(x)~{}{\cal O}^{J~{}\dagger}_{\cal M,T}(0)|0\rangle~{}, (3)

where 𝒪,𝒯J(x){\cal O}^{J}_{\cal M,T}(x) are the interpolating currents for the tetraquarks 𝒯{\cal T} and molecules {\cal M} states. The superscript JJ refers to the spin of the particles.

2.1 The Interpolating Operators

We shall be concerned with the interpolating given in Table 1. The lowest order (LO) perturbative (PT) QCD expressions - including the quark and gluon condensates contributions up to dimension-six condensates of the corresponding two-point spectral functions - the NLO PT corrections, the QCD input parameters and further details of the QSSR calculations for those interpolating operators are given in the Ref.[1].

3 Tetraquarks and Molecules

The sum rule analysis for the 0+0^{+} and 11^{-} states present similar features for all currents in Table  1. Then, we show only explicitly the analysis of the SSSS tetraquark channel for a better understanding on the extraction of our results.

3.1 τ\tau- and tct_{c}-stabilities

We show in Fig.1a) the τ\tau- and tct_{c}- dependence of the mass obtained from ratio of moments 0{\cal R}_{0}. The analysis of the coupling from the moment 0c{\cal L}^{c}_{0} is shown in Fig. 1b). The results stabilize at τ0.5\tau\simeq 0.5 GeV-2 (inflexion point for the mass and minimum for the coupling).

From Fig.1a), we extract the mass as the mean value of the one for tct_{c}\simeq 12 GeV2 (beginning of the inflexion point) and of the one at beginning of tct_{c}-stability of about 18 GeV2. We use this (physical) mass value in 0c{\cal L}^{c}_{0} to draw Fig. 1b). We check the range of tct_{c}-values where the above-mentioned stabilities have been obtained by confronting Figs. 1a) and b). Here, one can easily check that this range of tct_{c}-values is the same for the mass and coupling. If the range does not coincide, we take the common range of tct_{c} and redo the extraction of the mass.

One can also see that the range of τ\tau-stabilities coincide in Fig. 1a) (inflexion points) and in Fig. 1b) (minimas). It is obvious that the value of τ\tau from the minimum is more precise which we re-use to fix the final value of the mass.

a)

Refer to caption

b)

Refer to caption
Figure 1: fSSf_{SS} and MSSM_{SS} as function of τ\tau at NLO for different values of tct_{c}, μ\mu=2.25 GeV and the values of the QCD parameters given in Ref.[1].

3.2 μ\mu-stability

In Fig. 2, we show the μ\mu-dependence of the results for given tct_{c}=18 GeV2 and τ\tau=0.49 GeV-2. One finds a common stability for μ=(2.25±0.25)\mu=(2.25\pm 0.25) GeV, which confirms the result in Ref. [4].

a)

Refer to caption

b)

Refer to caption
Figure 2: MSSM_{SS} and fSSf_{SS} as function of μ\mu at NLO for fixed values of tct_{c}, τ\tau and the values of the QCD parameters given in Ref. [1].

4 The First Radial Excitation

We extend the analysis in Ref. [4] by using a “Two resonances” + θ(ttc)\theta(t-t_{c})“QCD continuum” parametrization of the spectral function. To enhance the contribution of the 1st radial excitation, we shall also work with the ratio of moments 1{\cal R}_{1} in addition to 0{\cal R}_{0} for getting the masses. We use the same criteria involving the stability points in (τ,tc,μ)(\tau,t_{c},\mu) and the optimal results are given in Table 2. We observe that the mass-splittings between the first radial excitation and the lowest ground state are in order of 1500\sim 1500 MeV, which is much bigger than 500\sim 500 MeV typically used for ordinary mesons.

5 Understanding LHCb Experimental Data

Our results indicate that the molecules and tetraquark states leading to the same final states are almost degenerated in masses. Therefore, we expect that the “physical state” is a combination of almost degenerated molecules and tetraquark states with the same quantum numbers JPCJ^{PC} which we shall call: Tetramole (𝒯J)({\cal T_{M}}_{J}).

5.1 The X0(2866)X_{0}(2866) and XJ(3150)X_{J}(3150) states

Taking literally our results in Table 2, one can see that we have three (almost) degenerate states:

MSS=2736(21)MeV,MAA=2675(65)MeV\displaystyle\!\!\!\!\!\!\!\!\!\!M_{SS}=2736(21)~{}{\rm MeV},~{}~{}~{}M_{AA}=2675(65)~{}{\rm MeV}~{}~{}
andMDK=2808(41)MeV,\displaystyle{\rm and}~{}~{}~{}~{}M_{D^{*}K^{*}}=2808(41)~{}{\rm MeV}~{},

and their couplings to the corresponding currents are almost the same:

fSS=345(28)keV,fAA=498(43)keV,\displaystyle\!\!\!\!\!\!\!f_{SS}=345(28)~{}{\rm keV},~{}~{}~{}~{}f_{AA}=498(43)~{}{\rm keV},
andfDK=405(33)keV,\displaystyle{\rm and}~{}~{}~{}~{}~{}f_{D^{*}K^{*}}=405(33)~{}{\rm keV}~{},

We assume that the physical state, hereafter called Tetramole (𝒯J)({\cal T_{M}}_{J}), is a superposition of these nearly degenerated hypothetical states having the same quantum numbers. Taking its mass and coupling as (quadratic) means of the previous numbers, we obtain:

M𝒯02743(18)MeV,f𝒯0395(19)keV\displaystyle M_{{\cal T_{M}}_{0}}\simeq 2743(18)~{}{\rm MeV}~{},~{}~{}~{}f_{{\cal T_{M}}_{0}}\simeq 395(19)~{}{\rm keV}~{}

The 𝒯0{\cal T_{M}}_{0} tetramole is a good candidate for explaining the X0(2866)X_{0}(2866) though its mass is slightly lighter.

One can also see from Table 2 that the radial excitation (DK)1(DK)_{1} mass and coupling are :

M(DK)13678(310)MeV,f(DK)1199(62)keV\displaystyle M_{(DK)_{1}}\simeq 3678(310)~{}{\rm MeV},~{}~{}f_{(DK)_{1}}\simeq 199(62)~{}{\rm keV}

which is the lightest 0+0^{+} first radial excitation. Assuming that the XJ(3150)X_{J}(3150) bump is a scalar state (J=0J=0), we attempt to use a two-component minimal mixing model between the Tetramole (𝒯0)({\cal T_{M}}_{0}) and the (DK)1(DK)_{1} radially excited molecule:

|X0(2866)\displaystyle|X_{0}(2866)\rangle =\displaystyle= cosθ0|𝒯0+sinθ0|(DK)1\displaystyle\cos\theta_{0}|{\cal T_{M}}_{0}\rangle+\sin\theta_{0}|(DK)_{1}\rangle
|X0(3150)\displaystyle|X_{0}(3150)\rangle =\displaystyle= sinθ0|𝒯0+cosθ0|(DK)1.\displaystyle-\sin\theta_{0}|{\cal T_{M}}_{0}\rangle+\cos\theta_{0}|(DK)_{1}\rangle~{}.

We reproduce the data with a tiny mixing angle :

θ0(5.2±1.9)0.\displaystyle\theta_{0}\simeq(5.2\pm 1.9)^{0}~{}.

5.2 The X1(2904)X_{1}(2904) and XJ(3350)X_{J}(3350) states

As one can see in Table 2, there are four degenerate states with masses around 2650\sim 2650 MeV, and couplings around 200\sim 200 keV. We assume again that the (unmixed) physical state is a combination of these hypothetical states. We evaluate the mass and coupling of this Tetramole as the (geometric) means:

M𝒯1=2656(20)MeV,f𝒯1229(12)keV,\displaystyle M_{{\cal T_{M}}_{1}}=2656(20)~{}{\rm MeV},~{}~{}~{}~{}f_{{\cal T_{M}}_{1}}\simeq 229(12)~{}{\rm keV},

where one may notice that it can contribute to the X1(2904)X_{1}(2904) state but its mass is slightly lower. Looking at to the 11^{-} radial excitations in Table 2, one can see that they are almost degenerated around 4.5 GeV from which one can extract the masses and couplings (geometric mean) of the spin 1 Tetramoles:

M(𝒯1)14592(141)MeV,f(𝒯1)1223(35)keV.\displaystyle\!\!\!\!\!\!\!M_{({\cal T_{M}}_{1})_{1}}\simeq 4592(141)~{}{\rm MeV},~{}~{}~{}f_{({\cal T_{M}}_{1})_{1}}\simeq 223(35)~{}{\rm keV}~{}.

Then, we may consider a minimal two-component mixing of the spin 1 Tetramole (𝒯1{\cal T_{M}}_{1}) with its 1st radial excitation (𝒯1)1({\cal T_{M}}_{1})_{1} to explain the X1(2904)X_{1}(2904) state and the XJ(3350)X_{J}(3350) bump assuming that the latter is a spin 1 state. The data can be fitted with a tiny mixing angle :

θ1(9.1±0.6)0.\displaystyle\theta_{1}\simeq(9.1\pm 0.6)^{0}~{}.

A (non)-confirmation of these two minimal mixing models requires an experimental identification of the quantum numbers of the bumps at 3150 and 3350 MeV.

5.3 Final results

Our final results are obtained at the stability points of the set of parameters (τ,tc,μ)(\tau,t_{c},\mu) and they are summarized in Table 2. One can notice that, for some molecule and tetraquark states, the ground state mass values are above 5.55.5 GeV which are too far to contribute to the LHCb observations in DKDK invariant mass. In such cases, the sum rule results are discarded. One can find the full analysis of different sources of errors, as well as an interesting discussion on the relevance of NLO calculations for sum rules in Ref.[1].

Table 2: LSR predictions, at NLO, for the decay constants and masses of the ground state (f0f_{0}, M0M_{0}), and their respective first radial excitation values (f1f_{1}, M1M_{1}), for the molecules and tetraquark states. The symbol “\ast” indicates that first radial excitation of high mass ground states were discarded in our sum rule analysis.
      Observables M0M_{0} (MeV)       f0f_{0} (keV)       M1M_{1} (MeV)       f1f_{1} (keV)
      𝟎+0^{+} States
      Molecule
      DK{DK} 2402(42)       254(48)       3678(310)       211(51)
      DK{D^{*}K^{*}} 2808(41)       405(33)       4626(252)       568(167)
      D1K1{D_{1}K_{1}} 5258(113)       664(57)       \ast       \ast
      D0K0{D_{0}^{*}K_{0}^{*}} 6270(160)       249(18)       \ast       \ast
      Tetraquark
      SS{SS} 2736(21)       345(28)       4586(268)       359(81)
      AA{AA} 2675(65)       498(43)       4593(289)       547(95)
      VV{VV} 5704(149)       713(66)       \ast       \ast
      PP{PP} 5917(98)       538(41)       \ast       \ast
      𝟏1^{-} States
      Molecule
      D1K{D_{1}K} 2676(47)       191(21)       4582(414)       157(71)
      D0K{D_{0}^{*}K^{*}} 2744(41)       216(22)       4662(269)       237(63)
      DK1{DK_{1}} 5377(166)       351(31)       \ast       \ast
      DK0{D^{*}K_{0}^{*}} 5358(153)       255(23)       \ast       \ast
      Tetraquark
      PA{PA} 2666(32)       285(29)       4571(213)       258(82)
      SV{SV} 2593(31)       259(25)       4541(345)       243(68)
      AP{AP} 5542(139)       416(38)       \ast       \ast
      VS{VS} 5698(175)       412(43)       \ast       \ast

6 Summary and conclusions

\bullet~{} Motivated by the recent LHCb data on the DK+D^{-}K^{+} invariant mass from BD+DK+B\to D^{+}D^{-}K^{+} decay, we have systematically calculated the masses and couplings of some possible configurations of the molecules and tetraquarks states using QCD Laplace sum rules (LSR) within stability criteria where we have added to the LO perturbative term, the NLO radiative corrections, and the contributions from quark and gluon condensates up to dimension-6 in the OPE.

\bullet~{} The peak around the DKDK threshold can be due to DKDK scattering amplitude \oplus the DK(2400)DK(2400) lowest mass molecule.

\bullet~{} The (0+0^{+}) X0(2866)X_{0}(2866) and XJ(3150)X_{J}(3150) (if it is a 0+0^{+} state) can e.g result from a mixing of the Tetramole (𝒯0{\cal T_{M}}_{0}) with the 1st radial excitation (DK)1(DK)_{1} of the molecule state (DK)(DK) with a tiny mixing angle θ0(5.2±1.9)0\theta_{0}\simeq(5.2\pm 1.9)^{0}.

\bullet~{} The (11^{-}) X1(2904)X_{1}(2904) and XJ(3350)X_{J}(3350) (if it is a 11^{-} state) can result from a mixing of the Tetramole (𝒯1{\cal T_{M}}_{1}) with its 1st radial excitation (𝒯)1({\cal T_{M}})_{1} with a tiny mixing angle θ1(9.1±0.6)0\theta_{1}\simeq(9.1\pm 0.6)^{0}.

\bullet~{} More data on the precise quantum numbers of the XJ(3150)X_{J}(3150) and XJ(3350)X_{J}(3350) states are needed for testing the previous two minimal mixing models proposal.

References

  • [1] R.M. Albuquerque, S. Narison, D. Rabetiarivony and G. Randriamanatrika, Nucl. Phys. A 1007 (2021) 122113.
  • [2] [LHCb Collab.] R. Aaij et al., Phys.Rev.Lett. 125, 242001 (2020).
  • [3] [LHCb Collab.], R. Aaij et al., Phys.Rev. D102, 112003 (2020).
  • [4] R. M. Albuquerque et al., Int. J. Mod. Phys. A 31 (2016) 17, 1650093.
  • [5] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98 (2018) 030001 and 2019 update.
  • [6] G.K.C. Cheung et al., arXiv: 2008.06432v1 [hep-lat] (2020).
  • [7] H. G. Dosch, M. Jamin and B. Stech, Z. Phys. C42 (1989) 167.
  • [8] M. Jamin and M. Neubert, Phys. Lett. B238 (1990) 387.
  • [9] J.-R. Zhang, arXiv: 2008.07295 [hep-ph] (2020).
  • [10] H.-X. Chen et al., Chin. Phys. Lett. 37 (2020) 101201.
  • [11] Z.-W. Wang, Int. J. Mod. Phys. A35 (2020) 2050187.
  • [12] W. Chen et al., Phys. Rev. D95 (2017) 114005.
  • [13] S.S. Agaev, K. Azizi and H. Sundu, arXiv: 2008.13027 [hep-ph] (2020).
  • [14] H. Mutuk, arXiv: 2009.02492 [hep-ph] (2020).
  • [15] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147 (1979) 385.
  • [16] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147 (1979) 448.
  • [17] S. Narison, QCD spectral sum rules, World Sci. Lect. Notes Phys. 26 (1989) 1.
  • [18] S. Narison, QCD as a theory of hadrons, Cambridge Monogr. Part. Phys. Nucl. Phys. Cosmol. 17 (2004) 1-778 [hep-ph/0205006].
  • [19] S. Narison, Phys. Rept. 84 (1982) 263;
  • [20] S. Narison, Acta Phys. Pol. B 26(1995) 687;
  • [21] B.L. Ioffe, Prog. Part. Nucl. Phys. 56 (2006) 232.
  • [22] L. J. Reinders, H. Rubinstein and S. Yazaki, Phys. Rept. 127 (1985) 1.
  • [23] E. de Rafael, les Houches summer school, hep-ph/9802448 (1998).
  • [24] F.J Yndurain, The Theory of Quark and Gluon Interactions, 3rd edition, Springer (1999).
  • [25] R.A. Bertlmann, Acta Phys. Austriaca 53, (1981) 305.
  • [26] P. Pascual and R. Tarrach, QCD: renormalization for practitioner, Springer 1984.
  • [27] H.G. Dosch, Non-pertubative Methods, ed. Narison, World Scientific (1985).