This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

THE μ\mu TAU ASSOCIATION: A 60 MYR-OLD COEVAL GROUP AT 150 pc FROM THE SUN

Jonathan Gagné Planétarium Rio Tinto Alcan, Espace pour la Vie, 4801 av. Pierre-de Coubertin, Montréal, Québec, Canada Institute for Research on Exoplanets, Université de Montréal, Département de Physique, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7, Canada [email protected] Trevor J. David Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA Eric E. Mamajek Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, USA Andrew W. Mann Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA Jacqueline K. Faherty Department of Astrophysics, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA Antoine Bédard Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
Abstract

We present an analysis of the newly identified μ\mu Tau Association (MUTA) of young stars at \simeq 150 pc from the Sun that is part of the large Cas-Tau structure, coeval and co-moving with the α\alpha Persei cluster. This association is also located in the vicinity of the Taurus-Auriga star-forming region and the Pleiades association, although it is unrelated to them. We identify more than 500 candidate members of MUTA using Gaia DR2 data and the BANYAN Σ\Sigma tool (Gagné et al., 2018) and we determine an age of 62±762\pm 7 Myr for its population based on an empirical comparison of its color-magnitude diagram sequence with those of other nearby young associations. The MUTA association is related to the Theia 160 group of Kounkel & Covey (2019) and corresponds to the e Tau group of Liu et al. (2020). It is also part of the Cas-Tau group of Blaauw (1956). As part of this analysis, we introduce an iterative method based on spectral templates to perform an accurate correction of interstellar extinction of Gaia DR2 photometry, needed because of its wide photometric bandpasses. We show that the members of MUTA display an expected increased rate of stellar activity and faster rotation rates compared with older stars, and that literature measurements of the lithium equivalent width of nine G0 to K3-type members are consistent with our age determination. We show that the present-day mass function of MUTA is consistent with other known nearby young associations. We identify WD 0340+103 as a hot, massive white dwarf remnant of a B2 member that left its planetary nebula phase only 270,000 years ago, posing an independent age constraint of 606+860_{-6}^{+8} Myr for MUTA, consistent with our isochrone age. This relatively large collection of co-moving young stars near the Sun indicates that more work is required to unveil the full kinematic structure of the complex of young stars surrounding α\alpha Persei and Cas-Tau.

methods: data analysis — stars: kinematics and dynamics — proper motions
journal: ApJsoftware: BANYAN Σ\Sigma (Gagné et al., 2018), Eleanor (Feinstein et al., 2019).

1 INTRODUCTION

Young stellar associations in the Solar neighborhood (\lesssim 200 pc) are valuable laboratories to study stellar evolution and refine our age-dating methods because they contain groups of stars with many different masses that formed coevally from the same molecular cloud (e.g., Zuckerman & Song, 2004; Torres et al., 2008). Their proximity is valuable because their members appear brighter, but it also causes them to be spread over larger areas of the sky, which makes their initial identification less straightforward. Obtaining credible lists of members with low contamination by unrelated field stars is challenging and typically requires measuring the six-dimensional position and space velocity of each member. As these stars formed from a single molecular cloud, they share the same velocities typically within \simeq 2–4 km s-1, allowing us to distinguish them from most field stars.

Until recently, trigonometric distance measurements were only available for a limited set of bright stars (e.g., Perryman et al. 1997), and radial velocity measurements of stars in the Solar neighborhood were even more limited to small-scale samples (e.g., see Gontcharov, 2006; White et al., 2007). This led to the identification of co-moving and coeval massive stars that represented only the tip of the iceberg of each young association of stars in our neighborhood (Zuckerman & Song, 2004; Torres et al., 2008). Efforts have been made to identify the lower-mass population based on various methods that can assign membership probabilities with missing parts of the 6-dimensional space and velocity, including the convergent point method (Mamajek, 2005; Torres et al., 2006) and various other flavors of selection cuts in space-velocity and/or photometry (Zuckerman & Song, 2004; Kraus et al., 2014; Riedel et al., 2017; Shkolnik et al., 2017) as well as methods based on Bayesian statistics (Malo et al., 2013; Gagné et al., 2014, 2018).

The second data release of the Gaia mission (Gaia DR2 hereafter; )111 changed this landscape completely in April of 2018 by providing trigonometric distance measurements for \simeq 1.3 billion stars with an unprecedented precision, as well as radial velocities for more than 7.2 million bright stars. This allowed us to complete the 6-dimensional kinematics for a number of stars on a completely new scale, which led to a plethora of scientific discoveries that quickly unveiled the spatial and kinematic structure of the Solar neighborhood as well as the Milky Way in general. Some of these discoveries include many new associations of stars (Oh et al., 2017; Faherty et al., 2018; Gagné et al., 2018a; Kounkel & Covey, 2019; Meingast et al., 2019), a large number of new M-type members of known associations (Gagné et al., 2018c; Gagné & Faherty, 2018; Luhman, 2018; Reino et al., 2018; Zuckerman, 2019; Tang et al., 2019), as well as the discovery of tidal disruption tails around three older, nearby clusters: the Hyades (Röser et al., 2019), Praesepe (Röser & Schilbach, 2019) and Coma Ber (Tang et al., 2019).

Refer to caption
Figure 1: Sky position and proper motions of MUTA members (empty circles with proper motion arrows), compared with nearby co-moving systems recovered by Oh et al. (2017; filled blue circles). The larger circles belong to Oh et al. (2017) co-moving systems with more members (the maximum symbol size indicates 5 or more members), and the darker-shaded circles correspond to objects further away from the Sun. The tip of the Taurus star-forming region can be seen as large, dark blue circles at R.A. \simeq 55–60°, Dec. \simeq 20°, and part of the foreground Hyades cluster can be seen as large, pale blue circles at R.A. \simeq 65–75°, Dec. \simeq 10–20°. See Section 2 for more details.

This paper presents the discovery and characterization the MUTA association, based on an initial list of massive co-moving and coeval members that had been discovered in historical surveys but never before published. The advent of Gaia DR2 allowed us to complete this list and characterize MUTA such that it will become yet another important laboratory for the investigation of stellar evolution and the grounds for discovery of age-calibrated brown dwarfs and exoplanets. In Section 2, we present the initial list of MUTA members, which we use to build a spatial-kinematic model (Section 3) to search for additional members with the BANYAN Σ\Sigma Bayesian identification tool (Gagné et al., 2018) in Section 4. In Section 5, we present an iterative method to correct interstellar extinction in Gaia DR2 color-magnitude diagrams, required because the photometric bandpasses are wider than usual. We discuss the properties of MUTA as a whole and its individual members in Section 6, including their present-day mass function and stellar activity indicators, and a comparison with the Galactic kinematic structures recently unveiled by Kounkel & Covey (2019). We summarize and conclude this work in Section 7.

2 INITIAL SAMPLE OF MEMBERS

The existence of a distinct group of co-moving young stars in the vicinity of the Taurus-Auriga (Kenyon et al., 2008) star-forming region first appeared in a spatial distribution of Cas-Tau OB-type stars assembled by Blaauw (1956). Cas-Tau was identified by Blaauw (1956) as an extended group of co-moving stars with an expansion age of \simeq 50 Myr that seems to be on the way to being dissolved. They noted that Cas-Tau may share a common origin with an extended stream of stars around the α\alpha Persei cluster (e.g., see Heckmann & Lübeck, 1958; Lodieu et al., 2019) identified by Rasmuson (1921). An over-density in the Cas-Tau stars seemed to be located at Galactic coordinates (,b)=(190,10)\left(\ell,b\right)=\left(190^{\circ},-10^{\circ}\right), and was recovered as part of the de Zeeuw et al. (1999) census of nearby OB associations (see their Fig. 19). This over-density overlaps with subgroup 5 of Cas-Tau defined by Blaauw (1956), with five B-type stars in common (29 Tau, 30 Tau, 35 Eri, μ\mu Tau, μ\mu Eri) and one additional star (40 Tau) not in common that seems to be an un related background star. Combining this list of 12 early-type stars assembled by de Zeeuw et al. (1999) to other co-moving B, A and F-type stars in the range \ell from 170° to 205° and bb from -40° to -27° as well as nearby ROSAT entries (Boller et al., 2016) in the same region yielded a total set of 35 stars that appeared to be young and co-moving within 15 masyr1\mathrm{mas}\,\mathrm{yr}^{-1} of the average proper motions of the de Zeeuw et al. (1999) list (μαcosδ\mu_{\alpha}\cos\delta = 21.0 masyr1\mathrm{mas}\,\mathrm{yr}^{-1}, μδ\mu_{\delta} = -20.5 masyr1\mathrm{mas}\,\mathrm{yr}^{-1}). Four of these 37 stars are clear outliers either in XYZXYZ (HD 23110, TYC 657–794–2, and HD 28796) or UVWUVW (HIP 18778) and were excluded from our initial list. The resulting 33 stars are listed in Table 2 with their properties. We tentatively named this group μ\mu Tau Association (MUTA) after one of its brightest members. We assigned initial members with MUTA identification numbers (from 1 to 30) in order of decreasing VV-band brightness. We assigned the same MUTA ID to binaries with separations below 15′′.

In a more recent analysis or the Gaia Data Release 1 (DR1), Oh et al. (2017) recovered about a third of the stars in Table 2 as three broken up groups of co-moving systems, which they named Groups 43 (6 matches), 52 (3 matches) and 60 (4 matches). The overlap between our initial list of MUTA members and the Oh et al. (2017) sample are shown in Figure 1, where part of the Taurus star-forming region can be seen at a similar distance from the Sun (see e.g. Wichmann et al. 2000), and the Hyades cluster (Perryman et al., 1998) also appears in the foreground. The method that Oh et al. (2017) used to identify systems of co-moving stars works directly in proper motion and parallax space, which tends to recover spatially large moving groups only as broken parts, explaining why the spatially extended MUTA was broken up in three groups, similarly to other nearby young moving groups (Faherty et al., 2018).

Refer to caption
Figure 2: Gaia DR2 Color-magnitude diagram of our initial list of MUTA members (red circles), compared with field stars within 100 pc of the Sun (black dots). This list of MUTA members contains several OBA-type stars (GGRP<0.2G-G_{\rm RP}<0.2) indicative of its young age, as well as later-type stars (GGRP>0.2G-G_{\rm RP}>0.2) that constitute a narrow sequence. The Gaia DR2 photometry was not corrected for interstellar extinction. 2MASS J04212444+0853488 is outside the range of this figure at GGRP=1.12G-G_{\rm RP}=1.12. See Section 2 for more details.

We cross-matched our initial list of MUTA members with Gaia DR2 data to build a color-magnitude sequence shown in Figure 2 to demonstrate they constitute massive OBA-type stars (GGRP<0.2G-G_{\rm RP}<0.2) and a well-defined sequence of later-type stars (GGRP>0.2G-G_{\rm RP}>0.2), providing further evidence that they are coeval and young.

\startlongtable
Table 1: Initial members of MUTA.
MUTA Spectral R.A. Decl. DistanceaaGaia DR2 distances assuming a 0.029 mas zero point (Lindegren et al., 2018). Gaia DR2
ID Name Type (hh:mm:ss.sss) (dd:mm:ss.ss) (pc) GG mag Ref.bbReferences for spectral types.
1 μ\mu Eri B3+A3 04:45:30.167 –03:15:16.97 160±5160\pm 5 3.931±0.0043.931\pm 0.004 16
2 μ\mu Tau B3IV 04:15:32.079 +08:53:32.14 149±7149\pm 7 4.183±0.0034.183\pm 0.003 5
3 A 30 Tau B3V 03:48:16.292 +11:08:35.52 129±3129\pm 3 5.040±0.0025.040\pm 0.002 5
3 B TYC 661–1404–1 F5+F5 03:48:16.835 +11:08:40.16 138±1138\pm 1 9.2693±0.00029.2693\pm 0.0002 2
4 35 Eri B5V 04:01:32.077 –01:32:59.02 133±3133\pm 3 5.230±0.0025.230\pm 0.002 5
5 29 Tau B3+A7 03:45:40.466 +06:02:59.78 187±9187\pm 9 5.295±0.0015.295\pm 0.001 4
6 HD 28375 B5V 04:28:32.142 +01:22:50.65 146±4146\pm 4 5.491±0.0015.491\pm 0.001 14
7 HD 28843 B9III 04:32:37.573 –03:12:34.60 169±3169\pm 3 5.740±0.0025.740\pm 0.002 15
8 HD 19698 B8V 03:10:38.828 +11:52:21.07 134±2134\pm 2 5.9439±0.00085.9439\pm 0.0008 1
9 HR 1307 B8V 04:13:34.588 +10:12:44.52 144±3144\pm 3 6.1900±0.00066.1900\pm 0.0006 13
10 V766 Tau B9 03:51:15.896 +13:02:45.52 161±2161\pm 2 6.247±0.0016.247\pm 0.001 9
11 HD 28715 B9 04:31:50.463 +05:45:51.74 187±4187\pm 4 6.6396±0.00046.6396\pm 0.0004 3
12 HD 24456 B9.5V 03:53:30.257 +02:07:08.57 138.7±0.9138.7\pm 0.9 6.6983±0.00046.6983\pm 0.0004 10
13 HD 23990 B9.5V 03:49:46.521 +09:24:26.60 147±1147\pm 1 6.7410±0.00046.7410\pm 0.0004 6
14 HD 23538 A0 03:46:26.278 +13:30:32.46 168±2168\pm 2 6.8479±0.00036.8479\pm 0.0003 3
15 HD 25978 B9V 04:07:11.204 +12:16:05.10 166±2166\pm 2 7.6661±0.00037.6661\pm 0.0003 12
16 HD 26323 A2V 04:10:06.873 +07:41:52.12 161±2161\pm 2 8.5401±0.00058.5401\pm 0.0005 10
17 HD 27687 A3 04:22:24.213 +06:31:45.14 165±1165\pm 1 8.9125±0.00048.9125\pm 0.0004 3
18 HD 28356 A3 04:28:32.733 +06:05:52.07 157±2157\pm 2 8.9675±0.00048.9675\pm 0.0004 3
19 A HD 23376 G5 03:44:58.957 +08:19:10.09 145±1145\pm 1 9.2549±0.00039.2549\pm 0.0003 3
19 B TYC 658–1007–2 \cdots 03:44:59.048 +08:19:13.81 142±1142\pm 1 10.493±0.00210.493\pm 0.002
20 HIP 17133 A0 03:40:09.988 +13:11:55.07 150±1150\pm 1 9.949±0.0019.949\pm 0.001 3
21 HD 286374 F5 03:56:19.224 +11:25:10.84 152±2152\pm 2 9.9776±0.00059.9776\pm 0.0005 11
22 PPM 119410 F8 03:50:50.558 +11:00:05.12 151±1151\pm 1 10.0929±0.000610.0929\pm 0.0006 8
23 [LH98] 108 G5IV 03:50:28.436 +16:31:14.80 146±1146\pm 1 10.364±0.00110.364\pm 0.001 7
24 RX J0348.5+0832 G7 03:48:31.461 +08:31:36.43 152±2152\pm 2 10.841±0.00210.841\pm 0.002 2
25 TYC 80–202–1 \cdots 04:15:51.119 +07:07:03.76 167±1167\pm 1 10.8894±0.000610.8894\pm 0.0006
26 TYC 662–217–1 \cdots 03:59:42.158 +12:10:08.14 148±1148\pm 1 11.111±0.00211.111\pm 0.002
27 RX J0338.3+1020 G9 03:38:18.266 +10:20:16.32 146±1146\pm 1 10.976±0.00110.976\pm 0.001 2
28 TYC 664–136–1 \cdots 03:51:39.673 +14:47:47.84 160±1160\pm 1 11.566±0.00211.566\pm 0.002
29 RX J0358.2+0932 K3 03:58:12.749 +09:32:21.97 146.8±0.9146.8\pm 0.9 12.045±0.00112.045\pm 0.001 2
30 A TYC 668–737–1 \cdots 04:21:24.386 +08:53:54.34 151±1151\pm 1 11.356±0.00211.356\pm 0.002
30 B 2MASS J04212444+0853488 \cdots 04:21:24.473 +08:53:48.52 151±1151\pm 1 14.7603±0.000714.7603\pm 0.0007

Note. — See section 2 for more details.

References. — (1) Cowley et al. 1969; (2) Magazzù et al. 1997; (3) Cannon & Pickering 1993; (4) Beavers & Cook 1980; (5) Lesh 1968; (6) Abt 2008; (7) White et al. 2007; (8) Wright et al. 2003; (9) Cowley 1968; (10) Grenier et al. 1999; (11) Nesterov et al. 1995; (12) Bidelman et al. 1988; (13) Cowley 1972; (14) Molnar 1972; (15) Jaschek & Jaschek 1980; (16) van Leeuwen 2007.

\startlongtable
Table 2: Core members of MUTA used in the construction of a kinematic model.
MUTA μαcosδ\mu_{\alpha}\cos\delta μδ\mu_{\delta} Parallax RV RV
ID Name (masyr1\mathrm{mas}\,\mathrm{yr}^{-1}) (masyr1\mathrm{mas}\,\mathrm{yr}^{-1}) (mas) (km s-1) Ref.
1 μ\mu Eri 13.51±0.7513.51\pm 0.75 13.66±0.64-13.66\pm 0.64 6.3±0.26.3\pm 0.2 23±423\pm 4 1
2 μ\mu Tau 20.88±0.6220.88\pm 0.62 22.79±0.52-22.79\pm 0.52 6.7±0.36.7\pm 0.3 16.3±0.616.3\pm 0.6 1
3 A 30 Tau 25.27±0.2825.27\pm 0.28 23.69±0.23-23.69\pm 0.23 7.7±0.27.7\pm 0.2 16.2±0.116.2\pm 0.1 1
4 35 Eri 28.45±0.3028.45\pm 0.30 15.28±0.25-15.28\pm 0.25 7.5±0.27.5\pm 0.2 15.7±0.815.7\pm 0.8 1
5 29 Tau 21.88±0.2921.88\pm 0.29 13.65±0.26-13.65\pm 0.26 5.3±0.25.3\pm 0.2 17±217\pm 2 3
6 HD 28375 19.53±0.3319.53\pm 0.33 20.27±0.18-20.27\pm 0.18 6.8±0.26.8\pm 0.2 18±418\pm 4 1
7 HD 28843 18.28±0.1918.28\pm 0.19 16.50±0.13-16.50\pm 0.13 5.9±0.15.9\pm 0.1 18±718\pm 7 6
8 HD 19698 32.84±0.1632.84\pm 0.16 23.58±0.17-23.58\pm 0.17 7.4±0.17.4\pm 0.1 1±41\pm 4 1
9 HR 1307 19.37±0.3919.37\pm 0.39 26.69±0.23-26.69\pm 0.23 6.9±0.16.9\pm 0.1 10±710\pm 7 6
10 V766 Tau 23.77±0.1123.77\pm 0.11 23.228±0.079-23.228\pm 0.079 6.19±0.066.19\pm 0.06 16±216\pm 2 5
12 HD 24456 26.93±0.1026.93\pm 0.10 20.785±0.074-20.785\pm 0.074 7.18±0.057.18\pm 0.05 18±318\pm 3 1
15 HD 25978 18.91±0.1618.91\pm 0.16 22.323±0.076-22.323\pm 0.076 5.99±0.075.99\pm 0.07 22±722\pm 7 6
16 HD 26323 22.38±0.1222.38\pm 0.12 20.975±0.071-20.975\pm 0.071 6.18±0.066.18\pm 0.06 14±314\pm 3 1
18 HD 28356 20.00±0.1520.00\pm 0.15 21.659±0.072-21.659\pm 0.072 6.36±0.076.36\pm 0.07 20.6±0.620.6\pm 0.6 2
19 A HD 23376 26.61±0.1126.61\pm 0.11 24.306±0.066-24.306\pm 0.066 6.89±0.066.89\pm 0.06 16.5±0.516.5\pm 0.5 2
20 HIP 17133 25.53±0.1025.53\pm 0.10 24.403±0.073-24.403\pm 0.073 6.63±0.056.63\pm 0.05 14±614\pm 6 2
21 HD 286374 24.05±0.1124.05\pm 0.11 24.124±0.067-24.124\pm 0.067 6.54±0.076.54\pm 0.07 14±214\pm 2 2
22 PPM 119410 24.14±0.1024.14\pm 0.10 24.167±0.068-24.167\pm 0.068 6.58±0.056.58\pm 0.05 15.0±0.615.0\pm 0.6 2
23 [LH98] 108 24.24±0.1424.24\pm 0.14 21.892±0.072-21.892\pm 0.072 6.80±0.056.80\pm 0.05 8.0±0.78.0\pm 0.7 4
24 RX J0348.5+0832 25.33±0.1125.33\pm 0.11 22.738±0.070-22.738\pm 0.070 6.56±0.086.56\pm 0.08 10±1010\pm 10 2
25 TYC 80–202–1 23.547±0.08623.547\pm 0.086 25.480±0.054-25.480\pm 0.054 5.96±0.055.96\pm 0.05 20.7±0.620.7\pm 0.6 2
26 TYC 662–217–1 24.07±0.1124.07\pm 0.11 25.242±0.063-25.242\pm 0.063 6.71±0.056.71\pm 0.05 15.3±0.615.3\pm 0.6 2
27 RX J0338.3+1020 26.75±0.1026.75\pm 0.10 24.923±0.070-24.923\pm 0.070 6.82±0.066.82\pm 0.06 15±115\pm 1 2
29 RX J0358.2+0932 24.321±0.07124.321\pm 0.071 24.493±0.051-24.493\pm 0.051 6.78±0.046.78\pm 0.04 16±216\pm 2 2
30 A TYC 668–737–1 21.501±0.08521.501\pm 0.085 23.632±0.056-23.632\pm 0.056 6.57±0.056.57\pm 0.05 20±720\pm 7 2

Note. — All proper motion and parallax measurements are from Gaia DR2, except for the parallax of μ\mu Eri, which is from Hipparcos (van Leeuwen, 2007). See section 3 for more details.

References. — (1) Gontcharov 2006; (2) Gaia Collaboration et al. 2018a; (3) Evans 1967; (4) White et al. 2007; (5) Wilson 1953; (6) Kharchenko et al. 2007.

The earliest-type member in our initial list is 29 Tau (MUTA 5), a B3 V-type star (Beavers & Cook, 1980), which corresponds to a mass of \simeq 5.4 MM_{\odot} (Pecaut & Mamajek, 2013). Hohle et al. (2010) and Gullikson et al. (2016) estimated the mass of 29 Tau based on evolutionary tracks and found respective values of 6.0±0.76.0\pm 0.7MM_{\odot} and 5.4±0.65.4\pm 0.6MM_{\odot}, consistent with the expected mass for a B3 star. Following the evolutionary tracks of Choi et al. (2016), such a star has a main-sequence life of only \simeq 80 Myr, indicating that the MUTA association is likely younger than the Pleiades.

We note that both μ\mu Tau (MUTA 2) and τ1\tau^{1} Ari are known eclipsing binaries (Avvakumova et al., 2013). While the first is part of our initial list of members, τ1\tau^{1} Ari was identified in an earlier parsing of de Zeeuw et al. (1999) but was not included because of its discrepant UVWUVW motion (it is separated from the other stars by \simeq6.3 km s-1). A further analysis of their respective light curves might be useful for constraining models of stellar structure at young ages.

3 A KINEMATIC MODEL OF MUTA MEMBERS

The BANYAN Σ\Sigma tool (Gagné et al., 2018) makes it possible to identify additional stars with similar Galactic positions XYZXYZ and space velocities UVWUVW compared to our initial list of MUTA members, if we provide it a 6-dimensional multivariate Gaussian model for MUTA in XYZUVWXYZUVW space. One of the main benefits of BANYAN Σ\Sigma is its ability to recover stars with only partial kinematics, often a consequence of missing radial velocity or parallax measurements. The BANYAN Σ\Sigma tool currently includes kinematic models for 29 nearby young associations, which consist of the 27 associations described in Gagné et al. (2018), as well as the recently discovered Volans-Carina (Gagné et al., 2018a) and the Argus associations (Makarov & Urban, 2000), whose census of members was recently revised by Zuckerman (2019).

We compiled literature radial velocity measurements for the stars listed in Table 2 to identify a set of 25 core members with complete kinematics (see Table 2). This list excludes any gravitationally bound companion to avoid artificially giving each system more weight in the kinematic construction of the MUTA model (consistent with the model construction method of Gagné et al. 2018). HD 28715, HD 23990, HD 23538, and HD 27687 (MUTA 11, 13, 14, and 17, respectively) currently do not have radial velocity measurements and were not included in Table 2 although they are likely part of MUTA based on their position in a color-magnitude diagram (see Figure 2) and their common proper motion and parallax compared to the other members.

The methodology described in Gagné et al. (2018; see their Section 5) was used to build a XYZUVWXYZUVW multivariate Gaussian model of the stars listed in Table 2. In summary, a 6-dimensional average vector and covariance matrix in XYZUVWXYZUVW space were built by calculating the average, variance and covariances of the 25 core members with full kinematics listed in Table 2. When calculating the averages, variances and covariances, the individual measurements were weighted proportionally to the squared inverse of their individual error bars to minimize the impact of low quality measurements. The covariance matrix is then regularized to ensure its determinant is finite and positive with a singular value decomposition step. The resulting model is shown in Figure 3.

The multivariate Gaussian model in XYZUVWXYZUVW space that was found to best represent MUTA has the following central position x¯0\bar{x}_{0} and covariance matrix Σ¯¯\bar{\bar{\Sigma}}:

x¯0\displaystyle\bar{x}_{0} =[130.70.279.714.1524.206.21],\displaystyle=\begin{bmatrix}-130.7&0.2&-79.7&-14.15&-24.20&-6.21\end{bmatrix},
Σ¯¯\displaystyle\bar{\bar{\Sigma}} =[4782861961611.9152864321366.77.66.01961361555.24.73.9166.75.29.10.465.5127.64.70.462.80.76156.03.95.50.765.9].\displaystyle=\begin{bmatrix}478&286&196&16&11.9&15\\ 286&432&136&6.7&7.6&6.0\\ 196&136&155&5.2&4.7&-3.9\\ 16&6.7&5.2&9.1&0.46&5.5\\ 12&7.6&4.7&0.46&2.8&0.76\\ 15&6.0&-3.9&5.5&0.76&5.9\\ \end{bmatrix}.

both in units of pc and km s-1.

The average sky position of MUTA members is 04:01:29.54, ++07:59:33.3 (60.373160.3731°, 7.99267.9926°) with a standard deviation of 5° in both directions. The average galactic coordinates (,b)\left(\ell,b\right) are (182.4658182.4658°, 31.8645-31.8645°) with a standard deviation of (99°, 33°). The total velocity StotS_{\rm tot} of the members averages 28.3 km s-1 with a standard deviation of 2.3 km s-1. The UVWUVW values we find correspond to a convergent point of 103.380103.380°, 29.325-29.325° in right ascension and declination (06:53:31, -29:19:30).

Refer to caption
Figure 3: Multivariate Gaussian model of MUTA built for BANYAN Σ\Sigma. Orange lines show the 1, 2 and 3σ\sigma projected contours of the modeled members distribution, and black points represent individual members. Blue and green shadings represent regions of over (green) and under (blue) density of actual members compared to the model, and therefore correspond to departures from a multivariate Gaussian distribution. One-dimensional distributions are displayed as green bars, and are compared with a kernel density estimate distribution of the members (black line) and the projected model (orange lines). A single 1σ\sigma contour (orange surfaces) and individual members (black spheres) with their projections on the three axis planes are shown for the 3D model projections (upper right). See Section 3 for more details.

4 A SEARCH FOR ADDITIONAL MEMBERS

The kinematic model described in Section 3 was combined with the BANYAN Σ\Sigma tool to identify candidate members of MUTA in Gaia DR2 data. We pre-selected only Gaia DR2 entries with right ascensions in the range 10–150°, declinations in the range -20 to ++40° and trigonometric distances within 300 pc of the Sun. These limits are significantly wider than the ranges of sky positions (47° to 72° and -3.5° to 16.5°, respectively) and distances (all in the range 130–220 pc) of the initial list of members. The sky positions, proper motions and parallaxes from Gaia DR2 were used to determine a membership probability, as well as the Gaia DR2 radial velocities when available. We selected only the stars with Bayesian membership probabilities above 90% and a maximum likelihood separation of less than 5 km s-1 from the core of our MUTA kinematic model in UVWUVW space as new candidate members. The latter criterion avoids selecting stars that would fit all BANYAN Σ\Sigma models poorly, including its model of the local Galactic neighborhood.

These selection criteria resulted in a set of 503 additional candidate members which are listed in Table 3. Their common proper motion is illustrated in Figure 4 and their positions in a Gaia DR2 GGRPG-G_{\rm RP} color versus absolute GG magnitude are shown in Figure 5. Their sky positions are located in the range 37–74° and -4° to ++29° in right ascension and declination, and their trigonometric distances are in the range 100–220 pc, indicating that our initial filtering of Gaia DR2 entries was likely appropriate to encompass the full distribution of MUTA members.

Refer to caption
Figure 4: Sky positions and proper motion vectors for initial members of MUTA (red circles and lines) and additional candidate members recovered in this work (gray circles and lines). See Section 4 for more details.
Refer to caption
Figure 5: Gaia DR2 color-magnitude diagram of initial MUTA members (red circles) and candidate members (blue rightward triangles) recovered by BANYAN Σ\Sigma based on their Gaia DR2 sky positions, proper motions, parallaxes and radial velocities when available. See Section 4 for more details.

4.1 A Search for Co-Moving Systems

We complemented our search for MUTA members with a subsequent search for stars co-moving with any one of the 540 members and candidate members. All Gaia DR2 entries within 180′′ of each MUTA candidate were inspected to find objects co-moving within 10 masyr1\mathrm{mas}\,\mathrm{yr}^{-1} and for which the proper motion difference is smaller than 5% of the measurement. For most Gaia DR2 entries, a parallax measurement is also available: in these cases, we also required the trigonometric distance of the two objects to be within 5 pc of each other222Throughout this work, we used a parallax zero-point of -0.029 mas (Lindegren et al., 2018) to convert parallaxes to trigonometric distances. We determined trigonometric distances ϖ=1/(π+0.029)\varpi=1/\left(\pi+0.029\right) where π\pi is the parallax with a standard error propagation, which is accurate enough for the current purposes given the nearby distances of the stars under consideration., and we set a maximum parallax difference at 5% of the parallax measurement.

This search identified 26 co-moving systems (52 components total) for which both components were already in the list of candidates, and 2 stars (2MASS J03424511+0754507 and 2MASS J02581815+2456552) not already included in our list, each seemingly co-moving with a pair of stars in our list of candidates but failing to meet our membership selection criteria (i.e., their Bayesian membership probabilities are 49% and 0% respectively). In addition to those, we identified 15 systems (21 system components) for which only one component was in our list of candidates because the other component failed to pass our membership selection criteria. All objects were added to our list of low-likelihood candidates for completion, and all co-moving systems are listed in Table 4.

\startlongtable
Table 3: List of new candidate members of MUTA identified in Gaia DR2 with BANYAN Σ\Sigma.
MUTA Object R.A. Decl. μαcosδ\mu_{\alpha}\cos\delta μδ\mu_{\delta} Parallax RV Gaia DR2
ID Name (hh:mm:ss.sss) (dd:mm:ss.ss) (masyr1\mathrm{mas}\,\mathrm{yr}^{-1}) (masyr1\mathrm{mas}\,\mathrm{yr}^{-1}) (mas) (km s-1) GG mag
31 2MASS J02363660+2026331 02:36:36.648 +20:26:32.84 40.3±1.440.3\pm 1.4 26.7±1.1-26.7\pm 1.1 8.82±0.698.82\pm 0.69 \cdots 15.289
32 2MASS J02424085+2558585 02:42:40.905 +25:58:58.08 38.60±0.1638.60\pm 0.16 31.61±0.14-31.61\pm 0.14 8.80±0.118.80\pm 0.11 \cdots 16.090
33 HD 17008 02:44:30.027 +28:00:53.61 31.19±0.1131.19\pm 0.11 25.95±0.10-25.95\pm 0.10 7.372±0.0667.372\pm 0.066 4±24\pm 2 7.909
34 2MASS J02484851+1319378 02:48:48.553 +13:19:37.66 34.627±0.06234.627\pm 0.062 23.355±0.054-23.355\pm 0.054 7.731±0.0357.731\pm 0.035 \cdots 14.077
35 TYC 1785–155–1 02:49:43.813 +25:53:11.25 30.146±0.08730.146\pm 0.087 26.174±0.077-26.174\pm 0.077 7.036±0.0447.036\pm 0.044 7.2±0.37.2\pm 0.3 11.679
36 2MASS J02513636+2811000 02:51:36.407 +28:10:59.60 32.002±0.07332.002\pm 0.073 25.265±0.067-25.265\pm 0.067 7.866±0.0367.866\pm 0.036 \cdots 13.629
37 2MASS J02515956+1458162 02:51:59.618 +14:58:15.78 41.0±1.341.0\pm 1.3 24.72±0.99-24.72\pm 0.99 8.68±0.788.68\pm 0.78 \cdots 19.815
38 2MASS J02523886+2300093 02:52:38.911 +23:00:08.53 35.50±0.6335.50\pm 0.63 30.31±0.43-30.31\pm 0.43 8.30±0.328.30\pm 0.32 \cdots 18.548
39 GSC 01230–00749 02:55:04.011 +20:55:18.64 39.250±0.07539.250\pm 0.075 30.957±0.067-30.957\pm 0.067 7.892±0.0437.892\pm 0.043 \cdots 11.948
40 2MASS J02571995+2408232 02:57:19.993 +24:08:22.54 36.577±0.06936.577\pm 0.069 30.638±0.060-30.638\pm 0.060 7.144±0.0387.144\pm 0.038 4±14\pm 1 12.207
41 TYC 1790–927–1 02:57:43.023 +26:32:03.61 31.150±0.08231.150\pm 0.082 27.362±0.075-27.362\pm 0.075 7.419±0.0437.419\pm 0.043 8±28\pm 2 11.326
42 B Gaia DR2 113410746049727744 02:58:16.476 +24:56:42.65 31.83±0.3831.83\pm 0.38 28.33±0.24-28.33\pm 0.24 6.67±0.236.67\pm 0.23 \cdots 16.776
42 A 2MASS J02581643+2456424 02:58:16.484 +24:56:41.76 31.65±0.3331.65\pm 0.33 27.54±0.26-27.54\pm 0.26 7.84±0.217.84\pm 0.21 \cdots 15.193
43 2MASS J02582387+2341382 02:58:23.907 +23:41:37.47 41.63±0.2441.63\pm 0.24 39.99±0.20-39.99\pm 0.20 9.21±0.209.21\pm 0.20 \cdots 15.832
44 TYC 1786–525–1 02:58:43.640 +25:53:38.92 28.771±0.09628.771\pm 0.096 25.991±0.073-25.991\pm 0.073 6.893±0.0546.893\pm 0.054 \cdots 10.611
45 2MASS J03060696+1820259 03:06:06.995 +18:20:25.43 29.66±0.8129.66\pm 0.81 25.25±0.65-25.25\pm 0.65 7.07±0.627.07\pm 0.62 \cdots 19.550
46 2MASS J03072480+2512266 03:07:24.844 +25:12:25.96 31.627±0.09631.627\pm 0.096 30.038±0.090-30.038\pm 0.090 7.447±0.0457.447\pm 0.045 \cdots 14.311
47 2MASS J03080089+1229304 03:08:00.939 +12:29:29.89 30.16±0.2530.16\pm 0.25 24.14±0.24-24.14\pm 0.24 7.22±0.137.22\pm 0.13 \cdots 15.820
48 HAT 258–02140 03:08:12.369 +25:59:26.76 32.075±0.08032.075\pm 0.080 27.934±0.066-27.934\pm 0.066 7.536±0.0487.536\pm 0.048 9±19\pm 1 12.372
49 2MASS J03092962+1436212 03:09:29.670 +14:36:21.03 37.35±0.1037.35\pm 0.10 26.040±0.076-26.040\pm 0.076 7.217±0.0647.217\pm 0.064 \cdots 13.889
50 2MASS J03094950+2033183 03:09:49.537 +20:33:17.96 30.47±0.8830.47\pm 0.88 28.09±0.62-28.09\pm 0.62 6.85±0.396.85\pm 0.39 \cdots 18.117
51 2MASS J03111256+2655141 03:11:12.603 +26:55:13.54 32.06±0.1932.06\pm 0.19 31.20±0.12-31.20\pm 0.12 7.58±0.117.58\pm 0.11 \cdots 15.099
52 2MASS J03111286+2208510 03:11:12.890 +22:08:50.60 26.66±0.1626.66\pm 0.16 25.57±0.12-25.57\pm 0.12 6.760±0.0876.760\pm 0.087 \cdots 15.496
53 HAT 306–07804 03:12:31.219 +17:52:45.99 28.46±0.1628.46\pm 0.16 26.85±0.12-26.85\pm 0.12 7.130±0.0747.130\pm 0.074 \cdots 15.091
54 WISEA J031350.31+152530.2 03:13:50.319 +15:25:29.96 29.8±3.529.8\pm 3.5 27.4±2.9-27.4\pm 2.9 8.3±1.88.3\pm 1.8 \cdots 20.723
55 2MASS J03145892+2442227 03:14:58.962 +24:42:22.03 27.43±0.4927.43\pm 0.49 26.83±0.39-26.83\pm 0.39 6.88±0.276.88\pm 0.27 \cdots 18.409
56 HAT 259–01962 03:16:28.094 +24:07:40.18 25.01±0.1225.01\pm 0.12 24.149±0.087-24.149\pm 0.087 5.842±0.0615.842\pm 0.061 9±19\pm 1 11.905
57 WISEA J031644.41+203733.1 03:16:44.427 +20:37:32.91 31.7±3.531.7\pm 3.5 33.7±2.7-33.7\pm 2.7 7.4±1.87.4\pm 1.8 \cdots 20.812
58 2MASS J03173044+1708397 03:17:30.472 +17:08:39.41 27.00±0.1927.00\pm 0.19 24.36±0.16-24.36\pm 0.16 6.582±0.0946.582\pm 0.094 \cdots 16.287
59 2MASS J03174414+2633589 03:17:44.180 +26:33:58.50 30.21±0.7430.21\pm 0.74 32.37±0.67-32.37\pm 0.67 7.57±0.487.57\pm 0.48 \cdots 17.935
60 2MASS J03184219+0924050 03:18:42.227 +09:24:04.57 31.36±0.1831.36\pm 0.18 27.61±0.14-27.61\pm 0.14 7.637±0.0867.637\pm 0.086 \cdots 16.087
61 2MASS J03191104+1508330 03:19:11.110 +15:08:32.00 27.23±0.3427.23\pm 0.34 26.54±0.29-26.54\pm 0.29 6.65±0.226.65\pm 0.22 \cdots 18.175
62 2MASS J03194193+1130168 03:19:41.968 +11:30:16.39 27.99±0.1827.99\pm 0.18 24.75±0.15-24.75\pm 0.15 6.923±0.0996.923\pm 0.099 \cdots 16.531
63 2MASS J03195293+2059291 03:19:52.955 +20:59:28.69 24.23±0.1924.23\pm 0.19 24.75±0.18-24.75\pm 0.18 6.268±0.0986.268\pm 0.098 \cdots 15.967
64 2MASS J03201019+2333336 03:20:10.218 +23:33:33.44 28.444±0.07628.444\pm 0.076 27.092±0.057-27.092\pm 0.057 6.748±0.0446.748\pm 0.044 \cdots 13.859
65 HD 20635 03:20:12.410 +28:19:22.21 28.542±0.08928.542\pm 0.089 32.403±0.071-32.403\pm 0.071 7.137±0.0487.137\pm 0.048 \cdots 8.856
66 2MASS J03202513+1622136 03:20:25.170 +16:22:13.22 29.16±0.9329.16\pm 0.93 22.57±0.72-22.57\pm 0.72 6.00±0.556.00\pm 0.55 \cdots 19.099
67 HAT 307–08212 03:21:38.153 +18:31:27.69 24.12±0.2024.12\pm 0.20 23.23±0.16-23.23\pm 0.16 5.89±0.105.89\pm 0.10 \cdots 15.190
68 HAT 307–05183 03:21:47.767 +18:31:36.03 35.621±0.09135.621\pm 0.091 31.760±0.078-31.760\pm 0.078 9.148±0.0429.148\pm 0.042 \cdots 13.895
69 2MASS J03215583+2140162 03:21:55.877 +21:40:15.73 33.29±0.3833.29\pm 0.38 28.42±0.27-28.42\pm 0.27 7.24±0.207.24\pm 0.20 \cdots 14.569
70 2MASS J03223315+1715182 03:22:33.202 +17:15:17.93 41.09±0.2941.09\pm 0.29 31.80±0.23-31.80\pm 0.23 9.60±0.159.60\pm 0.15 \cdots 16.049
71 2MASS J03223957+1420316 03:22:39.615 +14:20:31.22 29.23±0.1929.23\pm 0.19 27.38±0.15-27.38\pm 0.15 7.48±0.117.48\pm 0.11 \cdots 16.419
72 HAT 259–12052 03:22:54.201 +22:12:41.40 25.6±1.025.6\pm 1.0 27.38±0.89-27.38\pm 0.89 6.86±0.516.86\pm 0.51 \cdots 15.856
73 2MASS J03233089+1903574 03:23:30.933 +19:03:56.97 25.82±0.2425.82\pm 0.24 25.58±0.15-25.58\pm 0.15 6.83±0.116.83\pm 0.11 \cdots 16.285
74 2MASS J03235482+0859547 03:23:54.865 +08:59:54.52 33.22±0.1833.22\pm 0.18 19.84±0.15-19.84\pm 0.15 7.94±0.107.94\pm 0.10 \cdots 16.129
75 2MASS J03240542+2016260 03:24:05.456 +20:16:25.53 27.65±0.3127.65\pm 0.31 27.02±0.26-27.02\pm 0.26 6.18±0.176.18\pm 0.17 \cdots 17.238
76 2MASS J03245387+1422189 03:24:53.906 +14:22:18.48 26.57±0.6826.57\pm 0.68 25.87±0.56-25.87\pm 0.56 6.88±0.416.88\pm 0.41 \cdots 18.930
77 2MASS J03252139+2048507 03:25:21.425 +20:48:50.36 23.3±1.823.3\pm 1.8 24.0±1.4-24.0\pm 1.4 6.5±1.26.5\pm 1.2 \cdots 20.471
78 2MASS J03252961+1819289 03:25:29.653 +18:19:29.07 26.1±1.526.1\pm 1.5 22.9±1.1-22.9\pm 1.1 5.76±0.825.76\pm 0.82 \cdots 18.850
79 2MASS J03261339+2816284 03:26:13.431 +28:16:27.98 29.11±0.2229.11\pm 0.22 32.31±0.16-32.31\pm 0.16 8.01±0.138.01\pm 0.13 \cdots 15.526
80 2MASS J03263469+2021019 03:26:34.742 +20:21:01.57 29.35±0.5529.35\pm 0.55 26.59±0.39-26.59\pm 0.39 6.28±0.326.28\pm 0.32 \cdots 18.653
81 TYC 1245–1095–1 03:27:29.236 +22:06:51.08 30.69±0.1130.69\pm 0.11 29.241±0.075-29.241\pm 0.075 7.712±0.0697.712\pm 0.069 \cdots 10.523
82 2MASS J03283913+1945195 03:28:39.166 +19:45:19.10 24.92±0.9024.92\pm 0.90 27.46±0.68-27.46\pm 0.68 6.57±0.466.57\pm 0.46 \cdots 19.382
83 HAT 259–04655 03:29:33.974 +20:51:37.51 26.57±0.1726.57\pm 0.17 24.69±0.13-24.69\pm 0.13 6.899±0.0976.899\pm 0.097 \cdots 13.614
84 2MASS J03293496+1200269 03:29:34.998 +12:00:26.54 28.1±1.228.1\pm 1.2 27.44±0.89-27.44\pm 0.89 8.36±0.788.36\pm 0.78 \cdots 19.577
85 2MASS J03294963+0919493 03:29:49.665 +09:19:48.97 29.76±0.1929.76\pm 0.19 25.83±0.14-25.83\pm 0.14 7.38±0.127.38\pm 0.12 \cdots 15.420
86 2MASS J03300964+1419314 03:30:09.685 +14:19:30.98 26.19±0.1926.19\pm 0.19 24.74±0.14-24.74\pm 0.14 6.70±0.116.70\pm 0.11 \cdots 16.324
87 HAT 259–09674 03:30:10.617 +20:19:25.25 25.064±0.08825.064\pm 0.088 25.274±0.069-25.274\pm 0.069 6.328±0.0526.328\pm 0.052 \cdots 14.673
88 2MASS J03303685+1610599 03:30:36.887 +16:10:59.58 26.04±0.1826.04\pm 0.18 21.29±0.13-21.29\pm 0.13 5.697±0.0865.697\pm 0.086 \cdots 15.934
89 2MASS J03305533+1804535 03:30:55.357 +18:04:52.97 22.88±0.4622.88\pm 0.46 24.40±0.36-24.40\pm 0.36 6.37±0.286.37\pm 0.28 \cdots 18.539
90 2MASS J03312734+2015412 03:31:27.389 +20:15:40.71 35.08±0.2035.08\pm 0.20 30.26±0.12-30.26\pm 0.12 8.988±0.0888.988\pm 0.088 \cdots 15.685
91 HAT 259–13539 03:31:31.957 +20:49:10.44 23.90±0.2023.90\pm 0.20 24.17±0.14-24.17\pm 0.14 5.866±0.0965.866\pm 0.096 \cdots 15.419
92 2MASS J03322249+1213231 03:32:22.541 +12:13:22.52 32.5±1.332.5\pm 1.3 22.87±0.92-22.87\pm 0.92 6.62±0.686.62\pm 0.68 \cdots 19.743
93 2MASS J03324777+1528240 03:32:47.809 +15:28:23.64 24.91±0.2124.91\pm 0.21 24.57±0.20-24.57\pm 0.20 6.61±0.116.61\pm 0.11 \cdots 16.278
94 V1267 Tau 03:33:11.649 +10:35:55.67 26.370±0.08826.370\pm 0.088 25.552±0.057-25.552\pm 0.057 7.277±0.0427.277\pm 0.042 15±115\pm 1 11.861
95 HD 22073 03:33:46.512 +08:17:25.71 27.040±0.09527.040\pm 0.095 23.569±0.091-23.569\pm 0.091 6.788±0.0526.788\pm 0.052 \cdots 8.647
96 2MASS J03350134+1418016 03:35:01.376 +14:18:01.14 28.77±0.1428.77\pm 0.14 20.69±0.12-20.69\pm 0.12 6.765±0.0756.765\pm 0.075 \cdots 13.865
97 B 2MASS J03350317+1431358 03:35:03.209 +14:31:35.33 26.87±0.3926.87\pm 0.39 25.57±0.30-25.57\pm 0.30 6.84±0.246.84\pm 0.24 \cdots 18.097
97 A 2MASS J03350340+1431490 03:35:03.438 +14:31:48.54 26.99±0.1426.99\pm 0.14 25.93±0.11-25.93\pm 0.11 7.342±0.0817.342\pm 0.081 \cdots 15.369
98 2MASS J03352364+1000080 03:35:23.679 +10:00:07.69 24.58±0.1224.58\pm 0.12 22.256±0.092-22.256\pm 0.092 6.246±0.0706.246\pm 0.070 \cdots 15.040
99 2MASS J03352860+0811571 03:35:28.641 +08:11:56.80 27.44±0.2227.44\pm 0.22 23.75±0.19-23.75\pm 0.19 6.98±0.126.98\pm 0.12 \cdots 16.491
100 2MASS J03353487+1253011 03:35:34.911 +12:53:00.73 24.773±0.05924.773\pm 0.059 24.208±0.041-24.208\pm 0.041 6.079±0.0316.079\pm 0.031 \cdots 13.788
101 2MASS J03355092+1516555 03:35:50.949 +15:16:55.15 24.01±0.5824.01\pm 0.58 25.83±0.44-25.83\pm 0.44 6.61±0.296.61\pm 0.29 \cdots 18.294
102 2MASS J03360543+1026514 03:36:05.464 +10:26:51.20 23.36±0.2323.36\pm 0.23 21.64±0.15-21.64\pm 0.15 5.961±0.0975.961\pm 0.097 \cdots 16.632
103 2MASS J03360640+1307422 03:36:06.439 +13:07:41.76 27.85±0.2327.85\pm 0.23 25.85±0.17-25.85\pm 0.17 6.90±0.136.90\pm 0.13 \cdots 17.180
104 B 2MASS J03361732+2153271 03:36:17.360 +21:53:26.42 29.95±0.7129.95\pm 0.71 31.17±0.52-31.17\pm 0.52 7.98±0.317.98\pm 0.31 \cdots 18.454
104 A 2MASS J03361762+2153391 03:36:17.665 +21:53:38.50 29.492±0.08829.492\pm 0.088 30.262±0.068-30.262\pm 0.068 7.526±0.0477.526\pm 0.047 10.7±0.710.7\pm 0.7 10.910
105 2MASS J03361892+0441323 03:36:18.952 +04:41:32.11 29.45±0.1129.45\pm 0.11 24.805±0.087-24.805\pm 0.087 7.496±0.0617.496\pm 0.061 \cdots 15.493
106 2MASS J03364987+1908056 03:36:49.894 +19:08:05.23 24.20±0.2024.20\pm 0.20 24.87±0.16-24.87\pm 0.16 6.60±0.126.60\pm 0.12 \cdots 16.524
107 2MASS J03371337+1307315 03:37:13.411 +13:07:30.93 25.21±0.1925.21\pm 0.19 24.95±0.13-24.95\pm 0.13 6.379±0.0896.379\pm 0.089 \cdots 14.923
108 2MASS J03371793+0847343 03:37:17.966 +08:47:34.12 27.68±0.1927.68\pm 0.19 24.86±0.15-24.86\pm 0.15 6.98±0.116.98\pm 0.11 \cdots 16.223
109 2MASS J03373508+1705162 03:37:35.111 +17:05:15.93 23.681±0.07123.681\pm 0.071 23.716±0.050-23.716\pm 0.050 6.298±0.0356.298\pm 0.035 13±813\pm 8 13.062
110 2MASS J03375097+2242056 03:37:51.014 +22:42:05.05 26.09±0.1726.09\pm 0.17 31.44±0.11-31.44\pm 0.11 6.702±0.0906.702\pm 0.090 \cdots 16.095
111 2MASS J03384902+1021482 03:38:49.051 +10:21:48.07 25.72±0.1825.72\pm 0.18 23.97±0.12-23.97\pm 0.12 6.75±0.116.75\pm 0.11 \cdots 15.552
112 2MASS J03385230+1635406 03:38:52.328 +16:35:40.21 22.94±0.1722.94\pm 0.17 25.65±0.13-25.65\pm 0.13 6.296±0.0966.296\pm 0.096 \cdots 15.867
113 2MASS J03391042+0927570 03:39:10.451 +09:27:56.71 24.434±0.08624.434\pm 0.086 24.441±0.057-24.441\pm 0.057 6.914±0.0436.914\pm 0.043 17±217\pm 2 12.403
114 HAT 259–10551 03:39:21.160 +21:49:08.74 29.50±0.1029.50\pm 0.10 29.756±0.066-29.756\pm 0.066 7.361±0.0497.361\pm 0.049 \cdots 14.824
115 TYC 1235–156–1 03:39:39.516 +15:29:54.47 25.96±0.1925.96\pm 0.19 26.86±0.14-26.86\pm 0.14 6.41±0.116.41\pm 0.11 16±116\pm 1 11.230
116 2MASS J03403696+1117333 03:40:36.991 +11:17:32.97 27.113±0.07227.113\pm 0.072 25.476±0.043-25.476\pm 0.043 6.979±0.0356.979\pm 0.035 \cdots 13.780
117 B 2MASS J03405723+1308577 03:40:57.261 +13:08:57.23 27.03±0.7127.03\pm 0.71 24.78±0.50-24.78\pm 0.50 7.19±0.337.19\pm 0.33 \cdots 18.437
117 A TYC 663–362–1 03:40:57.781 +13:09:03.06 24.66±0.2524.66\pm 0.25 25.44±0.21-25.44\pm 0.21 6.749±0.0986.749\pm 0.098 13±113\pm 1 10.493
118 2MASS J03410548+0527140 03:41:05.509 +05:27:13.69 26.93±0.1426.93\pm 0.14 23.63±0.11-23.63\pm 0.11 7.035±0.0657.035\pm 0.065 \cdots 15.051
119 2MASS J03410792+0917050 03:41:07.955 +09:17:04.85 24.99±0.1724.99\pm 0.17 23.19±0.10-23.19\pm 0.10 6.662±0.0776.662\pm 0.077 \cdots 14.698
120 2MASS J03413165+0401345 03:41:31.685 +04:01:34.21 31.68±0.1131.68\pm 0.11 19.807±0.072-19.807\pm 0.072 8.167±0.0458.167\pm 0.045 \cdots 14.011
121 TYC 660–135–1 03:41:45.000 +10:54:27.46 26.399±0.07326.399\pm 0.073 25.756±0.047-25.756\pm 0.047 7.108±0.0377.108\pm 0.037 14.5±0.914.5\pm 0.9 11.362
122 2MASS J03420359+1631392 03:42:03.617 +16:31:38.80 24.365±0.06324.365\pm 0.063 24.625±0.044-24.625\pm 0.044 6.616±0.0326.616\pm 0.032 \cdots 13.901
123 2MASS J03423560+0945463 03:42:35.636 +09:45:45.89 25.71±0.9025.71\pm 0.90 23.90±0.62-23.90\pm 0.62 6.24±0.536.24\pm 0.53 \cdots 19.257
124 2MASS J03425497+1114570 03:42:54.990 +11:14:57.28 23.1±2.823.1\pm 2.8 18.9±1.8-18.9\pm 1.8 4.9±1.54.9\pm 1.5 \cdots 20.158
125 WD 0340+103 03:43:14.370 +10:29:38.14 31.51±0.1831.51\pm 0.18 22.55±0.12-22.55\pm 0.12 6.83±0.116.83\pm 0.11 \cdots 16.539
126 2MASS J03431821+1222515 03:43:18.246 +12:22:51.12 23.0±1.323.0\pm 1.3 21.38±0.76-21.38\pm 0.76 5.78±0.675.78\pm 0.67 \cdots 19.647
127 2MASS J03433413+0701547 03:43:34.158 +07:01:54.39 21.40±0.2421.40\pm 0.24 14.78±0.17-14.78\pm 0.17 5.46±0.135.46\pm 0.13 \cdots 17.079
128 2MASS J03441167+1405312 03:44:11.716 +14:05:30.58 27.61±0.5427.61\pm 0.54 23.26±0.38-23.26\pm 0.38 6.58±0.286.58\pm 0.28 \cdots 18.563
129 2MASS J03441728+1118090 03:44:17.312 +11:18:08.70 26.25±0.3426.25\pm 0.34 24.83±0.23-24.83\pm 0.23 7.31±0.177.31\pm 0.17 \cdots 17.243
130 A 2MASS J03442859+0716100 03:44:28.602 +07:16:10.10 25.80±0.1825.80\pm 0.18 22.56±0.15-22.56\pm 0.15 6.61±0.116.61\pm 0.11 \cdots 16.327
130 B Gaia DR2 3277686910210391424 03:44:28.657 +07:16:08.46 24.39±0.2124.39\pm 0.21 23.66±0.17-23.66\pm 0.17 6.71±0.126.71\pm 0.12 \cdots 16.596
131 2MASS J03443022+1130035 03:44:30.254 +11:30:03.21 25.26±0.1125.26\pm 0.11 24.176±0.086-24.176\pm 0.086 6.640±0.0606.640\pm 0.060 \cdots 13.875
132 2MASS J03443526+1257315 03:44:35.300 +12:57:31.25 24.61±0.1924.61\pm 0.19 24.01±0.13-24.01\pm 0.13 6.43±0.116.43\pm 0.11 \cdots 16.583
133 2MASS J03444292+0944150 03:44:42.955 +09:44:14.73 22.64±0.1222.64\pm 0.12 24.009±0.070-24.009\pm 0.070 6.626±0.0586.626\pm 0.058 \cdots 14.663
134 2MASS J03444719+1034332 03:44:47.224 +10:34:32.89 23.6±1.223.6\pm 1.2 22.95±0.81-22.95\pm 0.81 5.66±0.775.66\pm 0.77 \cdots 20.045
135 2MASS J03450918+0612030 03:45:09.226 +06:12:02.81 21.83±0.2021.83\pm 0.20 14.18±0.17-14.18\pm 0.17 5.64±0.145.64\pm 0.14 \cdots 16.903
136 2MASS J03451333+0836589 03:45:13.365 +08:36:58.56 26.36±0.3526.36\pm 0.35 23.83±0.23-23.83\pm 0.23 6.43±0.176.43\pm 0.17 \cdots 17.080
140 TYC 658–828–1 03:45:52.146 +08:32:26.87 27.78±0.1027.78\pm 0.10 24.644±0.058-24.644\pm 0.058 7.552±0.0507.552\pm 0.050 15.6±0.615.6\pm 0.6 11.471
141 2MASS J03460026+0628092 03:46:00.288 +06:28:09.02 22.01±0.4622.01\pm 0.46 14.51±0.34-14.51\pm 0.34 5.77±0.265.77\pm 0.26 \cdots 18.477
142 2MASS J03460029+0836331 03:46:00.335 +08:36:32.86 27.79±0.2227.79\pm 0.22 24.83±0.14-24.83\pm 0.14 7.33±0.137.33\pm 0.13 \cdots 16.316
143 2MASS J03460544+0553074 03:46:05.468 +05:53:07.16 21.41±0.2021.41\pm 0.20 13.93±0.15-13.93\pm 0.15 5.565±0.0945.565\pm 0.094 \cdots 16.429
144 A 2MASS J03463553+1317056 03:46:35.533 +13:17:06.31 22.17±0.2622.17\pm 0.26 24.02±0.17-24.02\pm 0.17 6.33±0.146.33\pm 0.14 \cdots 17.335
144 B Gaia DR2 37943944413361792 03:46:35.594 +13:17:04.31 23.04±0.3023.04\pm 0.30 24.20±0.20-24.20\pm 0.20 6.51±0.166.51\pm 0.16 \cdots 17.365
145 2MASS J03464763+1514201 03:46:47.664 +15:14:19.68 24.12±0.4524.12\pm 0.45 25.06±0.29-25.06\pm 0.29 6.73±0.256.73\pm 0.25 \cdots 18.282
146 2MASS J03465210+0704410 03:46:52.139 +07:04:40.66 27.05±0.1627.05\pm 0.16 22.84±0.11-22.84\pm 0.11 6.608±0.0856.608\pm 0.085 \cdots 14.155
147 2MASS J03465422+0720390 03:46:54.253 +07:20:38.64 25.17±0.3925.17\pm 0.39 22.94±0.32-22.94\pm 0.32 6.99±0.216.99\pm 0.21 \cdots 17.957
148 2MASS J03465779+0956432 03:46:57.820 +09:56:42.80 27.26±0.4027.26\pm 0.40 27.02±0.26-27.02\pm 0.26 7.25±0.247.25\pm 0.24 \cdots 17.712
149 2MASS J03471144+0526234 03:47:11.466 +05:26:23.15 22.84±0.1222.84\pm 0.12 19.71±0.10-19.71\pm 0.10 6.095±0.0676.095\pm 0.067 \cdots 14.611
150 BD+04 589 03:47:13.551 +05:26:23.49 22.654±0.09822.654\pm 0.098 17.159±0.084-17.159\pm 0.084 5.861±0.0525.861\pm 0.052 18±218\pm 2 9.310
151 2MASS J03471736+1155459 03:47:17.401 +11:55:45.34 25.4±1.125.4\pm 1.1 25.66±0.79-25.66\pm 0.79 6.39±0.766.39\pm 0.76 \cdots 19.801
152 2MASS J03472334+1533235 03:47:23.378 +15:33:23.17 21.73±0.1921.73\pm 0.19 24.90±0.12-24.90\pm 0.12 6.313±0.0936.313\pm 0.093 \cdots 16.537
153 B Gaia DR2 44752086050666368 03:47:23.645 +18:43:18.70 21.33±0.6021.33\pm 0.60 26.33±0.57-26.33\pm 0.57 6.36±0.346.36\pm 0.34 \cdots 17.855
153 A TYC 1252–301–1 03:47:23.901 +18:43:17.68 21.128±0.07921.128\pm 0.079 23.175±0.057-23.175\pm 0.057 5.926±0.0415.926\pm 0.041 16.3±0.916.3\pm 0.9 11.689
154 2MASS J03472375+1313154 03:47:23.802 +13:13:14.89 21.8±2.221.8\pm 2.2 18.5±1.5-18.5\pm 1.5 4.86±0.994.86\pm 0.99 \cdots 20.281
155 2MASS J03472378+1648282 03:47:23.810 +16:48:27.82 24.81±0.3124.81\pm 0.31 24.60±0.18-24.60\pm 0.18 6.46±0.146.46\pm 0.14 \cdots 16.900
156 2MASS J03472404+0953136 03:47:24.078 +09:53:13.26 24.04±0.6424.04\pm 0.64 24.66±0.44-24.66\pm 0.44 6.41±0.386.41\pm 0.38 \cdots 18.901
157 BD+07 543 03:47:31.345 +07:57:26.39 25.369±0.08125.369\pm 0.081 24.690±0.061-24.690\pm 0.061 6.404±0.0446.404\pm 0.044 14.6±0.414.6\pm 0.4 10.266
158 TYC 661–560–1 03:47:53.694 +11:48:57.98 21.230±0.07621.230\pm 0.076 25.115±0.048-25.115\pm 0.048 6.459±0.0416.459\pm 0.041 16±116\pm 1 10.072
159 TYC 71–542–1 03:47:56.865 +06:16:06.67 21.191±0.08221.191\pm 0.082 13.396±0.055-13.396\pm 0.055 5.400±0.0415.400\pm 0.041 17±117\pm 1 11.164
160 2MASS J03481036+1608419 03:48:10.391 +16:08:41.59 23.27±0.3023.27\pm 0.30 25.24±0.23-25.24\pm 0.23 6.23±0.166.23\pm 0.16 \cdots 17.616
161 2MASS J03484419+1213118 03:48:44.233 +12:13:11.48 23.753±0.04823.753\pm 0.048 23.215±0.031-23.215\pm 0.031 6.259±0.0276.259\pm 0.027 12±412\pm 4 13.336
162 2MASS J03485029+2002281 03:48:50.333 +20:02:27.56 29.39±0.1129.39\pm 0.11 31.963±0.054-31.963\pm 0.054 7.776±0.0527.776\pm 0.052 9±29\pm 2 12.807
163 2MASS J03485472+0727538 03:48:54.752 +07:27:53.54 24.85±0.2124.85\pm 0.21 22.35±0.16-22.35\pm 0.16 6.63±0.116.63\pm 0.11 \cdots 16.744
164 2MASS J03492243+0242209 03:49:22.457 +02:42:20.68 23.208±0.05623.208\pm 0.056 13.737±0.036-13.737\pm 0.036 5.957±0.0265.957\pm 0.026 17±817\pm 8 13.386
165 2MASS J03492441+0049520 03:49:24.445 +00:49:51.87 26.02±0.1026.02\pm 0.10 17.149±0.092-17.149\pm 0.092 6.261±0.0576.261\pm 0.057 \cdots 14.293
166 2MASS J03492817+1958226 03:49:28.213 +19:58:22.15 27.73±0.8227.73\pm 0.82 30.04±0.45-30.04\pm 0.45 6.95±0.406.95\pm 0.40 \cdots 17.267
167 2MASS J03493857+0640562 03:49:38.593 +06:40:55.89 22.2±1.022.2\pm 1.0 19.72±0.76-19.72\pm 0.76 5.83±0.595.83\pm 0.59 \cdots 19.592
168 2MASS J03494198+1035258 03:49:42.006 +10:35:25.51 24.61±0.1224.61\pm 0.12 24.003±0.084-24.003\pm 0.084 6.642±0.0646.642\pm 0.064 \cdots 15.108
169 2MASS J03495031+1440552 03:49:50.345 +14:40:54.73 22.02±0.1922.02\pm 0.19 24.16±0.13-24.16\pm 0.13 6.43±0.106.43\pm 0.10 \cdots 16.373
170 2MASS J03500539+1204146 03:50:05.425 +12:04:14.18 24.22±0.3424.22\pm 0.34 23.55±0.27-23.55\pm 0.27 6.50±0.176.50\pm 0.17 \cdots 17.785
171 2MASS J03501719+1129445 03:50:17.220 +11:29:44.31 24.34±0.2324.34\pm 0.23 24.52±0.15-24.52\pm 0.15 6.63±0.116.63\pm 0.11 \cdots 16.115
172 2MASS J03502412+0602279 03:50:24.145 +06:02:27.52 20.24±0.3620.24\pm 0.36 15.26±0.28-15.26\pm 0.28 5.61±0.195.61\pm 0.19 \cdots 17.900
173 2MASS J03502880+1356125 03:50:28.831 +13:56:12.16 23.94±0.1223.94\pm 0.12 24.043±0.071-24.043\pm 0.071 6.662±0.0606.662\pm 0.060 \cdots 14.507
174 2MASS J03503310+0855492 03:50:33.122 +08:55:48.93 24.04±0.2924.04\pm 0.29 22.83±0.17-22.83\pm 0.17 6.46±0.136.46\pm 0.13 \cdots 17.080
175 2MASS J03504400+1148329 03:50:44.033 +11:48:32.54 22.54±0.1522.54\pm 0.15 22.48±0.11-22.48\pm 0.11 6.015±0.0866.015\pm 0.086 \cdots 16.036
176 2MASS J03505375+1042075 03:50:53.778 +10:42:07.07 26.01±0.2526.01\pm 0.25 24.61±0.20-24.61\pm 0.20 7.07±0.127.07\pm 0.12 \cdots 16.627
177 B Gaia DR2 3277369048270999936 03:50:56.968 +07:30:53.92 27.9±2.227.9\pm 2.2 21.7±1.4-21.7\pm 1.4 6.3±1.36.3\pm 1.3 \cdots 20.438
177 A 2MASS J03505694+0730565 03:50:56.976 +07:30:56.18 30.41±0.2330.41\pm 0.23 22.22±0.16-22.22\pm 0.16 8.29±0.128.29\pm 0.12 \cdots 16.916
178 2MASS J03510483+0910174 03:51:04.862 +09:10:17.03 24.31±0.5324.31\pm 0.53 22.33±0.35-22.33\pm 0.35 6.49±0.286.49\pm 0.28 \cdots 18.489
179 2MASS J03510528+1431333 03:51:05.296 +14:31:33.07 20.64±0.2420.64\pm 0.24 23.59±0.17-23.59\pm 0.17 6.43±0.116.43\pm 0.11 \cdots 16.510
180 2MASS J03510854+0829205 03:51:08.572 +08:29:20.31 25.93±0.2125.93\pm 0.21 24.43±0.15-24.43\pm 0.15 7.24±0.117.24\pm 0.11 \cdots 16.382
181 2MASS J03510859+2007324 03:51:08.635 +20:07:32.13 29.7±1.829.7\pm 1.8 31.8±1.0-31.8\pm 1.0 8.94±0.778.94\pm 0.77 \cdots 18.781
183 2MASS J03514618+0553543 03:51:46.218 +05:53:54.13 23.11±0.2223.11\pm 0.22 16.70±0.16-16.70\pm 0.16 5.85±0.115.85\pm 0.11 \cdots 16.807
184 2MASS J03514810+0850170 03:51:48.120 +08:50:16.66 25.43±0.5925.43\pm 0.59 24.89±0.44-24.89\pm 0.44 6.85±0.326.85\pm 0.32 \cdots 18.627
185 2MASS J03520563+1545160 03:52:05.659 +15:45:15.71 28.41±0.1728.41\pm 0.17 32.69±0.11-32.69\pm 0.11 7.553±0.0997.553\pm 0.099 \cdots 15.497
186 2MASS J03521195+1936160 03:52:11.985 +19:36:15.78 26.19±0.9026.19\pm 0.90 29.17±0.51-29.17\pm 0.51 6.27±0.496.27\pm 0.49 \cdots 19.095
187 2MASS J03523091+1225547 03:52:30.941 +12:25:54.15 25.5±1.325.5\pm 1.3 26.2±1.0-26.2\pm 1.0 7.20±0.597.20\pm 0.59 \cdots 19.914
188 B Gaia DR2 3301507795268229248 03:52:40.165 +08:30:30.19 21.32±0.3821.32\pm 0.38 21.97±0.25-21.97\pm 0.25 5.51±0.195.51\pm 0.19 \cdots 17.668
188 A 2MASS J03524018+0830333 03:52:40.220 +08:30:33.13 21.96±0.1721.96\pm 0.17 22.24±0.11-22.24\pm 0.11 5.458±0.0845.458\pm 0.084 \cdots 16.006
189 2MASS J03524910+1423538 03:52:49.132 +14:23:53.30 24.9±2.124.9\pm 2.1 23.8±1.2-23.8\pm 1.2 6.07±0.916.07\pm 0.91 \cdots 20.410
190 WD 0350+098 03:53:15.739 +09:56:33.41 25.93±0.2425.93\pm 0.24 25.28±0.15-25.28\pm 0.15 7.14±0.127.14\pm 0.12 \cdots 17.098
191 2MASS J03535812+0520312 03:53:58.148 +05:20:30.94 24.52±0.2424.52\pm 0.24 17.12±0.17-17.12\pm 0.17 6.46±0.136.46\pm 0.13 \cdots 16.996
192 2MASS J03543000+0419403 03:54:30.036 +04:19:40.10 23.53±0.2023.53\pm 0.20 15.22±0.14-15.22\pm 0.14 6.026±0.0926.026\pm 0.092 \cdots 16.268
193 2MASS J03543784+0742234 03:54:37.870 +07:42:23.14 24.60±0.4724.60\pm 0.47 22.98±0.28-22.98\pm 0.28 7.04±0.247.04\pm 0.24 \cdots 18.159
194 2MASS J03544964+0437268 03:54:49.676 +04:37:26.45 25.85±0.1025.85\pm 0.10 22.798±0.080-22.798\pm 0.080 7.027±0.0657.027\pm 0.065 \cdots 14.724
195 2MASS J03545074+1232061 03:54:50.776 +12:32:05.61 29.27±0.1329.27\pm 0.13 24.677±0.097-24.677\pm 0.097 7.919±0.0687.919\pm 0.068 16±316\pm 3 12.524
196 2MASS J03550706+0741539 03:55:07.096 +07:41:53.55 25.97±0.9225.97\pm 0.92 23.20±0.60-23.20\pm 0.60 8.06±0.638.06\pm 0.63 \cdots 19.272
197 2MASS J03551351+0648484 03:55:13.543 +06:48:48.01 30.19±0.8330.19\pm 0.83 27.80±0.58-27.80\pm 0.58 7.70±0.477.70\pm 0.47 \cdots 19.036
198 2MASS J03551355+0332501 03:55:13.587 +03:32:49.83 25.48±0.3725.48\pm 0.37 19.35±0.30-19.35\pm 0.30 5.59±0.205.59\pm 0.20 \cdots 18.214
199 2MASS J03552065+0955146 03:55:20.677 +09:55:14.28 23.75±0.1723.75\pm 0.17 23.32±0.13-23.32\pm 0.13 6.568±0.0906.568\pm 0.090 \cdots 16.318
200 2MASS J03554367+0729535 03:55:43.715 +07:29:53.14 25.73±0.5325.73\pm 0.53 23.81±0.32-23.81\pm 0.32 6.90±0.266.90\pm 0.26 \cdots 18.250
201 2MASS J03554401+0918030 03:55:44.053 +09:18:02.63 25.20±0.2225.20\pm 0.22 24.60±0.13-24.60\pm 0.13 6.657±0.0996.657\pm 0.099 \cdots 16.500
202 HD 285262 03:55:50.274 +16:08:33.53 22.113±0.09522.113\pm 0.095 27.206±0.062-27.206\pm 0.062 6.997±0.0506.997\pm 0.050 16.3±0.416.3\pm 0.4 9.657
203 2MASS J03555345+0305143 03:55:53.461 +03:05:14.22 20.345±0.06120.345\pm 0.061 12.542±0.047-12.542\pm 0.047 5.376±0.0355.376\pm 0.035 19±119\pm 1 11.717
204 HD 286380 03:56:20.741 +10:47:47.24 24.658±0.07724.658\pm 0.077 25.252±0.050-25.252\pm 0.050 6.743±0.0456.743\pm 0.045 14.7±0.814.7\pm 0.8 10.293
205 TYC 665–460–1 03:56:31.738 +13:42:38.55 30.67±0.2130.67\pm 0.21 32.01±0.14-32.01\pm 0.14 8.21±0.118.21\pm 0.11 18.2±0.718.2\pm 0.7 11.718
206 2MASS J03564937+1010254 03:56:49.397 +10:10:25.01 23.90±0.4923.90\pm 0.49 24.14±0.31-24.14\pm 0.31 6.64±0.266.64\pm 0.26 \cdots 17.467
207 2MASS J03570495+0255022 03:57:04.974 +02:55:01.98 26.00±0.5526.00\pm 0.55 21.34±0.43-21.34\pm 0.43 6.63±0.306.63\pm 0.30 \cdots 18.701
208 2MASS J03573875+1142322 03:57:38.786 +11:42:31.85 23.298±0.08523.298\pm 0.085 23.208±0.058-23.208\pm 0.058 6.433±0.0406.433\pm 0.040 \cdots 14.377
209 2MASS J03585885+1947174 03:58:58.880 +19:47:16.92 20.94±0.1420.94\pm 0.14 27.129±0.075-27.129\pm 0.075 5.795±0.0805.795\pm 0.080 \cdots 15.233
210 2MASS J03585948+0605315 03:58:59.503 +06:05:31.21 24.36±0.5224.36\pm 0.52 22.55±0.27-22.55\pm 0.27 6.64±0.226.64\pm 0.22 \cdots 17.435
211 2MASS J03590008+0350125 03:59:00.112 +03:50:12.26 23.78±0.2623.78\pm 0.26 21.91±0.20-21.91\pm 0.20 6.39±0.156.39\pm 0.15 \cdots 17.500
212 2MASS J03591525+0817203 03:59:15.275 +08:17:19.83 25.603±0.08725.603\pm 0.087 25.603±0.052-25.603\pm 0.052 6.645±0.0496.645\pm 0.049 \cdots 13.249
213 2MASS J03595819+0527061 03:59:58.221 +05:27:05.66 24.33±0.3924.33\pm 0.39 23.23±0.31-23.23\pm 0.31 6.74±0.206.74\pm 0.20 \cdots 17.954
214 2MASS J04000097+1136402 04:00:01.009 +11:36:40.01 24.19±0.1724.19\pm 0.17 25.30±0.11-25.30\pm 0.11 6.779±0.0876.779\pm 0.087 \cdots 16.114
215 2MASS J04000304+0839111 04:00:03.068 +08:39:10.67 23.29±0.2123.29\pm 0.21 22.67±0.14-22.67\pm 0.14 6.28±0.116.28\pm 0.11 \cdots 16.703
216 2MASS J04003178+0235333 04:00:31.808 +02:35:33.07 23.92±0.1423.92\pm 0.14 20.77±0.11-20.77\pm 0.11 6.520±0.0806.520\pm 0.080 \cdots 15.539
217 2MASS J04003789+0921594 04:00:37.913 +09:21:59.15 22.72±0.1522.72\pm 0.15 22.632±0.089-22.632\pm 0.089 6.341±0.0796.341\pm 0.079 \cdots 15.592
218 2MASS J04004014+0806279 04:00:40.176 +08:06:27.61 24.01±0.5324.01\pm 0.53 24.11±0.29-24.11\pm 0.29 6.60±0.286.60\pm 0.28 \cdots 18.413
219 2MASS J04005555+1306243 04:00:55.592 +13:06:24.00 18.52±0.1818.52\pm 0.18 21.32±0.10-21.32\pm 0.10 4.984±0.0984.984\pm 0.098 \cdots 16.165
220 2MASS J04005940+0826212 04:00:59.429 +08:26:20.90 21.35±0.7721.35\pm 0.77 19.34±0.51-19.34\pm 0.51 4.89±0.384.89\pm 0.38 \cdots 18.532
221 2MASS J04011013+0824204 04:01:10.160 +08:24:20.04 23.11±0.2323.11\pm 0.23 22.33±0.15-22.33\pm 0.15 6.53±0.116.53\pm 0.11 \cdots 16.796
222 2MASS J04011073+1459513 04:01:10.773 +14:59:51.01 24.81±0.4824.81\pm 0.48 27.77±0.28-27.77\pm 0.28 6.23±0.256.23\pm 0.25 \cdots 18.212
223 2MASS J04012320+0342315 04:01:23.221 +03:42:31.11 24.90±0.1524.90\pm 0.15 22.77±0.12-22.77\pm 0.12 7.078±0.0927.078\pm 0.092 \cdots 15.515
224 2MASS J04014357+0345102 04:01:43.594 +03:45:09.93 21.02±0.2521.02\pm 0.25 19.90±0.21-19.90\pm 0.21 6.11±0.146.11\pm 0.14 \cdots 17.282
225 B 2MASS J04021257+0817410 04:02:12.593 +08:17:40.67 22.00±0.3622.00\pm 0.36 23.46±0.25-23.46\pm 0.25 6.19±0.196.19\pm 0.19 \cdots 17.316
225 A 2MASS J04021281+0817400 04:02:12.839 +08:17:39.75 23.38±0.2423.38\pm 0.24 22.68±0.17-22.68\pm 0.17 6.62±0.136.62\pm 0.13 \cdots 16.635
226 2MASS J04024742+0946340 04:02:47.438 +09:46:33.61 20.112±0.06120.112\pm 0.061 25.812±0.043-25.812\pm 0.043 6.781±0.0306.781\pm 0.030 \cdots 13.898
227 2MASS J04032655+1218397 04:03:26.599 +12:18:39.32 24.30±0.5324.30\pm 0.53 25.91±0.32-25.91\pm 0.32 6.61±0.336.61\pm 0.33 \cdots 18.748
228 2MASS J04033422+0617517 04:03:34.258 +06:17:51.37 23.74±0.2923.74\pm 0.29 22.36±0.19-22.36\pm 0.19 6.99±0.176.99\pm 0.17 \cdots 17.197
229 2MASS J04035178+0709082 04:03:51.798 +07:09:07.97 20.11±0.4020.11\pm 0.40 22.27±0.22-22.27\pm 0.22 6.08±0.216.08\pm 0.21 \cdots 17.710
230 2MASS J04041708+0924123 04:04:17.095 +09:24:11.81 25.4±2.625.4\pm 2.6 24.2±1.6-24.2\pm 1.6 8.2±2.18.2\pm 2.1 \cdots 20.892
231 A 2MASS J04044937+0935076 04:04:49.382 +09:35:07.13 22.40±0.1822.40\pm 0.18 24.31±0.11-24.31\pm 0.11 6.599±0.0966.599\pm 0.096 \cdots 15.410
231 B Gaia DR2 3301900595795159040 04:04:49.493 +09:35:07.71 24.12±0.2824.12\pm 0.28 23.21±0.17-23.21\pm 0.17 6.90±0.156.90\pm 0.15 \cdots 16.845
232 2MASS J04045070+0956109 04:04:50.733 +09:56:10.59 22.90±0.2122.90\pm 0.21 23.90±0.13-23.90\pm 0.13 6.61±0.116.61\pm 0.11 \cdots 16.198
233 2MASS J04050036+1000386 04:05:00.348 +10:00:38.31 21.6±3.521.6\pm 3.5 24.1±2.1-24.1\pm 2.1 6.3±1.66.3\pm 1.6 \cdots 20.494
234 2MASS J04051287+0710190 04:05:12.893 +07:10:18.85 22.50±0.2822.50\pm 0.28 21.91±0.18-21.91\pm 0.18 6.31±0.146.31\pm 0.14 \cdots 17.087
235 2MASS J04052254+0615339 04:05:22.561 +06:15:33.36 23.33±0.4023.33\pm 0.40 22.65±0.25-22.65\pm 0.25 6.52±0.226.52\pm 0.22 \cdots 17.489
236 B Gaia DR2 3297969498128206208 04:05:40.167 +07:22:12.08 19.0±1.919.0\pm 1.9 17.24±0.93-17.24\pm 0.93 4.69±0.844.69\pm 0.84 \cdots 20.068
236 A 2MASS J04054018+0722109 04:05:40.210 +07:22:10.83 20.45±0.3520.45\pm 0.35 18.09±0.20-18.09\pm 0.20 4.74±0.174.74\pm 0.17 \cdots 17.633
237 2MASS J04054131+1715471 04:05:41.327 +17:15:46.81 20.05±0.1420.05\pm 0.14 25.796±0.078-25.796\pm 0.078 6.602±0.0666.602\pm 0.066 \cdots 15.456
238 2MASS J04061902+0845408 04:06:19.044 +08:45:40.59 18.1±4.118.1\pm 4.1 16.0±2.2-16.0\pm 2.2 4.7±1.54.7\pm 1.5 \cdots 20.583
239 2MASS J04064005+0856259 04:06:40.090 +08:56:25.62 23.44±0.3323.44\pm 0.33 24.54±0.24-24.54\pm 0.24 7.18±0.187.18\pm 0.18 \cdots 17.955
240 2MASS J04064920+1000435 04:06:49.247 +10:00:43.19 18.65±0.7218.65\pm 0.72 19.75±0.44-19.75\pm 0.44 5.35±0.375.35\pm 0.37 \cdots 19.063
241 2MASS J04070083+0607080 04:07:00.864 +06:07:07.56 27.86±0.1727.86\pm 0.17 26.03±0.10-26.03\pm 0.10 8.357±0.0938.357\pm 0.093 \cdots 15.701
242 2MASS J04072953–0115000 04:07:29.559 –01:15:00.13 24.02±0.1524.02\pm 0.15 20.20±0.10-20.20\pm 0.10 6.927±0.0816.927\pm 0.081 \cdots 15.713
243 2MASS J04074422+0959349 04:07:44.244 +09:59:34.57 22.41±0.4222.41\pm 0.42 22.01±0.24-22.01\pm 0.24 6.29±0.206.29\pm 0.20 \cdots 17.906
244 TYC 666–80–1 04:09:47.527 +07:48:03.29 21.62±0.1121.62\pm 0.11 22.284±0.065-22.284\pm 0.065 6.309±0.0516.309\pm 0.051 19±319\pm 3 10.367
245 2MASS J04100909+0216157 04:10:09.119 +02:16:15.24 20.08±0.3020.08\pm 0.30 20.56±0.20-20.56\pm 0.20 6.62±0.176.62\pm 0.17 \cdots 18.136
246 2MASS J04104612+1040529 04:10:46.132 +10:40:52.68 18.06±0.6318.06\pm 0.63 16.99±0.51-16.99\pm 0.51 5.82±0.415.82\pm 0.41 \cdots 18.900
247 2MASS J04110212+0822096 04:11:02.165 +08:22:09.33 17.4±1.517.4\pm 1.5 15.5±1.3-15.5\pm 1.3 5.86±0.865.86\pm 0.86 \cdots 20.313
248 2MASS J04112808+1143403 04:11:28.115 +11:43:40.10 16.60±0.4716.60\pm 0.47 21.43±0.34-21.43\pm 0.34 5.30±0.245.30\pm 0.24 \cdots 16.337
249 2MASS J04114261+0534427 04:11:42.638 +05:34:42.48 20.50±0.9520.50\pm 0.95 22.89±0.50-22.89\pm 0.50 6.25±0.466.25\pm 0.46 \cdots 19.039
250 2MASS J04114611+1508252 04:11:46.135 +15:08:24.90 25.57±0.4725.57\pm 0.47 28.48±0.33-28.48\pm 0.33 7.24±0.267.24\pm 0.26 \cdots 15.689
251 2MASS J04121099+0248564 04:12:11.023 +02:48:56.36 17.30±0.2717.30\pm 0.27 12.33±0.17-12.33\pm 0.17 5.24±0.155.24\pm 0.15 \cdots 17.809
252 2MASS J04121147+0638125 04:12:11.490 +06:38:12.26 21.5±1.321.5\pm 1.3 21.5±1.1-21.5\pm 1.1 7.00±0.677.00\pm 0.67 \cdots 19.670
253 2MASS J04121402+0543526 04:12:14.058 +05:43:52.28 21.97±0.9521.97\pm 0.95 23.13±0.54-23.13\pm 0.54 7.03±0.447.03\pm 0.44 \cdots 19.065
254 TYC 74–1393–1 04:12:18.449 +00:01:31.28 19.633±0.07719.633\pm 0.077 17.562±0.052-17.562\pm 0.052 5.747±0.0475.747\pm 0.047 20±120\pm 1 11.151
255 2MASS J04140593+0150284 04:14:05.959 +01:50:28.17 19.41±0.1819.41\pm 0.18 17.88±0.10-17.88\pm 0.10 5.659±0.0905.659\pm 0.090 \cdots 15.828
256 2MASS J04142242+1103304 04:14:22.433 +11:03:29.92 15.84±0.3215.84\pm 0.32 21.36±0.19-21.36\pm 0.19 5.69±0.145.69\pm 0.14 \cdots 15.203
257 2MASS J04143043+0509324 04:14:30.466 +05:09:31.97 22.4±3.022.4\pm 3.0 23.4±1.9-23.4\pm 1.9 7.0±1.17.0\pm 1.1 \cdots 20.586
258 2MASS J04151163+0745505 04:15:11.657 +07:45:50.08 20.50±0.3220.50\pm 0.32 21.18±0.23-21.18\pm 0.23 6.09±0.186.09\pm 0.18 \cdots 17.161
259 2MASS J04153196+0208232 04:15:31.984 +02:08:23.22 18.921±0.08018.921\pm 0.080 12.276±0.051-12.276\pm 0.051 5.488±0.0435.488\pm 0.043 \cdots 14.735
260 2MASS J04153792+0545414 04:15:37.957 +05:45:41.10 21.22±0.2121.22\pm 0.21 26.68±0.12-26.68\pm 0.12 7.619±0.0937.619\pm 0.093 \cdots 16.185
261 2MASS J04154515+1053367 04:15:45.165 +10:53:36.50 14.8±1.714.8\pm 1.7 19.3±1.0-19.3\pm 1.0 5.29±0.665.29\pm 0.66 \cdots 18.902
262 2MASS J04154665+0921245 04:15:46.680 +09:21:24.17 19.99±0.2119.99\pm 0.21 21.41±0.14-21.41\pm 0.14 6.088±0.0926.088\pm 0.092 \cdots 15.906
263 HD 26991 04:16:01.464 +00:27:13.71 23.95±0.1223.95\pm 0.12 21.121±0.064-21.121\pm 0.064 6.741±0.0746.741\pm 0.074 \cdots 7.334
264 2MASS J04160164+0208148 04:16:01.666 +02:08:14.71 19.54±0.4119.54\pm 0.41 12.93±0.29-12.93\pm 0.29 5.69±0.235.69\pm 0.23 \cdots 18.332
265 B Gaia DR2 3254162137382331136 04:16:13.147 –01:19:54.96 22.95±0.1522.95\pm 0.15 18.42±0.14-18.42\pm 0.14 6.865±0.0916.865\pm 0.091 \cdots 16.068
266 2MASS J04161776+0807409 04:16:17.792 +08:07:40.48 19.42±0.1819.42\pm 0.18 21.473±0.095-21.473\pm 0.095 6.333±0.0706.333\pm 0.070 \cdots 14.648
267 UCAC2 30946195 04:17:18.672 –02:16:02.15 19.267±0.04719.267\pm 0.047 11.584±0.022-11.584\pm 0.022 5.638±0.0365.638\pm 0.036 21±121\pm 1 11.491
268 2MASS J04172026+0831017 04:17:20.280 +08:31:01.47 15.105±0.05215.105\pm 0.052 17.322±0.035-17.322\pm 0.035 4.566±0.0304.566\pm 0.030 \cdots 13.908
269 TYC 77–1284–1 04:17:24.077 +03:14:44.87 23.42±0.1323.42\pm 0.13 23.623±0.070-23.623\pm 0.070 7.043±0.0557.043\pm 0.055 19.3±0.719.3\pm 0.7 10.509
270 2MASS J04180199+0912488 04:18:02.016 +09:12:48.54 17.97±0.2917.97\pm 0.29 17.83±0.15-17.83\pm 0.15 5.77±0.135.77\pm 0.13 \cdots 15.983
271 2MASS J04181095+0934586 04:18:10.980 +09:34:58.24 15.97±0.2715.97\pm 0.27 21.58±0.21-21.58\pm 0.21 5.83±0.165.83\pm 0.16 \cdots 17.228
272 2MASS J04181171+0159007 04:18:11.727 +01:59:00.56 19.02±0.1419.02\pm 0.14 20.42±0.10-20.42\pm 0.10 6.524±0.0806.524\pm 0.080 \cdots 16.180
273 2MASS J04183610+0614399 04:18:36.121 +06:14:39.52 22.56±0.1322.56\pm 0.13 21.392±0.083-21.392\pm 0.083 6.257±0.0686.257\pm 0.068 \cdots 13.615
274 2MASS J04184388+1108254 04:18:43.885 +11:08:25.18 14.75±0.2814.75\pm 0.28 20.72±0.21-20.72\pm 0.21 5.10±0.155.10\pm 0.15 \cdots 15.866
275 2MASS J04191246+0659166 04:19:12.488 +06:59:16.41 19.50±0.2019.50\pm 0.20 20.49±0.14-20.49\pm 0.14 6.12±0.116.12\pm 0.11 \cdots 16.876
276 2MASS J04195888+0813546 04:19:58.900 +08:13:54.44 14.11±0.2214.11\pm 0.22 17.86±0.15-17.86\pm 0.15 4.88±0.134.88\pm 0.13 \cdots 16.740
277 A 2MASS J04200165+0759584 04:20:01.666 +07:59:57.72 22.83±0.6822.83\pm 0.68 23.94±0.47-23.94\pm 0.47 6.31±0.346.31\pm 0.34 \cdots 15.336
277 B Gaia DR2 3298956138016754048 04:20:01.719 +07:59:58.51 19.87±0.9019.87\pm 0.90 21.65±0.42-21.65\pm 0.42 6.69±0.146.69\pm 0.14 \cdots 16.289
278 B Gaia DR2 3254797311502540032 04:20:02.874 +00:10:08.62 17.18±0.7017.18\pm 0.70 15.91±0.46-15.91\pm 0.46 4.56±0.474.56\pm 0.47 \cdots 19.318
279 2MASS J04201617+0959534 04:20:16.202 +09:59:53.06 17.34±0.3817.34\pm 0.38 20.97±0.19-20.97\pm 0.19 6.14±0.176.14\pm 0.17 \cdots 17.379
280 A CRTS J042024.3+001725 04:20:24.319 +00:17:25.43 18.484±0.03718.484\pm 0.037 12.270±0.024-12.270\pm 0.024 5.610±0.0255.610\pm 0.025 \cdots 13.280
281 2MASS J04205517+0649544 04:20:55.204 +06:49:53.97 21.4±1.321.4\pm 1.3 18.95±0.98-18.95\pm 0.98 5.93±0.745.93\pm 0.74 \cdots 15.510
282 2MASS J04210781–0111328 04:21:07.848 –01:11:33.15 20.918±0.08120.918\pm 0.081 18.823±0.047-18.823\pm 0.047 7.005±0.0527.005\pm 0.052 \cdots 14.264
283 2MASS J04212496+0613103 04:21:24.983 +06:13:10.05 18.12±0.2618.12\pm 0.26 20.60±0.18-20.60\pm 0.18 6.15±0.156.15\pm 0.15 \cdots 16.537
284 2MASS J04213975+1111071 04:21:39.778 +11:11:06.72 19.70±0.9319.70\pm 0.93 23.05±0.42-23.05\pm 0.42 5.49±0.385.49\pm 0.38 \cdots 18.801
285 2MASS J04215979+0447054 04:21:59.842 +04:47:05.75 18.5±3.018.5\pm 3.0 18.4±1.6-18.4\pm 1.6 5.1±1.45.1\pm 1.4 \cdots 20.507
286 2MASS J04220837+0847244 04:22:08.399 +08:47:24.15 20.59±0.2820.59\pm 0.28 20.44±0.18-20.44\pm 0.18 5.81±0.165.81\pm 0.16 \cdots 17.842
287 2MASS J04221374+0945434 04:22:13.765 +09:45:43.00 20.15±0.9120.15\pm 0.91 23.21±0.43-23.21\pm 0.43 6.36±0.366.36\pm 0.36 \cdots 18.255
288 BD–03 753 04:22:23.528 –02:40:04.13 19.704±0.06919.704\pm 0.069 12.138±0.040-12.138\pm 0.040 5.995±0.0465.995\pm 0.046 20±220\pm 2 9.741
289 2MASS J04222577+0734399 04:22:25.798 +07:34:39.52 19.14±0.2319.14\pm 0.23 21.84±0.18-21.84\pm 0.18 6.14±0.176.14\pm 0.17 \cdots 17.076
290 BD+05 638 04:22:33.022 +05:41:38.82 20.63±0.1120.63\pm 0.11 21.387±0.068-21.387\pm 0.068 6.284±0.0566.284\pm 0.056 \cdots 9.033
291 2MASS J04234971–0309472 04:23:49.737 –03:09:47.47 19.350±0.06519.350\pm 0.065 12.401±0.038-12.401\pm 0.038 5.268±0.0305.268\pm 0.030 \cdots 13.303
292 2MASS J04235045+0037286 04:23:50.454 +00:37:28.52 17.5±1.117.5\pm 1.1 16.88±0.50-16.88\pm 0.50 6.19±0.546.19\pm 0.54 \cdots 18.361
293 2MASS J04240254–0055122 04:24:02.572 –00:55:12.59 25.0±1.125.0\pm 1.1 21.20±0.61-21.20\pm 0.61 7.49±0.677.49\pm 0.67 \cdots 19.772
294 2MASS J04244312+0819072 04:24:43.162 +08:19:07.03 20.10±0.1120.10\pm 0.11 22.507±0.072-22.507\pm 0.072 6.235±0.0616.235\pm 0.061 \cdots 15.048
295 2MASS J04245775+0725550 04:24:57.780 +07:25:54.80 14.169±0.08314.169\pm 0.083 19.709±0.055-19.709\pm 0.055 4.813±0.0464.813\pm 0.046 15±215\pm 2 12.059
296 2MASS J04251032+0632542 04:25:10.358 +06:32:53.95 17.82±0.2717.82\pm 0.27 21.24±0.14-21.24\pm 0.14 6.09±0.116.09\pm 0.11 \cdots 15.807
297 2MASS J04262075+0027363 04:26:20.785 +00:27:36.01 21.00±0.1121.00\pm 0.11 20.439±0.074-20.439\pm 0.074 6.51±0.156.51\pm 0.15 18±818\pm 8 11.352
298 2MASS J04263992+0710085 04:26:39.939 +07:10:08.17 18.620±0.07618.620\pm 0.076 20.252±0.052-20.252\pm 0.052 5.896±0.0445.896\pm 0.044 \cdots 14.349
299 2MASS J04270667+0908332 04:27:06.684 +09:08:32.74 16.10±0.1016.10\pm 0.10 20.512±0.078-20.512\pm 0.078 5.693±0.0495.693\pm 0.049 21.5±0.421.5\pm 0.4 11.726
300 2MASS J04271508+0634143 04:27:15.116 +06:34:14.34 14.87±0.2014.87\pm 0.20 19.72±0.13-19.72\pm 0.13 5.60±0.105.60\pm 0.10 \cdots 16.367
301 2MASS J04272511+0004224 04:27:25.145 +00:04:22.60 16.28±0.1616.28\pm 0.16 13.467±0.086-13.467\pm 0.086 4.651±0.0904.651\pm 0.090 \cdots 13.191
302 2MASS J04274452–0403155 04:27:44.547 –04:03:15.90 20.42±0.2020.42\pm 0.20 16.83±0.13-16.83\pm 0.13 6.57±0.136.57\pm 0.13 \cdots 16.999
303 2MASS J04275113+0755147 04:27:51.156 +07:55:14.29 20.18±0.2320.18\pm 0.23 19.99±0.18-19.99\pm 0.18 6.48±0.146.48\pm 0.14 \cdots 17.084
304 2MASS J04281033+0345325 04:28:10.354 +03:45:32.06 16.31±0.1616.31\pm 0.16 19.422±0.084-19.422\pm 0.084 6.08±0.116.08\pm 0.11 \cdots 16.336
305 A BD–03 789 04:28:37.716 –03:15:44.58 21.005±0.05821.005\pm 0.058 18.285±0.043-18.285\pm 0.043 6.718±0.0426.718\pm 0.042 22±222\pm 2 9.988
305 B 2MASS J04283839–0315371 04:28:38.423 –03:15:37.42 21.409±0.06121.409\pm 0.061 17.884±0.045-17.884\pm 0.045 6.781±0.0456.781\pm 0.045 \cdots 14.304
306 2MASS J04290785+0111529 04:29:07.865 +01:11:52.42 18.367±0.08818.367\pm 0.088 14.933±0.044-14.933\pm 0.044 5.314±0.0455.314\pm 0.045 \cdots 14.623
307 2MASS J04294933+0108565 04:29:49.346 +01:08:56.18 18.58±0.2218.58\pm 0.22 18.88±0.12-18.88\pm 0.12 6.55±0.116.55\pm 0.11 \cdots 16.631
308 2MASS J04300516+0545074 04:30:05.173 +05:45:07.11 14.76±0.7914.76\pm 0.79 19.92±0.36-19.92\pm 0.36 5.57±0.395.57\pm 0.39 \cdots 18.810
309 2MASS J04300781–0004307 04:30:07.834 –00:04:31.19 21.059±0.06621.059\pm 0.066 20.013±0.043-20.013\pm 0.043 7.268±0.0447.268\pm 0.044 22±222\pm 2 12.606
310 2MASS J04315156+0458221 04:31:51.590 +04:58:21.80 16.03±0.1916.03\pm 0.19 19.32±0.11-19.32\pm 0.11 5.80±0.125.80\pm 0.12 \cdots 16.708
311 2MASS J04322380+0836544 04:32:23.819 +08:36:54.17 16.526±0.08516.526\pm 0.085 20.843±0.044-20.843\pm 0.044 5.981±0.0465.981\pm 0.046 \cdots 15.013
312 2MASS J04333159+0017365 04:33:31.610 +00:17:36.29 20.27±0.1320.27\pm 0.13 18.141±0.077-18.141\pm 0.077 6.205±0.0706.205\pm 0.070 \cdots 15.762
313 2MASS J04333390+0939039 04:33:33.919 +09:39:03.60 14.41±0.6114.41\pm 0.61 19.58±0.33-19.58\pm 0.33 5.57±0.315.57\pm 0.31 \cdots 19.055
314 2MASS J04334594+0621571 04:33:45.976 +06:21:56.83 15.18±0.2915.18\pm 0.29 19.76±0.15-19.76\pm 0.15 5.89±0.155.89\pm 0.15 \cdots 17.598
315 2MASS J04335466+0058219 04:33:54.685 +00:58:21.56 20.091±0.08220.091\pm 0.082 18.976±0.046-18.976\pm 0.046 5.387±0.0435.387\pm 0.043 19±319\pm 3 13.321
316 2MASS J04340478+0221361 04:34:04.800 +02:21:35.96 15.34±0.4615.34\pm 0.46 18.61±0.25-18.61\pm 0.25 5.67±0.275.67\pm 0.27 \cdots 18.168
317 2MASS J04341114+0212190 04:34:11.143 +02:12:18.67 14.93±0.3014.93\pm 0.30 18.26±0.17-18.26\pm 0.17 5.50±0.175.50\pm 0.17 \cdots 17.255
318 B Gaia DR2 3279527149078835712 04:34:19.467 +02:26:25.91 15.62±0.7515.62\pm 0.75 21.63±0.44-21.63\pm 0.44 6.24±0.336.24\pm 0.33 20.6±0.520.6\pm 0.5 15.960
318 A 2MASS J04341953+0226260 04:34:19.560 +02:26:25.89 16.32±0.4216.32\pm 0.42 20.02±0.29-20.02\pm 0.29 5.77±0.225.77\pm 0.22 19±319\pm 3 12.150
319 2MASS J04342738+0227328 04:34:27.421 +02:27:32.60 16.404±0.07616.404\pm 0.076 15.738±0.040-15.738\pm 0.040 5.214±0.0375.214\pm 0.037 \cdots 14.651
320 2MASS J04342758+0513284 04:34:27.592 +05:13:28.18 15.0±1.215.0\pm 1.2 18.45±0.70-18.45\pm 0.70 6.40±0.666.40\pm 0.66 \cdots 20.103
321 2MASS J04343476–0144108 04:34:34.776 –01:44:11.12 17.42±0.1717.42\pm 0.17 15.88±0.13-15.88\pm 0.13 5.76±0.115.76\pm 0.11 \cdots 15.958
322 WISEA J043452.91–005432.9 04:34:52.905 –00:54:32.97 16.6±3.016.6\pm 3.0 17.2±1.8-17.2\pm 1.8 6.0±1.76.0\pm 1.7 \cdots 20.665
323 2MASS J04350272+0733430 04:35:02.756 +07:33:42.74 18.54±0.4618.54\pm 0.46 21.91±0.21-21.91\pm 0.21 5.87±0.235.87\pm 0.23 \cdots 18.271
324 A HD 29182 04:35:53.776 +05:06:15.36 13.562±0.08413.562\pm 0.084 18.825±0.051-18.825\pm 0.051 5.497±0.0515.497\pm 0.051 \cdots 8.692
325 B Gaia DR2 3282460371222713728 04:36:33.274 +05:11:31.41 14.77±0.1414.77\pm 0.14 19.544±0.089-19.544\pm 0.089 5.710±0.0885.710\pm 0.088 \cdots 16.270
325 A 2MASS J04363330+0511304 04:36:33.328 +05:11:29.84 15.123±0.08115.123\pm 0.081 19.524±0.050-19.524\pm 0.050 5.632±0.0495.632\pm 0.049 \cdots 14.831
326 2MASS J04364894+0309231 04:36:48.955 +03:09:22.90 13.93±0.4913.93\pm 0.49 18.71±0.29-18.71\pm 0.29 5.93±0.295.93\pm 0.29 \cdots 18.510
327 2MASS J04370987+0910564 04:37:09.894 +09:10:56.04 16.89±0.5116.89\pm 0.51 22.58±0.28-22.58\pm 0.28 6.28±0.316.28\pm 0.31 \cdots 18.517
328 2MASS J04372578–0210117 04:37:25.800 –02:10:12.12 18.11±0.1418.11\pm 0.14 16.732±0.097-16.732\pm 0.097 6.011±0.0836.011\pm 0.083 \cdots 16.275
329 A 2MASS J04372971–0051241 04:37:29.730 –00:51:24.47 15.026±0.04215.026\pm 0.042 16.665±0.027-16.665\pm 0.027 6.050±0.0256.050\pm 0.025 21±221\pm 2 13.223
329 B Gaia DR2 3229491776511286016 04:37:29.780 –00:51:25.66 14.70±0.3614.70\pm 0.36 17.42±0.19-17.42\pm 0.19 5.75±0.145.75\pm 0.14 \cdots 16.507
330 2MASS J04381823+0310336 04:38:18.245 +03:10:33.35 16.40±0.1816.40\pm 0.18 18.79±0.10-18.79\pm 0.10 6.159±0.0776.159\pm 0.077 \cdots 15.963
331 B Gaia DR2 3201810884087980800 04:38:27.437 –03:42:46.23 19.59±0.8519.59\pm 0.85 17.76±0.49-17.76\pm 0.49 6.77±0.406.77\pm 0.40 \cdots 18.416
332 2MASS J04382994+0258279 04:38:29.963 +02:58:27.54 17.17±0.1217.17\pm 0.12 17.131±0.072-17.131\pm 0.072 6.028±0.0636.028\pm 0.063 \cdots 14.967
333 2MASS J04383297+0534306 04:38:32.989 +05:34:30.14 15.04±0.5015.04\pm 0.50 18.67±0.26-18.67\pm 0.26 5.80±0.275.80\pm 0.27 \cdots 18.382
334 2MASS J04390108+0436555 04:39:01.103 +04:36:55.25 14.68±0.4014.68\pm 0.40 17.91±0.24-17.91\pm 0.24 5.35±0.215.35\pm 0.21 \cdots 17.795
335 2MASS J04390925+0011215 04:39:09.277 +00:11:21.38 14.17±0.5014.17\pm 0.50 17.35±0.28-17.35\pm 0.28 5.86±0.245.86\pm 0.24 \cdots 18.487
336 2MASS J04391308–0045039 04:39:13.102 –00:45:04.39 15.34±0.1415.34\pm 0.14 16.827±0.085-16.827\pm 0.085 6.104±0.0676.104\pm 0.067 \cdots 15.326
337 BD+06 731 04:39:15.500 +07:01:43.92 22.605±0.06622.605\pm 0.066 29.118±0.038-29.118\pm 0.038 7.131±0.0367.131\pm 0.036 15.2±0.315.2\pm 0.3 9.261
338 A TYC 4739–1225–1 04:39:20.251 –03:14:21.79 14.784±0.08014.784\pm 0.080 16.007±0.056-16.007\pm 0.056 6.089±0.0366.089\pm 0.036 24.4±0.324.4\pm 0.3 10.962
339 2MASS J04403353+0245052 04:40:33.544 +02:45:04.87 16.0±1.316.0\pm 1.3 17.87±0.75-17.87\pm 0.75 5.76±0.695.76\pm 0.69 \cdots 19.753
340 2MASS J04403721+0340342 04:40:37.219 +03:40:33.91 12.96±0.5612.96\pm 0.56 17.99±0.39-17.99\pm 0.39 5.90±0.315.90\pm 0.31 \cdots 18.793
341 2MASS J04411983+0238201 04:41:19.851 +02:38:19.86 14.12±0.1114.12\pm 0.11 17.833±0.060-17.833\pm 0.060 5.783±0.0495.783\pm 0.049 \cdots 14.996
342 2MASS J04413233–0226442 04:41:32.362 –02:26:44.48 16.64±0.2816.64\pm 0.28 15.53±0.21-15.53\pm 0.21 5.27±0.155.27\pm 0.15 \cdots 17.805
343 HD 29850 04:42:08.711 –01:39:54.10 15.93±0.1115.93\pm 0.11 14.733±0.080-14.733\pm 0.080 5.274±0.0655.274\pm 0.065 \cdots 8.874
344 2MASS J04421064–0313504 04:42:10.660 –03:13:50.71 16.98±0.1416.98\pm 0.14 15.84±0.11-15.84\pm 0.11 5.933±0.0885.933\pm 0.088 \cdots 16.565
345 HD 29839 04:42:13.732 +02:59:23.74 13.52±0.3013.52\pm 0.30 17.93±0.23-17.93\pm 0.23 5.40±0.175.40\pm 0.17 \cdots 7.218
346 B 2MASS J04421451+0250336 04:42:14.531 +02:50:33.42 14.70±0.2314.70\pm 0.23 16.73±0.18-16.73\pm 0.18 5.81±0.155.81\pm 0.15 \cdots 17.743
346 A 2MASS J04421498+0250387 04:42:14.998 +02:50:38.54 14.310±0.08214.310\pm 0.082 17.815±0.056-17.815\pm 0.056 5.816±0.0455.816\pm 0.045 \cdots 14.830
347 2MASS J04421761+0410207 04:42:17.635 +04:10:20.28 18.08±0.2618.08\pm 0.26 20.71±0.19-20.71\pm 0.19 6.36±0.166.36\pm 0.16 \cdots 17.235
348 2MASS J04421931+0255038 04:42:19.321 +02:55:03.57 14.02±0.1414.02\pm 0.14 18.25±0.10-18.25\pm 0.10 5.697±0.0825.697\pm 0.082 \cdots 16.619
349 2MASS J04423067+0305301 04:42:30.685 +03:05:29.79 14.19±0.1914.19\pm 0.19 18.43±0.14-18.43\pm 0.14 5.78±0.125.78\pm 0.12 \cdots 17.224
350 TYC 91–702–1 04:42:54.742 +04:00:11.23 15.299±0.06015.299\pm 0.060 17.910±0.046-17.910\pm 0.046 5.703±0.0395.703\pm 0.039 23±223\pm 2 10.839
351 TYC 83–1232–1 04:43:04.063 +00:49:47.45 14.188±0.09514.188\pm 0.095 17.190±0.058-17.190\pm 0.058 5.814±0.0485.814\pm 0.048 25±525\pm 5 11.189
352 2MASS J04430440+0234219 04:43:04.418 +02:34:21.69 13.79±0.1413.79\pm 0.14 18.01±0.10-18.01\pm 0.10 5.709±0.0855.709\pm 0.085 \cdots 16.110
353 2MASS J04431309+0048174 04:43:13.116 +00:48:17.19 13.76±0.1413.76\pm 0.14 16.967±0.083-16.967\pm 0.083 5.793±0.0755.793\pm 0.075 \cdots 14.479
354 2MASS J04435852–0106309 04:43:58.538 –01:06:31.17 13.13±0.1913.13\pm 0.19 12.28±0.14-12.28\pm 0.14 4.53±0.104.53\pm 0.10 \cdots 16.474
355 2MASS J04441632+0202201 04:44:16.349 +02:02:19.80 14.83±0.1514.83\pm 0.15 17.11±0.11-17.11\pm 0.11 5.651±0.0825.651\pm 0.082 \cdots 16.092
356 2MASS J04444613–0327546 04:44:46.150 –03:27:54.91 14.800±0.03314.800\pm 0.033 14.434±0.032-14.434\pm 0.032 5.759±0.0235.759\pm 0.023 20±420\pm 4 13.114
357 HD 30124 04:45:03.984 +05:52:17.71 13.672±0.09813.672\pm 0.098 21.479±0.068-21.479\pm 0.068 6.269±0.0556.269\pm 0.055 \cdots 8.421
358 2MASS J04452559+0047028 04:45:25.612 +00:47:02.68 13.99±0.1013.99\pm 0.10 17.164±0.069-17.164\pm 0.069 5.944±0.0565.944\pm 0.056 \cdots 14.895
359 2MASS J04463404+0413418 04:46:34.055 +04:13:41.71 11.401±0.06111.401\pm 0.061 16.421±0.036-16.421\pm 0.036 4.989±0.0304.989\pm 0.030 \cdots 14.095
360 2MASS J04465626–0311357 04:46:56.284 –03:11:36.12 16.42±0.2816.42\pm 0.28 16.45±0.21-16.45\pm 0.21 6.30±0.146.30\pm 0.14 \cdots 17.308
361 2MASS J04472676+0011355 04:47:26.782 +00:11:35.27 12.77±0.2912.77\pm 0.29 16.26±0.19-16.26\pm 0.19 5.75±0.155.75\pm 0.15 \cdots 17.629
362 V1831 Ori 04:50:04.711 +01:50:42.31 16.470±0.06616.470\pm 0.066 18.982±0.050-18.982\pm 0.050 5.729±0.0385.729\pm 0.038 23±423\pm 4 11.522
363 2MASS J04514147+0205555 04:51:41.493 +02:05:55.24 12.52±0.1312.52\pm 0.13 16.323±0.084-16.323\pm 0.084 5.172±0.0665.172\pm 0.066 \cdots 15.520
364 BD–02 1047 04:52:07.364 –01:58:57.43 12.91±0.1212.91\pm 0.12 17.606±0.088-17.606\pm 0.088 5.600±0.0705.600\pm 0.070 24.5±0.824.5\pm 0.8 9.860
365 2MASS J04523044–0110409 04:52:30.465 –01:10:41.31 12.65±0.3412.65\pm 0.34 15.40±0.23-15.40\pm 0.23 5.43±0.175.43\pm 0.17 \cdots 15.408
366 2MASS J04524130–0135000 04:52:41.324 –01:35:00.29 12.78±0.1512.78\pm 0.15 15.53±0.10-15.53\pm 0.10 5.676±0.0805.676\pm 0.080 \cdots 16.022
367 2MASS J04530475–0127086 04:53:04.767 –01:27:08.86 13.825±0.09313.825\pm 0.093 18.215±0.066-18.215\pm 0.066 5.626±0.0665.626\pm 0.066 \cdots 14.235
368 HD 31125 04:53:04.828 –01:16:33.04 12.67±0.1112.67\pm 0.11 15.782±0.072-15.782\pm 0.072 5.644±0.0515.644\pm 0.051 \cdots 7.918
369 TYC 4745–475–1 04:53:12.066 –03:49:10.26 13.631±0.05313.631\pm 0.053 14.909±0.044-14.909\pm 0.044 5.993±0.0315.993\pm 0.031 26.2±0.626.2\pm 0.6 11.383
370 2MASS J04543831–0151186 04:54:38.330 –01:51:18.88 14.00±0.3214.00\pm 0.32 18.39±0.23-18.39\pm 0.23 5.39±0.185.39\pm 0.18 24±924\pm 9 12.986
371 B Gaia DR2 3228318975563766784 04:54:46.875 –00:01:10.21 11.191±0.06511.191\pm 0.065 16.437±0.050-16.437\pm 0.050 5.322±0.0395.322\pm 0.039 \cdots 14.858
372 A TYC 4741–307–1 04:56:18.287 –01:53:33.04 11.95±0.1211.95\pm 0.12 15.188±0.075-15.188\pm 0.075 5.612±0.0605.612\pm 0.060 25±225\pm 2 10.775
376 TYC 665–150–1 03:57:21.412 +12:58:16.37 28.05±0.3128.05\pm 0.31 24.71±0.22-24.71\pm 0.22 6.54±0.156.54\pm 0.15 6.8±0.86.8\pm 0.8 10.833
\cdots 2MASS J02300007+2815305 02:30:00.126 +28:15:30.00 39.51±0.4239.51\pm 0.42 33.01±0.36-33.01\pm 0.36 8.65±0.238.65\pm 0.23 \cdots 18.285
\cdots 2MASS J02355804+1946474 02:35:58.096 +19:46:47.02 45.33±0.1645.33\pm 0.16 27.92±0.12-27.92\pm 0.12 8.728±0.0828.728\pm 0.082 \cdots 15.679
\cdots 2MASS J02365857+1822006 02:36:58.621 +18:22:00.16 36.13±0.1636.13\pm 0.16 24.96±0.13-24.96\pm 0.13 7.850±0.0797.850\pm 0.079 \cdots 16.235
\cdots Gaia DR2 127856640916806528 02:38:41.656 +28:08:56.54 47.33±0.3947.33\pm 0.39 37.26±0.32-37.26\pm 0.32 10.43±0.1910.43\pm 0.19 \cdots 18.202
\cdots 2MASS J02514834+1542531 02:51:48.392 +15:42:52.31 39.89±0.5939.89\pm 0.59 31.46±0.47-31.46\pm 0.47 9.32±0.379.32\pm 0.37 \cdots 18.896
\cdots 2MASS J02564263+2122182 02:56:42.677 +21:22:17.63 35.65±0.2335.65\pm 0.23 27.88±0.15-27.88\pm 0.15 7.665±0.0967.665\pm 0.096 \cdots 15.925
\cdots 2MASS J02571402+1329246 02:57:14.061 +13:29:24.21 37.61±0.1737.61\pm 0.17 25.58±0.15-25.58\pm 0.15 8.836±0.0818.836\pm 0.081 \cdots 16.207
\cdots 2MASS J02591008+2830202 02:59:10.136 +28:30:19.82 31.48±0.1131.48\pm 0.11 30.731±0.089-30.731\pm 0.089 7.984±0.0567.984\pm 0.056 \cdots 15.027
\cdots 2MASS J02592884+1417534 02:59:28.891 +14:17:52.96 37.61±0.1837.61\pm 0.18 28.83±0.16-28.83\pm 0.16 8.073±0.0798.073\pm 0.079 \cdots 16.197
\cdots 2MASS J03001278+1151455 03:00:12.823 +11:51:45.10 35.20±0.3535.20\pm 0.35 26.03±0.29-26.03\pm 0.29 7.74±0.207.74\pm 0.20 \cdots 17.869
\cdots 2MASS J03022099+2253470 03:02:21.016 +22:53:46.60 28.02±0.4128.02\pm 0.41 21.71±0.32-21.71\pm 0.32 6.74±0.206.74\pm 0.20 \cdots 18.013
\cdots WISEA J030230.82+240842.1 03:02:30.837 +24:08:41.81 37.9±2.937.9\pm 2.9 29.9±2.8-29.9\pm 2.8 8.8±1.98.8\pm 1.9 \cdots 20.528
\cdots 2MASS J03032741+1404418 03:03:27.453 +14:04:41.40 30.61±0.1530.61\pm 0.15 23.75±0.13-23.75\pm 0.13 6.746±0.0736.746\pm 0.073 \cdots 16.078
\cdots 2MASS J03070447+2934216 03:07:04.519 +29:34:20.77 36.17±0.3236.17\pm 0.32 38.26±0.21-38.26\pm 0.21 9.30±0.169.30\pm 0.16 \cdots 16.917
\cdots 2MASS J03081211+1521139 03:08:12.158 +15:21:13.34 44.21±0.1544.21\pm 0.15 35.72±0.12-35.72\pm 0.12 10.203±0.08810.203\pm 0.088 \cdots 15.788
\cdots 2MASS J03085284+1052232 03:08:52.883 +10:52:22.78 39.09±0.1339.09\pm 0.13 23.94±0.12-23.94\pm 0.12 8.482±0.0678.482\pm 0.067 \cdots 15.423
\cdots 2MASS J03091404+2018084 03:09:14.086 +20:18:07.96 37.61±0.1337.61\pm 0.13 32.34±0.11-32.34\pm 0.11 7.808±0.0877.808\pm 0.087 \cdots 15.424
\cdots Gaia DR2 59117372971786880 03:17:00.436 +18:27:21.96 32.94±0.2532.94\pm 0.25 24.73±0.18-24.73\pm 0.18 6.78±0.126.78\pm 0.12 \cdots 17.380
\cdots 2MASS J03175490+0420281 03:17:54.941 +04:20:27.63 39.31±0.2739.31\pm 0.27 25.85±0.25-25.85\pm 0.25 8.75±0.168.75\pm 0.16 \cdots 17.871
\cdots 2MASS J03192523+1845233 03:19:25.273 +18:45:22.78 35.29±0.2335.29\pm 0.23 29.76±0.20-29.76\pm 0.20 7.30±0.137.30\pm 0.13 \cdots 17.349
\cdots Gaia DR2 59375998722290304 03:19:26.873 +19:44:53.78 28.72±0.9228.72\pm 0.92 23.00±0.75-23.00\pm 0.75 6.35±0.566.35\pm 0.56 \cdots 19.613
\cdots 2MASS J03204354+2356091 03:20:43.590 +23:56:08.36 32.58±0.1732.58\pm 0.17 38.85±0.14-38.85\pm 0.14 8.952±0.0898.952\pm 0.089 \cdots 16.447
\cdots τ1\tau^{1} Ari 03:21:13.653 +21:08:49.13 26.57±0.5526.57\pm 0.55 21.33±0.44-21.33\pm 0.44 6.37±0.276.37\pm 0.27 14.7±0.914.7\pm 0.9 5.265
\cdots 2MASS J03212919+1604380 03:21:29.223 +16:04:37.59 28.18±0.3028.18\pm 0.30 28.33±0.25-28.33\pm 0.25 7.36±0.177.36\pm 0.17 \cdots 17.589
\cdots 2MASS J03213476+1654136 03:21:34.794 +16:54:13.30 25.48±0.4925.48\pm 0.49 21.94±0.35-21.94\pm 0.35 6.01±0.346.01\pm 0.34 \cdots 18.366
\cdots 2MASS J03215751+1601394 03:21:57.552 +16:01:39.10 32.28±0.1332.28\pm 0.13 22.92±0.11-22.92\pm 0.11 7.047±0.0847.047\pm 0.084 \cdots 15.977
\cdots 2MASS J03230385+1709370 03:23:03.904 +17:09:36.49 39.51±0.2039.51\pm 0.20 31.98±0.16-31.98\pm 0.16 8.903±0.0928.903\pm 0.092 \cdots 15.894
\cdots 2MASS J03244896+1020589 03:24:49.008 +10:20:58.39 41.09±0.2841.09\pm 0.28 28.07±0.23-28.07\pm 0.23 9.34±0.179.34\pm 0.17 \cdots 17.448
\cdots 2MASS J03245419+1555078 03:24:54.240 +15:55:07.18 38.11±0.5038.11\pm 0.50 35.49±0.39-35.49\pm 0.39 8.23±0.308.23\pm 0.30 \cdots 18.275
\cdots 2MASS J03250457+0728193 03:25:04.592 +07:28:18.82 31.22±0.2631.22\pm 0.26 21.79±0.20-21.79\pm 0.20 6.83±0.166.83\pm 0.16 \cdots 17.360
\cdots Gaia DR2 9977797439144320 03:25:04.736 +07:28:20.43 31.93±0.3831.93\pm 0.38 21.57±0.31-21.57\pm 0.31 6.76±0.256.76\pm 0.25 \cdots 18.012
\cdots 2MASS J03261888+2153335 03:26:18.933 +21:53:32.98 40.49±0.2140.49\pm 0.21 40.59±0.16-40.59\pm 0.16 9.29±0.129.29\pm 0.12 \cdots 16.861
\cdots 2MASS J03270898+0933595 03:27:09.019 +09:33:59.24 26.94±0.5326.94\pm 0.53 20.75±0.46-20.75\pm 0.46 6.89±0.346.89\pm 0.34 \cdots 18.677
\cdots 2MASS J03274866+0547180 03:27:48.706 +05:47:17.65 36.58±0.2836.58\pm 0.28 28.25±0.20-28.25\pm 0.20 8.47±0.158.47\pm 0.15 \cdots 17.397
\cdots 2MASS J03282792+1524230 03:28:27.961 +15:24:22.57 32.01±0.2032.01\pm 0.20 23.45±0.15-23.45\pm 0.15 7.95±0.107.95\pm 0.10 \cdots 16.798
\cdots 2MASS J03284348+0843451 03:28:43.521 +08:43:44.79 37.2±2.637.2\pm 2.6 27.1±2.3-27.1\pm 2.3 7.4±1.37.4\pm 1.3 \cdots 20.658
\cdots 2MASS J03292961+1051560 03:29:29.653 +10:51:55.53 32.09±0.1432.09\pm 0.14 29.802±0.097-29.802\pm 0.097 8.497±0.0658.497\pm 0.065 \cdots 15.263
\cdots 2MASS J03304846+1034093 03:30:48.497 +10:34:08.92 25.076±0.07625.076\pm 0.076 16.325±0.056-16.325\pm 0.056 6.153±0.0426.153\pm 0.042 \cdots 14.607
\cdots 2MASS J03310140+1200052 03:31:01.444 +12:00:04.75 31.93±0.2331.93\pm 0.23 28.33±0.15-28.33\pm 0.15 8.39±0.128.39\pm 0.12 \cdots 16.609
\cdots 2MASS J03313540+0645326 03:31:35.446 +06:45:32.52 34.01±0.1434.01\pm 0.14 19.70±0.11-19.70\pm 0.11 7.826±0.0757.826\pm 0.075 \cdots 16.243
\cdots 2MASS J03322564+1857138 03:32:25.671 +18:57:13.38 22.67±0.4822.67\pm 0.48 24.68±0.31-24.68\pm 0.31 6.01±0.256.01\pm 0.25 \cdots 17.956
\cdots 2MASS J03323893+1512173 03:32:38.982 +15:12:16.99 26.34±0.8326.34\pm 0.83 21.69±0.58-21.69\pm 0.58 5.84±0.455.84\pm 0.45 \cdots 19.335
\cdots 2MASS J03334166+1924263 03:33:41.669 +19:24:26.22 23.5±1.423.5\pm 1.4 23.0±1.0-23.0\pm 1.0 6.97±0.816.97\pm 0.81 \cdots 20.217
\cdots Gaia DR2 40541334474313728 03:34:33.106 +12:12:29.76 28.23±0.8828.23\pm 0.88 29.63±0.62-29.63\pm 0.62 7.50±0.547.50\pm 0.54 \cdots 19.087
\cdots 2MASS J03350086+1539436 03:35:00.896 +15:39:43.16 22.06±0.2022.06\pm 0.20 23.23±0.16-23.23\pm 0.16 6.36±0.126.36\pm 0.12 \cdots 16.458
\cdots WISEA J033651.60+154553.3 03:36:51.600 +15:45:53.00 25.4±3.725.4\pm 3.7 28.7±3.1-28.7\pm 3.1 7.6±3.37.6\pm 3.3 \cdots 20.777
\cdots 2MASS J03373345+0616472 03:37:33.487 +06:16:46.69 32.75±0.1432.75\pm 0.14 28.71±0.10-28.71\pm 0.10 8.128±0.0928.128\pm 0.092 \cdots 15.625
\cdots WISEA J033742.99+191646.7 03:37:42.991 +19:16:46.69 25.3±4.025.3\pm 4.0 27.7±2.8-27.7\pm 2.8 6.9±1.76.9\pm 1.7 \cdots 20.716
\cdots 2MASS J03375620+0841417 03:37:56.241 +08:41:41.50 27.66±0.1327.66\pm 0.13 21.108±0.095-21.108\pm 0.095 6.172±0.0676.172\pm 0.067 \cdots 15.761
\cdots 2MASS J03380150+1638387 03:38:01.544 +16:38:38.07 36.35±0.2036.35\pm 0.20 33.91±0.16-33.91\pm 0.16 8.00±0.118.00\pm 0.11 \cdots 16.476
\cdots 2MASS J03402733+0811017 03:40:27.369 +08:11:01.28 33.39±0.6833.39\pm 0.68 27.63±0.46-27.63\pm 0.46 8.01±0.308.01\pm 0.30 \cdots 18.544
\cdots 2MASS J03412704+0811542 03:41:27.091 +08:11:53.99 29.66±0.3429.66\pm 0.34 21.64±0.26-21.64\pm 0.26 6.20±0.186.20\pm 0.18 \cdots 18.093
\cdots 2MASS J03422624+1416494 03:42:26.282 +14:16:48.95 32.318±0.07432.318\pm 0.074 28.272±0.056-28.272\pm 0.056 6.956±0.0366.956\pm 0.036 \cdots 14.273
\cdots TYC 71–674–1 03:43:48.922 +06:22:09.72 21.940±0.07821.940\pm 0.078 14.034±0.054-14.034\pm 0.054 5.526±0.0415.526\pm 0.041 16.7±0.616.7\pm 0.6 11.764
\cdots 2MASS J03453877+2113077 03:45:38.814 +21:13:07.23 27.06±0.3227.06\pm 0.32 27.67±0.23-27.67\pm 0.23 6.57±0.176.57\pm 0.17 \cdots 17.873
\cdots WISEA J034623.66+130512.5 03:46:23.699 +13:05:13.10 22.6±3.222.6\pm 3.2 18.2±1.9-18.2\pm 1.9 6.2±1.86.2\pm 1.8 \cdots 20.643
\cdots 2MASS J03463262+1825551 03:46:32.653 +18:25:54.77 23.37±0.2923.37\pm 0.29 26.78±0.20-26.78\pm 0.20 5.87±0.135.87\pm 0.13 \cdots 17.291
\cdots 2MASS J03473025+0203437 03:47:30.270 +02:03:43.20 24.55±0.2424.55\pm 0.24 18.65±0.24-18.65\pm 0.24 5.99±0.145.99\pm 0.14 \cdots 17.765
\cdots 2MASS J03475182+1043255 03:47:51.852 +10:43:25.14 27.64±0.2727.64\pm 0.27 25.46±0.17-25.46\pm 0.17 6.27±0.116.27\pm 0.11 \cdots 17.095
\cdots 2MASS J03480732+1342170 03:48:07.349 +13:42:16.44 27.390±0.09727.390\pm 0.097 32.642±0.061-32.642\pm 0.061 7.223±0.0497.223\pm 0.049 \cdots 14.689
\cdots 2MASS J03483524+0931435 03:48:35.249 +09:31:43.42 20.2±1.820.2\pm 1.8 15.6±1.2-15.6\pm 1.2 5.69±0.875.69\pm 0.87 \cdots 19.038
\cdots Gaia DR2 39495385383245568 03:48:36.265 +13:47:27.18 26.70±0.8326.70\pm 0.83 32.33±0.56-32.33\pm 0.56 7.15±0.477.15\pm 0.47 \cdots 19.501
\cdots 2MASS J03485224+0620302 03:48:52.278 +06:20:29.88 23.64±0.2823.64\pm 0.28 20.33±0.22-20.33\pm 0.22 6.39±0.146.39\pm 0.14 \cdots 16.797
\cdots 2MASS J03502829+1753586 03:50:28.333 +17:53:58.17 29.43±0.2729.43\pm 0.27 28.97±0.16-28.97\pm 0.16 7.01±0.117.01\pm 0.11 \cdots 16.941
\cdots 2MASS J03505011+1205084 03:50:50.135 +12:05:08.14 22.18±0.2022.18\pm 0.20 16.88±0.13-16.88\pm 0.13 6.20±0.116.20\pm 0.11 \cdots 17.045
\cdots 2MASS J03522921+1037209 03:52:29.239 +10:37:20.63 29.47±0.7729.47\pm 0.77 27.50±0.53-27.50\pm 0.53 6.46±0.406.46\pm 0.40 \cdots 19.289
\cdots 2MASS J03523586+0709204 03:52:35.898 +07:09:20.05 21.23±0.1321.23\pm 0.13 22.856±0.088-22.856\pm 0.088 6.301±0.0716.301\pm 0.071 \cdots 15.097
\cdots 2MASS J03531715+1823316 03:53:17.251 +18:23:30.59 29.4±2.829.4\pm 2.8 35.5±1.4-35.5\pm 1.4 7.5±1.27.5\pm 1.2 \cdots 20.569
\cdots 2MASS J03531923+1321065 03:53:19.280 +13:21:06.14 28.19±0.5828.19\pm 0.58 28.70±0.35-28.70\pm 0.35 7.57±0.267.57\pm 0.26 \cdots 18.676
\cdots 2MASS J03541484+1618297 03:54:14.874 +16:18:29.32 20.5±1.920.5\pm 1.9 22.6±1.4-22.6\pm 1.4 5.9±1.25.9\pm 1.2 \cdots 20.408
\cdots 2MASS J03544106+0912233 03:54:41.079 +09:12:23.12 23.0±1.723.0\pm 1.7 19.7±1.0-19.7\pm 1.0 6.17±0.926.17\pm 0.92 \cdots 18.979
\cdots WISEA J035552.96+051855.6 03:55:52.992 +05:18:56.29 22.3±4.422.3\pm 4.4 17.5±3.1-17.5\pm 3.1 6.0±1.96.0\pm 1.9 \cdots 20.961
\cdots 2MASS J03565177+0511102 03:56:51.810 +05:11:10.05 24.5±1.024.5\pm 1.0 18.70±0.84-18.70\pm 0.84 5.32±0.465.32\pm 0.46 \cdots 19.460
\cdots WISEA J035656.05+112815.8 03:56:56.042 +11:28:15.36 20.4±3.320.4\pm 3.3 17.8±2.1-17.8\pm 2.1 6.4±1.66.4\pm 1.6 \cdots 20.562
\cdots 2MASS J03573966+1441432 03:57:39.695 +14:41:42.55 23.86±0.7723.86\pm 0.77 30.25±0.47-30.25\pm 0.47 7.83±0.417.83\pm 0.41 \cdots 19.217
\cdots 2MASS J03574260+0551215 03:57:42.630 +05:51:21.16 28.11±0.1728.11\pm 0.17 25.25±0.13-25.25\pm 0.13 7.905±0.0957.905\pm 0.095 \cdots 16.049
\cdots 2MASS J03580299+1726283 03:58:03.024 +17:26:27.95 18.20±0.1618.20\pm 0.16 23.694±0.093-23.694\pm 0.093 6.178±0.0806.178\pm 0.080 \cdots 16.133
\cdots 2MASS J03581131+0611071 03:58:11.336 +06:11:07.00 20.90±0.5820.90\pm 0.58 15.14±0.41-15.14\pm 0.41 6.26±0.316.26\pm 0.31 \cdots 18.454
\cdots 2MASS J03585422+1318017 03:58:54.255 +13:18:01.14 28.47±0.3728.47\pm 0.37 28.37±0.22-28.37\pm 0.22 6.63±0.196.63\pm 0.19 \cdots 17.977
\cdots 2MASS J04001889+1117530 04:00:18.930 +11:17:52.66 28.781±0.05928.781\pm 0.059 32.344±0.037-32.344\pm 0.037 7.524±0.0307.524\pm 0.030 \cdots 13.739
\cdots 2MASS J04004600+1543113 04:00:46.046 +15:43:10.84 27.60±0.2227.60\pm 0.22 27.12±0.12-27.12\pm 0.12 8.17±0.118.17\pm 0.11 \cdots 16.738
\cdots 2MASS J04011928+0132374 04:01:19.312 +01:32:37.10 26.69±0.4426.69\pm 0.44 21.85±0.34-21.85\pm 0.34 6.36±0.226.36\pm 0.22 \cdots 18.292
\cdots 2MASS J04013237+0002523 04:01:32.411 +00:02:51.85 25.31±0.3325.31\pm 0.33 16.13±0.28-16.13\pm 0.28 6.31±0.186.31\pm 0.18 \cdots 18.162
\cdots 2MASS J04021909+1117014 04:02:19.090 +11:17:01.23 17.2±1.617.2\pm 1.6 16.78±0.86-16.78\pm 0.86 5.21±0.795.21\pm 0.79 \cdots 18.698
\cdots 2MASS J04023974+0356420 04:02:39.778 +03:56:41.76 25.9±1.325.9\pm 1.3 17.37±0.88-17.37\pm 0.88 6.62±0.756.62\pm 0.75 \cdots 19.951
\cdots 2MASS J04034941+0951155 04:03:49.434 +09:51:14.90 25.74±0.3125.74\pm 0.31 24.54±0.19-24.54\pm 0.19 5.93±0.165.93\pm 0.16 \cdots 17.903
\cdots 2MASS J04040646+1132063 04:04:06.475 +11:32:05.86 16.2±1.316.2\pm 1.3 19.93±0.68-19.93\pm 0.68 5.33±0.615.33\pm 0.61 \cdots 19.636
\cdots 2MASS J04043739+0730434 04:04:37.407 +07:30:42.90 26.34±0.8526.34\pm 0.85 24.45±0.42-24.45\pm 0.42 6.58±0.436.58\pm 0.43 \cdots 18.936
\cdots 2MASS J04044493+0611385 04:04:44.961 +06:11:38.14 19.8±1.519.8\pm 1.5 21.32±0.86-21.32\pm 0.86 5.02±0.855.02\pm 0.85 \cdots 20.092
\cdots 2MASS J04044544+1052456 04:04:45.463 +10:52:45.52 19.40±0.3119.40\pm 0.31 20.13±0.21-20.13\pm 0.21 4.82±0.184.82\pm 0.18 \cdots 17.747
\cdots Gaia DR2 3260444330208719104 04:05:07.086 +03:53:23.29 21.56±0.5821.56\pm 0.58 13.82±0.43-13.82\pm 0.43 6.03±0.296.03\pm 0.29 \cdots 18.802
\cdots 2MASS J04053132+0742252 04:05:31.344 +07:42:24.88 21.98±0.3021.98\pm 0.30 23.20±0.17-23.20\pm 0.17 5.67±0.155.67\pm 0.15 \cdots 17.506
\cdots 2MASS J04060831+0540134 04:06:08.318 +05:40:13.35 20.26±0.2020.26\pm 0.20 15.47±0.17-15.47\pm 0.17 4.91±0.114.91\pm 0.11 \cdots 16.840
\cdots 2MASS J04074808+0757523 04:07:48.105 +07:57:52.14 15.93±0.5015.93\pm 0.50 18.59±0.32-18.59\pm 0.32 5.37±0.255.37\pm 0.25 \cdots 18.604
\cdots 2MASS J04080091+1031113 04:08:00.930 +10:31:11.12 16.9±2.816.9\pm 2.8 21.2±1.5-21.2\pm 1.5 6.0±1.56.0\pm 1.5 \cdots 20.540
\cdots 2MASS J04080870+0909272 04:08:08.721 +09:09:26.86 15.36±0.5615.36\pm 0.56 16.97±0.32-16.97\pm 0.32 5.05±0.295.05\pm 0.29 \cdots 18.712
\cdots 2MASS J04083351+0457383 04:08:33.534 +04:57:37.83 25.67±0.5325.67\pm 0.53 26.72±0.34-26.72\pm 0.34 6.49±0.286.49\pm 0.28 \cdots 18.685
\cdots Gaia DR2 3305092233237657984 04:08:34.341 +12:22:22.55 16.9±4.416.9\pm 4.4 21.4±2.5-21.4\pm 2.5 5.4±1.75.4\pm 1.7 \cdots 20.756
\cdots 2MASS J04092969+1615365 04:09:29.713 +16:15:36.06 20.85±0.2020.85\pm 0.20 30.59±0.17-30.59\pm 0.17 6.70±0.136.70\pm 0.13 \cdots 16.540
\cdots 2MASS J04104079+1029064 04:10:40.805 +10:29:05.83 22.0±1.922.0\pm 1.9 28.9±1.1-28.9\pm 1.1 7.91±0.907.91\pm 0.90 \cdots 19.498
\cdots 2MASS J04112019–0103368 04:11:20.182 –01:03:37.12 20.11±0.8720.11\pm 0.87 16.22±0.67-16.22\pm 0.67 5.66±0.565.66\pm 0.56 \cdots 17.335
\cdots 2MASS J04114302+1201505 04:11:43.049 +12:01:50.53 20.16±0.5420.16\pm 0.54 23.97±0.52-23.97\pm 0.52 7.16±0.337.16\pm 0.33 \cdots 18.826
\cdots 2MASS J04114604+1131038 04:11:46.059 +11:31:03.41 19.58±0.7919.58\pm 0.79 23.08±0.43-23.08\pm 0.43 6.46±0.266.46\pm 0.26 \cdots 18.413
\cdots Gaia DR2 3284355203419497088 04:11:52.187 +04:26:32.33 25.63±0.3825.63\pm 0.38 28.63±0.18-28.63\pm 0.18 7.10±0.227.10\pm 0.22 \cdots 18.059
\cdots 2MASS J04121061+0742039 04:12:10.657 +07:42:03.47 16.8±3.616.8\pm 3.6 14.3±2.0-14.3\pm 2.0 5.2±1.55.2\pm 1.5 \cdots 20.471
\cdots 2MASS J04122904+0942220 04:12:29.061 +09:42:21.64 17.47±0.2917.47\pm 0.29 20.86±0.25-20.86\pm 0.25 6.21±0.156.21\pm 0.15 \cdots 17.708
\cdots 2MASS J04124666+0614198 04:12:46.682 +06:14:19.72 17.93±0.7517.93\pm 0.75 13.72±0.45-13.72\pm 0.45 5.08±0.305.08\pm 0.30 \cdots 18.456
\cdots 2MASS J04131221+0836469 04:13:12.240 +08:36:46.65 19.5±2.219.5\pm 2.2 16.8±1.3-16.8\pm 1.3 5.92±0.855.92\pm 0.85 \cdots 19.861
\cdots 2MASS J04144878+1348588 04:14:48.806 +13:48:58.59 18.50±0.4718.50\pm 0.47 21.49±0.34-21.49\pm 0.34 5.47±0.245.47\pm 0.24 \cdots 18.052
\cdots 2MASS J04153145–0125053 04:15:31.476 –01:25:05.46 21.53±0.4521.53\pm 0.45 13.33±0.46-13.33\pm 0.46 5.38±0.255.38\pm 0.25 \cdots 18.644
\cdots 2MASS J04160719+0411019 04:16:07.210 +04:11:01.68 17.25±0.3217.25\pm 0.32 13.79±0.19-13.79\pm 0.19 5.44±0.145.44\pm 0.14 \cdots 17.148
\cdots 2MASS J04162916+0722379 04:16:29.187 +07:22:37.84 17.97±0.1617.97\pm 0.16 20.01±0.12-20.01\pm 0.12 5.675±0.0915.675\pm 0.091 \cdots 16.108
\cdots 2MASS J04164032+0030538 04:16:40.348 +00:30:53.49 24.35±0.3424.35\pm 0.34 22.76±0.23-22.76\pm 0.23 6.35±0.236.35\pm 0.23 \cdots 17.956
\cdots WISEA J041646.88+040134.1 04:16:46.901 +04:01:33.88 22.8±2.722.8\pm 2.7 19.5±1.4-19.5\pm 1.4 7.2±1.27.2\pm 1.2 \cdots 20.238
\cdots Gaia DR2 3253988341527871488 04:18:21.383 –01:20:55.20 17.93±0.4617.93\pm 0.46 13.36±0.20-13.36\pm 0.20 5.08±0.385.08\pm 0.38 \cdots 19.121
\cdots 2MASS J04191862+0707428 04:19:18.640 +07:07:42.59 19.24±0.5319.24\pm 0.53 16.58±0.35-16.58\pm 0.35 5.77±0.285.77\pm 0.28 \cdots 18.766
\cdots Gaia DR2 3255556657429771008 04:19:31.874 +00:23:34.72 23.6±2.223.6\pm 2.2 22.9±1.8-22.9\pm 1.8 8.7±1.78.7\pm 1.7 \cdots 20.755
\cdots 2MASS J04201559–0132340 04:20:15.622 –01:32:34.38 24.31±0.2524.31\pm 0.25 19.22±0.12-19.22\pm 0.12 6.23±0.176.23\pm 0.17 \cdots 17.779
\cdots 2MASS J04213553+0128517 04:21:35.551 +01:28:51.35 19.51±0.3319.51\pm 0.33 20.36±0.23-20.36\pm 0.23 6.62±0.186.62\pm 0.18 \cdots 17.804
\cdots WISEA J042242.08+025448.7 04:22:42.098 +02:54:48.47 18.8±2.518.8\pm 2.5 19.2±1.4-19.2\pm 1.4 5.48±0.985.48\pm 0.98 \cdots 20.330
\cdots HD 27860 04:24:14.495 +12:09:28.39 14.99±0.1114.99\pm 0.11 23.760±0.068-23.760\pm 0.068 5.372±0.0535.372\pm 0.053 16.6±0.216.6\pm 0.2 5.925
\cdots 2MASS J04254368+0506464 04:25:43.699 +05:06:46.15 14.82±0.6714.82\pm 0.67 14.65±0.40-14.65\pm 0.40 5.01±0.325.01\pm 0.32 \cdots 18.873
\cdots 2MASS J04265837+0126246 04:26:58.385 +01:26:24.36 19.4±1.019.4\pm 1.0 16.29±0.53-16.29\pm 0.53 4.78±0.544.78\pm 0.54 \cdots 16.156
\cdots 2MASS J04270307+0148468 04:27:03.095 +01:48:46.71 18.9±1.718.9\pm 1.7 14.98±0.77-14.98\pm 0.77 6.5±1.16.5\pm 1.1 \cdots 19.640
\cdots 2MASS J04272827–0236149 04:27:28.295 –02:36:15.14 17.25±0.4017.25\pm 0.40 13.25±0.27-13.25\pm 0.27 5.36±0.225.36\pm 0.22 \cdots 18.229
\cdots 2MASS J04283451+0129362 04:28:34.531 +01:29:36.10 17.22±0.4517.22\pm 0.45 15.68±0.24-15.68\pm 0.24 5.11±0.215.11\pm 0.21 \cdots 18.082
\cdots WISEA J042913.82–002417.0 04:29:13.841 –00:24:17.21 16.6±2.316.6\pm 2.3 15.1±1.4-15.1\pm 1.4 4.6±1.54.6\pm 1.5 \cdots 19.750
\cdots 2MASS J04304508+0756242 04:30:45.103 +07:56:23.69 15.24±0.4315.24\pm 0.43 21.78±0.23-21.78\pm 0.23 5.63±0.245.63\pm 0.24 \cdots 18.181
\cdots 2MASS J04304930+1019441 04:30:49.319 +10:19:43.77 18.29±0.6618.29\pm 0.66 23.63±0.40-23.63\pm 0.40 6.52±0.346.52\pm 0.34 \cdots 18.784
\cdots 2MASS J04310354+0036313 04:31:03.558 +00:36:31.10 22.90±0.8822.90\pm 0.88 19.14±0.44-19.14\pm 0.44 6.46±0.476.46\pm 0.47 \cdots 16.009
\cdots 2MASS J04325031–0253281 04:32:50.340 –02:53:28.45 19.12±0.2519.12\pm 0.25 15.08±0.17-15.08\pm 0.17 5.71±0.165.71\pm 0.16 \cdots 17.697
\cdots WISEA J043304.99+053543.9 04:33:04.994 +05:35:43.68 19.3±2.219.3\pm 2.2 22.0±1.6-22.0\pm 1.6 5.4±2.25.4\pm 2.2 \cdots 20.832
\cdots 2MASS J04345817–0050299 04:34:58.194 –00:50:30.19 16.061±0.05716.061\pm 0.057 16.806±0.042-16.806\pm 0.042 5.104±0.0385.104\pm 0.038 \cdots 14.079
\cdots WISEA J043503.94+034239.6 04:35:03.926 +03:42:39.41 18.7±4.318.7\pm 4.3 18.9±2.1-18.9\pm 2.1 6.6±2.26.6\pm 2.2 \cdots 20.967
\cdots Gaia DR2 3204500079076340480 04:35:09.342 –03:32:16.93 17.99±0.6217.99\pm 0.62 14.13±0.46-14.13\pm 0.46 5.70±0.365.70\pm 0.36 \cdots 19.324
\cdots 2MASS J04351726+0310298 04:35:17.290 +03:10:29.61 14.23±0.2714.23\pm 0.27 15.11±0.18-15.11\pm 0.18 5.47±0.155.47\pm 0.15 \cdots 17.823
\cdots 2MASS J04353654+0204009 04:35:36.562 +02:04:00.59 15.69±0.5115.69\pm 0.51 13.72±0.28-13.72\pm 0.28 4.82±0.244.82\pm 0.24 \cdots 18.411
\cdots 2MASS J04404378+0409468 04:40:43.808 +04:09:46.58 13.70±0.1713.70\pm 0.17 16.36±0.12-16.36\pm 0.12 4.81±0.104.81\pm 0.10 \cdots 16.839
\cdots 2MASS J04415810+0223059 04:41:58.131 +02:23:05.76 12.76±0.2112.76\pm 0.21 16.77±0.13-16.77\pm 0.13 5.49±0.135.49\pm 0.13 \cdots 17.125
\cdots 2MASS J04424602+0723403 04:42:46.049 +07:23:39.96 15.13±0.5215.13\pm 0.52 22.87±0.29-22.87\pm 0.29 5.92±0.265.92\pm 0.26 \cdots 17.422
\cdots WISEA J044514.79+020926.4 04:45:14.811 +02:09:25.97 15.3±1.315.3\pm 1.3 16.9±1.1-16.9\pm 1.1 5.66±0.945.66\pm 0.94 \cdots 20.345
\cdots 2MASS J04451739–0046433 04:45:17.416 –00:46:43.56 12.26±0.1512.26\pm 0.15 12.94±0.11-12.94\pm 0.11 4.980±0.0854.980\pm 0.085 \cdots 16.242
\cdots 2MASS J04455269+0118408 04:45:52.712 +01:18:40.47 15.38±0.2515.38\pm 0.25 19.70±0.21-19.70\pm 0.21 6.06±0.166.06\pm 0.16 \cdots 17.350
\cdots 2MASS J04482662+0236432 04:48:26.639 +02:36:43.03 13.73±0.2713.73\pm 0.27 16.57±0.15-16.57\pm 0.15 4.99±0.134.99\pm 0.13 \cdots 17.480
\cdots 2MASS J04502730–0318287 04:50:27.329 –03:18:29.05 15.43±0.1215.43\pm 0.12 16.275±0.090-16.275\pm 0.090 5.749±0.0775.749\pm 0.077 \cdots 16.208
\cdots 2MASS J04503202–0050182 04:50:32.037 –00:50:18.54 12.90±0.4312.90\pm 0.43 15.70±0.29-15.70\pm 0.29 5.06±0.215.06\pm 0.21 \cdots 18.272

Note. — The MUTA identifiers listed in this table are defined in Section 4.4. Some identifiers listed here contain only one component of a binary system (either A or B) because the other component was recovered in either comover searches of sections 4.1 and 4.4. Only a portion of the table is shown here. The full table is available as online-only additional material. Targets without a MUTA ID number were flagged as problematic (i.e., low-likelihood candidates). See section 4 for more details.

\startlongtable
Table 4: Wide multiple systems recovered in MUTA.
MUTA R.A. Decl. μαcosδ\mu_{\alpha}\cos\delta μδ\mu_{\delta} Parallax Gaia DR2 Sep. Pos. Ang.
ID Name (hh:mm:ss.sss) (dd:mm:ss.ss) (masyr1\mathrm{mas}\,\mathrm{yr}^{-1}) (masyr1\mathrm{mas}\,\mathrm{yr}^{-1}) (mas) GG mag (′′) (°)
5 29 Tau 03:45:40.466 +06:02:59.78 21.88±0.2921.88\pm 0.29 13.65±0.26-13.65\pm 0.26 5.3±0.25.3\pm 0.2 5.295±0.0015.295\pm 0.001 \cdots \cdots
137 2MASS J03454104+0602349 03:45:41.066 +06:02:34.59 21.27±0.2121.27\pm 0.21 14.11±0.17-14.11\pm 0.17 5.5±0.15.5\pm 0.1 16.660±0.00216.660\pm 0.002 26.7278±0.000126.7278\pm 0.0001 160.4167±0.0004160.4167\pm 0.0004
138 2MASS J03454269+0603039 03:45:42.712 +06:03:03.66 21.11±0.1221.11\pm 0.12 13.801±0.091-13.801\pm 0.091 5.55±0.075.55\pm 0.07 15.389±0.00115.389\pm 0.001 33.7294±0.000233.7294\pm 0.0002 83.3927±0.000283.3927\pm 0.0002
139 2MASS J03454440+0603283 03:45:44.425 +06:03:28.04 19.950±0.07719.950\pm 0.077 13.189±0.053-13.189\pm 0.053 5.56±0.055.56\pm 0.05 12.3683±0.000412.3683\pm 0.0004 65.4671±0.000265.4671\pm 0.0002 64.4250±0.000164.4250\pm 0.0001
10 V766 Tau 03:51:15.896 +13:02:45.52 23.77±0.1123.77\pm 0.11 23.228±0.079-23.228\pm 0.079 6.19±0.066.19\pm 0.06 6.247±0.0016.247\pm 0.001 \cdots \cdots
182 2MASS J03511041+1302467 03:51:10.454 +13:02:46.16 23.10±0.1723.10\pm 0.17 23.14±0.12-23.14\pm 0.12 6.1±0.16.1\pm 0.1 16.117±0.00116.117\pm 0.001 79.5332±0.000179.5332\pm 0.0001 270.4681±0.0001270.4681\pm 0.0001
19 A HD 23376 03:44:58.957 +08:19:10.09 26.61±0.1126.61\pm 0.11 24.306±0.066-24.306\pm 0.066 6.89±0.066.89\pm 0.06 9.2549±0.00039.2549\pm 0.0003 \cdots \cdots
19 B TYC 658–1007–2 03:44:59.048 +08:19:13.81 26.577±0.09926.577\pm 0.099 24.198±0.062-24.198\pm 0.062 6.99±0.076.99\pm 0.07 10.493±0.00210.493\pm 0.002 3.9534±0.00013.9534\pm 0.0001 19.894±0.00119.894\pm 0.001
30 A TYC 668–737–1 04:21:24.386 +08:53:54.34 21.501±0.08521.501\pm 0.085 23.632±0.056-23.632\pm 0.056 6.57±0.056.57\pm 0.05 11.356±0.00211.356\pm 0.002 \cdots \cdots
30 B 2MASS J04212444+0853488 04:21:24.473 +08:53:48.52 21.62±0.1021.62\pm 0.10 23.778±0.064-23.778\pm 0.064 6.59±0.066.59\pm 0.06 14.7603±0.000714.7603\pm 0.0007 5.9608±0.00015.9608\pm 0.0001 167.5144±0.0006167.5144\pm 0.0006
42 A 2MASS J02581643+2456424 02:58:16.484 +24:56:41.76 31.65±0.3331.65\pm 0.33 27.54±0.26-27.54\pm 0.26 7.84±0.217.84\pm 0.21 15.193 \cdots \cdots
42 B Gaia DR2 113410746049727744 02:58:16.476 +24:56:42.65 31.83±0.3831.83\pm 0.38 28.33±0.24-28.33\pm 0.24 6.67±0.236.67\pm 0.23 16.776 0.9011±0.00020.9011\pm 0.0002 353.00±0.02353.00\pm 0.02
373 2MASS J02581815+2456552 02:58:18.198 +24:56:54.67 24.1±1.524.1\pm 1.5 33.7±1.3-33.7\pm 1.3 6.9±1.26.9\pm 1.2 20.136 26.6513±0.000926.6513\pm 0.0009 61.016±0.00261.016\pm 0.002
130 A 2MASS J03442859+0716100 03:44:28.602 +07:16:10.10 25.80±0.1825.80\pm 0.18 22.56±0.15-22.56\pm 0.15 6.6±0.16.6\pm 0.1 16.3270±0.000716.3270\pm 0.0007 \cdots \cdots
130 B Gaia DR2 3277686910210391424 03:44:28.657 +07:16:08.46 24.39±0.2124.39\pm 0.21 23.66±0.17-23.66\pm 0.17 6.7±0.16.7\pm 0.1 16.596±0.00116.596\pm 0.001 1.8368±0.00011.8368\pm 0.0001 153.315±0.004153.315\pm 0.004
144 A 2MASS J03463553+1317056 03:46:35.533 +13:17:06.31 22.17±0.2622.17\pm 0.26 24.02±0.17-24.02\pm 0.17 6.3±0.16.3\pm 0.1 17.335±0.00217.335\pm 0.002 \cdots \cdots
144 B Gaia DR2 37943944413361792 03:46:35.594 +13:17:04.31 23.04±0.3023.04\pm 0.30 24.20±0.20-24.20\pm 0.20 6.5±0.26.5\pm 0.2 17.365±0.00217.365\pm 0.002 2.1835±0.00012.1835\pm 0.0001 156.243±0.005156.243\pm 0.005
149 2MASS J03471144+0526234 03:47:11.466 +05:26:23.15 22.84±0.1222.84\pm 0.12 19.71±0.10-19.71\pm 0.10 6.09±0.076.09\pm 0.07 14.6109±0.000514.6109\pm 0.0005 31.1351±0.000131.1351\pm 0.0001 269.3679±0.0001269.3679\pm 0.0001
150 BD+04 589 03:47:13.551 +05:26:23.49 22.654±0.09822.654\pm 0.098 17.159±0.084-17.159\pm 0.084 5.86±0.055.86\pm 0.05 9.3101±0.00039.3101\pm 0.0003 \cdots \cdots
159 TYC 71–542–1 03:47:56.865 +06:16:06.67 21.191±0.08221.191\pm 0.082 13.396±0.055-13.396\pm 0.055 5.40±0.045.40\pm 0.04 11.164±0.00211.164\pm 0.002 \cdots \cdots
374 2MASS J03475024+0617499 03:47:50.279 +06:17:49.65 20.96±0.1820.96\pm 0.18 13.27±0.13-13.27\pm 0.13 5.42±0.095.42\pm 0.09 16.910±0.00116.910\pm 0.001 142.3001±0.0001142.3001\pm 0.0001 316.3645±0.0001316.3645\pm 0.0001
188 A 2MASS J03524018+0830333 03:52:40.220 +08:30:33.13 21.96±0.1721.96\pm 0.17 22.24±0.11-22.24\pm 0.11 5.46±0.085.46\pm 0.08 16.0063±0.000816.0063\pm 0.0008 \cdots \cdots
188 B Gaia DR2 3301507795268229248 03:52:40.165 +08:30:30.19 21.32±0.3821.32\pm 0.38 21.97±0.25-21.97\pm 0.25 5.5±0.25.5\pm 0.2 17.668±0.00117.668\pm 0.001 3.0421±0.00013.0421\pm 0.0001 195.371±0.003195.371\pm 0.003
231 A 2MASS J04044937+0935076 04:04:49.382 +09:35:07.13 22.40±0.1822.40\pm 0.18 24.31±0.11-24.31\pm 0.11 6.6±0.16.6\pm 0.1 15.4101±0.000715.4101\pm 0.0007 \cdots \cdots
231 B Gaia DR2 3301900595795159040 04:04:49.493 +09:35:07.71 24.12±0.2824.12\pm 0.28 23.21±0.17-23.21\pm 0.17 6.9±0.26.9\pm 0.2 16.845±0.00216.845\pm 0.002 1.7370±0.00021.7370\pm 0.0002 70.514±0.00370.514\pm 0.003
236 A 2MASS J04054018+0722109 04:05:40.210 +07:22:10.83 20.45±0.3520.45\pm 0.35 18.09±0.20-18.09\pm 0.20 4.7±0.24.7\pm 0.2 17.633±0.00117.633\pm 0.001 \cdots \cdots
236 B Gaia DR2 3297969498128206208 04:05:40.167 +07:22:12.08 19.0±1.919.0\pm 1.9 17.24±0.93-17.24\pm 0.93 4.7±0.84.7\pm 0.8 20.068±0.00520.068\pm 0.005 1.3996±0.00051.3996\pm 0.0005 333.19±0.03333.19\pm 0.03
265 A 2MASS J04161320–0119554 04:16:13.253 –01:19:55.93 21.61±0.1321.61\pm 0.13 19.673±0.098-19.673\pm 0.098 7.20±0.087.20\pm 0.08 15.205±0.00115.205\pm 0.001 \cdots \cdots
265 B Gaia DR2 3254162137382331136 04:16:13.147 –01:19:54.96 22.95±0.1522.95\pm 0.15 18.42±0.14-18.42\pm 0.14 6.86±0.096.86\pm 0.09 16.068±0.00216.068\pm 0.002 1.8653±0.00011.8653\pm 0.0001 301.262±0.003301.262\pm 0.003
267 UCAC2 30946195 04:17:18.672 –02:16:02.15 19.267±0.04719.267\pm 0.047 11.584±0.022-11.584\pm 0.022 5.64±0.045.64\pm 0.04 11.4912±0.000911.4912\pm 0.0009 26.7762±0.000126.7762\pm 0.0001 25.0444±0.000125.0444\pm 0.0001
375 HD 27162 04:17:17.915 –02:16:26.41 19.235±0.08319.235\pm 0.083 11.433±0.039-11.433\pm 0.039 5.70±0.065.70\pm 0.06 8.3164±0.00038.3164\pm 0.0003 \cdots \cdots
287 A 2MASS J04200281+0010109 04:20:02.840 +00:10:10.78 16.170±0.07016.170\pm 0.070 15.678±0.042-15.678\pm 0.042 4.43±0.044.43\pm 0.04 15.0711±0.000415.0711\pm 0.0004 \cdots \cdots
287 B Gaia DR2 3254797311502540032 04:20:02.874 +00:10:08.62 17.18±0.7017.18\pm 0.70 15.91±0.46-15.91\pm 0.46 4.6±0.54.6\pm 0.5 19.318±0.00419.318\pm 0.004 2.2205±0.00032.2205\pm 0.0003 166.80±0.01166.80\pm 0.01
280 A CRTS J042024.3+001725 04:20:24.319 +00:17:25.43 18.484±0.03718.484\pm 0.037 12.270±0.024-12.270\pm 0.024 5.61±0.035.61\pm 0.03 13.280±0.00213.280\pm 0.002 \cdots \cdots
280 B Gaia DR2 3254823940299749376 04:20:24.331 +00:17:26.71 19.99±0.2819.99\pm 0.28 11.05±0.16-11.05\pm 0.16 5.6±0.25.6\pm 0.2 16.220±0.00216.220\pm 0.002 1.2880±0.00011.2880\pm 0.0001 7.395±0.0077.395\pm 0.007
305 A BD–03 789 04:28:37.716 –03:15:44.58 21.005±0.05821.005\pm 0.058 18.285±0.043-18.285\pm 0.043 6.72±0.046.72\pm 0.04 9.9877±0.00079.9877\pm 0.0007 \cdots \cdots
305 B 2MASS J04283839–0315371 04:28:38.423 –03:15:37.42 21.409±0.06121.409\pm 0.061 17.884±0.045-17.884\pm 0.045 6.78±0.056.78\pm 0.05 14.304±0.00214.304\pm 0.002 12.7788±0.000112.7788\pm 0.0001 55.9407±0.000255.9407\pm 0.0002
324 A HD 29182 04:35:53.776 +05:06:15.36 13.562±0.08413.562\pm 0.084 18.825±0.051-18.825\pm 0.051 5.50±0.055.50\pm 0.05 8.6917±0.00028.6917\pm 0.0002 \cdots \cdots
324 B TYC 90–953–1 04:35:52.439 +05:05:30.40 14.070±0.06214.070\pm 0.062 18.775±0.037-18.775\pm 0.037 5.58±0.045.58\pm 0.04 11.4861±0.000911.4861\pm 0.0009 49.1962±0.000149.1962\pm 0.0001 203.9532±0.0001203.9532\pm 0.0001
325 A 2MASS J04363330+0511304 04:36:33.328 +05:11:29.84 15.123±0.08115.123\pm 0.081 19.524±0.050-19.524\pm 0.050 5.63±0.055.63\pm 0.05 14.831±0.00114.831\pm 0.001 \cdots \cdots
325 B Gaia DR2 3282460371222713728 04:36:33.274 +05:11:31.41 14.77±0.1414.77\pm 0.14 19.544±0.089-19.544\pm 0.089 5.71±0.095.71\pm 0.09 16.270±0.00116.270\pm 0.001 1.7658±0.00011.7658\pm 0.0001 333.156±0.002333.156\pm 0.002
338 A TYC 4739–1225–1 04:39:20.251 –03:14:21.79 14.784±0.08014.784\pm 0.080 16.007±0.056-16.007\pm 0.056 6.09±0.046.09\pm 0.04 10.9621±0.000810.9621\pm 0.0008 \cdots \cdots
338 B 2MASS J04392073–0314301 04:39:20.752 –03:14:30.44 15.80±0.1315.80\pm 0.13 15.330±0.095-15.330\pm 0.095 6.21±0.066.21\pm 0.06 14.3892±0.000514.3892\pm 0.0005 11.4482±0.000111.4482\pm 0.0001 139.0309±0.0003139.0309\pm 0.0003
346 A 2MASS J04421498+0250387 04:42:14.998 +02:50:38.54 14.310±0.08214.310\pm 0.082 17.815±0.056-17.815\pm 0.056 5.82±0.055.82\pm 0.05 14.8299±0.000814.8299\pm 0.0008 \cdots \cdots
346 B 2MASS J04421451+0250336 04:42:14.531 +02:50:33.42 14.70±0.2314.70\pm 0.23 16.73±0.18-16.73\pm 0.18 5.8±0.15.8\pm 0.1 17.743±0.00117.743\pm 0.001 8.6712±0.00018.6712\pm 0.0001 233.8027±0.0006233.8027\pm 0.0006
351 TYC 83–1232–1 04:43:04.063 +00:49:47.45 14.188±0.09514.188\pm 0.095 17.190±0.058-17.190\pm 0.058 5.81±0.055.81\pm 0.05 11.189±0.00211.189\pm 0.002 \cdots \cdots
353 2MASS J04431309+0048174 04:43:13.116 +00:48:17.19 13.76±0.1413.76\pm 0.14 16.967±0.083-16.967\pm 0.083 5.79±0.085.79\pm 0.08 14.479±0.00114.479\pm 0.001 163.0508±0.0001163.0508\pm 0.0001 123.6116±0.0001123.6116\pm 0.0001
371 A 2MASS J04544679–0001085 04:54:46.790 –00:01:08.42 10.897±0.03310.897\pm 0.033 15.313±0.027-15.313\pm 0.027 5.40±0.025.40\pm 0.02 13.325±0.00213.325\pm 0.002 \cdots \cdots
371 B Gaia DR2 3228318975563766784 04:54:46.875 –00:01:10.21 11.191±0.06511.191\pm 0.065 16.437±0.050-16.437\pm 0.050 5.32±0.045.32\pm 0.04 14.858±0.00114.858\pm 0.001 2.1970±0.00012.1970\pm 0.0001 144.7240±0.0009144.7240\pm 0.0009
372 A TYC 4741–307–1 04:56:18.287 –01:53:33.04 11.95±0.1211.95\pm 0.12 15.188±0.075-15.188\pm 0.075 5.61±0.065.61\pm 0.06 10.775±0.00110.775\pm 0.001 \cdots \cdots
372 B 2MASS J04561830–0153393 04:56:18.315 –01:53:39.53 12.59±0.1612.59\pm 0.16 14.91±0.10-14.91\pm 0.10 5.62±0.075.62\pm 0.07 15.877±0.00115.877\pm 0.001 6.5078±0.00016.5078\pm 0.0001 176.3739±0.0008176.3739\pm 0.0008
\cdots 2MASS J03250457+0728193 03:25:04.592 +07:28:18.82 31.22±0.2631.22\pm 0.26 21.79±0.20-21.79\pm 0.20 6.8±0.26.8\pm 0.2 17.360±0.00217.360\pm 0.002 \cdots \cdots
\cdots Gaia DR2 9977797439144320 03:25:04.736 +07:28:20.43 31.93±0.3831.93\pm 0.38 21.57±0.31-21.57\pm 0.31 6.8±0.36.8\pm 0.3 18.012±0.00318.012\pm 0.003 2.6658±0.00022.6658\pm 0.0002 53.045±0.00453.045\pm 0.004
\cdots HD 23110 03:42:45.949 +07:54:10.34 33.89±0.2633.89\pm 0.26 18.72±0.23-18.72\pm 0.23 7.8±0.17.8\pm 0.1 7.7818±0.00047.7818\pm 0.0004 \cdots \cdots
\cdots TYC 657–794–2 03:42:46.021 +07:54:09.49 35.75±0.6535.75\pm 0.65 9.83±0.69-9.83\pm 0.69 7.5±0.27.5\pm 0.2 10.038±0.00510.038\pm 0.005 1.3660±0.00021.3660\pm 0.0002 128.34±0.01128.34\pm 0.01
\cdots 2MASS J03424511+0754507 03:42:45.157 +07:54:50.35 31.74±0.2831.74\pm 0.28 18.06±0.20-18.06\pm 0.20 7.9±0.17.9\pm 0.1 17.864±0.00217.864\pm 0.002 41.7030±0.000141.7030\pm 0.0001 343.5988±0.0002343.5988\pm 0.0002

Note. — See section 4.1 for more details.

One notable case of a star with co-moving components is 29 Tau, the most massive member of MUTA. 29 Tau (MUTA 5, Gaia DR2 3276605295710700032) is a B3 + A7 binary star (Beavers & Cook, 1980), with three co-moving systems within 70′′: 29 Tau B (MUTA 139; 2MASS J03454440+0603283; Gaia DR2 3276604922051089664), which is itself a spectral binary (Mason et al., 2001); 29 Tau C (MUTA 137; 2MASS J03454104+0602349; Gaia DR2 3276604544094119424); and 29 Tau D (MUTA 138; 2MASS J03454269+0603039; Gaia DR2 3276604544093968896). In addition to these six system components, there are two other Gaia DR2 entries within \simeq 42′′ of 29 Tau (Gaia DR2 3276604509734231808 and Gaia DR2 3276605265648475776) located within 300 pc of the Sun with inconsistent proper motions and parallaxes. Both of them have re-normalised unit weight error (RUWE) values of \simeq 1.1 which is not clearly indicative of bad parallax solutions, and indicates that they are probably unrelated to 29 Tau. For this reason, we ignored them in this analysis but we would recommend re-visiting this when further Gaia data releases are published. Two additional MUTA candidates are within 700–715′′ of 29 Tau: MUTA 143 (2MASS J03460544+0553074; Gaia DR2 3276586333432639744) and MUTA 135 (2MASS J03450918+0612030; Gaia DR2 3276798401738487808). Gaia DR2 3276584478006772224 also seems co-moving with 29 Tau at a separation of 977.\farcs5, but was not recovered in our search because its MUTA probability (89.7%) is below our selection threshold.

Cross-matching our list of candidates with the Oh et al. (2017) catalog of co-moving systems yielded a total of 28 matches, to Groups 39, 43, 52, 60, 124, 242, 1099 and 1109. Each of these groups have a total of members between 2 and 7. We verified that each of these groups were included in their entirety in our list of MUTA candidates, and found 4 missing components of Group 39 and one missing component of Group 1109. We added these objects to our list of low-likelihood MUTA candidates despite their BANYAN Σ\Sigma membership probabilities below 90% (ranging from 0% to 64%) for completion. As demonstrated by Faherty et al. (2018), the algorithm of Oh et al. (2017) tends to break up nearby associations in many sub-groups because of the strong variations and correlations in direct kinematic observables (sky position, proper motion and parallax) caused by their wide distributions on the sky. The full list of matches between our candidates and Oh et al. (2017) groups are shown in Table 5.

4.2 Red Giant Stars

One candidate member of the MUTA association, HD 27860, is located far above the main sequence and within the red giant branch in Figure 5. A literature search revealed that this object has a spectral type K2 III (Woolley et al., 1981), consistent with its position in the color-magnitude diagram. Based on the compilations of stars within 40 pc established by Gray et al. (2003) and Gray et al. (2006), stars with the same spectral type have an average color BV=1.16B-V=1.16 and absolute magnitude MV=1.3M_{V}=1.3333See also http://www.pas.rochester.edu/~emamajek/spt/K2III.txt.

Using the three-dimensional extinction map STructuring by Inversion of the Local InterStellar Medium (STILISM; Lallement et al., 2014; Capitanio et al., 2017; Lallement et al., 2018)444Available at https://stilism.obspm.fr, we can expect HD 27860 to be subject to an extinction E(BV)=0.12±0.02E(B-V)=0.12\pm 0.02 based on its sky position and distance, which translates to AV=0.43±0.08A_{V}=0.43\pm 0.08 (using a total to selective extinction ratio R=3.54R=3.54 for this photometric band). Correcting its observed properties in the same photometric bands (BV=1.41±0.01B-V=1.41\pm 0.01 and MV=0.05±0.02M_{V}=0.05\pm 0.02; ESA 1997) for extinction yields an intrinsic color of BV=1.29±0.02B-V=1.29\pm 0.02 and an absolute magnitude MV=0.38±0.08M_{V}=-0.38\pm 0.08 , placing it closer in colors to the average value for K3 III giants (BV=1.37B-V=1.37).

Using the bolometric correction of Flower (1996) for this color (BCV=0.73BC_{V}=-0.73), we estimate a bolometric magnitude Mbol=1.11±0.08M_{\rm bol}=-1.11\pm 0.08 and logL/L=2.36±0.03\log L/L_{\odot}=2.36\pm 0.03. We estimated its effective temperature at Teff4400T_{\rm eff}\approx 4400 K by interpolating its extinction-corrected BVB-V color and comparing them with averages from Gray et al. (2003) and Gray et al. (2006) for spectral types K2 III and K3 III. These physical parameters are consistent with a luminosity class III; the Bertelli et al. (2009) solar-metallicity isochrones predict a mass of 2.44 MM_{\odot}, a surface gravity logg2.0\log g\approx 2.0 and an age of \simeq 650 Myr.

HD 27860 seems significantly too old to be a member of MUTA based on the color-magnitude sequence of this young association (Figure 5). The main-sequence turn-off of a 650 Myr association would be located at spectral types A0 or later555See http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt (i.e., at absolute Gaia DR2 magnitudes MG1.5M_{G}\approx 1.5). The fact that MUTA includes several members more massive than A0 strongly suggests that HD 27860 is a chance interloper despite its high 98.6% Bayesian membership probability, and we therefore reject it from our list of candidate members.

4.3 White Dwarfs

Refer to caption
Figure 6: Selection criterion for white dwarfs based on Gaia DR2 color-magnitude positions. See Section 4.3 for more details.
Refer to caption
Figure 7: MUTA candidates recovered in Gaia DR2 data which color-magnitude positions are consistent with white dwarfs (red star symbols). Nearby white dwarfs in Gaia DR2 are indicated with black dots, and total age isochrones from 70 Myr to 5 Gyr are indicated with orange dashed lines. Iso-masses from 0.4 MM_{\odot} (top) to 1.3 MM_{\odot} (bottom) by steps of 0.1 MM_{\odot} are displayed with blue lines. Most white dwarfs recovered here are too old to be coeval with MUTA. No correction for interstellar extinction was applied in this figure. See Section 4.3 for more details.

A subset of MUTA members are located below the main sequence and within the color-magnitude sequence of white dwarfs in Figure 2. We flagged all candidates with an absolute GG-band magnitude fainter than (GGRP)5+10\left(G-G_{\rm RP}\right)\cdot 5+10 and a color GGRP<1.0G-G_{\rm RP}<1.0 (shown in Figure 6) as likely white dwarfs, and compared them to total age isochrones obtained by combining MIST stellar main-sequence lifetimes (Choi et al., 2016) and the the Montréal white dwarf cooling tracks (Fontaine et al., 2001)666Available at http://www.astro.umontreal.ca/~bergeron/CoolingModels/, see also Holberg & Bergeron (2006); Kowalski & Saumon (2006); Tremblay et al. (2011) and Bergeron et al. (2011). in Figure 7.

All but two white dwarfs in our sample are clearly much older than 150 Myr, inconsistent with the main-sequence turn-off age of MUTA (\lesssim 80 Myr). The two youngest and hottest white dwarfs in this figure are WD 0350+098 (MUTA 190; other designations include 1RXS J035315.5+095700, SDSS J035315.72+095633.7) and WD 0340+103 (MUTA 125; other designations include RBS 466, 1RXS J034314.1+102941, and
SDSS J034314.35+102938.4), and are discussed further in Section 6.4.

Refer to caption
Figure 8: Gaia DR2 color-magnitude diagram of MUTA members and candidates (red circles) compared with nearby field stars (black circles). All objects flagged as problematic because of their poor Gaia DR2 astrometric solutions (RUWE >1.4>1.4) are marked with red circles. A large fraction of these problematic solutions are located below the sequence of members, likely because of contamination by an unresolved source, or consist of possible multiple systems located above the MUTA sequence. See Section 4.4 for more details.

We can estimate a false-positive rate for our list of MUTA candidate members based on the fact that we uncovered 10 white dwarfs that are clearly too old for this young association. The number density of white dwarfs, 4.49±0.38×1034.49\pm 0.38\times 10^{-3} objects pc-3 (Hollands et al., 2018), is small compared with that of main-sequence stars (98.4±6.8×10398.4\pm 6.8\times 10^{-3} objects pc-3; Kirkpatrick et al. 2012). Assuming that white dwarfs have similar kinematics to main-sequence stars, this means we could expect as many as 22022+25220_{-22}^{+25} stars in our sample to be contaminants if we applied no other cuts than BANYAN Σ\Sigma probabilities based on proper motion and parallax without radial velocity measurements (none of the white dwarf contaminants have radial velocity measurements). An additional 28 Gaia DR2 sources would have been uncovered in our survey if we used only these observables and no other criteria, leaving our estimated number of contaminants to 19222+25192_{-22}^{+25} in our final list of candidates, or 344+534_{-4}^{+5}% of our full sample of 503 objects. The majority of contaminants are expected to be M dwarfs.

4.4 Poor Astrometric Solutions

The Gaia DR2 team recommends placing low confidence in astrometric solutions with a RUWE larger than 1.4777As described at https://www.cosmos.esa.int/web/gaia/dr2-known-issues.. We therefore flagged all 52 MUTA candidates and members with RUWE >1.4>1.4 (shown in Figure 8) and consider them as low-likelihood candidates; we consider that an observational follow-up of these objects will potentially be useful, but should be less prioritary. It is likely that some of these issues will be resolved in the next Gaia DR2 data release.

4.5 Visual Inspection of Finder Charts

Refer to caption
Figure 9: Finder charts for WISEA J033742.99+191646.7, a problematic candidate because its position in a Gaia DR2 color-magnitude diagram is well below the main sequence, likely because of contamination from a background source at a very small angular separation. See Section 4.5 for more details.

We generated finder charts for all MUTA objects with available survey data from DSS, SDSS (Alam et al., 2015), UKIDSS (Lawrence et al., 2007), VHS (McMahon et al., 2013), Pan-STARRS (Chambers et al., 2016), WISE (Wright et al., 2010) and 2MASS (Skrutskie et al., 2006) data with the finder_charts.py Python package (Gagné et al., 2018)888Available at https://github.com/jgagneastro/finder_charts., on which we overlaid Gaia DR2 catalog entries with arrows and symbol sizes indicating their individual proper motions and distances. We used these figures to identify and correct any mismatches in our automated cross-matches to 2MASS and WISE, which tends to happen when a target has a missing entry in either catalog.

We also verified that binaries and co-moving systems had the correct component attached to each catalog, and noted 12 stars that visually appeared co-moving with one of our targets at a similar distance, but were not recovered with our co-moving search described in Section 4.1. Those usually have Gaia DR2 proper motions or parallaxes that are slight mis-matches to our MUTA candidate or member, and are listed in Table 6. It is possible that some of these systems suffer from a bad parallax solution, either because they are themselves multiple systems (e.g., 30 Tau and TYC 661–1404–1, respectively MUTA 3 A and MUTA 3 B), or contaminated by a background source (althoug they all have RUWE 1.4\leq 1.4). We listed these systems that almost seem co-moving in Table 6 for later follow-up, but we excluded them from the current analysis.

A number of MUTA candidates are located well below the main sequence in a Gaia DR2 color-magnitude diagram (see Figure 5), but yet not faint enough to be credible white dwarfs (see Section 4.3). A fraction of these objects failed the Gaia DR2 RUWE 1.4\leq 1.4 selection criterion for good astrometric solutions, indicating that bad parallax solutions are likely part of the explanation. Figure 9 shows a finder chart for one such object (WISEA J033742.99+191646.7)999All finder charts are available as online-only supplementary data.. In this example, the finder chart shows that it is well detected at red-optical wavelengths (e.g., Pan-STARRS) and in WISE W1W1, but too faint to be detected in 2MASS in the near-infrared. This unusual combination indicates a likely contribution from two distinct blackbodies. The presence of an accretion disks could potentially explain this, however those usually result in much redder Gaia DR2 GGRPG-G_{\rm RP} colors, which would push the object far to the right of, rather than below, the main sequence. The simplest explanation seems to be that this object is a blend of two sources, maybe located at different distances, but at an angular separation small enough that they are unresolved in all the aforementioned surveys.

We assigned MUTA identifiers (31 to 372) to all candidate members that were not rejected or defined as low-likelihood candidates based either on their poor astrometric solutions, ages that are definitely too old, or problematic position in a color-magnitude diagram. We ordered these identifiers by right ascension. Stars identified in Section 4.1 as co-moving with a well-behaved MUTA candidate or member which did not have a MUTA identified were assigned identifiers 373–375. Those still without identifiers that belong in one of the Oh et al. (2017) groups associated with MUTA were assigned identifiers 376–382, and those visually identified as co-moving with a well-behaved candidate in this section were assigned identifiers 383–386.

\startlongtable
Table 5: MUTA objects in common with Oh et al. (2017).
MUTA Gaia DR2 Oh et al. (2017) Object
ID Name ID Group TypeaaInitial: members of MUTA from our initial list. Candidates: candidates of MUTA recovered in Section 4. Incomplete: Targets missing from our list of MUTA initial members and new candidates.
368 HD 31125 3226496187146449920 39 Candidates
369 TYC 4745–475–1 3224698799168916864 39 Candidates
372 A TYC 4741–307–1 3225639289631939456 39 Candidates
379 BD+00 884 3231439080323844864 39 Incomplete
380 HD 32264 3225291882613467520 39 Incomplete
381 HD 32721 3212973572810773120 39 Incomplete
382 HD 33023 3212956839618107648 39 Incomplete
10 V766 Tau 37136834159399808 43 Initial
21 HD 286374 3303308245556503296 43 Initial
22 PPM 119410 36595943156045824 43 Initial
26 TYC 662–217–1 3304906145189468416 43 Initial
28 TYC 664–136–1 39841357885932288 43 Initial
377 HIP 18778 3301831773241303552 43 Initial
13 HD 23990 3302396166303947904 52 Initial
19 A HD 23376 3278197770802258944 52 Initial
19 B TYC 658–1007–2 3278197766505583232 52 Initial
95 HD 22073 11397988505713536 52 Candidates
140 TYC 658–828–1 3278300987456845440 52 Candidates
17 HD 27687 3286590824092307200 60 Initial
18 HD 28356 3285720938596464640 60 Initial
25 TYC 80–202–1 3297372944352021120 60 Initial
30 A TYC 668–737–1 3299167141170181888 60 Initial
290 BD+05 638 3284966433101477376 60 Candidates
33 HD 17008 127148009968227584 124 Candidates
35 TYC 1785–155–1 114510012864474112 124 Candidates
41 TYC 1790–927–1 115353480017970560 124 Candidates
11 HD 28715 3285542336676520448 242 Initial
324 A HD 29182 3282435563491664896 242 Candidates
324 B TYC 90–953–1 3282434979377650176 242 Incomplete
20 HIP 17133 38088873789758720 1099 Initial
117 A TYC 663–362–1 38076641722829440 1099 Candidates
376 TYC 665–150–1 38398936068862464 1109 Candidates
378 HD 286412 3305439511410844800 1109 Incomplete

Note. — See section 4.1 for more details.

\startlongtable
Table 6: Wide multiple candidate systems in MUTA visually identified but not recovered in Section 4.1.
MUTA R.A. Decl. μαcosδ\mu_{\alpha}\cos\delta μδ\mu_{\delta} Parallax Gaia DR2 Sep. Pos. Ang.
ID Name (hh:mm:ss.sss) (dd:mm:ss.ss) (masyr1\mathrm{mas}\,\mathrm{yr}^{-1}) (masyr1\mathrm{mas}\,\mathrm{yr}^{-1}) (mas) GG mag (′′) (°)
3 A 30 Tau 03:48:16.292 +11:08:35.52 25.27±0.2825.27\pm 0.28 23.69±0.23-23.69\pm 0.23 7.74±0.177.74\pm 0.17 5.040 \cdots \cdots
3 B TYC 661-1404-1 03:48:16.835 +11:08:40.16 25.62±0.1525.62\pm 0.15 24.97±0.11-24.97\pm 0.11 7.223±0.0707.223\pm 0.070 9.269 9.2389±0.00019.2389\pm 0.0001 59.8505±0.000759.8505\pm 0.0007
5 29 Tau 03:45:40.466 +06:02:59.78 21.88±0.2921.88\pm 0.29 13.65±0.26-13.65\pm 0.26 5.31±0.255.31\pm 0.25 5.295 \cdots \cdots
383 2MASS J03453759+0603048 03:45:37.587 +06:03:04.31 1.86±0.11-1.86\pm 0.11 25.471±0.085-25.471\pm 0.085 5.427±0.0705.427\pm 0.070 15.481 43.1779±0.000243.1779\pm 0.0002 276.0326±0.0001276.0326\pm 0.0001
97 A 2MASS J03350340+1431490 03:35:03.438 +14:31:48.54 26.99±0.1426.99\pm 0.14 25.93±0.11-25.93\pm 0.11 7.342±0.0817.342\pm 0.081 15.369 \cdots \cdots
97 B 2MASS J03350317+1431358 03:35:03.209 +14:31:35.33 26.87±0.3926.87\pm 0.39 25.57±0.30-25.57\pm 0.30 6.84±0.246.84\pm 0.24 18.097 13.6275±0.000213.6275\pm 0.0002 194.1236±0.0008194.1236\pm 0.0008
104 A 2MASS J03361762+2153391 03:36:17.665 +21:53:38.50 29.492±0.08829.492\pm 0.088 30.262±0.068-30.262\pm 0.068 7.526±0.0477.526\pm 0.047 10.910 \cdots \cdots
104 B 2MASS J03361732+2153271 03:36:17.360 +21:53:26.42 29.95±0.7129.95\pm 0.71 31.17±0.52-31.17\pm 0.52 7.98±0.317.98\pm 0.31 18.454 12.8056±0.000212.8056\pm 0.0002 199.354±0.002199.354\pm 0.002
117 A TYC 663–362–1 03:40:57.781 +13:09:03.06 24.66±0.2524.66\pm 0.25 25.44±0.21-25.44\pm 0.21 6.749±0.0986.749\pm 0.098 10.493 \cdots \cdots
117 B 2MASS J03405723+1308577 03:40:57.261 +13:08:57.23 27.03±0.7127.03\pm 0.71 24.78±0.50-24.78\pm 0.50 7.19±0.337.19\pm 0.33 18.437 9.5851±0.00039.5851\pm 0.0003 232.539±0.002232.539\pm 0.002
153 A TYC 1252–301–1 03:47:23.901 +18:43:17.68 21.128±0.07921.128\pm 0.079 23.175±0.057-23.175\pm 0.057 5.926±0.0415.926\pm 0.041 11.689 \cdots \cdots
153 B Gaia DR2 44752086050666368 03:47:23.645 +18:43:18.70 21.33±0.6021.33\pm 0.60 26.33±0.57-26.33\pm 0.57 6.36±0.346.36\pm 0.34 17.855 3.7781±0.00033.7781\pm 0.0003 285.639±0.004285.639\pm 0.004
177 A 2MASS J03505694+0730565 03:50:56.976 +07:30:56.18 30.41±0.2330.41\pm 0.23 22.22±0.16-22.22\pm 0.16 8.29±0.128.29\pm 0.12 16.916 \cdots \cdots
177 B Gaia DR2 3277369048270999936 03:50:56.968 +07:30:53.92 27.9±2.227.9\pm 2.2 21.7±1.4-21.7\pm 1.4 6.3±1.36.3\pm 1.3 20.438 2.2609±0.00052.2609\pm 0.0005 183.03±0.03183.03\pm 0.03
225 A 2MASS J04021281+0817400 04:02:12.839 +08:17:39.75 23.38±0.2423.38\pm 0.24 22.68±0.17-22.68\pm 0.17 6.62±0.136.62\pm 0.13 16.635 \cdots \cdots
225 B 2MASS J04021257+0817410 04:02:12.593 +08:17:40.67 22.00±0.3622.00\pm 0.36 23.46±0.25-23.46\pm 0.25 6.19±0.196.19\pm 0.19 17.316 3.7653±0.00023.7653\pm 0.0002 284.200±0.002284.200\pm 0.002
271 2MASS J04181095+0934586 04:18:10.980 +09:34:58.24 15.97±0.2715.97\pm 0.27 21.58±0.21-21.58\pm 0.21 5.83±0.165.83\pm 0.16 17.228 26.4111±0.000126.4111\pm 0.0001 326.8006±0.0003326.8006\pm 0.0003
384 2MASS J04181193+0934365 04:18:11.958 +09:34:36.14 19.11±0.1919.11\pm 0.19 21.51±0.14-21.51\pm 0.14 4.74±0.114.74\pm 0.11 16.800 \cdots \cdots
277 A 2MASS J04200165+0759584 04:20:01.666 +07:59:57.72 22.83±0.6822.83\pm 0.68 23.94±0.47-23.94\pm 0.47 6.31±0.346.31\pm 0.34 15.336 \cdots \cdots
277 B Gaia DR2 3298956138016754048 04:20:01.719 +07:59:58.51 19.87±0.9019.87\pm 0.90 21.65±0.42-21.65\pm 0.42 6.69±0.146.69\pm 0.14 16.289 1.1173±0.00031.1173\pm 0.0003 44.75±0.0244.75\pm 0.02
279 2MASS J04201617+0959534 04:20:16.202 +09:59:53.06 17.34±0.3817.34\pm 0.38 20.97±0.19-20.97\pm 0.19 6.14±0.176.14\pm 0.17 17.379 7.1832±0.00017.1832\pm 0.0001 18.446±0.00118.446\pm 0.001
385 TYC 671–129–1 04:20:16.048 +09:59:46.25 16.91±0.1416.91\pm 0.14 22.140±0.066-22.140\pm 0.066 5.668±0.0615.668\pm 0.061 10.795 \cdots \cdots
318 A 2MASS J04341953+0226260 04:34:19.560 +02:26:25.89 16.32±0.4216.32\pm 0.42 20.02±0.29-20.02\pm 0.29 5.77±0.225.77\pm 0.22 12.150 \cdots \cdots
318 B Gaia DR2 3279527149078835712 04:34:19.467 +02:26:25.91 15.62±0.7515.62\pm 0.75 21.63±0.44-21.63\pm 0.44 6.24±0.336.24\pm 0.33 15.960 1.4009±0.00031.4009\pm 0.0003 270.61±0.01270.61\pm 0.01
329 A 2MASS J04372971–0051241 04:37:29.730 –00:51:24.47 15.026±0.04215.026\pm 0.042 16.665±0.027-16.665\pm 0.027 6.050±0.0256.050\pm 0.025 13.223 \cdots \cdots
329 B Gaia DR2 3229491776511286016 04:37:29.780 –00:51:25.66 14.70±0.3614.70\pm 0.36 17.42±0.19-17.42\pm 0.19 5.75±0.145.75\pm 0.14 16.507 1.4169±0.00011.4169\pm 0.0001 147.563±0.006147.563\pm 0.006
331 A 2MASS J04382750-0342441 04:38:27.523 –03:42:44.47 23.399±0.07223.399\pm 0.072 20.462±0.051-20.462\pm 0.051 6.076±0.0416.076\pm 0.041 14.931 \cdots \cdots
331 B Gaia DR2 3201810884087980800 04:38:27.437 –03:42:46.23 19.59±0.8519.59\pm 0.85 17.76±0.49-17.76\pm 0.49 6.77±0.406.77\pm 0.40 18.416 2.1809±0.00032.1809\pm 0.0003 216.359±0.007216.359\pm 0.007
368 HD 31125 04:53:04.828 –01:16:33.04 12.67±0.1112.67\pm 0.11 15.782±0.072-15.782\pm 0.072 5.644±0.0515.644\pm 0.051 7.918 \cdots \cdots
386 HD 31124 04:53:04.574 –01:15:52.17 19.54±0.1919.54\pm 0.19 17.88±0.12-17.88\pm 0.12 6.081±0.0986.081\pm 0.098 8.046 41.0425±0.000141.0425\pm 0.0001 354.6787±0.0001354.6787\pm 0.0001
\cdots 2MASS J03343284+1212290 03:34:32.872 +12:12:28.55 27.892±0.09027.892\pm 0.090 30.240±0.063-30.240\pm 0.063 6.740±0.0446.740\pm 0.044 12.302 \cdots \cdots
\cdots Gaia DR2 40541334474313728 03:34:33.106 +12:12:29.76 28.23±0.8828.23\pm 0.88 29.63±0.62-29.63\pm 0.62 7.50±0.547.50\pm 0.54 19.087 3.6272±0.00043.6272\pm 0.0004 70.436±0.00570.436\pm 0.005

Note. — See section 4.5 for more details.

5 CORRECTING EXTINCTION IN GAIA DR2 PHOTOMETRY

The MUTA association is distant enough that some of its members appear slightly reddened by interstellar dust. We used STILISM (Lallement et al., 2014; Capitanio et al., 2017; Lallement et al., 2018)101010Available at https://stilism.obspm.fr to determine the individual E(BV)E(B-V) extinction values for individual MUTA objects based on their sky position and Gaia DR2 distance. The resulting individual extinction values are displayed in Figure 10.

Refer to caption
Figure 10: Individual E(BV)E(B-V) extictions of MUTA objects based on the STILISM three-dimensional extinction map combined with the sky positions and Gaia DR2 distances of MUTA objects. See Section 5 for more details.
Refer to caption
Figure 11: Fitzpatrick (1999) interstellar extinction curve (black line) compared with Gaia DR2 GG and GGRPG-G_{\rm RP} bandpasses (blue and red, respectively) and the spectral flux density of an M4 low-mass star (green). Using only the effective wavelength of Gaia DR2 bandpasses to estimate extinction (blue and red circles) leads to an over estimation of de-reddening and a mistaken reddening vector angle compared with a more careful extinction correction that accounts for the stellar flux across the Gaia DR2 bandpasses (blue and red triangles). This effect is highly dependent on the spectral type of the star because of the wide Gaia DR2 bandpasses. See Section 5 for more detail.
Refer to caption
Figure 12: Gaia DR2 GGRPG-G_{\rm RP} colors as a function of spectral type for known nearby young stars and brown dwarfs (black dots). A polynomial fit is shown as a solid red line with 1σ\sigma scatter as a dashed red line. We used this relation to estimate spectral types when no literature data was available. See Section 6.1 for more details. The polynomial coefficients for the red line are available as online-only material.

We corrected the color-magnitude diagram position of MUTA members and candidates with an iterative method to account for the wide Gaia DR2 photometric bandpasses. As shown in Figure 11, even the GRPG_{\rm RP} bandpass spans a significant region over which both the extinction curve of Fitzpatrick (1999) and the spectral energy density of an M-type star vary significantly. As a consequence, the reddening vectors in Gaia DR2 color-magnitude sequences will differ significantly across spectral types.

The flux of a star with a spectral energy density SλS_{\lambda} observed through an instrument with a bandpass PλP_{\lambda} is given by:

F=0SλPλdλ0Pλdλ.\displaystyle F=\frac{\int_{0}^{\infty}S_{\lambda}P_{\lambda}\mathrm{d}\lambda}{\int_{0}^{\infty}P_{\lambda}\mathrm{d}\lambda}. (1)

In the presence of interstellar extinction EλE_{\lambda}, the observed flux is:

Freddened=0EλSλPλdλ0Pλdλ,\displaystyle F_{\rm reddened}=\frac{\int_{0}^{\infty}E_{\lambda}S_{\lambda}P_{\lambda}\mathrm{d}\lambda}{\int_{0}^{\infty}P_{\lambda}\mathrm{d}\lambda}, (2)

and therefore the correction factor that remains valid for wide bandpasses is:

FreddenedF=0EλSλPλdλ0SλPλdλ.\displaystyle\frac{F_{\rm reddened}}{F}=\frac{\int_{0}^{\infty}E_{\lambda}S_{\lambda}P_{\lambda}\mathrm{d}\lambda}{\int_{0}^{\infty}S_{\lambda}P_{\lambda}\mathrm{d}\lambda}. (3)
Refer to caption
Figure 13: Gaia DR2 color-magnitude diagram of our initial list of MUTA members (green circles) and additional candidate members (red dots). De-reddening vectors are indicated with red lines (dots are located at the corrected position). A proper de-reddening correction that accounts for the wide Gaia DR2 bandpasses moves low-mass stars parallel to the sequence, and moves higher-mass stars mostly towards the left. See Section 5 for more details.

In effect, this correction is a weighted average of the extinction curve, where the weight is given by the product of the stellar spectral energy density with the instrumental bandpass. In general, the spectral energy densities of MUTA members and candidates have not been measured, and their spectral types are unknown. We therefore used an iterative method where the photometric spectral type of each star is first estimated from its GGRPG-G_{\rm RP} color. The GGRPG-G_{\rm RP} versus spectral type relation for stars with spectral types B0 to L0 is shown in Figure 12. These data were drawn from the list of nearby young association members of Gagné et al. (2018) and the List of Ultracool Dwarfs111111Available at http://astro.umontreal.ca/~gagne/ultracool_dwarfs.php that includes data from previous lists of brown dwarfs (Dupuy & Liu, 2012; Mace, 2014; Gagné et al., 2015; Liu et al., 2016; Faherty et al., 2016). A polynomial relation was fitted to the data and is also displayed in the figure; the coefficients to this polynomial sequence are available as online-only material. We preferred using a Gaia DR2 color to spectral type relation rather than a Gaia DR2 absolute magnitude to spectral type relation, because unresolved multiples would bias the latter more significantly.

We used the Pickles Atlas of spectral energy distributions for B0–M9 stars (Pickles, 1998) and interpolated the Gaia DR2 instrumental bandpasses and the extinction curve of Fitzpatrick (1999; with a nominal total to selective extinction value R(V)=3.1R(V)=3.1) on the Pickles wavelength vector to determine an appropriate extinction correction.

The resulting extinction-corrected GGRPG-G_{\rm RP} color was then used to obtain a better photometric spectral type estimate, which we used in turn to correct the raw GGRPG-G_{\rm RP} color anew. This step was repeated until the photometric spectral type estimate of a star remained unchanged. A total of four iterations were needed for the de-reddening correction to converge for all MUTA stars. The resulting extinction vectors and corrected color-magnitude diagram of MUTA are shown in Figure 13.

In Tables 7 and 8, we provide reddening values R(G)R(G) and R(GRP)R(G_{\rm RP}) as a function of spectral types or uncorrected Gaia DR2 GGRPG-G_{\rm RP} colors, which can be used to de-redden the Gaia DR2 photometry of main-sequence or young stars with the following relations:

Gcorr\displaystyle G_{\rm corr} =GuncorrE(BV)R(G),\displaystyle=G_{\rm uncorr}-E(B-V)\cdot R(G), (4)
GRP,corr\displaystyle G_{\rm RP,corr} =GRP,uncorrE(BV)R(GRP).\displaystyle=G_{\rm RP,uncorr}-E(B-V)\cdot R(G_{\rm RP}). (5)
\startlongtable
Table 7: Gaia DR2 de-reddening relations as a function of spectral type that account for its large photometric bandpasses.
Spectral R(G)R(G) R(GRP)R(G_{\rm RP}) R(GBP)R(G_{\rm BP})
Type (mag) (mag) (mag)
B3 3.112±0.0013.112\pm 0.001 1.938±0.0011.938\pm 0.001 3.670±0.0013.670\pm 0.001
B5 3.10±0.023.10\pm 0.02 1.936±0.0021.936\pm 0.002 3.65±0.023.65\pm 0.02
B7 3.029±0.0013.029\pm 0.001 1.926±0.0011.926\pm 0.001 3.566±0.0013.566\pm 0.001
B9 3.002±0.0063.002\pm 0.006 1.925±0.0011.925\pm 0.001 3.540±0.0063.540\pm 0.006
A1 2.962±0.0032.962\pm 0.003 1.919±0.0011.919\pm 0.001 3.503±0.0023.503\pm 0.002
A3 2.939±0.0062.939\pm 0.006 1.916±0.0011.916\pm 0.001 3.488±0.0043.488\pm 0.004
A5 2.880±0.0012.880\pm 0.001 1.904±0.0011.904\pm 0.001 3.452±0.0013.452\pm 0.001
A7 2.840±0.0012.840\pm 0.001 1.901±0.0011.901\pm 0.001 3.431±0.0013.431\pm 0.001
A9 2.782±0.0012.782\pm 0.001 1.893±0.0011.893\pm 0.001 3.400±0.0013.400\pm 0.001
F1 2.724±0.0012.724\pm 0.001 1.885±0.0011.885\pm 0.001 3.369±0.0013.369\pm 0.001
F3 2.724±0.0012.724\pm 0.001 1.885±0.0011.885\pm 0.001 3.369±0.0013.369\pm 0.001
F5 2.693±0.0052.693\pm 0.005 1.883±0.0011.883\pm 0.001 3.348±0.0023.348\pm 0.002
F7 2.637±0.0012.637\pm 0.001 1.874±0.0011.874\pm 0.001 3.311±0.0013.311\pm 0.001
F9 2.632±0.0032.632\pm 0.003 1.873±0.0011.873\pm 0.001 3.308±0.0023.308\pm 0.002
G1 2.61±0.012.61\pm 0.01 1.869±0.0011.869\pm 0.001 3.291±0.0093.291\pm 0.009
G3 2.577±0.0042.577\pm 0.004 1.865±0.0011.865\pm 0.001 3.264±0.0043.264\pm 0.004
G5 2.568±0.0012.568\pm 0.001 1.864±0.0011.864\pm 0.001 3.254±0.0013.254\pm 0.001
G7 2.55±0.012.55\pm 0.01 1.864±0.0011.864\pm 0.001 3.240±0.0083.240\pm 0.008
G9 2.526±0.0042.526\pm 0.004 1.863±0.0011.863\pm 0.001 3.221±0.0033.221\pm 0.003
K1 2.491±0.0082.491\pm 0.008 1.858±0.0011.858\pm 0.001 3.192±0.0083.192\pm 0.008
K3 2.40±0.012.40\pm 0.01 1.843±0.0021.843\pm 0.002 3.128±0.0073.128\pm 0.007
K5 2.316±0.0082.316\pm 0.008 1.829±0.0011.829\pm 0.001 3.052±0.0083.052\pm 0.008
K7 2.224±0.0012.224\pm 0.001 1.803±0.0011.803\pm 0.001 2.997±0.0012.997\pm 0.001
K9 2.193±0.0042.193\pm 0.004 1.786±0.0021.786\pm 0.002 3.004±0.0013.004\pm 0.001
M1 2.118±0.0062.118\pm 0.006 1.755±0.0021.755\pm 0.002 2.985±0.0032.985\pm 0.003
M3 1.960±0.0061.960\pm 0.006 1.699±0.0021.699\pm 0.002 2.949±0.0012.949\pm 0.001
M5 1.847±0.0031.847\pm 0.003 1.654±0.0011.654\pm 0.001 2.922±0.0012.922\pm 0.001

Note. — See section 5 for more details.

\startlongtable
Table 8: Gaia DR2 de-reddening relations as a function of uncorrected GGRPG-G_{\rm RP}.
Uncorrected R(G)R(G) R(GRP)R(G_{\rm RP}) R(GBP)R(G_{\rm BP})
GGRPG-G_{\rm RP} (mag) (mag) (mag)
-0.18 1.938±0.0011.938\pm 0.001 3.112±0.0013.112\pm 0.001 3.670±0.0013.670\pm 0.001
-0.08 1.930±0.0021.930\pm 0.002 3.05±0.023.05\pm 0.02 3.59±0.023.59\pm 0.02
0.02 1.923±0.0021.923\pm 0.002 2.99±0.012.99\pm 0.01 3.53±0.013.53\pm 0.01
0.12 1.919±0.0011.919\pm 0.001 2.961±0.0092.961\pm 0.009 3.504±0.0073.504\pm 0.007
0.22 1.908±0.0031.908\pm 0.003 2.90±0.022.90\pm 0.02 3.47±0.013.47\pm 0.01
0.32 1.90±0.011.90\pm 0.01 2.80±0.082.80\pm 0.08 3.40±0.053.40\pm 0.05
0.42 1.881±0.0031.881\pm 0.003 2.68±0.032.68\pm 0.03 3.34±0.023.34\pm 0.02
0.52 1.865±0.0011.865\pm 0.001 2.570±0.0052.570\pm 0.005 3.257±0.0043.257\pm 0.004
0.62 1.860±0.0011.860\pm 0.001 2.507±0.0062.507\pm 0.006 3.206±0.0063.206\pm 0.006
0.72 1.842±0.0011.842\pm 0.001 2.397±0.0092.397\pm 0.009 3.124±0.0073.124\pm 0.007
0.82 1.823±0.0051.823\pm 0.005 2.30±0.022.30\pm 0.02 3.04±0.013.04\pm 0.01
0.92 1.796±0.0031.796\pm 0.003 2.211±0.0052.211\pm 0.005 3.000±0.0013.000\pm 0.001
1.02 1.769±0.0031.769\pm 0.003 2.157±0.0062.157\pm 0.006 3.000±0.0013.000\pm 0.001
1.12 1.735±0.0031.735\pm 0.003 2.057±0.0082.057\pm 0.008 2.965±0.0012.965\pm 0.001
1.22 1.687±0.0021.687\pm 0.002 1.930±0.0041.930\pm 0.004 2.944±0.0012.944\pm 0.001
1.32 1.656±0.0011.656\pm 0.001 1.852±0.0031.852\pm 0.003 2.924±0.0012.924\pm 0.001
1.42 1.641±0.0011.641\pm 0.001 1.818±0.0011.818\pm 0.001 2.912±0.0012.912\pm 0.001

Note. — See section 5 for more details.

6 DISCUSSION

In this section, we discuss various properties of the MUTA members and of their population as a whole. Photometric spectral type estimates and additional substellar candidates are discussed in Sections 6.1 and 6.2. This is followed by an estimation of the isochronal age of MUTA (Section 6.3) and a discussion of the cooling ages of the two hot white dwarf candidate members of MUTA (Section 6.4). We discuss literature lithium absorption measurements for K- to G-type members of MUTA in Section 6.5, and discuss the present-day mass function of MUTA in Section 6.6. The stellar activity of its members is assessed in Section 6.7. MUTA is placed in context with the Galactic kinematic structure recently unveiled by Kounkel & Covey (2019) in Section 6.8.

6.1 Photometric Spectral Type Estimates

The extinction correction method described above directly provides photometric spectral type estimates for MUTA candidates and members with no spectral type information in the literature. We used a slightly different method to estimate the photometric spectral types of objects near the substellar regime with near-infrared 2MASS–WISE colors JW2>1.5J-W2>1.5, corresponding to a spectral types \simeq M6 and later (Gagné et al., 2015). For these redder objects, we used the spectral type to JW2J-W2 relation of Gagné et al. (2015) to determine a more accurate subtype given that the Gaia DR2 GGRPG-G_{\rm RP} colors are more spread and based on lower-quality detections in these cases (e.g., see Smart et al. 2019). All photometric spectral type estimates are shown in Figure 14.

Refer to caption
Figure 14: Distribution of observed and estimated photometric spectral types for initial MUTA members (red bars) and candidate members (blue bars). Data from Gaia DR2 allowed us to recover candidate members with photometric spectral types as late as M9. Two hot white dwarf candidates are excluded from this figure. See Section 6.1 for more details.

6.2 Substellar Objects

In Figures 15 and 16, we show near-infrared color-magnitude sequences of MUTA candidates based on 2MASS and WISE photometry, compared with those of field-aged and young L-type or later low-mass stars and brown dwarfs. In both cases, the MUTA sequence forms a prolongation of the young substellar sequences at brighter absolute magnitudes, and there is a small overlap indicating that a few MUTA candidates discussed here may have spectral types as late as \simeq L0 (although at the age of MUTA the substellar boundary is near spectral type M7; Allard et al., 2012; Baraffe et al., 2015; Filippazzo et al., 2015). Kirkpatrick et al. (2011) devised a rejection criterion based on WISE photometry to distinguish extragalactic sources from brown dwarfs, but our only MUTA candidates with a sufficient W3W3-band detection were not red enough in W1W2W1-W2 color to apply the rejection criterion.

Refer to caption
Figure 15: Absolute 2MASS JJ-band magnitudes versus JKSJ-K_{\rm S} colors for field (rightward blue triangles) and young (purple diamonds) brown dwarfs compared with all MUTA candidates and members (filled red circles). The MUTA candidates barely reach the sequence of young L-type brown dwarfs, and seem brighter or redder than the field brown dwarfs sequence, as expected for young objects. A fraction of the candidates with problematic Gaia DR2 colors (orange crosses) do not follow the MUTA sequence, which is expected if their photometry is contaminated by background objects. Only spectral types L0 and later are shown for all brown dwarf data. See Section 6.2 for more details.
Refer to caption
Figure 16: Absolute WISE W1W1-band magnitudes versus W1W2W1-W2 colors for field and youngbrown dwarfs compared with all MUTA candidates and members. Color coding is the same as for Figure 15. Only spectral types L0 and later are shown for brown dwarf data. See Section 6.2 for more details.

6.3 Isochronal Age

The locus of MUTA candidates and members compiled in this work forms a sequence in color-magnitude space that sits between those of the Pleiades association (112±5112\pm 5 Myr; Dahm 2015) and the Tucana-Horologium (see Zuckerman et al., 2001b; Torres et al., 2000), Columba and Carina associations (\simeq 45 Myr; Torres et al., 2008; Bell et al., 2015). We coss-matched all bona fide members of these four associations compiled by Gagné et al. (2018) with Gaia DR2 for this comparison, and built an empirical isochrone for each of them by fitting their sequence with a high-order polynomial. The cross matches with Gaia DR2 were all inspected for spurious matches by building finder charts similar to those discussed in Section 4.5. The color-magnitude positions of all members were corrected for extinction by interstellar dust with the method described in Section 5. This procedure only had a noticeable but small effect on the Pleiades members.

All known unresolved binaries were removed from these lists, and their color-magnitude diagrams were visually inspected to remove the obvious sequence of unresolved binaries and triples that were shifted up by 0.75 and 1.19 mag in Gaia DR2 GG-band magnitude, respectively. The detailed lists of members used to build these isochrones will be presented in an upcoming publication, along with those of other nearby young associations.

Representing a young association’s color-magnitude sequence with a polynomial curve can be complicated by the fact that they contain many more low-mass stars (e.g., Bochanski et al. 2010), which would cause an over-fitting of the data in the red part of the color-magnitude diagram. To avoid this, we first build a moving box average and standard deviation of the members’ absolute Gaia DR2 GG-band magnitudes in bins of 0.05 mag in GGRPG-G_{\rm RP} colors, and we subsequently fit a 11-order (Tucana-Horologium, Columba and Carina) or 15-order (Pleiades) polynomial, which were found to be appropriate given the number of stars and the range of colors occupied by the members of these associations. Columba, Tucana-Horologium and Carina were combined as a single \simeq 45 Myr-old population as they all share the same age (Bell et al., 2015). This allowed us to build a more accurate empirical isochrone given the larger number of resulting members.

We used our initial list of MUTA members (Table 2) to determine an isochronal age for the association, by comparing each member’s absolute GG-band magnitude with a hybrid isochrone built from a weighted sum of the \simeq 45 Myr and \simeq 112 Myr empirical isochrones described above. We assumed that the members are spread around the best-fitting hybrid isochrone along a Gaussian likelihood with a standard deviation of 0.35 mag, typical of other young associations. Members that are either known binaries or have a Gaia DR2 RUWE above 1.4 were not used for this isochronal age determination. These latter objects are identified in Figure 17, along with the empirical isochrones built from the Pleiades and the Tucana-Horologium, Columba and Carina associations.

Refer to caption
Figure 17: Gaia DR2 color-magnitude diagram of MUTA members used for isochrone fitting (red filled circles) and other candidates (blue filled circles) compared with field stars within 100 pc of the Sun (black dots) and empirical isochrones built from the Pleiades associations (orange line) and a combination of the Tucana-Horologium, Carina and Columba associations (purple line). MUTA objects flagged as potential unresolved or contaminated objects are identified with orange crosses. See Section 6.3 for more detail.
Refer to caption
Figure 18: MUTA members used for isochrone fitting (red circles and error bars) fitted with a linear combination of empirical isochrones. The best fit, corresponding to an age of 62±762\pm 7 Myr, is represented with an orange line. Similar isochrones shifted by 0.75 mag and 1.19 mag are also shown as orange dashed and dash-dotted lines, respectively, to represent the locations of unresolved equal-luminosity binaries and triples. Other candidate members of MUTA are shown as blue circles, and those flagged as possible binaries are shown as green diamonds. See Section 6.3 for more detail.
Refer to caption
Figure 19: Relative probability density function for the isochronal age of MUTA determined from fitting a combination of empirical isochrones of nearby young associations (black line). A normal probability density function in logarithm age is also shown (red dashed line). The observed MUTA age is well represented by a Gaussian distribution at 62±762\pm 7 Myr. See Section 6.3 for more detail.
Refer to caption
Figure 20: Gaia DR2 color-magnitude diagram of MUTA members and candidates (blue dots) compared with nearby Gaia DR2 entries (black dots) and the best-fitting hybrid isochrone for MUTA members. We identified all candidates with an absolute magnitude more than 0.35 mag fainter than this hybrid isochrone as problematic because they likely correspond to bad Gaia DR2 astrometric solutions, field-aged low-mass stars that have kinematics similar to MUTA by chance, or to sources contaminated by a background object. See Section 6.3 for more details.

A one-dimensional grid search was performed to identify the linear combination of the \simeq 45 Myr and \simeq 112 Myr empirical isochrones that best matches the MUTA stars. A thousand values for a linear coefficient αi\alpha_{i} were chosen with α[0,1]\alpha\in\left[0,1\right] to build a set of hybrid isochrones IiI_{i} built from the \simeq 45 Myr isochrone I45I_{\rm 45} and the \simeq 112 Myr isochrone I112I_{\rm 112}:

Ii=αiI45+(1αi)I112.\displaystyle I_{i}=\alpha_{i}\cdot I_{\rm 45}+\left(1-\alpha_{i}\right)\cdot I_{\rm 112}. (6)

The goodness-of-fit of each hybrid isochrone for the 10310^{3} values of αi\alpha_{i} were assessed by calculating the Gaussian likelihood that the Gaia DR2 absolute GG-band magnitudes of MUTA members yjy_{j} and their associated standard deviations σj\sigma_{j} match the model IijI_{ij} in each color bin jj:

lnPi=0.5j(yjIijσj+0.35mag)2.\displaystyle\ln P_{i}=-0.5\cdot\sum_{j}\left(\frac{y_{j}-I_{ij}}{\sigma_{j}+0.35\,{\rm mag}}\right)^{2}. (7)

The best-fitting linear combination is displayed in Figure 18. The ages AiA_{i} corresponding to each hybrid isochrone IiI_{i} were taken as a linear combination of the individual empirical isochrones in logarithm space:

logAi=αilog(45Myr)+(1αi)log(112Myr).\displaystyle\log A_{i}=\alpha_{i}\cdot\log\left({\rm 45\,Myr}\right)+\left(1-\alpha_{i}\right)\cdot\log\left({\rm 112\,Myr}\right). (8)

The resulting probability density function P(Ai)P\left(A_{i}\right) is shown in Figure 19. It is well represented by a Gaussian in logarithm of age, with an average and characteristic width that correspond to logA(yr)=\log A({\rm yr})= 7.79±0.057.79\pm 0.05, or an age of 62±762\pm 7 Myr.

We also calculated a probability density function for the relative age parameter α\alpha because the age estimates of both our reference populations could change in the future. For example, some recent lithium depletion boundary age estimates for the Pleiades are as old as 148±19148\pm 19 Myr (Burke et al., 2004), and Kraus et al. (2014) estimated a slightly younger age for Tucana-Horologium based on the lithium depletion boundary: they found ages of 38±238\pm 2 Myr or 41±241\pm 2 Myr, depending on the evolutionary models that they used. The age of MUTA can thus be refined with the equation above (i.e., a simple interpolation in log age), replacing αi\alpha_{i} with a Gaussian probability density function at 0.65±0.120.65\pm 0.12 for α\alpha. Using the two extreme ends of these age estimates for the Pleiades and Tucana-Horologium would correspond to MUTA ages of 55±755\pm 7 Myr, or 69±1069\pm 10 Myr, placing two conservative boundaries for the possible age of MUTA.

All MUTA candidate members located more than 0.35 mag fainter than the best-fitting hybrid isochrone were marked as problematic candidates because they likely correspond to interloping field-aged M dwarfs or contaminated Gaia DR2 entries. This flagging procedure is displayed in Figure 20. This step has removed 135 objects from our list of good-quality candidates; we note that this number is comparable to the number of contaminants (19222+25192_{-22}^{+25}) we have estimated in Section 4.3 based on the number of old white dwarf interlopers.

6.4 White Dwarf Cooling Ages

In Section 4.3, we noted that our search for additional MUTA candidates yielded 12 white dwarfs seemingly co-moving with MUTA, 10 of which are clearly too cold, and therefore too old, to be credible members. The only two exceptions are WD 0340+103 (MUTA 125) and WD 0350+098 (MUTA 190), which seem to be aged about 200-800 Myr from a first comparison with total-age cooling tracks. However, both white dwarfs are so hot that a direct comparison of color-magnitude relations at visible wavelengths is imprecise, as this regime only samples the Rayleigh-Jeans end of their spectral energy distributions. Furthermore, the Gaia DR2 de-reddening procedure developed here cannot be applied to white dwarfs directly. For this reason, we investigated the properties of both white dwarfs in more details.

WD 0340+103 is an extremely hot white dwarf, which properties have been estimated at logg=8.6\log g=8.6, TeffT_{\rm eff}=42,617=42,617 K and a mass of 1.03 MM_{\odot} by Gentile Fusillo et al. (2019). However, these properties were obtained by fitting models to the Gaia DR2 photometry of WD 0340+103, and the visible photometry of hot stars is relatively insensitive to their fundamental properties given that it only samples the Rayleigh-Jeans limit of their spectral energy distribution. For this reason, we obtained more reliable fundamental parameters by making use of spectroscopy instead of photometry.

We first determined the effective temperature and surface gravity of WD 0340+103 by fitting its SDSS optical spectrum (Ahn et al., 2012) with the grid of non-local thermodynamic equilibrium atmosphere models of A. Bédard (2020, in preparation). This yielded a very hot temperature of 83,000±2,00083,000\pm 2,000 K, and logg=8.83±0.08\log g=8.83\pm 0.08. Because WD 0340+103 only exhibits hydrogen features given its DA spectral type, we assumed a pure-hydrogen atmospheric composition. We used the fitting procedure described in Bergeron et al. (1992) and Liebert et al. (2005): briefly, the normalized Balmer lines are adjusted with theoretical line profiles using the Levenberg-Marquardt least-squares method. The observed spectrum of WD 0340+103 was well reproduced by this method, including the emission component at the core of the Hα\alpha line, and as illustrated in Figure 21. The positions of the lower Balmer lines (Hα\alpha, Hβ\beta, and Hγ\gamma) were used to measure a total redshift of 138±21138\pm 21km s-1, due in part to the gravitational redshift and radial velocity of WD 0340+103.

In a second step, we calculated the mass, radius, luminosity, and cooling age that correspond to the effective temperature and surface gravity of WD 0340+103 using the thick-hydrogen layer (MH/M=104M_{\rm H}/M=10^{-4}) cooling tracks of A. Bédard et al. (2020, in preparation), which are appropriate for the study of hot white dwarfs. Following Holberg & Bergeron (2006), we also computed the absolute SDSS gg-band magnitude, which we combined with the observed (dereddened) SDSS gg-band magnitude to evaluate its spectroscopic distance. The atmospheric and stellar parameters of WD 0340+103 are summarized in Table 6.4. Our analysis shows that WD 0340+103 is a highly unusual white dwarf: It is extremely hot, young, and massive. Furthermore, we note that the spectroscopic distance is slightly farther than its Gaia DR2 trigonometric distance, but the values are consistent within measurement errors.

We used the MESA Isochrones and Stellar Tracks (MIST; Choi et al. 2016) to estimate a progenitor mass of 6.7±0.46.7\pm 0.4MM_{\odot} for WD 0340+103. This corresponds to a spectral type of about B2, just one subclass earlier than the earliest-type members of MUTA (29 Tau, 30 Tau, μ\mu Tau and μ\mu Eri are all B3 stars). This is consistent with the extremely young cooling age of only 270,000±30,000270,000\pm 30,000 years which we derived for WD 0340+103. Such a progenitor star has a main-sequence lifetime of 596+859_{-6}^{+8} Myr, corresponding to a total age of 606+860_{-6}^{+8} Myr, consistent with our isochronal age of 62±762\pm 7 Myr. Combining both estimates in an error-weighted average allows us to refine our age estimate for MUTA at 61±561\pm 5 Myr. The core composition of this massive white dwarf likely does not consist of carbon and oxygen, but rather oxygen and neon (Lauffer et al., 2018; Camisassa et al., 2019). This is expected to have a significant effect on the calculated cooling age of about 20% (e.g., see Gagné et al., 2018b; Simon et al., 2015; Simon, 2018), however, in the present scenario the age estimate of WD 0340+103 is completely dominated by its main-sequence lifetime, and its core composition will therefore not have any significant effect on our total age estimation.

The detailed properties of WD 0350+098 are harder to determine because of its lack of spectral lines, likely due to extreme Zeeman broadening caused by a strong magnetic field. Much like WD 0340+103, the age estimate based on Gaia DR2 photometry alone may be unreliable given its extremely blue colors and hot temperature. Adding UV photometry from GALEX (Martin et al., 2005) to better constrain its temperature yielded an estimate of 31,000±1,00031,000\pm 1,000 K with a radius of 0.00730.0005+0.00060.0073_{-0.0005}^{+0.0006}RR_{\odot}, however, these uncertainties are likely underestimated because the models we used do not include magnetic fields. These parameters would correspond to a mass of 1.090.05+0.041.09_{-0.05}^{+0.04}MM_{\odot} and a surface gravity of logg=8.75±0.09\log g=8.75\pm 0.09. Using non-magnetic cooling tracks yields a cooling age estimate of 7910+2079_{-10}^{+20} Myr. The main-sequence lifetime that corresponds to the 6.1±0.56.1\pm 0.5MM_{\odot} progenitor is 7412+1574_{-12}^{+15} Myr, making WD 0350+098 too old for MUTA membership if we take our analysis at face value. However, the lack of magnetic fields in our treatment could have introduced a significant bias in the determination of its cooling age and mass (and therefore its main-sequence lifetime), and for this reason we keep it as a candidate member of MUTA.

Refer to caption
Figure 21: Model fit to the Balmers lines of WD 0340+103 (MUTA 125). See Section 6.4 for more details.
Table 9: Properties of WD 0340+103 (MUTA 125)
Property Value Ref.
Position and Kinematics
Gaia DR2 Source ID 36321786805002880 1
R.A. ep. 2015.5aaJ2000 position at epoch 2015.5 from the Gaia DR2 catalog. Measurement errors are given in units of milliarcseconds. 03:43:14.370 ±0.09\pm 0.09 1
Decl. ep. 2015.5aaJ2000 position at epoch 2015.5 from the Gaia DR2 catalog. Measurement errors are given in units of milliarcseconds. +10:29:38.15 ±0.06\pm 0.06 1
μαcosδ\mu_{\alpha}\cos\delta (masyr1\mathrm{mas}\,\mathrm{yr}^{-1}) 31.51±0.1831.51\pm 0.18 1
μδ\mu_{\delta} (masyr1\mathrm{mas}\,\mathrm{yr}^{-1}) 22.55±0.12-22.55\pm 0.12 1
Parallax (mas) 6.8±0.16.8\pm 0.1 1
Trigonometric distance (pc) 145.7±2.3145.7\pm 2.3 1
Spectroscopic distance (pc) 163.415+16163.4_{-15}^{+16} 2
RVoptbbOptimal radial velocity predicted by BANYAN Σ\Sigma that assumes membership in MUTA. (km s-1) 14.3±3.414.3\pm 3.4 2
RVmes (km s-1) 27±2127\pm 21 2
Photometric Properties
GBPG_{\rm BP} (Gaia DR2) 16.307±0.00916.307\pm 0.009 1
GG (Gaia DR2) 16.539±0.00116.539\pm 0.001 1
GRPG_{\rm RP} (Gaia DR2) 16.766±0.00516.766\pm 0.005 1
uABu_{\rm AB} (SDSS DR12) 15.946±0.00515.946\pm 0.005 3
gABg_{\rm AB} (SDSS DR12) 16.298±0.00316.298\pm 0.003 3
rABr_{\rm AB} (SDSS DR12) 16.748±0.00416.748\pm 0.004 3
iABi_{\rm AB} (SDSS DR12) 17.090±0.00517.090\pm 0.005 3
zABz_{\rm AB} (SDSS DR12) 17.392±0.01617.392\pm 0.016 3
Fundamental Properties
Spectral type DA 4
TeffT_{\rm eff} (K) 83,000±2,00083,000\pm 2,000 2
logg\log g 8.83±0.088.83\pm 0.08 2
Mass (MM_{\odot}) 1.16±0.041.16\pm 0.04 2
Radius (RR_{\odot}) 0.00690.0005+0.00060.0069_{-0.0005}^{+0.0006} 2
logL/L\log{L/L_{\odot}} 0.31±0.080.31\pm 0.08 2
Cooling age (Myr) 0.27±0.030.27\pm 0.03 2
Progenitor mass (MM_{\odot}) 6.7±0.46.7\pm 0.4 2
Progenitor spectral type B2 2
Total age (Myr) 606+860_{-6}^{+8} 2

References. — (1) Gaia Collaboration et al. 2018a, (2) This work, (3) Alam et al. 2015, (4) Kleinman et al. 2013.

6.5 Lithium

The equivalent width of the Li I λ\lambda6708 Å spectral line is a well-established age indicator. Because lithium burns at lower temperatures than hydrogen, it is relatively fragile and will disappear over time if it is allowed to be transported in layers deep enough in a star to reach the threshold temperature for lithium burning. The temperature profile of a star, combined with the location of its convective layers, will determine whether lithium gets burned at all, and how fast it does so. Lower-mass stars (late-K or early-M spectral types) have deep convective layers that allow them to burn through all lithium within only \simeq 30 Myr (Randich, 2001), whereas higher-mass stars, with their shallower convective layers, burn lithium more gradually. It takes more than a billion years for stars with spectral types G0 and earlier to burn lithium in their photospheres such that the Li I λ\lambda6708 Å absorption line disappears completely (Jones et al., 1999). As a result, the sequence in temperature versus Li I absorption line for K-type or earlier stars evolves slowly with time, and makes it possible to place weak constraints on the ages of such early-type stars (e.g., Barrado y Navascués et al., 2001; Soderblom et al., 1993). Similarly, the K-type lithium depletion boundary, where stars below a given temperature stop displaying the lithium absorption line, can be used to place constraints on the age of a stellar population. The location of this boundary is, however, not very sensitive to age for populations \simeq 10 Myr and older (Kraus et al., 2014).

Brown dwarfs with masses below \simeq 60 MJupM_{\mathrm{Jup}} do not burn lithium despite their fully convective structure, because they do not reach temperatures sufficient to do so even at their core (e.g., Baraffe et al. 2015). Low-mass stars and brown dwarfs with masses above 60 MJupM_{\mathrm{Jup}} burn their photosphere lithium slowly, causing the appearance of a second, age-dependent boundary where the lithium absorption line begins appearing again below a threshold in effective temperature. The effective temperatures, spectral types and bolometric luminosities at which this second, M-type lithium depletion boundary occurs, is a strong function of age over the first hundreds of millions of years that follow stellar formation. The lithium depletion boundary has therefore become a popular diagnostic tool to determine precise ages for stellar populations with known M-type stars (e.g., Kraus et al., 2014; Malo et al., 2014b; Shkolnik et al., 2017).

Measuring the equivalent width of the lithium absorption line accurately requires high-resolution spectroscopy, ideally with a resolving power λ/Δλ\lambda/\Delta\lambda>> 10,000 to avoid contamination from otherwise blended spectral lines such as Fe I (Xing, 2010). Such measurements require long exposure times and they have thus typically only been obtained for known populations of nearby associations or open clusters. However, a literature search revealed that Li I equivalent width measurements have been obtained by Magazzù et al. (1997) for nine members or candidate members (and one low-likelihood candidate) of MUTA in a follow-up of ROSAT X-ray bright sources (Neuhaeuser et al., 1995) in the vicinity of Taurus-Auriga. These measurements were obtained at a relatively low resolving power (λ/Δλ\lambda/\Delta\lambda\simeq 8,400),121212Magazzù et al. (1997) also obtained measurements at λ/Δλ\lambda/\Delta\lambda\simeq 4200, but inspecting the Isaac Newton Group Archive at http://casu.ast.cam.ac.uk/casuadc/ingarch/query indicated that none of these lower-resolution observations have been obtained for MUTA objects. meaning that the equivalent widths may be slightly overestimated because of line blending. We obtained effective temperatures for these ten stars from Xing (2010), Gaia Collaboration et al. (2018b) and Bai et al. (2019), where available, listed in Table 6.5 along with the lithium equivalent width measurements of Magazzù et al. (1997).

In Figure 22, we compare these available MUTA temperature versus lithium measurements with other literature data for stellar populations across a range of ages. The 20–25 Myr sequence was built from the β\beta Pictoris moving group (β\betaPMG, e.g., see Zuckerman et al., 2001a; Zuckerman & Song, 2004; Bell et al., 2015, measurements are from Mentuch et al., 2008; Malo et al., 2014b; Shkolnik et al., 2017). The 40–50 Myr sequence was built from the stellar populations of the Tucana-Horologium association discussed earlier (lithium equivalent width measurements are by Kraus et al. 2014) and the IC 2602 and IC 2391 open clusters (Randich, 2001; Barrado y Navascués et al., 2004; Dobbie et al., 2010). The 110–125 Myr sequence was built from the Pleiades association (Soderblom et al., 1993; Jones et al., 1996; Bouvier et al., 2018), and the 150–175 Myr was built from the M35 open cluster (Barrado y Navascués et al., 2001; Bouy et al., 2015).

\startlongtable
Table 10: Lithium equivalent width measurements for MUTA .
MUTA Common ROSAT EW(Li) TeffT_{\rm eff} TeffT_{\rm eff}
ID Name Name (mÅ) (K) Ref.
24 RX J0348.5+0832 RX J0348.5+0832 260 5409 2
27 RX J0338.3+1020 RX J0338.3+1020 250 5250 2
29 RX J0358.2+0932 RX J0358.1+0932 200 4855 1
94 V1267 Tau RX J0333.1+1036 320 4967 1
159 TYC 71–542–1 RX J0347.9+0616 200 5794 2
195 2MASS J03545074+1232061 RX J0354.8+1232 0 4028 3
318 A 2MASS J04341953+0226260 RX J0434.3+0226 300 4714 1
350 TYC 91–702–1 RX J0442.9+0400 220 5247 2
362 V1831 Ori RX J0450.0+0151 350 5247 1
376 TYC 665–150–1 RX J0357.3+1258 250 5943 2

Note. — All lithium equivalent width measurements are from Magazzù et al. (1997). TYC 665–150–1 was excluded from Figure 22 because it is a low-likelihood candidate member of MUTA (its separation from the MUTA model in UVWUVW space is 8.1 km s-1). See section 6.5 for more details.

References. — (1) Bai et al. 2019; (2) Xing 2010; (3) Gaia Collaboration et al. 2018b.

Although the available MUTA measurements do not span either of the lithium depletion boundaries, they seem consistent with an age in the range 20–125 Myr, with the caveat that our comparison sequences were built from higher-resolution spectra compared with MUTA measurements. This likely biases our range slightly towards young ages, but this result seems consistent with our previous age assessments based on empirical isochrones and white dwarf cooling ages. Obtaining higher-resolution optical spectra for MUTA members, as well as extending the range of spectral types over which lithium equivalent widths are measured, will allow us to further constrain the age of MUTA.

Refer to caption
(a) 20–25 Myr
Refer to caption
(b) 45–50 Myr
Refer to caption
(c) 110–125 Myr
Refer to caption
(d) 150–175 Myr
Figure 22: Effective temperature versus the equivalent width of the Li I λ\lambda6708 Å absorption line for MUTA members and candidates (red stars), compared with other known, coeval populations (grey circles). The 45–50 Myr sequence was built from members of the Tucana-Horologium association and IC 2602 and IC 2391 open clusters. Upper limits are indicated with downward arrows. Although all measurements for MUTA members are based on a lower resolving power (λ/Δλ\lambda/\Delta\lambda\approx 8,400) compared with the reference sequences (λ/Δλ\lambda/\Delta\lambda>> 10,000), they indicate that MUTA seems roughly consistent with an age of 20–125 Myr. β\betaPMG indicates the β\beta Pictoris moving group. See Section 6.5 for more detail.

6.6 Present-Day Mass Function

We used the empirically corrected MIST solar-metallicity model isochrones of Choi et al. (2016) as described by Gagné et al. (2018a)131313We used the models based on the revised Gaia DR2 photometric zero points of Evans et al. (2018a) available at http://waps.cfa.harvard.edu/MIST/model_grids.html with a nominal stellar rotation of v/vcrit=0v/v_{\rm crit}=0 to estimate the masses of MUTA members and candidates based on their position in a Gaia DR2 absolute GG versus GGRPG-G_{\rm RP} color-magnitude diagram. This method uses the differences between the empirical Pleiades sequence and the 112 Myr MIST isochrone to correct for systematic effects such as the increased stellar activity and strong magnetic fields of low-mass stars.

The masses for MUTA candidates with very red colors (JW2>1.5J-W2>1.5) were estimated with the method of Gagné et al. (2014), which is more reliable than extrapolating MIST isochrones or using lower quality Gaia DR2 photometry, but potentially suffers from different systematics. The method is based on a comparison of the absolute 2MASS JJ, HH, KSK_{\rm S} and WISE W1W1 and W2W2 photometry of MUTA candidates with BT-Settl models (Allard et al., 2012) in the same respective bandpasses, and combining the individual estimates in a likelihood analysis. These model-dependent mass estimates range from \simeq 35 MJupM_{\mathrm{Jup}} to 0.2 MM_{\odot}, covering the substellar-to-stellar transition and overlapping slightly with the range of masses (0.1–6.0 MM_{\odot}) obtained with MIST isochrones for bluer targets.

The resulting present-day mass function of MUTA members and candidates is displayed in Figure 23 along with a fiducial log-normal mass function (σ=0.5\sigma=0.5 dex, mc=0.25m_{c}=0.25MM_{\odot}). We fitted its amplitude to our MUTA members with masses above 1 MM_{\odot}, but the width and central position were not fitted. This particular mass function was shown to be a good fit to other nearby young associations by Jeffries (2012). The log-normal mass function is a good match to our distribution of MUTA members and candidates down to 0.1 MM_{\odot}, indicating that its present-day mass function may be similar to other young associations of the Solar neighborhood. Assuming that the population of MUTA is complete above 0.2 MM_{\odot} indicates that about 65 brown dwarf members would remain to be found, for a total stellar and substellar population of \simeq 450 members.

Refer to caption
Figure 23: Present-day mass function of MUTA (thick black bars) compared with a fiducial log-normal initial mass function with a peak mass 0.25 MM_{\odot} and a logarithm characteristic width of 0.5, anchored on the >> 0.2 MM_{\odot} population of MUTA. Gray error bars represent uncertainties associated with Poisson statistics. The subset of members with full kinematics and therefore a more reliable membership are shown with a dash-dotted blue line. Our set of candidates is consistent with a complete population down to \simeq 0.1MM_{\odot} if a log-normal mass function is realistic for MUTA, but the brown dwarfs population still seems mostly incomplete. We did not include the progenitor masses of the two white dwarf candidates in this figure. See Section 6.6 for more details.

6.7 Stellar Rotation and Activity

Young stars lose angular momentum as they age, and their rotation periods consequently slow down with time. Because the rate of angular momentum loss depends on the rotation period, members of stellar associations with a wide range of rotation periods will eventually converge to a tight sequence as a function of their mass (Barnes, 2003; van Saders et al., 2016). The timescale for this convergence for Sun-like stars is <650<650 Myr and decreases with increasing stellar mass (Delorme et al., 2011; Douglas et al., 2016; Curtis et al., 2019), but a partial sequence is apparent even at \simeq 112 Myr for higher-mass stars (Rebull et al., 2016).

Depending on the mass, this trend of longer rotation periods for older ages reverses for the youngest (pre-main-sequence) stars, as they spin up while contracting onto the main sequence. The youngest stars therefore also have longer rotation periods. The scatter at these younger ages is also larger because of a large spread in the initial rotation periods. Thus, the rotation period versus color sequence of MUTA can still be used as an additional test of our assigned age by comparing with similarly-aged groups.

As bounds for the expected age of MUTA, we used members the Pleiades (\simeq112 Myr; Dahm, 2015) and Praesepe clusters (\simeq 800 Myr; Brandt & Huang 2015), in addition to members of the Columba, Carina, and Tucana-Horologium associations discussed earlier (\simeq45 Myr). We included the older Praesepe cluster as an example of a clearly older population in the color-rotation period diagram, because the differences between MUTA and the Pleiades are subtle. We collected the rotation period measurements of the Pleiades and Praesepe members from Rebull et al. (2016) and Douglas et al. (2017), respectively. We obtained light curves for each member of the younger three associations from the TESS or K2 missions, where available. We restricted our sample to targets with Gaia DR2 GGRP>0.2G-G_{\rm RP}>0.2, as the variability period in bluer stars may be impacted by pulsations as much as rotation. For those observed by K2 (16 stars), we used K2SFF processed light curves (Vanderburg & Johnson, 2014). For TESS targets with short-cadence data, we used light curves from the Science Processing Operations Center (SPOC, Jenkins et al., 2016) and for others we extracted light curves from the full-frame images using Eleanor141414https://github.com/afeinstein20/eleanor (Feinstein et al., 2019). We excluded targets with flux contamination ratios above 1, even when rotation consistent with youth was present in the curve.

\startlongtable
Table 11: TESS and K2 potation periods.
R.A. Decl. Period 1 Period 2aaSecond rotation period candidate. Young
Name (hh:mm:ss.sss) (dd:mm:ss.ss) (days) (days) AssociationbbThe full names of young associations are: Carina (CAR), Columba (COL), the Tucana-Horologium association (THA) and the μ\mu Tau Association (MUTA). Source
2MASS J03303685+1610599 03:30:36.887 +16:10:59.58 1.70 \cdots MUTA 2
2MASS J03350134+1418016 03:35:01.376 +14:18:01.14 4.38 \cdots MUTA 2
2MASS J03361762+2153391 03:36:17.665 +21:53:38.50 4.38 \cdots MUTA 2
2MASS J03371337+1307315 03:37:13.411 +13:07:30.93 0.66 \cdots MUTA 2
2MASS J03373508+1705162 03:37:35.111 +17:05:15.93 6.19 \cdots MUTA 2
RX J0338.3+1020 03:38:18.266 +10:20:16.32 3.24 \cdots MUTA 1
2MASS J03385230+1635406 03:38:52.328 +16:35:40.21 0.34 \cdots MUTA 2
TYC 1235–156–1 03:39:39.516 +15:29:54.47 4.43 \cdots MUTA 2
TYC 663–362–1 03:40:57.781 +13:09:03.06 2.59 \cdots MUTA 1
TYC 660–135–1 03:41:45.000 +10:54:27.46 5.12 \cdots MUTA 1
2MASS J03420359+1631392 03:42:03.617 +16:31:38.80 4.92 \cdots MUTA 2
HD 23376 03:44:58.957 +08:19:10.09 0.81 \cdots MUTA 1
BD+04 589 03:47:13.551 +05:26:23.49 4.75 \cdots MUTA 1
TYC 1252–301–1 03:47:23.901 +18:43:17.68 4.09 \cdots MUTA 2
BD+07 543 03:47:31.345 +07:57:26.39 3.57 \cdots MUTA 1
TYC 661–560–1 03:47:53.694 +11:48:57.98 1.55 \cdots MUTA 1
RX J0348.5+0832 03:48:31.461 +08:31:36.43 0.41 \cdots MUTA 1
EPIC 210811401 03:48:50.333 +20:02:27.56 5.10 \cdots MUTA 2
2MASS J03495031+1440552 03:49:50.345 +14:40:54.73 1.02 \cdots MUTA 2
PPM 119410 03:50:50.558 +11:00:05.12 1.80 \cdots MUTA 1
2MASS J03511041+1302467 03:51:10.454 +13:02:46.16 2.54 \cdots MUTA 1
EPIC 210361663 03:54:50.776 +12:32:05.61 3.26 \cdots MUTA 2
HD 286374 03:56:19.224 +11:25:10.84 1.57 \cdots MUTA 2
HD 286380 03:56:20.741 +10:47:47.24 2.51 \cdots MUTA 1
TYC 665–150–1 03:57:21.412 +12:58:16.37 0.86 \cdots MUTA 2
2MASS J03573875+1142322 03:57:38.786 +11:42:31.85 3.92 \cdots MUTA 2
RX J0358.2+0932 03:58:12.749 +09:32:21.97 1.44 \cdots MUTA 1
TYC 662–217–1 03:59:42.158 +12:10:08.14 4.80 \cdots MUTA 2
2MASS J04072953–0115000 04:07:29.559 –01:15:00.13 1.04 \cdots MUTA 1
TYC 74–1393–1 04:12:18.449 +00:01:31.28 2.94 \cdots MUTA 1
2MASS J04210781–0111328 04:21:07.848 –01:11:33.15 4.29 \cdots MUTA 1
TYC 668–737–1 04:21:24.386 +08:53:54.34 5.31 \cdots MUTA 1
BD–03 753 04:22:23.528 –02:40:04.13 0.90 \cdots MUTA 1
HD 27687 04:22:24.213 +06:31:45.14 0.53 0.39 MUTA 1
BD+05 638 04:22:33.022 +05:41:38.82 3.37 6.32 MUTA 1
HD 28356 04:28:32.733 +06:05:52.07 0.81 \cdots MUTA 1
BD–03 789 04:28:37.716 –03:15:44.58 1.72 \cdots MUTA 1
2MASS J04372578–0210117 04:37:25.800 –02:10:12.12 1.13 \cdots MUTA 1
2MASS J04372971–0051241 04:37:29.730 –00:51:24.47 3.59 \cdots MUTA 1
2MASS J04391308–0045039 04:39:13.102 –00:45:04.39 0.42 \cdots MUTA 1
BD+06 731 04:39:15.500 +07:01:43.92 6.08 8.66 MUTA 1
TYC 4739–1225–1 04:39:20.251 –03:14:21.79 3.61 \cdots MUTA 1
BD–02 1047 04:52:07.364 –01:58:57.43 1.47 0.69 MUTA 1
TYC 4741–307–1 04:56:18.287 –01:53:33.04 2.44 \cdots MUTA 1
HD 37402 05:34:26.201 –60:06:14.58 1.93 \cdots CAR 1
HD 42270 05:53:29.503 –81:56:52.20 1.87 \cdots CAR 1
HD 43199 06:10:52.922 –61:29:58.79 0.52 \cdots CAR 1
AL 442 06:11:30.043 –72:13:37.79 0.85 \cdots CAR 1
AB Pic 06:19:12.941 –58:03:14.83 3.81 \cdots CAR 1
HIP 32235 06:43:46.270 –71:58:34.45 3.94 \cdots CAR 1
HIP 33737 07:00:30.501 –79:41:45.06 5.21 \cdots CAR 1
2MASS J07013884–6236059 07:01:38.844 –62:36:05.98 3.93 5.58 CAR 1
2MASS J07065772–5353463 07:06:57.714 –53:53:45.75 2.87 \cdots CAR 1
2MASS J08040534–6316396 08:04:05.300 –63:16:39.11 2.01 \cdots CAR 1
2MASS J08194309–7401232 08:19:43.099 –74:01:23.22 0.42 \cdots CAR 1
2MASS J09032434–6348330 09:03:24.265 –63:48:32.65 4.42 \cdots CAR 1
2MASS J09180165–5452332 09:18:01.547 –54:52:32.85 0.37 \cdots CAR 1
HIP 46063 09:23:34.921 –61:11:35.61 3.92 \cdots CAR 1
2MASS J09315840–6209258 09:31:58.328 –62:09:25.46 1.93 \cdots CAR 1
TWA 21 10:13:14.666 –52:30:53.85 4.43 \cdots CAR 1
HD 14691 02:22:01.693 –10:46:40.40 0.46 \cdots COL 1
2MASS J03083950–3844363 03:08:39.597 –38:44:36.32 0.69 \cdots COL 1
2MASS J03320347–5139550 03:32:03.559 –51:39:54.87 5.56 \cdots COL 1
HIP 17248 03:41:37.453 +55:13:05.02 4.70 \cdots COL 1
2MASS J04091413–4008019 04:09:14.199 –40:08:01.98 3.28 \cdots COL 1
HIP 19775 04:14:22.624 –38:19:01.54 1.74 \cdots COL 1
CD–36 1785 04:34:50.821 –35:47:21.13 2.31 \cdots COL 1
HD 29329 04:46:00.914 +76:36:37.66 0.92 \cdots COL 1
HIP 22226 04:46:49.568 –26:18:08.93 0.89 \cdots COL 1
HD 31242 04:51:53.585 –46:47:13.11 3.01 \cdots COL 1
HD 272836 04:53:05.246 –48:44:38.49 4.60 \cdots COL 1
HIP 23316 05:00:51.910 –41:01:06.56 2.29 \cdots COL 1
2MASS J05195695–1124440 05:19:56.985 –11:24:44.48 4.38 \cdots COL 1
2MASS J05241317–2104427 05:24:13.213 –21:04:43.14 4.17 \cdots COL 1
HIP 25709 05:29:24.132 –34:30:55.43 6.14 2.75 COL 1
AH Lep 05:34:09.189 –15:17:03.54 2.10 \cdots COL 1
HD 37484 05:37:39.655 –28:37:34.70 0.82 \cdots COL 1
2MASS J05395494–1307598 05:39:54.968 –13:08:00.11 1.89 \cdots COL 1
AI Lep 05:40:20.753 –19:40:11.12 1.69 \cdots COL 1
HD 38397 05:43:35.843 –39:55:24.50 2.27 \cdots COL 1
HIP 28036 05:55:43.189 –38:06:16.10 0.95 \cdots COL 1
HD 41071 06:00:41.325 –44:53:49.75 5.46 \cdots COL 1
HIP 30030 06:19:08.069 –03:26:21.01 1.36 \cdots COL 1
CD–40 2458 06:26:06.918 –41:02:53.59 4.21 \cdots COL 1
HIP 490 00:05:52.680 –41:45:12.23 3.00 \cdots THA 1
2MASS J00125703–7952073 00:12:57.525 –79:52:08.03 0.99 \cdots THA 1
HIP 1113 00:13:53.335 –74:41:18.61 3.62 \cdots THA 1
2MASS J00144767–6003477 00:14:47.860 –60:03:48.67 0.49 \cdots THA 1
2MASS J00152752–6414545 00:15:27.705 –64:14:55.61 3.69 \cdots THA 1
GJ 3017 00:15:36.842 –29:46:01.77 0.84 \cdots THA 1
HIP 1481 00:18:26.332 –63:28:39.90 2.31 2.59 THA 1
2MASS J00235732–5531435 00:23:57.506 –55:31:44.58 2.44 2.99 THA 1
HIP 1993 00:25:14.853 –61:30:49.12 4.37 \cdots THA 1
UPM J0027–6157 00:27:33.500 –61:57:17.79 0.55 \cdots THA 1
2MASS J00284683–6751446 00:28:47.106 –67:51:45.46 0.33 \cdots THA 1
2MASS J00332438–5116433 00:33:24.551 –51:16:44.33 0.35 \cdots THA 1
HIP 2729 00:34:51.397 –61:54:58.95 0.38 \cdots THA 1
2MASS J00393579–3816584 00:39:35.930 –38:16:59.55 6.41 \cdots THA 1
2MASS J00394063–6224125 00:39:40.905 –62:24:13.39 0.38 \cdots THA 1
UPM J0042–5444 00:42:10.272 –54:44:44.09 1.78 \cdots THA 1
CD–78 24 00:42:20.705 –77:47:40.20 2.59 \cdots THA 1
2MASS J00425349–6117384 00:42:53.702 –61:17:39.23 1.04 \cdots THA 1
HIP 3556 00:45:28.320 –51:37:34.85 5.97 9.13 THA 1
2MASS J00485254–6526330 00:48:52.746 –65:26:33.71 1.01 \cdots THA 1
2MASS J00493566–6347416 00:49:35.887 –63:47:42.33 4.95 \cdots THA 1
UPM J0113–5939 01:13:40.523 –59:39:35.06 0.32 \cdots THA 1
2MASS J01180670–6258591 01:18:06.926 –62:58:59.85 0.35 \cdots THA 1
2MASS J01211297–6117281 01:21:13.152 –61:17:28.86 0.43 \cdots THA 1
CD–34 521 01:22:04.571 –33:37:04.47 9.61 \cdots THA 1
UPM J0122–6318 01:22:45.334 –63:18:45.24 0.46 \cdots THA 1
HIP 6485 01:23:21.433 –57:28:51.25 3.47 \cdots THA 1
2MASS J01233280–4113110 01:23:32.961 –41:13:11.76 0.74 \cdots THA 1
2MASS J01275875–6032243 01:27:58.956 –60:32:24.76 0.34 \cdots THA 1
HIP 6856 01:28:08.842 –52:38:19.81 6.36 \cdots THA 1
2MASS J01375879–5645447 01:37:58.967 –56:45:45.33 0.71 \cdots THA 1
HD 10863 01:46:01.170 –27:20:56.49 0.44 \cdots THA 1
2MASS J01504543–5716488 01:50:45.620 –57:16:49.23 0.71 \cdots THA 1
2MASS J01505688–5844032 01:50:57.087 –58:44:03.63 1.65 \cdots THA 1
2MASS J01532494–6833226 01:53:25.212 –68:33:22.92 0.60 \cdots THA 1
HIP 9141 01:57:49.093 –21:54:06.12 3.04 \cdots THA 1
2MASS J02001992–6614017 02:00:20.178 –66:14:02.14 0.63 \cdots THA 1
HIP 9685 02:04:35.299 –54:52:54.45 0.44 \cdots THA 1
2MASS J02045317–5346162 02:04:53.332 –53:46:16.75 0.70 \cdots THA 1
UCAC3 92–4597 02:07:01.904 –44:06:38.51 0.39 3.00 THA 1
HIP 9892 02:07:18.209 –53:11:56.88 2.39 \cdots THA 1
HIP 9902 02:07:26.315 –59:40:46.23 1.71 \cdots THA 1
2MASS J02125819–5851182 02:12:58.366 –58:51:18.42 1.60 \cdots THA 1
2MASS J02205139–5823411 02:20:51.580 –58:23:41.37 1.28 \cdots THA 1
2MASS J02242453–7033211 02:24:24.829 –70:33:21.25 0.52 \cdots THA 1
2MASS J02294869–6906044 02:29:48.952 –69:06:04.36 0.46 \cdots THA 1
2MASS J02321934–5746117 02:32:19.520 –57:46:11.93 0.86 \cdots THA 1
UPM J0234–5128 02:34:18.835 –51:28:46.44 0.46 \cdots THA 1
2MASS J02383255–7528065 02:38:32.880 –75:28:06.41 0.63 \cdots THA 1
CD–53 544 02:41:47.002 –52:59:52.61 0.52 \cdots THA 1
2MASS J02420204–5359147 02:42:02.231 –53:59:14.88 0.57 2.47 THA 1
2MASS J02420404–5359000 02:42:04.237 –53:59:00.22 0.57 \cdots THA 1
CD–58 553 02:42:33.187 –57:39:36.95 7.40 \cdots THA 1
HD 17250 02:46:14.687 +05:35:32.64 1.21 \cdots THA 1
2MASS J02474639–5804272 02:47:46.569 –58:04:27.47 9.45 \cdots THA 1
2MASS J02502222–6545552 02:50:22.440 –65:45:55.27 1.29 \cdots THA 1
2MASS J02523550–7831183 02:52:35.919 –78:31:18.08 0.71 \cdots THA 1
2MASS J02553178–5702522 02:55:31.954 –57:02:52.41 0.49 \cdots THA 1
2MASS J03050556–5317182 03:05:05.712 –53:17:18.46 0.44 \cdots THA 1
2MASS J03104941–3616471 03:10:49.532 –36:16:47.39 0.66 \cdots THA 1
2MASS J03114544–4719501 03:11:45.581 –47:19:50.27 4.81 \cdots THA 1
HIP 15247 03:16:40.753 –03:31:49.69 1.03 \cdots THA 1
2MASS J03244056–3904227 03:24:40.680 –39:04:22.95 0.34 8.05 THA 1
2MASS J03291649–3702502 03:29:16.628 –37:02:50.37 0.54 \cdots THA 1
CD–46 1064 03:30:49.233 –45:55:57.44 3.92 \cdots THA 1
CD–44 1173 03:31:55.768 –43:59:13.61 2.93 \cdots THA 1
2MASS J03454058–7509121 03:45:40.854 –75:09:11.91 0.70 \cdots THA 1
HD 24636 03:48:11.720 –74:41:38.44 5.72 0.84 THA 1
2MASS J03512287–5154582 03:51:23.001 –51:54:58.01 0.43 \cdots THA 1
HD 25284 04:00:03.918 –29:02:16.64 0.31 2.27 THA 1
HD 25402 04:00:32.079 –41:44:54.40 3.56 \cdots THA 1
2MASS J04013874–3127472 04:01:38.846 –31:27:47.35 0.46 \cdots THA 1
BD–15 705 04:02:16.556 –15:21:30.22 3.85 \cdots THA 1
2MASS J04074372–6825111 04:07:43.905 –68:25:10.85 1.02 \cdots THA 1
2MASS J04133609–4413325 04:13:36.194 –44:13:32.40 0.78 \cdots THA 1
WOH S 6 04:21:39.275 –72:33:55.53 4.55 \cdots THA 1
2MASS J04274963–3327010 04:27:49.718 –33:27:01.17 0.67 \cdots THA 1
HIP 21632 04:38:44.007 –27:02:01.97 2.40 \cdots THA 1
2MASS J04435860–3643188 04:43:58.683 –36:43:18.81 1.61 \cdots THA 1
2MASS J04440099–6624036 04:44:01.138 –66:24:03.15 7.94 \cdots THA 1
2MASS J04470041–5134405 04:47:00.509 –51:34:40.23 6.25 \cdots THA 1
TYC 8083–45–5 04:48:00.760 –50:41:25.40 8.13 \cdots THA 1
HIP 22295 04:48:05.485 –80:46:44.64 1.24 \cdots THA 1
CD–30 2310 05:18:29.092 –30:01:32.16 1.70 \cdots THA 1
TYC 8098–414–1 05:33:25.647 –51:17:12.77 5.21 \cdots THA 1
HIP 32435 06:46:13.720 –83:59:28.55 1.59 \cdots THA 1
HIP 84642 17:18:14.645 –60:27:27.57 4.17 \cdots THA 1
2MASS J19225071–6310581 19:22:50.700 –63:10:59.23 0.86 \cdots THA 1
2MASS J20291446–5456116 20:29:14.491 –54:56:13.29 0.88 \cdots THA 1
2MASS J21100614–5811483 21:10:06.195 –58:11:49.78 0.56 \cdots THA 1
2MASS J21163528–6005124 21:16:35.368 –60:05:14.13 0.99 \cdots THA 1
HIP 105388 21:20:50.012 –53:02:04.64 3.45 \cdots THA 1
UPM J2127–6841 21:27:50.634 –68:41:04.64 0.34 \cdots THA 1
2MASS J21370885–6036054 21:37:08.927 –60:36:07.04 2.00 \cdots THA 1
2MASS J21380269–5744583 21:38:02.765 –57:44:59.89 0.68 \cdots THA 1
HIP 107345 21:44:30.211 –60:58:40.34 4.53 \cdots THA 1
2MASS J21504048–5113380 21:50:40.563 –51:13:39.59 1.05 \cdots THA 1
HIP 107947 21:52:09.822 –62:03:09.92 0.96 \cdots THA 1
2MASS J22021626–4210329 22:02:16.331 –42:10:34.73 4.51 \cdots THA 1
2MASS J22025453–6440441 22:02:54.624 –64:40:45.70 0.43 \cdots THA 1
UPM J2222–6303 22:22:39.816 –63:03:27.22 1.11 \cdots THA 1
2MASS J22244102–7724036 22:24:41.287 –77:24:04.82 0.67 \cdots THA 1
2MASS J22444835–6650032 22:44:48.534 –66:50:04.47 0.73 \cdots THA 1
2MASS J22463471–7353504 22:46:34.912 –73:53:51.52 1.65 \cdots THA 1
2MASS J23131671–4933154 23:13:16.833 –49:33:16.85 1.23 \cdots THA 1
2MASS J23170011–7432095 23:17:00.401 –74:32:10.53 0.83 \cdots THA 1
TYC 9344–293–1 23:26:10.958 –73:23:50.88 0.57 \cdots THA 1
2MASS J23273447–8512364 23:27:35.285 –85:12:37.17 0.90 \cdots THA 1
CD–86 147 23:27:50.213 –86:13:19.36 0.70 \cdots THA 1
2MASS J23285763–6802338 23:28:57.841 –68:02:35.08 0.37 \cdots THA 1
2MASS J23291752–6749598 23:29:17.728 –67:50:01.14 1.02 \cdots THA 1
2MASS J23382851–6749025 23:38:28.714 –67:49:03.52 0.44 \cdots THA 1
HIP 116748 23:39:39.712 –69:11:45.75 2.86 \cdots THA 1
2MASS J23424333–6224564 23:42:43.528 –62:24:57.60 0.52 \cdots THA 1
2MASS J23452225–7126505 23:45:22.521 –71:26:51.46 1.61 \cdots THA 1
2MASS J23474694–6517249 23:47:47.152 –65:17:25.79 4.84 \cdots THA 1
2MASS J23524562–5229593 23:52:45.779 –52:30:00.51 0.91 \cdots THA 1

Note. — Rotation periods are accurate to approximately 2%. Only a portion of the table is shown here. The full table is available as online-only additional material. See Section 6.7 for more details.

References. — (1) TESS (Jenkins et al., 2016; Ricker et al., 2015); (2) K2 (Vanderburg & Johnson, 2014; Howell et al., 2014; Borucki et al., 2010).

We estimated the rotation periods for each star using two methods: a modified version of the Lomb-Scargle periodogram as described in Horne & Baliunas (1986), and the autocorrelation function as described in McQuillan et al. (2013). In both cases, we searched for periodic signals down to twice the Nyquist-sampling limit, and as long as a third of the total data coverage. Below the lower limit, we found that both algorithms are biased by the data sampling, particularly for long-cadence (30 min) data. We set the lower limit for a significant detection at three full rotations. We then flagged the peak in the periodogram and the second peak in the autocorrelation function as the likely period (see Figure 24 for an example). We only considered periodic signals with false-alarm probabilities <1<1% and for which autocorrelation and Lomb-Scargle periods agreed within 10%. For six stars, the autocorrelation and Lomb-Scargle disagreed by an integer factor (alias), which we retained, provided the true rotation period was clear. Across all clusters, 14 out of 201 stars showed evidence of a second period, which we excluded from our sample as they are likely binaries (Douglas et al., 2017). As a final check, we visually inspected all phased light curves.

We created synthetic data sets, with random subsamples of half the data and each point perturbed by a random number following the measurement errors, to investigate the accuracy of our period determinations. We found that, when the correct period is identified, our assigned periods are accurate within 2%, with a fail rate of \simeq 5% where the measured period is wrong by 20% or more (usually off by an integer multiple). This assumes that all detected periods are associated with stellar rotation and not other phenomena. Periodic signals caused by binary systems, pulsations or flares could cause further false positives, if they passed our visual inspection.

Refer to caption
Figure 24: TESS light curve and rotation diagnostics of TIC178969585 (HD 29615), a G-type dwarf in the Tucana-Horologium association. The top panel shows the SPOC light curve, with the Lomb-Scargle power and autocorrelation function just below (the assigned period is marked with a red dashed line). The bottom two panels show the light curve phased to the period derived from the Lomb-Scargle (top) and autocorrelation function (bottom), color-coded by chronological order (lighter is later).

The resulting rotation periods are shown in Figure 25 and listed in Table 6.7. While there is significant scatter in the sequence, Praesepe and Pleiades members have the longest typical rotation period at GGRP<0.8G-G_{\rm RP}<0.8, while members of young moving groups have the shortest periods, and MUTA members are located in between. On the cool end (GGRP1.1G-G_{\rm RP}\gtrsim 1.1), Pleiades rotations are the fastest, as the \simeq45 Myr stars are still contracting, although we have fewer period measurements in MUTA in this regime. The overall trend is consistent with our assigned 61±561\pm 5 Myr age of MUTA based on empirical isochrones and the total age of the white dwarf WD 0340+103, though additional rotation period measurements would be useful to better map out its sequence.

Refer to caption
Figure 25: Rotation periods for stars in the Praesepe (black, \simeq800 Myr) and Pleiades clusters (blue, \simeq112 Myr), Columba (COL), Carina (CAR), or Tucana-Horologium (THA) associations (violet; \simeq45 Myr), and MUTA (red; \simeq60 Myr) as a function of Gaia GGRPG-G_{RP} color.

Stellar rotation serves as a driver of magnetic activity through the dynamo effect (Reiners et al., 2012), and causes young stars to display enhanced UV and X-ray emission among other effects associated with an enhanced stellar activity (Kastner et al., 2003; Rodriguez et al., 2013; Malo et al., 2014a). We used data from the ROSAT all-sky survey (Boller et al., 2016) and the GALEX catalog (Martin et al., 2005) to verify that our population of MUTA members and candidates display this expected enhanced activity in a way that is consistent with other young asociations of similar ages (\simeq 10–150 Myr) in the Solar neighborood, including β\betaPMG and the AB Doradus moving group (ABDMG, Zuckerman et al. 2004; see Gagné et al. 2018 for a discussion of these associations). The resulting distributions are shown in Figures 26 and 27, and provide more evidence that MUTA consists of a coeval and young association.

Refer to caption
Figure 26: GALEX to Gaia DR2 NUVGNUV-G color versus GGRPG-G_{\rm RP} for field stars (black circles), members of nearby young associations (rightward purple triangles) and MUTA candidates studied in this paper (upward red triangles). Our candidates are consistent with the young stellar population displaying a NUVNUV excess compared with field stars of the same GGRPG-G_{\rm RP} color. See Section 6.7 for more details.
Refer to caption
Figure 27: Absolute X-ray luminosity for field stars (grey circles), nearby young stars (rightward purple triangles) and our MUTA candidates (upward red triangles). The young M dwarf distributions of Malo et al. (2014a) are also shown for comparison. Young stars tend to emit more X-ray because they are more active. In the case of low-mass stars, this effect is compounded by the larger radius of younger M dwarfs. Field stars tend to be more active at both ends of the mass spectrum, consistent with their faster average rotation rates. β\betaPMG indicates the β\beta Pictoris moving group, and ABDMG indicates the AB Doradus moving group. See Section 6.7 for more details.

6.8 μ\mu Tau in the Context of the Galactic Structure

An unprecedented view of the local spatial and kinematic structure of the Galaxy was enabled with the advent of Gaia DR2. Using these new data, Kounkel & Covey (2019) identified 1,901 groups of stars that appear co-moving and coeval, located within 30° of the Galactic plane and 1 kpc of the Sun. Their method used the HDBSCAN unsupervised clustering algorithm151515See https://hdbscan.readthedocs.io. directly in the 5-dimensional parameter space of Gaia DR2 observables (sky position, proper motion and parallax) to identify over-densities; this did not allow them to efficiently recover the structure within about 70 pc of the Sun because the large spread of nearby associations on the sky introduces strong variation and correlations in the Gaia DR2 5-dimensional kinematic space of the members within a specific young association. Kounkel & Covey (2019) separated the over-densities among clusters and strings, the latter consisting of much larger structures with typical physical sizes of about 200 pc and some of which also have extended kinematic distributions.

We cross-matched our sample of MUTA candidates and members with the full Kounkel & Covey (2019) catalog of clustered sources to determine whether MUTA had been recovered by their study. We found a total of 72 matches with our list, all with a single Kounkel & Covey (2019) string named Theia 160 that contains a total of 300 stars. Only 4 of these stars are matches to our initial list of MUTA members (HD 28715, HD 27687, HD 28356, and TYC 668–737–1; respectively, MUTA 11, 17, 18, and 30 A). One likely explanation for the partial overlap is the |b|<30|b|<30° cut-off in Galactic latitude that they imposed, as approximately half of MUTA falls at b< 30b< -30°. We show a comparison of Theia 160, MUTA and Taurus in Figure 28. Theia 160 is spatially more extended, but also shows a much larger spread in space velocities compared with MUTA, although they are centered at similar average velocities; MUTA members have a spread of (2.8, 2.1, 1.6) km s-1 in UVWUVW space, whereas the spread of Theia 160 members is (21.1, 1.7, 8.9) km s-1. This indicates that some interlopers may contaminate the sample of Theia 160 stars, and further investigation will be required to confirm this.

In addition to the similar kinematics between MUTA and Theia 160, Kounkel & Covey (2019) determined a model-dependent isochronal age of \simeq 80 Myr for Theia 160, which is close to our estimated age of 61±561\pm 5 Myr. It seems likely that MUTA and Theia 160 are related to each other; perhaps Theia 160 represents a stream or tidal tail around the more closely packed core of MUTA (analoguous to the tidal tail around the Hyades cluster although the latter is much older; Röser et al. 2019), or it is simply a fragment of MUTA with some contaminating field stars that have more spread-out space velocities. Investigating this further will require a spectroscopic follow-up of candidates in both MUTA and Theia 160 to complete the UVWUVW measurements of all members in both groups–although the next data release of the Gaia DR2 mission will likely allow to complete the UVWUVW velocities of most MUTA members,–and determine spectroscopic signs of young ages. It is possible that our method did not recover the full spatial structure of MUTA, especially regions that would lack massive stars, because BANYAN Σ\Sigma requires an initial kinematic model to work with, which we obtained from the initial collection of young or active stars described in Section 2. In addition to this, Kounkel & Covey (2019) uncovered a large kinematic structure (Theia 133) that encompasses the α\alpha Persei cluster, likely related to Cas-Tau and MUTA, as discussed in Section 2. This structure is also shown in Figure 28.

Liu et al. (2020) recently published the discovery of two new associations physically nearby (but unrelated to) the Taurus-Auriga star-forming region; e Tau and u Tau. The group that they identified as e Tau has significant overlap with our definition of MUTA; 104 of their 119 members are in also in our list (18 in our initial members, 79 in our candidate members, 6 in our low-likelihood candidate members, and 1 in our list of rejected members). The 15 remaining objects not in our catalogs that they list as e Tau members either have a Bayesian membership probability below 90% or a best-case scenario separation above 5 km s-1 with our kinematic model, which explains why we have not recovered them. We identified in this paper a total of 444 candidate members that Liu et al. (2020) did not discuss: 18 in our initial members, 277 candidate members and 149 in our low-likelihood candidate members. An additional 12 objects in our MUTA lists (4 initial members, 6 candidate members and 2 low-likelihood candidates) are listed as u Tau members by Liu et al. (2020). The isochrone age of \simeq50 Myr determined by Liu et al. (2020) is similar to our 61±561\pm 5 Myr, but is based on model isochrones rather than empirical ones.

The fact that Kounkel & Covey (2019) and Liu et al. (2020) may have uncovered spatial extensions of MUTA, and the presence of a large structure of additional stars coeval with MUTA and α\alpha Persei hints that it would be valuable to parse the local Solar neighborood with an overdensity detection algorithm that is not hindered by the lack of radial velocity measurements or the large spread and correlations of sky positions, proper motions and parallaxes of nearby cluster members. Such a study would have the potential to uncover extended structures and connections between the Kounkel & Covey (2019) groups and the known nearby young associations in the Solar neighborhood, as well as new nearby associations entirely.

7 CONCLUSIONS

We presented and characterized the μ\mu Tau Association, a young stellar population consisting of hundreds of members at about 150 pc from the Sun. We built a BANYAN Σ\Sigma spatial-kinematic model for this association to identify additional candidate members with Gaia DR2 and to allow other teams to search for new members. The Gaia DR2 photometry and parallaxes of MUTA members allowed us to make a comparison with empirical sequences of the Pleiades, Tucana-Horologium, Carina and Columba members to determine an isochronal age relative to these other young associations. This resulted in an age estimate of 62±762\pm 7 Myr for MUTA. We identified a white dwarf (WD 0340+103) that is the remnant of a B2 MUTA member that left its planetary nebula phase 270,000 years ago, and used its total age to further constrain the age of MUTA at 61±561\pm 5 Myr. We found literature measurements of the lithium equivalent width for K-type to G-type members of MUTA and showed that they are consistent with our age determination. The members of this new association have a Gaia DR2 colors versus TESS rotation periods sequence consistent with a young age, and display an enhanced level of stellar activity compared with the field population based on UV and X-ray, consistent with a young coeval population. We also showed that its present-day mass function is similar to other known young associations. MUTA is likely part of an extended network of stars coeval and co-moving with the α\alpha Persei cluster that are currently dissolving. A master table with all candidates and members of the MUTA association is also provided here (Table 12).

The MUTA association is a new laboratory to study stellar and exoplanet evolution at an age which was not well sampled by other associations within the Solar neighborhood. Its distance of \simeq 150 pc will make it harder to identify its substellar population, but upcoming wide area surveys such as Pan-STARRS 3π\pi (Magnier et al., 2010) and CatWISE (Eisenhardt et al., 2019) may be able to do so in the near future. The extended ROentgen Survey with an Imaging Telescope Array (eROSITA; Predehl et al. 2014) on the Spektrum-Roentgen-Gamma (SRG) space telescope will also likely allow us to better study the activity of the low-mass stars in MUTA.

We thank the anonymous reviewer for thoughtful and constructive comments. We thank Patrick Dufour, Aaron Rizzuto and Benjamin Tofflemire for useful comments. We thank Za Gurēto Muta for guidance in choosing an acronym for the μ\mu Tau Association. This work was partially carried under a Banting grant from the Natural Sciences and Engineering Research Council of Canada (NSERC). This research made use of: the SIMBAD database and VizieR catalog access tool, operated at the Centre de Données astronomiques de Strasbourg, France (Ochsenbein et al., 2000); data products from the Two Micron All Sky Survey (2MASS; Skrutskie et al., 2006), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (IPAC)/California Institute of Technology (Caltech), funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation (Skrutskie et al., 2006); data products from the Wide-field Infrared Survey Explorer (WISE; and Wright et al., 2010), which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory (JPL)/Caltech, funded by NASA. The Digitized Sky Surveys (DSS) were produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions. The Second Palomar Observatory Sky Survey (POSS-II) was made by the California Institute of Technology with funds from the National Science Foundation, the National Geographic Society, the Sloan Foundation, the Samuel Oschin Foundation, and the Eastman Kodak Corporation. The Oschin Schmidt Telescope is operated by the California Institute of Technology and Palomar Observatory. This work presents results from the European Space Agency (ESA) space mission Gaia. Gaia data are being processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC is provided by national institutions, in particular the institutions participating in the Gaia MultiLateral Agreement (MLA). The Gaia mission website is https://www.cosmos.esa.int/gaia. The Gaia archive website is https://archives.esac.esa.int/gaia. The Digitized Sky Surveys were produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). TJD and EEM and gratefully acknowledge support from the Jet Propulsion Laboratory Exoplanetary Science Initiative and NASA award 17-K2GO6-0030. EEM acknowledges support from NASA grant NNX15AD53G. \startlongtable
Table 12: Main list of all systems of interest to MUTA identified in this work.
Name Units Type Format Description
muta_id \cdots char a6 μ\mu Tau Association (MUTA) identification number.
main_name \cdots char a25 Main target name. SIMBAD-resolvable names are preferred; short names in the format J0236+2026 are given otherwise.
gaiadr2_id \cdots char a25 Gaia DR2 identification number.
tm_name \cdots char a25 2MASS designation.
aw_name \cdots char a25 AllWISE designation.
rosat_name \cdots char a25 ROSAT designation.
tyc_name \cdots char a25 Tycho catalog designation.
hip_name \cdots char a25 Hipparcos catalog designation.
simbad_id \cdots char a25 Principal SIMBAD identifier.
spt \cdots char a10 Literature spectral type. Spectral type estimates based on Gaia DR2 colors are given between parentheses.
(WD) indicates likely white dwarfs.
spt_ref \cdots char a25 Reference for literature spectral type.
member_type \cdots char a2 Membership type. IM: Member from our initial list. CM: Candidate member. LM: Low-priority candidate member.
R: Rejected candidate member.
source \cdots char a6 Source from which the target was obtained. INIT: Initial list described in Section 2. GAIA: Originates from our Gaia DR2-based search for additional candidate members described in Section 4. COM: Originates from our comover search described in Section 4.1. VIS: Originates from our visual identification of comover candidates described in Section 4.5. OH2017: Originates from a Oh et al. (2017) group with a partial match to our MUTA members and candidates.
mem_prob % R*4 f7.1 BANYAN Σ\Sigma probability for membership in MUTA.
uvw_sep km s-1 R*4 f7.1 Smallest possible separation from the center of the BANYAN Σ\Sigma model in UVWUVW space.
xyz_sep km s-1 R*4 f7.1 Smallest possible separation from the center of the BANYAN Σ\Sigma model in XYZXYZ space.
ra deg R*8 f21.16 Gaia DR2 right ascension (J2000) at epoch 2015.5 in the ICRS reference frame.
dec deg R*8 f21.16 Gaia DR2 declination (J2000) at epoch 2015.5 in the ICRS reference frame.
pmra masyr1\mathrm{mas}\,\mathrm{yr}^{-1} R*4 f10.5 Gaia DR2 proper motion in right ascension, including the cosδ\cos\delta jacobian term.
pmdec masyr1\mathrm{mas}\,\mathrm{yr}^{-1} R*4 f10.5 Gaia DR2 proper motion in declination.
epmra masyr1\mathrm{mas}\,\mathrm{yr}^{-1} R*4 f10.5 Measurement error for Gaia DR2 proper motion in right ascension.
epmdec masyr1\mathrm{mas}\,\mathrm{yr}^{-1} R*4 f10.5 Measurement error for Gaia DR2 proper motion in declination.
plx pc R*4 f10.5 Gaia DR2 parallax.
eplx pc R*4 f10.5 Measurement error for Gaia DR2 parallax.
ruwe \cdots R*4 f7.1 Re-normalised unit weight error of the Gaia DR2 astrometric solution. See Section 4.4 for more details.
rv km s-1 R*4 f7.1 Radial velocity measurement from the literature.
erv km s-1 R*4 f7.1 Measurement error for radial velocity measurement.
rv_ref \cdots char a25 Reference for literature radial velocity measurement.
pred_rv km s-1 R*4 f7.1 Predicted radial velocity that maximizes MUTA membership probability obtained from BANYAN Σ\Sigma, only listed for targets without a radial velocity measurement.
epred_rv km s-1 R*4 f7.1 1σ1\sigma confidence range on predicted radial velocity that maximizes MUTA membership probability.
gaia_g mag R*8 f12.5 Gaia DR2 GG-band magnitude.
egaia_g mag R*8 f12.5 Measurement error for Gaia DR2 GG-band magnitude.
gaia_grp mag R*4 f12.5 Gaia DR2 GRPG_{\rm RP}-band magnitude.
egaia_grp mag R*4 f12.5 Measurement error for Gaia DR2 GRPG_{\rm RP}-band magnitude.
gaia_brp mag R*4 f12.5 Gaia DR2 GBPG_{\rm BP}-band magnitude.
egaia_brp mag R*4 f12.5 Measurement error for Gaia DR2 GBPG_{\rm BP}-band magnitude.
tmass_j mag R*4 f10.3 2MASS JJ-band magnitude.
etmass_j mag R*4 f10.3 Measurement error for 2MASS JJ-band magnitude.
tmass_h mag R*4 f10.3 2MASS HH-band magnitude.
etmass_h mag R*4 f10.3 Measurement error for 2MASS HH-band magnitude.
tmass_k mag R*4 f10.3 2MASS KSK_{S}-band magnitude.
etmass_k mag R*4 f10.3 Measurement error for 2MASS KSK_{S}-band magnitude.
aw_w1 mag R*4 f10.3 AllWISE W1W1-band magnitude, W1MPRO entry in the original catalog.
eaw_w1 mag R*4 f10.3 Measurement error for AllWISE W1W1-band magnitude, W1SIGMPRO entry in the original catalog.
aw_w2 mag R*4 f10.3 AllWISE W2W2-band magnitude, W2MPRO entry in the original catalog.
eaw_w2 mag R*4 f10.3 Measurement error for AllWISE W2W2-band magnitude, W2SIGMPRO entry in the original catalog.
aw_w3 mag R*4 f10.3 AllWISE W3W3-band magnitude, W3MPRO entry in the original catalog.
eaw_w3 mag R*4 f10.3 Measurement error for AllWISE W3W3-band magnitude, W3SIGMPRO entry in the original catalog.
ebv mag R*4 f7.1 E(BV)E(B-V) reddening based on the STILISM reddening map combined with Gaia DR2 distance and sky position. See Section 5 for more details.
eebv mag R*4 f7.1 Measurement error for E(BV)E(B-V) reddening.
galex_nuv mag R*4 f7.1 GALEX NUVNUV-band magnitude.
egalex_nuv mag R*4 f7.1 Measurement error for GALEX NUVNUV-band magnitude.
galex_fuv mag R*4 f7.1 GALEX FUVFUV-band magnitude.
egalex_fuv mag R*4 f7.1 Measurement error for GALEX FUVFUV-band magnitude.
rosat_hr1 \cdots R*4 f10.3 ROSAT hardness ratio HR1.
rosat_hr2 \cdots R*4 f10.3 ROSAT hardness ratio HR2.
rosat_counts ct/s R*4 f10.3 ROSAT X-ray counts.
erosat_counts ct/s R*4 f10.3 Measurement error for ROSAT X-ray counts.
rosat_lx \cdots R*4 f10.3 Absolute X-ray luminosity logLX/L\log L_{X}/L_{\odot} calculated from ROSAT X-ray data and Gaia DR2 trigonometric distance.
erosat_lx \cdots R*4 f10.3 Measurement error for absolute X-ray luminosity.
li_ew R*4 f7.1 Lithium absorption line equivalent width.
spt_ref \cdots char a25 Reference for lithium absorption line equivalent width.
teff K R*4 f7.1 Effective temperature.
teff_ref \cdots char a25 Reference for effective temperature.
is_primary \cdots int i3 1: Single stars or primary (brightest) star in a multiple system. 0: Companion star in a multiple system.
mult_letter \cdots char a3 Identifier letter for multiple system components.
sep_parent asec R*8 f12.5 Separation from parent star calculated from Gaia DR2 positions.
esep_parent asec R*8 f12.5 Measurement error for separation.
pa_parent deg R*8 f12.5 Position angle with respect to parent star calculated from Gaia DR2 positions.
epa_parent deg R*8 f12.5 Measurement error for position angle.
comover_gaiadr2_id \cdots char a40 Gaia DR2 identification number for comoving star (parent or companion). Multiple entries are separated by a semicolon.
oh2017_group_id \cdots char a4 Comoving group identification number from Oh et al. (2017).

Note. — The full table data are available as online-only additional material.

JG wrote the codes, manuscript, generated figures and led the analysis; TJD compiled an initial list of new candidates and generated Figure 1; EEM first identified the over-density associated with MUTA, led the turnoff age analysis, the investigation of HD 27860 and provided the initial members list; AWM led the rotation periods analysis, wrote part o f Section 6.7 and built Figures 24 and 25, JKF provided help with parsing the Gaia DR2 data and general comments, and AB provided the atmosphere analysis of WD 0340+103 and Figure 21.

Refer to caption
(a) Galactic positions XX versus YY
Refer to caption
(b) Galactic positions XX versus ZZ
Refer to caption
(c) Space velocities UU versus VV
Refer to caption
(d) Space velocities UU versus WW
Figure 28: Spatial and kinematic distribution of MUTA candidates and members discussed in this work (red circles), compared with the neighbor Taurus association (rightward green triangles) and the Theia 160 kinematic string (blue diamonds). The similar kinematics and isochronal ages of Theia 160 and MUTA indicate that these two Galactic structures may be related to one another. See Section 6.8 for more detail.

References

  • Abt (2008) Abt, H. A. 2008, The Astrophysical Journal Supplement Series, 176, 216
  • Ahn et al. (2012) Ahn, C. P., Alexandroff, R., Allende Prieto, C., et al. 2012, The Astrophysical Journal Supplement, 203, 21
  • Alam et al. (2015) Alam, S., Albareti, F. D., Allende Prieto, C., et al. 2015, The Astrophysical Journal Supplement Series, 219, 12
  • Allard et al. (2012) Allard, F., Homeier, D., & Freytag, B. 2012, Philosophical Transactions of the Royal Society A: Mathematical, 370, 2765
  • Avvakumova et al. (2013) Avvakumova, E. A., Malkov, O. Y., & Kniazev, A. Y. 2013, Astronomische Nachrichten, 334, 860
  • Babusiaux et al. (2018) Babusiaux, C., van Leeuwen, F., Barstow, M., et al. 2018, Astronomy & Astrophysics, 616, A10
  • Bai et al. (2019) Bai, Y., Liu, J., Bai, Z., Wang, S., & Fan, D. 2019, AJ, 158, 93
  • Baraffe et al. (2015) Baraffe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, Astronomy & Astrophysics, 577, A42
  • Barnes (2003) Barnes, S. A. 2003, ApJ, 586, 464
  • Barrado y Navascués et al. (2001) Barrado y Navascués, D., García López, R. J., Severino, G., & Gomez, M. T. 2001, A&A, 371, 652
  • Barrado y Navascués et al. (2004) Barrado y Navascués, D., Stauffer, J. R., & Jayawardhana, R. 2004, The Astrophysical Journal, 614, 386
  • Beavers & Cook (1980) Beavers, W. I., & Cook, D. B. 1980, Astrophysical Journal Supplement Series, 44, 489
  • Bell et al. (2015) Bell, C. P. M., Mamajek, E. E., & Naylor, T. 2015, Monthly Notices of the Royal Astronomical Society, 454, 593
  • Bergeron et al. (1992) Bergeron, P., Saffer, R. A., & Liebert, J. 1992, The Astrophysical Journal, 394, 228
  • Bergeron et al. (2011) Bergeron, P., Wesemael, F., Dufour, P., et al. 2011, The Astrophysical Journal, 737, 28
  • Bertelli et al. (2009) Bertelli, G., Nasi, E., Girardi, L., & Marigo, P. 2009, Astronomy and Astrophysics, 508, 355
  • Bidelman et al. (1988) Bidelman, W. P., Ratcliff, S. J., & Svolopoulos, S. 1988, Astronomical Society of the Pacific, 100, 828
  • Blaauw (1956) Blaauw, A. 1956, The Astrophysical Journal, 123, 408
  • Bochanski et al. (2010) Bochanski, J. J., Hawley, S. L., Covey, K. R., et al. 2010, The Astronomical Journal, 139, 2679
  • Boller et al. (2016) Boller, T., Freyberg, M. J., Trümper, J., et al. 2016, Astronomy & Astrophysics, 588, A103
  • Borucki et al. (2010) Borucki, W. J., Koch, D., Basri, G., et al. 2010, Science, 327, 977
  • Bouvier et al. (2018) Bouvier, J., Barrado, D., Moraux, E., et al. 2018, A&A, 613, A63
  • Bouy et al. (2015) Bouy, H., Bertin, E., Barrado, D., et al. 2015, A&A, 575, A120
  • Brandt & Huang (2015) Brandt, T. D., & Huang, C. X. 2015, The Astrophysical Journal, 807, 24
  • Burke et al. (2004) Burke, C. J., Pinsonneault, M. H., & Sills, A. 2004, The Astrophysical Journal, 604, 272
  • Camisassa et al. (2019) Camisassa, M. E., Althaus, L. G., Córsico, A. H., et al. 2019, A&A, 625, A87
  • Cannon & Pickering (1993) Cannon, A. J., & Pickering, E. C. 1993, VizieR On-line Data Catalog, 3135
  • Capitanio et al. (2017) Capitanio, L., Lallement, R., Vergely, J. L., Elyajouri, M., & Monreal-Ibero, A. 2017, Astronomy and Astrophysics, 606, A65
  • Chambers et al. (2016) Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, arXiv.org, arXiv:1612.05560
  • Choi et al. (2016) Choi, J., Dotter, A., Conroy, C., et al. 2016, The Astrophysical Journal, 823, 102
  • Cowley (1972) Cowley, A. 1972, Astronomical Journal, 77, 750
  • Cowley et al. (1969) Cowley, A., Cowley, C., Jaschek, M., & Jaschek, C. 1969, Astronomical Journal, 74, 375
  • Cowley (1968) Cowley, A. P. 1968, Publications of the Astronomical Society of the Pacific, 80, 453
  • Cropper et al. (2018) Cropper, M., Katz, D., Sartoretti, P., & et al. 2018, Astronomy & Astrophysics, 616, A5
  • Curtis et al. (2019) Curtis, J. L., Agüeros, M. A., Mamajek, E. E., Wright, J. T., & Cummings, J. D. 2019, The Astronomical Journal, 158, 77
  • Dahm (2015) Dahm, S. E. 2015, The Astrophysical Journal, 813, 108
  • de Zeeuw et al. (1999) de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown, A. G. A., & Blaauw, A. 1999, The Astronomical Journal, 117, 354
  • Delorme et al. (2011) Delorme, P., Collier Cameron, A., Hebb, L., et al. 2011, MNRAS, 413, 2218
  • Dobbie et al. (2010) Dobbie, P. D., Lodieu, N., & Sharp, R. G. 2010, Monthly Notices of the Royal Astronomical Society, 409, 1002
  • Douglas et al. (2016) Douglas, S. T., Agüeros, M. A., Covey, K. R., et al. 2016, The Astrophysical Journal, 822, 47
  • Douglas et al. (2017) Douglas, S. T., Agüeros, M. A., Covey, K. R., & Kraus, A. 2017, The Astrophysical Journal, 842, 83
  • Douglas et al. (2017) Douglas, S. T., Agüeros, M. A., Covey, K. R., & Kraus, A. 2017, ApJ, 842, 83
  • Dupuy & Liu (2012) Dupuy, T. J., & Liu, M. C. 2012, The Astrophysical Journal Supplement, 201, 19
  • Eisenhardt et al. (2019) Eisenhardt, P. R. M., Marocco, F., Fowler, J. W., et al. 2019, arXiv.org, arXiv:1908.08902
  • ESA (1997) ESA. 1997, The Hipparcos and Tycho catalogues. Astrometric and photometric star catalogues derived from the ESA Hipparcos Space Astrometry Mission, 1200
  • Evans (1967) Evans, D. S. 1967, Determination of Radial Velocities and their Applications, 30, 57
  • Evans et al. (2018a) Evans, D. W., Riello, M., De Angeli, F., et al. 2018a, arXiv.org, arXiv:1804.09368
  • Evans et al. (2018b) —. 2018b, Astronomy & Astrophysics, 616, A4
  • Faherty et al. (2018) Faherty, J. K., Bochanski, J. J., Gagné, J., et al. 2018, The Astrophysical Journal, 863, 91
  • Faherty et al. (2016) Faherty, J. K., Riedel, A. R., Cruz, K. K., et al. 2016, The Astrophysical Journal Supplement Series, 225, 10
  • Feinstein et al. (2019) Feinstein, A. D., Montet, B. T., Foreman-Mackey, D., et al. 2019, PASP, 131, 094502
  • Filippazzo et al. (2015) Filippazzo, J. C., Rice, E. L., Faherty, J., et al. 2015, The Astrophysical Journal, 810, 158
  • Fitzpatrick (1999) Fitzpatrick, E. L. 1999, The Publications of the Astronomical Society of the Pacific, 111, 63
  • Flower (1996) Flower, P. J. 1996, Astrophysical Journal v.469, 469, 355
  • Fontaine et al. (2001) Fontaine, G., Brassard, P., & Bergeron, P. 2001, The Publications of the Astronomical Society of the Pacific, 113, 409
  • Gagné & Faherty (2018) Gagné, J., & Faherty, J. K. 2018, The Astrophysical Journal, 862, 138
  • Gagné et al. (2018a) Gagné, J., Faherty, J. K., & Mamajek, E. E. 2018a, The Astrophysical Journal, 865, 136
  • Gagné et al. (2018b) Gagné, J., Fontaine, G., Simon, A., & Faherty, J. K. 2018b, The Astrophysical Journal Letters, 861, L13
  • Gagné et al. (2014) Gagné, J., Lafrenière, D., Doyon, R., Malo, L., & Artigau, É. 2014, The Astrophysical Journal, 783, 121
  • Gagné et al. (2018c) Gagné, J., Roy-Loubier, O., Faherty, J. K., Doyon, R., & Malo, L. 2018c, The Astrophysical Journal, 860, 43
  • Gagné et al. (2018) Gagné, J., Schneider, A., & Cushing, M. 2018, Finder Charts Python Package v1.0, Zenodo, doi:10.5281/zenodo.1237017
  • Gagné et al. (2015) Gagné, J., Faherty, J. K., Cruz, K. L., et al. 2015, The Astrophysical Journal Supplement Series, 219, 33
  • Gagné et al. (2018) Gagné, J., Mamajek, E. E., Malo, L., et al. 2018, The Astrophysical Journal, 856, 23
  • Gaia Collaboration et al. (2018a) Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018a, Astronomy & Astrophysics, 616, A1
  • Gaia Collaboration et al. (2018b) Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018b, A&A, 616, A1
  • Gentile Fusillo et al. (2019) Gentile Fusillo, N. P., Tremblay, P.-E., Gänsicke, B. T., et al. 2019, Monthly Notices of the Royal Astronomical Society, 482, 4570
  • Gontcharov (2006) Gontcharov, G. A. 2006, Astronomy Letters, 32, 759
  • Gray et al. (2006) Gray, R. O., Corbally, C. J., Garrison, R. F., et al. 2006, The Astronomical Journal, 132, 161
  • Gray et al. (2003) Gray, R. O., Corbally, C. J., Garrison, R. F., McFadden, M. T., & Robinson, P. E. 2003, The Astronomical Journal, 126, 2048
  • Grenier et al. (1999) Grenier, S., Baylac, M. O., Rolland, L., et al. 1999, Astronomy and Astrophysics Supplement, 137, 451
  • Gullikson et al. (2016) Gullikson, K., Kraus, A. L., & Dodson-Robinson, S. 2016, The Astronomical Journal, 152, 40
  • Hambly et al. (2018) Hambly, N. C., Cropper, M., Boudreault, S., et al. 2018, Astronomy & Astrophysics, 616, A15
  • Heckmann & Lübeck (1958) Heckmann, O., & Lübeck, K. 1958, Zeitschrift für Astrophysik, 45, 243
  • Hohle et al. (2010) Hohle, M. M., Neuhäuser, R., & Schutz, B. F. 2010, Astronomische Nachrichten, 331, 349
  • Holberg & Bergeron (2006) Holberg, J. B., & Bergeron, P. 2006, The Astronomical Journal, 132, 1221
  • Hollands et al. (2018) Hollands, M. A., Tremblay, P. E., Gänsicke, B. T., Gentile-Fusillo, N. P., & Toonen, S. 2018, Monthly Notices of the Royal Astronomical Society, 480, 3942
  • Horne & Baliunas (1986) Horne, J. H., & Baliunas, S. L. 1986, ApJ, 302, 757
  • Howell et al. (2014) Howell, S. B., Sobeck, C., Haas, M., et al. 2014, Publications of the Astronomical Society of the Pacific, 126, 398
  • Jaschek & Jaschek (1980) Jaschek, M., & Jaschek, C. 1980, Astronomy & Astrophysics Supplement Series, 42, 115
  • Jeffries (2012) Jeffries, R. D. 2012, Low-Mass Stars and the Transition Stars/Brown Dwarfs - EES2011, 57, 45
  • Jenkins et al. (2016) Jenkins, J. M., Twicken, J. D., McCauliff, S., et al. 2016, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9913, The TESS science processing operations center, 99133E
  • Jones et al. (1999) Jones, B. F., Fischer, D., & Soderblom, D. R. 1999, AJ, 117, 330
  • Jones et al. (1996) Jones, B. F., Shetrone, M., Fischer, D., & Soderblom, D. R. 1996, AJ, 112, 186
  • Kastner et al. (2003) Kastner, J. H., Crigger, L., Rich, M., & Weintraub, D. A. 2003, The Astrophysical Journal, 585, 878
  • Kenyon et al. (2008) Kenyon, S. J., Gómez, M., & Whitney, B. A. 2008, Handbook of Star Forming Regions, I, 405
  • Kharchenko et al. (2007) Kharchenko, N. V., Scholz, R. D., Piskunov, A. E., Röser, S., & Schilbach, E. 2007, Astronomische Nachrichten, 328, 889
  • Kirkpatrick et al. (2011) Kirkpatrick, D. J., Cushing, M. C., Cruz, K. K., et al. 2011, The Astrophysical Journal Supplement, 197, 19
  • Kirkpatrick et al. (2012) Kirkpatrick, D. J., Gelino, C. R., Cushing, M. C., et al. 2012, The Astrophysical Journal, 753, 156
  • Kleinman et al. (2013) Kleinman, S. J., Kepler, S. O., Koester, D., et al. 2013, The Astrophysical Journal Supplement, 204, 5
  • Kounkel & Covey (2019) Kounkel, M., & Covey, K. 2019, arXiv.org, 122
  • Kowalski & Saumon (2006) Kowalski, P. M., & Saumon, D. 2006, The Astrophysical Journal, 651, L137
  • Kraus et al. (2014) Kraus, A. L., Shkolnik, E. L., Allers, K. N., & Liu, M. C. 2014, The Astronomical Journal, 147, 146
  • Lallement et al. (2014) Lallement, R., Vergely, J. L., Valette, B., et al. 2014, Astronomy and Astrophysics, 561, A91
  • Lallement et al. (2018) Lallement, R., Capitanio, L., Ruiz-Dern, L., et al. 2018, Astronomy and Astrophysics, 616, A132
  • Lauffer et al. (2018) Lauffer, G. R., Romero, A. D., & Kepler, S. O. 2018, MNRAS, 480, 1547
  • Lawrence et al. (2007) Lawrence, A., Warren, S. J., Almaini, O., et al. 2007, Monthly Notices of the Royal Astronomical Society, 379, 1599
  • Lesh (1968) Lesh, J. R. 1968, Astrophysical Journal Supplement, 17, 371
  • Liebert et al. (2005) Liebert, J., Bergeron, P., & Holberg, J. B. 2005, The Astrophysical Journal Supplement Series, 156, 47
  • Lindegren et al. (2018) Lindegren, L., Hernández, J., Bombrun, A., et al. 2018, Astronomy & Astrophysics, 616, A2
  • Liu et al. (2020) Liu, J., Fang, M., & Liu, C. 2020, The Astronomical Journal, 159, 105
  • Liu et al. (2016) Liu, M. C., Dupuy, T. J., & Allers, K. N. 2016, The Astrophysical Journal, 833, 96
  • Lodieu et al. (2019) Lodieu, N., Pérez-Garrido, A., Smart, R. L., & Silvotti, R. 2019, Astronomy and Astrophysics, 628, A66
  • Luhman (2018) Luhman, K. L. 2018, The Astronomical Journal, 156, 271
  • Luri et al. (2018) Luri, X., A Brown, A. G., Sarro, L., et al. 2018, Astronomy & Astrophysics, 616, A9
  • Mace (2014) Mace, G. N. 2014, ProQuest Dissertations And Theses; Thesis (Ph.D.)–University of California, 56
  • Magazzù et al. (1997) Magazzù, A., Martín, E. L., Sterzik, M. F., et al. 1997, A & A Supplement series, 124, 449
  • Magnier et al. (2010) Magnier, E. A., Liu, M., Goldman, B., et al. 2010, Highlights of Astronomy, 15, 818
  • Makarov & Urban (2000) Makarov, V. V., & Urban, S. 2000, Monthly Notices of the Royal Astronomical Society, 317, 289
  • Malo et al. (2014a) Malo, L., Artigau, É., Doyon, R., et al. 2014a, The Astrophysical Journal, 788, 81
  • Malo et al. (2014b) Malo, L., Doyon, R., Feiden, G. A., et al. 2014b, The Astrophysical Journal, 792, 37
  • Malo et al. (2013) Malo, L., Doyon, R., Lafrenière, D., et al. 2013, The Astrophysical Journal, 762, 88
  • Mamajek (2005) Mamajek, E. E. 2005, The Astrophysical Journal, 634, 1385
  • Martin et al. (2005) Martin, D. C., Fanson, J., Schiminovich, D., et al. 2005, The Astrophysical Journal, 619, L1
  • Mason et al. (2001) Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass, G. G., & Worley, C. E. 2001, The Astronomical Journal, 122, 3466
  • McMahon et al. (2013) McMahon, R. G., Banerji, M., Gonzalez, E., et al. 2013, The Messenger, 154, 35
  • McQuillan et al. (2013) McQuillan, A., Aigrain, S., & Mazeh, T. 2013, MNRAS, 432, 1203
  • Meingast et al. (2019) Meingast, S., Alves, J., & Fürnkranz, V. 2019, Astronomy and Astrophysics, 622, L13
  • Mentuch et al. (2008) Mentuch, E., Brandeker, A., van Kerkwijk, M. H., Jayawardhana, R., & Hauschildt, P. H. 2008, ApJ, 689, 1127
  • Mignard et al. (2018) Mignard, F., Klioner, S., Lindegren, L., et al. 2018, Astronomy & Astrophysics, 616, A14
  • Molnar (1972) Molnar, M. R. 1972, The Astrophysical Journal, 175, 453
  • Nesterov et al. (1995) Nesterov, V. V., Kuzmin, A. V., Ashimbaeva, N. T., et al. 1995, Astronomy and Astrophysics, 110, 367
  • Neuhaeuser et al. (1995) Neuhaeuser, R., Sterzik, M. F., Schmitt, J. H. M. M., Wichmann, R., & Krautter, J. 1995, A&A, 295, L5
  • Ochsenbein et al. (2000) Ochsenbein, F., Bauer, P., & Marcout, J. 2000, Astronomy and Astrophysics Supplement, 143, 23
  • Oh et al. (2017) Oh, S., Price-Whelan, A. M., Hogg, D. W., Morton, T. D., & Spergel, D. N. 2017, The Astronomical Journal, 153, 257
  • Pecaut & Mamajek (2013) Pecaut, M. J., & Mamajek, E. E. 2013, The Astrophysical Journal Supplement, 208, 9
  • Perryman et al. (1997) Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, Astronomy and Astrophysics 323, 323, L49
  • Perryman et al. (1998) Perryman, M. A. C., Brown, A. G. A., Lebreton, Y., et al. 1998, Astronomy & Astrophysics, 331, 81
  • Pickles (1998) Pickles, A. J. 1998, The Publications of the Astronomical Society of the Pacific, 110, 863
  • Predehl et al. (2014) Predehl, P., Andritschke, R., Becker, W., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9144, Proc. SPIE, 91441T
  • Randich (2001) Randich, S. 2001, A&A, 377, 512
  • Rasmuson (1921) Rasmuson, N. H. 1921, Meddelanden fran Lunds Astronomiska Observatorium Series II, 26, 3
  • Rebull et al. (2016) Rebull, L. M., Stauffer, J. R., Bouvier, J., et al. 2016, AJ, 152, 113
  • Reiners et al. (2012) Reiners, A., Joshi, N., & Goldman, B. 2012, The Astronomical Journal, 143, 93
  • Reino et al. (2018) Reino, S., de Bruijne, J., Zari, E., d’Antona, F., & Ventura, P. 2018, Monthly Notices of the Royal Astronomical Society, 477, 3197
  • Ricker et al. (2015) Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, Journal of Astronomical Telescopes, 1, 014003
  • Riedel et al. (2017) Riedel, A. R., Blunt, S. C., Lambrides, E. L., et al. 2017, The Astronomical Journal, 153, 95
  • Riello et al. (2018) Riello, M., De Angeli, F., Evans, D. W., et al. 2018, Astronomy & Astrophysics, 616, A3
  • Rodriguez et al. (2013) Rodriguez, D. R., Zuckerman, B., Kastner, J. H., et al. 2013, The Astrophysical Journal, 774, 101
  • Röser & Schilbach (2019) Röser, S., & Schilbach, E. 2019, Astronomy and Astrophysics, 627, A4
  • Röser et al. (2019) Röser, S., Schilbach, E., & Goldman, B. 2019, Astronomy and Astrophysics, 621, L2
  • Sartoretti et al. (2018) Sartoretti, P., Katz, D., Cropper, M., et al. 2018, Astronomy & Astrophysics, 616, A6
  • Shkolnik et al. (2017) Shkolnik, E. L., Allers, K. N., Kraus, A. L., Liu, M. C., & Flagg, L. 2017, The Astronomical Journal, 154, 69
  • Simon (2018) Simon, A. 2018, PhD thesis
  • Simon et al. (2015) Simon, A., Fontaine, G., & Brassard, P. 2015, 19th European Workshop on White Dwarfs, 493, 137
  • Skrutskie et al. (2006) Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, The Astronomical Journal, 131, 1163
  • Smart et al. (2019) Smart, R. L., Marocco, F., Sarro, L. M., et al. 2019, Monthly Notices of the Royal Astronomical Society, 485, 4423
  • Soderblom et al. (1993) Soderblom, D. R., Jones, B. F., Balachandran, S., et al. 1993, Astronomical Journal (ISSN 0004-6256), 106, 1059
  • Soubiran et al. (2018) Soubiran, C., Jasniewicz, G., Chemin, L., et al. 2018, Astronomy & Astrophysics, 616, A7
  • Tang et al. (2019) Tang, S.-Y., Pang, X., Yuan, Z., et al. 2019, The Astrophysical Journal, 877, 12
  • Torres et al. (2000) Torres, C. A. O., da Silva, L., Quast, G. R., de la Reza, R., & Jilinski, E. 2000, The Astronomical Journal, 120, 1410
  • Torres et al. (2006) Torres, C. A. O., Quast, G. R., da Silva, L., et al. 2006, Astronomy and Astrophysics, 460, 695
  • Torres et al. (2008) Torres, C. A. O., Quast, G. R., Melo, C. H. F., & Sterzik, M. F. 2008, Young Nearby Loose Associations, ed. B. Reipurth, Vol. I (The Southern Sky ASP Monograph Publications)
  • Tremblay et al. (2011) Tremblay, P. E., Bergeron, P., & Gianninas, A. 2011, The Astrophysical Journal, 730, 128
  • van Leeuwen (2007) van Leeuwen, F. 2007, Astronomy & Astrophysics, 474, 653
  • van Saders et al. (2016) van Saders, J. L., Ceillier, T., Metcalfe, T. S., et al. 2016, Nature, 529, 181
  • Vanderburg & Johnson (2014) Vanderburg, A., & Johnson, J. A. 2014, PASP, 126, 948
  • White et al. (2007) White, R. J., Gabor, J. M., & Hillenbrand, L. A. 2007, The Astronomical Journal, 133, 2524
  • Wichmann et al. (2000) Wichmann, R., Torres, G., Melo, C. H. F., et al. 2000, Astronomy and Astrophysics, 359, 181
  • Wilson (1953) Wilson, R. E. 1953, Washington, 0
  • Woolley et al. (1981) Woolley, R., Penston, M. J., Harding, G. A., et al. 1981, Royal Observatory Annals, 14
  • Wright et al. (2003) Wright, C. O., Egan, M. P., Kraemer, K. E., & Price, S. D. 2003, The Astronomical Journal, 125, 359
  • Wright et al. (2010) Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, The Astronomical Journal, 140, 1868
  • Xing (2010) Xing, L. F. 2010, ApJ, 723, 1542
  • Zuckerman (2019) Zuckerman, B. 2019, The Astrophysical Journal, 870, 27
  • Zuckerman & Song (2004) Zuckerman, B., & Song, I. 2004, Annual Review of Astronomy &Astrophysics, 42, 685
  • Zuckerman et al. (2004) Zuckerman, B., Song, I., & Bessell, M. S. 2004, The Astrophysical Journal, 613, L65
  • Zuckerman et al. (2001a) Zuckerman, B., Song, I., Bessell, M. S., & Webb, R. A. 2001a, The Astrophysical Journal, 562, L87
  • Zuckerman et al. (2001b) Zuckerman, B., Song, I., & Webb, R. A. 2001b, The Astrophysical Journal, 559, 388