This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

aainstitutetext: Department of Physics, Florida State University, Tallahassee, FL 32306-4350, USAbbinstitutetext: Department of Physics, LEPP, Cornell University, Ithaca, NY 14853, USAccinstitutetext: Department of Physics, Loyola University Chicago, Chicago, IL 60660, USAddinstitutetext: Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, Chinaeeinstitutetext: Department of Physics, Korea University, Seoul 136-713, Korea

The neutrino force in neutrino backgrounds: Spin dependence and parity-violating effects

Mitrajyoti Ghosh [email protected] b    Yuval Grossman [email protected] c    Walter Tangarife [email protected] d    Xun-Jie Xu [email protected] b,e    Bingrong Yu [email protected]
Abstract

The neutrino force results from the exchange of a pair of neutrinos. A neutrino background can significantly influence this force. In this work, we present a comprehensive calculation of the neutrino force in various neutrino backgrounds with spin dependence taken into account. In particular, we calculate the spin-independent and spin-dependent parity-conserving neutrino forces, in addition to the spin-dependent parity-violating neutrino forces with and without the presence of a neutrino background for both isotropic and anisotropic backgrounds. Compared with the vacuum case, the neutrino background can effectively violate Lorentz invariance and lead to additional parity-violating terms that are not suppressed by the velocity of external particles. We estimate the magnitude of the effect of atomic parity-violation experiments, and it turns out to be well below the current experimental sensitivity.

1 Introduction

Neutrinos, with their almost negligible mass, could mediate a long-range force, dubbed the neutrino force, originally conceived in the 1930s as a possible type of force in nuclei papers1930 . Quantitative calculations of the neutrino force started in the 1960s, first by Feinberg and Sucher Feinberg:1968zz ,111At almost the same time, Feynman also considered the neutrino force and demonstrated that the three-body neutrino force could resemble gravity Feynmangravitation . followed by a number of subsequent studies addressing various aspects of the force Feinberg:1989ps ; Hsu:1992tg ; Grifols:1996fk ; Lusignoli:2010gw ; LeThien:2019lxh ; Segarra:2020rah ; Stadnik:2017yge ; Ghosh:2019dmi ; Bolton:2020xsm ; Costantino:2020bei ; Xu:2021daf ; Dzuba:2022vrv ; Munro-Laylim:2022fsv ; Ghosh:2022nzo ; Blas:2022ovz ; VanTilburg:2024tst . For instance, the effect of neutrino masses and mixing was taken into account in Refs. Grifols:1996fk ; Lusignoli:2010gw ; LeThien:2019lxh ; Segarra:2020rah ; Costantino:2020bei ; the differences between Dirac and Majorana neutrinos were addressed in Costantino:2020bei ; Segarra:2020rah ; Ghosh:2022nzo ; the short-range behavior of the neutrino force was recently investigated in Xu:2021daf ; Dzuba:2022vrv ; Munro-Laylim:2022fsv ; and the cosmological and astrophysical implications have been discussed in Fischbach:1996qf ; Smirnov:1996vj ; Abada:1996nx ; Kachelriess:1997cr ; Kiers:1997ty ; Abada:1998ti ; Arafune:1998ft ; Orlofsky:2021mmy ; Coy:2022cpt .

Unlike classical forces such as the Coulomb force, which are generated at the tree level in quantum field theory, the neutrino force is a loop effect. It is caused by the exchange of a pair of neutrinos between two test particles. Loop-mediated forces are also called quantum forces. Generalizations of the neutrino force with neutrinos being replaced by other light particles (sometimes known as quantum dark forces) have been under active investigation in recent years, see e.g. Brax:2017xho ; Fichet:2017bng ; Costantino:2019ixl ; Banks:2020gpu ; Brax:2022wrt ; Bauer:2023czj ; VanTilburg:2024tst ; Barbosa:2024tty .

As an inherent feature of quantum forces, the neutrino force can be influenced by a neutrino background altering the quantum fluctuation of the field Ghosh:2022nzo . Another interesting fact about the neutrino force is that, within the Standard Model (SM), it is the only parity-violating force that could manifest at macroscopic scales Ghosh:2019dmi . Both features have been calculated in our previous work Ghosh:2019dmi ; Ghosh:2022nzo with different focuses. Ref. Ghosh:2022nzo considers only the spin-independent part with a background. Ref. Ghosh:2019dmi considers the spin-dependent parity-violating force in vacuum. The aim of this work is to perform a complete calculation of the neutrino force in a background, including all spin-dependent terms and background effects. As we will see, in contrast to the vacuum case, the existence of neutrino backgrounds can effectively violate Lorentz invariance and lead to additional sources of parity violation, which are not suppressed by the velocity of external particles. In addition to the new results obtained in this work, we also notice some discrepancies among existing results in the literature and comment on them. We find that current experimental probes are far from being capable of detecting the force. Yet, we hope that the comprehensive calculation may be of importance to future long-range force searches.

This paper is structured as follows. In Sec. 2, we present the general formalism of the neutrino force in an arbitrary neutrino background, taking into account spin-dependent effects. In Sec. 3 and Sec. 4, we compute the corresponding neutrino forces in specific backgrounds, including the cosmic neutrino background (Cν\nuB), degenerate neutrino gas, and directional and monochromatic neutrino beams. In Sec. 5, we summarize our results and compare some of them with known results in the literature. Possible experimental probes are discussed in Sec. 6. In Sec. 7, we draw conclusions, with some technical details relegated to the appendices.

2 General formalism

Refer to caption
Figure 1: χ1χ2χ1χ2\chi_{1}\chi_{2}\to\chi_{1}\chi_{2} elastic scattering via the exchange of a pair of neutrinos.

The general four-fermion interaction between neutrinos and some fermion χ\chi that is weakly charged can be written as

=GF2[ν¯γμ(1γ5)ν][χ¯γμ(gVχ+gAχγ5)χ],\displaystyle\mathcal{L}=\frac{G_{F}}{\sqrt{2}}\left[\bar{\nu}\gamma^{\mu}\left(1-\gamma_{5}\right)\nu\right]\left[\bar{\chi}\gamma_{\mu}\left(g_{V}^{\chi}+g_{A}^{\chi}\gamma_{5}\right)\chi\right]\;, (1)

where GFG_{F} is the Fermi constant, χ\chi can be a lepton, a quark, or any Beyond-the-Standard-Model (BSM) particle, while gVχg_{V}^{\chi} and gAχg_{A}^{\chi} are the corresponding vector and axial-vector effective couplings to neutrinos. This interaction allows the elastic scattering of two particles χ1\chi_{1} and χ2\chi_{2} via exchanging a pair of neutrinos, as shown in Fig. 1. For a very light neutrino mass mνm_{\nu}, the result is a long-range neutrino force. For instance, for mν0.1eVm_{\nu}\sim 0.1\leavevmode\nobreak\ {\rm eV}, the range of the force is 1/mν104cm\ell\sim 1/m_{\nu}\sim 10^{-4}\leavevmode\nobreak\ {\rm cm}, which is much larger than the typical range of the weak force. Neglecting the tiny neutrino mass and assuming gVχ=1g_{V}^{\chi}=1, the spin-independent part of the neutrino force in vacuum is given by

V0(r)=GF24π3r5,\displaystyle V_{0}(r)=\frac{G_{F}^{2}}{4\pi^{3}r^{5}}\;, (2)

where rr is the distance between χ1\chi_{1} and χ2\chi_{2}. Note that the spin-independent part is insensitive to the value of gAχg_{A}^{\chi}. Due to the suppression of GF2G_{F}^{2} and the rapidly decreasing scaling of 1/r51/r^{5}, V0(r)V_{0}(r) is feeble and difficult to probe at large rr.

In Ref. Ghosh:2022nzo , we studied the correction of the neutrino force in a general neutrino background. In particular, we found that, in a directional neutrino background with flux Φ\Phi and energy EνE_{\nu}, there is a large enhancement in the direction parallel to the direction of the neutrino flux,

Vbkg(r)GF2ΦEνr.\displaystyle V_{\rm bkg}(r)\sim\frac{G_{F}^{2}\Phi E_{\nu}}{r}\;. (3)

Unfortunately, the angular spread of the neutrino flux and test masses substantially smear out the enhancement, making it still difficult to probe in practical experiments Ghosh:2022nzo ; Blas:2022ovz ; VanTilburg:2024tst . Ref. Blas:2022ovz argued that the finite size of the background neutrino wave packets will significantly reduce the enhancement. We agree with their result. In v2 of Ref. Ghosh:2022nzo , we explicitly showed that the 1/r1/r enhancement in Eq. (3) only exists when α21/Δ(Eνr)\alpha^{2}\lesssim 1/\Delta(E_{\nu}r), where α\alpha is the angle between the direction of the force and the direction of the neutrino flux, and Δ(Eνr)\Delta(E_{\nu}r) denotes the spread of the neutrino flux energy EνE_{\nu} and the location of the test masses. For larger angles, the leading 1/r1/r force will be smeared out. Ref. VanTilburg:2024tst developed a different formalism to calculate the background effects (the so-called “wake forces”), which arrived at the same results as Ref. Ghosh:2022nzo .

The work in Ref. Ghosh:2022nzo was restricted to the spin-independent part of the neutrino force, which conserves parity. However, the neutrino force generated via Fig. 1 also contains a spin-dependent part that results in both parity-conserving and parity-violating effects. This paper focuses on the spin-dependent part of the neutrino force, particularly its parity-violating effect, in a general neutrino background.

The amplitude in Fig. 1 is given by

i𝒜=(iGF2)2\displaystyle{\rm i}\mathcal{A}=-\left(\frac{{\rm i}G_{F}}{\sqrt{2}}\right)^{2} [u¯1γμ(gVχ1+gAχ1γ5)u1]d4k(2π)4Tr[γμ(1γ5)ST(k+q)γν(1γ5)ST(k)]\displaystyle\left[\bar{u}_{1}^{\prime}\gamma_{\mu}\left(g_{V}^{\chi_{1}}+g_{A}^{\chi_{1}}\gamma_{5}\right)u_{1}\right]\int\frac{{\rm d}^{4}k}{\left(2\pi\right)^{4}}{\rm Tr}\left[\gamma^{\mu}\left(1-\gamma_{5}\right)S_{T}(k+q)\gamma^{\nu}\left(1-\gamma_{5}\right)S_{T}(k)\right]
×\displaystyle\times [u¯2γν(gVχ2+gAχ2γ5)u2]/(4m1m2),\displaystyle\left[\bar{u}_{2}^{\prime}\gamma_{\nu}\left(g_{V}^{\chi_{2}}+g_{A}^{\chi_{2}}\gamma_{5}\right)u_{2}\right]/\left(4m_{1}m_{2}\right)\;, (4)

where STS_{T} is a modified propagator in the background that we discuss below. In Eq. (2), we have used uiu(pi,si)u_{i}\equiv u\left(p_{i},s_{i}\right) to denote the wave functions, with pip_{i} and sis_{i} the momentum and spin of particle ii, and q=p1p1=p2p2q=p_{1}^{\prime}-p_{1}=p_{2}-p_{2}^{\prime} is the momentum transfer (see Fig. 1). In the non-relativistic (NR) limit for the external particles, we have q(0,𝐪)q\approx(0,{\bf q}) and q2ρ2q^{2}\approx-\rho^{2} with ρ|𝐪|\rho\equiv\left|{\bf q}\right|. In addition, mim_{i} is the mass of χi\chi_{i} and the normalization factor of 1/(4m1m2)1/(4m_{1}m_{2}) should be included in the NR limit. The neutrino force is computed by the Fourier transform of the NR limit of that diagram,

V(𝐫)=d3𝐪(2π)3ei𝐪𝐫𝒜(𝐪).\displaystyle V({\bf r})=-\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}{\cal A}({\bf q})\;. (5)

The modified propagator in Eq. (2) is given by

ST(k)=(+mν){ik2mν2+iϵ2πδ(k2mν2)[Θ(k0)n+(𝐤)+Θ(k0)n(𝐤)]},\displaystyle S_{T}(k)=\left(\not{k}+m_{\nu}\right)\left\{\frac{\rm i}{k^{2}-m_{\nu}^{2}+{\rm i}\epsilon}-2\pi\delta(k^{2}-m_{\nu}^{2})\left[\Theta(k^{0})n_{+}\left({\bf k}\right)+\Theta(-k^{0})n_{-}\left({\bf k}\right)\right]\right\}\,, (6)

where the first term represents the vacuum propagator while the second term represents the background corrections, Θ\Theta is the Heaviside step function, and n±(𝐤)n_{\pm}\left({\bf k}\right) are the distribution functions of the neutrinos and anti-neutrinos, respectively. Eq. (6) can be derived using the formalism of finite temperature/density field theory Landsman:1986uw ; Notzold:1987ik ; Quiros:1999jp ; Kapusta:2006pm ; Laine:2016hma , though the validity of Eq. (6) does not necessarily require a thermal distribution of the neutrino background (see Appendix A of Ref. Ghosh:2022nzo for a more intuitive derivation).

In the NR approximation for the external particles, it is convenient to work in the Pauli-Dirac basis where we have

u1=2m1(ξ1𝝈𝐩𝟏2m1ξ1),u2=2m2(ξ2𝝈𝐩𝟐2m2ξ2),\displaystyle u_{1}=\sqrt{2m_{1}}\left(\begin{matrix}\xi_{1}\\ \frac{\boldsymbol{\sigma}\cdot\bf{p}_{1}}{2m_{1}}\xi_{1}\end{matrix}\right)\;,\qquad u_{2}=\sqrt{2m_{2}}\left(\begin{matrix}\xi_{2}\\ \frac{\boldsymbol{\sigma}\cdot\bf{p}_{2}}{2m_{2}}\xi_{2}\end{matrix}\right)\;, (7)

where 𝝈(σ1,σ2,σ3)\boldsymbol{\sigma}\equiv(\sigma_{1},\sigma_{2},\sigma_{3}) are the Pauli matrices and ξi\xi_{i} are two-component constant spinors of χi\chi_{i} (for i=1,2i=1,2), which characterize the spins of the incident particles. For the wave functions of uiu_{i}^{\prime}, one only needs to replace 𝐩i{\bf p}_{i} with 𝐩i{\bf p}_{i}^{\prime} in Eq. (7). Then, we obtain the wave-function contribution at the leading order of the NR approximation (i.e., up to the linear term of the velocity of external particles):

Wμν[u¯1γμ(gVχ1+gAχ1γ5)u1][u¯2γν(gVχ2+gAχ2γ5)u2]/(4m1m2)Σμχ1Σνχ2,\displaystyle W_{\mu\nu}\equiv\left[\bar{u}_{1}^{\prime}\gamma_{\mu}\left(g_{V}^{\chi_{1}}+g_{A}^{\chi_{1}}\gamma_{5}\right)u_{1}\right]\left[\bar{u}_{2}^{\prime}\gamma_{\nu}\left(g_{V}^{\chi_{2}}+g_{A}^{\chi_{2}}\gamma_{5}\right)u_{2}\right]/\left(4m_{1}m_{2}\right)\equiv\Sigma_{\mu}^{\chi_{1}}\Sigma_{\nu}^{\chi_{2}}\;, (8)

with

Σμχ1\displaystyle\Sigma_{\mu}^{\chi_{1}} =(gVχ1+gAχ1(𝝈1𝒗1+𝝈1𝐪2m1),gAχ1𝝈𝟏gVχ1(𝒗1+𝐪2m1+i𝝈1×𝐪2m1)),\displaystyle=\left(g_{V}^{\chi_{1}}+g_{A}^{\chi_{1}}\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{v}_{1}+\frac{\boldsymbol{\sigma}_{1}\cdot\bf{q}}{2m_{1}}\right),-g_{A}^{\chi_{1}}\boldsymbol{\sigma_{1}}-g_{V}^{\chi_{1}}\left(\boldsymbol{v}_{1}+\frac{\bf{q}}{2m_{1}}+{\rm i}\frac{\boldsymbol{\sigma}_{1}\times\bf{q}}{2m_{1}}\right)\right)\;,
Σμχ2\displaystyle\Sigma_{\mu}^{\chi_{2}} =(gVχ2+gAχ2(𝝈2𝒗2𝝈2𝐪2m2),gAχ2𝝈2gVχ2(𝒗2𝐪2m2i𝝈2×𝐪2m2)),\displaystyle=\left(g_{V}^{\chi_{2}}+g_{A}^{\chi_{2}}\left(\boldsymbol{\sigma}_{2}\cdot\boldsymbol{v}_{2}-\frac{\boldsymbol{\sigma}_{2}\cdot\bf{q}}{2m_{2}}\right),-g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{2}-g_{V}^{\chi_{2}}\left(\boldsymbol{v}_{2}-\frac{\bf{q}}{2m_{2}}-{\rm i}\frac{\boldsymbol{\sigma}_{2}\times\bf{q}}{2m_{2}}\right)\right)\;, (9)

and

𝒗i𝐩imi,𝝈iξi𝝈ξi,i=1,2.\boldsymbol{v}_{i}\equiv\frac{{\bf p}_{i}}{m_{i}},\qquad\boldsymbol{\sigma}_{i}\equiv\xi_{i}^{\dagger}\boldsymbol{\sigma}\xi_{i},\qquad i=1,2\;. (10)

The amplitude in Eq. (2) can be decomposed into the wave-function part WμνW_{\mu\nu} and the loop-integral factor IμνI^{\mu\nu},

𝒜(𝐪)=4GF2WμνIμν,\displaystyle{\cal A}\left({\bf q}\right)=-4G_{F}^{2}W_{\mu\nu}I^{\mu\nu}\;, (11)

with

Iμν=i8d4k(2π)4Tr[γμ(1γ5)ST(k+q)γν(1γ5)ST(k)].\displaystyle I^{\mu\nu}=\frac{{\rm i}}{8}\int\frac{{\rm d}^{4}k}{\left(2\pi\right)^{4}}{\rm Tr}\left[\gamma^{\mu}\left(1-\gamma_{5}\right)S_{T}(k+q)\gamma^{\nu}\left(1-\gamma_{5}\right)S_{T}(k)\right]\;. (12)

The loop integral in Eq. (12) can be split into the vacuum and the background contributions,

Iμν=I0μν+Ibkgμν.\displaystyle I^{\mu\nu}=I^{\mu\nu}_{0}+I^{\mu\nu}_{\rm bkg}\;. (13)

In what follows, we shall analyze I0μνI^{\mu\nu}_{0} and IbkgμνI^{\mu\nu}_{\rm bkg} separately. Correspondingly, we decompose the amplitude and the potential into the following two parts:

𝒜(𝐪)=𝒜0(𝐪)+𝒜bkg(𝐪),V(𝐫)=V0(𝐫)+Vbkg(𝐫),\displaystyle{\cal A}\left({\bf q}\right)={\cal A}_{0}\left({\bf q}\right)+{\cal A}_{\rm bkg}\left({\bf q}\right)\;,\quad V\left({\bf r}\right)=V_{0}\left({\bf r}\right)+V_{\rm bkg}\left({\bf r}\right)\;, (14)

where the subscripts indicate that they are proportional to I0μνI_{0}^{\mu\nu} or IbkgμνI_{\rm bkg}^{\mu\nu}.

2.1 The neutrino force in vacuum

When both propagators in Eq. (12) take the vacuum part, the integral gives the vacuum contribution to the neutrino force:

I0μν\displaystyle I_{0}^{\mu\nu} =i8d4k(2π)4Tr[γμ(1γ5)(+)γν(1γ5)]k2(k+q)2\displaystyle=-\frac{{\rm i}}{8}\int\frac{{\rm d}^{4}k}{\left(2\pi\right)^{4}}\frac{{\rm Tr}\left[\gamma^{\mu}\left(1-\gamma_{5}\right)\left(\not{k}+\not{q}\right)\gamma^{\nu}\left(1-\gamma_{5}\right)\not{k}\right]}{k^{2}\left(k+q\right)^{2}}
=1144π2[5+3ΔE+3log(μ2q2)](qμqνq2gμν),\displaystyle=-\frac{1}{144\pi^{2}}\left[5+3\Delta_{\rm E}+3\log\left(\frac{\mu^{2}}{-q^{2}}\right)\right]\left(q^{\mu}q^{\nu}-q^{2}g^{\mu\nu}\right)\;, (15)

where we have neglected the tiny neutrino mass for simplicity, μ\mu is the renormalization scale and ΔE1/ϵγE+log(4π)\Delta_{\rm E}\equiv 1/\epsilon-\gamma_{\rm E}+\log\left(4\pi\right) with γE0.557\gamma_{\rm E}\approx 0.557 the Euler-Mascheroni constant. (For the complete expression of the parity-violating neutrino force in vacuum, which includes finite neutrino masses and lepton flavor mixing, see Ref. Ghosh:2019dmi ). The term proportional to g00g^{00} in Eq. (2.1) leads to the spin-independent potential of the neutrino force:

V0SI(r)=gVχ1gVχ2V0(r),\displaystyle V_{0}^{\rm SI}(r)=g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}V_{0}(r)\;, (16)

with V0(r)V_{0}(r) given by Eq. (2). Note that the terms depending on μ\mu and 1/ϵ1/\epsilon vanish after taking the Fourier transform since they do not have a branch cut on the complex plane of qq. The gii,(i=1,2,3)g^{ii},(i=1,2,3) and qμqνq^{\mu}q^{\nu} terms in Eq. (2.1), using the results of Fourier transform in Appendix A, give rise to a spin-dependent parity-conserving (SD-PC) contribution to the potential:

V0SD-PC(𝐫)=12gAχ1gAχ2[5(𝝈1𝐫^)(𝝈2𝐫^)3(𝝈1𝝈2)]V0(r),\displaystyle V_{0}^{\text{SD-PC}}({\bf r})=\frac{1}{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\left[5\left(\boldsymbol{\sigma}_{1}\cdot\bf{\hat{r}}\right)\left(\boldsymbol{\sigma}_{2}\cdot\bf{\hat{r}}\right)-3\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{\sigma}_{2}\right)\right]V_{0}(r)\;, (17)

with 𝐫^𝐫/r{\bf\hat{r}}\equiv{\bf r}/r. Note that in Eq. (17) 𝝈1\boldsymbol{\sigma}_{1} and 𝝈2\boldsymbol{\sigma}_{2} are axial vectors and 𝐫^{\bf\hat{r}} is a vector. Each term contains an even number of axial vectors, implying that the potential is invariant under parity transformation.

Here, we would like to clarify the connection between spin dependence and parity violation. A force being spin-dependent does not necessarily mean that it is parity-violating, but a parity-violating force is always spin-dependent. The latter is labeled as SD-PV throughout this work.

In the vacuum case, the SD-PV part of the force comes from the sub-leading term in vv of the contraction between WμνW_{\mu\nu} and the gμνg^{\mu\nu} term in Eq. (2.1). This part has been calculated in Ref. Ghosh:2019dmi ,

V0SD-PV(𝐫)=\displaystyle V_{0}^{\text{SD-PV}}({\bf r})= [H11(𝝈1𝒗1)+H12(𝝈1𝒗2)+H21(𝝈2𝒗1)+H22(𝝈2𝒗2)\displaystyle\left[H_{11}\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{v}_{1}\right)+H_{12}\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{v}_{2}\right)+H_{21}\left(\boldsymbol{\sigma}_{2}\cdot\boldsymbol{v}_{1}\right)+H_{22}\left(\boldsymbol{\sigma}_{2}\cdot\boldsymbol{v}_{2}\right)\right.
+C(𝝈1×𝝈2)]V0(r),\displaystyle\left.+C\left(\boldsymbol{\sigma}_{1}\times\boldsymbol{\sigma}_{2}\right)\cdot\nabla\right]V_{0}(r)\;, (18)

where

H11=H12=2gVχ2gAχ1,H22=H21=2gVχ1gAχ2,C=gVχ1gAχ2m1+gVχ2gAχ1m2.\displaystyle H_{11}=-H_{12}=2g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}\;,\quad H_{22}=-H_{21}=2g_{V}^{\chi_{1}}g_{A}^{\chi_{2}}\;,\quad C=\frac{g_{V}^{\chi_{1}}g_{A}^{\chi_{2}}}{m_{1}}+\frac{g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}}{m_{2}}\;. (19)

Compared to Eq. (17), Eq. (2.1) is suppressed by either the velocities of external particles, |𝒗i|\left|\boldsymbol{v}_{i}\right| (for i=1,2i=1,2), or by the variation of the velocities

mi𝐪mi|𝒗i𝒗i|,\displaystyle\frac{\nabla}{m_{i}}\sim\frac{{\bf q}}{m_{i}}\sim\left|\boldsymbol{v}_{i}^{\prime}-\boldsymbol{v}_{i}\right|\;, (20)

where 𝒗i\boldsymbol{v}_{i} and 𝒗i\boldsymbol{v}_{i}^{\prime} denote the incident and outgoing velocity of χi\chi_{i}, respectively. Throughout this paper, we refer to the suppression in either way as the velocity suppression.

The total neutrino force in vacuum is then obtained by adding Eqs. (16)-(2.1) together:

V0(𝐫)=V0SI(r)+V0SD-PC(𝐫)+V0SD-PV(𝐫).\displaystyle V_{0}\left({\bf r}\right)=V_{0}^{{\rm SI}}(r)+V_{0}^{\text{SD-PC}}({\bf r})+V_{0}^{\text{SD-PV}}({\bf r})\;. (21)

The first two terms are of order 𝒪(v0){\cal O}(v^{0}), the third term is of order 𝒪(v){\cal O}(v), and we have neglected higher-ordered terms 𝒪(v2){\cal O}(v^{2}). There are no first-order corrections to the first two terms, because any term proportional to 𝒪(v){\cal O}(v) violates parity and belongs to the third term, see Eqs. (130)-(133).

2.2 The neutrino force in a general neutrino background

Refer to caption
Figure 2: A sketch of neutrino forces in vacuum (left) and in a neutrino background (right). In vacuum, the long-range force is mediated by exchanging a pair of virtual neutrinos, both of which come from quantum fluctuations. In a background, one of the virtual neutrinos is replaced by an on-shell neutrino from the background.

We turn to the study of background corrections to the spin-dependent neutrino force. First, we note that there is no effect from the term when both propagators take the background part. The result is proportional to the product of two δ\delta-functions which have different arguments, and it vanishes. This can be understood as follows: If both neutrinos in Fig. 2 are on-shell, then both of them come from the background. As a result, there is no neutrino exchanged between χ1\chi_{1} and χ2\chi_{2}, and therefore, there is no force between them.

The background term comes from the cross terms in Eq. (12), i.e., one propagator takes the vacuum part, and the other takes the background part (see the right panel of Fig. 2). We find that, in general, the background integral can be decomposed into two parts,

Ibkgμν(𝐪)=IPCμν(𝐪)+IPVμν(𝐪),\displaystyle I_{\rm bkg}^{\mu\nu}\left({\bf q}\right)=I_{\rm PC}^{\mu\nu}\left({\bf q}\right)+I_{\rm PV}^{\mu\nu}\left({\bf q}\right)\;, (22)

where

IPCμν(𝐪)=d𝐤~dk~0{2kμkν+kμqν+kνqμgμν(mν2𝐤𝐪)2𝐤𝐪+𝐪2+(qq)},\displaystyle I_{\rm PC}^{\mu\nu}\left({\bf q}\right)=-\int{\rm d}\widetilde{\bf k}\int{\rm d}\widetilde{k}^{0}\left\{\frac{2k^{\mu}k^{\nu}+k^{\mu}q^{\nu}+k^{\nu}q^{\mu}-g^{\mu\nu}\left(m_{\nu}^{2}-{\bf k}\cdot{\bf q}\right)}{2{\bf k}\cdot{\bf q}+{\bf q}^{2}}+\left(q\to-q\right)\right\}\;, (23)

and

IPVμν(𝐪)=iϵμνρσqσd𝐤~dk~0[kρ2𝐤𝐪+𝐪2+(qq)].\displaystyle I_{\rm PV}^{\mu\nu}\left({\bf q}\right)={\rm i}\epsilon^{\mu\nu\rho\sigma}q_{\sigma}\int{\rm d}\widetilde{\bf k}\int{\rm d}\widetilde{k}^{0}\left[\frac{k_{\rho}}{2{\bf k}\cdot{\bf q}+{\bf q}^{2}}+\left(q\to-q\right)\right]\;. (24)

Here ϵμνρσ\epsilon^{\mu\nu\rho\sigma} is the Levi-Civita tensor, and we have used the following notations:

d𝐤~\displaystyle\int{\rm d}\widetilde{\bf k} d3𝐤(2π)312E𝐤,\displaystyle\equiv\int\frac{{\rm d}^{3}{\bf k}}{\left(2\pi\right)^{3}}\frac{1}{2E_{\bf k}}\;,
dk~0\displaystyle\int{\rm d}\widetilde{k}^{0} dk0[δ(k0E𝐤)Θ(k0)n+(𝐤)+δ(k0+E𝐤)Θ(k0)n(𝐤)],\displaystyle\equiv\int_{-\infty}^{\infty}{\rm d}k^{0}\left[\delta\left(k^{0}-E_{\bf k}\right)\Theta\left(k^{0}\right)n_{+}({\bf k})+\delta\left(k^{0}+E_{\bf k}\right)\Theta\left(-k^{0}\right)n_{-}({\bf k})\right]\;, (25)

with E𝐤𝐤2+mν2E_{\bf k}\equiv\sqrt{{\bf k}^{2}+m_{\nu}^{2}}. Due to the effective violation of Lorentz invariance by the neutrino background, the term proportional to ϵμνρσ\epsilon^{\mu\nu\rho\sigma} is no longer vanishing as in the vacuum scenario. In fact, one can verify that (see Appendix B for more details)

IPCμν(𝐪)=IPCμν(𝐪),IPVμν(𝐪)=IPVμν(𝐪).\displaystyle I_{\rm PC}^{\mu\nu}\left(-{\bf q}\right)=I_{\rm PC}^{\mu\nu}\left({\bf q}\right)\;,\quad I_{\rm PV}^{\mu\nu}\left(-{\bf q}\right)=-I_{\rm PV}^{\mu\nu}\left({\bf q}\right)\;. (26)

In vacuum, the parity-violating neutrino force only comes from the wave-function part in Eq. (8). Technically, this is due to the fact that the vacuum loop integral in Eq. (2.1) is invariant under the momentum reflection, i.e., I0μν(𝐪)=I0μν(𝐪)I_{0}^{\mu\nu}(-{\bf q})=I_{0}^{\mu\nu}({\bf q}). However, unlike in the vacuum case, the loop integral (24) in the background is not invariant under the momentum reflection. This leads to additional contributions to the parity-violating neutrino force, as shown below. Similarly, we can also decompose the wave functions (8) into two parts,

Wμν(𝐩i)=WμνPC(𝐩i)+WμνPV(𝐩i).\displaystyle W_{\mu\nu}\left({\bf p}_{i}\right)=W_{\mu\nu}^{\rm PC}\left({\bf p}_{i}\right)+W_{\mu\nu}^{\rm PV}\left({\bf p}_{i}\right)\;. (27)

For the specific forms of WμνPCW_{\mu\nu}^{\rm PC} and WμνPVW_{\mu\nu}^{\rm PV}, we refer to Appendix B. Under reflection of the external momentum 𝐩i𝐩i{\bf p}_{i}\to-{\bf p}_{i}, the first term is invariant while the second term changes sign

WμνPC(𝐩i)=WμνPC(𝐩i),WμνPV(𝐩i)=WμνPV(𝐩i).\displaystyle W^{\rm PC}_{\mu\nu}\left(-{\bf p}_{i}\right)=W^{\rm PC}_{\mu\nu}\left({\bf p}_{i}\right)\;,\quad W^{\rm PV}_{\mu\nu}\left(-{\bf p}_{i}\right)=-W^{\rm PV}_{\mu\nu}\left({\bf p}_{i}\right)\;. (28)

We note that WμνPVW^{\rm PV}_{\mu\nu} is suppressed by the velocities of the external particles compared with WμνPCW^{\rm PC}_{\mu\nu}. This is the reason the parity-violating neutrino force in vacuum, Eq. (2.1), is velocity suppressed, since in vacuum the only source of parity violation comes from WμνPVW_{\mu\nu}^{\rm PV}.

The components of IbkgμνI_{\rm bkg}^{\mu\nu} and WμνW_{\mu\nu} have been explicitly computed in Appendix B. The (0,0)(0,0) components of IPCμνI^{\mu\nu}_{\rm PC} and WμνPCW_{\mu\nu}^{\rm PC} give the spin-independent background amplitude,

𝒜bkgSI(𝐪)=4GF2IPC00W00PC=8GF2gVχ1gVχ2d𝐤~[n+(𝐤)+n(𝐤)]K0,\displaystyle{\cal A}_{\rm bkg}^{\rm SI}({\bf q})=-4G_{F}^{2}I_{\rm PC}^{00}W_{00}^{\rm PC}=8G_{F}^{2}g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}\int{\rm d}\widetilde{\bf k}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]K_{0}\;, (29)

where

K0=(2𝐤2+mν2)𝐪22(𝐤𝐪)2𝐪44(𝐤𝐪)2.\displaystyle K_{0}=\frac{\left(2{\bf k}^{2}+m_{\nu}^{2}\right){\bf q}^{2}-2\left({\bf k}\cdot{\bf q}\right)^{2}}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}\;. (30)

The amplitude in Eq. (29) is parity conserving and has been analyzed in Ref. Ghosh:2022nzo . The parity-conserving and spin-dependent background amplitude is given, to leading order in the velocity of external particles, by

𝒜bkgSD-PC(𝐪)=\displaystyle{\cal A}_{{\rm bkg}}^{\text{SD-PC}}({\bf q})= 4GF2(IPCijWijPC+IPC0iW0iPC+IPCi0Wi0PC)\displaystyle-4G_{F}^{2}\left(I_{{\rm PC}}^{ij}W_{ij}^{{\rm PC}}+I_{{\rm PC}}^{0i}W_{0i}^{{\rm PC}}+I_{{\rm PC}}^{i0}W_{i0}^{{\rm PC}}\right)
=\displaystyle= +8GF2gAχ1gAχ2𝝈1i𝝈2jd𝐤~[n+(𝐤)+n(𝐤)]K+ij\displaystyle+8G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{1}^{i}\boldsymbol{\sigma}_{2}^{j}\int{\rm d}\widetilde{{\bf k}}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]K_{+}^{ij}
16GF2(gVχ1gAχ2𝝈2i+gVχ2gAχ1𝝈1i)d𝐤~[n+(𝐤)n(𝐤)]Ki,\displaystyle-16G_{F}^{2}\left(g_{V}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{2}^{i}+g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}\boldsymbol{\sigma}_{1}^{i}\right)\int{\rm d}\widetilde{{\bf k}}\left[n_{+}({\bf k})-n_{-}({\bf k})\right]K_{-}^{i}\;, (31)

where

K+ij\displaystyle K_{+}^{ij} =2kikj𝐪22(kiqj+kjqi)(𝐤𝐪)+δij[2(𝐤𝐪)2+mν2𝐪2]𝐪44(𝐤𝐪)2,\displaystyle=\frac{2k^{i}k^{j}{\bf q}^{2}-2\left(k^{i}q^{j}+k^{j}q^{i}\right)\left({\bf k}\cdot{\bf q}\right)+\delta^{ij}\left[2\left({\bf k}\cdot{\bf q}\right)^{2}+m_{\nu}^{2}{\bf q}^{2}\right]}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}\;, (32)
Ki\displaystyle K_{-}^{i} =E𝐤ki𝐪2qi(𝐤𝐪)𝐪44(𝐤𝐪)2.\displaystyle=E_{{\bf k}}\frac{k^{i}{\bf q}^{2}-q^{i}\left({\bf k}\cdot{\bf q}\right)}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}\;. (33)

Note that the KK_{-} term is suppressed by the neutrino-antineutrino asymmetry of the background, and it vanishes when the background is isotropic.

The parity-violating background amplitude turns out to be

𝒜bkgSD-PV(𝐪)=4GF2(IPVμνWμνPC+IPCμνWμνPV),\displaystyle{\cal A}_{\rm bkg}^{\text{SD-PV}}\left({\bf q}\right)=-4G_{F}^{2}\left(I_{\rm PV}^{\mu\nu}W_{\mu\nu}^{\rm PC}+I_{\rm PC}^{\mu\nu}W_{\mu\nu}^{\rm PV}\right)\;, (34)

where the relevant components are given in Eqs. (120)-(133). We can split the parity-violating amplitude into two parts, according to the order of the velocity of external particles:

𝒜bkgSD-PV(𝐪)=𝒜bkg,0SD-PV(𝐪)+𝒜bkg,1SD-PV(𝐪).\displaystyle{\cal A}_{\rm bkg}^{\text{SD-PV}}\left({\bf q}\right)={\cal A}_{\rm bkg,0}^{\text{SD-PV}}\left({\bf q}\right)+{\cal A}_{\rm bkg,1}^{\text{SD-PV}}\left({\bf q}\right)\;. (35)

The first term in Eq. (35) does not depend on the velocity:

𝒜bkg,0SD-PV(𝐪)=\displaystyle{\cal A}_{\rm bkg,0}^{\text{SD-PV}}\left({\bf q}\right)= 4GF2IPVμνWμνPC\displaystyle-4G_{F}^{2}I_{\rm PV}^{\mu\nu}W_{\mu\nu}^{\rm PC}
=\displaystyle= +8iGF2gAχ1gAχ2ϵijk𝝈1i𝝈2jd𝐤~[n+(𝐤)n(𝐤)]E𝐤qk𝐪2𝐪44(𝐤𝐪)2\displaystyle+8{\rm i}\,G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\epsilon^{ijk}\boldsymbol{\sigma}_{1}^{i}\boldsymbol{\sigma}_{2}^{j}\int{\rm d}\widetilde{\bf k}\left[n_{+}({\bf k})-n_{-}({\bf k})\right]E_{\bf k}\frac{q^{k}{\bf q}^{2}}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}
+8iGF2(gVχ1gAχ2𝝈2gVχ2gAχ1𝝈1)id𝐤~[n+(𝐤)+n(𝐤)]ϵijkkjqk𝐪2𝐪44(𝐤𝐪)2.\displaystyle+8{\rm i}\,G_{F}^{2}\left(g_{V}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{2}-g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}\boldsymbol{\sigma}_{1}\right)^{i}\int{\rm d}\widetilde{\bf k}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\frac{\epsilon^{ijk}k^{j}q^{k}{\bf q}^{2}}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}\;. (36)

We note that for neutrino-antineutrino symmetric distributions (n+=nn_{+}=n_{-}), the first term of Eq. (2.2) vanishes, while the second term proportional to (n++n)(n_{+}+n_{-}) vanishes if n±n_{\pm} are invariant under 𝐤𝐤{\bf k}\to-{\bf k}.

The second term in Eq. (35) is velocity suppressed:

𝒜bkg,1SD-PV(𝐪)=\displaystyle{\cal A}_{{\rm bkg},1}^{\text{SD-PV}}\left({\bf q}\right)= 4GF2IPCμνWμνPV\displaystyle-4G_{F}^{2}I_{{\rm PC}}^{\mu\nu}W_{\mu\nu}^{{\rm PV}}
=\displaystyle= +16GF2d𝐤~[n+(𝐤)+n(𝐤)][gVχ2gAχ1(𝝈1i𝒗1iK0+𝝈1i𝒗~2jK+ij)+12]\displaystyle+16G_{F}^{2}\int{\rm d}\widetilde{{\bf k}}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\left[g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}\left(\boldsymbol{\sigma}_{1}^{i}\boldsymbol{v}_{1}^{i}K_{0}+\boldsymbol{\sigma}_{1}^{i}\tilde{\boldsymbol{v}}_{2}^{j}K_{+}^{ij}\right)+1\leftrightarrow 2\right]
32GF2d𝐤~[n+(𝐤)n(𝐤)]Ki[gVχ1gVχ2𝒗~1i+gAχ1gAχ2(𝝈1𝒗1)𝝈2i+12],\displaystyle-32G_{F}^{2}\int{\rm d}\widetilde{{\bf k}}\left[n_{+}({\bf k})-n_{-}({\bf k})\right]K_{-}^{i}\left[g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}\tilde{\boldsymbol{v}}_{1}^{i}+g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{v}_{1}\right)\boldsymbol{\sigma}_{2}^{i}+1\leftrightarrow 2\right]\;, (37)

where 121\leftrightarrow 2 denotes terms that exchange the index 1 and 2 for external particles, the reduced velocities are defined as

𝒗~1𝒗1+i𝝈1×𝐪2m1,𝒗~2𝒗2i𝝈2×𝐪2m2,\displaystyle\tilde{\boldsymbol{v}}_{1}\equiv\boldsymbol{v}_{1}+{\rm i}\frac{\boldsymbol{\sigma}_{1}\times{\bf q}}{2m_{1}}\;,\quad\tilde{\boldsymbol{v}}_{2}\equiv\boldsymbol{v}_{2}-{\rm i}\frac{\boldsymbol{\sigma}_{2}\times{\bf q}}{2m_{2}}\;, (38)

while K0K_{0}, K+K_{+} and KK_{-} are given in Eqs. (30), (32), and (33), respectively. Note that the first term in Eq. (37) is not suppressed by the neutrino-antineutrino asymmetry, while the second term vanishes for isotropic neutrino backgrounds.

The expressions in Eqs. (29), (31), (2.2), and (37) are the comprehensive formulae we derived for the amplitude of the neutrino force in a general neutrino background. They are the main result of this work. Finally, the complete background neutrino force is given by

Vbkg(𝐫)\displaystyle V_{\rm bkg}\left({\bf r}\right) =VbkgSI(r)+VbkgSDPC(𝐫)+Vbkg,0SDPV(𝐫)+Vbkg,1SDPV(𝐫)\displaystyle=V_{\rm bkg}^{\rm SI}\left(r\right)+V_{\rm bkg}^{\rm SD-PC}\left({\bf r}\right)+V_{\rm bkg,0}^{\rm SD-PV}\left({\bf r}\right)+V_{\rm bkg,1}^{\rm SD-PV}\left({\bf r}\right)
=d3𝐪(2π)3ei𝐪𝐫[𝒜bkgSI(𝐪)+𝒜bkgSD-PC(𝐪)+𝒜bkg,0SD-PV(𝐪)+𝒜bkg,1SD-PV(𝐪)],\displaystyle=-\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\left[{\cal A}_{\rm bkg}^{\rm SI}\left({\bf q}\right)+{\cal A}_{\rm bkg}^{\text{SD-PC}}\left({\bf q}\right)+{\cal A}_{\rm bkg,0}^{\text{SD-PV}}\left({\bf q}\right)+{\cal A}_{\rm bkg,1}^{\text{SD-PV}}\left({\bf q}\right)\right]\;, (39)

where each part of the potential is determined by the Fourier transform of the corresponding amplitude.

In particular, for isotropic backgrounds n±(𝐤)=n±(κ)n_{\pm}({\bf k})=n_{\pm}(\kappa), where κ|𝐤|\kappa\equiv\left|{\bf k}\right|, we can first integrate the angular part and obtain the following compact expressions:

VbkgSI(r)\displaystyle V_{\rm bkg}^{\rm SI}\left(r\right) =GF2gVχ1gVχ24π3r5𝒥a,\displaystyle=-\frac{G_{F}^{2}g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}}{4\pi^{3}r^{5}}{\cal J}_{a}\;, (40)
VbkgSD-PC(𝐫)\displaystyle V_{\rm bkg}^{\text{SD-PC}}\left({\bf r}\right) =GF2gAχ1gAχ24π3r5[(𝝈1𝝈2)𝒥b+(𝝈1𝐫^)(𝝈2𝐫^)𝒥c],\displaystyle=-\frac{G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}}{4\pi^{3}r^{5}}\left[\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{\sigma}_{2}\right){\cal J}_{b}+\left(\boldsymbol{\sigma}_{1}\cdot{\bf\hat{r}}\right)\left(\boldsymbol{\sigma}_{2}\cdot{\bf\hat{r}}\right){\cal J}_{c}\right]\;, (41)
Vbkg,0SD-PV(𝐫)\displaystyle V_{\rm bkg,0}^{\text{SD-PV}}\left({\bf r}\right) =𝐫^(𝝈1×𝝈2)GF2gAχ1gAχ24π3r5𝒥d,\displaystyle={\hat{\bf r}}\cdot\left(\boldsymbol{\sigma}_{1}\times\boldsymbol{\sigma}_{2}\right)\frac{G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}}{4\pi^{3}r^{5}}{\cal J}_{d}\;, (42)
Vbkg,1SD-PV(𝐫)\displaystyle V_{\rm bkg,1}^{\text{SD-PV}}\left({\bf r}\right) =GF2gVχ2gAχ12π3r5[(𝝈1𝒗1)𝒥a+(𝝈1𝒗~2)𝒥b+(𝝈1𝐫^)(𝒗~2𝐫^)𝒥c]+12.\displaystyle=-\frac{G_{F}^{2}g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}}{2\pi^{3}r^{5}}\left[\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{v}_{1}\right){\cal J}_{a}+\left(\boldsymbol{\sigma}_{1}\cdot\tilde{\boldsymbol{v}}_{2}\right){\cal J}_{b}+\left(\boldsymbol{\sigma}_{1}\cdot{\bf\hat{r}}\right)\left(\tilde{\boldsymbol{v}}_{2}\cdot{\bf\hat{r}}\right){\cal J}_{c}\right]+1\leftrightarrow 2\;. (43)

One should keep in mind that in the reduced velocity 𝒗~i\tilde{\boldsymbol{v}}_{i} in Eq. (43), 𝐪{\bf q} should be replaced by i-{\rm i}\nabla. The dimensionless 𝒥{\cal J}-factors depend on the specific form of the background and can be computed as follows:

𝒥a\displaystyle{\cal J}_{a} =r0dκn+(κ)+n(κ)κ2+mν2κ[(1+mν2r2)sin(2κr)2κrcos(2κr)],\displaystyle=r\int_{0}^{\infty}{\rm d}\kappa\frac{n_{+}(\kappa)+n_{-}(\kappa)}{\sqrt{\kappa^{2}+m_{\nu}^{2}}}\kappa\left[\left(1+m_{\nu}^{2}r^{2}\right)\sin\left(2\kappa r\right)-2\kappa r\cos\left(2\kappa r\right)\right]\;, (44)
𝒥b\displaystyle{\cal J}_{b} =r0dκn+(κ)+n(κ)κ2+mν2κ{2κrcos(2κr)+[(2κ2+mν2)r21]sin(2κr)},\displaystyle=r\int_{0}^{\infty}{\rm d}\kappa\frac{n_{+}(\kappa)+n_{-}(\kappa)}{\sqrt{\kappa^{2}+m_{\nu}^{2}}}\kappa\left\{2\kappa r\cos\left(2\kappa r\right)+\left[\left(2\kappa^{2}+m_{\nu}^{2}\right)r^{2}-1\right]\sin\left(2\kappa r\right)\right\}\;, (45)
𝒥c\displaystyle{\cal J}_{c} =2r0dκn+(κ)+n(κ)κ2+mν2κ[(1κ2r2)sin(2κr)2κrcos(2κr)],\displaystyle=2r\int_{0}^{\infty}{\rm d}\kappa\frac{n_{+}(\kappa)+n_{-}(\kappa)}{\sqrt{\kappa^{2}+m_{\nu}^{2}}}\kappa\left[\left(1-\kappa^{2}r^{2}\right)\sin\left(2\kappa r\right)-2\kappa r\cos\left(2\kappa r\right)\right]\;, (46)
𝒥d\displaystyle{\cal J}_{d} =2r20dκ[n+(κ)n(κ)]κ[sin(2κr)κrcos(2κr)].\displaystyle=2r^{2}\int_{0}^{\infty}{\rm d}\kappa\left[n_{+}(\kappa)-n_{-}(\kappa)\right]\kappa\left[\sin\left(2\kappa r\right)-\kappa r\cos\left(2\kappa r\right)\right]\;. (47)

Eqs. (40)-(47) are applicable to any isotropic backgrounds. To derive them, we used the Fourier transforms shown in Appendix A. We provide the calculation details in Appendix C.

In the following two sections, we apply the general formulae derived in this section to studying several specific neutrino backgrounds: the cosmic neutrino background (Cν\nuB), the degenerate neutrino gas, and the directional neutrino beams.

3 Isotropic backgrounds

3.1 Cosmic neutrino background (Cν\nuB)

The cosmic neutrino background (Cν\nuB) is ubiquitous in the universe and relatively dense compared to artificial neutrino sources.222The comparison is in terms of the number of neutrinos per volume: the Cν\nuB number density for each flavor is 56ν/cm356\nu/{\rm cm}^{3}+56ν¯/cm356\overline{\nu}/{\rm cm}^{3} assuming Dirac neutrinos Workman:2022ynf , while the reactor neutrino flux at 1 km from a 2.9 GW nuclear power plant is only 5×109/cm2/s5\times 10^{9}/{\rm cm}^{2}/{\rm s} Kopeikin:2012zz , corresponding to 0.170.17 antineutrinos in a volume of 1 cm3{\rm cm}^{3}. The Cν\nuB is approximately isotropic. Assuming the standard cosmological evolution, it can be approximated by the Fermi-Dirac distribution:

n±(𝐤)=1e(κμ)/T+1,\displaystyle n_{\pm}\left({\bf k}\right)=\frac{1}{e^{\left(\kappa\mp\mu\right)/T}+1}\;, (48)

where μ\mu and TT are the chemical potential and temperature of Cν\nuB, respectively. In the standard cosmology, T1.9T\approx 1.9 K and μ/T1\mu/T\ll 1. Note that in Eq. (48), TT should not be interpreted as a temperature but as a quantity that is rescaled from the temperature of neutrino decoupling in the early universe. Hence for massive neutrinos, Eq. (48) is a non-thermal distribution due to κ/T\kappa/T instead of E𝐤/TE_{{\bf k}}/T occurring in the exponential.

Under certain conditions (to be discussed later), one can use the Maxwell-Boltzmann distribution to approximate the Fermi-Dirac distribution:

n±(𝐤)=exp[(±μκ)/T].\displaystyle n_{\pm}\left({\bf k}\right)=\exp\left[\left(\pm\mu-\kappa\right)/T\right]\;. (49)

This approximation has been frequently used in cosmological calculations for thermal species due to the simplicity of analytically computing various integrals Gondolo:1990dk . And it is known that using Eq. (49) instead of Eq. (48) typically causes 10%\sim 10\% deviations from the true values—see e.g. Eq. (3.6) in EscuderoAbenza:2020cmq or Tab. III in Luo:2020sho . Therefore, in Secs. 3.1.1-3.1.3, our results are obtained assuming the Maxwell-Boltzmann distribution. The differences caused by using the quantum statistics are discussed in Sec. 3.1.4.

3.1.1 The Spin-Independent (SI) part

Using Eq. (49), it is straightforward to compute the spin-independent part of the neutrino force induced by the Cν\nuHorowitz:1993kw ; Ferrer:1998ju ; Ferrer:1999ad ; Ghosh:2022nzo ; VanTilburg:2024tst ):

VbkgSI(r)\displaystyle V_{\rm bkg}^{{\rm SI}}(r) =GF2gVχ1gVχ24π3r5𝒥aMB,\displaystyle=-\frac{G_{F}^{2}g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}}{4\pi^{3}r^{5}}{\cal J}_{a}^{\rm MB}\;, (50)

where

𝒥aMB\displaystyle{\cal J}_{a}^{\rm MB} =2r0dκκeκ/Tκ2+mν2[(1+mν2r2)sin(2κr)2κrcos(2κr)]CL.\displaystyle=2r\int_{0}^{\infty}{\rm d}\kappa\frac{\kappa e^{-\kappa/T}}{\sqrt{\kappa^{2}+m_{\nu}^{2}}}\left[\left(1+m_{\nu}^{2}r^{2}\right)\sin\left(2\kappa r\right)-2\kappa r\cos\left(2\kappa r\right)\right]C_{\rm L}\;. (51)

Here CL=1/2C_{\rm L}=1/2 for non-relativistic neutrinos and CL=1C_{\rm L}=1 for ultra-relativistic neutrinos. The CLC_{\rm L} factor accounts for the effect that for non-relativistic Dirac neutrinos, half of them would be converted to the sterile state when the universe cools down to a temperature well below the neutrino mass, see Ref. Ghosh:2022nzo for more discussions.333We thank Ken Van Tilburg for pointing out this 1/21/2 factor during discussions on Ref. VanTilburg:2024tst . Note that our early arXiv versions of Ghosh:2022nzo do not contain this factor.

In the relativistic (mνTm_{\nu}\ll T) and non-relativistic (mνTm_{\nu}\gg T) limits, the 𝒥a{\cal J}_{a} integral can be computed analytically:

𝒥aMB\displaystyle{\cal J}_{a}^{\rm MB} =32r4T4(1+4r2T2)2,(mνT),\displaystyle=\frac{32r^{4}T^{4}}{\left(1+4r^{2}T^{2}\right)^{2}}\;,\ \ \ (m_{\nu}\ll T)\;, (52)
𝒥aMB\displaystyle{\cal J}_{a}^{\rm MB} =4r4T3mν(1+4r2T2)3[mν2(1+4r2T2)+16T2],(mνT).\displaystyle=\frac{4r^{4}T^{3}}{m_{\nu}\left(1+4r^{2}T^{2}\right)^{3}}\left[m_{\nu}^{2}\left(1+4r^{2}T^{2}\right)+16T^{2}\right]\;,\ \ \ (m_{\nu}\gg T)\;. (53)

3.1.2 The Spin-Dependent Parity-Conserving (SD-PC) part

For the spin-dependent parity-conserving part, we only keep the first term in the amplitude (31) since the second term vanishes in an isotropic background. Assuming standard cosmology, the number of neutrinos and anti-neutrinos is almost the same, and thus, the chemical potential is tiny, and we neglect it. We then obtain

𝒜bkgSD-PC(𝐪)=8GF2gAχ1gAχ2𝝈1i𝝈2jd3𝐤(2π)3eκ/TE𝐤K+ij,{\cal A}_{{\rm bkg}}^{\text{SD-PC}}\left({\bf q}\right)=8G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{1}^{i}\boldsymbol{\sigma}_{2}^{j}\int\frac{{\rm d}^{3}{\bf k}}{\left(2\pi\right)^{3}}\frac{e^{-\kappa/T}}{E_{{\bf k}}}K_{+}^{ij}\;, (54)

where K+K_{+} is defined in Eq. (32).

After some algebra, we obtain the corresponding neutrino force

VbkgSD-PC(𝐫)=GF2gAχ1gAχ24π3r5[(𝝈1𝝈2)𝒥bMB+(𝝈1𝐫^)(𝝈2𝐫^)𝒥cMB],\displaystyle V_{\rm bkg}^{\text{SD-PC}}\left({\bf r}\right)=-\frac{G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}}{4\pi^{3}r^{5}}\left[\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{\sigma}_{2}\right){\cal J}_{b}^{\rm MB}+\left(\boldsymbol{\sigma}_{1}\cdot{\bf\hat{r}}\right)\left(\boldsymbol{\sigma}_{2}\cdot{\bf\hat{r}}\right){\cal J}_{c}^{\rm MB}\right]\;, (55)

where

𝒥bMB\displaystyle{\cal J}_{b}^{\rm MB} =2r0dκκeκ/Tκ2+mν2{2κrcos(2κr)+[(2κ2+mν2)r21]sin(2κr)}CL,\displaystyle=2r\int_{0}^{\infty}{\rm d}\kappa\frac{\kappa e^{-\kappa/T}}{\sqrt{\kappa^{2}+m_{\nu}^{2}}}\left\{2\kappa r\cos\left(2\kappa r\right)+\left[\left(2\kappa^{2}+m_{\nu}^{2}\right)r^{2}-1\right]\sin\left(2\kappa r\right)\right\}C_{\rm L}\;, (56)
𝒥cMB\displaystyle{\cal J}_{c}^{\rm MB} =4r0dκκeκ/Tκ2+mν2[(1κ2r2)sin(2κr)2κrcos(2κr)]CL.\displaystyle=4r\int_{0}^{\infty}{\rm d}\kappa\frac{\kappa e^{-\kappa/T}}{\sqrt{\kappa^{2}+m_{\nu}^{2}}}\left[\left(1-\kappa^{2}r^{2}\right)\sin\left(2\kappa r\right)-2\kappa r\cos\left(2\kappa r\right)\right]C_{\rm L}\;. (57)

These 𝒥{\cal J} integrals cannot be recast into a simple analytical form but can be computed numerically for any given values of neutrino mass mνm_{\nu}, temperature TT, and distance rr.

In certain limits, one can obtain simple analytical results for these 𝒥{\cal J} integrals. Specifically, in the relativistic limit, these 𝒥{\cal J} integrals reduce to

𝒥bMB\displaystyle{\cal J}_{b}^{\rm MB} =16r4T4(112r2T2)(1+4r2T2)3,(mνT),\displaystyle=16r^{4}T^{4}\frac{\left(1-12r^{2}T^{2}\right)}{\left(1+4r^{2}T^{2}\right)^{3}}\;,\ \ \ (m_{\nu}\ll T)\;, (58)
𝒥cMB\displaystyle{\cal J}_{c}^{\rm MB} =16r4T4(1+20r2T2)(1+4r2T2)3,(mνT),\displaystyle=16r^{4}T^{4}\frac{\left(1+20r^{2}T^{2}\right)}{\left(1+4r^{2}T^{2}\right)^{3}}\;,\ \ \ (m_{\nu}\ll T)\;, (59)

while in the non-relativistic limit, they are

𝒥bMB\displaystyle{\cal J}_{b}^{\rm MB} =4T3r4mν(1+4r2T2)4[mν2(1+4r2T2)2+8T2(120r2T2)],(mνT),\displaystyle=\frac{4T^{3}r^{4}}{m_{\nu}\left(1+4r^{2}T^{2}\right)^{4}}\left[m_{\nu}^{2}\left(1+4r^{2}T^{2}\right)^{2}+8T^{2}\left(1-20r^{2}T^{2}\right)\right]\;,\ \ \ (m_{\nu}\gg T)\;, (60)
𝒥cMB\displaystyle{\cal J}_{c}^{\rm MB} =32T5r4mν(1+28r2T2)(1+4r2T2)4,(mνT).\displaystyle=\frac{32T^{5}r^{4}}{m_{\nu}}\frac{\left(1+28r^{2}T^{2}\right)}{\left(1+4r^{2}T^{2}\right)^{4}}\;,\ \ \ (m_{\nu}\gg T)\;. (61)

3.1.3 The Spin-Dependent Parity-Violating (SD-PV) part

Next, we study the parity-violating part. In a general neutrino background, there are two different sources of parity violation, either coming from the loop-integral (IPVμνWμνPCI_{\rm PV}^{\mu\nu}W_{\mu\nu}^{\rm PC}) part or coming from the wave-function (IPCμνWμνPVI_{\rm PC}^{\mu\nu}W_{\mu\nu}^{\rm PV}) part, as can be seen from Eq. (34). The contraction of IPCμνWμνPVI_{\rm PC}^{\mu\nu}W_{\mu\nu}^{\rm PV} is always suppressed by the velocities of external particles or the variation of velocities.

Let us first consider IPVμνWμνPCI_{\rm PV}^{\mu\nu}W_{\mu\nu}^{\rm PC}. For an isotropic background, n±(𝐤)=n±(κ)n_{\pm}({\bf k})=n_{\pm}({\kappa}), the contraction of IPV0iW0iPCI_{\rm PV}^{0i}W_{0i}^{\rm PC} and IPVi0Wi0PCI_{\rm PV}^{i0}W_{i0}^{\rm PC} vanish, as can be seen from the last line of Eq. (2.2). The only nonzero contribution in this contraction comes from IPVijWijPCI_{\rm PV}^{ij}W_{ij}^{\rm PC}, leading to the following parity-violating amplitude:

𝒜bkg,0SD-PV(𝐪)=8iGF2gAχ1gAχ2sinh(μT)ϵijk𝝈1i𝝈2jqkd3𝐤(2π)3eκ/T𝐪2𝐪44(𝐤𝐪)2.\displaystyle{\cal A}_{\rm bkg,0}^{\text{SD-PV}}\left({\bf q}\right)=8{\rm i}G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\sinh\left(\frac{\mu}{T}\right)\epsilon^{ijk}\boldsymbol{\sigma}_{1}^{i}\boldsymbol{\sigma}_{2}^{j}q^{k}\int\frac{{\rm d}^{3}{\bf k}}{\left(2\pi\right)^{3}}e^{-\kappa/T}\frac{{\bf q}^{2}}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}\;. (62)

It is interesting to notice that the parity-violating amplitude in (62) does not depend on the neutrino mass. Working out the integral and performing the Fourier transform, we obtain the parity-violating neutrino force in Cν\nuB:

Vbkg,0SD-PV(𝐫)=𝐫^(𝝈1×𝝈2)GF2gAχ1gAχ24π3r5𝒥dMB,\displaystyle V_{\rm bkg,0}^{\text{SD-PV}}\left({\bf r}\right)={\hat{\bf r}}\cdot\left(\boldsymbol{\sigma}_{1}\times\boldsymbol{\sigma}_{2}\right)\frac{G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}}{4\pi^{3}r^{5}}{\cal J}_{d}^{\rm MB}\;, (63)

where

𝒥dMB=8r3T3(1+20r2T2)(1+4r2T2)3sinh(μT).\displaystyle{\cal J}_{d}^{\rm MB}=8r^{3}T^{3}\frac{\left(1+20r^{2}T^{2}\right)}{\left(1+4r^{2}T^{2}\right)^{3}}\sinh\left(\frac{\mu}{T}\right)\;. (64)

This matches the result in Ref. Horowitz:1993kw . At short distances r1/Tr\ll 1/T and with small chemical potential μT\mu\ll T, Eq. (63) scales as Vbkg,0SD-PVGF2μT2/r2V_{\rm bkg,0}^{\text{SD-PV}}\sim G_{F}^{2}\mu T^{2}/r^{2}. Compared with the parity-violating force in vacuum (2.1), the background effect is not suppressed by the velocity of the external particles and can also be enhanced by large temperature.

Then we consider the wave-function (IPCμνWμνPVI_{\rm PC}^{\mu\nu}W_{\mu\nu}^{\rm PV}) part, which does not require lepton asymmetry. For the isotropic background, the second term in Eq. (37) vanishes. So we have

𝒜bkg,1SD-PV(𝐫)=16GF2d3𝐤(2π)3eκ/TEk[gVχ2gAχ1(𝝈1i𝒗1iK0+𝝈1i𝒗~2jK+ij)+12],\displaystyle{\cal A}_{\rm bkg,1}^{\text{SD-PV}}\left({\bf r}\right)=16G_{F}^{2}\int\frac{{\rm d}^{3}{\bf k}}{\left(2\pi\right)^{3}}\frac{e^{-\kappa/T}}{E_{k}}\left[g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}\left(\boldsymbol{\sigma}_{1}^{i}\boldsymbol{v}_{1}^{i}K_{0}+\boldsymbol{\sigma}_{1}^{i}\tilde{\boldsymbol{v}}_{2}^{j}K_{+}^{ij}\right)+1\leftrightarrow 2\right]\;, (65)

where K0K_{0} and K+K_{+} are defined in Eqs. (30) and (32). After some algebra, we obtain the corresponding parity-violating neutrino force:

Vbkg,1SD-PV(𝐫)=GF2gVχ2gAχ12π3r5\displaystyle V_{\rm bkg,1}^{\text{SD-PV}}\left({\bf r}\right)=-\frac{G_{F}^{2}g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}}{2\pi^{3}r^{5}} [(𝝈1𝒗1)𝒥aMB+(𝝈1𝒗~2)𝒥bMB+(𝝈1𝐫^)(𝒗~2𝐫^)𝒥cMB]+12,\displaystyle\left[\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{v}_{1}\right){\cal J}_{a}^{\rm MB}+\left(\boldsymbol{\sigma}_{1}\cdot\tilde{\boldsymbol{v}}_{2}\right){\cal J}_{b}^{\rm MB}+\left(\boldsymbol{\sigma}_{1}\cdot{\bf\hat{r}}\right)\left(\tilde{\boldsymbol{v}}_{2}\cdot{\bf\hat{r}}\right){\cal J}_{c}^{\rm MB}\right]+1\leftrightarrow 2\;, (66)

where the complete expressions of 𝒥aMB{\cal J}_{a}^{\rm MB}, 𝒥bMB{\cal J}_{b}^{\rm MB} and 𝒥cMB{\cal J}_{c}^{\rm MB} are given by Eqs. (51), (56) and (57), respectively.

3.1.4 Maxwell-Boltzmann vs Fermi-Dirac distributions

The differences between the Maxwell-Boltzmann (MB) and Fermi-Dirac (FD) distributions are significant only in circumstances where the Pauli exclusion nature of fermions plays a significant role. For example, in degenerate neutrino gas, where the effect of Pauli blocking is strong, one should use the FD distribution. The degenerate limit itself is an interesting scenario, so we leave the discussions to Sec. 3.2. Here, we only consider the case when the degeneracy is weak (more specifically, the portion of particles below the Fermi surface, κ<μ\kappa<\mu, makes only a very small contribution) and the chemical potential μ\mu is small compared to all relevant quantities. We neglect the neutrino mass for simplicity in this subsection.

Under the assumptions above, we would like to address the differences between the MB and FD distributions quantitatively. It is noteworthy that the major difference can already be reflected by the number density integral n±(𝐤)d3𝐤/(2π)3\int n_{\pm}({\bf k}){\rm d}^{3}{\bf k}/(2\pi)^{3}, which in the FD distribution differs by a factor of ζ(3)3/40.9\zeta(3)3/4\approx 0.9 compared to the MB result. Therefore, for other integrals involved in our calculations, differences of 10%\sim 10\% are expected.

Specifically, let us first re-calculate the parity-conserving parts using the FD distribution. For the SI part, the result is given by Eq. (50) with 𝒥aMB{\cal J}_{a}^{\rm MB} being changed to

𝒥aFD=1πrTsinh(2πrT)[1+2πrTcoth(2πrT)].\displaystyle{\cal J}_{a}^{\rm FD}=1-\frac{\pi rT}{\sinh\left(2\pi rT\right)}\left[1+2\pi rT\coth\left(2\pi rT\right)\right]\;. (67)

For the SD-PC part, the result is given by Eq. (55), where 𝒥bMB{\cal J}_{b}^{\rm MB} and 𝒥cMB{\cal J}_{c}^{\rm MB} are replaced by

𝒥bFD\displaystyle{\cal J}_{b}^{\rm FD} =32+πrT1+6π2r2T2+(1+2π2r2T2)cosh(4πrT)+2πrTsinh(4πrT)2sinh3(2πrT),\displaystyle=-\frac{3}{2}+\pi rT\,\frac{-1+6\pi^{2}r^{2}T^{2}+(1+2\pi^{2}r^{2}T^{2})\cosh(4\pi rT)+2\pi rT\sinh(4\pi rT)}{2\sinh^{3}(2\pi rT)}\,, (68)
𝒥cFD\displaystyle{\cal J}_{c}^{\rm FD} =522πrTsinh(2πrT)[1+2πrTcoth(2πrT)](πrT)3sinh3(2πrT)[3+cosh(4πrT)].\displaystyle=\frac{5}{2}-\frac{2\pi rT}{\sinh\left(2\pi rT\right)}\left[1+2\pi rT\coth\left(2\pi rT\right)\right]-\frac{\left(\pi rT\right)^{3}}{\sinh^{3}\left(2\pi rT\right)}\left[3+\cosh\left(4\pi rT\right)\right]\,. (69)

Although the expressions for FD are much more complicated than the previous ones for MB, they are quantitatively very similar, as is shown in Fig. 3.

Refer to caption
Refer to caption
Figure 3: Comparison of the results computed using Maxwell-Boltzmann (MB) and Fermi-Dirac (FD) distributions for the 𝒥b{\cal J}_{b} and 𝒥c{\cal J}_{c} factors in Eq. (55). The MB and FD curves are produced according to Eqs. (58)-(59) and (68)-(69), respectively.

We can further compute the parity-violating part with the FD distribution. As mentioned, here we only consider the weak degenerate limit with small μ\mu, for which we have

n+(𝐤)n(𝐤)2μTeκ/T(1+eκ/T)2(μT).\displaystyle n_{+}({\bf k})-n_{-}({\bf k})\approx\frac{2\mu}{T}\frac{e^{\kappa/T}}{\left(1+e^{\kappa/T}\right)^{2}}\quad\text{($\mu\ll T$)}\;. (70)

This leads to a result similar to Eq. (63) except that for FD distribution, the 𝒥d{\cal J}_{d} factor is changed from Eq. (64) to

𝒥dFD=πr2T2sinh3(2πrT)[1+6π2r2T2+(2π2r2T21)cosh(4πrT)]μT.\displaystyle{\cal J}_{d}^{\rm FD}=\frac{\pi r^{2}T^{2}}{\sinh^{3}\left(2\pi rT\right)}\left[1+6\pi^{2}r^{2}T^{2}+\left(2\pi^{2}r^{2}T^{2}-1\right)\cosh\left(4\pi rT\right)\right]\frac{\mu}{T}\;. (71)

At short distances or low temperatures (rT1rT\ll 1), Eqs. (71) and (64) reduce to 2π23μT2r3\frac{2\pi^{2}}{3}\mu T^{2}r^{3} and 8μT2r38\mu T^{2}r^{3}. The factor of π2/120.82{\pi^{2}/12}\approx 0.82 confirms our expectation that the difference between the MB and FD cases is typical of the order of 10%10\%.

In addition, for FD distribution, we should also obtain a parity-violating term that is not suppressed by the lepton asymmetry, which is proportional to

n+(𝐤)+n(𝐤)21+eκ/T(μT).\displaystyle n_{+}({\bf k})+n_{-}({\bf k})\approx\frac{2}{1+e^{\kappa/T}}\quad\text{($\mu\ll T$)}\;. (72)

This leads to a parity-violating force as the form of Eq. (66) except that for FD distribution, the 𝒥a{\cal J}_{a}, 𝒥b{\cal J}_{b} and 𝒥c{\cal J}_{c} factors are given by Eqs. (67), (68) and (69), respectively.

3.2 Degenerate neutrino gas

In the degenerate limit, μT\mu\gg T, the Fermi-Dirac distribution reduces to

n+(𝐤){1(forκ<μ)0(forκ>μ),n(𝐤)=0.\displaystyle n_{+}({\bf k})\approx\left\{\begin{aligned} &1\quad({\rm for}\;\kappa<\mu)\\ &0\quad({\rm for}\;\kappa>\mu)\end{aligned}\;,\;\;\;\qquad n_{-}({\bf k})=0\;.\right. (73)

The degenerate limit is theoretically interesting and, furthermore, important to understand neutrino forces’ behavior in some astrophysical environments with dense neutrino backgrounds. For instance, inside a supernovae, T𝒪(MeV)T\sim{\cal O}({\rm MeV}), while the chemical potential of neutrinos can reach μ𝒪(100MeV)\mu\sim{\cal O}(100\leavevmode\nobreak\ {\rm MeV}) Alford:2019kdw . Therefore, μT\mu\gg T could be satisfied inside the supernovae, and we can take the degenerate limit (73) as a good approximation.

The degenerate limit allows relatively simple results for the neutrino forces to be obtained analytically. First of all, the spin-independent part of the potential is given by

VbkgSI(r)=GF2gVχ1gVχ24π3r5𝒥adeg,\displaystyle V_{{\rm bkg}}^{\text{SI}}(r)=-\frac{G_{F}^{2}g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}}{4\pi^{3}r^{5}}{\cal J}_{a}^{\rm deg}\;, (74)

where

𝒥adeg=2sin2(μr)μrsin(2μr).\displaystyle{\cal J}_{a}^{\rm deg}=2\sin^{2}(\mu r)-\mu r\sin(2\mu r)\;. (75)

In the short-distance limit (μr1\mu r\ll 1), the force behaves as VbkgSIGF2μ4/rV_{{\rm bkg}}^{\text{SI}}\sim-G_{F}^{2}\mu^{4}/r.

The spin-dependent parity-conserving part turns out to be

VbkgSD-PC(𝐫)\displaystyle V_{\rm bkg}^{\text{SD-PC}}\left({\bf r}\right) =GF2gAχ1gAχ24π3r5[(𝝈1𝝈2)𝒥bdeg+(𝝈1𝐫^)(𝝈2𝐫^)𝒥cdeg],\displaystyle=-\frac{G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}}{4\pi^{3}r^{5}}\left[\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{\sigma}_{2}\right){\cal J}_{b}^{\rm deg}+\left(\boldsymbol{\sigma}_{1}\cdot{\bf\hat{r}}\right)\left(\boldsymbol{\sigma}_{2}\cdot{\bf\hat{r}}\right){\cal J}_{c}^{\rm deg}\right]\;, (76)

where

𝒥bdeg\displaystyle{\cal J}_{b}^{\rm deg} =32+12(32μ2r2)cos(2μr)+2μrsin(2μr),\displaystyle=-\frac{3}{2}+\frac{1}{2}\left(3-2\mu^{2}r^{2}\right)\cos\left(2\mu r\right)+2\mu r\sin\left(2\mu r\right)\;, (77)
𝒥cdeg\displaystyle{\cal J}_{c}^{\rm deg} =52+12(2μ2r25)cos(2μr)3μrsin(2μr).\displaystyle=\frac{5}{2}+\frac{1}{2}\left(2\mu^{2}r^{2}-5\right)\cos\left(2\mu r\right)-3\mu r\sin\left(2\mu r\right)\;. (78)

It is easy to check that at short distances (μr1\mu r\ll 1), we have 𝒥bdeg=𝒥cdeg=μ4r4/3{\cal J}_{b}^{\rm deg}={\cal J}_{c}^{\rm deg}=\mu^{4}r^{4}/3, and the force scales as VbkgSD-PCGF2μ4/rV_{\rm bkg}^{\text{SD-PC}}\sim G_{F}^{2}\mu^{4}/r.

Finally, the spin-dependent parity-violating part in this case reads:

VbkgSD-PV(𝐫)=𝐫^(𝝈1×𝝈2)GF2gAχ1gAχ24π3r5𝒥ddeg,\displaystyle V_{\rm bkg}^{\text{SD-PV}}\left({\bf r}\right)={\hat{\bf r}}\cdot\left(\boldsymbol{\sigma}_{1}\times\boldsymbol{\sigma}_{2}\right)\frac{G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}}{4\pi^{3}r^{5}}{\cal J}_{d}^{\rm deg}\;, (79)

where

𝒥ddeg=(1μ2r2)sin(2μr)2μrcos(2μr).\displaystyle{\cal J}_{d}^{\rm deg}=\left(1-\mu^{2}r^{2}\right)\sin\left(2\mu r\right)-2\mu r\cos\left(2\mu r\right)\;. (80)

In the short-distance limit, Eq. (79) scales as VbkgSD-PVGF2μ3/r2V_{\rm bkg}^{\text{SD-PV}}\sim G_{F}^{2}\mu^{3}/r^{2}.

3.3 Summary of the results in isotropic backgrounds

In the two subsections above, we computed the neutrino forces in isotropic backgrounds, specifically in the Cν\nuB with MB distribution and FD distribution, as well as in the degenerate neutrino gas. We found that, for any isotropic background, the neutrino forces have the same structure, as shown in Eqs. (40)-(43). The differences are only encoded in the 𝒥{\cal J}-factors, which are determined by the background distribution functions. In particular, the spin-independent neutrino force is only sensitive to 𝒥a{\cal J}_{a}, while the leading term (no velocity suppression) of the parity-violating neutrino force is only sensitive to 𝒥d{\cal J}_{d}. In Tab. 1, we summarize the results of 𝒥{\cal J}-factors in various isotropic backgrounds that we have computed.

𝒥a{\cal J}_{a} 𝒥b{\cal J}_{b} 𝒥c{\cal J}_{c} 𝒥d{\cal J}_{d}
General isotropic bkg. (44) (45) (46) (47)
Cν\nuB-MB (51) (56) (57) (64)
Cν\nuB-FD (67) (68) (69) (71)
Degenerate bkg. (75) (77) (78) (80)
Table 1: Summary of the 𝒥{\cal J}-factors in various isotropic backgrounds. Note the results in the last two lines have neglected the neutrino mass.

4 Directional neutrino beams

In this section, we consider a directional and monochromatic neutrino background, namely

n+(𝐤)=(2π)3Φ0δ3(𝐤𝐤0),n(𝐤)=0,\displaystyle n_{+}\left({\bf k}\right)=\left(2\pi\right)^{3}\Phi_{0}\delta^{3}\left({\bf k}-{\bf k}_{0}\right)\;,\qquad n_{-}\left({\bf k}\right)=0\;, (81)

where Φ0\Phi_{0} is the flux of neutrinos and 𝐤0{\bf k}_{0} is the momentum of neutrino flux. The energy scale of the typical neutrino beams (e.g., reactor, solar, and supernova neutrinos) is Eν𝒪(MeV)E_{\nu}\sim{\cal O}({\rm MeV}), so one can safely neglect the neutrino mass, and thus |𝐤0|=Eν\left|{\bf k}_{0}\right|=E_{\nu}. Since the background is not isotropic, the background-induced neutrino force depends on both the distance rr between two external particles and the angle between 𝐫{\bf r} and 𝐤0{\bf k}_{0} (denoted by α\alpha).

The spin-independent neutrino force in the background of Eq. (81) has been studied in Ref. Ghosh:2022nzo . The result is given by Ghosh:2022nzo

VbkgSI(r,α)=GF2Φ0Eνπ3gVχ1gVχ2SI(r,α),\displaystyle V_{\rm bkg}^{{\rm SI}}\left(r,\alpha\right)=-\frac{G_{F}^{2}\Phi_{0}E_{\nu}}{\pi^{3}}g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}\,{\cal I}^{\rm SI}\left(r,\alpha\right)\;, (82)

where

SI(r,α)\displaystyle{\cal I}^{\rm SI}\left(r,\alpha\right) d3𝐪ei𝐪𝐫1ξ2ρ24Eν2ξ2\displaystyle\equiv\int{\rm d}^{3}{\bf q}\,e^{{\rm i}{\bf q}\cdot{\bf r}}\frac{1-\xi^{2}}{\rho^{2}-4E_{\nu}^{2}\xi^{2}}
=π22r(3+cos2α)2πEν11dξξ(1ξ2)0πdφsin(2Eνrξ|sα1ξ2cφ+cαξ|),\displaystyle=\frac{\pi^{2}}{2r}\left(3+\cos 2\alpha\right)-2\pi E_{\nu}\int_{-1}^{1}{\rm d}\xi\,\xi\left(1-\xi^{2}\right)\int_{0}^{\pi}{\rm d}\varphi\sin\left(2E_{\nu}r\xi\left|s_{\alpha}\sqrt{1-\xi^{2}}c_{\varphi}+c_{\alpha}\xi\right|\right)\;, (83)

where ρ|𝐪|\rho\equiv\left|{\bf q}\right|, ξcosθ\xi\equiv\cos\theta with θ\theta the angle between 𝐤0{\bf k}_{0} and 𝐪{\bf q}, cxcosxc_{x}\equiv\cos x, sxsinxs_{x}\equiv\sin x (for x=α,φx=\alpha,\varphi). At long distances (r1/Eνr\gg 1/E_{\nu}), we have an analytical expression Ghosh:2022nzo ,

VbkgSI(rEν1,α)=GF2Φ0EνπrgVχ1gVχ2\displaystyle V_{\rm bkg}^{{\rm SI}}\left(r\gg E_{\nu}^{-1},\alpha\right)=-\frac{G_{F}^{2}\Phi_{0}E_{\nu}}{\pi r}g_{V}^{\chi_{1}}g_{V}^{\chi_{2}} {cos2(α2)cos[(1cosα)Eνr]\displaystyle\left\{\;\cos^{2}\left(\frac{\alpha}{2}\right)\cos\left[\left(1-\cos\alpha\right)E_{\nu}r\right]\right.
+sin2(α2)cos[(1+cosα)Eνr]}.\displaystyle\left.+\sin^{2}\left(\frac{\alpha}{2}\right)\cos\left[\left(1+\cos\alpha\right)E_{\nu}r\right]\right\}\;. (84)

In particular, in the limit where α0\alpha\to 0 (i.e., in the direction parallel to the neutrino flux), we have VbkgSIGF2Φ0Eν/rV_{\rm bkg}^{{\rm SI}}\sim G_{F}^{2}\Phi_{0}E_{\nu}/r, which has a significant enhancement compared with the force in vacuum, GF2/r5G_{F}^{2}/r^{5}, at long distances. However, such a 1/r1/r force is still difficult to probe in experiments Ghosh:2022nzo ; Blas:2022ovz ; VanTilburg:2024tst , see discussions below Eq. (3).

In the following, we calculate the spin-dependent parts of the neutrino force in a directional and monochromatic neutrino background. We first take a look at the parity-violating force. Unlike the case of Cν\nuB, we consider the cases where the directional neutrino flux has the maximal lepton asymmetry. Thus, we keep only the leading term of the parity-violating amplitude (2.2) that is not suppressed by the velocity of external particles. Substituting Eq. (81) into Eq. (2.2), we obtain the spin-dependent parity-violating amplitude

𝒜bkg,0SD-PV(𝐪)=4iGF2Φ0ϵijk[gAχ1gAχ2𝝈1i𝝈2j+(gVχ1gAχ2𝝈2gVχ2gAχ1𝝈1)i𝐤^0j]qk𝐪2𝐪44(𝐤𝐪)2.\displaystyle{\cal A}_{\rm bkg,0}^{\text{SD-PV}}\left({\bf q}\right)=4{\rm i}G_{F}^{2}\Phi_{0}\epsilon^{ijk}\left[g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{1}^{i}\boldsymbol{\sigma}_{2}^{j}+\left(g_{V}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{2}-g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}\boldsymbol{\sigma}_{1}\right)^{i}\widehat{\bf k}_{0}^{j}\right]\cdot\frac{q^{k}{\bf q}^{2}}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}\;. (85)

The corresponding parity-violating neutrino force turns out to be

Vbkg,0SD-PV(r,α)=GF2Φ02π3[gAχ1gAχ2(𝝈1×𝝈2)+(gVχ1gAχ2𝝈2gVχ2gAχ1𝝈1)×𝐤^0]PV,\displaystyle V_{\rm bkg,0}^{\text{SD-PV}}\left(r,\alpha\right)=-\frac{G_{F}^{2}\Phi_{0}}{2\pi^{3}}\left[g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\left(\boldsymbol{\sigma}_{1}\times\boldsymbol{\sigma}_{2}\right)+\left(g_{V}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{2}-g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}\boldsymbol{\sigma}_{1}\right)\times\widehat{\bf k}_{0}\right]\cdot\nabla\,{\cal I}^{\rm PV}\;, (86)

with 𝐤^0𝐤0/Eν\widehat{\bf k}_{0}\equiv{\bf k}_{0}/E_{\nu}, and

PV(r,α)\displaystyle{\cal I}^{\rm PV}\left(r,\alpha\right) d3𝐪ei𝐪𝐫1ρ24Eν2ξ2\displaystyle\equiv\int{\rm d}^{3}{\bf q}\,e^{{\rm i}{\bf q}\cdot{\bf r}}\frac{1}{\rho^{2}-4E_{\nu}^{2}\xi^{2}}
=2π2r2πEν11dξξ0πdφsin(2Eνrξ|sα1ξ2cφ+cαξ|).\displaystyle=\frac{2\pi^{2}}{r}-2\pi E_{\nu}\int_{-1}^{1}{\rm d}\xi\,\xi\int_{0}^{\pi}{\rm d}\varphi\sin\left(2E_{\nu}r\xi\left|s_{\alpha}\sqrt{1-\xi^{2}}c_{\varphi}+c_{\alpha}\xi\right|\right)\;. (87)

The integral in Eq. (4) does not have a simple analytical expression in the most general case, but it can be computed numerically. In the following two cases, the integral can be worked out analytically.

  • In the direction that is parallel to the neutrino flux, where α=0\alpha=0, we find

    PV(r,α=0)=π2r[1+cos(2Eνr)].\displaystyle{\cal I}^{\rm PV}\left(r,\alpha=0\right)=\frac{\pi^{2}}{r}\left[1+\cos\left(2E_{\nu}r\right)\right]\;. (88)

    In this case the second term in the bracket of Eq. (86) vanishes, and the parity-violating neutrino force is reduced to

    Vbkg,0SD-PV(r,α=0)=𝐫^(𝝈1×𝝈2)GF2Φ02πr2gAχ1gAχ2[1+cos(2Eνr)+2Eνrsin(2Eνr)].\displaystyle V_{\rm bkg,0}^{\text{SD-PV}}\left(r,\alpha=0\right)=\hat{\bf r}\cdot\left(\boldsymbol{\sigma}_{1}\times\boldsymbol{\sigma}_{2}\right)\frac{G_{F}^{2}\Phi_{0}}{2\pi r^{2}}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\left[1+\cos\left(2E_{\nu}r\right)+2E_{\nu}r\sin\left(2E_{\nu}r\right)\right]\;. (89)
  • At long distances r1/Eνr\gg 1/E_{\nu}, we can work out Eq. (4) analytically for arbitrary α\alpha:

    PV(rEν1,α)=π2r{cos[(1cosα)Eνr]+cos[(1+cosα)Eνr]}.\displaystyle{\cal I}^{\rm PV}\left(r\gg E_{\nu}^{-1},\alpha\right)=\frac{\pi^{2}}{r}\left\{\cos\left[\left(1-\cos\alpha\right)E_{\nu}r\right]+\cos\left[\left(1+\cos\alpha\right)E_{\nu}r\right]\right\}\;. (90)

    In this case, the parity-violating neutrino force is given by

    Vbkg,0SD-PV(rEν1,α)=GF2Φ02πr2[gAχ1gAχ2(𝝈1×𝝈2)+(gVχ1gAχ2𝝈2gVχ2gAχ1𝝈1)×𝐤^0]𝐫^\displaystyle V_{\rm bkg,0}^{\text{SD-PV}}\left(r\gg E_{\nu}^{-1},\alpha\right)=\frac{G_{F}^{2}\Phi_{0}}{2\pi r^{2}}\left[g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\left(\boldsymbol{\sigma}_{1}\times\boldsymbol{\sigma}_{2}\right)+\left(g_{V}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{2}-g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}\boldsymbol{\sigma}_{1}\right)\times\widehat{\bf k}_{0}\right]\cdot\hat{{\bf r}}
    ×{cos[(1cosα)Eνr]+cos[(1+cosα)Eνr]\displaystyle\times\left\{\cos\left[\left(1-\cos\alpha\right)E_{\nu}r\right]+\cos\left[\left(1+\cos\alpha\right)E_{\nu}r\right]\right.
    +Eνr(1cosα)sin[(1cosα)Eνr]+Eνr(1+cosα)sin[(1+cosα)Eνr]}.\displaystyle\left.+E_{\nu}r\left(1-\cos\alpha\right)\sin\left[\left(1-\cos\alpha\right)E_{\nu}r\right]+E_{\nu}r\left(1+\cos\alpha\right)\sin\left[\left(1+\cos\alpha\right)E_{\nu}r\right]\right\}\;. (91)

For small α\alpha, Eq. (90) is reduced to

PV(rEν1,α1)π2r[cos(α2Eνr2)+cos(2Eνr)].\displaystyle{\cal I}^{\rm PV}\left(r\gg E_{\nu}^{-1},\alpha\ll 1\right)\approx\frac{\pi^{2}}{r}\left[\cos\left(\frac{\alpha^{2}E_{\nu}r}{2}\right)+\cos\left(2E_{\nu}r\right)\right]\;. (92)

We see that for α21/(Eνr)\alpha^{2}\lesssim 1/\left(E_{\nu}r\right), we have

Vbkg,0SD-PVGF2Φ0r2.V_{\rm bkg,0}^{\text{SD-PV}}\sim\frac{G_{F}^{2}\Phi_{0}}{r^{2}}\;. (93)

For completeness, we also give the result of the next-leading order (velocity-suppressed) parity-violating force, as well as the spin-dependent parity-conserving (SD-PC) force in the directional background:

Vbkg,1SD-PV(r,α)=\displaystyle V_{\rm bkg,1}^{\text{SD-PV}}\left(r,\alpha\right)= GF2Φ0Eνπ3{gVχ2gAχ1[2(𝝈1𝒗1)SI+(𝝈1𝒗~2)a+(𝝈1)(𝒗~2)b]\displaystyle-\frac{G_{F}^{2}\Phi_{0}E_{\nu}}{\pi^{3}}\left\{g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}\left[2\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{v}_{1}\right){\cal I}^{\rm SI}+\left(\boldsymbol{\sigma}_{1}\cdot\tilde{\boldsymbol{v}}_{2}\right){\cal I}_{a}+\left(\boldsymbol{\sigma}_{1}\cdot\nabla\right)\left(\tilde{\boldsymbol{v}}_{2}\cdot\nabla\right){\cal I}_{b}\right]\right.
2[gVχ1gVχ2(𝒗~1𝐤^0)+gAχ1gAχ2(𝝈1𝒗1)(𝝈2𝐤^0)]PV\displaystyle\left.-2\left[g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}\left(\tilde{\boldsymbol{v}}_{1}\cdot\widehat{{\bf k}}_{0}\right)+g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{v}_{1}\right)\left(\boldsymbol{\sigma}_{2}\cdot\widehat{{\bf k}}_{0}\right)\right]{\cal I}^{\rm PV}\right.
2[gVχ1gVχ2(𝒗~1)+gAχ1gAχ2(𝝈1𝒗1)(𝝈2)]c}+12,\displaystyle\left.-2\left[g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}\left(\tilde{\boldsymbol{v}}_{1}\cdot\nabla\right)+g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{v}_{1}\right)\left(\boldsymbol{\sigma}_{2}\cdot\nabla\right)\right]{\cal I}_{c}\right\}+1\leftrightarrow 2\;, (94)

and

VbkgSD-PC(r,α)=GF2Φ0Eν2π3\displaystyle V_{\rm bkg}^{\text{SD-PC}}\left(r,\alpha\right)=-\frac{G_{F}^{2}\Phi_{0}E_{\nu}}{2\pi^{3}} {gAχ1gAχ2[(𝝈1𝝈2)a+(𝝈1)(𝝈2)b]\displaystyle\left\{g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\left[\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{\sigma}_{2}\right){\cal I}_{a}+\left(\boldsymbol{\sigma}_{1}\cdot\nabla\right)\left(\boldsymbol{\sigma}_{2}\cdot\nabla\right){\cal I}_{b}\right]\right.
2gVχ2gAχ1[(𝝈1𝐤^0)PV+(𝝈1)c]12},\displaystyle\left.-2g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}\left[\left(\boldsymbol{\sigma}_{1}\cdot\widehat{{\bf k}}_{0}\right){\cal I}^{\rm PV}+\left(\boldsymbol{\sigma}_{1}\cdot\nabla\right){\cal I}_{c}\right]-1\leftrightarrow 2\right\}\;, (95)

where SI{\cal I}^{\rm SI} and PV{\cal I}^{\rm PV} are given by Eqs. (4) and (4), and

a(r,α)\displaystyle{\cal I}_{a}\left(r,\alpha\right) d3𝐪ei𝐪𝐫1+ξ2ρ24Eν2ξ2,\displaystyle\equiv\int{\rm d}^{3}{\bf q}\,e^{{\rm i}{\bf q}\cdot{\bf r}}\,\frac{1+\xi^{2}}{\rho^{2}-4E_{\nu}^{2}\xi^{2}}\;, (96)
b(r,α)\displaystyle{\cal I}_{b}\left(r,\alpha\right) d3𝐪ei𝐪𝐫1+ξ2ρ2(ρ24Eν2ξ2),\displaystyle\equiv\int{\rm d}^{3}{\bf q}\,e^{{\rm i}{\bf q}\cdot{\bf r}}\,\frac{1+\xi^{2}}{\rho^{2}\left(\rho^{2}-4E_{\nu}^{2}\xi^{2}\right)}\;, (97)
c(r,α)\displaystyle{\cal I}_{c}\left(r,\alpha\right) id3𝐪ei𝐪𝐫ξρ(ρ24Eν2ξ2).\displaystyle\equiv{\rm i}\int{\rm d}^{3}{\bf q}\,e^{{\rm i}{\bf q}\cdot{\bf r}}\,\frac{\xi}{\rho\left(\rho^{2}-4E_{\nu}^{2}\xi^{2}\right)}\;. (98)

The integrals a{\cal I}_{a}, b{\cal I}_{b} and c{\cal I}_{c} turn out to be

a(r,α)\displaystyle{\cal I}_{a}\left(r,\alpha\right) =π22r(5cos2α)2πEν11dξξ(1+ξ2)0πdφsin𝒞,\displaystyle=\frac{\pi^{2}}{2r}\left(5-\cos 2\alpha\right)-2\pi E_{\nu}\int_{-1}^{1}{\rm d}\xi\,\xi\left(1+\xi^{2}\right)\int_{0}^{\pi}{\rm d}\varphi\sin{\cal C}\;, (99)
b(r,α)\displaystyle{\cal I}_{b}\left(r,\alpha\right) =π2Eν11dξ(ξ+1ξ)0πdφsin𝒞,\displaystyle=-\frac{\pi}{2E_{\nu}}\int_{-1}^{1}{\rm d}\xi\left(\xi+\frac{1}{\xi}\right)\int_{0}^{\pi}{\rm d}\varphi\sin{\cal C}\;, (100)
c(r,α)\displaystyle{\cal I}_{c}\left(r,\alpha\right) =π11dξξ0πdφsin𝒞,\displaystyle=-\pi\int_{-1}^{1}{\rm d}\xi\,\xi\int_{0}^{\pi}{\rm d}\varphi\sin{\cal C}\;, (101)

where

𝒞=2Eνrξ|sα1ξ2cφ+cαξ|.\displaystyle{\cal C}=2E_{\nu}r\xi\left|s_{\alpha}\sqrt{1-\xi^{2}}c_{\varphi}+c_{\alpha}\xi\right|\;. (102)

5 Summary of the results and comparison with known calculations

The SM neutrino force contains spin-independent (SI), spin-dependent parity-conserving (SD-PC), and parity-violating (SD-PV) parts — all of which can be potentially influenced by neutrino backgrounds. Combining calculations of our previous work Ghosh:2019dmi ; Ghosh:2022nzo and this work, we are able to present comprehensive results of all of them, as summarized in Tab. 2. While a few of the results have already appeared in previous calculations, a large part of the results presented here are new. Below, we would like to compare our results with those known results in the literature and comment on some differences we have noticed.

SI SD-PC SD-PV
Vacuum (16)Feinberg:1968zz (17)Feinberg:1968zz (2.1)Ghosh:2019dmi
General bkg. (29)Ghosh:2022nzo (31) (2.2)+(37)
General isotropic bkg. (40)Ghosh:2022nzo (41) (42)+(43)
Cν\nuB (MB) (50)Horowitz:1993kw (55)Ferrer:1998ju (63)Horowitz:1993kw +(66)
Cν\nuB (FD) (67)Ferrer:1999ad (68)+(69) (71)
Degenerate bkg. (74)Horowitz:1993kw (76) (79)
Monochromatic beam (82)Ghosh:2022nzo (95) (86)+(94)
Table 2: Summary of the results for neutrino forces in vacuum and in various backgrounds. The spin-dependent results are accurate up to order 𝒪(v){\cal O}(v) and we have neglected higher-ordered terms 𝒪(v2){\cal O}(v^{2}), where vv is the velocity of external particles. Terms labeled by * have been (partially) derived in the literature. After each equation, we cite the paper that derived the corresponding result for the first time. Terms without * are first derived in this work.

The vacuum neutrino force including the SI and SD-PC parts was originally computed in Ref. Feinberg:1968zz and our result agrees with the original one. We note here that the vacuum SI part appearing later in Hsu:1992tg ; Horowitz:1993kw differs from the original result in Ref. Feinberg:1968zz by a factor of two. Here we have verified that the original result in Ref. Feinberg:1968zz is correct, provided proper re-interpretation of its notations in the Lagrangian.

In the presence of a background, the SI neutrino force in Cν\nuB was first calculated by Ref. Horowitz:1993kw and subsequently by Ref. Ferrer:1998ju , both assuming the Maxwell-Boltzmann distribution. Our result in Eq. (50) with the 𝒥a{\cal J}_{a} factor given by Eq. (52) agrees with the former for relativistic Cν\nuB, while for non-relativistic Cν\nuB our result with the 𝒥a{\cal J}_{a} factor given by Eq. (53) differs from that in Ref. Horowitz:1993kw by a factor of two due to the CLC_{\rm L} factor addressed below Eq. (51)—see also footnote 3. Ref. Ferrer:1998ju uses n±(𝐤)=exp[(±μE𝐤)/T]n_{\pm}\left({\bf k}\right)=\exp\left[\left(\pm\mu-E_{\bf k}\right)/T\right] which we believe is incorrect in the non-relativistic case. Nevertheless, their result in the relativistic case agrees with that in Ref. Horowitz:1993kw and also ours. Our relativistic and non-relativistic Cν\nuB results agree with Ref. VanTilburg:2024tst .

For the SD-PC part of the neutrino force caused by Cν\nuB, we find that Eq. (55) with the 𝒥b{\cal J}_{b} factor in Eq. (58) matches Eq. (27) of Ref. Ferrer:1998ju . The 𝒥c{\cal J}_{c} factor in Eq. (59), however, does not match the corresponding part in Eq. (27) of Ref. Ferrer:1998ju , with the difference being 1+20r2T21+20r^{2}T^{2} versus 7+12r2T27+12r^{2}T^{2}.

For the SD-PV part of the neutrino force caused by Cν\nuB, our result given by Eqs. (63) and (64) matches the result in Ref. Horowitz:1993kw . The neutrino-antineutrino symmetric contribution to SD-PV [i.e. Eq. (66)] is absent in Ref. Horowitz:1993kw , hence can not be compared.

6 Possible experimental probes

The spin-dependent part of the neutrino forces may cause parity-violating effects at large distance scales. So far, the largest scale at which parity violation has been observed is the atomic scale. Atomic parity violation (APV) due to the SM weak interactions has been successfully measured for various atoms including Cs133{}^{133}{\rm Cs}, Tl205{}^{205}{\rm Tl}, Pb208{}^{208}{\rm Pb}, and Bi209{}^{209}{\rm Bi} — see Refs. Workman:2022ynf ; Safronova:2017xyt ; Wieman:2019vik for a review. Current measurements have probed the SM prediction at the sub-percent level precision. At higher energy scales (corresponding to smaller distances), many parity-violating effects had been measured, for example, in the scattering of electrons with nucleons, either elastic or deep inelastic. All of these constitute an important contingent of electroweak precision measurements. However, parity-violating scattering has weaker sensitivity for probing long-range parity-violating forces than APV Dev:2021otb .

In APV, the parity-violating force is connected to atomic transitions via

Ψf|V|Ψi=Ψf(𝐫)V(𝐫)Ψi(𝐫)d3𝐫,\langle\Psi_{f}|V|\Psi_{i}\rangle=\int\Psi_{f}^{*}({\bf r})V({\bf r})\Psi_{i}({\bf r}){\rm d}^{3}{\bf r}\thinspace, (103)

where Ψi\Psi_{i} and Ψf\Psi_{f} denote the initial and final electronic wave functions, and VV is the potential of the parity-violating force, computed in the preceding sections of this work. For the SM ZZ-mediated parity violation, due to the heavy mass of ZZ, the potential can be viewed as a point-like delta function Smirnov:2019cae :

VZGFδ3(𝐫),V_{Z}\sim G_{F}\delta^{3}({\bf r})\thinspace, (104)

assuming that the atomic nucleus is located at 𝐫=0{\bf r}=0. Although the potential in Eq. (104) vanishes outside the atomic nucleus, the electron wave functions can have nonzero values at 𝐫=0{\bf r}=0. In this case, Eq. (103) with V=VZV=V_{Z} gives

Ψf|VZ|ΨiGFΨf(0)Ψi(0).\langle\Psi_{f}|V_{Z}|\Psi_{i}\rangle\sim G_{F}\Psi_{f}^{*}(0)\Psi_{i}(0)\thinspace. (105)

Eq. (105) applies to the transition between the 6SS and 7SS states in Cesium, one of the most studied case of APV. If Ψf(0)\Psi_{f}^{*}(0) or Ψi(0)\Psi_{i}(0) vanishes, which occurs for wave functions with nonzero angular momentum (i.e. the azimuthal quantum number 0\ell\neq 0), then one should take the finite nucleus radius rNr_{N} into account rather than viewing it as a point-like particle. In this case, the ZZ-mediated parity violation can be estimated by

Ψf|VZ|ΨiGFnNr<rNΨf(𝐫)Ψi(𝐫)d3𝐫,nN(43πrN3)1,\langle\Psi_{f}|V_{Z}|\Psi_{i}\rangle\sim G_{F}n_{N}\int_{r<r_{N}}\Psi_{f}^{*}({\bf r})\Psi_{i}({\bf r}){\rm d}^{3}{\bf r}\thinspace,\qquad n_{N}\equiv\left(\frac{4}{3}\pi r_{N}^{3}\right)^{-1}, (106)

where nNn_{N} can be interpreted as the nucleus number density within the radius rNr_{N}. Note that Eq. (105) or (106) only takes into account the nuclear spin-independent part, which can be added coherently among nucleons in a large nucleus and is, in general, the dominant contribution. In addition to that, there are also nuclear spin-dependent terms that become important when the spin-independent contribution is suppressed.

For the neutrino force, the potential has a finite extent due to its long-range feature, which implies that for 0\ell\neq 0 states, its parity violation effect is non-vanishing even if the nucleus is point-like. Therefore, to probe neutrino forces in APV, the best avenue would be atomic states with 0\ell\neq 0 since the ZZ-mediated parity violation in such cases is suppressed for a point-like nucleus. Unfortunately, an order-of-magnitude estimate suggests that the parity violation effect of the neutrino forces in APV is well below the current experimental sensitivity. The estimate for the neutrino forces in vacuum can be found in Ref. Ghosh:2019dmi . Below, we present the estimate for the neutrino forces in certain backgrounds, including the Cν\nuB, the degenerate neutrino gas, and the directional neutrino beams.

As a crude approximation aiming at obtaining the order of magnitude, we can ignore the specific form of Ψf(𝐫)Ψi(𝐫)\Psi_{f}^{*}({\bf r})\Psi_{i}({\bf r}) and simply assume that they are sizable within the atomic radius R0R_{0} (for Cs133{}^{133}\text{Cs}, R02.6×1010R_{0}\approx 2.6\times 10^{-10} m) and exponentially decreases at r>R0r>R_{0}. Under this assumption, Eq. (103) with V=VbkgSD-PVV=V_{\text{bkg}}^{\text{SD-PV}} can be estimated as

Ψf|VbkgSD-PV|ΨineVbkgSD-PV(𝐫)er/R0d3𝐫neGF2π2×{64R02T4vTR018T2vTR012μ3R0/3μR01πμ2/2μR01,\langle\Psi_{f}|V_{\text{bkg}}^{\text{SD-PV}}|\Psi_{i}\rangle\sim n_{e}\int V_{\text{bkg}}^{\text{SD-PV}}({\bf r})e^{-r/R_{0}}{\rm d}^{3}{\bf r}\sim\frac{n_{e}G_{F}^{2}}{\pi^{2}}\times\begin{cases}64R_{0}^{2}T^{4}v&T\ll R_{0}^{-1}\\ 8T^{2}v&T\gg R_{0}^{-1}\\ 2\mu^{3}R_{0}/3&\mu\ll R_{0}^{-1}\\ \pi\mu^{2}/2\thinspace&\mu\gg R_{0}^{-1}\end{cases}\ , (107)

where ne(43πR03)1n_{e}\equiv\left(\frac{4}{3}\pi R_{0}^{3}\right)^{-1} is roughly the probability density of the electron cloud. For the four cases in Eq. (107), the first two are obtained assuming there is no neutrino-antineutrino asymmetry, and using Eq. (66) in which we take 𝒗1v\boldsymbol{v}_{1}\sim v, 𝒗~20\tilde{\boldsymbol{v}}_{2}\sim 0, and all couplings to be 𝒪(1){\cal O}(1). The last two are obtained using Eq. (79).

Comparing the first result in Eq. (107) with Eq. (105) and taking R02.6×1010R_{0}\approx 2.6\times 10^{-10} m, Ψf(0)Ψi(0)ne\Psi_{f}^{*}(0)\Psi_{i}(0)\sim n_{e}, and T1.9T\sim 1.9 K, we obtain

Ψf|VbkgSD-PV|ΨiΨf|VZ|Ψi64GFR02T4vπ21043v(CνB).\frac{\langle\Psi_{f}|V_{\text{bkg}}^{\text{SD-PV}}|\Psi_{i}\rangle}{\langle\Psi_{f}|V_{Z}|\Psi_{i}\rangle}\sim\frac{64G_{F}R_{0}^{2}T^{4}v}{\pi^{2}}\sim 10^{-43}v\quad(\text{C$\nu$B})\;. (108)

Given that the current experiments are only able to probe Ψf|VZ|Ψi\langle\Psi_{f}|V_{Z}|\Psi_{i}\rangle at percent or permille level, Eq. (108) implies that the parity-violating effect of the neutrino force is far below detectability. Even if the atom is soaked in degenerate neutrino gas, the effect is insignificant unless μ\mu could exceed 23\sim 23 GeV for which the ratio according to Eq. (107) might reach the permille level:

Ψf|VbkgSD-PV|ΨiΨf|VZ|ΨiGFμ22π2103(μ23GeV)2(degenerate ν gas).\displaystyle\frac{\langle\Psi_{f}|V_{\text{bkg}}^{\text{SD-PV}}|\Psi_{i}\rangle}{\langle\Psi_{f}|V_{Z}|\Psi_{i}\rangle}\sim\frac{G_{F}\mu^{2}}{2\pi^{2}}\sim 10^{-3}\left(\frac{\mu}{23\leavevmode\nobreak\ {\rm GeV}}\right)^{2}\quad(\text{degenerate $\nu$ gas})\;. (109)

On the other hand, taking the parity-violating force to be the one in a directional and monochromatic neutrino background and parallel to the flux [cf. Eq. (93)], we obtain

Ψf|VbkgSD-PV|ΨiΨf|VZ|Ψi4πGFΦ0R01036(Φ01013cm2s1)(directional ν beams).\displaystyle\frac{\langle\Psi_{f}|V_{\text{bkg}}^{\text{SD-PV}}|\Psi_{i}\rangle}{\langle\Psi_{f}|V_{Z}|\Psi_{i}\rangle}\sim 4\pi G_{F}\Phi_{0}R_{0}\sim 10^{-36}\left(\frac{\Phi_{0}}{10^{13}\leavevmode\nobreak\ {\rm cm}^{-2}{\rm s}^{-1}}\right)\quad(\text{directional $\nu$ beams})\;. (110)

In order for the background-induced APV effect to exceed that mediated by ZZ, the flux needs to be larger than that of a typical reactor by 36 orders of magnitude.

In conclusion, the parity-violating effect of the neutrino force induced by neutrino backgrounds is too weak to be probed in existing APV experiments with foreseeable future improvements. This result, however, is not unexpected: The distance between two particles in APV experiments is of the atomic scale, which is much smaller than the average distance between two background neutrinos in typical neutrino backgrounds. For example, in the present Cν\nuB, the average distance between two background neutrinos is given by n1/30.26cmn^{-1/3}\approx 0.26\leavevmode\nobreak\ {\rm cm}, where n56/cm3n\approx 56/{\rm cm}^{3} is the number density of the present-day cosmic neutrinos for each flavor by assuming standard cosmology Workman:2022ynf . This is seven orders of magnitude larger than the typical atomic length scale, described by the Bohr radius, a05.3×109cma_{0}\approx 5.3\times 10^{-9}\leavevmode\nobreak\ {\rm cm}. As a result, the atomic system cannot ‘feel’ the existence of the neutrino backgrounds, and the background effect is negligible compared with that of the vacuum force. On the other hand, to have a significant background force, we should look for the parity-violating effect at macroscopic scales (i.e., with a length scale larger than a centimeter). In addition, since the parity-violating force is spin-dependent, we should have a polarized macroscopic object to make the parity-violating effect coherent. The usual torsion balance experiments, which test the gravitational inverse-square law and the weak equivalence principle, are also sensitive to the SI neutrino force, while the background-induced SD-PV force cannot exceed that of the SI force (even suppressed by the velocity in some cases). So, the corresponding result cannot be better than that in our previous work Ghosh:2022nzo .

7 Conclusions

In this work, we performed a comprehensive study of the neutrino force in neutrino backgrounds, taking into account the effect of spin dependence that was neglected in many previous studies. In particular, we calculated the parity-violating effect caused by neutrino backgrounds and estimated its implications for atomic parity violation (APV) experiments.

The full expression of the neutrino force contains three parts: the spin-independent (SI) part, the spin-dependent parity-conserving (SD-PC) part, and the spin-dependent parity-violating (SD-PV) part. All of them were taken into account in this work, including background effects. In contrast to the vacuum case, neutrino backgrounds violate Lorentz invariance and lead to additional parity-violating terms that are not suppressed by the velocity of the external particles. The complete formulae of the neutrino forces applicable in arbitrary neutrino backgrounds were derived in Eqs. (29), (31), (2.2), (37), and (2.2). In particular, for isotropic backgrounds, the results can be recast into a more compact form, as shown in Eqs. (40)-(47). We also applied our general formulae to specific backgrounds, including the Cν\nuB, the degenerate neutrino gas, and the directional neutrino beams. The main results are summarized in Tab. 1 and Tab. 2.

We also estimated the parity-violating effect caused by neutrino forces in various neutrino backgrounds in APV experiments. We found that the effect is too small to be probed with the current experimental sensitivity of APV. This is because the atomic length scale is too small compared with the average distance between two background neutrinos in typical neutrino backgrounds. As a result, the atomic system is insensitive to the effects caused by background neutrinos. One possible way to probe the above effect is to look at the experiments at macroscopic length scales that are sensitive to the parity-violating process.

Although the parity-violating effect caused by neutrino backgrounds is far from accessible in APV experiments, we hope that the comprehensive calculation presented in this paper is useful to future searches of long-range forces. For instance, the parity-violating effect caused by ultralight dark matter can be much more significant than neutrinos since it has a much larger number density than Cν\nuB and the mediator can be much lighter. This will be an interesting application of our formalism, which we leave for future work.

Acknowledgments

The work of MG is supported in part by the US Department of Energy grant DE-SC0010102. YG is supported in part by the NSF grant PHY-2014071. WT is supported by the NSF Grant No. PHY-2310224. BY is supported by the Samsung Science Technology Foundation under Project Number SSTF-BA2201-06. XJX is supported in part by the National Natural Science Foundation of China under grant No. 12141501 and also by the CAS Project for Young Scientists in Basic Research (YSBR-099).

Appendix A Fourier transform

In this appendix, we collect the formulae of Fourier transform that are useful in calculating the neutrino forces (r|𝐫|r\equiv\left|{\bf r}\right|, ρ|𝐪|\rho\equiv\left|{\bf q}\right|, and aa is an arbitrary constant independent of 𝐪{\bf q}):

d3𝐪(2π)3ei𝐪𝐫1ρ2a2\displaystyle\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\,\frac{1}{\rho^{2}-a^{2}} =\displaystyle= 14πrcos(ar),\displaystyle\frac{1}{4\pi r}\cos\left(ar\right)\;, (111)
d3𝐪(2π)3ei𝐪𝐫1ρ(ρ2a2)\displaystyle\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\,\frac{1}{\rho\left(\rho^{2}-a^{2}\right)} =\displaystyle= i4πrasin(ar),\displaystyle\frac{{\rm i}}{4\pi ra}\sin\left(ar\right)\;, (112)
d3𝐪(2π)3ei𝐪𝐫1ρ2(ρ2a2)\displaystyle\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\,\frac{1}{\rho^{2}\left(\rho^{2}-a^{2}\right)} =\displaystyle= 14πra2[cos(ar)1],\displaystyle\frac{1}{4\pi ra^{2}}\left[\cos\left(ar\right)-1\right]\;, (113)
d3𝐪(2π)3ei𝐪𝐫logρ\displaystyle\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\,\log\rho =\displaystyle= 14πr3,\displaystyle-\frac{1}{4\pi r^{3}}\;, (114)
d3𝐪(2π)3ei𝐪𝐫ρ2logρ\displaystyle\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\,\rho^{2}\log\rho =\displaystyle= 2d3𝐪(2π)3ei𝐪𝐫logρ=32πr5,\displaystyle-\nabla^{2}\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\,\log\rho=\frac{3}{2\pi r^{5}}\;, (115)
d3𝐪(2π)3ei𝐪𝐫qiqjlogρ\displaystyle\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\,q^{i}q^{j}\log\rho =\displaystyle= ijd3𝐪(2π)3ei𝐪𝐫logρ=34πr5(5rirjr2δij).\displaystyle-\partial^{i}\partial^{j}\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\,\log\rho=\frac{3}{4\pi r^{5}}\left(5\frac{r^{i}r^{j}}{r^{2}}-\delta^{ij}\right)\;. (116)

Appendix B Components of IbkgμνI_{\rm bkg}^{\mu\nu} and WμνW_{\mu\nu}

The amplitude in a general neutrino background is given by

𝒜bkg=4GF2IbkgμνWμν,\displaystyle{\cal A}_{\rm bkg}=-4G_{F}^{2}I_{\rm bkg}^{\mu\nu}W_{\mu\nu}\;, (117)

where IbkgμνI_{\rm bkg}^{\mu\nu} [see Eqs. (22)-(24)] and WμνW_{\mu\nu} [see Eqs. (8)-(2)] denote the loop-integral part and the wave-function part, respectively. It is convenient to decompose IbkgμνI_{\rm bkg}^{\mu\nu} and WμνW_{\mu\nu} into two parts:

Ibkgμν(𝐪)=IPCμν(𝐪)+IPVμν(𝐪),Wμν(𝐩i)=WμνPC(𝐩i)+WμνPV(𝐩i),\displaystyle I_{\rm bkg}^{\mu\nu}\left({\bf q}\right)=I_{\rm PC}^{\mu\nu}\left({\bf q}\right)+I_{\rm PV}^{\mu\nu}\left({\bf q}\right)\;,\quad W_{\mu\nu}\left({\bf p}_{i}\right)=W_{\mu\nu}^{\rm PC}\left({\bf p}_{i}\right)+W_{\mu\nu}^{\rm PV}\left({\bf p}_{i}\right)\;, (118)

where 𝐩i{\bf p}_{i} is the momentum of external particles χi\chi_{i} while 𝐪𝐩1𝐩1=𝐩2𝐩2{\bf q}\equiv{\bf p}_{1}^{\prime}-{\bf p}_{1}={\bf p}_{2}-{\bf p}_{2}^{\prime} is the momentum transfer. The subscripts PC or PV indicate that they are invariant or will change a sign under the momentum reflection:

IPCμν(𝐪)\displaystyle I_{\rm PC}^{\mu\nu}\left(-{\bf q}\right) =IPCμν(𝐪),IPVμν(𝐪)=IPVμν(𝐪),\displaystyle=I_{\rm PC}^{\mu\nu}\left({\bf q}\right)\;,\quad I_{\rm PV}^{\mu\nu}\left(-{\bf q}\right)=-I_{\rm PV}^{\mu\nu}\left({\bf q}\right)\;,
WμνPC(𝐩i)\displaystyle W^{\rm PC}_{\mu\nu}\left(-{\bf p}_{i}\right) =WμνPC(𝐩i),WμνPV(𝐩i)=WμνPV(𝐩i).\displaystyle=W^{\rm PC}_{\mu\nu}\left({\bf p}_{i}\right)\;,\quad W^{\rm PV}_{\mu\nu}\left(-{\bf p}_{i}\right)=-W^{\rm PV}_{\mu\nu}\left({\bf p}_{i}\right)\;. (119)

In the following, we explicitly compute all the components of IbkgμνI_{\rm bkg}^{\mu\nu} and WμνW_{\mu\nu}. For the loop-integral part, we obtain (where 0 denotes the time index while i,j=1,2,3i,j=1,2,3 denote the spatial indices)

IPC00\displaystyle I_{\rm PC}^{00} =2d𝐤~[n+(𝐤)+n(𝐤)](2𝐤2+mν2)𝐪22(𝐤𝐪)2𝐪44(𝐤𝐪)2,\displaystyle=-2\int{\rm d}\widetilde{\bf k}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\frac{\left(2{\bf k}^{2}+m_{\nu}^{2}\right){\bf q}^{2}-2\left({\bf k}\cdot{\bf q}\right)^{2}}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}\;, (120)
IPC0i\displaystyle I_{\rm PC}^{0i} =4d𝐤~[n+(𝐤)n(𝐤)]E𝐤ki𝐪2qi(𝐤𝐪)𝐪44(𝐤𝐪)2=IPCi0,\displaystyle=-4\int{\rm d}\widetilde{\bf k}\left[n_{+}({\bf k})-n_{-}({\bf k})\right]E_{\bf k}\frac{k^{i}{\bf q}^{2}-q^{i}\left({\bf k}\cdot{\bf q}\right)}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}=I_{\rm PC}^{i0}\;, (121)
IPCij\displaystyle I_{\rm PC}^{ij} =2d𝐤~[n+(𝐤)+n(𝐤)]2kikj𝐪22(kiqj+kjqi)(𝐤𝐪)+δij[2(𝐤𝐪)2+mν2𝐪2]𝐪44(𝐤𝐪)2,\displaystyle=-2\int{\rm d}\widetilde{\bf k}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\frac{2k^{i}k^{j}{\bf q}^{2}-2\left(k^{i}q^{j}+k^{j}q^{i}\right)\left({\bf k}\cdot{\bf q}\right)+\delta^{ij}\left[2\left({\bf k}\cdot{\bf q}\right)^{2}+m_{\nu}^{2}{\bf q}^{2}\right]}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}\;, (122)
IPV00\displaystyle I_{\rm PV}^{00} =0,\displaystyle=0\;, (123)
IPV0i\displaystyle I_{\rm PV}^{0i} =2id𝐤~[n+(𝐤)+n(𝐤)](𝐤×𝐪)i𝐪2𝐪44(𝐤𝐪)2=IPVi0,\displaystyle=2{\rm i}\int{\rm d}\widetilde{\bf k}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\left({\bf k}\times{\bf q}\right)^{i}\frac{{\bf q}^{2}}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}=-I_{\rm PV}^{i0}\;, (124)
IPVij\displaystyle I_{\rm PV}^{ij} =2iϵijkd𝐤~[n+(𝐤)n(𝐤)]E𝐤qk𝐪2𝐪44(𝐤𝐪)2.\displaystyle=-2{\rm i}\epsilon^{ijk}\int{\rm d}\widetilde{\bf k}\left[n_{+}({\bf k})-n_{-}({\bf k})\right]E_{\bf k}\frac{q^{k}{\bf q}^{2}}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}\;. (125)

In Eqs. (120)-(125), to make our results more general, we have not used the specific distribution of background neutrinos n±(𝐤)n_{\pm}({\bf k}). For the wave-function part, we have

W00PC\displaystyle W_{00}^{\rm PC} =gVχ1gVχ2,\displaystyle=g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}\;, (126)
W0iPC\displaystyle W_{0i}^{\rm PC} =gVχ1gAχ2𝝈2i,\displaystyle=-g_{V}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{2}^{i}\;, (127)
Wi0PC\displaystyle W_{i0}^{\rm PC} =gVχ2gAχ1𝝈1i,\displaystyle=-g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}\boldsymbol{\sigma}_{1}^{i}\;, (128)
WijPC\displaystyle W_{ij}^{\rm PC} =gAχ1gAχ2𝝈1i𝝈2j,\displaystyle=g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{1}^{i}\boldsymbol{\sigma}_{2}^{j}\;, (129)
W00PV\displaystyle W_{00}^{\rm PV} =2gVχ2gAχ1(𝝈1𝒗1)+2gVχ1gAχ2(𝝈2𝒗2),\displaystyle=2g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{v}_{1}\right)+2g_{V}^{\chi_{1}}g_{A}^{\chi_{2}}\left(\boldsymbol{\sigma}_{2}\cdot\boldsymbol{v}_{2}\right)\;, (130)
W0iPV\displaystyle W_{0i}^{\rm PV} =2gVχ1gVχ2(𝒗2i𝝈2×𝐪2m2)i2gAχ1gAχ2(𝝈1𝒗1)𝝈2i,\displaystyle=-2g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}\left(\boldsymbol{v}_{2}-{\rm i}\frac{\boldsymbol{\sigma}_{2}\times{\bf q}}{2m_{2}}\right)^{i}-2g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{v}_{1}\right)\boldsymbol{\sigma}_{2}^{i}\;, (131)
Wi0PV\displaystyle W_{i0}^{\rm PV} =2gVχ1gVχ2(𝒗1+i𝝈1×𝐪2m1)i2gAχ1gAχ2(𝝈2𝒗2)𝝈1i,\displaystyle=-2g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}\left(\boldsymbol{v}_{1}+{\rm i}\frac{\boldsymbol{\sigma}_{1}\times{\bf q}}{2m_{1}}\right)^{i}-2g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\left(\boldsymbol{\sigma}_{2}\cdot\boldsymbol{v}_{2}\right)\boldsymbol{\sigma}_{1}^{i}\;, (132)
WijPV\displaystyle W_{ij}^{\rm PV} =2gVχ2gAχ1𝝈1i(𝒗2i𝝈2×𝐪2m2)j+2gVχ1gAχ2𝝈2j(𝒗1+i𝝈1×𝐪2m1)i.\displaystyle=2g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}\boldsymbol{\sigma}_{1}^{i}\left(\boldsymbol{v}_{2}-{\rm i}\frac{\boldsymbol{\sigma}_{2}\times{\bf q}}{2m_{2}}\right)^{j}+2g_{V}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{2}^{j}\left(\boldsymbol{v}_{1}+{\rm i}\frac{\boldsymbol{\sigma}_{1}\times{\bf q}}{2m_{1}}\right)^{i}\;. (133)

Note that Eqs. (126)-(133) are independent of the neutrino background and are only determined by the momentum and spins of external particles. In addition, the components of WμνPVW_{\mu\nu}^{\rm PV} are velocity suppressed compared with those of WμνPCW_{\mu\nu}^{\rm PC}.

Appendix C The 𝒥{\cal J}-factors

In this appendix, we present the details of the derivations of the 𝒥{\cal J}-factors in Eqs. (44)-(47) that are applicable to any isotropic background.

C.1 The SI part

For the spin-independent (SI) part, the amplitude is given by Eq. (29)

𝒜bkgSI(𝐪)\displaystyle{\cal A}_{\rm bkg}^{\rm SI}({\bf q}) =8GF2gVχ1gVχ2d𝐤~[n+(𝐤)+n(𝐤)](2𝐤2+mν2)𝐪22(𝐤𝐪)2𝐪44(𝐤𝐪)2\displaystyle=8G_{F}^{2}g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}\int{\rm d}\widetilde{\bf k}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\frac{\left(2{\bf k}^{2}+m_{\nu}^{2}\right){\bf q}^{2}-2\left({\bf k}\cdot{\bf q}\right)^{2}}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}
=16GF2gVχ1gVχ2d𝐤~[n+(𝐤)+n(𝐤)][κ2(1z2)+mν22]1ρ24κ2z2,\displaystyle=16G_{F}^{2}g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}\int{\rm d}\widetilde{\bf k}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\left[\kappa^{2}\left(1-z^{2}\right)+\frac{m_{\nu}^{2}}{2}\right]\frac{1}{\rho^{2}-4\kappa^{2}z^{2}}\;, (134)

where κ|𝐤|\kappa\equiv\left|{\bf k}\right|, ρ|𝐪|\rho\equiv\left|{\bf q}\right|, and zcosθz\equiv\cos\theta with θ\theta the angle between 𝐤{\bf k} and 𝐪{\bf q}. The force is the Fourier transform of the amplitude; for isotropic backgrounds, one can perform the Fourier transform before doing the loop integral over 𝐤{\bf k}. Using the results in Appendix A, we have

d3𝐪(2π)3ei𝐪𝐫1ρ24κ2z2=14πrcos(2κzr).\displaystyle\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\,\frac{1}{\rho^{2}-4\kappa^{2}z^{2}}=\frac{1}{4\pi r}\cos\left(2\kappa zr\right)\;. (135)

Note that both κ\kappa and zz are constants when integrating over 𝐪{\bf q}. Therefore, the SI neutrino force turns out to be

VbkgSI(r)\displaystyle V_{\rm bkg}^{\rm SI}(r) =d3𝐪(2π)3ei𝐪𝐫𝒜bkgSI(𝐪)\displaystyle=-\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}{\cal A}_{\rm bkg}^{\rm SI}({\bf q})
=4GF2πrgVχ1gVχ2d𝐤~[n+(𝐤)+n(𝐤)][κ2(1z2)+mν22]cos(2κzr)\displaystyle=-\frac{4G_{F}^{2}}{\pi r}g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}\int{\rm d}\widetilde{\bf k}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\left[\kappa^{2}\left(1-z^{2}\right)+\frac{m_{\nu}^{2}}{2}\right]\cos\left(2\kappa zr\right)
=GF22π3rgVχ1gVχ20dκn+(κ)+n(κ)κ2+mν2κ211dz[κ2(1z2)+mν22]cos(2κzr)\displaystyle=-\frac{G_{F}^{2}}{2\pi^{3}r}g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}\int_{0}^{\infty}{\rm d}\kappa\frac{n_{+}(\kappa)+n_{-}(\kappa)}{\sqrt{\kappa^{2}+m_{\nu}^{2}}}\kappa^{2}\int_{-1}^{1}{\rm d}z\left[\kappa^{2}\left(1-z^{2}\right)+\frac{m_{\nu}^{2}}{2}\right]\cos\left(2\kappa zr\right)
=GF24π3r4gVχ1gVχ20dκn+(κ)+n(κ)κ2+mν2κ[(1+mν2r2)sin(2κr)2κrcos(2κr)]\displaystyle=-\frac{G_{F}^{2}}{4\pi^{3}r^{4}}g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}\int_{0}^{\infty}{\rm d}\kappa\frac{n_{+}(\kappa)+n_{-}(\kappa)}{\sqrt{\kappa^{2}+m_{\nu}^{2}}}\kappa\left[\left(1+m_{\nu}^{2}r^{2}\right)\sin\left(2\kappa r\right)-2\kappa r\cos\left(2\kappa r\right)\right]
=GF24π3r5gVχ1gVχ2𝒥a,\displaystyle=-\frac{G_{F}^{2}}{4\pi^{3}r^{5}}g_{V}^{\chi_{1}}g_{V}^{\chi_{2}}{\cal J}_{a}\;, (136)

where

𝒥a=r0dκn+(κ)+n(κ)κ2+mν2κ[(1+mν2r2)sin(2κr)2κrcos(2κr)].\displaystyle{\cal J}_{a}=r\int_{0}^{\infty}{\rm d}\kappa\frac{n_{+}(\kappa)+n_{-}(\kappa)}{\sqrt{\kappa^{2}+m_{\nu}^{2}}}\kappa\left[\left(1+m_{\nu}^{2}r^{2}\right)\sin\left(2\kappa r\right)-2\kappa r\cos\left(2\kappa r\right)\right]\;. (137)

C.2 The SD-PC part

Next, we consider the spin-dependent parity-conserving (SD-PC) part. For isotropic backgrounds, the term proportional to KiK_{-}^{i} in Eq. (31) vanishes, so we are left with

𝒜bkgSD-PC(𝐪)=8GF2gAχ1gAχ2𝝈1i𝝈2jd𝐤~[n+(𝐤)+n(𝐤)]K+ij=8GF2gAχ1gAχ2𝝈1i𝝈2jij(𝐪),\displaystyle{\cal A}_{{\rm bkg}}^{\text{SD-PC}}({\bf q})=8G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{1}^{i}\boldsymbol{\sigma}_{2}^{j}\int{\rm d}\widetilde{{\bf k}}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]K_{+}^{ij}=8G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{1}^{i}\boldsymbol{\sigma}_{2}^{j}\,{\cal I}^{ij}(\bf q)\;, (138)

where we have defined the following tensor:

ij(𝐪)d𝐤~[n+(𝐤)+n(𝐤)]2kikj𝐪22(kiqj+kjqi)(𝐤𝐪)+δij[2(𝐤𝐪)2+mν2𝐪2]𝐪44(𝐤𝐪)2.\displaystyle{\cal I}^{ij}({\bf q})\equiv\int{\rm d}\widetilde{{\bf k}}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\frac{2k^{i}k^{j}{\bf q}^{2}-2\left(k^{i}q^{j}+k^{j}q^{i}\right)\left({\bf k}\cdot{\bf q}\right)+\delta^{ij}\left[2\left({\bf k}\cdot{\bf q}\right)^{2}+m_{\nu}^{2}{\bf q}^{2}\right]}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}\;. (139)

Since ij{\cal I}^{ij} only depends on the quadratic terms of 𝐪{\bf q}, it can be generally decomposed into

ij(𝐪)=(ρ2δijqiqj)T(ρ)+qiqjL(ρ),\displaystyle{\cal I}^{ij}({\bf q})=\left(\rho^{2}\delta^{ij}-q^{i}q^{j}\right){\cal F}_{\rm T}(\rho)+q^{i}q^{j}{\cal F}_{\rm L}(\rho)\;, (140)

where T{\cal F}_{\rm T} and L{\cal F}_{\rm L} are functions of ρ|𝐪|\rho\equiv\left|\bf q\right| that will be determined in the following. It is useful to factor out the longitudinal part of ij{\cal I}^{ij}:

j=13qjij=mν2d𝐤~[n+(𝐤)+n(𝐤)]qiρ24κ2z2=ρ2qiL(ρ).\displaystyle\sum_{j=1}^{3}q^{j}{\cal I}^{ij}=m_{\nu}^{2}\int{\rm d}\widetilde{{\bf k}}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\frac{q^{i}}{\rho^{2}-4\kappa^{2}z^{2}}=\rho^{2}q^{i}{\cal F}_{\rm L}(\rho)\;. (141)

Therefore, we find the longitudinal part of ij{\cal I}^{ij} is proportional to mν2m_{\nu}^{2}:

L(ρ)=mν2d𝐤~[n+(𝐤)+n(𝐤)]1ρ2(ρ24κ2z2).\displaystyle{\cal F}_{\rm L}(\rho)=m_{\nu}^{2}\int{\rm d}\widetilde{{\bf k}}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\frac{1}{\rho^{2}\left(\rho^{2}-4\kappa^{2}z^{2}\right)}\;. (142)

On the other hand, the transverse part of ij{\cal I}^{ij} can be determined by taking the trace at both sides of Eq. (139):

Tri=13ii\displaystyle{\rm Tr}\leavevmode\nobreak\ {\cal I}\equiv\sum_{i=1}^{3}{\cal I}^{ii} =d𝐤~[n+(𝐤)+n(𝐤)][2κ2(1+z2)+3mν2]1ρ24κ2z2,\displaystyle=\int{\rm d}\widetilde{{\bf k}}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\left[2\kappa^{2}\left(1+z^{2}\right)+3m_{\nu}^{2}\right]\frac{1}{\rho^{2}-4\kappa^{2}z^{2}}\,,
=2ρ2T(ρ)+ρ2L(ρ),\displaystyle=2\rho^{2}{\cal F}_{\rm T}(\rho)+\rho^{2}{\cal F}_{\rm L}(\rho)\;, (143)

which gives

T(ρ)=12ρ2Tr12L(ρ).\displaystyle{\cal F}_{\rm T}(\rho)=\frac{1}{2\rho^{2}}{\rm Tr}\leavevmode\nobreak\ {\cal I}-\frac{1}{2}{\cal F}_{\rm L}(\rho)\;. (144)

Therefore, we obtain

ij(𝐪)\displaystyle{\cal I}^{ij}({\bf q}) =12(Trρ2L)δij+12ρ2(3ρ2LTr)qiqj,\displaystyle=\frac{1}{2}\left({\rm Tr}\leavevmode\nobreak\ {\cal I}-\rho^{2}{\cal F}_{\rm L}\right)\delta^{ij}+\frac{1}{2\rho^{2}}\left(3\rho^{2}{\cal F}_{\rm L}-{\rm Tr}\leavevmode\nobreak\ {\cal I}\right)q^{i}q^{j}\,,
=δijd𝐤~[n+(𝐤)+n(𝐤)][κ2(1+z2)+mν2]1ρ24κ2z2,\displaystyle=\delta^{ij}\int{\rm d}\widetilde{{\bf k}}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\left[\kappa^{2}\left(1+z^{2}\right)+m_{\nu}^{2}\right]\frac{1}{\rho^{2}-4\kappa^{2}z^{2}}\,,
qiqjd𝐤~[n+(𝐤)+n(𝐤)]κ2(1+z2)1ρ2(ρ24κ2z2).\displaystyle-q^{i}q^{j}\int{\rm d}\widetilde{{\bf k}}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\kappa^{2}\left(1+z^{2}\right)\frac{1}{\rho^{2}\left(\rho^{2}-4\kappa^{2}z^{2}\right)}\;. (145)

It is convenient to integrate over 𝐪{\bf q} before integrating over 𝐤{\bf k}. Using the Fourier transform in Appendix A, we have

d3𝐪(2π)3ei𝐪𝐫qiqjρ2(ρ24κ2z2)\displaystyle\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\,\frac{q^{i}q^{j}}{\rho^{2}\left(\rho^{2}-4\kappa^{2}z^{2}\right)}
=\displaystyle= ijd3𝐪(2π)3ei𝐪𝐫1ρ2(ρ24κ2z2)\displaystyle-\partial^{i}\partial^{j}\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\,\frac{1}{\rho^{2}\left(\rho^{2}-4\kappa^{2}z^{2}\right)}
=\displaystyle= 116πκ2z2ij{1r[cos(2κrz)1]}\displaystyle-\frac{1}{16\pi\kappa^{2}z^{2}}\partial^{i}\partial^{j}\left\{\frac{1}{r}\left[\cos\left(2\kappa rz\right)-1\right]\right\}
=\displaystyle= 116πκ2z2r3{r^ir^j[(34κ2z2r2)cos(2κzr)+6κzrsin(2κzr)3]\displaystyle-\frac{1}{16\pi\kappa^{2}z^{2}r^{3}}\left\{\hat{r}^{i}\hat{r}^{j}\left[\left(3-4\kappa^{2}z^{2}r^{2}\right)\cos\left(2\kappa zr\right)+6\kappa zr\sin\left(2\kappa zr\right)-3\right]\right.
δij[cos(2κzr)+2κzrsin(2κzr)1]},\displaystyle\left.\qquad\qquad\qquad\;-\delta^{ij}\left[\cos\left(2\kappa zr\right)+2\kappa zr\sin\left(2\kappa zr\right)-1\right]\right\}\;, (146)

which leads to

d3𝐪(2π)3ei𝐪𝐫ij(𝐪)=14πr3d𝐤~[n+(𝐤)+n(𝐤)](𝒜δij+r^ir^j),\displaystyle\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\,{\cal I}^{ij}({\bf q})=\frac{1}{4\pi r^{3}}\int{\rm d}\widetilde{{\bf k}}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\left({\cal A}\,\delta^{ij}+{\cal B}\,\hat{r}^{i}\hat{r}^{j}\right)\;, (147)

where r^iri/r\hat{r}^{i}\equiv r^{i}/r and

𝒜\displaystyle{\cal A} =r2[κ2(1+z2)+mν2]cos(2κzr)1+z24z2[cos(2κzr)+2κzrsin(2κzr)1],\displaystyle=r^{2}\left[\kappa^{2}\left(1+z^{2}\right)+m_{\nu}^{2}\right]\cos\left(2\kappa zr\right)-\frac{1+z^{2}}{4z^{2}}\left[\cos\left(2\kappa zr\right)+2\kappa zr\sin\left(2\kappa zr\right)-1\right]\;, (148)
\displaystyle{\cal B} =1+z24z2[(34κ2z2r2)cos(2κzr)+6κzrsin(2κzr)3].\displaystyle=\frac{1+z^{2}}{4z^{2}}\left[\left(3-4\kappa^{2}z^{2}r^{2}\right)\cos\left(2\kappa zr\right)+6\kappa zr\sin\left(2\kappa zr\right)-3\right]\;. (149)

Therefore, the SD-PC part of the neutrino force is given by

VbkgSD-PC(𝐫)\displaystyle V_{\rm bkg}^{\text{SD-PC}}({\bf r}) =d3𝐪(2π)3ei𝐪𝐫𝒜bkgSDPC(𝐪)\displaystyle=-\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}{\cal A}_{\rm bkg}^{\rm SD-PC}({\bf q})
=8GF2gAχ1gAχ2𝝈1i𝝈2jd3𝐪(2π)3ei𝐪𝐫ij(𝐪)\displaystyle=-8G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{1}^{i}\boldsymbol{\sigma}_{2}^{j}\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\,{\cal I}^{ij}({\bf q})
=GF24π3r3gAχ1gAχ2𝝈1i𝝈2j0dκn+(κ)+n(κ)κ2+mν2κ211dz(𝒜δij+r^ir^j).\displaystyle=-\frac{G_{F}^{2}}{4\pi^{3}r^{3}}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\boldsymbol{\sigma}_{1}^{i}\boldsymbol{\sigma}_{2}^{j}\int_{0}^{\infty}{\rm d}\kappa\frac{n_{+}(\kappa)+n_{-}(\kappa)}{\sqrt{\kappa^{2}+m_{\nu}^{2}}}\kappa^{2}\int_{-1}^{1}{\rm d}z\left({\cal A}\,\delta^{ij}+{\cal B}\,\hat{r}^{i}\hat{r}^{j}\right)\;. (150)

The integrals of 𝒜{\cal A} and {\cal B} give

11dz𝒜\displaystyle\int_{-1}^{1}{\rm d}z\,{\cal A} =2cos(2κr)+1κr[(2κ2+mν2)r21]sin(2κr),\displaystyle=2\cos\left(2\kappa r\right)+\frac{1}{\kappa r}\left[\left(2\kappa^{2}+m_{\nu}^{2}\right)r^{2}-1\right]\sin\left(2\kappa r\right)\;, (151)
11dz\displaystyle\int_{-1}^{1}{\rm d}z\,{\cal B} =2κr[sin(2κr)2κrcos(2κr)κ2r2sin(2κr)].\displaystyle=\frac{2}{\kappa r}\left[\sin\left(2\kappa r\right)-2\kappa r\cos\left(2\kappa r\right)-\kappa^{2}r^{2}\sin\left(2\kappa r\right)\right]\;. (152)

Substituing them back to Eq. (C.2), one obtains

VbkgSD-PC(𝐫)=GF2gAχ1gAχ24π3r5[(𝝈1𝝈2)𝒥b+(𝝈1𝐫^)(𝝈2𝐫^)𝒥c],\displaystyle V_{\rm bkg}^{\text{SD-PC}}\left({\bf r}\right)=-\frac{G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}}{4\pi^{3}r^{5}}\left[\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{\sigma}_{2}\right){\cal J}_{b}+\left(\boldsymbol{\sigma}_{1}\cdot{\bf\hat{r}}\right)\left(\boldsymbol{\sigma}_{2}\cdot{\bf\hat{r}}\right){\cal J}_{c}\right]\;, (153)

where

𝒥b\displaystyle{\cal J}_{b} =r0dκn+(κ)+n(κ)κ2+mν2κ{2κrcos(2κr)+[(2κ2+mν2)r21]sin(2κr)},\displaystyle=r\int_{0}^{\infty}{\rm d}\kappa\frac{n_{+}(\kappa)+n_{-}(\kappa)}{\sqrt{\kappa^{2}+m_{\nu}^{2}}}\kappa\left\{2\kappa r\cos\left(2\kappa r\right)+\left[\left(2\kappa^{2}+m_{\nu}^{2}\right)r^{2}-1\right]\sin\left(2\kappa r\right)\right\}\;, (154)
𝒥c\displaystyle{\cal J}_{c} =2r0dκn+(κ)+n(κ)κ2+mν2κ[(1κ2r2)sin(2κr)2κrcos(2κr)].\displaystyle=2r\int_{0}^{\infty}{\rm d}\kappa\frac{n_{+}(\kappa)+n_{-}(\kappa)}{\sqrt{\kappa^{2}+m_{\nu}^{2}}}\kappa\left[\left(1-\kappa^{2}r^{2}\right)\sin\left(2\kappa r\right)-2\kappa r\cos\left(2\kappa r\right)\right]\;. (155)

C.3 The SD-PV part

The spin-dependent parity-violating (SD-PV) amplitude includes two terms, as shown in Eqs. (2.2) and (37).

We first consider the leading term of 𝒜bkg,0SD-PV{\cal A}_{\rm bkg,0}^{\text{SD-PV}} in Eq. (2.2), which is not supressed by velocity. For isotropic backgrounds, the last line of Eq. (2.2) vanishes, so we have

𝒜bkg,0SD-PV(𝐪)\displaystyle{\cal A}_{\rm bkg,0}^{\text{SD-PV}}\left({\bf q}\right) =8iGF2gAχ1gAχ2ϵijk𝝈1i𝝈2jd𝐤~[n+(𝐤)n(𝐤)]E𝐤qk𝐪2𝐪44(𝐤𝐪)2,\displaystyle=8{\rm i}G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\epsilon^{ijk}\boldsymbol{\sigma}_{1}^{i}\boldsymbol{\sigma}_{2}^{j}\int{\rm d}\widetilde{\bf k}\left[n_{+}({\bf k})-n_{-}({\bf k})\right]E_{\bf k}\frac{q^{k}{\bf q}^{2}}{{\bf q}^{4}-4\left({\bf k}\cdot{\bf q}\right)^{2}}\,,
=4iGF2gAχ1gAχ2ϵijk𝝈1i𝝈2jd3𝐤(2π)3[n+(𝐤)n(𝐤)]qkρ24κ2z2.\displaystyle=4{\rm i}G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}\epsilon^{ijk}\boldsymbol{\sigma}_{1}^{i}\boldsymbol{\sigma}_{2}^{j}\int\frac{{\rm d}^{3}{\bf k}}{\left(2\pi\right)^{3}}\left[n_{+}({\bf k})-n_{-}({\bf k})\right]\frac{q^{k}}{\rho^{2}-4\kappa^{2}z^{2}}\;. (156)

Perform the Fourier transform first:

d3𝐪(2π)3ei𝐪𝐫qkρ24κ2z2\displaystyle\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\frac{q^{k}}{\rho^{2}-4\kappa^{2}z^{2}} =ikd3𝐪(2π)3ei𝐪𝐫1ρ24κ2z2,\displaystyle=-{\rm i}\partial^{k}\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}\frac{1}{\rho^{2}-4\kappa^{2}z^{2}}\,,
=i4πk[cos(2κzr)],\displaystyle=-\frac{{\rm i}}{4\pi}\partial^{k}\left[\cos\left(2\kappa zr\right)\right]\,,
=i4πr2r^k[cos(2κzr)+2κzrsin(2κzr)].\displaystyle=\frac{{\rm i}}{4\pi r^{2}}\hat{r}^{k}\left[\cos\left(2\kappa zr\right)+2\kappa zr\sin\left(2\kappa zr\right)\right]\;. (157)

The corresponding parity-violating force is then given by

Vbkg,0SD-PV(𝐫)\displaystyle V_{\rm bkg,0}^{\text{SD-PV}}({\bf r}) =d3𝐪(2π)3ei𝐪𝐫𝒜bkg,0SDPV(𝐪)\displaystyle=-\int\frac{{\rm d}^{3}{\bf q}}{\left(2\pi\right)^{3}}e^{{\rm i}{\bf q}\cdot{\bf r}}{\cal A}_{\rm bkg,0}^{\rm SD-PV}({\bf q})\,
=GF2gAχ1gAχ24π3r2ϵijk𝝈1i𝝈2jr^k0dκ[n+(κ)n(κ)]κ211dz[cos(2κzr)+2κzrsin(2κzr)]\displaystyle=\frac{G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}}{4\pi^{3}r^{2}}\epsilon^{ijk}\boldsymbol{\sigma}_{1}^{i}\boldsymbol{\sigma}_{2}^{j}\,\hat{r}^{k}\int_{0}^{\infty}{\rm d}\kappa\left[n_{+}(\kappa)-n_{-}(\kappa)\right]\kappa^{2}\int_{-1}^{1}{\rm d}z\left[\cos\left(2\kappa zr\right)+2\kappa zr\sin\left(2\kappa zr\right)\right]\,
=GF2gAχ1gAχ24π3r2ϵijk𝝈1i𝝈2jr^k0dκ[n+(κ)n(κ)]2κr[sin(2κr)κrcos(2κr)]\displaystyle=\frac{G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}}{4\pi^{3}r^{2}}\epsilon^{ijk}\boldsymbol{\sigma}_{1}^{i}\boldsymbol{\sigma}_{2}^{j}\,\hat{r}^{k}\int_{0}^{\infty}{\rm d}\kappa\left[n_{+}(\kappa)-n_{-}(\kappa)\right]\frac{2\kappa}{r}\left[\sin\left(2\kappa r\right)-\kappa r\cos\left(2\kappa r\right)\right]\,
=𝐫^(𝝈1×𝝈2)GF2gAχ1gAχ24π3r5𝒥d,\displaystyle={\hat{\bf r}}\cdot\left(\boldsymbol{\sigma}_{1}\times\boldsymbol{\sigma}_{2}\right)\frac{G_{F}^{2}g_{A}^{\chi_{1}}g_{A}^{\chi_{2}}}{4\pi^{3}r^{5}}{\cal J}_{d}\;, (158)

where

𝒥d=2r20dκ[n+(κ)n(κ)]κ[sin(2κr)κrcos(2κr)].\displaystyle{\cal J}_{d}=2r^{2}\int_{0}^{\infty}{\rm d}\kappa\left[n_{+}(\kappa)-n_{-}(\kappa)\right]\kappa\left[\sin\left(2\kappa r\right)-\kappa r\cos\left(2\kappa r\right)\right]\;. (159)

It should be emphasized that if there is no lepton asymmetry (n+=nn_{+}=n_{-}), 𝒥d{\cal J}_{d} will exactly vanish while 𝒥a{\cal J}_{a}, 𝒥b{\cal J}_{b} and 𝒥c{\cal J}_{c} are nonvanishing.

Then, we consider the next-leading term of the amplitude 𝒜bkg,1SD-PV{\cal A}_{\rm bkg,1}^{\text{SD-PV}} in Eq. (37), which is velocity suppressed. For isotropic backgrounds, the term proportional to KiK_{-}^{i} in Eq. (37) vanishes, so the amplitude is reduced to

𝒜bkg,1SD-PV(𝐪)=16GF2d𝐤~[n+(𝐤)+n(𝐤)][gVχ2gAχ1(𝝈1i𝒗1iK0+𝝈1i𝒗~2jK+ij)+12].\displaystyle{\cal A}_{{\rm bkg},1}^{\text{SD-PV}}\left({\bf q}\right)=16G_{F}^{2}\int{\rm d}\widetilde{{\bf k}}\left[n_{+}({\bf k})+n_{-}({\bf k})\right]\left[g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}\left(\boldsymbol{\sigma}_{1}^{i}\boldsymbol{v}_{1}^{i}K_{0}+\boldsymbol{\sigma}_{1}^{i}\tilde{\boldsymbol{v}}_{2}^{j}K_{+}^{ij}\right)+1\leftrightarrow 2\right]\;. (160)

Comparing Eq. (160) with Eqs. (C.1) and (138), we find the dependence of 𝒜bkg,1SD-PV{\cal A}_{\rm bkg,1}^{\text{SD-PV}} on the loop menemtum 𝐤{\bf k} is the same as those of 𝒜bkgSI{\cal A}_{\rm bkg}^{{\rm SI}} and 𝒜bkgSD-PC{\cal A}_{\rm bkg}^{\text{SD-PC}}. Therefore, according to the above results in Eqs. (136) and (153), one can directly write down the corresponding parity-violating neutrino force

Vbkg,1SD-PV(𝐫)=GF2gVχ2gAχ12π3r5[(𝝈1𝒗1)𝒥a+(𝝈1𝒗~2)𝒥b+(𝝈1𝐫^)(𝒗~2𝐫^)𝒥c]+12,\displaystyle V_{\rm bkg,1}^{\text{SD-PV}}\left({\bf r}\right)=-\frac{G_{F}^{2}g_{V}^{\chi_{2}}g_{A}^{\chi_{1}}}{2\pi^{3}r^{5}}\left[\left(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{v}_{1}\right){\cal J}_{a}+\left(\boldsymbol{\sigma}_{1}\cdot\tilde{\boldsymbol{v}}_{2}\right){\cal J}_{b}+\left(\boldsymbol{\sigma}_{1}\cdot{\bf\hat{r}}\right)\left(\tilde{\boldsymbol{v}}_{2}\cdot{\bf\hat{r}}\right){\cal J}_{c}\right]+1\leftrightarrow 2\;, (161)

where 𝒥a{\cal J}_{a}, 𝒥b{\cal J}_{b} and 𝒥c{\cal J}_{c} are given by Eqs. (137), (154) and (155), respectively.

References

  • (1) H. Bethe and R. A. Bacher, Rev. Mod. Phys. 8, 201 (1936); D. Iwanenko and A. Sokolow, Z. Physik 102, 119 (1936); G. Gamow and E. Teller, Phys. Rev. 51, 289 (1937).
  • (2) G. Feinberg and J. Sucher, Long-Range Forces from Neutrino-Pair Exchange, Phys. Rev. 166 (1968) 1638–1644.
  • (3) R. P. Feynman, Feynman Lectures on Gravitation, section 2.3. Addison-Wesley, Reading, MA, 1995.
  • (4) G. Feinberg, J. Sucher, and C. K. Au, The Dispersion Theory of Dispersion Forces, Phys. Rept. 180 (1989) 83.
  • (5) S. D. H. Hsu and P. Sikivie, Long range forces from two neutrino exchange revisited, Phys. Rev. D 49 (1994) 4951–4953, [hep-ph/9211301].
  • (6) J. A. Grifols, E. Masso, and R. Toldra, Majorana neutrinos and long range forces, Phys. Lett. B 389 (1996) 563–565, [hep-ph/9606377].
  • (7) M. Lusignoli and S. Petrarca, Remarks on the forces generated by two-neutrino exchange, Eur. Phys. J. C 71 (2011) 1568, [1010.3872].
  • (8) Q. Le Thien and D. E. Krause, Spin-Independent Two-Neutrino Exchange Potential with Mixing and CPCP-Violation, Phys. Rev. D 99 (2019), no. 11 116006, [1901.05345].
  • (9) A. Segarra and J. Bernabéu, Absolute neutrino mass and the Dirac/Majorana distinction from the weak interaction of aggregate matter, Phys. Rev. D 101 (2020), no. 9 093004, [2001.05900].
  • (10) Y. V. Stadnik, Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy, Phys. Rev. Lett. 120 (2018), no. 22 223202, [1711.03700].
  • (11) M. Ghosh, Y. Grossman, and W. Tangarife, Probing the two-neutrino exchange force using atomic parity violation, Phys. Rev. D 101 (2020), no. 11 116006, [1912.09444].
  • (12) P. D. Bolton, F. F. Deppisch, and C. Hati, Probing new physics with long-range neutrino interactions: an effective field theory approach, JHEP 07 (2020) 013, [2004.08328].
  • (13) A. Costantino and S. Fichet, The Neutrino Casimir Force, JHEP 09 (2020) 122, [2003.11032].
  • (14) X.-j. Xu and B. Yu, On the short-range behavior of neutrino forces beyond the Standard Model: from 1/r5 to 1/r4, 1/r2, and 1/r, JHEP 02 (2022) 008, [2112.03060].
  • (15) V. A. Dzuba, V. V. Flambaum, and P. Munro-Laylim, Long-range parity-nonconserving electron-nucleon interaction, Phys. Rev. A 106 (2022), no. 1 012817, [2205.02569].
  • (16) P. Munro-Laylim, V. A. Dzuba, and V. V. Flambaum, Effects of the long-range neutrino-mediated force in atomic phenomena, 2207.07325.
  • (17) M. Ghosh, Y. Grossman, W. Tangarife, X.-J. Xu, and B. Yu, Neutrino forces in neutrino backgrounds, JHEP 02 (2023) 092, [2209.07082].
  • (18) D. Blas, I. Esteban, M. C. Gonzalez-Garcia, and J. Salvado, On neutrino-mediated potentials in a neutrino background, JHEP 04 (2023) 039, [2212.03889].
  • (19) K. Van Tilburg, Wake Forces, 2401.08745.
  • (20) E. Fischbach, Long range forces and neutrino mass, Annals Phys. 247 (1996) 213–291, [hep-ph/9603396].
  • (21) A. Y. Smirnov and F. Vissani, Long range neutrino forces and the lower bound on neutrino mass, hep-ph/9604443.
  • (22) A. Abada, M. B. Gavela, and O. Pene, To rescue a star, Phys. Lett. B 387 (1996) 315–319, [hep-ph/9605423].
  • (23) M. Kachelriess, Neutrino selfenergy and pair creation in neutron stars, Phys. Lett. B 426 (1998) 89–94, [hep-ph/9712363].
  • (24) K. Kiers and M. H. G. Tytgat, Neutrino ground state in a dense star, Phys. Rev. D 57 (1998) 5970–5981, [hep-ph/9712463].
  • (25) A. Abada, O. Pene, and J. Rodriguez-Quintero, Finite size effects on multibody neutrino exchange, Phys. Rev. D 58 (1998) 073001, [hep-ph/9802393].
  • (26) J. Arafune and Y. Mimura, Finiteness of multibody neutrino exchange potential energy in neutron stars, Prog. Theor. Phys. 100 (1998) 1083–1088, [hep-ph/9805395].
  • (27) N. Orlofsky and Y. Zhang, Neutrino as the dark force, Phys. Rev. D 104 (2021), no. 7 075010, [2106.08339].
  • (28) R. Coy, X.-J. Xu, and B. Yu, Neutrino forces and the Sommerfeld enhancement, JHEP 06 (2022) 093, [2203.05455].
  • (29) P. Brax, S. Fichet, and G. Pignol, Bounding quantum dark forces, Phys. Rev. D 97 (2018), no. 11 115034, [1710.00850].
  • (30) S. Fichet, Quantum forces from dark matter and where to find them, Phys. Rev. Lett. 120 (2018), no. 13 131801, [1705.10331].
  • (31) A. Costantino, S. Fichet, and P. Tanedo, Exotic spin-dependent forces from a hidden sector, JHEP 03 (2020) 148, [1910.02972].
  • (32) H. Banks and M. Mccullough, Charting the fifth force landscape, Phys. Rev. D 103 (2021), no. 7 075018, [2009.12399].
  • (33) P. Brax and S. Fichet, Scalar-mediated quantum forces between macroscopic bodies and interferometry, Phys. Dark Univ. 42 (2023) 101294, [2203.01342].
  • (34) M. Bauer and G. Rostagni, Fifth Forces from QCD Axions Scale Differently, Phys. Rev. Lett. 132 (2024), no. 10 101802, [2307.09516].
  • (35) S. Barbosa and S. Fichet, Background-Induced Forces from Dark Relics, 2403.13894.
  • (36) N. P. Landsman and C. G. van Weert, Real and Imaginary Time Field Theory at Finite Temperature and Density, Phys. Rept. 145 (1987) 141.
  • (37) D. Notzold and G. Raffelt, Neutrino Dispersion at Finite Temperature and Density, Nucl. Phys. B 307 (1988) 924–936.
  • (38) M. Quiros, Finite temperature field theory and phase transitions, in ICTP Summer School in High-Energy Physics and Cosmology, pp. 187–259, 1, 1999. hep-ph/9901312.
  • (39) J. I. Kapusta and C. Gale, Finite-temperature field theory: Principles and applications. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2011.
  • (40) M. Laine and A. Vuorinen, Basics of Thermal Field Theory, vol. 925. Springer, 2016.
  • (41) Particle Data Group Collaboration, R. L. Workman and Others, Review of Particle Physics, PTEP 2022 (2022) 083C01.
  • (42) V. I. Kopeikin, Flux and spectrum of reactor antineutrinos, Phys. Atom. Nucl. 75 (2012) 143–152.
  • (43) P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145–179.
  • (44) M. Escudero Abenza, Precision early universe thermodynamics made simple: NeffN_{\rm eff} and neutrino decoupling in the Standard Model and beyond, JCAP 05 (2020) 048, [2001.04466].
  • (45) X. Luo, W. Rodejohann, and X.-J. Xu, Dirac neutrinos and NeffN_{{\rm eff}}, JCAP 06 (2020) 058, [2005.01629].
  • (46) C. J. Horowitz and J. T. Pantaleone, Long range forces from the cosmological neutrinos background, Phys. Lett. B 319 (1993) 186–190, [hep-ph/9306222].
  • (47) F. Ferrer, J. A. Grifols, and M. Nowakowski, Long range forces induced by neutrinos at finite temperature, Phys. Lett. B 446 (1999) 111–116, [hep-ph/9806438].
  • (48) F. Ferrer, J. A. Grifols, and M. Nowakowski, Long range neutrino forces in the cosmic relic neutrino background, Phys. Rev. D 61 (2000) 057304, [hep-ph/9906463].
  • (49) M. Alford, A. Harutyunyan, and A. Sedrakian, Bulk viscosity of baryonic matter with trapped neutrinos, Phys. Rev. D 100 (2019), no. 10 103021, [1907.04192].
  • (50) M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, Search for New Physics with Atoms and Molecules, Rev. Mod. Phys. 90 (2018), no. 2 025008, [1710.01833].
  • (51) C. Wieman and A. Derevianko, Atomic parity violation and the standard model, 1904.00281.
  • (52) P. S. B. Dev, W. Rodejohann, X.-J. Xu, and Y. Zhang, Searching for Z’ bosons at the P2 experiment, JHEP 06 (2021) 039, [2103.09067].
  • (53) A. Y. Smirnov and X.-J. Xu, Wolfenstein potentials for neutrinos induced by ultra-light mediators, JHEP 12 (2019) 046, [1909.07505].